

Direzione Tecnica

SS.4 - Variante dell'abitato di Monterotondo Scalo - 2°Stralcio

PROGETTO DEFINITIVO

COD. RM190

ATI SINTAGMA - GDG - ICARIA PROGETTAZIONE:

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Nando Granieri

Ordine degli Ingegneri della Prov. di Perugia n° A351

IL PROGETTISTA:

Elena Bartolocci

Ordine degli Ingegneri della Prov. di Perugia n°A3217

IL GEOLOGO:

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n°108

II R.U.P.

Dott. Ing.

Paolo Nardocci

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Prov. di Perugia n° A1373

PROTOCOLLO

DATA

IL GRUPPO DI PROGETTAZIONE:

MANDATARIA:

MANDANTI:

Dott. Ing.

Dott. Ing. Dott. Ing. Dott. Ing.

Dott. Ing.

Sezione A

1 Sintagm

N.Granieri N.Kamenicky V.Truffini Dott.Ing. Dott.Arch. Dott.Ing. Dott.Arch. Dott.Ing. A.Bracchini F.Durastanti Dott.Ing. Dott.Geol. E.Bartolocci G.Cerquiglini S Scopetta

Geom Dott.Ing. L.Sbrenna M.Briganti Botta E.Sellari Dott.Ing. L.Dinelli L.Nani F.Pambianco Dott.Ing Dott.Ing. Dott. Agr.

F.Berti Nulli

GEOTECHNICAL OF THE PROPERTY O S.Sacconi F.Aloe V.De Gori C.Consorti M.Manzo

Dott. Ing. Dott. Ing. Geom. Dott. Ing. Dott. Ing.

V.Rotisciani F.Macchioni C.Vischini V.Piunno G.Pulli C.Sugaroni

società di ingegneria

TTORE INGEGNERE SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE SETTORE CIVILE E AMBIENTALE SETTORE DELI/INFORMAZIONE

AMBIENTE STUDIO DI IMPATTO AMBIENTALE Relazione Piano delle Indagini

CODICE PROGETTO		NOME FILE TOO-IA01-AMB-RE07-A	REVISIONE	SCALA:		
DPRM0		CODICE TOOITAO1	Α	-		
Α	Emissione Riscontro Richiesta Ir	ntegrazioni MASE 2109.19-02-24	FEB 2024	S.Bracchini	A. Bracchini	N.Granieri
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1	PREMESSA	. 3
2	NDAGINI 2020	. 4
2.1	INDAGINI GEOGNOSTICHE	. 4
2.2	LABORATORIO	. 4
2.3	INDAGINI GEOFISICHE	. 7
	2.3.1 Risultanze dell'indagine sismica a rifrazione tomografica	7
	2.3.2 Risultanze dell'indagine down-hole	8
	2.3.3 Risultanze delle indagini MASW	13
2.4	INDAGINI AMBIENTALI	17
3	NDAGINI 2022	19
3.1	INDAGINI GEOGNOSTICHE	19
3.2	LABORATORIO	19
3.3	INDAGINI GEOFISICHE	24
3.3	INDAGINI GEOFISICHE 3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica	
3.3		24
3.3	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica	24 32
	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica3.3.2 Risultanze dell'indagine down-hole	24 32 39
4	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica3.3.2 Risultanze dell'indagine down-hole3.3.3 Risultanze delle indagini MASW	24 32 39 47
4	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica 3.3.2 Risultanze dell'indagine down-hole	24 32 39 47
4 4.1	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica 3.3.2 Risultanze dell'indagine down-hole	24 32 39 47 47
4 4.1 4.2	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica 3.3.2 Risultanze dell'indagine down-hole 3.3.3 Risultanze delle indagini MASW PIANO INDAGINI COMPONENTE SUOLO OBIETTIVI GENERALI DEL MONITORAGGIO LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	24 32 39 47 47 48
4 4.1 4.2	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica 3.3.2 Risultanze dell'indagine down-hole. 3.3.3 Risultanze delle indagini MASW	24 32 39 47 47 48 48
4 4.1 4.2	3.3.1 Risultanze delle indagini sismiche a rifrazione tomografica 3.3.2 Risultanze dell'indagine down-hole	24 32 39 47 47 48 48

MANDANTE

5		PIANO INDAGINI COMPONENTE ACQUE SUPERFICIALI	. 50
	5.1	OBIETTIVI DEL MONITORAGGIO	50
	5.2	LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	50
	5.3	METODOLOGIA E STRUMENTAZIONE	51
		5.3.1 Tipologia di monitoraggio	51
		5.3.2 Parametri da monitorare	51
		5.3.3 Metodiche di monitoraggio	53
		5.3.4 Tempi di frequenza del monitoraggio	54
6	ı	PIANO INDAGINI COMPONENTE ACQUE SOTTERRANEE	. 56
	6.1	OBIETTIVI DEL MONITORAGGIO	56
	6.2	LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	56
	6.3	METODOLOGIA E STRUMENTAZIONE	57
		6.3.1 Tipologia di monitoraggio	57
		6.3.2 Parametri oggetto di monitoraggio	57
		6.3.3 Metodiche di monitoraggio	61

1 PREMESSA

Nel 2020 sono state eseguite indagini geologiche, tecniche, sismiche e sondaggi relativi all'intervento "Variante all'abitato di Monterotondo Scalo – 2° Stralcio", utilizzate come base del progetto del PD.

A seguito di un aggiornamento sostanziale del progetto, nel 2022 è stata effettuata una nuova campagna di indagini geognostiche e ambientali nel corso della quale sono stati prelevati campioni rimaneggiati ed indisturbati da sottoporre a prove di laboratorio. I risultati di tale campagna non sono mai stati recepiti nel progetto.

I dati mancanti sono integrati dai risultati delle nuove indagini descritte nel presente documento che costituisce il piano delle indagini che si intende attuare nella successiva fase di progettazione per la caratterizzazione del suolo e delle acque superficiali e sotterranee.

2 INDAGINI 2020

2.1 INDAGINI GEOGNOSTICHE

Nell'ambito del progetto "Variante all'abitato di Monterotondo Scalo -2° stralcio" è stata effettuata una campagna di indagini geognostiche finalizzata alla determinazione delle caratteristiche geotecniche e alla definizione stratigrafica in chiave geolitologica.

La campagna di indagine geognostica è stata così articolata:

- n. 5 sondaggi geognostici verticali a carotaggio continuo finalizzati alla definizione della sequenza stratigrafica, dei quali n. 2 condizionati con tubo in PVC per esecuzione di prove Down-Hole e n. 3 condizionati con piezometro a tubo aperto 3";
- n. 20 prove penetrometriche SPT;
- n. 3 prove di permeabilità Lefranc;
- n. 4 prove pressiometriche Menrad;
- n. 19 prelievi di campioni, di cui n. 10 indisturbati e n.9 rimaneggiati, da sottoporre a prove di laboratorio geotecnico;
- n. 7 pozzetti esplorativi geognostici spinti alla profondità max di 2.1 m dal p.c.;
- n. 7 prelievi di campioni rimaneggiati prelevati dai pozzetti esplorativi, da sottoporre a prove di laboratorio geotecnico;
- n. 6 prove penetrometriche statiche C.P.T.U. per la caratterizzazione dei terreni del sottosuolo; la prova CPTO2 non è stata eseguita per assenza di permessi di ingresso all'area, mentre la CPTUO1bis è stata ripetuta 2 volte a causa della presenza di un orizzonte altamente resistente che, però, non è stato superato;
- n. 7 prove di carico su piastra in corrispondenza dei pozzetti esplorativi;
- georeferenziazione dei punti di indagine.

Sono state realizzate inoltre:

- n. 1 proposizione sismica a rifrazione tomografica;
- n. 1 indagine sismica in foro down-hole;
- n. 2 prospezioni sismiche MASW.

Le attività di cantiere si sono espletate nel mese di giugno 2020. Tutte le indagini sono state effettuate nel rispetto delle disposizioni delle specifiche tecniche e del capitolato d'appalto ANAS.

Per ulteriori dettagli (stratigrafie dei sondaggi, elaborati prove penetrometiche statiche e prove di dissipazione, ecc..) si rimanda agli allegati presenti all'interno dell'elaborati "Indagini Geognostiche".

2.2 LABORATORIO

Il laboratorio della Tecno In S.p.A. è stato incaricato di eseguire analisi geotecniche su campioni indisturbati e rimaneggiati, prelevati nel corso delle indagini geognostiche eseguite nel mese di Giugno 2020.

In particolare, nel corso dei 5 sondaggi geognostici eseguiti sono stati prelevati 162 campioni (10 indisturbati. 21 rimaneggiati (di cui 20 da SPT). Inoltre nei 7 pozzetti geognostici eseguiti sono stati prelevati 7 campioni rimaneggiati su cui eseguire prove di classificazione stradale (analisi granulometrica e limiti di Atterberg).

Si riporta di seguito la tabella nella quale sono riportate le prove richieste dalla Committenza sui campioni prelevati nel corso dei sondaggi.

Tabella 1 – Prove richieste

Sigla sondaggio	Campione		Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d'acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di taglio CD	Prova triassiale UU	Edometrica Con determinazione di ca	Classificazione stradale
		da	a											
	CR01	0.40	0.60	X	X	X		X	X	X				X
	SPT01	2.50	2.95	X	X	X								
	CI01	4.50	5.00	X	X	X	X	X		X	X	X	X	
S01-PZ	SPT02	6.00	6.45	X	X	X								
	SPT03	9.40	9.85	X	X	X								
	CI02	14.00	14.50	X	X	X	X	X		X	X	X		
	SPT01	1.50	1.95	X	X	X								
	SPT02	3.00	3.45	X	X	X								
	CI01	4.50	5.00	X	X	X	X	X	X	X	X		X	
S02-PZ	SPT03	5.00	5.45	X	X	X								
	SPT04	6.60	7.05	X	X	X								
	SPT05	10.00	10.45	X	X	X								
	CI02	23.60	24.10	X	X	X	X	X	X	X	X	X		
	SPT01	1.50	1.95	X	X	X								
S03-DH	SPT02	3.00	3.45	X	X	X								

PIANO DELLE INDAGINI

Sigla sondaggio	Campione		rroiondita di prenevo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d'acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di taglio CD	Prova triassiale UU	Edometrica Con determinazione di ca	Classificazione stradale
	SPT03	da	a	x	x	x								
		4.50	4.95	X	X	X	X	X	X	X		X	X	
	CI01 SPT04	6.00	6.50	X	X	X								
	SPT05	9.00	9.45	X	X	X								
	CI02	14.00	14.50	X	X	X	X	x	X	X	X	X	X	
	CI03	26.00	26.60	X	X	X	X	X	X	X	X	X	X	
	SPT01	3.50	3.95	X	X	X								
	SPT02	5.00	5.45	X	X	X								
S04-PZ	SPT03	6.50	6.95	X	X	X								
	CI01	9.00	9.60	X	X	X	X	X	X	X	X	X		
	CI02	23.00	23.50	X	X	X	X	x	X	X		X	X	
	SPT01	1.50	1.95	X	X	X								
	SPT02	3.00	3.45	X	X	X								
S05-DH	SPT03	4.30	4.75	X	X	X								
	SPT04	6.10	6.55	X	X	X								
	CI01	10.40	11.00	X	X	X	X	X	X	X		X	X	
Pz02	CR01	0.30	0.50	X	X	X								
Pz03	CR01	0.30	0.50	X	X	X								
Sigla sondaggio	Campione		rrotonatta di prenevo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d'acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di taglio CD	Prova triassiale UU	Edometrica Con determinazione di ca	Classificazione stradale
Pz04	CR01	da 0.30	a 0.50	x	X	x								
Pz05	CR01	0.30	0.50	X	X	X								
	CDA			X	X	X								
Pz06	CR01	0.30	0.50											
Pz06 Pz07 Pz08	CR01 CR01	0.30	0.50	X	X X	X X								

Per ulteriori dettagli relativi ai certificati prove di laboratorio si rimanda all'allegato presente all'interno dell'elaborati "Laboratorio Geotecnico".

2.3 INDAGINI GEOFISICHE

Si riporta di seguito l'elenco delle prove geofisiche eseguite:

- N. 1 prospezione sismica a rifrazione tomografica;
- N. 1 indagine sismica in foro down hole;
- N. 2 prospezioni sismiche MASW.

Le indagini in oggetto sono state eseguite nel mese di luglio 2020.

2.3.1 Risultanze dell'indagine sismica a rifrazione tomografica

La prospezione sismica in oggetto e stata compiuta posizionando al suolo n.1 base sismica, avente un numero di canali pari a 24, con lunghezza complessiva pari a 115 metri.

I dati sono stati acquisti energizzando in corrispondenza dei siti esterni sia interni; in questo caso si e proceduto a n.7 siti di energizzazione.

Come accennato in precedenza, i tempi di arrivo delle onde SH sono stati adoperati quale input (assieme alla geometria dei tiri di energizzazione e dei geofoni) nel software di elaborazione tomografica, per ottenere le relative pseudosezioni sismiche.

Queste sono riportate esprimendo i dati di velocita delle onde di taglio mediante isolinee e campitura a falsi colori.

Di seguito, per i profili eseguiti, si riportano le seguenti informazioni / elaborazioni:

- Dromocrone ottenute dalla lettura dei primi tempi d'arrivo delle onde SH;
- Stralcio della planimetria delle indagini, con l'ubicazione del profilo elaborato;
- Pseudosezione sismica in onde S;
- Analisi dei dati in velocità di propagazione delle onde elastiche in termini di gradiente geosismico per l'individuazione dei sismostrati.

RIFR_1

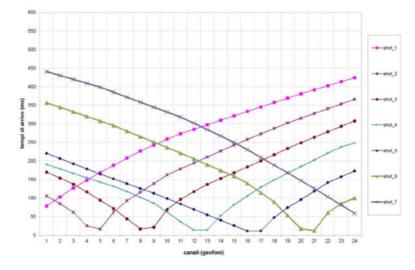


Figura 2-1 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". Tomografia sismica in onde S. Profilo RIFR_1. Dromocrone.

La pseudosezione elaborata per il profilo sismico RIFR_1 ha permesso di evidenziare tre sismostrati.

Il primo sismostrato si attesta ad una profondita massima dal piano campagna pari ad 1,5 m, ed è costituito da terreno vegetale. La velocita delle onde di taglio e inferiore a 180 m/s.

Il secondo sismostrato, la cui interfaccia ha una morfologia irregolare, si attesta ad una profondità media dal piano campagna compresa tra 7 e 18 m, ed e costituito da limo argilloso sabbioso. La velocita delle onde di taglio e compresa tra 180 e 360 m/s.

