

Impianto idroelettrico di Coghinas – Diga di Muzzone

Renewable Energies Italy - O&M Hydro Italy Northern Central Area - Territorial Unit Cagliari - UE Coghinas

Comune di Oschiri - Provincia di Sassari

Ripristino dello scarico di fondo

Progetto Esecutivo

Relazione Geotecnica

Relazione Tecnica

IL COMMITTENTE CONCELLARENTE ENEL GREEN PO Renewable Energy O&M Hydro Italy			OWER ITALIA SRL gies Italy		07/03/2023	
Gree	n Power	Northern Central	Area		DATA	ING. M. SESSEGO
IL PROGETTISTA		LOMBARDI SA ING	EGNERI CONSULE	NTI		
Lombardi SA In Via del Tiglio 2, CH 6512 Bellinz			gegneri Consuler).P. 934 ona-Giubiasco (Svi	nti zzera)	07/03/2023	
					DATA	ING. M.BRAGHINI
IL DIRETTORE LAVORI			L' INGEGNERE RESPONSABILE		IL PROGETTISTA S	SPECIALISTICO
	1			I		I
			07/03/2023	Ing. M. ARU	07/03/2023	ING. A. BALESTRA
DATA			DATA		DATA	

enel Green Power	Impianto Impianto idroelettrico di Coghinas	GRE.OEM.	CODICE CKS R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 2 di 70

В	07.03.2023	Bat	MFr
А	15.07.2022	Bat	MFr
Versione	Data	Redatto	Verificato

Lombardi SA Ingegneri Consulenti Via del Tiglio 2, C.P. 934, CH-6512 Bellinzona-Giubiasco Telefono +41(0)91 735 31 00 www.lombardi.group, info@lombardi.group

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 1 di 70

INDICE

1.	INTR	ODUZIC	DNE	3
2.	DESC	RIZION	E DELL'OPERA E DEL PROGETTO	5
3.	METO	DOLOC	GIA DI LAVORO	9
	3.1	Materia	le bibliografico	9
	3.2	Rilievo	topografico	9
	3.3	Rilevan	nento geologico	10
	3.4	Rilevi g	eomeccanici	10
	3.5	Analisi	scabrezza giunti	11
4.	INDA	GINI ISN	MES 1988	13
	4.1	Sondag	ggi	13
		4.1.1	Litologie	15
		4.1.2	Percentuali di recupero e RQD	15
		4.1.3	Velocità sonica	17
		4.1.4	Log BHTV	18
		4.1.5	Laboratorio rocce	20
5.	INDA	GINI 202	21	27
	5.1	Rilievi g	geomeccanici	27
	5.2	Profili r	ugosità giunti	35
	5.3	Sondag	ggio geognostico	39
		5.3.1	Litologie	40
		5.3.2	Percentuali di recupero e RQD	40
	5.4	Log Ott	ico e Acustico	41
6.	MOD	ELLO GI	EOLOGICO	44
7.	CARA	ATTERIZ	ZAZIONE MECCANICA	48

enel Green Power	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 2 di 70

	7.1	Criteri	di caratterizzazione geomeccanica dell'ammasso	48
		7.1.1	Parametri di resistenza	49
		7.1.2	Parametri di deformabilità	50
		7.1.3	Materiale roccia intatta	50
		7.1.4	Ammasso roccioso	51
	7.2	Criterio	o di caratterizzazione geomeccanica giunti	53
		7.2.1	Discontinuità	54
		7.2.2	Parametri dei giunti	55
8.	CON	DIZION	I DI RISCHIO SISMICO	58
9.	CON	CLUSIC	DNI	62
10.	BIBL	IOGRAF	FIA	63
	10.1	Riferim	nenti tecnici scientifici	63
	10.2	Norme	e tecniche applicabili	64
	10.3	Docum	nenti storici sull'opera	65
	10.4	Docum	nenti di progetto	65

	IMPIANTO		CODICE CKS
enel	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 3 di 70

1. INTRODUZIONE

La presente relazione riguarda la valutazione delle condizioni geotecniche in merito al Progetto di Ripristino dello scarico di fondo della Diga Muzzone appartenente all'impianto idroelettrico di Coghinas in seguito a rinterramento dell'invaso.

L'ubicazione dell'impianto, nel Comune di Oschiri in provincia di Sassari, viene illustrato in Figura 1.

Figura 1: ubicazione diga di Muzzone.

La relazione è organizzata nei seguenti capitoli:

- Capitolo 2: descrive l'opera
- Capitolo 3: illustra la metodologia di lavoro impiegata

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
	птоьо Diga di Muzzone Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
			Data 07/03/2023
	Relazione geotecnica		Pagina 4 di 70

- Capitolo 4: descrive le indagini pregresse eseguite da ISMES
- Capitolo 5: illustra le indagini realizzate nel corso del presente studio
- **Capitolo 6**: descrive il modello geologico del sito
- Capitolo 7: affronta la caratterizzazione geotecnica degli ammassi e dei giunti
- Capitolo 8: definisce il rischio sismico
- Capitolo 9: illustra le conclusioni
- Capitolo 10: elenca i riferimenti bibliografici

Le tavole tecniche a cui il presente rapporto fa riferimento sono:

- 2020.0240.002-GT-GEN-DW-701 Mappa geologica-geomorfologica in scala 1:500;
- 2020.0240.002-GT-GEN-DW-702 Sezione geologica-geotecnica longitudinale alla diga in scala 1:500
- 2020.0240.002-GT-GEN-DW-703 Sezione geologica-geotecnica A-A' in scala 1:250
- 2020.0240.002-GT-GEN-DW-704 Sezione geologica-geotecnica B-B' in scala 1:250
- 2020.0240.002-GT-GEN-DW-705 Sezione geologica-geotecnica C-C' in scala 1:250

Infine, si segnala che le valutazioni di ordine prettamente geologico, geomorfologico e idrogeologico, vengono dettagliatamente presentate nella Relazione Geologica cod. 2020.0240.002-GT-GEN-RT-101 [35], parte integrante del presente studio.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 5 di 70

2. DESCRIZIONE DELL'OPERA E DEL PROGETTO

La diga di Muzzone, costruita fra il 1924 ed il 1927, è ubicata in corrispondenza dell'omonima stretta lungo il corso del Fiume Coghinas, circa 7 km a valle della confluenza del Rio Mannu di Ozieri e del Rio Mannu di Berchidda nel Comune di Oschiri, Provincia di Sassari. La diga origina a monte un serbatoio di oltre 240x106 m³, con un bacino imbrifero direttamente sotteso di circa 1'900 km².

Il serbatoio permette la regolazione stagionale delle portate del fiume Coghinas sia per la produzione di energia elettrica nella sottostante centrale del Coghinas che per uso irriguo, industriale e potabile.

Dal punto di vista statico si tratta di una diga a gravità ordinaria (Aa1), a pianta rettilinea e sezione triangolare, realizzata in muratura costituita da un conglomerato cementizio composto da inerti di pezzatura variabile comprendente numerosi elementi di grosse dimensioni (inerti maggiori di 20-40cm), legati da malta di cemento e materiale fino. La diga è provvista di sei giunti verticali disposti alla distanza media di circa 20 m. La tenuta dei giunti è assicurata da un pozzo verticale riempito di bitume in prossimità del paramento di monte e da un foglio di speciale feltro impermeabile applicato con una leggera incassatura. Verso l'acqua il giunto è chiuso mediante una soletta coprigiunto in cemento armato.

La costruzione è stata eseguita con calcestruzzo con inerti di classe granulometrica variabile da ordinaria a ciclopica (dalle indagini risultano evidenti grosse pezzature). Dalle indagini eseguite da TECNO IN Geosolutions S.p.A. nel 2021, il concio verticale attraversato dagli scarichi profondi e dalla tubazione di presa mostra una costruzione eseguita per strati con inerti di diversa pezzatura, eventualmente intasati con malta.

Il paramento di valle è rivestito in pietrame di granito con pezzatura irregolare. Il paramento di monte in calcestruzzo è rivestito con intonaco retinato impermeabilizzato con apposite vernici. Nel corpo diga, in prossimità del paramento di monte, sono predisposti pozzi verticali drenanti, collegati superiormente ed inferiormente da due gallerie d'ispezione.

La stretta, nella quale è costruito lo sbarramento, è incisa profondamente nel granito. Questa roccia è attraversata da filoni diabasici paralleli, ma l'insieme si presenta sul fondo completamente sano e compatto e costituisce un'ottima base per la fondazione. Nella sponda destra il granito presenta delle fessurazioni che danno luogo ad alcune perdite dalla roccia. A titolo esemplificativo si espone una foto dell'area in esame: le venute (sulla sinistra) sono attribuite, per posizione, entità e variabilità, all'infiltrazione nelle fratture dell'ammasso roccioso delle acque dello scarico in alveo dei drenaggi

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 6 di 70

(sulla destra, al termine del canaletto di adduzione). L'ordine di grandezza delle acque emergenti è dell'ordine delle frazioni di litro per secondo.

Figura 2: Perdite d'acqua in roccia in corrispondenza della sponda destra a valle diga.

Sulla sponda sinistra la diga si addentra maggiormente nel versante, in quanto le condizioni della roccia in posto hanno reso necessario dare uno sviluppo particolarmente accurato al sistema di drenaggio, per cui qui, anteriormente alla diga, è stato realizzato un grande diaframma a protezione della fondazione, munito di 9 pozzi verticali di drenaggio collegati inferiormente da una galleria.

Il bacino imbrifero comprende una vasta zona interna della parte settentrionale della Sardegna e ricade in terreni granitici e trachitici. Le sponde sono in prevalenza ricoperte da terreno vegetale con macchia mediterranea, degradanti con leggera pendenza verso l'invaso. L'alveo a valle corre tortuosamente incassato tra sponde rocciose, fino a sfociare nell'invaso di Casteldoria.

Attualmente lo scarico di fondo si presenta fuori servizio ed in condizione di sicurezza. L'imbocco di monte è completamente interrito. Una batimetria effettuata nel 1988 ha evidenziato che i sedimenti raggiungevano all'incirca quota 121.00 m s.l.m., circa 8 m al di sopra dell'imbocco dello scarico di

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 7 di 70

fondo posto a quota 113.00 m s.l.m. L'ultima batimetria effettuata nel 2011, evidenzia una quota dei sedimenti nel tratto antistante il paramento della diga di 125.50 m s.l.m.

Nel corso del 2012 lo scarico di fondo è stato oggetto di lavori di messa in sicurezza cha hanno previsto la chiusura definitiva dello scarico mediante la realizzazione di un tampone in calcestruzzo, a tergo della paratoia di intercettazione, di spessore 200 cm ed inghisato alle murature esistenti. Le pareti del tratto di galleria esistente a contatto con il tampone sono state ravvivate e sagomate in modo da ottenere una superficie concava che impedisca a quest'ultimo di spostarsi in virtù della sua forma. A seguito dei lavori effettuati lo scarico di fondo originario è stato pertanto messo fuori servizio.

Il nuovo scarico di fondo in progetto è costituito da una tubazione in acciaio alloggiata all'interno del corpo diga con imbocco ad una quota superiore rispetto al livello attuale dell'interrimento e dotato di due paratoie piane di intercettazione poste in prossimità dell'uscita della condotta dal corpo diga.

L'asse dello scarico in prossimità dell'imbocco è ubicato a quota 127.50 m s.l.m. mentre l'uscita è prevista con asse a quota 121.20 m s.l.m., ovvero 8.10 m al di sopra rispetto a quanto inizialmente previsto in fase di progetto definitivo.

La tubazione metallica annegata nel calcestruzzo è prevista con diametro interno pari a 2'200 mm.

Il nuovo assetto dello scarico di fondo è quindi in variante rispetto al progetto definitivo.

La modifica permette di avere a disposizione un'area di lavoro per lo scavo che riutilizza in parte la camera di manovra esistente ed aree di cantiere certamente collocate al di fuori delle aree bagnate in alveo a valle.

Il nuovo scarico di fondo, con recapito in aria a mezzo di un salto di sci terminale, sarà in grado di evacuare, alla quota di massimo invaso 167.60 m s.l.m. la portata di ca. 90 m³/s.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 8 di 70

Figura 3: Sezione in asse al nuovo scarico di fondo in corpo diga.

	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
enel	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Dragatta di vignistina della seguios di fondo		Data 07/02/2022	
Green Power	Progetto di ripristino dello scarico di londo		Dala 07/03/2023	
	Relazione geotecnica		Pagina 9 di 70	

3. METODOLOGIA DI LAVORO

Nell'ambito dello studio sono state effettuate le seguenti attività:

- Ricerca ed analisi del materiale bibliografico disponibile e dei rapporti di indagini pregresse;
- Rilievo topografia a valle diga tramite laser scan terrestre e drone;
- Rilevamento geologico di dettaglio;
- Esecuzione di rilievi geomeccanici su affioramenti rocciosi;
- Rilievo fotogrammetrico mediante drone delle aree di rilievo geomeccanico;
- Rilievo fotogrammetrico "close range" per misura della scabrezza dei giunti a scala metrica;
- Stesura del rapporto finale (il presente documento) con relativi allegati e tavole.

3.1 Materiale bibliografico

Come attività iniziale, oltre allo studio della documentazione fornita da ENEL, è stata eseguita una ricerca bibliografica di documenti utili a definire le caratteristiche geologiche dell'area in esame. La documentazione principale analizzata viene elencata nel Capitolo 10.

3.2 Rilievo topografico

La base topografica utilizzata per lo studio è stata prodotta tramite un rilievo laser scan terrestre e fotogrammetria da drone eseguito nel marzo 2021.

Il rilievo è stato restituito sotto forma di:

- Curve di livello a passo 1m
- Modello digitale di elevazione DTM con risoluzione di 0.07m/pixel
- Ortofoto con risoluzione di 0.045m/pixel

Il sistema cartografico di riferimento utilizzato è UTM WGS84 Fuso 32N.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS
			CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 10 di 70

3.3 Rilevamento geologico

Nel Marzo 2021 è stato effettuato il rilievo geologico di dettaglio al fine di identificare le principali unità litologiche, le strutture tettoniche e le forme morfologiche presenti in corrispondenza dell'opera.

Le attività di rilevamento geologico sono state condotte con l'ausilio di tablet rugged dotati di ricevitore GPS e applicativo GIS che ha permesso l'editing diretto degli affioramenti. Sono state identificate e classificate le forme morfologiche e gli elementi strutturali che caratterizzano gli ammassi rocciosi.

I risultati del rilievo sono illustrati nella Carta geologica di dettaglio [37] alla scala di 1:500.

3.4 Rilevi geomeccanici

Contemporaneamente all'attività di rilevamento geologico è stato eseguito il rilevamento geomeccanico degli affioramenti lungo la sponda destra e sinistra a valle della sezione di imposta.

I rilievi sono stati condotti allo scopo di definire l'assetto geostrutturale degli ammassi e le caratteristiche dei sistemi di discontinuità in essi presenti. I dati rilevati sono stati elaborati per determinare la classi di ammasso secondo il sistema di classificazione geomeccanico GSI e valutare i parametri di resistenza meccanica dell'ammasso.

Il dettaglio della metodologia di rilevamento e l'elaborazione dei dati vengono illustrati nell'Allegato A.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 11 di 70

In abbinamento al rilevamento geomeccanico sono state eseguite riprese fotogrammetriche aeree mediante drone DJI Mavic Air equipaggiato con una camera digitale di 12 Mpx di risoluzione. Il rilievo è stato esteso su entrambi i margini dell'alveo fino a 160 m di distanza a valle della diga. Sono state acquisite un totale di 73 foto per il versante destro e di 50 per quello sinistro con risoluzione fino a un massimo di 5 cm/pixel. Le immagini sono state elaborate con software fotogrammetrico per estrarre modelli tridimensionali ad elevata risoluzione, estremamente utili per dettagliare sia gli elementi strutturali che le caratteristiche morfologiche. I modelli semplificati dei 2 versanti sono inclusi in Appendice B come files pdf tridimensionali.

