

Regione Calabria Provincia di Cosenza Comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Titolo:

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Numero documento:

Commessa

5 3

Fase

D

Tipo doc. R

Prog. doc

0

4

0

Proponente:

FRI-EL S.p.A. Piazza della Rotonda 2 00186 Roma (RM) fri-elspa@legalmail.it P. Iva 01652230218 Cod. Fisc. 07321020153

PROGETTO DEFINITIVO

Progettazione:

SERVIZI DI INGEGNERIA INTEGRATI

	Sul presente documento sussiste il DIRITTO di PROPRIETA'. Qualsiasi utilizzo non preventivamente autorizzato sarà perseguito ai sensi della normativa vigente							
_	N.	Data	Descrizione revisione	Redatto	Controllato	Approvato		
SION	00	29.01.2024	EMISSIONE PER AUTORIZZAZIONE	C.ELIA	D. LO RUSSO	M. LO RUSSO		
3EVI								
-								

RELAZIONE SULL'ELETTROMAGNETISMO
(D.P.C.M. 08/07/03 E D.M. 29/05/08)
Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

INDICE

1.	PREMESSA	3
	INTRODUZIONE	
	I CAMPI ELETTRICI E MAGNETICI	
	EFFETTI BIOLOGICI E LIMITI DI ESPOSIZIONE	
3.	INQUADRAMENTO NORMATIVO	7
4.	CAMPI ELETTROMAGNETICI GENERATI DALLE COMPONENTI DELL'IMPIANTO EOLICO	8
4.1.	IDENTIFICAZIONE DELLE COMPONENTI	8
4.1.1.	CAVIDOTTI M.T. DI UTENZA (30 kV)	9
4.1.2.	COMPATIBILITÀ ELETTROMAGNETICA DEL SISTEMA DI ACCUMULO DI ENERGIA A BATTERIE (NEL SEGUITO DEFINIT	ГС
	COME B.E.S.S. – BATTERY ENERGY STORAGE SYSTEM)	12
4.1.3.	STAZIONE ELETTRICA DI UTENZA	13
4.1.4.	IMPIANTO DI UTENZA PER LA CONNESSIONE (CAVIDOTTO A.T.)	14
4.1.5.	NUOVO STALLO LINEA AT 150 KV ALL'INTERNO DELLA C.P. AMENDOLARA	16
5.	CONCLUSIONI	18

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

1. PREMESSA

Scopo del presente documento è la redazione della relazione sull'elettromagnetismo finalizzata all'ottenimento dei permessi necessari alla realizzazione di un impianto di produzione di energia rinnovabile da fonte eolica denominato "Rocca Imperiale" costituito da n. 9 aerogeneratori, per una potenza massima complessiva di 64,80 MW, integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale (CS) e Montegiordano (CS), e dalle relative opere connesse ed infrastrutture indispensabili, da realizzarsi nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara in provincia di Cosenza, da collegare alla Rete di A.T. di E-Distribuzione (C.P. "Amendolara") con uno stallo a 150 kV, ubicato all'interno del comune di Amendolara.

Grazie alla particolare tecnologia delle turbine previste, non sarà necessaria la realizzazione di una cabina di trasformazione BT/MT, alla base di ogni palo in quanto questa è già alloggiata all'interno della torre d'acciaio; il trasformatore BT/MT, con la relativa quadristica fa parte dell'aerogeneratore ed è interamente installato all'interno dell'aerogeneratore stesso, nella navicella.

Le torri eoliche e il B.E.S.S. si raggrupperanno in sette linee da 30 kV come di seguito riportato:

LINEA	TORRI
1	WTG RI 09
2	WTG RI 08, WTG RI 06
3	WTG RI 07, WTG MG05
4	WTG MG04, WTG MG03
5	WTG MG02, WTG MG01
6-7	B.E.S.S.

All'interno della SE, tramite un trasformatore/elevatore a rapporto variabile, la tensione sarà elevata da 30 kV a 150 kV.

Il presente documento rappresenta lo studio di impatto elettromagnetico delle seguenti opere relative all'impianto di produzione di energia rinnovabile da fonte eolica:

- Cavidotti M.T. di utenza (30 kV);
- Sistema di accumulo di energia elettrica a batterie (B.E.S.S.);
- Stazione Elettrica di Utenza 150/30 kV;
- Cavidotto A.T.;
- Nuovo stallo linea A.T. 150 kV all'interno della C.P. Amendolara.

Si rimanda alla relazione "234315_D_R_0101 Relazione generale" per una descrizione dettagliata delle caratteristiche tecniche e alla relazione "234315_D_R_0110 Studio di impatto ambientale" per una descrizione dettagliata dell'inserimento ambientale dell'impianto in oggetto.

2. INTRODUZIONE

Lo sviluppo economico di un paese è strettamente collegato ai consumi e alla disponibilità di energia, la cui fonte primaria oggi è il petrolio.

I combustibili fossili però, oltre al fatto che vengono consumati con una velocità milioni di volte superiore a quella con la quale si sono accumulati naturalmente, essendo quindi destinati ad una progressiva rarefazione, sono anche i principali responsabili del degrado dell'ambiente, con gravi conseguenze sulla salute dell'uomo, sulla flora, sulla fauna e sul patrimonio artistico.

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Il 23 gennaio 2008 la Commissione europea ha presentato il "Pacchetto cambiamenti climatici ed energia", già definito 20-20-20, che prevede il raggiungimento di una quota del 20% di energie rinnovabili nel totale dei consumi energetici entro il 2020.

Il principale ostacolo alla diffusione di queste nuove energie è la loro non-competitività sul piano economico, imputabile anche al fatto che l'attuale mercato dell'energia non tiene conto dei costi sociali ed ambientali legati all'impiego dei combustibili fossili, non traducendoli in costi monetari.

L'unica tecnologia a tutt'oggi matura e quindi competitiva in questo senso è la produzione di energia elettrica da fonte eolica, con costi di produzione confrontabili con quelli degli impianti turbogas.

Alla produzione e al trasporto di energia elettrica, siano essi basati su fonti tradizionali fossili sia su fonti rinnovabili, si associano delle emissioni elettromagnetiche, dovute in massima parte alla corrente elettrica che scorre nei cavidotti aerei e/o interrati.

Nella progettazione di nuovi impianti di produzione di energia elettrica risulta dunque necessario assicurarsi che da tali opere non scaturiscano situazioni possibilmente dannose per la popolazione legate all'esposizione a campi elettromagnetici.

