AUTORIZZAZIONE UNICA EX D. LGS. N. 387/2003

PROGETTO DEFINITIVO PARCO EOLICO EMILIA

Titolo elaborato:

MONITORAGGIO AVIFAUNA E CHIROTTEROFAUNA -ANNO 2023 - PREVISIONI DI IMPATTO

	_					
AL	GD	GD	EMISSIONE	20/12/23	0	0
REDATTO	CONTR.	APPROV.	DESCRIZIONE REVISIONE DOCUMENTO	DATA	RE	v

PROPONENTE

EMILIA PRIME s.R.L.

VIA G. GARIBALDI N. 15 74023 GROTTAGLIE (TA)

CONSULENZA

GE.CO.D'OR S.R.L

VIA G. GARIBALDI N. 15 74023 GROTTAGLIE (TA)

PROGETTISTA

ING. GAETANO D'ORONZIO VIA GOITO 14 – COLOBRARO (MT)

STUDIO GECO

PIAZZA PIGHINI N. 7 42019 SCANDIANO (RE)

COORDINAMENTO MONITORAGGI

DOTT. AMBROGIO LANZI

Codice	Formato	Scala	Foglio
MCSA110a	A4	/	1 di 67

Sommario

Sommario	2
Premessa	3
Monitoraggio Uccelli	4
Area d'indagine e contesto ambientale di riferimento	5
Contesto ambientale	5
Natura 2000	7
Materiali e metodi d'indagine	8
Passeriformi nidificanti	8
Rapaci diurni	10
Uccelli notturni	11
Altri rilievi	11
Risultati del monitoraggio	13
Risultati generali	13
Uccelli nidificanti	15
Rapaci diurni	22
Flussi migratori	25
Altri rilievi	26
Natura 2000	27
Mortalità per collisione, vulnerabilità delle specie di interesse conservazionistico e grado di rischio	32
Calcolo della mortalità per collisione	32
Vulnerabilità delle specie di interesse conservazionistico	42
Grado di rischio	46
Conclusioni Uccelli	47
Note sull'impianto eolico di Casoni di Romagna	48
Monitoraggio Chirotteri	50
Informazioni sui chirotteri dell'area di indagine	51
Metodi di rilievo presso il parco eolico in progetto	53
Risultati	56
Ricerca roost	56
Rilievi bioacustici	56
Conclusioni Chirotteri	61
Note sull'impianto eolico di Casoni di Romagna	62
Note su rilievi effettuati nei siti Natura 2000	64
Bibliografia	66

Premessa

Il presente documento rappresenta il risultato dell'attività di monitoraggio dell'avifauna e della chirotterofauna intrapresa nell'anno 2023 nei pressi del sito di costruzione dell'impianto eolico denominato "Parco Eolico Emilia" sito nei comuni bolognesi di Monterenzio, Castel del Rio, Castelfiumanese e Castel San Pietro. Nel documento sono anche contenute le previsioni di impatto sull'avifauna e la chirotterofauna.

L'impostazione metodologica dei rilievi su uccelli e chirotteri segue le indicazioni del Ministero dell'Ambiente e della Sicurezza Energetica – Direzione Generale Valutazioni Ambientali, nello specifico quelle contenute nel protocollo di monitoraggio avifauna e chirotterofauna dell'Osservatorio Nazionale su Eolico e Fauna (Astiaso Garcia et al., 2012). Il protocollo contiene e riassume le indicazioni di carattere tecnico-scientifico per pianificare ed eseguire attività di monitoraggio, ante e post operam, delle popolazioni di avi e chirotterofauna su siti eolici e ha visto la collaborazione ai fini dell'elaborazione del protocollo dell'ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). Il Protocollo descrive una serie di metodologie scientifiche convalidate da studi pregressi (incluse le tecniche per il monitoraggio acustico e per la ricerca di carcasse), per effettuare nel modo più adeguato il monitoraggio dell'avifauna e della chirotterofauna nelle aree di pertinenza dei parchi eolici, analizzando una gamma di tecniche di rilevamento, in gran parte basate su rilievi sul campo, che variano in funzione delle tipologie di specie da monitorare e delle caratteristiche dei luoghi in esame. In esso sono recepite le indicazioni contenute nelle linee guida per il monitoraggio dei chirotteri (Agnelli et al., 2004), le indicazioni adottate dal Consiglio d'Europa con la risoluzione 5.6 "Wind Turbines and Bat Populations" del 2006 e le tecniche di censimento degli uccelli riportate da Bibby et al. (1992). L'approccio BACI utilizzato nel monitoraggio permetterà di valutare le variazioni nella comunità animale indagata a seguito della realizzazione dell'impianto e pertanto di quantificare l'effettivo impatto dell'opera.