Figura 5: Modello 3d con punti di ripresa delle foto con drone (rettangoli blu). Sopra: argine sponda destra, sotto: sponda sinistra.

3.5 Analisi scabrezza giunti

A completamento delle attività di rilevamento geomeccanico è stato svolto un rilievo della rugosità dei giunti a scala metrica sui 3 sistemi di disgiunzione principali dell'ammasso roccioso.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 12 di 70

Il valore minimo e massimo del paramento JRC (Joint Roughness Coefficient) di Barton [3] è stato determinato lungo 7 superfici di giunti attraverso tecniche di fotogrammetria close range utilizzando una fotocamera ad alta risoluzione (27 MPixel). Il dettaglio della metodologia di rilevamento e l'elaborazione dei dati vengono illustrati nell'Allegato C.

Figura 6: Esempio di profili di asperità estratti dalla superficie del modello DEM sottostante.

enel Green Power	Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS
	τιτοιο Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 13 di 70

4. INDAGINI ISMES 1988

Vengono di seguito illustrate le informazioni derivanti dalle indagini ISMES [32], [33], [34] realizzate nel 1988 che sono risultate utili per la definizione dell'assetto fisico, meccanico e strutturale dell'ammasso di fondazione della diga.

Per agevolare la lettura delle informazioni contenute in questo e nei prossimi capitoli si illustra di seguito la nomenclatura e orientazione dei 5 set principali di giunti identificati in sito:

- K0: si tratta di un set orientato 015/09° la cui origine è attribuita al rilascio tensionale in superficie (stress relief) e identificato anche nei sondaggi S2 e S4.
- K1: set con orientazione media di 081/86°.
- K2: set con orientazione media di 116/85°. Le direzioni dei filoni di diabase sono interamente associate a questa famiglia che seguono l'andamento regionale tardo-ercinico.
- K3: set con orientazione media di 172/27 rinvenuto unicamente in sponda destra e nei sondaggi S2 e S4.
- K4: set con orientazione media di 011/56°.

4.1 Sondaggi

In **Tabella 1** sono riassunti i sondaggi eseguiti nel 1988, [32], a partire dal coronamento della diga, e prolungati fino a raggiugere il substrato roccioso, mentre la **Figura 7** e la **Figura 8** ne mostrano l'ubicazione in planimetria e in sezione. Da questi sondaggi sono stati prelevati campioni di roccia e di muratura sottoposti a prove di laboratorio.

Sondaggio	Est (WGS84)	Nord (WGS84)	Quota	Lunghezza	Inclinazione	Direzione	Contatto roccia	Perforazione in roccia
	[m]	[m]	[m slm]	[m]	[°]	[°]	[m]	[m]
1	502165	4515706	170	72.5	13	43°N	53	19.5
2	502149	4515718	170	80	Verticale	43°N	62.5	17.5
3	502150	4515719	170	83	15	43°N	65.9	17.1
4	502104	4515755	170	60	13	43°N	39	21

 Tabella 1: Sondaggi nel corpo diga che raggiungono il substrato roccioso [32].

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 14 di 70	

Figura 7: Planimetria dell'ubicazione dei sondaggi ISMES 1988 [32].

La disposizione dei sondaggi all'interno del corpo diga è illustrata dalle sezioni di Figura 8.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 15 di 70

Figura 8: Disposizione dei fori di sondaggio nel corpo diga e nel substrato roccioso [32].

4.1.1 Litologie

l log stratigrafici indicano che le perforazioni sono state approfondite all'interno dell'ammasso roccioso di fondazione per lunghezze comprese tra un minimo di 17 m fino a 21 m, per un totale di 75.1 m.

Le litologie recuperate consistono in granito che si presenta con una frequenza del 57% mentre il restante 43% è rappresentato da diabase. Considerato che in superficie i diabasi si rinvengono lungo filoni verticali allineati lungo il set K2 si considera che i sondaggi S2 e S3 abbiano attraversato un unico filone di circa 5 m larghezza che a valle della diga scompare sotto la copertura di blocchi ciclopici.

4.1.2 Percentuali di recupero e RQD

La percentuale di recupero (*Total Core Recovery* TCR), definita come il rapporto tra la lunghezza dei campioni carotati e la lunghezza della manovra, espressa in percentuale, indica come per entrambe le litologie i valori siano ottimi quasi sempre pari al 100% (**Tabella 2**).

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 16 di 70

Percentuale Recupero (%)						
Litologia N Minimo Media Massimo					Deviazione Standard	
Granito	42	95	100	100	0.8	
Diabase	21	87	99	100	3.9	

Tabella 2:
 Valori statistici di TCR raggruppati per litologia.

Per quanto riguarda la fratturazione invece, l'indice RQD (Rock Quality Designation), che rappresenta il rapporto tra la somma degli spezzoni di carota in roccia con lunghezza maggiore di 10 cm e la lunghezza totale della manovra, espresso in percentuale, indica per entrambe le litologie un grado di fratturazione medio-basso con media dell'85% per il granito e dell'81% per il diabase (**Tabella 3** e **Figura 9**).

RQD (%)						
Litologia N Minimo Media Massimo Standard						
Granito	42	40	85	100	18	
Diabase	21	0	81	100	26	

Tabella 3: Valori statistici di RQD raggruppati per litologia.

Figura 9: Box-plot inerente alla statistica del valore di RQD nei sondaggi pregressi.

	IMPIANTO		CODICE CKS
enel	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 17 di 70

4.1.3 Velocità sonica

Il carotaggio sonico è una tecnica di indagine che consiste nel rilievo della modalità di propagazione delle onde elastiche nel mezzo attraverso una sonda equipaggiata da un trasmettitore e un ricevitore di impulsi distanziati di 1 m.

La misura delle velocità soniche all'interno delle perforazioni ha permesso di valutare la compattezza e la qualità degli ammassi nell'intorno del foro. Per quanto riguarda i risultati in **Tabella 4**, le velocità medie si attestano per entrambe le litologie su valori molto alti, attorno ai 5'100-5'200 m/s, che sono molto prossimi alle velocità misurate sui campioni di roccia intatta in condizioni naturali.

L'indagine conferma pertanto la presenza in fondazione di un ammasso roccioso di elevata qualità e grado di fratturazione molto basso.

Velocità sonica (m/s)					
Litologia N Minimo Media Massimo					Deviazione Standard
Granito	39	4250	5135	5750	292
Diabase	18	3750	5250	5750	542

 Tabella 4: Valori statistici di velocità sonica raggruppati per litologia.

In aggiunta alla misura delle velocità soniche, è stata realizzata una sezione tomografica tra i sondaggi 1 e 3 che copre il contatto tra la muratura della diga e il substrato roccioso.

Il metodo della tomografia sonica permette di determinare la distribuzione della velocità sonica su sezioni piane attraverso una fitta rete di percorsi di misura. Il generatore di impulsi utilizzato consiste in uno sparker che produce una piccola esplosione mediante una scarica di corrente ad alta tensione, registrata attraverso accelerometri accuratamente posizionati per la ricezione del segnale.

I dati delle misure tomografiche sono stati elaborati sotto forma di campi di velocità rappresentati da scale di colori comprese tra l'azzurro per le velocità più basse al rosso per quelle più elevate, per intervalli di 200 m/s.

Le sezioni risultanti e rappresentate in **Figura 10** permettono di osservare valori di velocità Vp al contatto con la muratura pari a 4'600 m/s da cui si assiste ad un incremento con la profondità oltre i 5'400 m/s a partire da 10 m al di sotto della fondazione a conferma di un ammasso molto poco fratturato.

	IMPIANTO		CODICE CKS	
enel	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
Green Power	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023	
	Relazione geotecnica		Pagina 18 di 70	

4.1.4 Log BHTV

La ripresa televisiva BHTV è stata condotta all'interno dei sondaggi S2 ed S4 lungo tutta la tratta perforata in roccia al fine di identificare le discontinuità che interessano l'ammasso roccioso e misurarne l'orientazione assoluta.

Nel sondaggio S2 sono stati registrati un totale 18 giunti mentre nel S4 un totale di 12. La frequenza dei giunti per metro (Jv) risulta pertanto compresi tra un minimo di 0.2 e un massimo di 5 nel sondaggio S2 e di 10 nel sondaggio S4; il valore medio si attesta comunque in ambi i fori a 2.1 fratture/m equivalente ad una spaziatura di circa 0.5m. Il valore equivalente medio di RQD, calcolato in base alla formulazione RQD=110-2.5*Jv risulta pari al 100% e conferma il grado di fratturazione molto limitata dell'ammasso.

	IMPIANTO		CODICE CKS
enel	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fond	ob	Data 07/03/2023
	Relazione geotecnica		Pagina 19 di 70

Sondaggio	Lunghezza perforata in roccia (m)	N. giunti	N. Fratture/m (min-max) N. Fratture/m (media)		RQD equivalente
S2	17.5	18	0.2-5.0	2.1	100%
S4	21	12	0.2-10	2.1	100%

Tabella 5: Statistiche di spaziatura misurata nei sondaggi S2 e S4.

Per quanto concerne l'orientazione dei giunti, essendo i sondaggi verticali, sono state campionate quasi esclusivamente le discontinuità associate ai set K0 e K3, che hanno le inclinazioni minori. Le orientazioni medie misurate per i 2 set sono indicate in **Tabella 6** e rappresentate negli stereogrammi di **Figura 11** e **Figura 12**.

Sondaggio	К0	К3	
S2	002/23	213/36	
S4	360/30	149/24	

Tabella 6: Orientazioni medie dei piani di discontinuità da rilievo BHTV.

	IMPIANTO		CODICE CKS
enel	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
			CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 20 di 70

4.1.5 Laboratorio rocce

I risultati statistici di prove eseguite su campioni di rocce vengono elencati nei paragrafi seguenti.

4.1.5.1 Massa volumica

La massa volumica è stata valutata in maniera apparente e reale: la prima risulta misurata su campioni cilindrici ottenuti previe operazioni di taglio e rettifica meccanica, con successiva essicazione in forno a 110°C mentre la seconda deriva da frammenti residui di prove di resistenza, successivamente polverizzati e vagliati al setaccio 75 UNI.

I risultati statistici illustrati in **Tabella 7** e per mezzo dei grafici di **Figura 13** definiscono valori medi di 2.6 e 2.65 g/cm³ rispettivamente per la massa volumi apparente e reale del granito e pari a 2.87 e 2.93 g/cm³ per il diabase

	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
Green Power	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 21 di 70	

Massa volumica apparente (g/cm ³)						
Litologia	N	Minimo	Media	Massimo	Deviazione Standard	
Granito	20	2.5	2.6	2.61	0.02	
Diabase	20	2.8	2.87	2.9	0.02	
	N	lassa volur	nica reale	(g/cm³)		
Litologia N Minimo Media Massimo Standard						
Granito	4	2.63	2.65	2.69	0.03	
Diabase	4	2.92	2.93	2.93	0.01	

Tabella 7: Risultati statistici delle misure delle masse volumiche.

Figura 13: Box-plot delle masse volumiche.

4.1.5.2 Porosità

La determinazione della porosità è ricavata dai frammenti residui dopo le prove di resistenza, successivamente polverizzati e vagliati, e determinata con picnometro.

I risultati statistici illustrati in **Tabella 8** e nel grafico di **Figura 14** mostrano valori pressoché identici fra le due litologie, con media intorno al 1.5%.

Porosità (%)					
Litologia N Minimo Media Massimo					Deviazione Standard
Granito	4	0.76	1.5	2.97	0.99
Diabase	4	0.34	1.54	2.4	0.91

Tabella 8: Risultati statistici della porosità.

	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
Green Power	Progetto di ripristino dello scarico di fond	ob	Data 07/03/2023	
	Relazione geotecnica		Pagina 22 di 70	

Figura 14: Box-plot dei valori di porosità.

4.1.5.3 Velocità sonica

La velocità di propagazione delle onde elastiche longitudinali è stata misurata attraverso un generatore di impulsi ultrasonici tramessi a trasduttori piezoelettrici sulle facce del campione.

La **Tabella 9** e la **Figura 15** indicano valori di velocità sonica leggermente maggiori per il diabase rispetto al granito, con medie tra 5'929 e 5'796 m/s per il primo e 5'532-4'979 m/s per il secondo, rispettivamente per la pre e la post essicazione.

Velocità sonica pre-essicazione (m/s)						
Litologia	N	Minimo	Media	Massimo	Deviazione Standard	
Granito	20	5120	5532	5800	223	
Diabase	20	5750	5929	6140	107	
	Veloc	ità sonica p	oost-essica	azione (m/s)	1	
Litologia N Minimo Media Massimo Standard						
Granito	20	4410	4979	5360	265	
Diabase	20	5610	5796	6030	122	

Tabella 9: Risultati statistici delle misure delle velocità soniche.

	IMPIANTO		CODICE CKS
-	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
			Data 07/03/2023
	Relazione geotecnica		Pagina 23 di 70

4.1.5.4 Compressione monoassiale

La compressione monoassiale è stata misurata mediante pressa idraulica con fondo scala di 50 t con valutazione delle deformazioni assiali e diametrali. Le prove sono state eseguite con controllo di carico secondo un gradiente di 0.1 Mpa/sec con un ciclo di precarico a 20 e 40 Mpa per indagare la reversibilità del comportamento della roccia.

I risultati riassunti **Tabella 10** e nel grafico di **Figura 16** definiscono valori medi molto elevati che per il granito sono pari a 129 MPa (range 59-195 MPa) mentre per il diabase equivale a 161 Mpa (range 72-235 MPa).

Compressione monoassiale (MPa)					
Litologia	Z	Minimo	Media	Massimo	Deviazione Standard
Granito	4	59	129	195	64
Diabase	6	72	161	235	61

 Tabella 10: Risultati statistici delle misure della compressione monoassiale.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 24 di 70

Figura 16: Box-plot della compressione monoassiale.

4.1.5.5 Modulo di Young

La misurazione delle deformazioni rilevate mediante "strain gauges" sui campioni testati a compressione monosassiale ha permesso di valutare il modulo elastico di Young E.

In **Tabella 11** e in **Figura 17** vengono illustrati i risultati delle prove e il relativo grafico. Si osservano valori medi molto alti che per il granito risulta pari a 59'110 MPa (range 48'570-63'130 MPa) e per il diabase equivale a 70'874 MPa (range 56'450-89'220 MPa).

Modulo E (MPa)					
Litologia	ologia N Minimo Media Massimo				
Granito	4	48'570	59'110	65'130	7'447
Diabase	6	56'450	70'487	89'220	10'924

Tabella 11: Risultati statistici delle misure del modulo E.

	Impianto idroelettrico di Coghinas	GRE.OEM	CODICE CKS
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 25 di 70

4.1.5.6 Coefficiente di Poisson

I dati relativi al coefficiente di Poisson, derivato dalle misurazioni effettuate durante le prove di compressione monoassiale, vengono riassunti in **Tabella 12** e nel grafico di **Figura 18**. I valori medi misurati risultano pari a 0.22 per il granito e 0.26 per il diabase.

Coefficiente di Poisson (-)					
Litologia N Minimo Media Massimo Standard					Deviazione Standard
Granito	4	0.17	0.22	0.29	0.06
Diabase	6	0.2	0.26	0.29	0.03

Tabella 12: Risultati statistici delle misure del Coefficiente di Poisson.

-	Impianto idroelettrico di Coghinas	GRE.OEM	CODICE CKS
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 26 di 70

Figura 18: Box-plot del Coefficiente di Poisson.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEN	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 27 di 70

5. INDAGINI 2021

5.1 Rilievi geomeccanici

Nel marzo 2021 sono stati eseguiti una serie di rilievi geomeccanici lungo gli affioramenti di roccia esposti a valle della sezione di imposta della diga fino ad una distanza massima di 100m (**Figura 19**). Le litologie sono rappresentate quasi interamente (97%) da graniti che vengono attraversati localmente da filoni di diabase subverticali di spessore variabile tra 0.10 e 2 m e allineati lungo il sistema di discontinuità K2.