L'interazione tra campi elettromagnetici e sistemi biologici è governata in generale dalle equazioni di Maxwell, che descrivono la propagazione, riflessione e assorbimento dei campi elettromagnetici in tutti i mezzi, tra cui anche i tessuti biologici. In particolare, lo studio di possibili effetti legati all'esposizione a campi elettromagnetici è affrontato da una disciplina scientifica che prende il nome di bioelettromagnetismo, che in sintesi è basata sull'analisi di due aspetti:

Dosimetria: valutazione quantitativa del campo elettromagnetico a cui è esposto un soggetto in presenza di una data sorgente elettromagnetica;

Effetti biologici: valutazione di possibili effetti biologici legati all'esposizione a una certa dose di campo.

Tali effetti biologici possono essere sia dannosi che positivi (nel caso di applicazioni biomedicali), e sono strettamente legati alle caratteristiche dei campi elettromagnetici cui si è esposti: frequenza, intensità, polarizzazione, forma d'onda.

Il primo parametro di interesse è la frequenza, in quanto campi a bassa frequenza agiscono su un sistema biologico secondo meccanismi sostanzialmente diversi da quelli ad alta frequenza.

Nel caso della bassa frequenza, come quello di elettrodotti a 50 Hz qui in esame, è possibile dimostrare che campi elettrici e magnetici sono sostanzialmente indipendenti (o disaccoppiati), per cui possono essere trattati separatamente.

2.1. I CAMPI ELETTRICI E MAGNETICI

Il campo elettrico è legato in maniera direttamente proporzionale alla tensione della sorgente; esso si attenua, allontanandosi da un elettrodotto, come l'inverso della distanza dai conduttori. Dal momento che i valori efficaci delle tensioni di linea variano debolmente con le correnti che le attraversano, l'intensità del campo elettrico può considerarsi, in prima approssimazione, costante. La presenza di alberi, oggetti conduttori o edifici in prossimità delle linee riduce l'intensità del campo elettrico, e in particolare all'interno degli edifici, si possono misurare intensità di campo fino a 10 (anche 100) volte inferiori a quelle rilevabili all'esterno.

L'intensità maggiore del campo elettrico in elettrodotti aerei si misura generalmente al centro della campata, ossia nel punto in cui i cavi si trovano alla minore distanza dal suolo. L'andamento e il valore massimo delle intensità dei campi dipenderanno anche dalla disposizione e dalle distanze tra i conduttori della linea. Per il caso di **elettrodotti interrati**, il campo elettrico è ridotto dai rivestimenti dei cavi e soprattutto dall'interramento, tanto che già a brevissima distanza dal cavo il campo è sostanzialmente trascurabile. Si pensi infatti che date le caratteristiche dielettriche del terreno, il piano di terra costituisce un riferimento elettrico equipotenziale, a potenziale nullo. Per tale motivo, il campo elettrico non è generalmente di interesse per la valutazione di effetti biologici legati alla presenza di elettrodotti in bassa frequenza, e le normative che fissano i limiti di esposizione a bassa frequenza sono incentrate sul campo magnetico, come si vedrà di seguito al paragrafo 3.

Il campo magnetico generato dalla corrente che scorre in un elettrodotto è invece la grandezza di maggiore interesse per la valutazione di possibili effetti biologici. Infatti, si presenta come un'onda di bassa impedenza, quindi in grado di penetrare facilmente all'interno della quasi totalità dei materiali (solo quelli ferromagnetici possono ostacolarla).

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

L'interazione con i tessuti organici si esplica prevalentemente con la generazione di correnti indotte dalle variazioni del campo magnetico nel tessuto stesso. Quando tali correnti sono superiori a determinate soglie, possono indurre degli effetti acuti dannosi. Le grandezze che determinano l'intensità del campo magnetico indotto da un elettrodotto sono principalmente: 1) intensità delle sorgenti (correnti di linea); 2) distanza dalle sorgenti (conduttori); 3) disposizione e distanza tra sorgenti (distanza mutua tra i conduttori di fase); 4) presenza di sorgenti compensatrici e 5) suddivisione delle sorgenti (terne multiple). I metodi di controllo del campo magnetico si basano principalmente sulla riduzione della distanza tra le fasi, sull'installazione di circuiti addizionali (spire) nei quali circolano correnti di schermo, sull'utilizzazione di circuiti in doppia terna a fasi incrociate e sull'utilizzazione di linee interrate. Campi a bassa frequenza sono emessi anche da alcuni strumenti elettromedicali e dalle apparecchiature domestiche o industriali alimentate da energia elettrica.

Ogni apparecchiatura che produce o che viene attraversata da una corrente elettrica (dinamo, cavi elettrici, elettrodomestici, etc.) è caratterizzata da un campo elettromagnetico. Il campo elettromagnetico presente in un dato punto dello spazio è definito da due vettori: il campo elettrico e l'induzione magnetica. Il primo, misurato in V/m, dipende dall'intensità e voltaggio della corrente, mentre l'induzione magnetica, che si misura in µT, dipende dalla permeabilità magnetica del mezzo. Il rapporto tra l'induzione magnetica e la permeabilità del mezzo individua il campo magnetico. Le grandezze caratterizzanti il campo elettrico ed il campo magnetico sono in generale intercorrelate, fatta eccezione per i campi a frequenze molto basse, per le quali il campo elettrico ed il campo magnetico possono essere considerati indipendenti. In generale, le correlazioni tra campo elettrico e campo magnetico sono assai complesse, dipendono dalle caratteristiche della sorgente, dal mezzo di propagazione, dalla presenza di ostacoli nella propagazione, dalle caratteristiche del suolo e dalle frequenze in gioco. La diffusione del campo elettromagnetico nello spazio avviene nello stesso modo in tutte le direzioni; la diffusione può essere comunque alterata dalla presenza di ostacoli che, a seconda della loro natura, inducono sul campo elettromagnetico riflessioni, rifrazioni, diffusioni, assorbimento, ecc. La diffusione del campo elettromagnetico può comunque essere alterata anche dalla presenza di un altro campo elettromagnetico. Nel presente documento si esaminano le apparecchiature e le infrastrutture necessarie alla realizzazione del progetto proposto, con particolare riguardo alla generazione di campi elettromagnetici a bassa frequenza.

Tutte le componenti del progetto operano, infatti, alla frequenza di 50 Hz, coincidente con la frequenza di esercizio della rete di distribuzione elettrica nazionale.

2.2. EFFETTI BIOLOGICI E LIMITI DI ESPOSIZIONE

Si è precedentemente anticipato che gli effetti biologici indotti dall'esposizione a campi elettromagnetici sono legati a meccanismi di accoppiamento sostanzialmente diversi a seconda che i campi siano ad alta o bassa frequenza.