Preme evidenziare come le pessime condizioni metereologiche che hanno caratterizzato il mese di maggio (che hanno portato alle due alluvioni nelle zone della Romagna) hanno reso difficoltosi i rilievi e i numerosi dissesti e frane che hanno interrotto diverse strade appenniniche hanno di fatto reso non raggiungibili alcune delle zone di monitoraggio anche nei mesi successivi.

Monitoraggio Uccelli

A cura di: *Ambrogio Lanzi*

Rilevatori: Ambrogio Lanzi, Riccardo Fontana, Stefano Sirotti, Giuseppe Rossi

Cartografia vettoriale e database: Martina Fornaciari

Area d'indagine e contesto ambientale di riferimento

Il monitoraggio dell'avifauna (così come quello dei chirotteri) è stato condotto attraverso rilievi di campo che hanno complessivamente interessato un buffer di 5.000 m dagli aerogeneratori in progetto (Figura 1). L'altitudine del territorio d'indagine è compresa tra 117 m slm e 938 m slm, mentre i nove aerogeneratori saranno posizionati a quote comprese tra 515 m slm e 600 m slm.

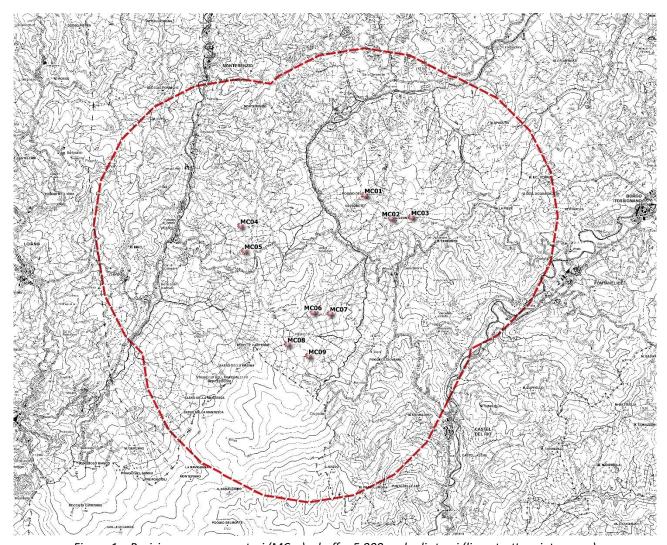


Figura 1 – Posizione aerogeneratori (MCxx) e buffer 5.000 m dagli stessi (linea tratteggiata rossa)

Contesto ambientale

Le informazioni vettoriali contenute nel Corine Land Cover (aggiornamento 2018) descrivono l'area interna al buffer di 5.000 m come principalmente occupata da boschi di latifoglie di querce a carpini (37%), colture agrarie con spazi naturali importanti (22%), seminatavi (14%), praterie naturali (16%) e aree boschive e arbustive in evoluzione (8%) (Figura 2). La fotografia di Figura 3 mostra l'area compresa tra l'aerogeneratore MC09 e MC02.

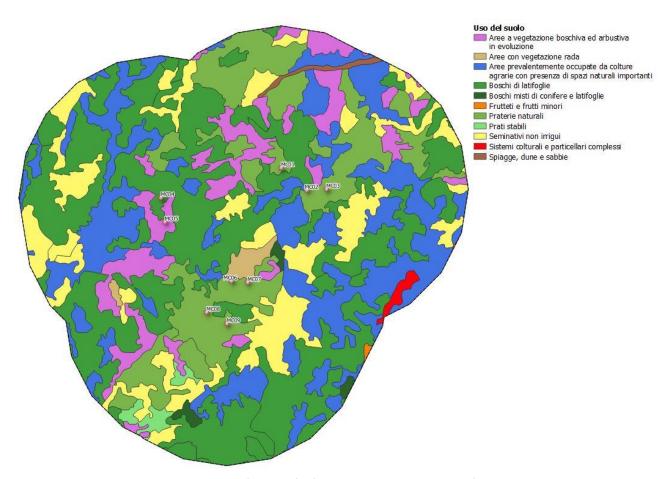


Figura 2 –Copertura del suolo dell'area buffer (Corine Land Cover, agg. 2018); MCxx = aerogeneratori