La metodologia di rilevamento e i dati registrati sono riportati nell'Allegato A.

Figura 19: Ubicazione delle aree sulle quali è stato condotto il rilievo geomeccanico.

In totale sono state misurate e classificate 94 discontinuità, suddivise in 41 al margine destro e 53 lungo quello sinistro, che possono essere raggruppate in 5 set di disgiunzione sistematica. In **Tabella**

	Impianto idroelettrico di Coghinas	GRE.OEM	CODICE CKS
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 28 di 70

13 vengono indicate le giaciture medie delle famiglie di discontinuità nei 2 margini, mentre la Figura
20 e Figura 21 illustrano su stereogrammi le singole misure e i valori medi dei set ad esse associate.

Margine	K0	K1	K2	K3	K4
Sinistro	083/07	080/87	116/83	-	022/54
Destra	353/05	081/85	302/89	162/29	002/58

 Tabella 13: Riassunto delle caratteristiche principali dei due settori rilevati.

Figura 20: Stereogramma delle misure in sinistra.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
			Data 07/03/2023
	Relazione geotecnica		Pagina 29 di 70

Figura 21: Stereogramma delle misure in destra.

La **Figura 22** mostra l'istogramma di frequenza delle misure associate a ciascun set; si nota che i set K0 e K1 sono i più frequenti con percentuali del 25%, seguiti dal sistema K2 con il 21%. I set che meno frequenti sono invece il sistema K4 con il 5% e il K3 con il 3%. Occorre specificare che quest'ultimo compare solo in un piccolo settore di affioramento in destra a 80 m a valle dell'asse diga dove sono state prese 4 misure.

Figura 22: Istogramma della frequenza dei giunti rilevati in affioramento.

A partire dei dati raccolti in campo è stata definita la distribuzione statistica dei parametri di persistenza e di spaziatura, che viene illustrata mediante istogrammi delle classi definite dall'ISRM (1978).

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
enel Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 30 di 70

- Set K0 (Figura 23): si osserva una buona corrispondenza tra i dati misurati in destra e quelli in sinistra. La spaziatura risulta infatti distribuita tra le classi 20-60 cm e 200-600 cm con maggior occorrenza nell'intervallo 60-200 cm mentre la persistenza più alta risulta nella classe 10-20 m con metà dei giunti compresi tra 1 e 10 m.
- Set K1 (Figura 24): anche in questo caso la corrispondenza tra i due settori è buona. Si assiste a spaziature maggiori nella classe 200-600 cm e minor distribuzione in quelle tra 20 e 200 cm.
 L'unica spaziatura <2 cm è da associarsi alle fratture riscontrate nella zona di fratturata F al margine sinistro. Per quanto riguarda la persistenza si osserva una marcata occorrenza nella classe 10-20 m e lunghezze anche superiori ai 20 m in sinistra.
- Set K2 (Figura 25): mentre per le persistenze osservate la classe 10-20 m risulta la più frequente in tutti e due i margini, per quanto riguarda la persistenza si assiste ad una differenziazione con frequenza massima tra la classe 200-600 cm in sinistra mentre 60-200 cm in destra; ambedue si distribuiscono comunque tra minimo di 20 cm e massimo di 600 cm.
- Set K3 (Figura 26): questo set non è stato identificato al margine sinistro. Le uniche 4 misure rilevate in destra evidenziano spaziature comprese tra 60-200 cm e persistenze variabili tra minimo di 1 m e massimo di 10 m.
- Set K4 (Figura 27): per questo ultimo set è possibile osservare una distribuzione delle spaziature nella classe 200-600 cm e con persistenze massime tra 3-10 m per quanto riguarda il margine sinistro, mentre per il margine destro si assiste ad una spaziatura maggiormente distribuita nel range 60-200 cm con persistenza interamente compresa nella classe 10-20 m.

enel Green Power	Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.092.01	
	титоцо Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 31 di 70

Figura 23: Istogrammi rappresentativi della distribuzione di spaziatura e persistenza della famiglia K0.

enel Green Power	Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.092.01	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo Relazione geotecnica		Data 07/03/2023
			Pagina 32 di 70

Figura 24: Istogrammi rappresentativi della distribuzione di spaziatura e persistenza della famiglia K1.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.092.01	
	Diga di Muzzone Progetto di ripristino dello scarico di fondo <i>Relazione geotecnica</i>		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
			Data 07/03/2023
			Pagina 33 di 70

Figura 25: Istogrammi rappresentativi della distribuzione di spaziatura e persistenza della famiglia K2.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.092.01	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 34 di 70

Figura 26: Istogrammi rappresentativi della distribuzione di spaziatura e persistenza della famiglia K3.
enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023	
	Relazione geotecnica		Pagina 35 di 70	

Figura 27: Istogrammi rappresentativi della distribuzione di spaziatura e persistenza della famiglia K4.

I giunti in ciascun sistema sono generalmente serrati con apertura prossima a 0 mm, tuttavia soprattutto in sinistra esistono porzioni disarticolate di versante con aperture fino a 400 mm per la K0, 300 mm per la K1, 100 mm nella K2, 10 mm nella K3 e 100 mm nella K4. In ogni caso le aperture tendono a serrarsi alla base del versante e più in profondità sono sostanzialmente chiuse come mostrato dai rilievi ottici.

5.2 Profili rugosità giunti

La rugosità dei giunti su scala metrica è stata misurata tramite rilievi fotogrammetrici a distanza ravvicinata (Close Range Photogrammetry) con una fotocamera ad alta risoluzione Canon 6D Mark II

	IMPIANTO		CODICE CKS	
enel Green Power	Impianto idroelettrico di Coghinas GF		I.R.90.IT.H.79008.10.092.01	
	тітого Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 36 di 70	

da 27.1 MPixel. La descrizione dettagliata di questo tipo di indagine e dei dati relativi ai risultati è fornita nell'Allegato C.

Per l'analisi sono state selezionate 7 superfici relative ai giunti K0, K1 e K2 esposti lungo gli affioramenti in sinistra immediatamente a valle della diga la cui posizione è indicata nella figura successiva. Per questioni di sicurezza e accessibilità non è stato possibile eseguire rilievi lungo il versante destro della diga. Sui restanti set K3 e K4 non è stato possibile eseguire il rilievo fotogrammetrico a causa della limitata esposizione areale, insufficiente per lo scatto delle fotografie.

Figura 16: Posizioni dei giunti rilevati.

Per ogni superficie di giunto il rilevamento fotogrammetrico è stato realizzato come segue:

	IMPIANTO		CODICE CKS		
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	RE.OEM.R.90.IT.H.79008.10.092.01		
			CODICE INTERNO 2020.0240.002-GT-GEN-RT-103		
	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023		
	Relazione geotecnica		Pagina 37 di 70		

- definizione di un'area rettangolare (140 cm X 60 cm) sulla superficie del giunto allungata secondo la direzione valle monte della diga;
- misurazione della giacitura del giunto e sua attribuzione ad uno dei set principali;
- ripresa di varie fotografie della scena (area rettangolare) da diversi punti di vista e con sovrapposizione del 60-70%;
- elaborazione delle immagini con un software fotogrammetrico al fine di creare:
 - Modello Digitale di Elevazione (DEM) con risoluzione di 0.6-0.9 mm/pixel
 - Ortofoto con risoluzione di 0.2 mm/pixel

Il DEM è stato quindi utilizzato per estrarre profili di lunghezza variabile tra 1.1 e 1.8 m, in direzione perpendicolare all'asse della diga. Il valore del parametro JRC di ciascun profilo è stato calcolato misurando l'ampiezza delle asperità, secondo i criteri di Barton, [1], [2]. Per ogni superficie del giunto è stato misurato il profilo più liscio e più ruvido per definire il coefficiente JRC minimo e massimo. I risultati sono riportati nella **Tabella 14** e in **Figura 28**.

Giunto	Giacitura	Tino		MIN			MAX	
Giunto	Glacitura	про	L (m)	a (mm)	JRC	L (m)	a (mm)	JRC
1	010/10°	K0	1.5	38.9	12	1.5	41.7	14
2	105/85°	K2	1.54	35.4	11	1.5	38.4	12
3	118/80°	K2	1.5	11.1	4	1.52	17.5	5
4	084/77°	K1	1.5	13.9	4	1.55	23.5	7
5	088/12°	K0	1.34	15.2	5	1.36	31.6	12
6	126/21°	K0	1.8	58.2	14	1.85	72.9	18
7	084/77°	K1	1.1	25.4	8	1.7	37.6	10

 Tabella 14: Valutazioni dell'asperità con valore JRC mediante rilievo fotogrammetrico.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 38 di 70	

Figura 28: rappresentazione su grafico del JRC.

I risultati per ciascuna famiglia indicano:

- Giunti K0: scabrezza compresa tra JRC di 10.3 e 14.6 valore medio di 12.5
- Giunti K1: scabrezza compresa tra JRC di 6 e 8.5 e media di 7.3
- Giunti K2: scabrezza compresa tra JRC di 7.5 e 8.5 e media di 8.0

Famiglia giunto	JRC MIN	JRC MAX	JRC MEDIO
K0	10.3	14.6	12.5
K1	6	8.5	7.3
K2	7.5	8.5	8.0

 Tabella 15: Risultati statistici dei valori di JRC per famiglie di giunti.

Nonostante la già citata impossibilità di effettuare misurazioni dirette sui restanti set K3 e K4, per questi le caratteristiche di rugosità risultano comunque analoghe a quelle delle famiglie K0, K1 e K2.

	Impianto idroelettrico di Coghinas GRE.OEN		CODICE CKS I.R.90.IT.H.79008.10.092.01	
Guen Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 39 di 70	

5.3 Sondaggio geognostico

In **Tabella 1** sono riassunte le caratteristiche del sondaggio geognostico eseguito nel Luglio 2021 dalla società Tecnoin a partire dal coronamento della diga per una lunghezza totale di 90m [35]. In **Figura 29** si mostra l'ubicazione in planimetria.

Nel sondaggio sono state eseguite prove di permeabilità Lugeon e prelievi di campioni di muratura sottoposti a prove di laboratorio, oltre ad un rilievo ottico/acustico purtroppo interrotto alla profondità di 61m a seguito della chiusura del foro ad opera di frammenti di roccia.

Sondaggio	Est (WGS84)	Nord (WGS84)	Quota	Lunghezza	Inclinazione	Direzione	Contatto roccia	Perforazione in roccia
	[m]	[m]	[m slm]	[m]	[°]	[°]	[m]	[m]
P1	502157	4515711	170	90	verticale	-	61	29

Tabella 16: Sondaggio eseguito da Tecnoin nel corpo diga [35].

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	™olo Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 40 di 70

Figura 29: Planimetria dell'ubicazione dei sondaggi ISMES 1988 [32] in verde e del nuovo sondaggio Tecnoin in blu [35].

5.3.1 Litologie

Il log stratigrafico indica come la perforazione sia stata approfondita per 29 m all'interno dell'ammasso roccioso sottostante il corpo diga.

Le litologie recuperate consistono in granito che si presenta con una frequenza del 72% mentre il restante 28% è rappresentato da filoni di diabase.

5.3.2 Percentuali di recupero e RQD

La percentuale di recupero (*Total Core Recovery* TCR), definita come il rapporto tra la lunghezza dei campioni carotati e la lunghezza della manovra, espressa in percentuale, indica come per entrambe le litologie i valori siano ottimi, sempre pari al 100%.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 41 di 70

Per quanto riguarda il grado di fratturazione invece, l'indice RQD (Rock Quality Designation), che rappresenta il rapporto tra la somma degli spezzoni di carota in roccia con lunghezza maggiore di 10 cm e la lunghezza totale della manovra, espresso in percentuale, indica per il granito una fratturazione bassa con media dell'85% (intervallo 55%-96%) mentre risulta più alta per il diabase con RQD di 55% ed estrema variabilità (intervallo 0%-95%) (**Tabella 3** e **Figura 9**).

RQD (%)					
Litologia	N	Minimo	Media	Massimo	Deviazione Standard
Granito	22	55	85.5	96	12.3
Diabase	7	0	55.5	95	43

Tabella 17:
 Valori statistici di RQD raggruppati per litologia.

5.4 Log Ottico e Acustico

La ripresa mediante telecamera ottica e sonda acustica è stata condotta all'interno del sondaggio P1 a partire dal coronamento e fino alla profondità di 45.29 per la prima indagine e di 62.57m per la seconda, da cui si è reso impossibile l'avanzamento a causa del franamento del foro.

Un estratto del log viene rappresentato in Figura 31.

	IMPIANTO		CODICE CKS	
enel Green Power	Impianto idroelettrico di Coghinas GRE.OE		M.R.90.IT.H.79008.10.092.01	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 42 di 70	

Nei soli 2m del tratto di roccia rilevato, sono comunque stati misurati un totale di 32 piani di frattura, la maggior parte chiusi e solo 5 con aperture comprese tra 9 e 70mm, in cui sono state riconosciute orientazioni compatibili con l'assetto strutturale del sito:

- 314/20: famiglia K0
- 130/77: famiglia K2
- 223/27: famiglia K3
- 029/51: famiglia K4.

In ogni caso, la limitata disponibilità non consente di effettuare una statistica completa.

Figura 31: Estratto del rilievo ottico/acustico del sondaggio P1.

enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	CODICE CKS	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023	
	Relazione geotecnica		Pagina 43 di 70	

Figura 32: Stereoplot delle 32 misure rilevate nel solo tratto di roccia in posto. Con la linea blu si indica la direzione di massima spinta della diga mentre in nero il suo asse.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 44 di 70

6. MODELLO GEOLOGICO

L'ammasso roccioso di fondazione della Diga di Muzzone è costituito da graniti grigio chiari appartenenti al batolite sardo-corso e ascrivibili all'unità geologica intrusiva di "Monte Limbara" di età Permiana. I graniti sono costituiti da quarzo, feldspato e biotite, a tessitura granulare da ipidiomorfa a porfirica con dimensioni anche centimetriche dei cristalli di feldspato alcalino. Il granito risulta intruso lungo il sistema di discontinuità K2, allungato in direzione NNE-SSW, da filoni basici con spessori compresi tra 10 cm e 2 m e persistenze maggiori di 20 m. I filoni sono costituiti da diabasi a tessitura ofitica, tipica delle rocce filoniane, caratterizzati da cristalli allungati idiomorfi di plagioclasio immersi in grossi individui di pirosseno allotriomorfo.

Entrambe le litologie corrispondono a rocce intrusive a struttura compatta e massiccia, dotate di una elevata resistenza a compressione (>100Mpa) e prive di alterazione che generano ammassi rocciosi caratterizzati da un grado di fratturazione basso. Sono infatti visibili immediatamente a valle della diga (**Figura 33**) vari blocchi ciclopici distaccatisi dagli affioramenti in sinistra che raggiungono dimensioni di 15x5x4 m per un volume di circa 300 m³. La condizione del massiccio roccioso a valle della diga può essere ben apprezzata dalla visione dei modelli 3D inclusi nell' Allegato B.