Ad alta frequenza (telefonia cellulare, emissioni radiotelevisive, etc.), il meccanismo di interazione di base è quello dell'orientamento dei dipoli che costituiscono un tessuto secondo le polarità del campo, che oscillano ad alta frequenza: ciò induce una dissipazione di energia che viene assorbita dal tessuto, riscaldandolo. Tale riscaldamento, oltre una certa soglia, comporta degli effetti dannosi sul tessuto stesso fino anche alla morte cellulare per esposizioni acute. La grandezza di interesse con cui caratterizzare l'esposizione ad alta frequenza è la seguente:

• Specific Absorption Rate (SAR) [W/kg]: energia per unità di tempo e di massa assorbita dal tessuto.

Numerosi studi sperimentali condotti nell'ultimo ventennio hanno permesso l'individuazione dei livelli di SAR responsabili di effetti dannosi. Sulla base di tali livelli si sono quindi definiti dei limiti di esposizione, cui fanno riferimento le normative nazionali ed internazionali. Non si approfondiranno ulteriormente tali aspetti, concentrando l'attenzione sulla bassa frequenza, che include il caso degli elettrodotti.

A bassa frequenza, l'interazione con i tessuti organici si esplica prevalentemente con la generazione di correnti indotte dalle variazioni nel tempo del campo magnetico.

Tali correnti sono la principale conseguenza dell'esposizione e la loro intensità Jè definita nel modo seguente:

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

$$J \approx \pi \frac{L}{2} \sigma f B$$

in cui L e σ sono rispettivamente la dimensione caratteristica e la conducibilità del tessuto, f e B sono la frequenza e l'intensità dell'induzione magnetica indotta dall'esposizione nel tessuto biologico.

Studi sperimentali hanno messo in evidenza l'esistenza di livelli di correnti indotte alle quali si manifestano degli effetti biologici dannosi. Questi ultimi partono dalla stimolazione nervosa, alla contrazione neuro-muscolare, fino alla fibrillazione ventricolare e la folgorazione per esposizioni acute.

Sulla base dei livelli sperimentalmente individuati si definiscono quindi dei limiti di base di esposizione e, con opportuni coefficienti di sicurezza, 10 o 50, si definiscono i livelli di riferimento per la normativa di protezione dai campi elettromagnetici.

Allo stato dell'arte l'istituzione più autorevole per la revisione degli studi di ricerca e la definizione dei limiti è costituito dalla International Commission on Non Ionizing Radiation Protection (ICNIRP), che gode del riconoscimento ufficiale dell'OMS e della IARC (International Agency for Research on Cancer).

La definizione dei limiti di base secondo la guida ICNIRP (1998) si basa solo sugli effetti biologici della cui pericolosità per la salute si abbia una accertata evidenza scientifica.

È possibile differenziare due tipi di rischi:

- il rischio da esposizione (anche istantanea) a livelli elevati, per i quali sono noti gli effetti avversi da un punto di vista medico (effetti acuti);
- il rischio da esposizione prolungata a livelli inferiori, per i quali non ancora è possibile trarre conclusioni definitive.

Per quanto riguarda effetti cancerogeni, allo stato dell'arte non c'è evidenza sperimentale della loro esistenza, anche se alcuni studi epidemiologici evidenziano una correlazione statistica tra i casi di leucemia infantile e la vicinanza agli elettrodotti che trasportano elevate correnti, e valori di induzione magnetica superiori a 0.2 µT.

La IARC ha invece deciso di classificare la esposizione ambientale a campi magnetici ELF come possibilmente cancerogena con riferimento alla leucemia infantile.

In figura 1 si riassumono i valori di induzione magnetica individuati come limiti di riferimento per le normative secondo l'ICNIRP e il CENELEC (European Committee for Electrotechnical Standardization). Si riporta anche la soglia di attenzione epidemiologica (SAE), relativa a possibili correlazioni epidemiologiche con casi di leucemia infantile.

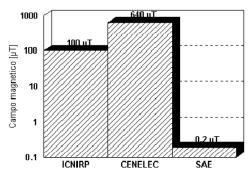


Figura 1 – Limiti di riferimento di esposizione ai campi magnetici di bassa frequenza secondo ICNIRP e CENELEC e indicazione della SAE.

Riassumendo dunque, l'ICNIRP prescrive come limite di riferimento per l'esposizione a campi elettromagnetici di bassa frequenza il valore di induzione magnetica B pari a 100 µT, mentre il CENELEC considera un valore più elevato, pari a 640 µT.

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

3. INQUADRAMENTO NORMATIVO

Numerosi paesi come ad esempio la Germania adottano come limiti di legge relativi all'esposizione ai campi elettromagnetici i livelli di riferimento individuati dalla commissione ICNIRP.

L'Italia anche in seguito a pressioni mediatiche ha provveduto a emanare norme via via più restrittive in materia di protezione dai campi elettromagnetici, anche in assenza di studi sperimentali che suggeriscano tale direzione.

Attualmente, l'esposizione ai campi elettromagnetici è regolamentata dalla legge n.36 del 22 febbraio 2001, che stabilisce il quadro normativo per gli impianti esistenti e per quelli costruendi. Tale legge quadro ha fissato i criteri e il contesto di riferimento per l'esposizione ai campi elettromagnetici ed è stata seguita nel 2003 da decreti attuativi che indicano i valori di legge da rispettare.

Dall'articolo 3 della "Legge quadro 22/02/2001, n. 36", "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", "G.U. 7 marzo 2001, n.55", si riportano le definizioni delle grandezze di interesse per la caratterizzazione dell'esposizione a campi elettromagnetici:

- a) **esposizione**: è la condizione di una persona soggetta a campi elettrici, magnetici, elettromagnetici, o a correnti di contatto, di origine artificiale;
- b) **limite di esposizione**: è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, definito ai fini della tutela della salute da effetti acuti, che non deve essere superato in alcuna condizione di esposizione della popolazione e dei lavoratori per le finalità di cui all'articolo 1, comma 1, lettera a);
- c) valore di attenzione: è il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore di immissione, che non deve essere, superato negli ambienti abitativi, scolastici e nei luoghi adibiti a permanenze prolungate per le finalità di cui all'articolo 1, comma 1, lettere b) e c). Esso costituisce misura di cautela ai fini della protezione da possibili effetti a lungo termine e deve essere raggiunto nei tempi e nei modi previsti dalla legge;
- d) obiettivi di qualità sono:
- 1) i criteri localizzativi, gli standard urbanistici, le prescrizioni e le incentivazioni per l'utilizzo delle migliori tecnologie disponibili, indicati dalle leggi regionali secondo le competenze definite dall'articolo 8;
- 2) i valori di campo elettrico, magnetico ed elettromagnetico, definiti dallo Stato secondo le previsioni di cui all'articolo 4, comma 1, lettera a), ai fini della progressiva miticizzazione dell'esposizione ai campi medesimi;
- e) elettrodotto: è l'insieme delle linee elettriche, delle sottostazioni e delle cabine di trasformazione;
- f) **esposizione dei lavoratori e delle lavoratrici**: è ogni tipo di esposizione dei lavoratori e delle lavoratrici che, per la loro specifica attività lavorativa, sono esposti a campi elettrici, magnetici ed elettromagnetici;
- g) esposizione della popolazione: è ogni tipo di esposizione ai campi elettrici, magnetici ed elettromagnetici. ad eccezione dell'esposizione di cui alla lettera f) e di quella intenzionale per scopi diagnostici o terapeutici;(...)

Successivamente due decreti del Presidente del Consiglio 8 luglio 2003 hanno fissato i limiti di esposizione, i valori di attenzione e gli obiettivi di qualità per la protezione della popolazione. I due decreti disciplinano separatamente le basse (elettrodotti) e le alte frequenze (impianti radiotelevisivi, stazioni radio base, ponti radio).

Obiettivi di qualità

Nella progettazione di nuovi elettrodotti in corrispondenza di aree gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione dei nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio, ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, è fissato l'obiettivo di qualità di 3 μT per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Riassumendo dunque i limiti di legge in vigore in Italia relativi all'esposizione a campi elettromagnetici alla frequenza di 50 Hz sono quelli riportati in tabella 1.

Frequenza 50 Hz	Intensità di campo elettrico E (kV/m)	Induzione Magnetica B (µT)
Limite di esposizione * (da non superare mai)	5	100
Valore di attenzione ** (da non superare in ambienti abitativi glà esistenti e comunque nei luoghi adibiti a permanenze non inferiori a 4 ore)	-	10
Obiettivo di qualità ** (da non superare per i nuovi elettrodotti o le nuove abitazioni in prossimità di elettrodotti esistenti)	-	3

Tabella 1 – Limiti della normativa italiana sull'esposizione a campi elettromagnetici a 50 Hz, indicati nel DPCM dell'8 Luglio 2003

A titolo esemplificativo si riportano in tabella 2 i livelli di induzione magnetica generati da comuni elettrodomestici alimentati dalla rete elettrica a 50 Hz.

Si noti che in prossimità degli stessi si raggiungono valori ben superiori ai limiti di legge, anche se l'uso di tali strumenti non comporta tipicamente esposizione di tipo prolungato.

Fonte	Induzione m	agnetica μΤ
	vicino	30 cm
Apriscatole	2000	16
Asciugacapelli	2500	7
Aspirapolvere	800	20
Coperta elettrica	30	-
Ferro da stiro	30	0.4
Forno elettrico	1000	20
Frullatore	700	10
HiFi	5	5
Lampada 325 W	2500	-
Lampada alogena	12	12
Lampada a incandescenza	400	4
Caffettiera elettrica	2.5	0.15
Monitor computer	0.25	0.25
Radiosveglia	5	5
Rasoio elettrico	1500	9
Saldatore	800	20
Sega elettrica	1000	25
Trapano	800	16
TV color	500	4
Ventilatore	130	40

Tabella 2 – Induzione magnetica B generata da comuni elettrodomestici a 50 Hz

4. CAMPI ELETTROMAGNETICI GENERATI DALLE COMPONENTI DELL'IMPIANTO EOLICO

4.1. IDENTIFICAZIONE DELLE COMPONENTI

Il progetto proposto prevede la realizzazione di un impianto per la produzione di energia elettrica tramite lo sfruttamento del vento; l'impianto è costituito dai seguenti elementi principali che, avendo parti in tensione, possono dar luogo all'emissione di onde elettromagnetiche:

- Cavidotti M.T. di utenza (30 kV);
- Sistema di accumulo di energia elettrica a batterie (B.E.S.S.);

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

- Stazione elettrica di utenza 150/30 kV;
- Cavidotto A.T.;
- Nuovo stallo linea A.T. 150 kV all'interno della C.P. Amendolara.

Gli impianti eolici, essendo costituiti fondamentalmente da elementi per la produzione ed il trasporto di energia elettrica, sono interessati dalla presenza di campi elettromagnetici.

4.1.1. CAVIDOTTI M.T. DI UTENZA (30 kV)

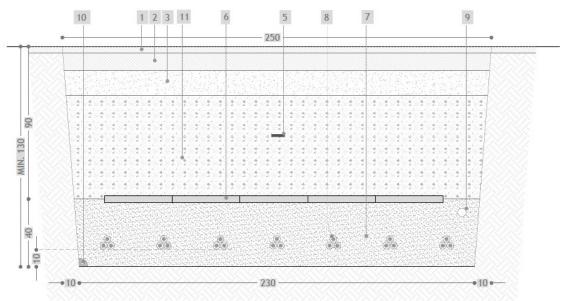
Per la realizzazione dei cavidotti M.T. di utenza sono stati considerati tutti gli accorgimenti che consentono la minimizzazione degli effetti elettromagnetici sull'ambiente e sulle persone. In particolare, la scelta di operare con linee in M.T. interrate permette di eliminare la componente elettrica del campo, grazie all'effetto schermante del terreno. Le linee M.T. a 30 kV, come da previsioni progettuali, sono tutte interrate, conformi alle Norme CEI 23-46 (CEI EN 50086-2-4).

Determinazione della portata in regime permanente

Il cavidotto in media tensione è costituito da terne di cavi unipolari con conduttori in alluminio aventi isolamento estruso (XLPE) con schermo in rame avvolto a nastro sulle singole fasi. Le sezioni unificate utilizzate sono da 120, 300 e 630.

Ai fini della verifica sono stati utilizzati cavi aventi le seguenti caratteristiche:

Sezione conduttore [mm²]	Diametro conduttore [mm]	Diametro est. cavo [mm]	Tipologia	Portata [A]
3x1x300	21,0	41,5	Unipolare	410
3x1x630	30,0	58,6	Unipolare	644


Tabella 3: Caratteristiche elettriche cavi

Simulazione di calcolo della linea MT:

Sebbene il D.M. 29 maggio 2008 non preveda il calcolo della distanza di prima approssimazione per linee interrate in M.T., si procederà ugualmente alla sua determinazione a favore di una maggiore sicurezza.