Il terzo sismostrato, che si estende sino al termine della pseudosezione, e costituito da argilla maggiormente consistente. La velocita delle onde di taglio e compresa tra 360 e 530 m/s.

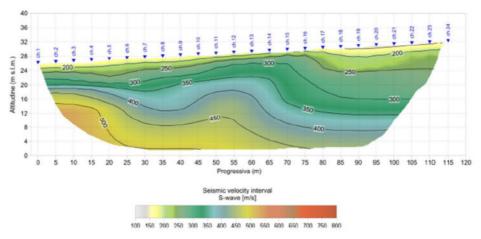


Figura 2-2 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". Pseudosezione sismica tomografica in onde S. Profilo RIFR_1.

2.3.2 Risultanze dell'indagine down-hole

Per la prova in oggetto, sono stati visualizzati i singoli sismogrammi per la determinazione dei tempi di arrivo delle onde "P" ed "SH" (picking) ed, al termine del processo di lettura, nota la profondità dei sensori, sono state calcolate le velocita di propagazione delle onde elastiche, per ogni intervallo di profondità.

Si è, quindi, proceduto all'elaborazione dei dati secondo il duplice criterio descritto nei paragrafi precedenti, ossia adottando il metodo diretto ed il metodo intervallo, riportando, nel primo caso, i diagrammi "tempi di arrivo verticale (o corretti) – profondità" ovvero le dromocrone, in cui i valori di velocita "media" sono stati determinati in base al coefficiente angolare dei singoli tratti "congruenti" di dromocrona.

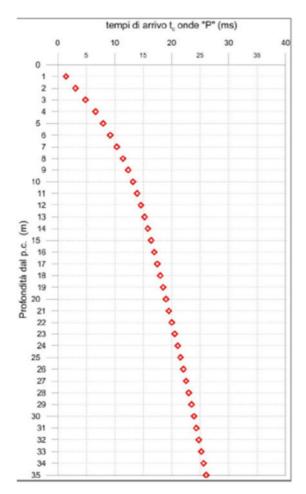
Secondo il metodo intervallo, e stata stimata la velocita intervallo delle onde sismiche, riportando in grafico il diagramma "velocita intervallo – profondita".

Di seguito, oltre ai citati diagrammi, si riportano le tabelle numeriche riepilogative contenenti: 1) i valori dei tempi letti e corretti misurati; 2) le velocita calcolate, per ciascun intervallo di profondita, sia delle onde P che delle onde S; 3) la profondita, la distanza e le altre caratteristiche geometriche del sistema di ricezione.

I siti di energizzazione sono stati posizionati nei pressi di ciascun perforo ed i segnali sismici sono stati acquisiti posizionando il geofono da pozzo a passi di un metro e vincolando lo stesso alle pareti del perforo mediante espansione di un sistema di pistoni.

Di seguito, per ciascuna indagine, si riportano le seguenti informazioni / elaborazioni:

• determinazione dei tempi di arrivo delle onde P ed S;



PIANO DELLE INDAGINI

- determinazione della velocità di propagazione delle onde P ed S, per ogni metro di profondità;
- determinazione dei valori dei moduli elastici ovvero del coefficiente di Poisson (v) e dei parametri elastici G, E, K in forma tabellare e grafica.

S03-DH

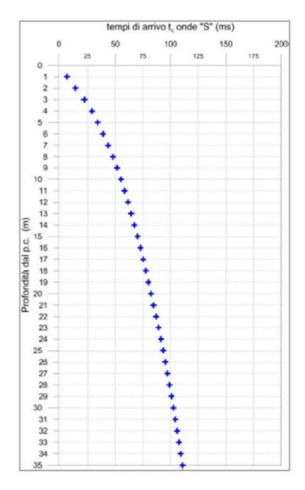
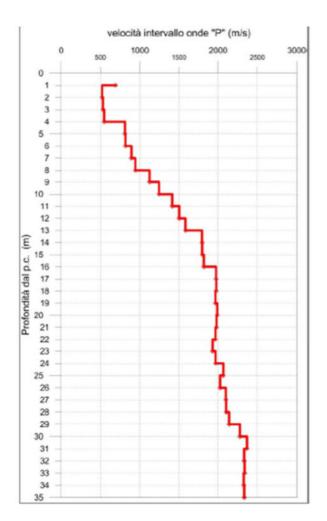



Figura 2-3 A sinistra, diagramma relativo all'andamento dei tempi di arrivo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento dei tempi di arrivo delle onde "S", In funzione della profondità dal p.c.

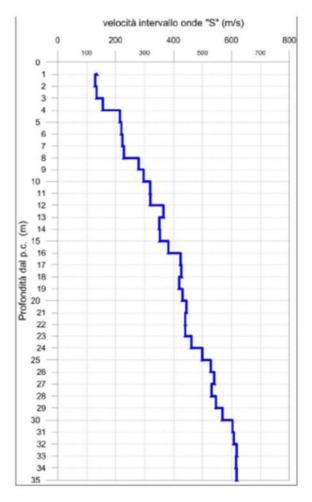


Figura 2-4 A sinistra, diagramma relativo all'andamento delle velocita intervallo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento delle velocita intervallo delle onde "S", In funzione della profondità dal p.c.

PIANO DELLE INDAGINI

Profondità (m dal p.c.)	tempi osservati t _o *P* (ms)	tempi osservati t _o "S" (ms)	tempi corretti t _c *P* (ms)	tempi corretti t _c "S" (ms)	velocità intervallo Vp (m/s)	velocità intervallo Vs (m/s)	Vp/Vs	Poisson (n)	yn gamma NATURALE	G Mpa	E Mpa	K Mpa
1	3,24	16,52	1,45	7,39	690	135	5,1	0,48	1,60	29	87	722
2	4,38	21,11	3,10	14,92	519	129	4,0	0,47	1,60	27	78	396
3	5,85	26,90	4,86	22,38	531	134	4,0	0,47	1,60	29	85	412
4	7,43	32,47	6,65	29,04	546	155	3,5	0,46	1,60	39	113	426
5	8,56	36,73	7,95	34,10	811	215	3,8	0,46	1,80	83	242	1073
6	9,71	41,00	9,21	38,90	817	220	3,7	0,46	1,80	87	254	1084
7	10,78	45,28	10,37	43,53	893	224	4,0	0,47	1,80	90	264	1315
8	11,81	49,50	11,45	48,02	942	229	4,1	0,47	1,80	94	277	1470
9	12,67	52,98	12,37	51,71	1124	280	4,0	0,47	1,80	141	413	2085
10	13,46	56,27	13,20	55,18	1245	297	4,2	0,47	1,80	158	466	2578
11	14,15	59,35	13,93	58,40	1412	319	4,4	0,47	1,80	183	540	3346
12	14,81	62,44	14,61	61,59	1503	320	4,7	0,48	1,80	184	543	3821
13	15,43	65,14	15,25	64,38	1583	365	4,3	0,47	1,80	240	707	4188
14	15,99	67,96	15,82	67,28	1794	350	5,1	0,48	1,80	221	655	5496
15	16,54	70,77	16,39	70,15	1796	353	5,1	0,48	1,80	224	663	5509
16	17,08	73,37	16,95	72,80	1816	382	4,8	0,48	1,80	263	776	5584
17	17,59	75,70	17,47	75,19	1972	424	4,6	0,48	1,80	324	957	6571
18	18,09	78,03	17,98	77,56	1974	427	4,6	0,48	1,80	328	967	6577
19	18,60	80,40	18,49	79,96	1964	420	4,7	0,48	1,80	317	936	6518
20	19,10	82,71	19,00	82,30	1988	431	4,6	0,48	1,80	334	986	6671
21	19,60	84,95	19,51	84,57	1977	445	4,4	0,47	1,80	356	1049	6561
22	20,11	87,21	20,02	86,85	1965	440	4,5	0,47	1,80	349	1029	6482
23	20,62	89,47	20,55	89,13	1928	440	4,4	0,47	1,80	349	1028	6224
24	21,13	91,63	21,06	91,31	1966	462	4,3	0,47	1,80	384	1129	6446
25	21,61	93,62	21,54	93,33	2064	500	4,1	0,47	1,80	449	1320	7069
26	22,11	95,51	22,04	95,23	2024	529	3,8	0,46	1,80	503	1474	6704
27	22,58	97,36	22,52	97,09	2097	540	3,9	0,46	1,80	525	1538	7216
28	23,06	99,23	23,00	98,98	2101	532	4,0	0,47	1,80	509	1491	7271
29	23,52	101,06	23,47	100,82	2138	546	3,9	0,47	1,80	537	1574	7514
30	23,96	102,81	23,91	102,58	2275	568	4,0	0,47	1,80	582	1706	8538
31	24,38	104,46	24,33	104,25	2365	604	3,9	0,47	1,90	692	2029	9700
32	24,81	106,11	24,76	105,90	2331	608	3,8	0,46	1,90	703	2057	9384
33	25,24	107,72	25,19	107,52	2336	618	3,8	0,46	1,90	726	2123	9404
34	25,67	109,34	25,62	109,15	2326	616	3,8	0,46	1,90	721	2110	9316
35	26,10	110,96	26,05	110,78	2332	618	3,8	0,46	1,90	725	2121	9366

Figura 2-5 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". Indagine down-hole S03-DH. Riepilogo dei valori dei tempi di arrivo delle onde P ed S, dei valori delle velocita intervallo delle onde P ed S e dei moduli dinamici.

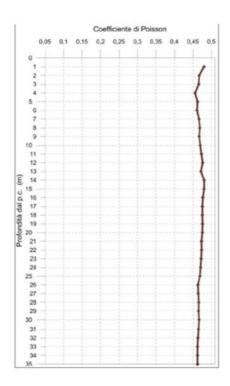


Figura 2-6 Diagramma relativo all'andamento del coefficiente di Poisson in funzione della profondita dal p.c..

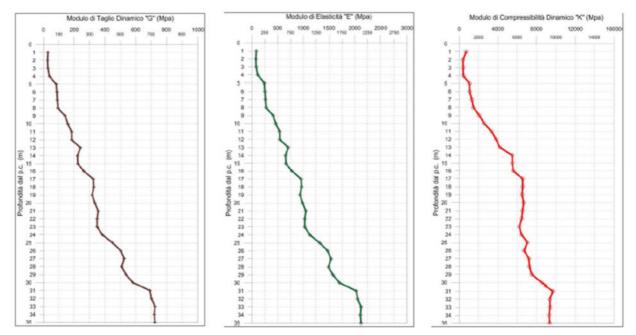


Figura 2-7 A sinistra, diagramma relativo all'andamento del modulo elastico "G" in funzione della profondità dal p.c. Al centro, diagramma relativo all'andamento del modulo elastico "E" in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento del modulo elastico "K" in funzione della profondità dal p.c.

2.3.3 Risultanze delle indagini MASW

Di seguito sono riportate le risultanze delle prospezioni sismiche MASW, riepilogate tramite i seguenti elaborati:

- Sismogramma originale, in cui sono riportate le tracce registrate sull'intero array di geofoni costituenti lo stendimento;
- Diagramma della trasformata bidimensionale del campo d'onda (nel sistema velocità di fase frequenza f-k) con i massimi spettrali evidenziati.
- Profilo verticale dell'andamento della velocita delle onde S, in funzione della profondità.
- Tabella con i parametri calcolati (Vs, VP, profondità e spessore dei sismostrati).

INDAGINE MASW_2

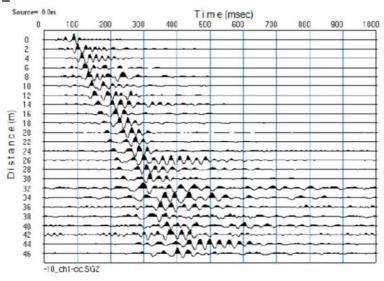


Figura 2-8 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW 2. Sismogramma.

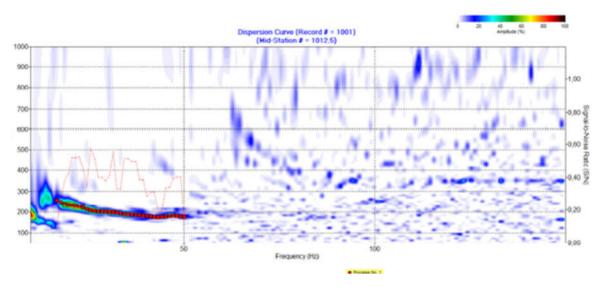


Figura 2-9 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_2. Curva di dispersione.

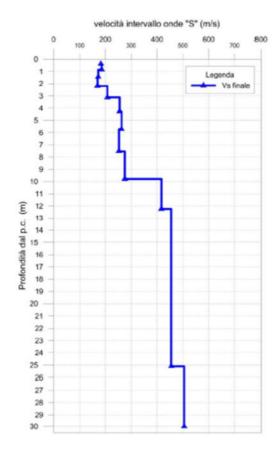


Figura 2-10 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_2. Profilo verticale delle onde di taglio.

Numero di Strati	Profondità (m dal p.c)	Vs finale (m/s)	Spessore (m)	h/Vs
1	0,4	182	0,4	0,0021
2	0,9	186	0,5	0,0026
3	1,4	172	0,6	0,0034
4	2,2	169	0,7	0,0044
5	3,1	208	0,9	0,0045
6	4,3	255	1,2	0,0045
7	5,7	263	1,4	0,0055
8	7,5	252	1,8	0,0072
9	9,8	275	2,3	0,0082
10	12,2	417	2,4	0,0059
0	25,1	455	12,9	0,0283
0	30,0	505	4,9	0,0097

Figura 2-11 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_2. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocita delle onde di taglio.

MASW_1bis

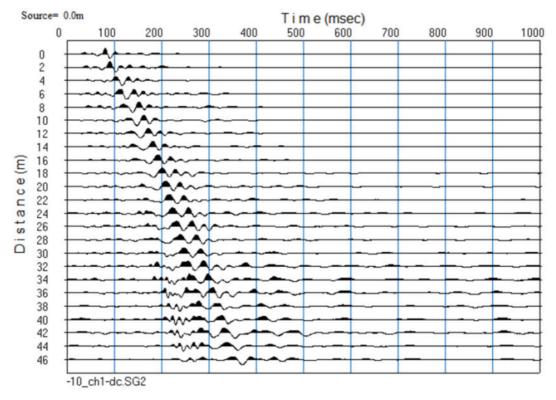


Figura 2-12 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_1BIS. Sismogramma.