Figura 33: Condizione versanti a valle della diga. Notare in sinistra la presenza di blocchi ciclopici (frecce gialle) distaccatisi dai vicini affioramenti di granito.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 45 di 70

L'assetto strutturale dell'ammasso roccioso è marcato da 5 famiglie di discontinuità principali (**Figura 34**):

- K0: si tratta di un set orientato 015/09° con spaziatura media di 146 cm e persistenza maggiore di 10 m, che rappresenta circa il 34% delle misure registrate. Le pareti dei giunti sono planari con rugosità medio-bassa; le aperture in affioramento variano da 0 a massimo 400 mm, mentre in profondità risultano ben serrate.
- K1: set con orientazione media di 080/87° con spaziatura media di 161 cm e persistenza tra 10 e 20 m, che rappresenta circa il 26% delle misure registrate. Le pareti dei giunti sono planari con rugosità medio-bassa le cui aperture in affioramento variano da 0 a massimo 300 mm, mentre in profondità risultano ben serrate. Appartiene a questa famiglia anche la zona di faglia identificata al margine sinistro e dotata di spessore ad elevata fratturazione pari a 1 m di spessore.
- K2: set con orientazione media di 116/85° con spaziatura media di 219 cm e persistenza tra 10 e
 20m, che rappresenta circa il 24% delle misure registrate. Le pareti dei giunti sono planari con rugosità medio-bassa le cui aperture in affioramento variano da 0 a massimo 100 mm, mentre in profondità risultano ben serrate.
- K3: set con orientazione media di 172/27° con spaziatura media di 115 cm e persistenza tra 1 e 10 m, che rappresenta circa l'11% delle misure registrate. Le pareti dei giunti sono planari con rugosità medio-bassa le cui aperture in affioramento variano da 1 a 10 mm, mentre in profondità risultano ben serrate. Si nota che queste discontinuità alquanto sporadiche e rinvenute unicamente in sponda destra e nei sondaggi S2 e S4.
- K4: set con orientazione media di 011/56° con spaziatura media di 205 cm e persistenza tra 10 e
 20 m, che rappresenta circa il 5% delle misure registrate. Le pareti dei giunti sono planari con rugosità medio-bassa le cui aperture in affioramento variano da 0 a 100 mm, mentre in profondità risultano ben serrate.

Lo stereogramma di **Figura 34** illustra l'orientazione media dei 5 set di discontinuità mentre la **Figura 35** ne illustra invece la frequenza. In **Tabella 18** vengono riassunte le caratteristiche principali dei set definite in base ai rilievi di superficie e dei rilievi ottici in foro. Il valore medio della spaziatura deriva direttamente dalla statistica dei dati mentre per quanto riguarda la persistenza, definita in base a classi ISRM, sono stati assegnati valori rappresentativi sulla base degli istogrammi di distribuzione elaborati secondo le classi definite da ISRM (Allegato A).

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 46 di 70

Figura 34: Stereogramma delle giaciture misurate da affioramento e da rilievo ottico nei sondaggi ISMES.

Figura 35: Distribuzione della frequenza delle famiglie di giunti misurate dal rilievo in campo e dall'ottica nei sondaggi.

Set	Orientazione		Frequenza	Classe di Persistenza	Persistenza rappresentativa	Spaziatura media
	Inclinazione	Immersione	%	m	m	cm
К0	9	15	34%	10-20	17	146
K1	87	80	26%	10-20	20	161
K2	85	116	24%	10-20	20	219
K3	27	172	11%	1-10	5	115

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 47 di 70

K4 56 11	5%	3-10	9.5	205

 Tabella 18: Caratteristiche delle famiglie di giunti.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
ene	тітоlo Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 48 di 70

7. CARATTERIZZAZIONE MECCANICA

7.1 Criteri di caratterizzazione geomeccanica dell'ammasso

La caratterizzazione geomeccanica della fondazione della Diga di Muzzone è stata effettuata attraverso l'elaborazione statistica dei dati derivanti dalle campagne di indagine eseguite.

Per quanto concerne la classificazione dell'ammasso e la determinazione dei relativi parametri si è fatto riferimento al sistema GSI (Geological Strength Index) elaborato da Hoek [13]. Il Geological Strength Index è una revisione del RMR di Bieniawski [4] proposta per la prima volta da Hoek nel 1995.

L'approccio è inizialmente analogo, con la differenza di considerare sempre pari a 15 il punteggio per le condizioni idrogeologiche e di non applicare la correzione per l'orientazione delle discontinuità. L'autore ha proposto inoltre una tabella schematica per determinare, a partire dalle caratteristiche qualitative di fratturazione dell'ammasso e di condizione delle discontinuità, il valore GSI.

L'approccio tabellare si è evoluto con il tempo includendo parametri quantitativi quali il valore di RQD e la somma delle condizioni dei punteggi RMR per giunti.

Il valore di GSI per questo studio è stato calcolato in modo quantitativo secondo la formulazione di Cai [6] a partire da dati misurati in campo:

$$GSI(V_{\rm b}, J_{\rm c}) = \frac{26.5 + 8.79 \ln J_{\rm c} + 0.9 \ln V_{\rm b}}{1 + 0.0151 \ln J_{\rm c} - 0.0253 \ln V_{\rm b}}$$

Dove Vb: volume unitario del blocco;

Jc: Fattore di condizione dei giunti.

Il Jc è un parametro definito da Cai [6] e comprende la combinazione di tre parametri:

$$J_{\rm C} = \frac{J_{\rm W}J_{\rm S}}{J_{\rm A}},$$

Dove Jw: rugosità su distanza metrica,

Js: rugosità su distanza centimetrica (parametro Jr di Barton [2]),

Ja: alterazione dei giunti (parametro Ja di Barton [2]).

			CODICE CKS
	Implanto Idroelettrico di Cogninas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	тітого Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 49 di 70

7.1.1 Parametri di resistenza

La valutazione del criterio di rottura dell'ammasso roccioso è stata ottenuta considerando la legge empirica proposta da Hoek & Brown [13] in base alla seguente formulazione:

$$\sigma_1' = \sigma_3' + \sigma_{ci} \left(m_b \frac{\sigma_3'}{\sigma_{ci}} + s \right)^a$$

dove: mb, s ed a sono costanti che dipendono dalle caratteristiche dell'ammasso;

 σ_{ci} è la resistenza a compressione monoassiale della roccia intatta;

 σ_1' e σ_3' sono la minima e massima tensione efficace agente sull'ammasso.

Le costanti sopra indicate possono essere ricavate da correlazioni dirette con il valore del Geological Strength Index [11] [12] [13] e con il parametro mi (costante del materiale roccia intatto ottenuto dall'elaborazione di risultati delle prove monoassiali, triassiali e di trazione).

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$
$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-GSI/15} - e^{-20/3}\right)$$

Nella formulazione del 2002 [13] l'autore ha inserito un parametro D che dipende dal grado di disturbo, a cui è sottoposto l'ammasso roccioso in fase di scavo. Il fattore varia da 0 per scavi che lasciano l'ammasso in condizioni indisturbate fino a 1 per ammassi estremamente disturbati. Il fattore utilizzato per la determinazione dei parametri di tutte le unità risulta pari a 0.

Il criterio di rottura dell'ammasso di Hoek-Brown si presenta nel piano σ - τ (sforzi normali/sforzi di taglio) come una funzione non lineare. Risulta quindi necessario, per ottenere i parametri c e ϕ secondo il criterio di Mohr-Coulomb, definire un campo tensionale di riferimento per il quale viene calcolata la retta che meglio interpola il tratto di curva analizzato.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 50 di 70

Il campo di tensionale considerato nello studio è compreso tra 0 e 1.5 MPa.

L'analisi è stata effettuata attraverso una scheda Excel in cui sono state implementate le seguenti formulazioni:

$$\phi' = \sin^{-1} \left[\frac{6am_b (s + m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s + m_b \sigma'_{3n})^{a-1}} \right]$$
$$c' = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma'_{3n} \left[(s + m_b \sigma'_{3n})^{a-1} \right] - (1+a)(2+a)\sqrt{1 + (6am_b (s + m_b \sigma'_{3n})^{a-1})} \right]$$

7.1.2 Parametri di deformabilità

Il modulo elastico dell'ammasso è stato valutato utilizzando le formule proposte da Hoek [13]:

per
$$\sigma_{ci} \le 100 \text{ MPa}$$
 $E_m(GPa) = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} \cdot 10^{((GSI-10)/40)}$
per $\sigma_{ci} > 100 \text{ MPa}$ $E_m(GPa) = \left(1 - \frac{D}{2}\right) \cdot 10^{((GSI-10)/40)}$

7.1.3 Materiale roccia intatta

I parametri di resistenza della roccia intatta derivano dalle prove di laboratorio condotte nel 1988 da ISMES sui campioni prelevati dai 4 sondaggi realizzati nel corpo diga che sono stati estesi fino a una ventina di metri all'interno della roccia di fondazione. Le prove sono state eseguite su 20 campioni di granito e 20 di diabase. Il rilievo geologico di superficie indica che i filoni di diabase si presentano in iniettati nel granito con occorrenza inferiore al 3% del volume totale.

La statistica dei risultati delle prove eseguite sui graniti viene riportata nella **Tabella 19** mentre per i diabasi in **Tabella 20**.

Granito	Massa Volumica Apparente	Massa Volumica Reale	Porosità	Velocità soniche nat	Velocità soniche secco	Comp. Monoax	Modulo Young	Coeff Poisson
	gn		n	Vp	Vp	sc	Е	n
	kN/m3	kN/m3	%	m/sec	m/sec	MPa	GPa	
N	20	4	4	20	20	4	4	4

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 51 di 70

Min	24.53	25.80	0.76	5120	4410	59	48.6	0.17
Media	25.48	25.95	1.50	5533	4979	129	59.1	0.22
Max	25.60	26.39	2.97	5800	5360	195	65.1	0.29
St dev	0.24	0.29	0.99	223	265	64	7.4	0.06

Tabella 19: Statistica dei risultati delle prove ISMES su campioni di granito.

Diabase	Massa Volumica Apparente	Massa Volumica Reale	Porosità	Velocità soniche nat	Velocità soniche secco	Comp. Monoax	Modulo Young	Coeff Poisson
	gn		n	Vp	Vp	SC	Е	n
	kN/m3	kN/m3	%	m/sec	m/sec	MPa	GPa	
N	20	4	4	20	20	6	6	6
Min	27.47	28.65	0.76	5750	5610	72	56.5	0.20
Media	28.12	28.69	1.50	5929	5796	161	70.5	0.26
Max	28.45	28.74	2.97	6140	6030	235	89.2	0.29
St dev	0.24	0.06	0.99	107	122	61	10.9	0.03

 Tabella 20:
 Statistica dei risultati delle prove ISMES su campioni di diabase.

7.1.4 Ammasso roccioso

I parametri di input considerati per l'ammasso vengono riferiti al granito, ossia alla litologia predominante in fondazione. Per il granito, i risultati ottenuti dai recuperi dei sondaggi, indicano valore di RQD medio alto, pari a 85%, associato a una velocità delle onde di compressione di 5'135 m/s. In **Tabella 21** si riassumono tali risultati.

	TCR	RQD	Vp
	%	%	%
Ν	42	42	39
Min	95	40	4250
Media	100	85	5135
Max	100	100	5750
St dev	1	18	292

 Tabella 21: Risultati statistici dei valori di TCR ed RQD per il granito ottenuti dalle manovre di recupero e dalle velocità soniche nei sondaggi pregressi.

Le condizioni dell'ammasso rilevate in campo definiscono un ammasso roccioso sano (classe W1 di ISRM [14]), solo localmente soggetto a lieve alterazione superficiale (classe W2), dotato di elevata resistenza (R5) e asciutto; locali venute d'acqua sono state riscontrate solo lungo alcune fratture alla base dell'affioramento destro.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 52 di 70

Dai rilievi geomeccanici condotti sugli affioramenti a valle della sezione di imposta risultano le seguenti condizioni di consistenza valutate tramite l'indice GSI (Geological Strength Index di Hoek) secondo l'approccio quantitativo proposto da Cai [6]:

- Margine sinistro: riscontrati blocchi di dimensione compresa tra minimo di 60*60*60cm e massimo di 500*300*300cm in cui le condizioni dei giunti sono comprese tra Jc di 0.5 e 9.0. Il valore di GSI medio pari a 72 con variabilità tra 46 e 100.
- Margine destro: il volume dei blocchi è compreso tra minimo di 40*40*40cm e massimo di 400*200*300cm in cui le condizioni dei giunti sono comprese tra Jc di 0.3 e 6.0. Il valore di GSI medio calcolato equivale a 69 con variabilità tra 35 e 96.

Le tabelle e il grafico di **Figura 36** illustrano la statistica dei parametri suddetti; si osservi come i range massimi di tali parametri superino i limiti superiori definiti dall'autore, a conferma delle ottime caratteristiche dell'ammasso in questione.

	SINISTRA					
	Vb	Vb Jc GSI				
	cm3	-	-			
Min	2.16E+05	0.5	46			
Medio	3.12E+06	1.9	72			
Max	4.50E+07	9.0	100			

	DE	DESTRA			
	Vb	Vb Jc GSI			
	cm3	-	-		
Min	6.40E+04	0.3	33		
Medio	1.24E+06	2.0	69		
Max	2.40E+07	6.0	96		

Figura 36: Grafico GSI da Cai con indicazione dei parametri di Vb e Jc ottenuti per entrambi i margini della diga. In azzurro il margine sinistro e in arancione quello destro.

In conclusione, la caratterizzazione dell'ammasso roccioso secondo la parametrizzazione di Hoek e Brown e Mohr-Coulomb viene riportata in **Tabella 22** in termini di valore medio e campo di variabilità di ciascun parametro geotecnico.

	IMPIANTO		
		GRE.OEM	I.R.90.11.H.79008.10.092.01
Che	тітого Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 53 di 70

Parametro	U.M.	Media	Variabilità
mi		32	29-35
UCS	MPa	130	60-195
RQD	%	85	40-100
GSI		70	40-100
Vp	m/s	5100	4250-5750
с	MPa	2.4	0.5-20
φ	o	66	55-68
E	GPa	39	4-159
n	-	0.22	-
D	-	0	-
σmax	MPa	1.5	-

Tabella 22: Parametri di resistenza e deformabilità dell'ammasso roccioso.

7.2 Criterio di caratterizzazione geomeccanica giunti

Per determinare le caratteristiche geomeccaniche dei giunti si è fatto riferimento al criterio di rottura proposto da Barton [2] rappresentato dalla seguente equazione:

$$\tau = \sigma_{n} \cdot \tan\left[\phi_{b} + JRC \cdot \log_{10}\left(\frac{JCS}{\sigma_{n}}\right)\right]$$

dove: σ_n corrisponde alla tensione normale agente sul giunto,

 φ_{b} corrisponde all'angolo di attrito di base,

JRC è il coefficiente di rugosità del giunto,

JCS è la resistenza a compressione della parete del giunto che nel caso di giunti non alterati corrisponde alla resistenza a compressione monoassiale della roccia intatta.

Anche in questo caso, la curva rappresentante il criterio di rottura dei giunti ha un andamento curvilineo nel piano σ - τ , quindi per caratterizzare la resistenza meccanica della discontinuità in termini di c_p e ϕ_p (valori di picco) è stata determinata la retta di interpolazione con il metodo della regressione lineare nel campo di tensioni di interesse compreso tra 0 e 1.5MPa.

Per quanto concerne il valore dell'angolo di attrito di base φ_b si sono considerati i valori indicati da Barton e Coubey [2] per graniti a grana grossolana in condizioni sature che variano tra 31° e 33°. Si è assunto pertanto il valore medio uguale a 32°.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 54 di 70

7.2.1 Discontinuità

La definizione dei sistemi di discontinuità presenti nell'ammasso di fondazione è stata ottenuta dall'analisi delle misure ottenute in sito e dai dati dei rilievi ottici nei sondaggi pregressi. Di seguito l'orientazione di ciascun set viene illustrato mediante lo stereogramma di **Figura 37**.

In **Tabella 18** vengono quindi riassunte le caratteristiche principali di ciascun set, per la cui descrizione dettagliata si rimanda al Capitolo 6.

Il valore medio della spaziatura è stato derivato direttamente dalla statistica dei dati misurati in campo mentre per quanto riguarda la persistenza, sono stati assegnati valori rappresentativi sulla base degli istogrammi di distribuzione delle classi di definite da ISRM [14].

Set	Orient	azione	Frequenza	Classe di Persistenza	Persistenza rappresentativa	Spaziatura media
	Inclinazione	Immersione	%	m	m	cm
К0	9	15	34%	10-20	17	146
K1	87	80	26%	10-20	20	161
K2	85	116	24%	10-20	20	219
K3	27	172	11%	1-10	5	115
K4	56	11	5%	3-10	9.5	205

Tabella 23: Caratteristiche riassuntive delle famiglie di giunti.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
ene	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	Progetto di ripristino dello scarico di fon	do	Data 07/03/2023
	Relazione geotecnica		Pagina 55 di 70

7.2.2 Parametri dei giunti

I parametri di resistenza dei giunti sono stati definiti a partire dalla formulazione di Barton [2] espressa all'inizio del Paragrafo 7.2.