Ai fini della simulazione sono state fatte le seguenti considerazioni:

Il tratto considerato è quello più gravoso, costituito da terne così come disposte nella figura seguente. Tutti gli altri tratti,
 costituiti da un numero di terne inferiori, avranno sicuramente una DPA più piccola.

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

	LEGENDA DETTAGLI COSTRUTTIVI				
1	Tappetino di usura in conglomerato bituminoso sp. 4 cm				
2	Binder in conglomerato bituminoso, sp. 10 cm				
3	Misto cementato , sp. 15 cm				
4	Riempimento in misto granulare vagliato				
5	Nastro segnalatore in PVC				
6	Piastra di protezione in PVC				
7	Sabbia vagliata granulometria EN 13242: fine 0/4				
Cavi elettrici tipo Airbag					
9	Cavidotto Ø50 per fibra ottica in polietilene ad alta densità (PEAD)				
10	Conduttore di terra				
11)	Terreno proveniente dagli scavi opportunamente vagliato				
12	Cavidotto Ø200 in polietilene ad alta densità (PEAD) Fori realizzati con "Trivellazione orizzontale controllata"				
13	Corso d'acqua esistente				

Figura 2: Sezione tipo cavidotto MT composta da sette terne da 630 mm²

I valori del campo magnetico sono stati simulati al suolo, a 0,5 m dal suolo, a 1,0 m dal suolo e a 1,5 m dal suolo. Più precisamente, i risultati di seguito riportati illustrano l'andamento del campo magnetico in funzione della distanza dall'asse dei conduttori e l'andamento del campo magnetico su di un asse ortogonale all'asse dei conduttori.

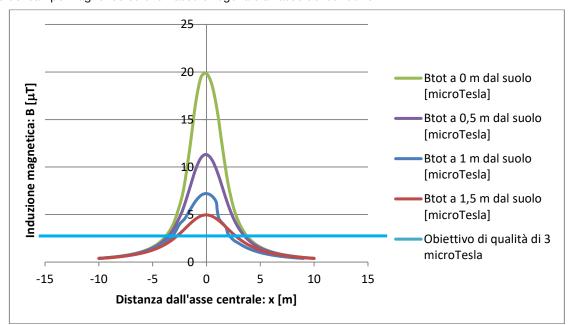



Figura 3: Andamento del campo magnetico generato dal cavidotto, composto da sette terne da 630 mm²

Distanza dall'asse centrale [m]	B _{tot} a 0 m dal suolo [μΤ]	B _{tot} a 0,5 m dal suolo [μΤ]	B _{tot} a 1 m dal suolo [μΤ]	B _{tot} a 1,5 m dal suolo [μΤ]
-10,00	0,40	0,39	0,39	0,38
-9,50	0,44	0,44	0,43	0,41
-9,00	0,49	0,48	0,47	0,46
-8,50	0,55	0,54	0,53	0,51

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Distanza dall'asse centrale [m]	B _{tot} a 0 m dal suolo [μΤ]	B _{tot} a 0,5 m dal suolo [μΤ]	B _{tot} a 1 m dal suolo [μΤ]	B _{tot} a 1,5 m dal suolo [μΤ]
-8,00	0,62	0,61	0,59	0,57
-7,50	0,71	0,69	0,67	0,64
-7,00	0,81	0,79	0,76	0,72
-6,50	0,94	0,91	0,87	0,82
-6,00	1,10	1,06	1,00	0,94
-5,50	1,31	1,25	1,17	1,09
-5,00	1,58	1,49	1,38	1,27
-4,50	1,94	1,80	1,65	1,49
-4,00	2,45	2,23	1,99	1,76
-3,50	3,16	2,80	2,43	2,09
-3,00	4,23	3,59	3,00	2,50
-2,34	6,60	5,12	3,99	3,15
-2,00	8,50	6,18	4,60	3,52
-1,50	12,40	7,99	5,55	4,06
-1,00	16,79	9,78	6,43	4,54
-0,50	19,48	10,99	7,03	4,86
0,00	19,84	11,31	7,21	4,97
0,50	18,67	10,77	6,95	4,83
1,00	15,92	9,50	6,32	4,49
1,50	11,91	7,78	5,45	4,01
2,00	8,28	6,04	4,52	3,47
2,50	5,79	4,62	3,68	2,95
3,00	4,19	3,55	2,97	2,48
3,59	3,00	2,67	2,33	2,02
4,00	2,43	2,21	1,98	1,75
4,50	1,94	1,80	1,64	1,48
5,00	1,58	1,48	1,38	1,26
5,50	1,31	1,24	1,17	1,08
6,00	1,10	1,06	1,00	0,94
6,50	0,94	0,91	0,87	0,82
7,00	0,81	0,79	0,76	0,72
7,50	0,71	0,69	0,67	0,64
8,00	0,62	0,61	0,59	0,57
8,50	0,55	0,54	0,53	0,51
9,00	0,49	0,48	0,47	0,46
9,50	0,44	0,44	0,43	0,41
10,00	0,40	0,39	0,39	0,38

Andamento del campo magnetico generato composto da sette terne da 630 mm²

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Determinazione della DPA e della fascia di rispetto:

La DPA calcolata è rappresentata dalla distanza tra l'asse del cavidotto e un punto individuato al suolo il cui valore del campo magnetico risulta essere uguale o inferiore ai $3 \mu T$.

Come si evince dal grafico e dalla tabella di cui sopra, <u>la DPA risulta pari a 3,59 m e approssimandola al metro superiore risulta</u> pari a 4,00 m.

Tenuto conto che la fascia di rispetto da tenere in considerazione per la valutazione della presenza di recettori sensibili è di 4,00 m, centrata sull'asse del cavidotto, vista l'allocazione dello stesso sulla sede stradale, si può affermare che l'impatto elettromagnetico su persone prodotto dai cavidotti M.T. di utenza è trascurabile.