Figura 3 – Il contesto ambientale in cui è collocato l'impianto eolico

Natura 2000

L'area buffer di 5.000 m intercetta cinque siti Natura 2000 (Figura 4):

- IT4050012 Contrafforte Pliocenico (ZSC/ZPS)
- IT4050011 Media Valle del Sillaro (ZSC)
- IT4070011 Vena del Gesso Romagnola (ZSC/ZPS)
- IT4050015 La Martina, Monte Gurlano (ZSC)
- IT5140001 Passo della Raticosa, Sassi di San Zanobi e della Mantesca (ZSC)

Il sito IT4050011 è completamente incluso nell'area buffer ed è anche il più vicino agli aerogeneratori, mentre il sito IT4050012 è pressoché esterno all'area indagata.

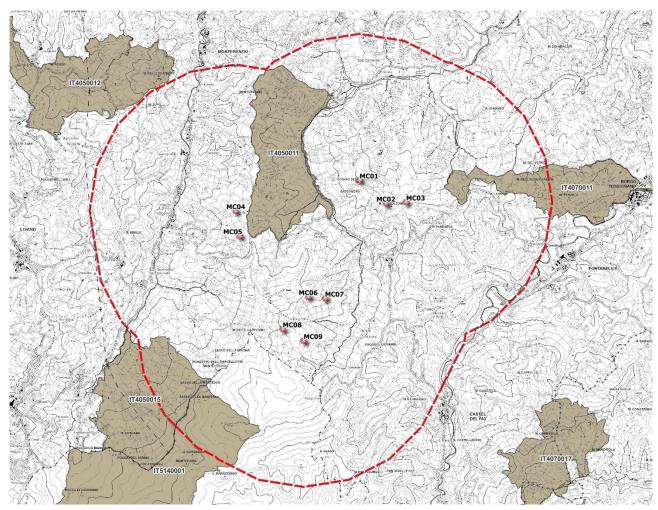


Figura 4 –Siti Natura 2000 presenti nell'area buffer (MCxx = aerogeneratori)

Materiali e metodi d'indagine

Passeriformi nidificanti

I passeriformi nidificanti sono stati censiti con due metodi (Bibby et al, 1992):

- il mapping transect (una variante del classico metodo del line transect)
- rilevamento da stazioni d'ascolto.

<u>Le metodologie, specifiche per i passeriformi, permettono tuttavia anche di raccogliere informazioni piuttosto</u> circostanziate su buone parte del popolamento ornitico dell'area indagata.

Mapping transect

Il metodo prevede di percorrere nel corso della stagione riproduttiva (maggio-giugno) un transetto annotando su una mappa la posizione di ogni contatto visivo o acustico con gli uccelli (150 metri di distanza massima per i passeriformi). Le osservazioni sono state condotte con l'ausilio di binocolo 10x40. Tutti i contatti sono stati inizialmente registrati su carta CTR in scala 1:5.000 e successivamente georeferenziati in ambiente GIS. Di ogni contatto è stata registrata la tipologia (visivo o acustico). Sono stati identificati 4 transetti di collegamento tra gli aerogeneratori (da T1 a T4 in Figura 5) per una lunghezza complessiva di 3.874 m.

Figura 5 – In rosso tratteggiato = transetti (T1 - T4); in giallo = buffer 150 m dai transetti; MCxx = aerogeneratori

Non è stato possibile predisporre e percorrere un transetto di collegamento tra gli aerogeneratori MC01 e MC02 poiché la proprietà non ha autorizzato l'accesso all'area per i rilievi. Ciascun transetto è stato percorso 8 volte nel periodo della nidificazione. Le piogge del mese di maggio che hanno funestato la Romagna, hanno provocato una serie di frane e smottamenti che hanno comportato la chiusura di diverse strade nell'area di indagine (alcune sono tutt'ora chiuse, novembre 2023): non è stato più possibile raggiungere il transetto T4 (lunghezza 819 m): le informazioni sul popolamento ornitico sono state allora raccolte da una vicina stazione di ascolto (si veda il successivo paragrafo sulle stazioni di ascolto). Lo sforzo di campionamento è stato di 8 ripetizioni per ciascun transetto.