Il valore di riferimento per il parametro JCS è stato valutato considerando la media delle resistenze a compressione monoassiale misurate sui graniti, statisticamente più presenti in sito, pari a 129 MPa (rif. **Tabella 19**).

Il parametro JRC minimo e massimo delle 3 famiglie principali di giunti (K0, K1 e K2) è stato misurato direttamente tramite elaborazione di profili dei giunti a scala metrica estratti da rilievi fotogrammetrici di dettaglio come descritto nell'Allegato C. Per quanto riguarda le famiglie secondarie (K4 e K5) si è fatto invece riferimento ai parametri relativi alla rugosità misurati nei rilievi geomeccanici (Allegato A) e ottenuto dalla correlazione con il parametro di Joint Condition Jc ricavato dalle tre precedenti famiglie. In ogni caso le caratteristiche di rugosità delle famiglie K3 e K4 sono analoghe a quelle delle famiglie K0, K1 e K2.

La seguente **Tabella 24**, la **Tabella 25** e la **Tabella 26** descrivono rispettivamente i parametri Jw, Js e Ja come definiti da Cai [5] e da Barton [1] considerati nel calcolo del Jc.

Tabella 24: Tabella di riferimento per la definizione della rugosità a scala metrica Jw da Cai [4].

Smoothness terms	Description	Rating for smoothness J_S
Very rough	Near vertical steps and ridges occur with interlocking effect on the joint surface	3
Rough	Some ridge and side-angle are evident; asperities are clearly visible; discontinuity surface feels very abrasive (rougher than sandpaper grade 30)	2
Slightly rough	Asperities on the discontinuity surfaces are distinguishable and can be felt (like sandpaper grade 30–300)	1.5
Smooth	Surface appear smooth and feels so to touch (smoother than sandpaper grade 300)	1
Polished	Visual evidence of polishing exists. This is often seen in coating of chlorite and specially talc	0.75
Slickensided	Polished and striated surface that results from sliding along a fault surface or other movement surface	0.6–1.5

 Tabella 25:
 Tabella di riferimento per la definizione della rugosità a scala centimetrica Js da Cai [4].

enel Green Power	Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023	
	Relazione geotecnica		Pagina 56 di 70	

	Term	Description	$J_{\rm A}$
Rock wall contact	Clear joints		
	Healed or "welded" joints (unweathered)	Softening, impermeable filling (quartz, epidote, etc.)	0.75
	Fresh rock walls (unweathered)	No coating or filling on joint surface, except for staining	1
	Alteration of joint wall: slightly to moderately weathered	The joint surface exhibits one class higher alteration than the rock	2
	Alteration of joint wall: highly weathered	The joint surface exhibits two classes higher alteration than the rock	4
	Coating or thin filling		
	Sand, silt, calcite, etc.	Coating of frictional material without clay	3
	Clay, chlorite, talc, etc.	Coating of softening and cohesive minerals	4
Filled joints with partial or no contact between the rock wall surfaces	Sand, silt, calcite, etc.	Filling of frictional material without clay	4
	Compacted clay materials	"Hard" filling of softening and cohesive materials	6
	Soft clay materials	Medium to low over-consolidation of filling	8
	Swelling clay materials	Filling material exhibits swelling properties	8-12

Tabella 26: Tabella di riferimento per la definizione della condizione di alterazione dei giunti Ja da Barton [1].

	V	Valori medi da rilievi geomeccanici			Valori da fotogra	JRC di riferimento	
Set	Js	Jw	Ja	Jc	JRC min	JRC max	
К0	1.8	1.6	1.4	2.1	10.3	14.6	12
K1	1.8	1.3	1.5	1.6	6	8.5	7
K2	1.7	1.1	1.7	1.1	7.5	8.5	8
К3	2	1	1	2.0	-	-	10
K4	1.7	1	1.6	1.1	-	-	8

La Tabella 27 riporta la sintesi dei parametri di rugosità per i 5 sistemi di giunti analizzati.

Tabella 27: Parametri rugosità giunti da rilievi geomeccanici e profili da fotogrammetria. Il JRC di riferimento per il set K3 e K4 è stato definito da correlazione di Js, Jw e Ja con i set K0, K1 e K2.

In conclusione, la resistenza al taglio per ciascuna famiglia di giunti calcolata secondo la formula indicata a inizio paragrafo viene riportata nella **Tabella 28** sotto forma di angolo di attrito di picco (ϕ _Barton) a 1.5 Mpa di sforzo normale e come coesione (c_eq) e angolo di attrito (ϕ _eq) equivalenti secondo il criterio di rottura di Mohr Coulomb per il campo tensionale compreso tra 0-1.5Mpa.

Si ricorda che il valore dell'angolo di attrito di base φ_b è stato definito dalla media indicata da Barton e Coubey [2] per i graniti, ovvero uguale a 32°.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas GRI		I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023
	Relazione geotecnica		Pagina 57 di 70

Set	JRC riferimento	jb	JCS	σ_norm	φ_Barton	c_eq	φ_eq
		0		Мра	0	kPa	o
К0	12	32	129	1.5	56	154	54
K1	7	32	129	1.5	46	47	45
K2	8	32	129	1.5	47	60	47
К3	10	32	129	1.5	51	95	50
K4	8	32	129	1.5	47	60	47
				Media	49.4	83	48.6

Tabella 28: Parametri di resistenza delle famiglie di giunti.

Si osserva che l'angolo di attrito di picco dei giunti (ϕ _Barton) varia tra 46° e 56° e quello medio tra 45° e 54°. Tale valore si riferisce alla resistenza al taglio lungo la lunghezza del singolo giunto (persistenza) e non include, nel caso di superfici di movimento di lunghezza superiore alla persistenza, l'effetto di coesione prodotto dai ponti di roccia tra giunti che devono essere portati a rottura per consentire la propagazione dello spostamento.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
			CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023	
	Relazione geotecnica		Pagina 58 di 70	

8. CONDIZIONI DI RISCHIO SISMICO

Il Comune di Oschiri e la Diga di Muzzone, così come l'intera Regione Sardegna, è classificato secondo in Classe 4, ovvero a sismicità molto bassa secondo la Classificazione sismica al 30 Novembre 2020 recepita dal Decreto Regionale del 30 marzo 2004 n. 15/31 [28].

La sismicità dell'area di studio è stata inoltre approfondita mediante la consultazione dei database sismici nazionali.

La mappa di pericolosità dell'Istituto Nazionale di Geofisica e Vulcanologia [15] in **Figura 38** mostra come l'accelerazione PGA prevista al suolo per il è compresa tra 0,025 e 0.050g.

Figura 38: Mappa di accelerazione sismica con valori di PGA con probabilità del superamento del 10% in 50 anni [15].

La sismicità storica dell'area interessata dall'opera in progetto è stata analizzata consultando i cataloghi disponibili più aggiornati e rappresentati dai seguenti database, entrambi predisposti dall'INGV [16]:

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 59 di 70

- Catalogo Parametrico dei Terremoti Italiani 2015 (CPTI15). Questo catalogo riporta dati parametrici omogenei, sia macrosismici che strumentali, relativi ai terremoti con intensità massima (Imax) ≥ 5 o con magnitudo (Mw) ≥ 4.0 d'interesse relativi al territorio italiano.
- DataBase Macrosismico Italiano 2015 (DBMI15). Questo catalogo riporta un set omogeneo di dati di intensità macrosismiche provenienti da diverse fonti e relativo ai terremoti con intensità massima (Imax) ≥ 5 avvenuti nel territorio nazionale e in alcuni paesi confinanti (Francia, Svizzera, Austria, Slovenia e Croazia).

La finestra cronologica coperta dai dati parte dall'anno 1000 d.C. fino al 2014 d.C., ed offre per ogni terremoto una stima il più possibile omogenea della localizzazione epicentrale (Latitudine, Longitudine), dei valori di Intensità massima ed epicentrale, della magnitudo momento e della magnitudo calcolata dalle onde superficiali.

La consultazione dei cataloghi dimostra che la zona in studio risulta caratterizzata da un livello di sismicità molto basso, sia dal punto di vista della frequenza di eventi, che dei valori di magnitudo. L'unico evento rimarcabile è rappresentato dal sisma del novembre 1948 con epicentro in mare lungo la Costa Paradiso, con magnitudo Mw di 4.7 e intensità percepite fino a 6 MCS.

Per quanto riguarda invece la caratterizzazione sismogenetica, è stata considerata la recente Zonazione ZS9, prodotta dall' INGV [17], che rappresenta il lavoro più completo e aggiornato a livello nazionale.

Dall'analisi dei risultati riportati nella ZS9 si può evidenziare come non solo il settore di intesse, ma bensì l'intera Regione Sardegna, non risultino interessati da alcuna sorgente di particolare rilievo.

La Figura 39 illustra graficamente ciascun catalogo citato.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM		CODICE CKS	
		GNE.OEW	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	Progetto di ripristino dello scarico di fond	do	Data 07/03/2023	
	Relazione geotecnica		Pagina 60 di 70	

Figura 39: Cataloghi degli epicentri storici segnalati nel catalogo CPTI15 e traccia delle zone sismogenetiche del database DISS 3.2.1 a destra (INGV) [16][17].

Per quanto concerne la pericolosità sismica locale, la procedura semplificata segnalata nelle nuove Norme Tecniche per le Costruzioni e riportate in **Tabella 29**, si ritiene, in base alle valutazioni effettuate in campo, che il sottosuolo in esame appartenga alla Categoria A: "Ammassi rocciosi affioranti con valori di velocità delle onde di taglio superiori a 800 m/s".

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.01
Canel Green Power	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 61 di 70

Categorie di sottosuolo

Decreto del 17 gennaio 2018 - Norme Tecniche per le Costruzioni

Categoria A

Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da **valori di velocità delle onde di taglio superiori a 800 m/s**, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

Categoria B

Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Categoria C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da **valori di velocità equivalente compresi** tra 180 m/s e 360 m/s.

Categoria D

Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da **valori di velocità equivalente compresi** tra 100 m/s e 180 m/s.

Categoria E

Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30m.

Tabella 29: Categorie di sottosuolo secondo le nuove Norme Tecniche per le Costruzioni 2018 [25].

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 62 di 70

9. CONCLUSIONI

Le indagini e rilievi realizzati sulla fondazione della Diga di Muzzone mostrano che il substrato roccioso risulta costituito da graniti (97% del volume) con intrusioni di dicchi di diabase (3%).

Entrambe sono rocce massicce, isotrope, non alterate e dotate di elevata resistenza meccanica.

L'ammasso si presenta generalmente molto poco fratturato con valori di RQD nell'ordine del 75-100% e formazione di blocchi unitari di dimensioni che possono raggiungere le centinaia di metri cubi.

La fondazione risulta intersecata da 3 sistemi di giunti principali (K0, K1 e K3) a spaziatura metrica e persistenza superiore ai 15 m.

Sono stati inoltre identificati 2 sistemi secondari (K3 e K4), distribuiti in modo disomogeneo e, ove presenti, caratterizzati da spaziature metriche e persistenze inferiori ai 10-15m.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 63 di 70

10. **BIBLIOGRAFIA**

10.1 Riferimenti tecnici scientifici

- Barton, N (1976). The shear strength of rock and rock joints. Int. J. Mech. Min. Sci. & Geomech. Abstr. 13 (19), 1-24
- [2] Barton, N, Choubey v. (1976). The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics 10, 1—54
- [3] Barton N. (2011). Müller Lecture "From empiricism, through theory, to problem solving in rock engineering". 12th Congress of the ISRM. Beijing, China.
- [4] Bieniawski, Z.T. 1989. Engineering rock mass classifications. New York: Wiley.
- [5] Cai M., Kaiser P.K., Uno H., Tasaka Y., Minami M. (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics & Mining Sciences 41 3–19
- [6] Cai M., Kaiser P.K., Uno H., Tasaka Y., Minami M. (2007) Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics & Mining Sciences 44, 247-265
- [7] CARG Carta Geologica d' Italia Foglio 443 Tempio Pausania scala 1:50'000 e note illustrative
- [8] Carmignani L., et al. (2001), Carta geologica della Sardegna in scala 1:200'000
- [9] Catalogo degli eventi franosi in Italia IFFI. Isprambiente
- [10] Hoek, E. and Brown, E.T. 1988. The Hoek-Brown failure criterion a 1988 update. In Rock engineering for underground excavations, proc. 15th Canadian rock mech. symp., (ed. J.C. Curran), 31-38. Toronto: Dept. Civ. Engineering, University of Toronto
- [11] Hoek, E., Marinos, P. and Benissi, M. 1998. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bull. Engng. Geol. Env. 57(2), 151-160.
- [12] Hoek, E., Kaiser, P.K. and Bawden. W.F. 1995. Support of underground excavations in hard rock. Rotterdam: Balkema.
- [13] Hoek E, Carranza-Torres CT, Corkum B. Hoek-Brown failure criterion-2002 edition. In: Proceedings of the 5 th North American Rock Mechanics Symp., Toronto, Canada, 2002: 1:267– 73.

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 64 di 70

- [14] International Society of Rock Mechanics ISRM: Suggested methods for the quantitative description of discontinuities in rock masses, Int. J. Rock Mech. & Mm. Sci., vol.15, n.I 1978;
- [15] Istituto Nazionale di Geofisica e Vulcanologia INGV. Modello di pericolosità sismica MPS04-S1. http://esse1-gis.mi.ingv.it/
- [16] Istituto Nazionale di Geofisica e Vulcanologia INGV. Rovida A., Locati M., Camassi R., Lolli, B., Gasperini P., Antonucci A., 2021. Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 3.0.
- [17] Istituto Nazionale di Geofisica e Vulcanologia INGV. DISS Working Group (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/,; DOI:10.6092/INGV.IT-DISS3.2.1.
- [18] Progetto PST-Prodotti interferometrici. Ministero dell'Ambiente
- [19] Rampazzi A. (1931). L'Energia Elettrica "Scorrimento delle acque sotto le fondazioni (...)" -p.
 763
- [20] Sistema Informativo Cartografico on-line Regione Sardegna.
- [21] Wahlstrom, E.E. (1974) Dams, dam foundations and reservoir sites. (Developments in Geotechnical Engineering, Vol. 6). Elsevier S.P. C., Amsterdam, Oxford. New York.

10.2 Norme tecniche applicabili

- [22] Circolare della D.G. Dighe 3 luglio 2019, n. 16790 Verifiche sismiche delle grandi dighe, degli scarichi e delle opere complementari e accessorie - Istruzioni per l'applicazione della normativa tecnica (Rev. 1)
- [23] Circolare della D.G. Dighe 18 marzo 2019, n. 6660 Rivalutazione sismica delle grandi dighe Procedura
- [24] Circolare della D.G. Dighe 26 luglio 2018, n. 17281 Verifiche sismiche delle grandi dighe, degli scarichi e delle opere complementari e accessorie
- [25] Norme Tecniche per le Costruzioni 2018, D.M. 17 gennaio 2018.
- [26] Circolare della D.G. Dighe 15 dicembre 2014, n. 25172 Verifiche di rivalutazione della sicurezza sismica delle dighe, Individuazione casi prioritari (DM 26/6/2014 art. 3, comma 4)
- [27] Decreto Min. Infrastrutture e dei Trasporti 26 giugno 2014 Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)

enel Green Power	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.01
	TITOLO		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fondo		Data 07/03/2023
	Relazione geotecnica		Pagina 65 di 70

[28] Decreto Regionale Sardegna del 30 marzo 2004 n. 15/31.