4.1.2. COMPATIBILITÀ ELETTROMAGNETICA DEL SISTEMA DI ACCUMULO DI ENERGIA A BATTERIE (NEL SEGUITO DEFINITO COME B.E.S.S. – BATTERY ENERGY STORAGE SYSTEM)

Il sistema B.E.S.S. è un impianto di accumulo elettrochimico di energia la cui funzione è di immagazzinare e rilasciare energia elettrica alternando fasi di carica e fasi di scarica. L'impianto è costituito da sottosistemi, apparecchiature e dispositivi necessari all'immagazzinamento dell'energia ed alla conversione bidirezionale della stessa energia elettrica in media tensione. La tecnologia di accumulatori (batterie a litio) è composta da celle elettrochimiche. Le singole celle sono tra loro elettricamente collegate in serie ed in parallelo per formare moduli di batterie. I moduli, a loro volta, vengono elettricamente collegati tra loro ed assemblati in appositi armadi in modo tale da conseguire i valori richiesti di potenza, tensione e corrente. Ogni armadio è gestito, controllato e monitorato, in termini di parametri elettrici e termici, dal proprio sistema BMS (Battery Management System – Sistema di controllo batterie). È costituito in definitiva da componenti elettrici (batterie, sistemi di conversione, quadri, cavi, trasformatori, ecc.), pertanto elementi statici e componentistica elettronica di regolazione collocati all'interno di container.

Le leggi italiane, nazionali e regionali, prevedono che in sede di progettazione di impianti per la produzione e distribuzione di energia elettrica, si debbano applicare criteri specifici per tutelare la popolazione e i lavoratori dai possibili campi elettrici e di induzione magnetica dispersi, individuando i livelli di riferimento per il conseguimento di questo obiettivo. La legislazione e le norme tecniche forniscono gli strumenti per l'analisi e la determinazione dei livelli attesi.

Di seguito si elencano le principali fonti normative e tecniche di riferimento:

- D.lgs. 09.04.2008 n.81 Testo unico sulla sicurezza sul lavoro
- D.lgs. 19.11.2007 n.257 Attuazione della direttiva 2004/40/CE sulle prescrizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici (campi elettromagnetici), GU SG n.9, 11.01.2008.
- DPCM 08.07.2003- Fissazione, dei valori di attenuazione e degli obiettivi di qualità per la protezione della popolazione delle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50Hz) generati dagli elettrodotti – GU SG n. 200, 29.08.2003.
- CEI 211-6 (2001) Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz –
 10 Hz, con riferimento all'esposizione umana.
- CEI EN 61936-1 Impianti elettrici con tensione superiore a 1kV in c.a.
- CEI EN 61000-6-2 Compatibilità elettromagnetica (EMC) Parte 6-2: Norme generiche Immunità per gli ambienti industriali.
- CEI EN 61000-6-4 + A1 Compatibilità elettromagnetica (EMC) Parte 6-4: Norme generiche Emissione per gli ambienti industriali.
- ICNIRP GUIDELINES 1998 Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic field (up to 300 GHz).

Accorgimenti per la compatibilità elettromagnetica:

I moduli di conversione realizzeranno la trasformazione da alimentazione DC, lato batterie, ad AC lato rete in modo bi-direzionale. Ogni modulo di conversione risponderà ai requisiti della normativa vigente (IEC 61000) per quanto riguarda l'emissione elettromagnetica.

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Ogni modulo sarà equipaggiato con un set di opportuni filtri:

- Filtri RFI prevedranno inoltre opportuni filtri antidisturbo.
- Filtri LC sinusoidali opportunamente dimensionati, saranno realizzati ed accordati per ottenere forme d'onda di corrente e tensione in uscita, ad ogni livello di carico.

Di seguito si elencano le principali fonti normative e tecniche di riferimento:

- Normativa IEC 62103-IEEE 1031-2000
- EMC: CISPR 11-level A
- Conformità a IEC/EN 61800-3.

Tali filtri saranno in grado di evitare la trasmissione di disturbi a frequenza elevate attraverso i conduttori di potenza.

L'emissione irradiata invece sarà evitata grazie all'installazione in container metallico. La messa a terra dei containers, la gestione del sistema DC isolato da terra, la presenza del trasformatore B.T./M.T. che assicurerà un isolamento galvanico della sezione di conversione rispetto al punto di connessione M.T., consentiranno di evitare i disturbi anche attraverso modalità di accoppiamento di modo comune.

I cavi tripolari M.T. saranno schermati e collegati a terra su entrambi gli estremi del cavo, mentre i cavi unipolari M.T. saranno schermati e collegati a terra su un solo estremo del cavo. I cavi tripolari B.T. saranno schermati e collegati a terra su entrambi gli estremi del cavo. Gli accorgimenti su menzionati garantiscono il rispetto dei limiti di riferimento per i campi elettromagnetici.

È possibile concludere, quindi, che nelle immediate vicinanze del sistema B.E.S.S. l'esposizione dovuta all'induzione di campi elettromagnetici sia da considerarsi trascurabile.

4.1.3. STAZIONE ELETTRICA DI UTENZA

La **Stazione Elettrica di Utenza** avrà una superficie di circa 1.460 m². È prevista altresì la realizzazione di uno stallo di trasformazione. Il trasformatore 150/30 kV avrà potenza nominale di 70 MVA, raffreddamento in olio ONAN/ONAF, con vasca di raccolta sottostante, in caso di perdite accidentali.

Oltre al trasformatore M.T./A.T. saranno installate apparecchiature A.T. per protezione, sezionamento e misura.

L'area della sottostazione sarà delimitata da una recinzione con elementi prefabbricati "a pettine", che saranno installati su apposito cordolo in calcestruzzo (interrato). La finitura del piazzale interno sarà in asfalto. In corrispondenza delle apparecchiature A.T. sarà realizzata una finitura in ghiaietto.

Per quanto concerne la determinazione della fascia di rispetto, la S.E. di utenza è del tutto assimilabile ad una Cabina Primaria, per la quale la fascia di rispetto rientra, come verificheremo nel paragrafo successivo per il caso in esame, nei confini dell'area di pertinenza dell'impianto (area recintata). Ciò in conformità a quanto riportato al paragrafo 5.2.2 dell'Allegato al Decreto 29 maggio 2008 che afferma che: per questa tipologia di impianti la DPA e, quindi, la fascia di rispetto rientrano generalmente nei confini dell'aerea di pertinenza dell'impianto stesso.

L'impatto elettromagnetico nella S.E. di utenza è essenzialmente prodotto:

- all'utilizzo dei trasformatori B.T./M.T.;
- alla realizzazione delle linee/sbarre aeree di connessione tra il trafo e le apparecchiature elettromeccaniche.

L'impatto generato dalle sbarre A.T. è di gran lunga quello più significativo e pertanto si propone il calcolo della fascia di rispetto dalle sbarre A.T.

Determinazione della fascia di rispetto

Le sbarre A.T. sono assimilabili ad una linea aerea trifase 150 kV, con conduttori posti in piano ad una distanza reciproca di 2,2 m, ad un'altezza di circa 4,5 m dal suolo, percorsi da correnti simmetriche ed equilibrate.