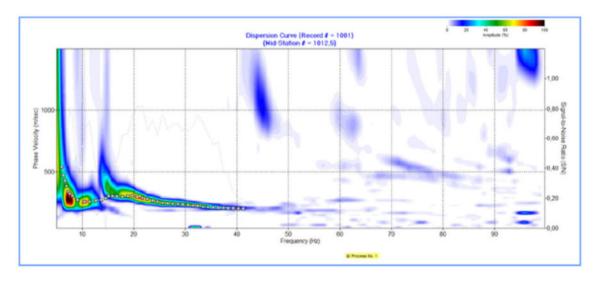


Figura 2-13 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_1BIS. Curva di dispersione.

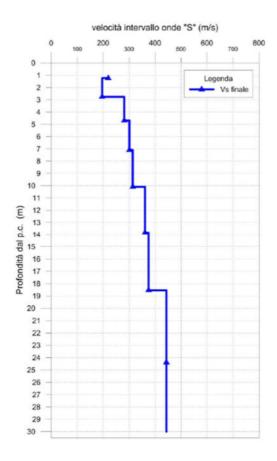


Figura 2-14 vento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_1BIS. Profilo verticale delle onde di taglio.

Numero di Strati	Profondità (m dal p.c)	Vs finale (m/s)	Spessore (m)	h/Vs
1	1,2	220	1,2	0,0056
2	2,8	196	1,5	0,0078
3	4,7	281	1,9	0,0068
4	7,1	301	2,4	0,0080
5	10,1	314	3,0	0,0096
6	13,8	361	3,8	0,0104
7	18,5	375	4,7	0,0125
8	24,4	443	5,9	0,0132
9	30,0	547	5,6	0,0103

Figura 2-15 Intervento "Variante all'abitato di Monterotondo Scalo 2° stralcio". MASW_1BIS. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocita delle onde di taglio.

Per maggiori dettagli si rimanda all'elaborato "Indagini Geofisiche".

2.4 INDAGINI AMBIENTALI

Tali indagini si riferiscono alle attività di campionamento di terreno e acqua di falda nei punti individuati da ANAS S.p.A, condotte ai fini della caratterizzazione ambientale dei materiali di scavo ai sensi del D.P.R. 120/2017 nonché per la loro ammissibilità in impianto di recupero e/o discarica.

I campionamenti sono stati eseguiti nel mese di Giugno 2020 attraverso l'esecuzione di n. 11 pozzetti esplorativi approfonditi fino ad un massimo di 2,00 m dal p.c. nel corso dei quali, oltre ai rilievi stratigrafici, è stato eseguito il prelievo da ciascun pozzetto, i quali successivamente sono stati sottoposti alle determinazioni chimiche. Si è proceduto, al prelievo di campioni di terreno da n. 4 sondaggi geognostici e di acque sotterranee da n.2 piezometri. Il fine delle analisi risiede nella caratterizzazione ambientale dei terreni, nonché alla determinazione del grado di aggressività dei terreni e dell'acqua nei confronti del calcestruzzo.

Si specifica che i pozzetti Pz1_AMB, Pz2_AMB, Pz3_AMB, Pz4_AMB, Pz1_bis_AMB, Pz2_bis_AMB, non sono stati realizzati per la mancata accessibilità e per tale motivo sono stati integrati gli analiti da ricercare in alcuni dei campionamenti effettuati.

La tabella seguente mostra lo schema di campionamento realizzato in relazione ai sondaggi, pozzetti e piezometri.

			AMBIENTA	LE		
			POZZETT	1		
	1	TERRE			А	CQUA
	Ca1	Ca2	Crif	CACLS	PA	PACLS
Pz5_AMB	0,0-1,0	1,0-2,0	0,0-2,0			
Pz6_ AMB	0,0-1,0	1,0-2,0	0,0-2,0			
Pz7_ AMB	0,0-1,0	1,0-2,0	0,0-2,0			
Pz8_ AMB	0,0-1,0	1,0-2,0				
Pz02	0,0-1,0	1,0-2,0	0,0-2,0			
Pz03	0,0-1,0	1,0-2,0				
Pz04	0,0-1,0	1,0-2,0	0,0-2,0			
Pz05	0,0-1,0	1,0-2,0				
Pz06	0,0-1,0	1,0-2,0				
Pz07	0,0-1,0	1,0-2,0	0,0-2,0			
Pz08	0,0-1,0	1,0-2,0	0,0-2,0			
			SONDAG	GI		
SO1_PZ	0,0-1,0	1,0-2,0	0,0-2,0	0,0-5,0	Х	Х
SO2_PZ	0,0-1,0	1,0-2,0				
SO4_PZ				0,0-5,0	X	Х
SO5_PZ	0,0-1,0	1,0-2,0				

I campioni Ca1 e Ca2 rappresentano i campioni di terreno prelevati per la caratterizzazione delle terre e rocce da scavo ai sensi del D.P.R. 120/2017.

I campioni CRIF sono stati sottoposti alle determinazioni sul tal quale e al test di cessione per la classificazione dei rifiuti solidi secondo la D.M. 27/09/2010 e per la possibilità di recupero secondo il D.M. n.186 del 05/04/06.

I campioni PA rappresentano le acque sotterranee nelle quali sono stati ricercati i parametri da confrontare con le CSC di cui alla Tabella 2 dell'Allegato 5 al titolo V della parte IV del D.Lgs. 152/2006.

Progettazione Definitiva ed Esecutiva dell'intervento S.S.4 variante dell'abitato di Monterotondo scalo – 2° Stralcio PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

I campioni PACLS e CACLS, rispettivamente di acqua e terreno, sono stati sottoposti ad analisi al fine di valutare il grado di aggressività del terreno sulle strutture di calcestruzzo secondo UNI EN 206:2016.

Ultimate le operazioni di prelievo dei campioni, è stata realizzata, come da indicazioni di cui al capitolato ANAS S.p.A., una georeferenziazione plano-altimetrica assoluta dei punti di indagine.

Valutazioni

Le indagini ambientali condotte in questa sede sui campioni di terreno e acqua di falda nell'ambito del' esecuzione di indagini geologiche, tecniche, sismiche e sondaggi relativi all'intervento "Variante all'abitato di Monterotondo Scalo 2° Stralcio" hanno permesso di verificare quanto segue.

I campioni di terreno prelevati sono stati sottoposti a caratterizzazione ambientale ai sensi del D.P.R. 120/2017. Nel corso delle analisi chimiche non sono stati evidenziati superamenti dei limiti normativi relativi al D.Lgs. 152/06 All.5 alla parte IV – Tab. 1 – Col. A e Col. B.

Dalle determinazioni analitiche effettuate ai fini della classificazione dei materiali come rifiuti, tutti i campioni di terreno sono rientrati nel Codice CER 17 05 04 che comprende «Terra e rocce da scavo, diverse da quelle di cui alla voce 17 05 03*» dal momento che non contengono sostanze pericolose; inoltre, l'esecuzione di test di cessione ha messo in evidenza che i terreni sono ammissibili in discariche per rifiuti inerti e in discariche per rifiuti non pericolosi; infine tutti i materiali non risultano gestibili secondo procedure di recupero completo a causa del superamento della richiesta chimica di Ossigeno (COD).

Inoltre, l'esecuzione di test di cessione su n.4 campioni prelevati da pozzetti, il cui risultato è stato confrontato con i valori derivanti da Test di cessione con i limiti D.lgs 152/06 Tab.2 per le acque sotterranea, al fine di valutare la possibilità di lisciviazione in falda, ha mostrato che non vi è superamento dei limiti.

Per quanto riguarda i n.2 campioni di acqua di falda campionati, si osserva che sussistono superamenti dei limiti imposti dal D.Lgs. 152/06 Tab.2 All.5 alla Parte IV:

• Idrocarburi Policiclici Aromatici: si riscontra il superamento in tutti i campioni.

Per concludere si riporta, in tal caso, che non sussiste esposizione all'attacco chimico da parte del terreno e dell'acqua di falda.

Per maggiori dettagli si rimanda all'elaborato "Documentazione indagini di caratterizzazione ambientale" e ai suoi allegati.

3 INDAGINI 2022

3.1 INDAGINI GEOGNOSTICHE

Nell'ambito del progetto "Variante di Monterotondo – 2° stralcio" è stata effettuata una campagna di indagini geognostiche

finalizzata alla determinazione delle caratteristiche geotecniche e alla definizione stratigrafica in chiave geolitologica.

La campagna di indagine geognostica è stata così articolata:

- n. 10 sondaggi geognostici verticali a carotaggio continuo finalizzati alla definizione della sequenza stratigrafica, di cui n. 2 condizionati con prova Down-Hole, n. 1 condizionati con tubo piezometrico 3" e n. 4 condizionati con tubo piezometrico Casagrande.
- n. 29 prove penetrometriche SPT;
- n. 44 prelievi di campioni indisturbati e n. 29 prelievi di campioni rimaneggiati da sottoporre a prove di laboratorio geotecnico (cfr. "Documentazione prove di laboratorio geotecnico");
- n. 8 pozzetti esplorativi spinti alla profondità max di 2 m dal p.c. e n. 25 pozzetti ambientali spinti alla profondità compresa tra 1 e 2 m dal p.c.
- n. 47 prelievi di campioni rimaneggiati prelevati dai pozzetti esplorativi, da sottoporre a prove di laboratorio geotecnico (cfr. "Documentazione prove di laboratorio geotecnico");
- n. 4 prove penetrometriche statiche C.P.T.U. per la caratterizzazione dei terreni del sottosuolo;
- n. 8 prove di carico su piastra in corrispondenza dei pozzetti esplorativi
- georeferenziazione dei punti di indagine; per la visione di dettaglio si rimanda al documento Georeferenziazione delle indagini" ed alle monografie allegate.
 Sono state realizzate inoltre:
- n. 4 profili sismici a rifrazione
- n. 4 prove sismiche MASW
- n. 2 prove down hole

per i cui dettagli si rimanda all'elaborato "Documentazione indagini geofisiche".

Le attività di cantiere si sono espletate tra i mesi di marzo e maggio 2022.

Tutte le indagini sono state effettuate nel rispetto delle disposizioni delle specifiche tecniche e del capitolato d'appalto ANAS, nonché delle norme AGI 1977/1994.

Per ulteriori dettagli (stratigrafie dei sondaggi, elaborati prove pressiometriche certificati prove di carico su piastra, ecc.) si rimanda agli allegati presenti all'interno dell'elaborati "Documentazione indagini geognostiche".

3.2 LABORATORIO

Nell'ambito del progetto è stata effettuata una campagna di indagini geognostiche nel corso della quale sono stati prelevati campioni rimaneggiati ed indisturbati da sottoporre a prove di laboratorio.

Nei 10 sondaggi geognostici eseguiti sono stati prelevati n. 44 campioni indisturbati e n. 29 campioni rimaneggiati; il laboratorio della Tecno In S.p.A. è stato incaricato di eseguire analisi geotecniche sui campioni prelevati come da tabella 1. Inoltre, sono stati eseguiti 8 pozzetti esplorativi nei quali prelevati

campioni rimaneggiati da sottoporre a prove per la classificazione stradale (analisi granulometrica e limiti di Atterberg).

Nella tabella seguente vengono riportate le prove richieste dalla Committenza su campioni prelevati nel corso dei sondaggi.

Sigla sondaggio	Campione		Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d' acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di compressibilità edome-	Prova di taglio CD	Prova triassiale UU	Prova triassiale CIU	Classificazione stradale Prova ELL
		da	a												
	CI01	6.00	6.50	Х	Х	Х	X	х		х		X			
S01(PE)-PZ	CI02	18.20	18.70	X	X	X	X	X		X			X		
301(12)-12	CI03	24.50	25.00	X	X	х	X	x		x		X	X		
	CI04	30.00	30.50	X	X	X	X	X		X	X		X		
	CI01	5.00	5.50	X	X	X	X	X		X	х	X			
	CR01	9.00	9.45	X	X	x									
	CI02	12.20	12.70	X	X	X	X	X		X			X		
S02(PE)-DH	CR02	30.50	31.20	X	X										
	CR03	32.50	33.20	X	X										
	CI03	35.00	35.50	X	X	X	X	X		X		X			
	CI04	38.00	38.50	X	X	X	X	X		X					X
	CR01	1.30	1.95	X	X	X									
	CI01	5.00	5.50	X	X	X	X	X		X					
S03(PE)	CR02	11.00	11.60	X	X	X									
	CI02	17.00	17.50	X	X	X	X	Х		Х		Х			
	CROS	20.00	20.65	X	X	X									

PIANO DELLE INDAGINI

Sigla sondaggio	Campione		Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d'acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di compressibilità edome-	Prova di taglio CD	Prova triassiale UU	Prova triassiale CIU	Classificazione stradale Prova ELL
		da	a	X	X	X	х	Х		х					
	CI03	24.00	24.50	X	X	**				**					
	CR04	29.50	30.20	x	x										
	CR05	31.50	32.20	x	x	x	x	x		x		x			x
	CI04	33.00	33.50	X	x	X	X	x		X					
	CI01	2.00	2.50	x	X	X	**	77		- 11					
	CR01	7.40	7.95	x	x	x									
	CR02 CI02	11.90 15.50	12.45 16.00	X			v	v		v					
S04(PE)-PZ	CI02	21.00	21.50	X	X X	X	X	X		X				Х	
	CR03	28.00	28.60	x	x										
	CR04	30.00	30.45	X	X										
	CI04	35.00	35.50	х	x	X	x	x		x					
	CI01	9.00	9.50	X	X	X	х	X		X					
	CR01	13.10	13.55	X	X	x									
	CI02	15.50	16.00	X	X	X	X	X		X					
SO5(PE)-DH	CI03	21.00	21.50	x	X	X	x	X		x	x				x
	CR02	21.50	21.95	X	X	X									
	CI04	26.00	26.50	X	X	X	x	X		x		x			
	CR03	29.50	30.00	X	X										