10.3 Documenti storici sull'opera

- [29] Coghinas Dam, Società Elettrica Sarda ANIDEL 1963
- [30] Impianto del Coghinas, L'Elettrotecnica n. XVII p. 482 -1931
- [31] Relazione "Diga Muzzone Caratterizzazione geologica e geomeccanica roccia di fondazione" ENEL GREEN POWER, 13/05/2019 redatta dal Geol. Iacopo Brogi
- [32] Relazione Indagini geotecniche Diga di Muzzone ISMES 1988
- [33] Relazione Indagini di laboratorio Diga di Muzzone ISMES 1988
- [34] Relazione Indagini geofisiche Diga di Muzzone ISMES 1988

10.4 Documenti di progetto

- [35] Tecnoin Geosolutions Stratigrafia sondaggio P1 e Log geofisici presso la Diga di Muzzone (SS)
- [36] 2020.0240.002-GT-GEN-RT-101 Rapporto Geologico
- [37] 2020.0240.002-GT-GEN-DW-701 Mappa geologica-geomorfologica in scala 1:500
- [38] 2020.0240.002-GT-GEN-DW-702 Sezione geologica-geotecnica longitudinale alla diga in scala 1:500
- [39] 2020.0240.002-GT-GEN-DW-703 Sezione geologica-geotecnica A-A' in scala 1:250
- [40] 2020.0240.002-GT-GEN-DW-704 Sezione geologica-geotecnica B-B' in scala 1:250
- [41] 2020.0240.002-GT-GEN-DW-705 Sezione geologica-geotecnica C-C' in scala 1:250

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.00
	TITOLO Diga di Muzzone Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
			Data 15/07/2022
	Relazione geotecnica		Pagina 62 di 66

ALLEGATO A

Rilievi geomeccanici

enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM.R	CODICE CKS .90.IT.H.79008.10.027.00	
	Diga di Muzzone – Progetto di rispristino dello	scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	fondo – Relazione geotecnica – ALLEGATO	A Rilievi	Data 28/03/2022	
			Pagina 1 di 12	

INDICE

1.	INTRODUZIONE	2
2.	BIBLIOGRAFIA	3
3.	RILIEVO GEOSTRUTTURALE	4
	3.1 Litologia	4
	3.2 Tipo di giunto e orientazione	4
	3.3 Spaziatura	5
	3.4 Persistenza	5
	3.5 Alterazione	6
	3.6 Apertura	7
	3.7 Rugosità	8
	3.8 Riempimento	8
	3.9 Presenza d'acqua	8
4.	CARATTERIZZAZIONE GEOMECCANICA	10

enel Green Power	Impianto idroelettrico di Coghinas	CODICE CK GRE.OEM.R.90.IT.H.79008.10.027.00	
	Diga di Muzzone – Progetto di rispristino dello	o scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 2 di 12

1. INTRODUZIONE

Il presente allegato illustra il metodo di esecuzione dei rilievi geostrutturali realizzati nei giorni 16 e 17 Marzo 2021 nel settore a valle della sezione di imposta della diga di Muzzone.

I dati misurati sono stati processati per definire le caratteristiche delle famiglie di discontinuità e classificare i massicci rocciosi.

- Bussola da rilievo geostrutturale Cocla Breithaupt;
- Tablet GPS Active Tab2 Samsung;
- Materiali e schede da rilevamento geologico;
- Fotocamera digitale ad alta risoluzione Canon 6D Mark II (27Mpx).

Il procedimento di lavoro adottato consiste in:

- Misurazioni in campo dei dati indicati nel capitolo 3;
- Elaborazione statistica dei risultati e classificazioni geomeccanica dell'ammasso;
- Predisposizione delle schede di rilievo e dei documenti allegati.

enel Green Power	Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.027.00	
	Diga di Muzzone – Progetto di rispristino dello scarico di		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	fondo – Relazione geotecnica – ALLEGATO	A Rilievi	Data 28/03/2022
			Pagina 3 di 12

2. BIBLIOGRAFIA

Lo studio è stato condotto in base ai criteri generali stabiliti dalle norme e dai lavori pubblicati.

Gli standard e le normative di riferimento considerate sono le seguenti:

- [1] Linee guida per la progettazione, l'appalto e la costruzione di opere in sotterraneo. Progetto Nazionale Normativa Opere in Sotterraneo, Marzo 1997
- [2] AFTES-Working Group n°1: Text for recommendations for a description of rock masses useful for examining the stability of underground works - Tunnels et Ouvrages Souterrains, No.117, May-June 1993, pp.22-31
- [3] BARTON N., 2002. Some new Q-value correlations to assist in site characterization and tunnel design, Int. J. Rock Mech. & Mm. Sci., vol.39, 185-216
- [4] Barton N. (2011). Müller Lecture "From empiricism, through theory, to problem solving in rock engineering". 12th Congress of the ISRM. Beijing, China
- [5] BIENIAWSKY Z. T., 1989. Engineering Rock Mass Classifications. New York: John Wiley and sons
- [6] CAI M. et al, 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 41 3-19
- [7] CAI M. et al, 2007. Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences 44 (2), 247-265,
- [8] HOEK E., Rock Engineering course notes. Public on www.rockscience.com, 1998-2012
- [9] HOEK E., CARRANZA TORRES C. y CORKUM B., 2002. Hoek-Brown failure criterion 2002 Edition. Proc. NARMS-TAC Conference, Toronto, 2002, 1, 267-273
- [10] ISRM, 1978. Suggested methods for the quantitative description of discontinuities in rock masses, Int. J. Rock Mech. & Mm. Sci., vol.15
- [11] ISRM: Suggested methods for the quantitative description of discontinuities in rock masses, Int. J. Rock Mech. & Mm. Sci., vol.15, n.I 1978
- [12] ISRM: Basic Geotechnical Description of Rock Masses. Int. J. Rock Mech. & Mm. Sci., vol.18, n.l, 1981

enel	Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.027.00	
	Diga di Muzzone – Progetto di rispristino dello scal		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 4 di 12

3. RILIEVO GEOSTRUTTURALE

Lo studio ha compreso il rilievo dei settori affioranti in entrambe le sponde posizionate a valle della Diga mediante misurazione dei seguenti parametri: litologia, orientazione del piano, alterazione, rugosità, apertura, riempimento e presenza d'acqua. Nei paragrafi seguenti si descrivono in dettaglio.

3.1 Litologia

I massicci rocciosi che affiorano nel sito di interesse sono costituti dal complesso intrusivo dell'unità di Monte Limbara, costituita da graniti e minori filoni di diabase. Gli affioramenti sono stati descritti in dettaglio in base alla composizione mineralogica, tessitura e struttura.

3.2 Tipo di giunto e orientazione

I valori di orientazione sono stati misurati per ciascun piano di discontinuità, mediante la bussola geostrutturale e app per tablet. I piani sono stati classificati in due tipologie: giunti (K) e faglie (F) queste ultime identificate per presenza di indizi di movimento. La registrazione dei valori è stata condotta secondo lo standard Dip direction/dip.

Figura 1: esempio di misura delle discontinuità con app per tablet.
	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM.R	.90.IT.H.79008.10.027.00
ene	Diga di Muzzone – Progetto di rispristino dello scarico di		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 5 di 12

3.3 Spaziatura

La spaziatura è stata calcolata misurando la distanza tra due giunti paralleli lungo una linea perpendicolare agli stessi. I valori registrati per ciascun sistema sono stati raggruppati in fase di analisi secondo le classi di spaziatura previste dall'ISRM. [11]

Spaziatura (mm)	Descrizione
<20	Estremamente stretta
20-60	Molto stretta
60-200	Stretta
200-600	Moderata
600-2000	Larga
2000-6000	Molto larga
>6000	Estremamente larga

Tabella 1: classi di spaziatura. [11]

3.4 Persistenza

La persistenza riguarda l'estensione del giunto nello spazio espresso come lunghezza in metri. La tabella seguente riporta le classi di persistenza previste dall'ISRM [11], utilizzate per i giunti in cui una misurazione precisa non è stata possibile.

Persistenza (m)	Descrizione
<1	Molto bassa
1-3	Bassa
3-10	Media
10-20	Elevata
>20	Molto elevata

 Tabella 2: classi di persistenza lineare.[11]

enel	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM.R	.90.IT.H.79008.10.027.00
	Diga di Muzzone – Progetto di rispristino dello	scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 6 di 12

3.5 Alterazione

L'alterazione descrive le condizioni di degrado del materiale roccia che costituisce le pareti delle discontinuità. La tabella seguente riporta le classi previste per questo parametro dalla norma ISRM.

Classe	Grado de alterazione	Descrizione
W1	Non alterata	Non vi sono segni di alterazione.
W2	Leggeramente alterata	Le discontinuità sono macchiate o decolorate e possono contenere un sottile riempimento di materiale alterato.
W3	Lievemente alterata	Meno del 50% della roccia si presenta decomposto o disgregato. La roccia non alterata è presente in porzioni continue o isolate (corestone).
W4	Molto alterata	Più del 50% della roccia si presenta decomposto o disgregato. La roccia non alterata o poco alterata è presente in porzioni continue o isolate (corestone).
W5	Completamente alterata	La roccia è totalmente decolorata e decomposta, e risulta friabile. La struttura originaria è ancora visibile.
W6	Suolo residuale	La roccia è stata completamente trasformata in terreno e non è più osservabile alcuna struttura originaria

Tabella 3: alterazione delle superfici dei giunti. [11]

In aggiunta, anche il valore di Joint Alteration Number "Ja" di Cai [6] è stato assegnato in base a quanto indicato nella Tabella 4.

enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM.R	CODICE CKS
	Diga di Muzzone – Progetto di rispristino dello	o scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 7 di 12

	Term	Description	$J_{\rm A}$
Rock wall contact	Clear joints		
	Healed or "welded" joints (unweathered)	Softening, impermeable filling (quartz, epidote, etc.)	0.75
	Fresh rock walls (unweathered)	No coating or filling on joint surface, except for staining	1
	Alteration of joint wall: slightly to moderately weathered	The joint surface exhibits one class higher alteration than the rock	2
	Alteration of joint wall: highly weathered Coating or thin filling	The joint surface exhibits two classes higher alteration than the rock	4
	Sand, silt, calcite, etc.	Coating of frictional material without clay	3
	Clay, chlorite, talc, etc.	Coating of softening and cohesive minerals	4
Filled joints with partial or no contact between the rock wall surfaces	Sand, silt, calcite, etc.	Filling of frictional material without clay	4
	Compacted clay materials	"Hard" filling of softening and cohesive materials	6
	Soft clay materials	Medium to low over-consolidation of filling	8
	Swelling clay materials	Filling material exhibits swelling properties	8-12

Tabella 4: valori del parametro Joint alteration number Ja [6].

3.6 Apertura

Il parametro apertura riporta la distanza in millimetri che separa le pareti di una singola discontinuità. La tabella seguente riporta le classi previste per questo parametro dalla ISRM [11].

Apertura (mm)	Descrizione
Assente	-
<0.1	Molto stretta
0.1-0.25	Stretta
0.25-0.50	Parzialmente aperta
0.5-2.5	Aperta
2.5-5.0	Moderatamente larga
5.0-10	Larga
10-100	Molto larga
100-1000	Estremamente larga
>1000	Cavernosa

Tabella 5: classi di apertura [11].

	IMPIANTO		CODICE CKS	
	Impianto idroelettrico di Coghinas	GRE.OEM.R.90.IT.H.79008.10.027.00		
ene	Diga di Muzzone – Progetto di rispristino dello scarico di		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022	
			Pagina 8 di 12	

3.7 Rugosità

Con il termine rugosità si intende l'irregolarità nella forma della superficie di discontinuità ed in termini generali è contraddistinta da una "ondulazione" (a scala metrica) e da una "rugosità" in senso stretto (scala centimetrica).

Per la ondulazione centimetrica è stato fatto riferimento al valore Js mentre per la seconda è stato adottato il valore di Jw entrambi definiti da Cai [6].

La tabella seguente illustra tali parametri di riferimento.

Waviness terms	Undu	llation	Rating for waviness J_W		
Interlocking (large-sca Stepped	le)		3 2.5	D	
Large undulation Small to moderate uno Planar	> 3% dulation 0.3-3 <0.3	% %	2 1.5 1		a
				Undulation = a/D D - length between maximum ampli	tudes
Smoothness terms	Description				Rating for smoothness J_S
Very rough	Near vertical ste	ps and ridges occ	ur with interlocking effect of	on the joint surface	3
Rough	Some ridge and very abrasive (re	side-angle are evi-	dent; asperities are clearly v paper grade 30)	visible; discontinuity surface feels	2
Slightly rough	Asperities on the 30–300)	e discontinuity surf	faces are distinguishable and	l can be felt (like sandpaper grade	1.5
Smooth	Surface appear	smooth and feels s	so to touch (smoother than	sandpaper grade 300)	1
Polished	Visual evidence	of polishing exists	. This is often seen in coati	ng of chlorite and specially talc	0.75
Slickensided	Polished and str surface	iated surface that	results from sliding along a	fault surface or other movement	0.6–1.5

Tabella 6: termini per la descrizione della rugosità a scala centimetrica e metrica [6].

3.8 Riempimento

Con il termine riempimento si intende il tipo di materiale eventualmente contenuto tra le pareti delle discontinuità, che viene descritto secondo le sue caratteristiche mineralogiche, granulometriche e il suo spessore. Dove non indicato, la frattura si intende aperta senza riempimento.

3.9 Presenza d'acqua

La presenza d'acqua indica lo stato di umidità riscontrato in ciascuna discontinuità ed è stato descritto secondo la seguente tabella. Dove possibile, è stato inserito anche un valore di portata.

enel	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM.R.90.IT.H.79008.10.027.00	
	Diga di Muzzone – Progetto di rispristino dello	scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 9 di 12

Termine	Descrizione
Asciutta	Priva d'acqua, polverosa ed asciutta
Umida	Umidità visibile lungo la discontinuità
Bagnata	Visibile acqua che filtra attraverso la discontinuità

Tabella 7: termini utilizzati per descrivere la presenza d'acqua.

	IMPIANTO		CODICE CKS
	Impianto idroelettrico di Coghinas	GRE.OEM.R	.90.IT.H.79008.10.027.00
ene	Diga di Muzzone – Progetto di rispristino dello	scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
Green Power	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 10 di 12

4. CARATTERIZZAZIONE GEOMECCANICA

Gli ammassi rocciosi rilevati lungo le 2 sponde sono stati classificati secondo l'indice GSI (Geological Strength Index) proposto da Hoek et al. [8] attraverso l'approccio elaborato da Cai et al. [7] che prevede una valutazione quantitativa dell'indice a partire dai seguenti parametri:

- Vb: si riferisce al volume dei blocchi espresso in cm3 e rappresenta l'espressione diretta delle spaziature delle discontinuità sull'ammasso. Un valore minimo, uno massimo e una media geometrica sono stati valutati per ogni margine
- Jc: rappresenta il "Joint Condition Factor" che Cai [7] definisce attraverso la seguente formula

$$J_{\rm C} = \frac{J_{\rm W}J_{\rm S}}{J_{\rm A}}$$

dove Jw è la rugosità alla grande scala, Js la rugosità alla piccola scala e Ja la alterazione dei giunti. Anche in questo caso, il valore minimo, medio e massimo sono stati considerati.

Il valore dell'indice GSI viene calcolato in base alla seguente espressione:

$$GSI(V_{\rm b}, J_{\rm c}) = \frac{26.5 + 8.79 \ln J_{\rm c} + 0.9 \ln V_{\rm b}}{1 + 0.0151 \ln J_{\rm c} - 0.0253 \ln V_{\rm b}}$$

I risultati statistici per ciascun margine sono quindi riassunti nella seguente tabella mentre in Figura 2 vengono illustrati graficamente sul grafico di riferimento proposto dall'autore. In allegato vengono proposte le tabelle dei dati.