Nel caso in esame abbiamo:

RELAZIONE SULL'ELETTROMAGNETISMO (D.P.C.M. 08/07/03 E D.M. 29/05/08)

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

- S (distanza tra i conduttori) = 2,2 m
- $\cos \varphi = 0.94$
- Pn = Potenza massima dell'impianto (64,80 MW)
- Vn = Tensione nominale delle sbarre A.T. (150 kV)

Pertanto, si avrà:

$$I = \frac{Pn}{(Vn \times 1,73 \times cos\phi)} = 265,65 A$$

ed utilizzando la formula di approssimazione proposta al paragrafo 6.2.1 della norma CEI 106-11, si avrà:

$$R = 0.34 \times \sqrt{(2.2 \times 265.65)} = 8.22 \text{ m}$$

Valore che rientra all'interno delle aree di pertinenza della S.E. di utenza.

In conclusione:

- in conformità a quanto previsto dal Decreto 29 maggio 2008 la Distanza di Prima Approssimazione (Dpa) e, quindi, la fascia di rispetto rientra nei confini dell'aerea di pertinenza della Stazione elettrica di utenza;
- la Stazione elettrica di utenza è comunque realizzata in un'area agricola, con totale assenza di edifici abitati per un raggio di almeno 250 m;
- all'interno dell'area della Stazione elettrica di utenza non è prevista la permanenza di persone per periodi continuativi superiori
 a 4 ore con l'impianto in tensione.

Pertanto, si può quindi affermare che l'impatto elettromagnetico su persone prodotto dalla Stazione Elettrica di Utenza è trascurabile.

4.1.4. IMPIANTO DI UTENZA PER LA CONNESSIONE (CAVIDOTTO A.T.)

Il cavidotto A.T. sarà costituito da una terna composta da tre cavi unipolari realizzati con conduttore in alluminio o rame, isolante in XLPE, schermatura in alluminio e guaina esterna in polietilene.

Dal punto di vista elettromagnetico le caratteristiche del campo B generato dal cavidotto A.T. e il suo decadimento con la distanza sono analoghi a quanto già descritto per i cavidotti 30kV interni al parco; occorre tuttavia precisare che linee A.T. presentano una maggiore distanza tra i conduttori, ciò che determina un decadimento del campo magnetico con la distanza inferiore a quanto visto per i cavidotti a 30 kV, a parità di corrente. Ciò è vero per terne interrate (distanza tipica tra conduttori di 9-20 cm), ma soprattutto per linee aeree, ove la distanza tra conduttori può anche essere dell'ordine dei m.

D'altra parte però un eventuale tratto A.T., data l'elevazione della tensione, sarà percorso da una corrente notevolmente inferiore ad un corrispondente cavidotto a 30 kV, con conseguente diminuzione del campo magnetico generato. Ciò è vero nell'ipotesi che il cavidotto A.T. sia percorso dalla sola corrente dell'impianto considerato.

Determinazione della portata in regime permanente

I valori del campo magnetico sono stati simulati al suolo, a 0,5 m dal suolo, a 1,0 m dal suolo e a 1,5 m dal suolo. Più precisamente, i risultati di seguito riportati illustrano l'andamento del campo magnetico in funzione della distanza dall'asse dei conduttori e l'andamento del campo magnetico su di un asse ortogonale all'asse dei conduttori.

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

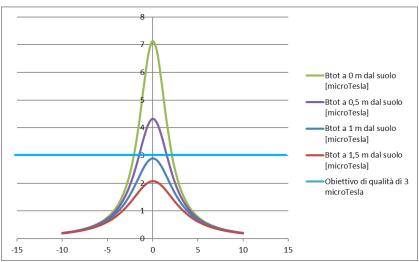


Figura 3: Andamento del campo magnetico generato dal cavidotto

Distanza dall'asse centrale [m]	B _{tot} a 0 m dal suolo [μΤ]	B _{tot} a 0,5 m dal suolo [μΤ]	B _{tot} a 1 m dal suolo [μΤ]	B _{tot} a 1,5 m dal suolo [μΤ]
-10,00	0,21	0,20	0,20	0,19
-9,50	0,23	0,23	0,22	0,21
-9,00	0,26	0,25	0,24	0,24
-8,50	0,29	0,28	0,27	0,26
-8,00	0,32	0,31	0,30	0,29
-7,50	0,36	0,35	0,34	0,32
-7,00	0,41	0,40	0,38	0,36
-6,50	0,48	0,46	0,43	0,41
-6,00	0,55	0,53	0,50	0,46
-5,50	0,65	0,61	0,57	0,53
-5,00	0,77	0,72	0,67	0,61
-4,50	0,93	0,86	0,78	0,70
-4,00	1,14	1,03	0,92	0,82
-3,50	1,43	1,26	1,10	0,95
-3,00	1,82	1,56	1,32	1,11
-2,50	2,37	1,94	1,58	1,30
-2,00	3,15	2,43	1,89	1,50
-1,50	4,19	3,01	2,23	1,70
-1,00	5,45	3,62	2,55	1,89
-0,50	6,60	4,12	2,80	2,02
0,00	7,12	4,33	2,90	2,07
0,50	6,71	4,16	2,82	2,03
1,00	5,60	3,69	2,59	1,91
1,50	4,33	3,08	2,27	1,73
2,14	3,00	2,34	1,84	1,47
2,50	2,45	1,99	1,62	1,32

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

Distanza dall'asse centrale [m]	B _{tot} a 0 m dal suolo [μΤ]	B _{tot} a 0,5 m dal suolo [μΤ]	B _{tot} a 1 m dal suolo [μΤ]	B _{tot} a 1,5 m dal suolo [μΤ]
3,00	1,88	1,60	1,35	1,13
3,50	1,47	1,29	1,12	0,97
4,00	1,17	1,06	0,94	0,83
4,50	0,95	0,88	0,80	0,72
5,00	0,79	0,73	0,68	0,62
5,50	0,66	0,62	0,58	0,54
6,00	0,56	0,54	0,50	0,47
6,50	0,48	0,46	0,44	0,41
7,00	0,42	0,40	0,39	0,37
7,50	0,37	0,36	0,34	0,33
8,00	0,33	0,32	0,30	0,29
8,50	0,29	0,28	0,27	0,26
9,00	0,26	0,25	0,25	0,24
9,50	0,23	0,23	0,22	0,22
10,00	0,21	0,21	0,20	0,20

Tabella 4: Andamento del campo magnetico generato

Determinazione della DPA e della fascia di rispetto:

La DPA calcolata è rappresentata dalla distanza tra l'asse del cavidotto e un punto individuato al suolo il cui valore del campo magnetico risulta essere uguale o inferiore ai 3 µT.