PIANO DELLE INDAGINI

Sigla sondaggio	Campione		Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d' acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di compressibilità edome-	Prova di taglio CD	Prova triassiale UU	Prova triassiale CIU	Classificazione stradale. Prova ELL
		da	a	x	x	x	x	X		x		x		x	
	CI05	37.00	37.50	X	x	X		Α.		^		Α.		Α.	
	CR01	3.00	3.45	x	X	X	х	x		х					
	CI01	7.50	8.00	x	x	X	^	Α		Α.					
	CR02	11.00	11.45	X	X	X	х	х		х					
S06(PE)	CI02	13.50	14.00			X	X				v	v			
	CI03	19.00	19.50	X	X			X		X	X	X			
	CI04	25.00	25.50	X	X	X	X	х		X	X	х			
	CR03	29.50	29.95	X	X	.,									
	CI05	34.60	35.00	X	X	X	X	X		X	X	X			
	CI01	3.00	3.50	x	X	X	X	X		X					
	CI02	9.00	9.50	x	X	X	X	x		x	X				
	CR01	11.00	11.45	X	X	X									
	CR02	14.00	14.45	X	X	X									
S07(PE)	CI03	18.00	18.50	X	х	х	X	X		X	х	X			
	CR03	21.00	21.45	x	X	X									
	CI04	23.00	23.50	X	X	X	X	X		X	Х		X		
	CI05	25.50	26.00	X	X	X	X	X		X		X			
	CR04	27.00	27.45	X	X										

PIANO DELLE INDAGINI

Sigla sondaggio	Campione	Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d' acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di compressibilità edome-	Prova di taglio CD	Prova triassiale UU	Prova triassiale CIU	Classificazione stradale Prova ELL	
	consistent	a	v	Y											
	CR05				Y	Y	Y		Y			Y			
	CI06														LIONA ELL
	CI01										Y				
	CI02									x	**	x			
SO8(PE)-PZ	CI03										x				
	CI04				77	100	- 55		70						
	CR01 CI05				X	x	x		X				x		
	CR01					177	- 85		- 55				- 550		
	CI01					х	х		X	X		X			
	CI01														
SO9(PE)-PZ	CI03				X	х				X			X		
303(. 2) . 2	CR02														
	CR03														
	CI04		x	x	x	x	x		x		x		x		
	CI01		X	X	X	X	X		X		X				
S10(PE)-PZ	CR01		X	X	x										
	CI02		X	X	X	X	х		X		X				

Sigla sondaggio	Campione		Profondità di prelievo (m)	Apertura e descrizione campione	Analisi granulometrica per vaglia- tura	Analisi granulometrica per sedi- mentazione	Peso di volume naturale gn	Contenuto d' acqua W	Peso specifico dei grani	Limiti di Attemberg (WL+WP)	Prova di compressibilità edome-	Prova di taglio CD	Prova triassiale UU	Prova triassiale CIU	Classificazione stradale Prova ELL
		da	a	122		122									
	CR02	18.50	19.20	X	X	X									
	CI03	23.50	24.00	X	X	X	X	X		X	X		X		
	CI04	27.00	27.50	X	X	X	X	X		X		X			
PzO1(PE)	CR01	0.40	0.50	X	X	X				X					X
PzO2(PE)	CR01	0.40	0.50	X	X	X				x					x
PzO3(PE)	CR01	0.40	0.50	X	X	X				X					X
PzO4(PE)	CR01	0.40	0.50	x	X	X				X					X
PzO5(PE)	CR01	0.40	0.50	X	X	X				X					X
PzO6(PE)	CR01	0.40	0.50	X	X	X				X					X
Pz07(PE)	CR01	0.40	0.50	X	X	X				X					X
Pz08(PE)	CR01	0.40	0.50	x	X	X				X					x

Per ulteriori dettagli relativi ai certificati prove di laboratorio si rimanda all'allegato presente all'interno dell'elaborati "Laboratorio Geotecnico".

INDAGINI GEOFISICHE

Nell'ambito dei lavori relativi al progetto "S.S.4 – variante dell'abitato di Monterotondo Scalo – 2° stralcio" sono state eseguite le seguenti prove:

- N. 4 prospezioni sismiche a rifrazione tomografica;
- N. 2 indagini sismiche down-hole;
- N. 4 prospezioni sismiche MASW.

Le indagini in oggetto sono state effettuate nel mese di Aprile e Maggio 2022.

Risultanze delle indagini sismiche a rifrazione tomografica

Le prospezioni sismiche in oggetto sono state compiute posizionando al suolo n.4 basi sismiche, aventi ognuna un numero di canali pari a 24, per una lunghezza compresa tra 115 e 230 metri.

I dati sono stati acquisti energizzando in corrispondenza sia dei siti esterni sia all'interno.

Come accennato in precedenza, i tempi di arrivo delle onde P ed SH sono stati adoperati quale input (assieme alla geometria dei tiri di energizzazione e dei geofoni) nel software di elaborazione tomografica per ottenere le relative pseudosezioni sismiche.

Queste sono riportate esprimendo i dati di velocità delle onde di compressione e di taglio mediante isolinee e campitura a falsi colori.

Di seguito, per i profili eseguiti, si riportano le seguenti informazioni / elaborazioni:

MANDANTE

- dromocrone ottenute dalla lettura dei primi tempi d'arrivo delle onde P ed SH;
- pseudosezioni sismiche in onde P e in onde S;

• analisi dei dati in velocità di propagazione delle onde elastiche in termini di gradiente geosismico per l'individuazione dei sismostrati.

RIFRA01

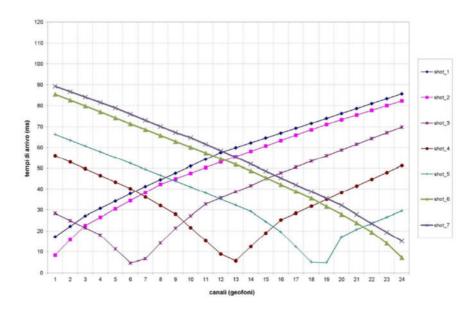


Figura 3-1 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde P. Profilo RIFRA01. Dromocrone.

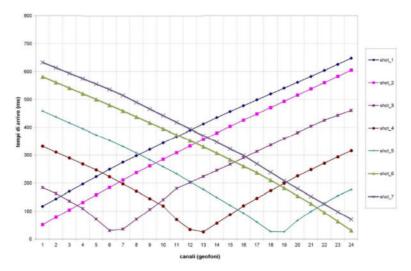


Figura 3-2 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde S. Profilo RIFRA01. Dromocrone.

La pseudosezione elaborata per il profilo sismico RIFRAO1 ha permesso di evidenziare tre sismostrati. Il primo sismostrato, si attesta ad una profondità massima dal piano campagna pari a circa 5 m ed è costituito da limo sabbioso argilloso. La velocità delle onde di taglio è compresa tra 130 e 180 m/s, mentre la velocità delle onde di compressione è compresa tra 800 e 1.200 m/s.

Il secondo sismostrato, che si attesta ad una profondità dal piano campagna compresa tra 5 e 25 m circa, è costituito da limo argilloso con intercalazioni sabbiose. La velocità delle onde di taglio è compresa tra 180 e 360 m/s, mentre la velocità delle onde di compressione è compresa tra 1.200 e 2.000 m/s.

Il terzo sismostrato, che si estende da 25 m sino al termine della pseudosezione, è costituito da argilla limosa molto consistente. La velocità delle onde di taglio è superiore a 360 m/s, mentre la velocità delle onde di compressione è superiore a 2.000 m/s.

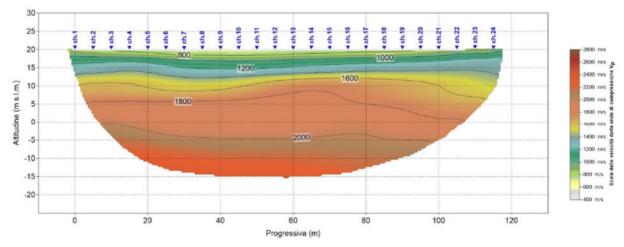


Figura 3-3 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde P. Profilo RIFRA01

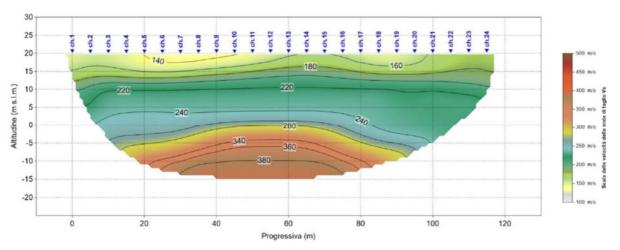


Figura 3-4 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde S. Profilo RIFRA01.

RIFRA02

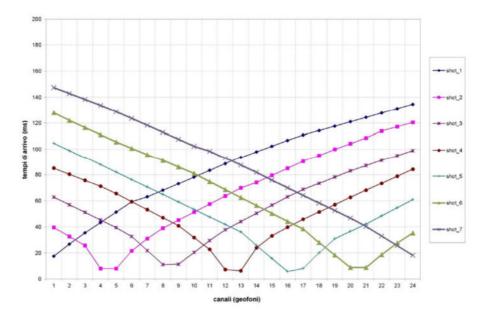


Figura 3-5 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde P. Profilo RIFRAO2. Dromocrone.

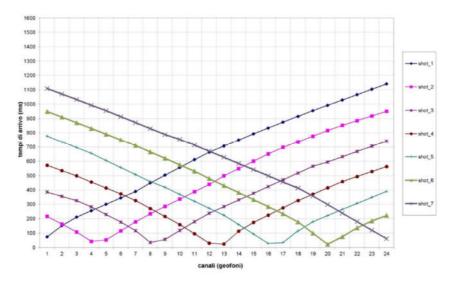


Figura 3-6 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde S. Profilo RIFRA02. Dromocrone.

La pseudosezione elaborata per il profilo sismico RIFRAO2 ha permesso di evidenziare tre sismostrati.

Il primo sismostrato, si attesta ad una profondità massima dal piano campagna pari a circa 4 m ed è costituito da limo sabbioso argilloso. La velocità delle onde di taglio è compresa tra 150 e 180 m/s, mentre la velocità delle onde di compressione è compresa tra 1.000 e 1.300 m/s.

Il secondo sismostrato, si attesta ad una profondità dal piano campagna compresa tra 4 e 38 m circa, ed è costituito da limo argilloso con intercalazioni sabbiose. La velocità delle onde di taglio è compresa tra 180 e 360 m/s, mentre la velocità delle onde di compressione è compresa tra 1.300 e 2.400 m/s.

Il terzo sismostrato, che si estende da 38 m sino al termine della pseudosezione, è costituito da argilla limosa molto consistente. La velocità delle onde di taglio è superiore a 360 m/s, mentre la velocità delle onde di compressione è superiore a 2.400 m/s.

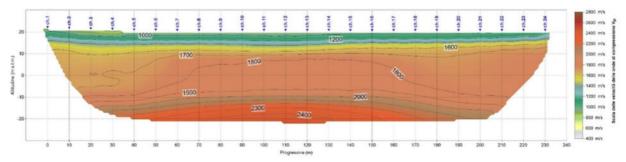


Figura 3-7 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde P. Profilo RIFRAO2.

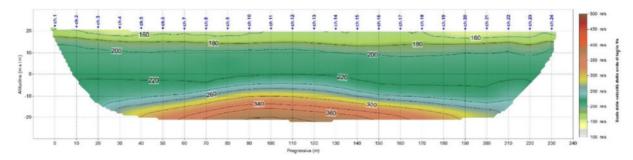


Figura 3-8 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde S. Profilo RIFRAO2.

RIFRA03

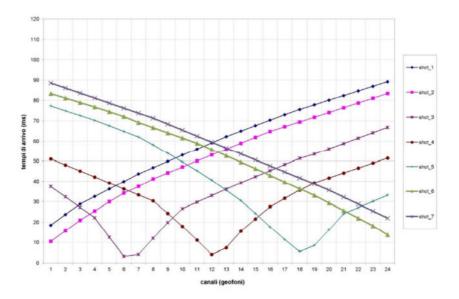


Figura 3-9 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde P. Profilo RIFRAO3. Dromocrone.

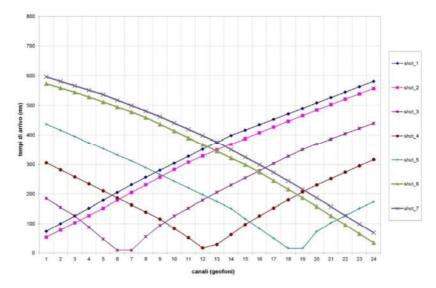


Figura 3-10 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde S. Profilo RIFRAO3. Dromocrone.

La pseudosezione elaborata per il profilo sismico RIFRAO3 ha permesso di evidenziare tre sismostrati.

Il primo sismostrato, si attesta ad una profondità massima dal piano campagna pari a circa 5 m ed è costituito da limo argilloso sabbioso. La velocità delle onde di taglio è compresa tra 170 e 180 m/s, mentre la velocità delle onde di compressione è compresa tra 750 e 1.200 m/s.

Il secondo sismostrato, si attesta ad una profondità dal piano campagna compresa tra 5 e 30 m circa, ed è costituito da limo argilloso sabbioso e, in profondità da argilla limosa sabbiosa. La velocità delle onde di taglio è compresa tra 180 e 360 m/s, mentre la velocità delle onde di compressione è compresa tra 1.200 e 2.300 m/s.

Il terzo sismostrato, che si estende da 30 m sino al termine della pseudosezione, è costituito da argilla limosa maggiormente consistente. La velocità delle onde di taglio è superiore a 360 m/s, mentre la velocità delle onde di compressione è superiore a 2.300 m/s.

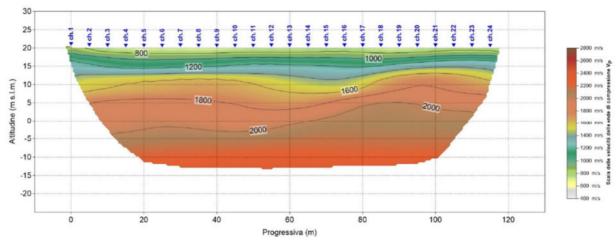


Figura 3-11 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde P. Profilo RIFRAO3.

MANDANTE

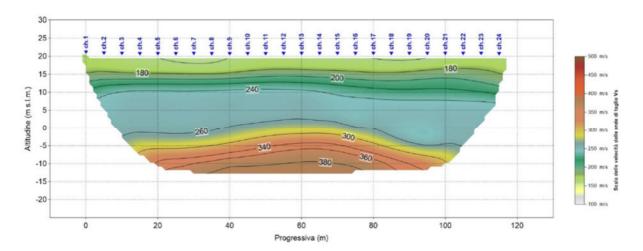


Figura 3-12 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde S. Profilo RIFRAO3.

RIFRA04

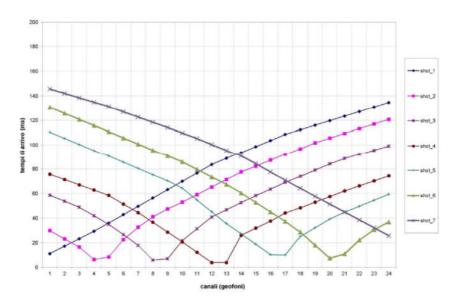


Figura 3-13 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde P. Profilo RIFRA04 Dromocrone.