	Parametro	Minimo	Media	Massimo
	Vb (cm3)	6*E04	1.2*E-06	2.4*E-07
DESTRA	Jc (-)	0.3	2.0	6.0
	GSI	35	69	96
	Vb (cm3)	2*E05	3*E06	4.5*E07
SINISTRA	Jc (-)	0.5	1.9	9.0
	GSI	46	72	105

Tabella 8: risultati di classificazione geomeccanica.

enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM.R	CODICE CKS
	Diga di Muzzone – Progetto di rispristino dello	scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 11 di 12

Figura 2: grafico di GSI da Cai 2007. In arancio il range di minimo, massimo e media (punto) del margine destro, in azzurro il margine sinistro.

enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM.R	CODICE CKS .90.IT.H.79008.10.027.00
	Diga di Muzzone – Progetto di rispristino dello	o scarico di	CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	fondo – Relazione geotecnica – ALLEGATO / geostrutturali	A Rilievi	Data 28/03/2022
			Pagina 12 di 12

DATI DI RILIEVO

RILIEVO GEOMECCANICO MARGINE DESTRO Ubicazione area di rilievo

Committente	Enel						
Commessa	co07-21						
Località	Diga di Muzzone - Oschiri (SS)						
Coordinate centroid.	WGS84 X: 502222 Y: 4515764						
Data	16/03/2021						
Area di rilievo	Settore affiorante ubicato al margine destro a valle della diga						
geomeccanico							

Stralcio planimetrico

RILIEVO GEOMECCANICO MARGINE DESTRO

Scheda di sintesi

Committente	Enel						
Commessa	co07-21						
Località	Diga di Muzzone	Diga di Muzzone - Oschiri (SS)					
Coordinate	WGS84	502222	Y: 4515764				
Data	16/03/2021						
Area di rilievo	Settore affiorante ubicato al margine destro a valle della diga						
geomeccanico							

Litologia e descrizione geologica generale

Plutone intrusivo granitico di colore bianco rosato, leggermente alterato in superficie con colorazione marrone-nerastra. Generalmente ammasso asciutto a parte alcuni venute d'acqua riscontrate al livello del

Generalmente ammasso asciutto a parte alcuni venute d'acqua riscontrate al livello del fiume con portate di 2-3 l/s.

	Condizio	ni generali d	dell'ammass	so roccios	0		
Giacitura del fronte di misura					[%]	310/30	-310/90
Giacitura generale del pendio					[%]	310	0/40
Dimensioni dell'area di rilievo geomeccanico					[m x m]	80.	x 25
Volume roccioso unitario medio	[minimo]			[cm x	cm x cm]	40*4	10*40
	[massimo]			[cm x	cm x cm]	400*2	00*300
	[forma]				[-]	parallel	epipeda
Resistenza a compressione monoassiale del materiale r	occia:			media	[MPa]	1	29
				variabilità	[MPa]	60-	195
Numero di discontinuità per metro cubo d'ammasso - J,				variabilità	[n%m]	4-	10
Grado di alterazione dell'ammasso			non	debolm.	moder.	molto	decom-
			alterato	alterato	alterato	alterato	posto
				х			
Condizioni di umidità dell'ammasso			asciutto	umido	bagnato	stillicidio	flusso
			Y	unido	bughato	oumoidio	Y
			~				~
Geological Strength Index							
	Struttu	a Massive	Blocky	Very Blocky	Distrubed	Disintegrate	Foliated
		x	x				
	Condizioni delle d	liscontinuità	Very good	Good	Fair	Poor	Very Poor
			x	x	x	x	
Schema strutturale							
	ш	m				– Set k	(0)

|--|

MARGINE DESTRO

				ra	za	a	Alte	razione	Rugo	osità	0	qua
n°	Giac	itura	Set	Spaziatu	Persister lineare	Apertur	Barton / Cai	ISRM	Cai	Cai	iempiment	senza d'ac
	imm.[°]	incl. [°]		[cm]	[m]	[mm]	Ja	[w1-w5]	Js	Jw	Œ	Pre
1	5	20	K0	80	10-20	20	2	W2	2	2.5	-	-
2	5	40	K0	150	10-20	50	2	W2	2	2.5	-	-
3	7	35	K0	250	10-20	50	2	W2	2	2	-	-
4	0	10	K0	300	10-20	40	1	W1	2	2.5	-	-
5	4	20	K0	90	10-20	40	2	W2	1	2.5	-	-
6	5	10	K0	80	10-20	10	2	W2	1	6	-	-
7	88	85	K1	40	10-20	2	1	W1	2	1	-	-
8	90	90	K1	50	10-20	3	1	W1	2	1	-	-
9	87	90	K1	40	8	40	1	W1	2	1	-	-
10	88	74	K1	60	10-20	30	2	W2	2	1	-	-
11	80	110	K2	40	10-20	3	2	W2	2	1	-	-
12	90	80	K1	90	5	3	1.5	W1	2	1	-	-
13	25	165	КЗ	80	4	1	1	W1	2	1	-	-
14	30	160	K3	90	3	1	1	W1	2	1	-	-
15	32	160	K3	150	2	1	1	W1	2	1	-	-
16	30	163	KЗ	140	10	10	1	W1	2	1	-	-
17	12	5	K0	150	5	0	1	W1	2	2	-	-
18	90	75	K1	-	10-20	200	2	W2	2	1.5	-	-
19	0	200	K0	60	3	1	1	W1	2	1.5	-	-
20	6	270	K0	120	5	1	1	W1	1.5	1.5	-	-
21	5	300	KO	220	3	1	1	W1	2	1.5	-	-
22	10	270	K0	200	6	1	1	W1	2	1	-	-
23	80	80	K1	200	10-20	50	1	W1	2	1	-	-
24	80	340	К	250	10-20	30	2	W2	2	1	-	-
25	5	270	K0	35	10-20	0	1	W1	2	1	-	-
26	55	0	K4	180	10-20	0	1	W1	2	1	-	-
27	60	5	K4	200	10-20	2	2	W2	1.5	1	-	-
28	60	0	K4	150	10-20	3	1	W2	2	1	-	_
29	90	130	K2	100	10-20	0	1	W1	1.5	1	-	-
30	85	150	K2	150	10-20	0	2	W2	1	1	-	-
31	67	96	K1	150	10-20	30	1	W1	3	1.5	-	_
32	88	78	K1	80	6	2	2	W2	1	1	-	-
33	85	77	K1	150	10-20	0	2	W2	1	1	-	_
34	89	296	K2	250	10-20	50	2	W2	2	1	-	_
35	86	283	K2	200	10-20	3	2	W2	1	1	-	_
36	82	68	K1	200	10-20	30	2	W2	0.5	1	-	-
37	89	84	K1	200	8	10	1	W1	0.5	1	-	-
38	11	17	KN	100	10-20	40	1	W2	3	1.5	-	flusso 2-3 1/s
39	11	15	KU	180	8	0	1	W/1	1	1	-	
40	8	350	KU	300	10-20	60	1	W/1	2	3	-	_
41	76	302	K2	180	10-20	0	2	W/2	2	15	-	_
	, , , ,	002	1.4	, ,	1.0 20				-		i	1

Condizioni generali delle discontinuità												
							AL	TERAZIONE				
set	giacitura [%]	spaz [c	iatura m]	persis [I	stenza n]	apei [m	rtura nm]		Ja [-]	ISRM [W1-W5]		
		media	variabilità		Classe	media	variabilità	media	variabilità	moda		
КО	353/05	154	35-300	10	-20	21	0-60	1.3	1-2	W1-W2		
K1	081/85	114	40-200	10	-20	33	0-200	1.5	1-2	W1-W2		
К2	302/89	153	40-250	10	-20	9	0-50	1.8	1-2	W1-W2		
КЗ	162/29	115	80-150	3-	10	3	0-10	1	-	W1		
K4	002/58	176	150-200	10	10-20		0-3	1.3	1-2	W1-W2		
								•				
set	J	<u>HU</u> 's -]	JGUSHA	Jw [-]		ł						
	media	variabilità	media		variabilità		RIEMPIMENTO materiale prevalente			ACQUA		
ко	1.8	1-3	2.	1	1-6	assente			ass		issente	gen. assente. Flusso di 2-3l/s localizzato
K1	1.7	0.5-3	1.	1 1-1.5		assente		assente		assente		
K2	1.6	1-2	1.	.1 1-1.5		assente		assente				
КЗ	2	-	1		-	as		assente		assente		
K4	1.8	1.5-2	1		-		e	assente		assente		

RILIEVO GEOMECCANICO MARGINE DESTRO

Classificazione e definizione dei parametri di resistenza e deformabilità Scheda di sintesi della variabilità statistica

Committente	Enel					
Commessa	co07-21					
Località	Diga di Muzzone - Oschi	Diga di Muzzone - Oschiri (SS)				
Data	16/03/2021	16/03/2021				
Coordinate:	Gauss Boaga	X: 502222	Y: 4515764			
Area di rilievo	Settore affiorante ubicato al margine destro a valle della diga					

	minimo	media geometrica	massimo
Volume blocchi- Vb [cm³]	6.40E+04	1.24E+06	2.40E+07
	minimo	media	massimo
Jc [-]	0.25	2	6
GSI [-]	35	69	96

Parametri del materiale roccia			minimo	media	massimo	Punteggio RMR medio
Resistenza a compressione monoa	ssiale da prove di lab.	$\sigma_{\it ci}$ [MPa]	59	129	195	12
Parametri d'ammasso		[minimo	media	massimo	
Numero di discontinuità per metro c	ubo d'ammasso - J _v	[n%m³]	4	5	10	
Rock Quality Designation RQD		[%]	74	91	94	20
Spaziatura delle discontinuità		[cm]	35.0	140	300	15
Condizioni delle discontinuità:						
	lunghezza	[m]	2.0	10	20	1
	apertura	[mm]	0.0	20	200	0
	rugosità:	F				
	Js	[-]	0.5	1.8	3.0	3
	Jw	[-]	1.0	1.5	6.0	
	riempimento:					
	tipo	[-]	assente			
	spessore	[mm]	-	-	-	6
	alterazione:					
	Ja	[-]	1	1.4	2	5
		-			_	
	condizioni di umidità		asciutto (venute locali)			10
			(Forfato Toball)			ļ

RILIEVO GEOMECCANICO MARGINE SINISTRO Ubicazione area di rilievo

Committente	Enel							
Commessa	co07-21							
Località	Diga di Muzzone	Diga di Muzzone - Oschiri (SS)						
Coordinate centroid.	WGS84	Х:	502190	Y:	415810			
Data	17/03/2021							
Area di rilievo	Settore affiorante	e ubicate	o al margine	ə sinist	ro a valle della diga			
geomeccanico								

Stralcio planimetrico

RILIEVO GEOMECCANICO MARGINE SINISTRO Scheda di sintesi

Committente	Enel
Commessa	co07-21
Località	Diga di Muzzone - Oschiri (SS)
Coordinate	WGS84 502190 Y: 415810
Data	17/03/2021
Area di rilievo	Settore affiorante ubicato al margine sinistro a valle della diga
geomeccanico	

Litologia e descrizione geologica generale

Plutone intrusivo granitico di colore bianco rosato, leggermente alterato in superficie con colorazione marrone-nerastra. Presenza di filoni mafici di diabase subverticali e con spessori compresi tra 0.1m e 2m.

Ammasso asciutto.

	Condizio	ni general	i dell'amma	sso roccio	S 0		
Giacitura del fronte di misura					[%]	130/00-	130/90
Giacitura generale del pendio					[%]	130/	45
Dimensioni dell'area di rilievo geomeccanico					[m x m]	120×	(25
-							
Volume roccioso unitario medio	[minimo]			[cm x	cm x cm]	60x60	0x60
	[massimo]			[cm x	cm x cm]	500x30	0x300
	[forma]				[-]	parallele	pipeda
Resistenza a compressione monoassiale del materiale r	roccia:			media	[MPa]	12	9
				variabilità	[MPa]	60-1	95
Numero di discontinuità per metro cubo d'ammasso - J_v				variabilità	[n%m]	1-1	7
				1			
Grado di alterazione dell'ammasso			non	debolm.	moder.	molto	decom-
			alterato	alterato	alterato	alterato	posto
			x	x			
Condizioni di umidità dell'ammasso			asciutto	umido	bagnato	stillicidio	flusso
			x				
Geological Strength Index							
	Struttura	Massive	Blocky	Very Blocky	Distrubed	Disintegrated	Foliated
		x	x				
	Condizioni delle dise	continuità	Very good	Good	Fair	Poor	Very Poor
			x	x	x	x	
Schema strutturale							
					C-+	¥0	
Children Strategie and	" State of the		Rena		- Set I	KÜ	
	A CONTRACTOR	-	Table Con	. —	Set I	K1	
	Mat Line				Set I	K2	
Contraction of the second	1. This is	18 105	States /		– Set l	K4	
	ALL STREET	the state	No. of Contraction		- Eagl	ia	
X		AND SAV			- Fagi	a	

Rilie	vo di det	taglio d	elle disc	continu	ità	I			MARGINE SINISTRO			
					ą		Alter	razione	Rugo	osità		na
n°	Giac	itura	Set	Spaziatura	Persistenz lineare	Apertura	Barton / Cai	ISRM	Cai	Cai	empimento	senza d'acqu
	imm.[°]	incl. [°]		[cm]	[m]	[mm]	Ja	[w1-w5]	Js	Jw	В	Pres
1	80	115	K2	300	10-20	50	2	W2	1	1	aperta, con quarzo	-
2	88	110	K2	300	10-20	30	2	W2	1	1	aperta, con quarzo	-
3	88	120	K2	300	10-20	20	2	W2	1	1	aperta, con quarzo	-
4	80	145	K2	-	7	20	2	W2	1	1	aperta, con quarzo	-
5	15	320	K0	30	10-20	0	2	W2	1	1	-	-
6	12	100	K0	60	10-20	0	2	W2	1	1.5	-	-
7	90	260	K1	350	>20	20	2	W2	1	1	-	-
8	84	75	K1	250	>20	70	2	W2	1	1	-	-
9	86	76	K1	80	>20	30	2	W2	1	1	-	-
10	90	110	K2	50	>20	0	2	W2	2	1	-	-
11	88	112	K2	-	10-20	0	2	W2	2	1	-	-
12	6	335	K0	400	10	4	2	W2	2	1	-	-
13	90	85	F	2-3	10-20	100	2	W2	2	1.5	-	-
14	50	25	K4	200	4	100	2	W1	1	1	-	-
15	55	20	K4	300	5	100	2	W1	2	1	-	-
16	56	20	K4	200	3	100	2	W1	2	1	-	-
17	25	70	K0	100	10-20	100	2	W2	2	1.5	-	-
18	78	107	K2	-	10-20	0	1	W1	2	1.5	-	-
19	90	117	K2	180	10-20	0	2	W2	2	1.5	-	-
20	83	114	K2	180	10-20	0	2	W2	2	1.5	-	-
21	12	88	K0	-	10-20	0	2	W2	2	1	-	-
22	80	118	K2	150	10-20	0	2	W2	2	1	dicco diabase	-
23	75	116	K2	200	10-20	0	1	W1	2	1	-	-
24	85	126	K2	400	10-20	0	1	W1	2	1.5	-	-
25	84	77	K1	150	10-20	0	1	W1	3	3	-	-
26	84	67	K1	150	10-20	0	1	W1	3	2	quarzo sp. 1cm	-
27	80	65	K1	300	10-20	0	1	W1	2	1	-	-
28	21	126	K0	50	8	0	1	W1	2	1	-	-
29	82	274	K1	220	10	0	2	W2	2	1	-	-
30	89	82	K1	200	10	0	1	W1	2	2	-	-
31	81	122	K2	500	10-20	100	2	W2	2	2	-	-
32	6	265	KO	-	5	0	1	W1	2	1	-	-
33	15	78	KO	100	10	0	2	W2	2	1.5	-	-
34	12	105	KO	100	10	0	1	W1	2	1.5	-	-
35	/8	109	K2	150	20	0	2	W2	2	1	-	-
36	8	113	KO	100	10-20	0	1	W1	3	1	-	-
37	83	82	<u>K1</u>	300	20	30	2	W2	2	1	-	-
38	9	195	KU	250	10-20	0	1	W1	2	1	-	-
39	87	290	K2	300	10-20	0	1	W1	2	1	-	-
40	87	103	K2	150	10-20	0	1	VV1	2	1.5	-	-
41	80	89	KI KI	-	10.00	0	1	VV 1	2	1.5	-	-
42	85 70	89 115	KI KO	300	10-20	50	2	VV2	2	2	-	-
43	73	115	K2	300	10-20	100	2	VV2	1	1	-	-
44	9	0U 74	NU 1/1	300	10 00	0	-	14/4	2	1	-	-
45	00 00	74	K I 1/1	100	10-20	30	1	14/2	2	1 5	-	-
40	70	204 256	N I K1	200	10-20	200	2	VV∠ 14/2	2	1.0	-	-
4/	19	200	KO	10	10-20	200	2	14/2	2		-	-
40	12	75	NU K1	40	10-20	20-400		1/1	1 0	1 1 E	-	-
49 50	77	70 00	K1	-	10-20	10	2	1/2	2	1.5	-	- Llmida
50	0	30 22	KO	- 100	5	40	- 2	1/1	2	1.5 1 E	-	Unilua
57	9 70	121	KO KO	100	10.20	0	1	VV I //1	2	1.0	-	-
53	45	193	K	-	5	0	1	W1	2	1	-	-