Come si evince dal grafico e dalla tabella di cui sopra, <u>la DPA risulta pari a 2,14 m e approssimandola al metro superiore risulta</u> pari a 3,00 m.

Tenuto conto che la fascia di rispetto da tenere in considerazione per la valutazione della presenza di recettori sensibili è di 3,00 m, si può affermare che l'impatto elettromagnetico su persone prodotto dai cavidotti A.T. è trascurabile.

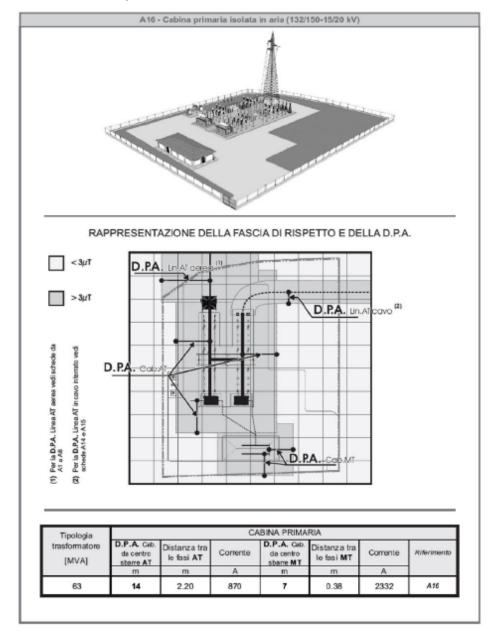
4.1.5. NUOVO STALLO LINEA AT 150 KV ALL'INTERNO DELLA C.P. AMENDOLARA

La sezione AT sarà realizzata con apparecchiature del tipo prefabbricate con involucro metallico, tensione nominale 150 kV, con frequenza di 50 Hz; in tale tipo di realizzazioni i conduttori di potenza sono concentrici ad un involucro metallico avente anche la funzione di schermo sia per il campo elettrico che per il campo magnetico. All'esterno dell'involucro, pertanto, risulta presente solo una piccola percentuale del campo magnetico dovuto alla corrente nel conduttore ed è praticamente non apprezzabile il campo elettrico.

L'impatto elettromagnetico nella Cabina Primaria è essenzialmente dovuto:

- all'utilizzo dei trasformatori trifase AT/MT;
- alla realizzazione delle linee/sbarre aeree di connessione tra il trafo e le apparecchiature elettromeccaniche.

L'impatto generato dalle sbarre AT è di gran lunga quello più significativo e, pertanto, si propone il calcolo della fascia di rispetto dalle sbarre AT. Nel caso di che trattasi, nel rispetto dell'obiettivo di qualità, la DPA dichiarata così come previsto dalle Istruzione Operativa di E_distribuzione n. 1462 Versione n. 02 del 05/12/2019 avente ad oggetto "Campi magnetici da correnti a 50 Hz – Fasce di rispetto e Distanza di Prima Approssimazione (DPA) da linee e cabine elettriche", ed in particolare dalla scheda A16 è interna alla cabina se sono rispettate le seguenti distanze dal perimetro esterno, non interessato dalle fasce di rispetto delle linee in


Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

ingresso/uscita:

- 14 m dall' asse delle sbarre di AT in aria;
- 7 m dall' asse delle sbarre di MT;

Come si evince dal grafico e dalla tabella di cui sopra, la DPA risulta pari a 14 m.

Tenuto conto che la fascia di rispetto da tenere in considerazione per la valutazione della presenza di recettori sensibili è di 28 m, si può affermare che l'impatto elettromagnetico su persone prodotto dal nuovo stallo A.T. è trascurabile.

Impianto per la produzione di energia elettrica da fonte eolica denominato "Rocca Imperiale", costituito da 9 (nove) aerogeneratori per una potenza nominale totale di 64,80 MW integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale e Montegiordano con relative opere connesse ed infrastrutture indispensabili nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara

Codifica Elaborato: 234315_D_R_0304 Rev. 00

5. CONCLUSIONI

Dallo studio del campo elettromagnetico prodotto dalle opere dell'impianto di produzione di energia rinnovabile da fonte eolica denominato "Rocca Imperiale" costituito da n. 9 aerogeneratori, per una potenza massima complessiva di 64,80 MW, integrato con un sistema di accumulo di 20,00 MW, da realizzarsi nei comuni di Rocca Imperiale (CS) e Montegiordano (CS), e dalle relative opere connesse ed infrastrutture indispensabili, da realizzarsi nei comuni di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara in provincia di Cosenza, da collegare alla Rete di A.T. di E-Distribuzione (C.P. "Amendolara") con uno stallo a 150 kV, ubicato all'interno del comune di Amendolara, è emerso che:

- l'obiettivo di qualità di 3 μT del campo di induzione magnetica è soddisfatto a 4,00 m di distanza dall'asse del cavidotto M.T.
 di utenza;
- per il sistema B.E.S.S., ogni modulo di conversione DC/AC risponderà ai requisiti della normativa vigente IEC 61000 per l'emissione elettromagnetica. Ogni modulo sarà equipaggiato da un set di opportuni filtri che saranno in grado di evitare la trasmissione di disturbi a frequenza elevate attraverso i conduttori di potenza. L'emissione irradiata sarà evitata grazie all'installazione in container metallico;
- l'impatto elettromagnetico su persone prodotto dalla Stazione Elettrica di Utenza è trascurabile;
- l'impatto elettromagnetico su persone prodotto dai cavidotti A.T. è trascurabile, tenuto conto che la fascia di rispetto da tenere in considerazione per la valutazione della presenza di recettori sensibili è di 3,00 m e la DPA è 3,00 m;
- l'impatto elettromagnetico su persone prodotto dal nuovo stallo A.T. è trascurabile tenuto conto che la fascia di rispetto da tenere in considerazione per la valutazione della presenza di recettori sensibili è di 28,00 m e la DPA è 14,00 m.

Pertanto, le opere elettriche relative all'impianto di produzione di energia rinnovabile da fonte eolica da realizzarsi nei territori comunali di Rocca Imperiale, Montegiordano, Canna, Oriolo, Roseto Capo Spulico e Amendolara in provincia di Cosenza sono conformi a tutti i parametri normativi di impatto elettromagnetico.