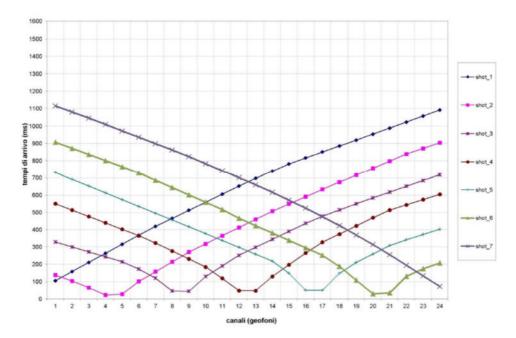


Figura 3-14 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Tomografia sismica in onde S. Profilo RIFRA04. Dromocrone.

La pseudosezione elaborata per il profilo sismico RIFRAO4 ha permesso di evidenziare tre sismostrati.

Il primo sismostrato si attesta ad una profondità massima dal piano campagna di circa 3 m, ed è costituito da limo sabbioso argilloso poco consistente. La velocità delle onde di taglio è compresa tra 150 e 180 m/s, mentre la velocità delle onde di compressione è compresa tra 1.100 e 1.250 m/s.

Il secondo sismostrato, si attesta ad una profondità media dal piano campagna compresa tra 3 e 35 m circa, ed è costituito principalmente da limo argilloso a consistenza variabile. La velocità delle onde di taglio è compresa tra 180 e 360 m/s, mentre la velocità delle onde di compressione è compresa tra 1.250 e 2.000 m/s.

Il terzo sismostrato, che si estende da 35 m sino al termine della pseudosezione, è costituito prevalentemente da argilla limosa maggiormente consistente. La velocità delle onde di taglio è superiore a 360 m/s, mentre la velocità delle onde di compressione è superiore a 2.000 m/s.

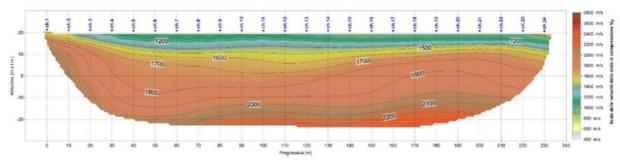


Figura 3-15 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde P. Profilo RIFRA04.

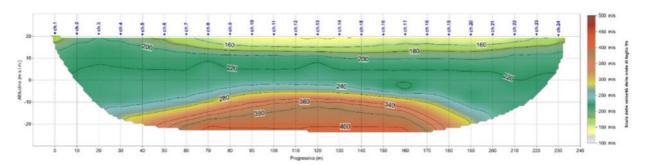


Figura 3-16 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Pseudosezione sismica tomografica in onde S. Profilo RIFRA04.

3.3.2 Risultanze dell'indagine down-hole

Per la prova in oggetto sono stati visualizzati i singoli sismogrammi per la determinazione dei tempi di arrivo delle onde "P" ed "SH" (picking) ed, al termine del processo di lettura, nota la profondità dei sensori, sono state calcolate le velocità di propagazione delle onde elastiche, per ogni intervallo di profondità.

Si è, quindi, proceduto all'elaborazione dei dati secondo il duplice criterio descritto nei paragrafi precedenti, ossia adottando il metodo diretto ed il metodo intervallo, riportando, nel primo caso, i diagrammi "tempi di arrivo verticale (o corretti) – profondità" ovvero le dromocrone, in cui i valori di velocità "media" sono stati determinati in base al coefficiente angolare dei singoli tratti "congruenti" di dromocrona.

Secondo il metodo intervallo, è stata stimata la velocità intervallo delle onde sismiche, riportando in grafico il diagramma "velocità intervallo – profondità".

Di seguito, oltre ai citati diagrammi, si riportano le tabelle numeriche riepilogative contenenti: 1) i valori dei tempi letti e corretti misurati; 2) le velocità calcolate, per ciascun intervallo di profondità, sia delle onde P che delle onde S; 3) la profondità, la distanza e le altre caratteristiche geometriche del sistema di ricezione.

I siti di energizzazione sono stati posizionati nei pressi di ciascun perforo ed i segnali sismici sono stati acquisiti posizionando il geofono da pozzo a passi di un metro e vincolando lo stesso alle pareti del perforo mediante espansione di un sistema di pistoni.

Di seguito, per ciascuna indagine, si riportano le seguenti informazioni / elaborazioni:

- determinazione dei tempi di arrivo delle onde P ed S;
- determinazione della velocità di propagazione delle onde P ed S, per ogni metro di profondità;
- determinazione dei valori dei moduli elastici ovvero del coefficiente di Poisson (2) e dei parametri elastici G, E, K in forma tabellare e grafica.

S02-DH

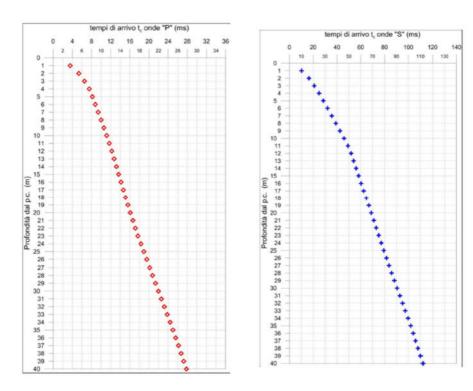


Figura 3-17 A sinistra, diagramma relativo all'andamento dei tempi di arrivo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento dei tempi di arrivo delle onde "S", In funzione della profondità dal p.c.

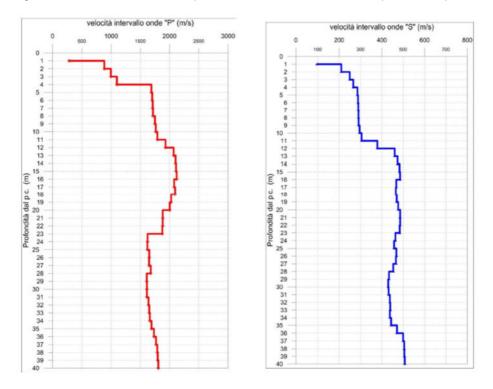


Figura 3-18 A sinistra, diagramma relativo all'andamento delle velocità intervallo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento delle velocità intervallo delle onde "S", In funzione della profondità dal p.c.

PIANO DELLE INDAGINI

Profondità (m dal p.c.)	tempi osservati t _o "P" (ms)	tempi osservati t _o "S" (ms)	tempi corretti t _c "P" (ms)	corretti t _c "5" (ms)	velocità intervallo Vp (m/s)	velocità intervallo Vs (m/s)	Vp/Vs	Poisson (n)	yn gamma NATURALE	G Mpa	E Mpa	K Mpa
1	5,02	14,40	3,55	10,18	282	98	2,9	0,43	1,92	19	53	128
2	5,95	18,32	5,32	16,39	883	210	4,2	0.47	1,92	85	248	1384
3	6,88	22,04	6,53	20,91	995	249	4,0	0,47	1,92	119	350	1742
4	7,76	25,66	7,53	24,89	1099	266	4,1	0,47	1,92	135	398	2138
5	8,33	29,07	8,17	28,51	1689	286	5,9	0,49	1,92	157	465	5268
6	8,91	32,49	8,79	32,05	1703	288	5,9	0,49	1,92	159	473	5353
7	9,49	35,91	9,39	35,55	1710	289	5,9	0,49	1,92	161	477	5403
8	10,07	39,32	9,99	39,02	1715	290	5,9	0,49	1,92	162	480	543
9	10,64	42,74	10,57	42,48	1749	291	6,0	0,49	1,92	162	482	5658
10	11,20	46,11	11,14	45,88	1764	295	6,0	0,49	1,92	167	498	5753
11	11,76	49,38	11,71	49,17	1790	305	5,9	0,49	1,92	178	529	5913
12	12,27	52,01	12,23	51,83	1930	379	5,1	0,48	1,87	268	793	6610
13	12,75	54,18	12,72	54,02	2069	460	4,5	0,47	1,87	395	1166	748
14	13,23	56,28	13,19	56,14	2102	473	4,4	0,47	1,87	419	1234	770
15	13,70	58,35	13,67	58,22	2111	482	4.4	0,47	1,87	435	1282	775
16	14,17	60,41	14,14	60,29	2121	485	4,4	0,47	1,87	440	1295	782
17	14,65	62,55	14,63	62,44	2078	467	4,5	0,47	1,87	408	1201	753
18	15,13	64,69	15,10	64,59	2095	465	4,5	0,47	1,87	404	1191	766
19	15,62	66,82	15,60	66,73	2026	469	4,3	0,47	1,87	412	1212	712
20	16,12	68,92	16,10	68,83	2002	476	4,2	0,47	1,87	424	1246	693
21	16,65	70,98	16,63	70,90	1882	485	3,9	0,46	1,87	441	1290	603
22	17,18	73,04	17,16	72,96	1882	485	3,9	0,46	1,87	441	1291	603
23	17,71	75,10	17,70	75,03	1875	483	3,9	0,46	1,87	436	1278	599
24	18,33	77,26	18,31	77,19	1623	463	3,5	0,46	1,87	401	1167	439
25	18,95	79,45	18,93	79,39	1620	457	3,5	0,46	1,87	390	1137	439
26	19,55	81,59	19,54	81,53	1653	467	3,5	0,46	1,87	409	1190	456
27	20,16	83,73	20,14	83,68	1650	465	3,5	0,46	1,87	405	1180	455
28	20,75	85,94	20,74	85,89	1678	453	3,7	0,46	1,87	383	1119	475
29	21,37	88,25	21,36	88,20	1610	433	3,7	0,46	1,88	353	1031	440
30	21,99	90,58	21,98	90,53	1613	430	3,8	0,46	1,88	347	1014	442
31	22,61	92,89	22,60	92,84	1613	431	3,7	0,46	1,88	350	1023	442
32	23,22	95,18	23,21	95,13	1639	437	3,8	0.46	1,88	359	1050	457
33	23,83	97,46	23,82	97,41	1653	439	3,8	0,46	1,88	362	1059	465
34	24,43	99,74	24,42	99,70	1663	437	3,8	0,46	1,88	359	1051	471
35	25,02	102,00	25,01	101,96	1691	443	3,8	0,46	1,88	369	1079	488
36	25,60	104,13	25,59	104,09	1732	470	3,7	0,46	1,93	427	1247	522
37	26,16	106,13	26,15	106,09	1768	499	3,5	0,46	1,93	481	1401	539
38	26,72	108,11	26,71	108,07	1789	504	3,5	0,46	1,93	490	1429	552
39	27,28	110,09	27,27	110,05	1797	505	3,6	0,46	1,93	492	1434	557
40	27,83	112,06	27,82	112,03	1807	507	3,6	0,46	1,93	496	1446	564

Figura 3-19 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Indagine down-hole S02-DH.

Riepilogo dei valori dei tempi di arrivo delle onde P ed S, dei valori delle velocità intervallo delle onde P ed S e dei moduli dinamici.

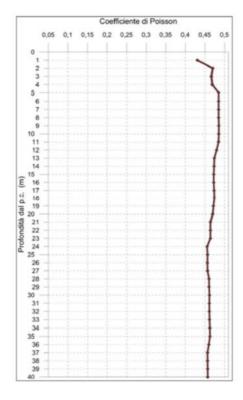


Figura 3-20 Diagramma relativo all'andamento del coefficiente di Poisson in funzione della profondità dal p.c..

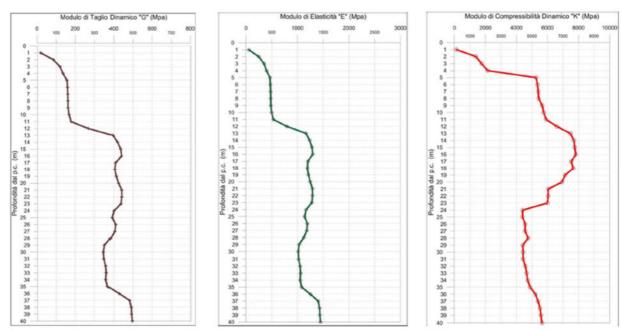


Figura 3-21 A sinistra, diagramma relativo all'andamento del modulo elastico "G" in funzione della profondità dal p.c. Al centro, diagramma relativo all'andamento del modulo elastico "E" in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento del modulo elastico "K" in funzione della profondità dal p.c.

MANDANTE

S05-DH

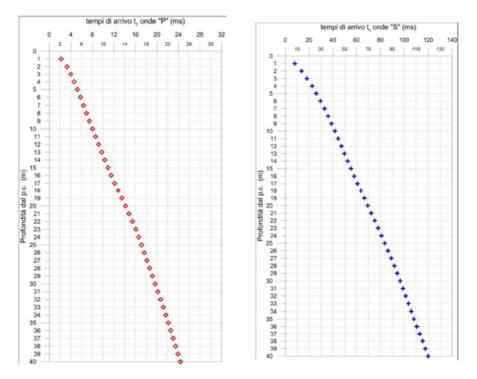


Figura 3-22 A sinistra, diagramma relativo all'andamento dei tempi di arrivo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento dei tempi di arrivo delle onde "S", In funzione della profondità dal p.c.

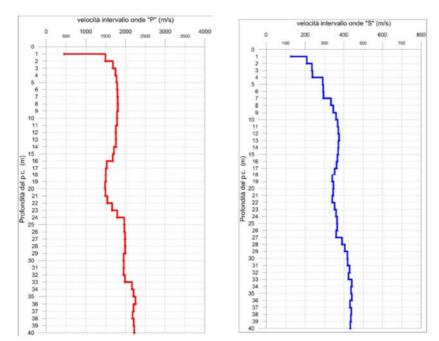


Figura 3-23 A sinistra, diagramma relativo all'andamento delle velocità intervallo delle onde "P", in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento delle velocità intervallo delle onde "S", In funzione della profondità dal p.c.

PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

Profondità (m dal p.c.)	tempi osservati t _o "P" (ms)	tempi osservati t _o *S* (ms)	tempi corretti t _c "P" (ms)	tempi corretti t _c "S" (ms)	velocită intervallo Vp (m/s)	velocità intervallo Vs (m/s)	Vp/Vs	Poisson (n)	yn gamma NATURALE	G Mpa	E Mpa	K Mpa
1	3,10	11,27	2,19	7,97	456	125	3,6	0,46	1,92	30	88	358
2	3,65	15,22	3,27	13,61	1493	208	7,2	0,49	1,92	83	247	4171
3	4,20	19,17	3,99	18,19	1683	234	7,2	0,49	1,92	105	314	5297
4	4,76	23,23	4,61	22,54	1746	237	7,4	0,49	1,92	108	321	5709
5	5,31	26,59	5,20	26,08	1773	290	6,1	0,49	1,92	162	481	5821
6	5,86	29,95	5,78	29,55	1787	293	6,1	0,49	1,92	164	489	5915
7	6,41	33,31	6,34	32,98	1796	294	6,1	0,49	1,92	166	493	5970
8	6,96	36,29	6,90	36,01	1801	333	5,4	0,48	1,92	213	632	5944
9	7,51	39,17	7,46	38,93	1805	345	5,2	0,48	1,92	229	677	5948
10	8,06	41,93	8,02	41,73	1784	359	5,0	0,48	1,92	248	733	5779
11	8,62	44,64	8,59	44,46	1786	368	4,9	0,48	1,92	260	768	5775
12	9,19	47,33	9,16	47,16	1755	371	4,7	0,48	1,92	264	780	5564
13	9,76	49,99	9,73	49,84	1756	375	4,7	0,48	1,92	270	796	5564
14	10,32	52,67	10,30	52,54	1757	371	4,7	0,48	1,92	265	782	5577
15	10,91	55,37	10,88	55,25	1706	370	4,6	0,48	1,92	263	776	5239
16	11,50	58,09	11,48	57,98	1678	366	4,6	0,47	1,92	258	760	5061
17	12,16	60,85	12,14	60,74	1524	362	4,2	0,47	1,92	251	739	4126
18	12,82	63,69	12,80	63,59	1502	352	4,3	0,47	1,86	230	677	3887
19	13,49	66,63	13,47	66,53	1502	340	4,4	0,47	1,86	215	633	3910
20	14,16	69,51	14,14	69,43	1486	346	4,3	0,47	1,86	222	654	3809
21	14,83	72,42	14,81	72,34	1494	344	4,3	0,47	1,86	220	648	3860
22	15,48	75,36	15,46	75,28	1541	339	4,5	0,47	1,86	214	632	4133
23	16,08	78,20	16,06	78,13	1662	351	4,7	0,48	1,92	237	700	4987
24	16,64	80,98	16,62	80,91	1790	359	5,0	0,48	1,92	248	732	5825
25	17,14	83,73	17,13	83,66	1967	364	5,4	0,48	1,92	255	756	7088
26	17,65	86,46	17,64	86,40	1970	365	5,4	0,48	1,92	256	759	7108
27	18,15	89,24	18,14	89,18	1988	360	5,5	0,48	1,92	248	736	7259
28	18,66	91,80	18,64	91,74	1988	390	5,1	0,48	1,92	293	866	7197
29	19,16	94,27	19,15	94,21	1992	405	4,9	0,48	1,88	308	910	7052
30	19,67	96,66	19,66	96,61	1953	418	4,7	0,48	1,88	329	971	6730
31	20,18	99,04	20,17	98,99	1957	419	4,7	0,48	1,88	330	975	6760
32	20,69	101,37	20,68	101,32	1952	429	4,5	0,47	1,88	347	1022	6700
33	21,20	103,73	21,19	103,68	1987	424	4,7	0,48	1,88	338	997	6973
34	21,66	106,00	21,65	105,95	2163	441	4,9	0,48	1,93	375	1108	8530
35	22,11	108,29	22,10	108,24	2201	437	5,0	0,48	1,93	368	1090	8861
36	22,56	110,55	22,55	110,51	2250	441	5,1	0,48	1,93	375	1110	9274
37	23,01	112,87	23,00	112,83	2201	431	5,1	0,48	1,93	359	1063	8874
38	23,47	115,15	23,46	115,11	2177	438	5,0	0,48	1,93	370	1095	8652
39	23,92	117,45	23,91	117,41	2206	436	5,1	0,48	1,93	366	1084	8906
40	24,37	119,76	24,37	119,72	2221	433	5,1	0,48	1,93	362	1072	9034

Figura 3-24 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". Indagine down-hole SO5-DH.

Riepilogo dei valori dei tempi di arrivo delle onde P ed S, dei valori delle velocità intervallo delle onde P ed S e dei moduli dinamici.

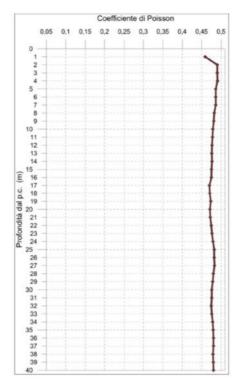


Figura 3-25 Diagramma relativo all'andamento del coefficiente di Poisson in funzione della profondità dal p.c..

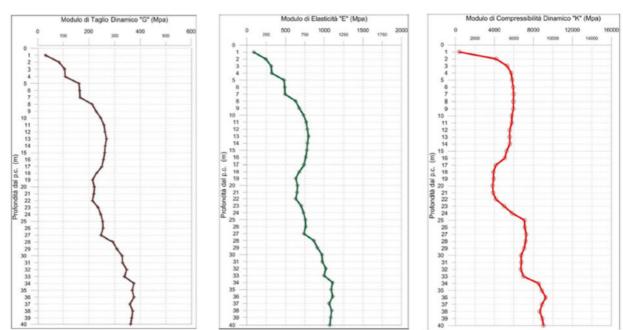


Figura 3-26 A sinistra, diagramma relativo all'andamento del modulo elastico "G" in funzione della profondità dal p.c. Al centro, diagramma relativo all'andamento del modulo elastico "E" in funzione della profondità dal p.c. A destra, diagramma relativo all'andamento del modulo elastico "K" in funzione della profondità dal p.c.

3.3.3 Risultanze delle indagini MASW

MASW01

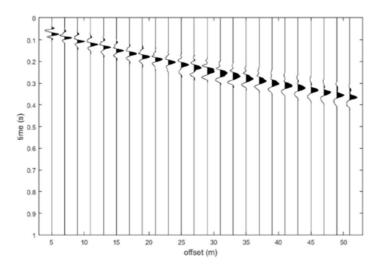


Figura 3-27 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW01. Sismogramma.

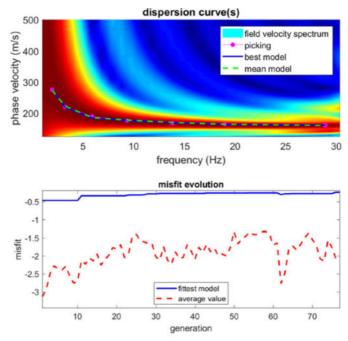


Figura 3-28 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW01. Curva di dispersione ed andamento del misfit.

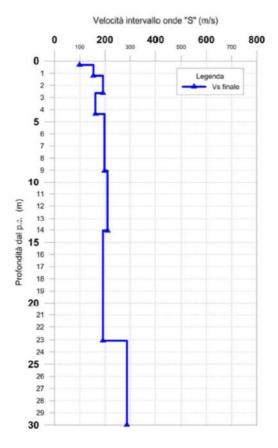


Figura 3-29 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW01. Profilo verticale delle onde di taglio (VS).

Numero di Strati	Vs finale (m/s)	Spessore (m)	Profondità (m dal p.c.)	h/Vs
1	99	0,3	0,3	0,00311
2	154	0,9	1,2	0,00580
3	192	1,4	2,6	0,00746
4	162	1,7	4,4	0,01066
5	198	4,7	9,0	0,02364
6	210	5,0	14,1	0,02390
7	192	9,0	23,1	0,04691
8	287	6,9	30,0	0,02415

Figura 3-30 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW01. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocità delle onde di taglio.

MASW02

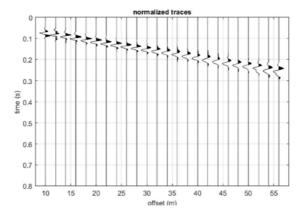


Figura 3-31 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW02. Sismogramma.

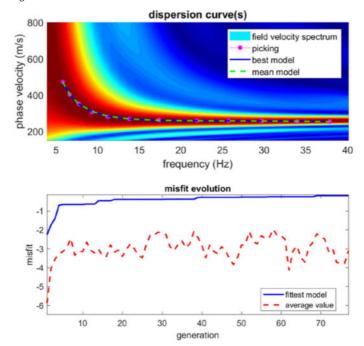


Figura 3-32 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW02. Curva di dispersione ed andamento del misfit.

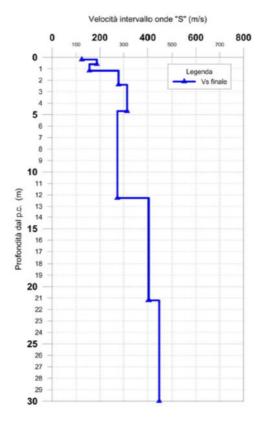


Figura 3-33 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW02. Profilo verticale delle onde di taglio (VS).

Numero di Strati	Vs finale (m/s)	Spessore (m)	Profondità (m dal p.c.)	h/Vs
1	124	0,2	0,2	0,00155
2	187	0,4	0,6	0,00219
3	156	0,6	1,2	0,00360
4	278	1,2	2,4	0,00441
5	314	2,3	4,7	0,00732
6	273	7,6	12,3	0,02775
7	403	8,9	21,2	0,02217
8	446	8,8	30,0	0,01973

Figura 3-34 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW02. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocità delle onde di taglio.

MASW03

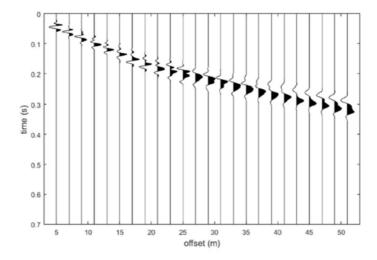


Figura 3-35 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW03. Sismogramma.

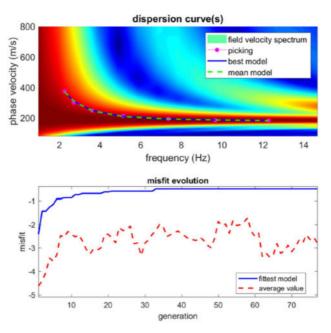


Figura 3- 36 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW02. Curva di dispersione ed andamento del misfit.

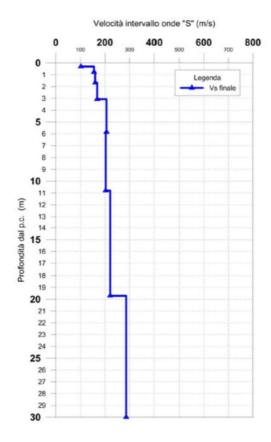


Figura 3- 37 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW03 Profilo verticale delle onde di taglio (VS).

Numero di Strati	Vs finale (m/s)	Spessore (m)	Profondità (m dal p.c.)	h/Vs
1	102	0,3	0,3	0,00300
2	155	0,5	0,8	0,00297
3	160	0,9	1,7	0,00571
4	168	1,4	3,1	0,00822
5	206	2,8	5,8	0,01350
6	203	5,0	10,8	0,02438
7	221	8,9	19,7	0,04035
8	286	10,3	30,0	0,03600

Figura 3- 38 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW03. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocità delle onde di taglio.

MASW04

Figura 3- 39 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW04. Sismogramma.

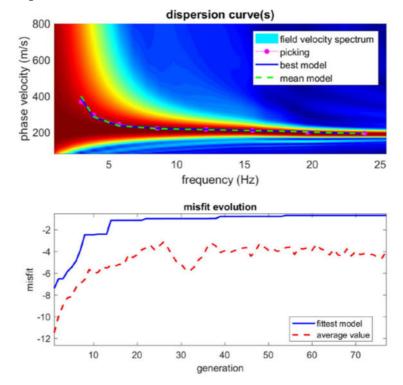


Figura 3- 40 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW04. Curva di dispersione ed andamento del misfit.

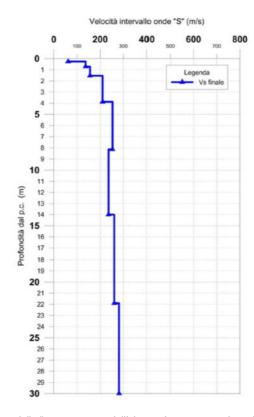


Figura 3- 41 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW04. Profilo verticale delle onde di taglio (VS).

Numero di Strati	Vs finale (m/s)	Spessore (m)	Profondità (m dal p.c.)	h/Vs
1	62	0,3	0,3	0,00419
2	137	0,5	0,7	0,00335
3	156	0,8	1,5	0,00525
4	210	2,3	3,9	0,01111
5	253	4,3	8,1	0,01689
6	236	5,9	14,0	0,02483
7	260	7,9	21,9	0,03038
8	281	8,1	30,0	0,02881

Figura 3- 42 Progetto Definitivo della "S.S.4 - Variante dell'abitato di Monterotondo Scalo - 2° stralcio". MASW04. Tabella di sintesi dove sono riportati gli spessori degli strati e la relativa velocità delle onde di taglio.

4 PIANO INDAGINI COMPONENTE SUOLO

Nel presente capitolo si descrivono le attività di indagine che saranno svolte lungo il tracciato di progetto al fine di caratterizzare il suolo.

4.1 OBIETTIVI GENERALI DEL MONITORAGGIO

La componente ambientale Suolo si prefigge la tutela del terreno vegetale e delle coltri pedologiche, quali risorse ambientali non rinnovabili e sostegno primario della biosfera. La realizzazione di un'infrastruttura comporta un inevitabile consumo di suolo, figlio dell'occupazione di territori naturali e agricoli da parte di strutture ed infrastrutture.

Per quanto concerne la componente Suolo quindi, dalle analisi effettuate, si è rilevato che l'aspetto che necessita di opportuno monitoraggio è quello della qualità e fertilità del suolo in corrispondenza delle aree di cantiere previste per la realizzazione dei lavori, ubicate in zona agricola.

4.2 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Il monitoraggio sarà effettuato in corrispondenza del cantiere base e del deposito intermedio:

Tabella 2 Punti di monitoraggio del suolo

Punti	Localizzazione		
SUO_01	CB CANTIERE BASE		



Figura 4- 1 Localizzazione punti di indagine

MANDANTE

4.3 METODOLOGIA E STRUMENTAZIONE

4.3.1 Tipologia di monitoraggio

Il monitoraggio prevede la verifica diretta delle caratteristiche fisiche, chimiche e agronomiche del suolo attraverso rilievi e analisi.

I rilievi consisteranno nella determinazione del profilo pedologico, attività propedeutica al prelievo dei campioni che saranno poi analizzati in laboratorio.