Condi	zioni gene	rali delle d	discontinu	ità							
							ALT			TERAZIONE	I
set	giacitura	spaz	iatura	persis	stenza	aper	tura		Ja	ISRM	1
	[%]	[c	<i>m</i>]	[n	n]	[m	m]		[-]	[W1-W5]	1
		media	variabilità	essel.	0000	media	variabilità	media	variabilità	moda	l
КО	083/07	135	30-400	10-	-20	8	0-100	1.5	1-2	W1-W2	
K1	080/87	209	80-350	10-	-20	22	0-100	1.6	1-2	W1-W2	l
К2	116/83	247	50-500	10-	10-20		0-50	1.7	1-2	W1-W2	l
K4	022/54	233	200-300	3-	10	100 0-100		2	-	W1	l
							, <u> </u>				
		Rl	JGOSITA'								I
set	J [*	's -]		Jw [-]			RIEN	1PIMENTO			l
	media	variabilità	media		variabilità		materia	le prevalen	te	ACQUA	
К0	1.9	1-3	1.2	2	1-1.5		Quarzo, 1-2cm			assente, solo puntuale umidità	l
K1	1.9	1-3	1.3	7	1-3	-				assente	
K2	1.7	1-2	1.2	2	1-2	Quarzo, 1-2cm				assente	
K4	1.7	1-2	1		-		-			assente	l

RILIEVO GEOMECCANICO MARGINE SINISTRO

Classificazione e definizione dei parametri di resistenza e deformabilità Scheda di sintesi della variabilità statistica

Committente	Enel					
Commessa	co07-21					
Località	Diga di Muzzone - Oschir	Diga di Muzzone - Oschiri (SS)				
Data	17/03/2021					
Coordinate:	Gauss Boaga	X: 502190	Y: 415810			
Area di rilievo	Settore affiorante ubicato	al margine sinistro a valle della d	diga			

		minimo	media geometrica	massimo
Volume blocchi- Vb	[cm³]	2.16E+05	3.12E+06	4.50E+07
		minimo	media	massimo
Jc	[-]	0.5	1.9	9
GSI	[-]	46	72	100

	condizioni di umidità		asciutto			15
	Ja	[-]	I	1.0	2	
	alterazione:	<i>L</i> 1	1	16	2	5
	spessore	[mm]	0.0	10.0	20.0	6
	tipo	[-]	assente/duro			
	riempimento:	ļ				
	Jw	[-]	1.0	1.3	3.0	0
	Js	[-]	1.0	1.8	3.0	3
	, rugosità:				•	
	apertura	[mm]	0.0	18	100	0
Condizioni delle discontinuita:	lunghezza	[m]	3.0	10	20	1
		loui	30.0	200	500	15
ROCK QUAILTY Designation RQD		[%]	84 20.0	98	100 500	20
vumero di discontinuita per metro Deste Quelite Destruction DOD) CUDO O AMMASSO - J _v	[11 /111]	1	2	/	00
Parametri d'ammasso		[nº/m ³]	minimo	media	massimo	
Resistenza a compressione mono	assiale da prove di lab.	$\sigma_{ci} [MPa]$	59	129	195	12
Parametri del materiale roccia			minimo	media	massimo	Punteggio RMR medi

	IMPIANTO		CODICE CKS
enel	Impianto idroelettrico di Coghinas	GRE.OEM	.R.90.IT.H.79008.10.092.00
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 15/07/2022
	Relazione geotecnica		Pagina 63 di 66

ALLEGATO B

Modello 3d sponda destra e sinistra

Diga di Muzzone Versante sinistro valle

Diga di Muzzone Versante destro valle

	IMPIANTO		CODICE CKS
enel Green Power	Impianto idroelettrico di Coghinas	GRE.OEM	I.R.90.IT.H.79008.10.092.00
	TITOLO Diga di Muzzone		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	Progetto di ripristino dello scarico di fond	do	Data 15/07/2022
	Relazione geotecnica		Pagina 64 di 66

ALLEGATO C

Profili di rugosità dei giunti

	IMPIANTO	CODICE CKS			
enel	Impianto idroelettrico di Coghinas	GRE.OEM.R.	DEM.R.90.IT.H.79008.10.092.00		
	TITOLO	CODICE INTERNO			
	Diga di Muzzone – Progetto di ripristino dello s	2020.0240.002-GT-GEN-RT-103			
Green Power	– Relazione Geotecnica – ALLEGATO C	Profili rugosità	Data 15/07/2022		
	giunti		Pagina 1 di 10		

INDICE

1.	ANALISI DELLA SCABREZZA DEI GIUNTI MEDIANTE FOTOGRAMMETRIA	2
2.	ELABORAZIONE DEI DATI	4
3.	ANALISI SCABREZZA	7

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM.R.		CODICE CKS 90.IT.H.79008.10.092.00	
	тітоьо Diga di Muzzone – Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	– Relazione Geotecnica – ALLEGATO C	Profili rugosità	Data 15/07/2022	
	giunti		Pagina 2 di 10	

1. ANALISI DELLA SCABREZZA DEI GIUNTI MEDIANTE FOTOGRAMMETRIA

Lo studio della scabrezza dei giunti localizzati negli ammassi a valle della Diga di Muzzone è avvenuto mediante misura del parametro di rugosità descritto da Barton come Joint Roughness Coefficient (JRC), in base alla procedura descritta di seguito.

La metodologia condotta per la valutazione del JRC lungo superfici rocciose è avvenuta con una tecnica fotogrammetrica e modellazione 3D basata su rilievo di fotografie ad alta risoluzione (25Mpx) su n.7 giunti distribuiti lungo il margine sinistro, maggiormente accessibili e dotati di una giacitura consona per lo svolgimento dell'analisi.

Di seguito vengono elencate le caratteristiche dei piani di discontinuità analizzati in questo studio; si tratta di 7 superfici appartenenti alle classi di famiglie K0 (3), K1 (2) e K2 (2). La **Figura 1** ne illustra l'ubicazione. Sui giunti dei set K3 e K4, data la loro limitata esposizione in superficie, non è stato possibile condurre il rilievo.

Rilievo	Coord. Est	Coord. Nord	Quota m s.l.m.	Giacitura del piano	Familia giunto
1	502176	4515796	120	010/10	K0
2	505175	4515801	125	105/85	K2
3	502171	4515793	124	118/80	K2
4	502171	4515791	121	084/77	K1
5	502165	4515777	117	088/12	K0
6	502171	4515793	124	126/21	K0
7	502166	4515787	121	084/77	K1

Tabella 1: lista dei piani di discontinuità analizzati.

La documentazione bibliografica di riferimento consiste in:

[1] Barton N. (2011). Müller Lecture "From empiricism, through theory, to problem solving in rock engineering". 12th Congress of the ISRM. Beijing, China.

enel	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM.R.S		CODICE CKS 90.IT.H.79008.10.092.00	
	тітоьо Diga di Muzzone – Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
Green Power	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022	
	giunti		Pagina 3 di 10	

Figura 1: ubicazione delle superfici di analisi.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM.R.S		CODICE CKS 90.IT.H.79008.10.092.00	
	TITOLO		CODICE INTERNO 2020 0240 002-GT-GEN-RT-103	
	 – Relazione Geotecnica – ALLEGATO C Profili rugosità 		Data 15/07/2022	
	giunti		Pagina 4 di 10	

2. ELABORAZIONE DEI DATI

L'analisi è stata condotta mediante la seguente procedura:

- Il primo passo è avvenuto mediante il posizionamento di una scala di riferimento con l'utilizzo di un metro graduato appoggiato sulla superficie con angolo di 90 gradi e aste con lunghezze di 1.2m x 0.80 m. Il lato lungo della scala corrisponde alla direzione di massima spinta della diga, orientata a 040°N. Per un corretto orientamento, nelle foto è stata inserita anche una bussola.
- Secondariamente sono state scattate tra le 10 e 12 fotografie per superficie mediante una camera Canon EOS 6D Mark II con un obiettivo a focale 35mm e risoluzione di 27Mpx, avendo mantenuto un parallelismo con la superficie in modo da consentire il 60-70% di sovrapposizione tra ciascuno scatto.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas	CODICE CKS	
	тітоьо Diga di Muzzone – Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103
	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022
	giunti		Pagina 5 di 10

Figura 2: Esempio di fotografie scattate per la superficie numero 1 dove si notano la bussola e il metro graduato che definisce l'area di analisi. Il poligono azzurro rappresenta la sovrapposizione del 60% tra foto adiacenti. In basso una panoramica generale del rilievo.

3. Le foto sono state successivamente importate in AgiSoft-Photoscan[©], un software per la ricostruzione 3D, che permette di ricostruire un modello digitale 3D partendo da punti omologhi fotografati in più di 1 foto (da qui l'importanza della sovrapposizione). In ciascuna immagine sono stati inseriti 3 punti (markers) corrispondenti alle estremità della scala graduata e più uno al centro, per permettere l'allineamento e la scalatura del modello. Una volta processate le foto, il resultato restituisce una nuvola di punti ad alta accuratezza basata su di un algoritmo interno al programma (Figura 3).

Figura 3: nuvola di punti con markers e posizione degli scatti.

4. A partire dalla nuvola di punti iniziale, sono stati seguentemente realizzati un Modello Digitale del Terreno DEM con risoluzione tra 0.6 e 0.9 mm/pixel e più di 400'000 facce e 200'000 vertici. In aggiunta, è stata estratta una ortofoto con risoluzione di 0,2 mm/pixel.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas GRE.OEM.R.S		CODICE CKS 90.IT.H.79008.10.092.00	
	тітоьо Diga di Muzzone – Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022	
	giunti		Pagina 6 di 10	

Figura 4: risultati del modello digitale DEM (sopra e della Ortofoto (sotto).

enel Green Power	Impianto idroelettrico di Coghinas GRE.OEM.R.S		CODICE CKS 90.IT.H.79008.10.092.00	
	тітоьо Diga di Muzzone – Progetto di ripristino dello scarico di fondo		CODICE INTERNO 2020.0240.002-GT-GEN-RT-103	
	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022	
	giunti		Pagina 7 di 10	

3. ANALISI SCABREZZA

I dati ottenuti dalla fase anteriore di processamento sono stati importati in ambiente GIS per le successive elaborazioni. Tale processo ha incluso la tracciatura di profili della lunghezza pari alla dimensione massima del modello, ossia compresi tra 1.1 e 1.9 metri orientati come già detto lungo la massima direzione di spinta della diga (40°N).

Per ciascuna superficie, sono stati realizzati sui DEM due profili rappresentanti il grado di rugosità minimo e massimo, di cui la **Figura 5** illustra l'andamento delle asperità estratte dal DEM sottostante.

Lo spessore delle asperità ottenute risulta compreso tra un minimo di 11mm e un massimo di 73mm per profili di lunghezza compresi tra 1.1m e 1.85m.

Figura 5: profili di asperità estratti dalla superficie del modello DEM sottostante.

L'analisi conclusiva consiste nel definire a livello quantitativo la rugosità in base al Joint Roughness Coefficient JRC del Professore Nick Barton [1]. In dettaglio, il grafico illustrato in **Figura 6**, permette tale valutazione raffrontando l'ampiezza "a" delle asperità con la lunghezza "L" del profilo corrispondente.

	IMPIANTO		CODICE CKS	
enel Green Power	Impianto idroelettrico di Coghinas GRE.OEM.R.		.90.IT.H.79008.10.092.00	
	TITOLO		CODICE INTERNO	
	Diga di Muzzone – Progetto di ripristino dello scarico di fondo		2020.0240.002-GT-GEN-RT-103	
	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022	
	giunti		Pagina 8 di 10	

Il grafico consente di misurare un JRC compreso tra 0.5 e 30 per asperità di 0.1mm fino a 1m su profili di lunghezza di minimo 0.1m fino a 10m.

Figura 6: grafico per il calcolo del JRC di Barton [1].

				MIN			MAX	
Giunto	Giacitura	Тіро	L (m)	a (mm)	JRC	L (m)	a (mm)	JRC
1	010/10°	K0	1.5	38.9	12	1.5	41.7	14
2	105/85°	K2	1.54	35.4	11	1.5	38.4	12
3	118/80°	K2	1.5	11.1	4	1.52	17.5	5
4	084/77°	K1	1.5	13.9	4	1.55	23.5	7
5	088/12°	K0	1.34	15.2	5	1.36	31.6	12
6	126/21°	K0	1.8	58.2	14	1.85	72.9	18
7	084/77°	K1	1.1	25.4	8	1.7	37.6	10

Nella seguente tabella sono sintetizzati i valori di JRC ottenuti per ciascun profilo.

Tabella 2: valori di JRC ottenuti dal rilievo fotogrammetrico.

	IMPIANTO		CODICE CKS	
enel Green Power	mpianto idroelettrico di Coghinas GRE.OEM.R.S		90.IT.H.79008.10.092.00	
	TITOLO		CODICE INTERNO	
	Diga di Muzzone – Progetto di ripristino dello scarico di fondo		2020.0240.002-GT-GEN-RT-103	
	– Relazione Geotecnica – ALLEGATO C Profili rugosità		Data 15/07/2022	
	giunti		Pagina 9 di 10	

I risultati statistici per ciascuna famiglia in Tabella 3 indicano:

- Giunti K0: scabrezza compresa tra JRC di 10.3 e 14.6
- Giunti K1: scabrezza compresa tra JRC di 6 e 8.5
- Giunti K2: scabrezza compresa tra JRC di 7.5 e 8.5

Si segnala che nonostante la già citata impossibilità di effettuare misurazioni dirette sui restanti set K3 e K4, per questi le caratteristiche di rugosità risultano comunque analoghe a quelle delle famiglie K0, K1 e K2.

Famiglia giunto	JRC MIN	JRC MAX	JRC MEDIO
К0	10.3	14.6	12.5
K1	6	8.5	7.3
K2	7.5	8.5	8.0

Tabella 3: risultati statistici dei valori di JRC.

Le schede di dettaglio per ciascun rilievo vengono illustrate nelle pagine seguenti.

enel Green Power	IMPIANTO Impianto idroelettrico di Coghinas	CODICE CKS GRE.OEM.R.90.IT.H.79008.10.092.00	
	TITOLO Diga di Muzzone – Progetto di ripristino dello scarico di fondo – Relazione Geotecnica – ALLEGATO C Profili rugosità		CODICE INTERNO
			Data 15/07/2022
	giunti		Pagina 10 di 10

SCHEDE DI MISURA ASPERITA' SU GIUNTO

ANALISI SCABREZZA GIUNTO N.5

Data rilievo: 17/03/2021

ANALISI SCABREZZA GIUNTO N.6

Data rilievo: 17/03/2021

ANALISI SCABREZZA GIUNTO N.7

Data rilievo: 17/03/2021