4.3.2 Parametri da monitorare

Per ogni stazione di monitoraggio saranno rilevati gli orizzonti pedologici (descrizione e fotografie). La descrizione riguarderà i seguenti aspetti:

- esposizione;
- pendenza;
- uso del suolo;
- microrilievo;
- pietrosità superficiale;
- rocciosità affiorante;
- fenditure superficiali;
- vegetazione;
- stato erosivo;
- permeabilità;
- classe di drenaggio;
- substrato pedogenetico;
- profondità falda.

Per ogni campione saranno individuati i seguenti parametri:

- parametri ambientali: Potenziale REDOX, pH, Arsenico, Berillio, Cadmio, Cobalto, Nichel, Piombo, Rame, Zinco, Mercurio, Vanadio, Cromo totale, Cromo VI, Idrocarburi C>12, BTEX, IPA;
- Parametri agronomici: pH, Capacità di scambio cationico (C.S.C.), Tessitura, Basi scambiabili, Contenuto in carbonio organico, Calcare totale, Calcare attivo, Ntot e P assimilabile.

4.3.3 Metodiche di monitoraggio

Per ogni stazione di monitoraggio si prevedono le seguenti attività.

- Profilo pedologico: sarà realizzato uno scavo con mezzo meccanico fino alla profondità di 1-1,5 m, sarà effettuata la scopertura della parete e quindi verrà prodotto un report fotografico con descrizione degli orizzonti individuati;
- Campionamento: sarà prelevato un campione per ciascun orizzonte individuato;
- Analisi di laboratorio:
 - o su tutti i campioni prelevati saranno condotte analisi chimico-fisiche;
 - o solo sui campioni superficiali (0-50 cm) saranno condotte analisi agronomiche.

Le indagini sono finalizzate a fornire una caratterizzazione del suolo prima dell'apertura dei cantieri e sarà volto alla conoscenza dei tre aspetti principali: fertilità, presenza di inquinanti, caratteristiche fisiche del suolo.

4.3.4 Tempi e frequenze del monitoraggio

Le indagini sono finalizzate a fornire una caratterizzazione del suolo prima dell'apertura dei cantieri e sarà volto alla conoscenza dei tre aspetti principali: fertilità, presenza di inquinanti, caratteristiche fisiche del suolo.

5 PIANO INDAGINI COMPONENTE ACQUE SUPERFICIALI

Nel presente capitolo si descrivono le attività di indagine che saranno svolte lungo il tracciato di progetto al fine di caratterizzare la qualità delle acque superficiali.

5.1 OBIETTIVI DEL MONITORAGGIO

I principali obiettivi del monitoraggio e le conseguenti attività atte alla verifica del loro raggiungimento sono:

 Verifica dello scenario ambientale di riferimento e caratterizzazione delle condizioni ambientali da confrontare con le successive fasi di monitoraggio mediante la rilevazione dei parametri caratterizzanti lo stato della componente in esame e le relative tendenze in atto prima dell'avvio dei lavori per la realizzazione dell'opera.

5.2 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Nella definizione della localizzazione dei punti di monitoraggio della componente acque saranno monitorati i fossi interferiti dal tracciato, in particolare il fosso Ventaglio in corrispondenza di uno scatolare idraulico ed il fosso Pantanella attraversato dal tracciato in viadotto.

Saranno posizionati n°2 punti di monitoraggio (monte/valle) in corrispondenza dei due fossi sopra indicati. Le acque del fiume Tevere non saranno oggetto di monitoraggio vistala distanza dal tracciato di progetto.

Di seguito si riporta la tabella relativa ai punti di monitoraggio previsti:

Tabella 3 Punti di monitoraggio delle acque

Punti	Coordinata X	Coordinata Y
IDR_SUP_01_M	2318905	4658401
IDR_SUP_01_V	2318763	4658384
IDR_SUP_02_M	2319043	4659099
IDR_SUP_02_V	2318996	4659248

Figura 5- 2 Localizzazione punti di indagine

5.3 METODOLOGIA E STRUMENTAZIONE

5.3.1 Tipologia di monitoraggio

Per quanto riguarda il monitoraggio delle acque lo scopo è quello di controllare lo stato qualitativo dei corpi idrici interessati sia dalla fase realizzativa che dall'esercizio dell'infrastruttura stradale in oggetto.

Il monitoraggio dei corpi idrici interessati dal progetto è effettuato mediante una coppia di misure poste a monte e a valle rispetto al tracciato di progetto.

5.3.2 Parametri da monitorare

I parametri assunti per il monitoraggio delle acque sono di natura chimico-fisica e chimica. Per quanto riguarda il monitoraggio chimico, si fa riferimento alle tabelle 1/A (Standard di qualità ambientale nella colonna d'acqua e nel biota per le sostanze dell'elenco di priorità) ed 1/B (Standard di qualità ambientale espresso come valore medio annuo "SQA-MA") del D. Lgs. n. 172 del 13 ottobre 2015.

Nel caso dei parametri chimici, fisici e chimico fisici si fa riferimento per l'esecuzione delle misure, consistenti in acquisizione del campione, conservazione e trasporto dello stesso al laboratorio con conseguente analisi, al documento 'Metodi analitici per le acque' (APAT CNR-IRSA). Il documento tratta

argomenti quali le modalità di campionamento, la qualità del dato, la cromatografia ionica, metalli e composti organometallici, microinquinanti organici e metodi tossicologici.

Il monitoraggio dei parametri chimico-fisici avviene in situ, mediante sonda multi-parametrica, e riguarda i seguenti parametri:

- ph;
- temperatura;
- potenziale redox;
- ossigeno disciolto;
- conducibilità elettrica;
- torbidità.

Il monitoraggio dei parametri chimici, riferibili alle tabelle 1/A ed 1/B del D.Lgs 172/2015, viene previsto per i seguenti parametri:

- BOD5;
- COD;
- solidi sospesi totali;
- cloruri;
- solfati;
- durezza;
- Mg;
- K;
- Na.

Per quanto concerne la determinazione dei parametri Pb e Ni, compresi nella tabella 1/A relativa agli Standard di Qualità Ambientale, stabiliti dal D.Lgs. 172/2015 andranno riferiti alle concentrazioni biodisponibili di tali sostanze, pertanto la loro determinazione sarà eseguita secondo le indicazioni fornite dal documento appositamente redatto da ISPRA, "Linee Guida per il monitoraggio delle sostanze prioritarie secondo D.Lgs. 172/2015", attraverso l'applicazione del modello "Biotic Ligand Model" (BLM) per cui sarà altresì necessario rilevare i seguenti valori:

- ph;
- Calcio;
- DOC (Carbonio Organico Disciolto).

Per il monitoraggio dei sedimenti delle acque correnti, invece, i parametri sono:

Monitoraggio chimico:

- sodio,
- potassio;
- magnesio;
- calcio, ferro;
- zinco;
- manganese.

Monitoraggio chimico-fisico:

Progettazione Definitiva ed Esecutiva dell'intervento S.S.4 variante dell'abitato di Monterotondo scalo – 2° Stralcio PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

- descrizione macroscopica: colore, odore, presenza di concrezioni, residui di origine naturale o antropica;
 - contenuto d'acqua;
 - peso specifico;
 - carbonio organico totale.

Infine, per monitorare la conformità allo scarico, i riferimenti sono quelli di cui alla Tabella 3 Allegato 5 alla Parte Terza del D.Lgs. 152/2006 e smi.

5.3.3 Metodiche di monitoraggio

La metodica di monitoraggio di compone delle seguenti fasi:

- Installazione: in tale fase vengono stabilite le posizioni dei punti di misura destinate al monitoraggio tramite GPS. Le posizioni dei punti di misura dovranno essere georeferenziate e fotografate:
- Svolgimento della campagna di misure. Ogni campagna prevede il prelievo del campione e l'analisi in laboratorio, l'elaborazione file per caricamento dati output nel Sistema Informativo.
- Compilazione di Rapporti di misura.
- Per quanto concerne l'attività di campionamento delle acque, secondo quanto definito nel manuale "Metodi Analitici per le Acque" - Sezione 1030, il campionamento costituisce la prima fase di ogni processo analitico che porterà a risultati la cui qualità è strettamente correlata a quella del campione prelevato.

Per tale motivo, il campionamento è una fase estremamente complessa e delicata che condiziona i risultati di tutte le operazioni successive e che di conseguenza incide in misura non trascurabile sull'incertezza totale del risultato dell'analisi.

Il campione dovrà quindi essere:

- prelevato in maniera tale che mantenga inalterate le proprie caratteristiche fisiche, chimiche e biologiche fino al momento dell'analisi;
- conservato in modo tale da evitare modificazioni dei suoi componenti e delle caratteristiche da valutare.

Il campionatore dovrà essere costituito da componenti in acciaio inossidabile, vetro e resine fluorocarboniche inerti; sono escluse parti costituite da materiali sintetici o metallici non inerti, valvole lubrificate con olio; anche i cavi di manovra ed i tubi di collegamento dei campionatori calati in foro devono essere in materiale inerte dal punto di vista chimico-fisico.

Per quanto riguarda il prelievo di acque è possibile impiegare due tipi di campionamento:

- dinamico,
- statico.

Particolare cura dovrà essere prestata anche nella scelta del metodo di campionamento al fine di eliminare o ridurre al minimo qualsiasi fonte di contaminazione da parte delle apparecchiature di campionamento. La contaminazione del campione da parte delle apparecchiature di campionamento può rappresentare una rilevante fonte di incertezza da associare al risultato analitico. Deve essere quindi valutata la capacità di assorbire o rilasciare analiti da parte delle diverse componenti del sistema di campionamento (tubi, componenti in plastica o in metallo, ecc.).

Progettazione Definitiva ed Esecutiva dell'intervento S.S.4 variante dell'abitato di Monterotondo scalo – 2° Stralcio PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

Un ulteriore fattore che può condizionare la qualità di una misura di un campione ambientale, è rappresentato dal fenomeno di "cross-contamination". Con tale termine si intende il potenziale trasferimento di parte del materiale prelevato da un punto di campionamento ad un altro, nel caso in cui non venga accuratamente pulita l'apparecchiatura di campionamento tra un prelievo ed il successivo. È fondamentale, pertanto, introdurre nell'ambito del processo di campionamento una accurata procedura di decontaminazione delle apparecchiature.

A seguito del campionamento delle acque oggetto di monitoraggio, i campioni verranno trasportati in laboratorio dove saranno analizzati al fine di determinare le concentrazioni dei parametri scelti per la definizione dello stato qualitativo delle acque.

Tutti i parametri si intendono misurati in conformità alle normative attualmente in vigore.

Per quanto riguarda il campionamento e le determinazioni analitiche sui sedimenti si fa riferimento alla teoria degli stream sediments, secondo cui il materiale che si accumula nei letti fluviali è rappresentativo del bacino idrografico a monte del punto di campionamento.

In situ, i campioni di stream sediments saranno prelevati ed analizzati secondo la metodologia operativa elaborata da IRSA-CNR, descritta nel "Progetto Nazionale di Monitoraggio". Tale metodologia prevede l'impiego di carotaggi, impiegati prettamente per raccogliere i sedimenti profondi nelle acque lacustri, e di benne, utilizzate invece per i prelievi in acqua corrente. Inoltre, i campioni di sedimenti devono essere prelevati successivamente alla raccolta dei campioni d'acqua ed è necessario che il campione di sedimento sia raccolto sempre con la stessa modalità per permettere il confronto tra i campioni raccolti nei diversi periodi.

La procedura di campionamento prevede dunque di:

- calare lo strumento per il campionamento recuperarlo lentamente, se è presente l'acqua sovrastante, lasciarla decantare dolcemente fino alla sua completa eliminazione;
- esaminare il sedimento e registrarne il colore, lo spessore dello strato aerobio e la tessitura.

Nel caso in cui non sia possibile utilizzare la benna, si può effettuare la campionatura mediante una paletta di plastica pulita, facendo attenzione alle seguenti accortezze:

- etichettare i contenitori prima del campionamento con la località, la data e il tipo di campione;
- svuotare il campionatore su una superficie pulita;
- riunire il sedimento di almeno 3 calate;
- raccogliere il sedimento direttamente nei contenitori;
- mettere i campioni in contenitori di vetro con sottotappo di Teflon;
- riempire completamente i contenitori e non lasciare spazio in alto;
- conservarli al buio e al fresco (<4°C);
- se vengono determinati sia composti organici, sia metalli e parametri convenzionali, raccogliere
 500 g di sedimento per ognuno di questi gruppi di parametri.

Per quanto riguarda la conservazione sarebbe opportuno conservare i sedimenti a 4°C e al buio e svolgere le analisi chimiche nel più breve tempo possibile.

Le analisi di laboratorio saranno eseguite seguendo le metodologie ufficiali APAT-IRSA-CNR 2003.

5.3.4 Tempi di frequenza del monitoraggio

Al fine di ottenere un riferimento di base con il quale confrontare i risultati dei successivi monitoraggi, è stato definito un insieme di parametri analitici da analizzare su campioni prelevati dall'insieme dei due punti, uno a monte ed uno a valle, per i due fossi interferiti dal progetto in esame.

Si prevedono i seguenti punti di monitoraggio:

- 2 punti di monitoraggio (1a monte e 1a valle) in corrispondenza del fosso Ventaglio interferito dal progetto.
- 2 punti di monitoraggio (1a monte e 1a valle) in corrispondenza del fosso Pantanella interferito dal progetto.

I campionamenti e le analisi sono finalizzati al monitoraggio dei parametri che maggiormente potrebbero essere alterati dalla realizzazione e dall'utilizzo dell'infrastruttura.

6 PIANO INDAGINI COMPONENTE ACQUE SOTTERRANEE

Nel presente capitolo si descrivono le attività di indagine che saranno svolte lungo il tracciato di progetto al fine di caratterizzare la qualità delle acque sotterranee.

6.1 OBIETTIVI DEL MONITORAGGIO

Il monitoraggio dell'ambiente idrico sotterraneo ha lo scopo di controllare l'impatto della costruzione delle opere sul sistema idrogeologico profondo, al fine di prevenire alterazioni di tipo quali-quantitativo delle acque ed eventualmente programmare efficaci interventi di contenimento e mitigazione.

Le attività che possono comportare ripercussioni sul livello della falda creando sbarramenti o situazioni di drenaggio sono principalmente legate alla costruzione delle fondazioni profonde (ad esempio i viadotti), ma, in generale, possono essere considerate critiche tutte le lavorazioni e le attività che avvengono in cantiere, dove potrebbero verificarsi eventi di sversamento accidentale di sostanze potenzialmente inquinanti o riversarsi nel suolo le acque di piattaforma.

Il monitoraggio delle acque sotterranee consentirà di:

- definire lo stato ante operam della suddetta componente ambientale;
- rilevare in corso d'opera le eventuali interferenze sulle acque sotterranee indotte dalle azioni di progetto e monitorare la loro evoluzione nel tempo;
- verificare nel post operam le caratteristiche chimiche-fisiche delle acque sotterranee.

6.2 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Nella definizione della localizzazione dei punti di monitoraggio della componente acque sotterranee sono stati individuati i punti di monitoraggio nelle aree di potenziale impatto, atti a caratterizzare i parametri delle acque nei punti ritenuti più critici.

I punti di misura sono stati scelti rispettando il criterio monte - valle rispetto alla direzione di deflusso della falda, al fine di poter valutare non solo le caratteristiche chimico – fisiche delle acque sotterranee e la superficie piezometrica della falda, ma anche di valutare e individuare "tempestivamente" eventuali variazioni di un determinato parametro tra punti di misura ubicati a monte e valle idrogeologico, delle aree di cantiere e conseguentemente eventuali impatti legati alle pressioni riconducibili, o meno, alle azioni del progetto.

Si è deciso di monitorare l'area di realizzazione del viadotto. Le fondazioni profonde delle pile del viadotto andranno ad interferire con la falda; si potrebbe quindi determinare una variazione nel regime della circolazione idrica o della qualità delle acque.

In particolare, dunque, verranno posizionati 2 punti di monitoraggio (monte/valle) in corrispondenza del viadotto.

Di seguito si riporta la tabella relativa ai 2 punti di monitoraggio previsti.

Tabella 4 Punti di monitoraggio delle acque sotterranee

Punti	Coordinata X	Coordinata Y	
IDR_SOTT_01_M	2318879	4658326	
IDR_SOTT_01_V	2318754	4658220	

Direzione Progettazione e Realizzazione Lavori

PIANO DELLE INDAGINI

Figura 6-3 Localizzazione punti di indagine

6.3 METODOLOGIA E STRUMENTAZIONE

6.3.1 Tipologia di monitoraggio

Mediante i piezometri, verranno effettate le seguenti attività di rilevamento:

- misura del livello piezometro,
- prelievo di campioni d'acqua e analisi di laboratorio dei parametri fisico-chimici e batteriologici.

6.3.2 Parametri oggetto di monitoraggio

Le misure verranno effettuate mediante piezometri, del tipo a tubo aperto, appositamente installati nei fori di sondaggio.

Il sondaggio, a carotaggio continuo, permetterà di accertare la stratigrafia locale e di conseguenza definire la profondità di posa del piezometro. Questo sarà costituito da un tubo in PVC, con diametro interno tale da consentire le operazioni di prelievo dei campioni d'acqua (si consiglia 4"), che sarà fenestrato per tutta l'altezza o nel tratto corrispondente allo strato permeabile e, in linea di principio, dovrà permettere di monitorare la falda più superficiale. Il fondo del piezometro dovrà raggiungere il substrato impermeabile (argille varicolori, flysch a prevalente contenuto argilloso) e intestarsi per almeno 50 cm, mentre la quota di posizionamento della porzione filtrante sarà stabilita in funzione dei risultati della

Realizzazione Lavori

Progettazione Definitiva ed Esecutiva dell'intervento S.S.4 variante dell'abitato di Monterotondo scalo – 2° Stralcio PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

perforazione. Il fondo del tubo piezometrico dovrà essere chiuso mediante fondello cieco impermeabile. La posa del piezometro dovrà essere preceduta da un accurato lavaggio del foro di sondaggio (fino a quando non esce acqua chiara) e da misure per controllare l'effettiva profondità raggiunta dalla perforazione. Il tubo in PVC sarà circondato da rete REP o da feltro in tessuto non tessuto e da un filtro in sabbia grossolana pulita o in ghiaietto siliceo calibrato, da posizionare nell'intercapedine perforo-tubazione in corrispondenza del tratto fenestrato. Al termine di questa fase verrà estratta la tubazione di rivestimento del foro, curando di aggiungere sabbia se necessario. È opportuno che il tratto terminale del foro, per la lunghezza di almeno 1 metro, sia sigillato con un tappo in materiale argilloso o cementato, per impedire l'ingresso nel piezometro di acque superficiali. La tubazione di misura dovrà sporgere 20 ÷ 30 cm dal piano campagna e sarà protetta da un chiusino carrabile in ghisa, munito di lucchetto. Al termine della perforazione si dovrà redigere la stratigrafia del sondaggio, indicando anche la profondità di posa del piezometro e la lunghezza del tratto forato.

Mediante i piezometri, verranno effettate le seguenti attività di rilevamento:

- misura del livello piezometro,
- prelievo di campioni d'acqua e analisi di laboratorio dei parametri fisico-chimici e batteriologici.

Misura del livello piezometrico

Le misure del livello piezometrico saranno eseguite mediante sondino elettrico (freatimetro) e riportate in apposite schede di rilevamento delle acque sotterranee. Per meglio caratterizzare le connessioni esistenti tra le oscillazioni stagionali della falda e l'andamento delle piogge sulla scheda andranno anche riportati i dati pluviometrici dell'area registrati nel giorno in cui si eseguono le letture piezometriche.

Prelievo di campioni d'acqua e analisi di laboratorio

I campionamenti e le successive analisi delle acque verranno eseguite secondo i metodi analitici per le acque stabiliti da APAT e IRSA - CNR (Manuali e linee guida 29/2003).

I punti di analisi dovranno essere catalogati inserendo le suddette caratteristiche:

- coordinate (Gauss- Boaga);
- 2) stratigrafia dei terreni e segnalazione dei livelli saturi incontrati.

Le attrezzature di campionamento dovranno essere decontaminate prima dell'utilizzazione.

Dovranno essere usati contenitori nuovi.

Il D. Lgs. 152/2006 (nell'allegato 1 alla parte III) e s.m.i. stabilisce che, "per tutti i corpi idrici sotterranei selezionati il monitoraggio riguarda tutti i parametri di base seguenti:

- tenore di Ossigeno;
- valore di pH;
- conduttività;
- nitrati;
- ione ammonio."

Nell'ambito del presente monitoraggio è previsto di integrare ed estendere la rilevazione dei suddetti parametri; per ciascuno dei punti di monitoraggio saranno rilevati i parametri indicati nella seguente tabella:

parametri	u.m.	limite di legge	limite di rivelabilità
IDROLOGICI / IDROMORFOLOGICI			
Livello idrico	m slm	-	
FISICO-CHIMICI (IN SITU)			
Conduttività elettrica a 20°C	µs/cm		
Ossigeno disciolto	mg/L		1
pH			
Portata volumetrica sorgenti	m3/s		
Potenziale Redox	mV		
Soggiacenza statica	m		
Temperatura dell'acqua	°C		
Temperatura dell'aria	°C		

Inoltre, nella fase CO si effettueranno determinazioni sul contenuto degli oli minerali nei sedimenti (Idrocarburi C>12). Le attività di misura e di campionamento dovranno essere evitate nei periodi di forte siccità o di intense piogge o in periodi ad essi successivi in quanto, i campioni potrebbero non essere significativi o rappresentativi dell'acquifero.

Tabella 5 Parametri oggetto di monitoraggio

CHIMICI (LABORATORIO)						
D.Lgs. n. 152/2006 ss.mm.ii - PARTE IV - Titolo V - Allegato 5 Fabella 2 'Concentrazione soglia di contaminazione nelle acque sotterranee'						
METALLI						
Arsenico	μg/L	10	0,25			
Cadmio	μg/L	5	1			
Cromo totale	μg/L	50	1			
Cromo VI	μg/L	5	2			
Ferro	μg/L	200	1			
Manganese	μg/L	50	2			
Nichel Piombo	μg/L	20 10	3			
Rame	μg/L μg/L	1000	1			
Zinco	μg/L	3000	25			
INQUINANTI INORGANICI	μ9/ Ε	3000	25			
	ma/l	250	1			
Solfati	mg/L	250				
COMPOSTI ORGANICI AROMATICI						
Benzene	μg/L	1	0,02			
Etilbenzene	µg/L	50	0,02			
Toluene	μg/L	15	0,02			
p-Xilene	μg/L	10	0,04			
ALIFATICI CLORURATI CANCEROGE	ENI					
1,1-Dicloroetilene	μg/L	0,05	0,005			
1,2-Dicloroetano	µg/L	3	0,1			
Clorometano	μg/L	1,5	0,3			
Cloruro di vinile	μg/L	0,5	0,00001			
Esaclorobutadiene	μg/L	0,15	0,005			
Tetracloroetilene	μg/L	1,1	0,001			
Tricloroetilene	μg/L	1,5	0,005			
Triclorometano	μg/L	0,15	0,003			
Sommatoria organoalogenati	μg/L	10	0,1			
ALIFATICI CLORURATI NON CANCEI	ROGENI					
1,1,2,2-Tetracloroetano	μg/L	0,05	0,00001			
1.1.2-Tricloroetano	µg/L	0,2	0,04			
1.1-Dicloroetano	µg/L	810	0,5			
1,2,3-Tricloropropano	μg/L	0,001	0.00001			
1,2-Dicloroetilene		60	0,00001			
•	μg/L μg/L	0.15	0,04			
1,2-Dicloropropano	μg/ L	0, 13	0,04			
AMMINE AROMATICHE	1	T	1 65.			
2,4'-DDD	µg/L	0,1	0,01			
2,4'-DDE	µg/L	0,1	0,01			
2,4'-DDT	µg/L	0,1 0,1	0,01			
4,4'-DDD 4,4'-DDE	μg/L		0,01			
4,4'-DDE 4,4'-DDT	μg/L μg/L	0,1 0,1	0,01			
4,4 -DD1 Aldrin	μg/L μg/L	0,03	0,01			
Aldrin Beta-esacloroesano	μg/L	0,03	0,01			
Dieldrin	μg/L	0,03	0,01			
DIOSSINE E FURANI	ј руг	0,03	1 0,01			
	ug/l	350	10			
Idrocarburi totali	μg/L	350	10			
Altro						
MTBE	μg/L	40	2			
		. —	. —			

Metodiche di monitoraggio 6.3.3

<u>Campionamento</u>

Per ogni singolo campione è necessario che siano garantite la stabilità e l'inalterabilità di tutti i costituenti nell'intervallo di tempo che intercorre tra il prelievo e l'analisi.

Un campione ambientale, nel momento stesso in cui viene separato e confinato in un recipiente non rappresenta più, a stretto rigore, il sistema di origine. Da quel momento il campione inizia a modificarsi fisicamente (evaporazione, sedimentazione, adsorbimento alle pareti del contenitore ecc.), chimicamente (reazioni di neutralizzazione, trasformazioni ossidative ecc.) e biologicamente (attacco batterico, fotosintesi ecc.).

Per quanto attiene ai tempi massimi intercorrenti tra il prelievo e l'analisi è raccomandabile eseguire sempre le analisi sui campioni, il più presto possibile dopo la raccolta. La consegna al laboratorio deve avvenire entro 24 ore dal prelievo. Il campione deve essere conservato tramite refrigerazione a 4°C per impedirne il deterioramento.

I contenitori utilizzati per la raccolta e il trasporto dei campioni non devono alterare il valore dei parametri per cui deve essere effettuata la determinazione, in particolare:

- non devono cedere o adsorbire sostanze, alterando la composizione del campione;
- devono essere resistenti ai vari costituenti eventualmente presenti nel campione;
- devono garantire la perfetta tenuta, anche per i gas disciolti e per i composti volatili, ove questi siano oggetto di determinazioni analitiche.

I materiali più usati per i contenitori sono generalmente il vetro e la plastica. Il vetro rimane il materiale da preferire e per il monitoraggio si consiglia di utilizzare:

- contenitore in polietilene da 2 l per le analisi dei metalli e delle specie metalliche, con aggiunta di HNO3 fino a pH<2;
- contenitore in vetro da 1 l per l'analisi del TOC;
- contenitore in vetro da 1 l per le analisi degli idrocarburi;
- contenitore in vetro da 1 l per le analisi dei tensioattivi anionici e non ionici;
- contenitore in polietilene da 500 ml per i nitrati.

I contenitori utilizzati andranno etichettati indicando il codice della stazione di monitoraggio, la data e l'ora del prelievo e dovranno essere recapitati al laboratorio di analisi entro le ventiquattro ore dal prelievo, prevedendone il trasporto mediante contenitore refrigerato alla temperatura di 4°C.

Analisi di laboratorio

Non appena il campione arriverà in laboratorio, prima di procedere con le analisi previste, si dovrà:

- verificare l'assoluta integrità dei campioni (in caso di recipienti danneggiati il campionamento deve essere nuovamente effettuato);
- verificare che ciascun contenitore riporti in modo leggibile tutte le indicazioni che permettano un'identificazione chiara e precisa del punto di monitoraggio;
- verificare la taratura degli strumenti che saranno utilizzati per le determinazioni analitiche.

Il riferimento per la caratterizzazione chimica delle acque è il manuale "Metodi Analitici per le Acque" (IRSA-APAT Rapporto 29/2003).

Le analisi chimiche devono essere eseguite presso laboratori accreditati e certificati secondo la norma UNI CEI EN ISO/IEC 17025.

MANDANTE

Progettazione Definitiva ed Esecutiva dell'intervento S.S.4 variante dell'abitato di Monterotondo scalo – 2° Stralcio PROGETTO DEFINITIVO

PIANO DELLE INDAGINI

Dovranno inoltre essere in accordo con la normativa vigente e condotte adottando metodologie ufficialmente riconosciute, tenendo conto di eventuali implementazioni, modifiche o abrogazioni.

6.3.4 Tempi e frequenza del monitoraggio

Sarà necessario prevedere una certa flessibilità e adattabilità del monitoraggio alle condizioni meteoclimatiche dell'area e, in caso di impossibilità ad eseguire i rilievi nel periodo previsto dal cronoprogramma, le misure dovranno essere rinviate al primo giorno utile in cui nei piezometri sarà rinvenuta una quantità d'acqua sufficiente per effettuare il campionamento chimico-fisico.

Si prevedono i seguenti punti di monitoraggio:

2 punti di monitoraggio (1a monte e 1a valle) in corrispondenza del viadotto di progetto.

Si dovrà provvedere a eseguire preliminarmente i fori di sondaggi in cui installare i piezometri. Per disporre di un set di dati significativi, il monitoraggio dovrà avere durata di almeno 12 mesi, durante i quali verrà effettata 1 misura ogni trimestre. Le misure dovranno coincidere, possibilmente, con la fase di morbida e di massima della falda e due nei periodi intermedi.