Figura 6 – Gli ambienti attraversati dai quattro transetti

Rilevamento da stazioni d'ascolto

Il metodo consiste nel sostare all'alba o al tramonto in punti prestabiliti per 10 minuti annotando tutti gli uccelli visti o uditi entro un raggio di 150 m dai punti nel periodo maggio-giugno. Le osservazioni sono state condotte con l'ausilio di binocolo 10x40. Tutti i contatti sono stati inizialmente registrati su carta CTR in scala 1:5.000 e successivamente georeferenziati in ambiente GIS. Di ogni contatto è stata registrata la tipologia (visivo o acustico). Sono stati predisposti 11 punti d'ascolto. Per ciascuna stazione d'ascolto sono state effettuate 8 repliche nel periodo della nidificazione. Come anticipato nel paragrafo precedente, si sono dovuti abbandonare i rilievi dai punti P9, P10, P11 a causa dell'impossibilità di raggiungere l'area. In sostituzione è stata aggiunta la stazione P12. L'ubicazione delle stazioni d'ascolto è resa in Figura 7. Lo sforzo di campionamento è stato di 8 ripetizioni per ciascun punto di ascolto.

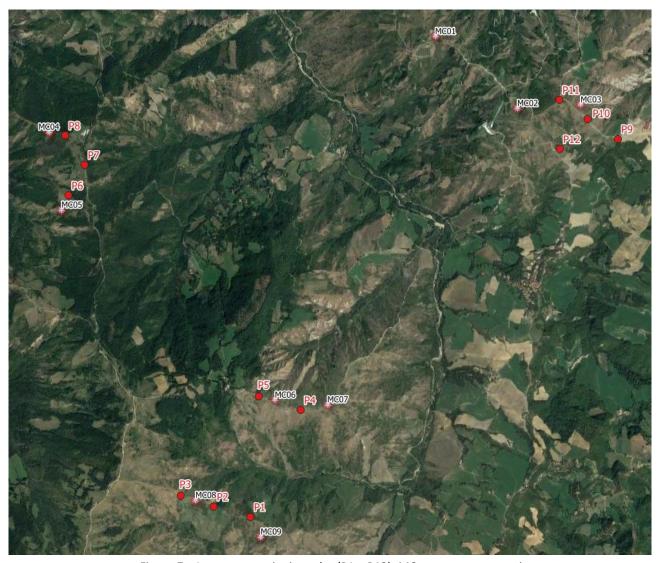


Figura 7 – In rosso = stazioni ascolto (P1 – P12); MCxx = aerogeneratori

Rapaci diurni

Per i rapaci diurni sono stati utilizzati sia i transetti (si veda paragrafo relativo ai passeriformi) che punti fissi d'osservazione (Astiaso Garcia *et al.*, 2012). Le osservazioni sono state condotte nelle ore centrali della giornata (mediamente 6-8 ore/giorno a seconda del periodo dell'anno) e hanno consentito di rilevare i rapaci in volo in un intorno di 1 km dai transetti di collegamento tra gli aerogeneratori (Figura 8). Il controllo dei rapaci in transito è stato condotto esplorando con binocolo 10x40 lo spazio circostante e con cannocchiale 20x60 montato su treppiede per le identificazioni a distanza più problematica. Di ogni contatto è stato registrato l'altezza di volo e il comportamento (es. caccia, sorvolo). Nel periodo febbraio-novembre si sono effettuate 24 giornate di osservazione. Nelle finestre temporali coincidenti con la migrazione primaverile e autunnale sono state condotte anche le osservazioni relativamente agli altri uccelli in fase migratoria.

Figura 8 – In rosso =buffer di 1 km dai transetti; MCxx = aerogeneratori

Uccelli notturni

L'indagine sugli uccelli notturni è stata condotta in orario crepuscolare e notturno attraverso punti d'ascolto (gli stessi utilizzati per indagare la comunità dei passeriformi, Figura 7) con il ricorso, in mancanza di emissioni spontanee, alla tecnica del playback (Astiaso Garcia *et al.*, 2012). Le specie target sono state: Succiacapre, Assiolo, Civetta, Barbagianni, Gufo comune, Allocco, Gufo reale. Nel periodo maggio-luglio sono state condotte 3 ripetizioni.

Altri rilievi

Al fine di ottenere ulteriori informazioni relative al popolamento ornitico all'area e di confermare la sostanziale bontà del campionamento effettuato presso i transetti di collegamento degli aerogeneratori, nel periodo marzo-giugno si sono effettuate 6 giornate di osservazione/ascolto in 11 punti all'interno di un buffer di 5.000 m dagli aerogeneratori (Figura 9). Sette punti di ascolto/osservazione ricadono all'interno dei siti Natura 2000 presenti. I dati raccolti sono di tipo qualitativo e non quantitativo.

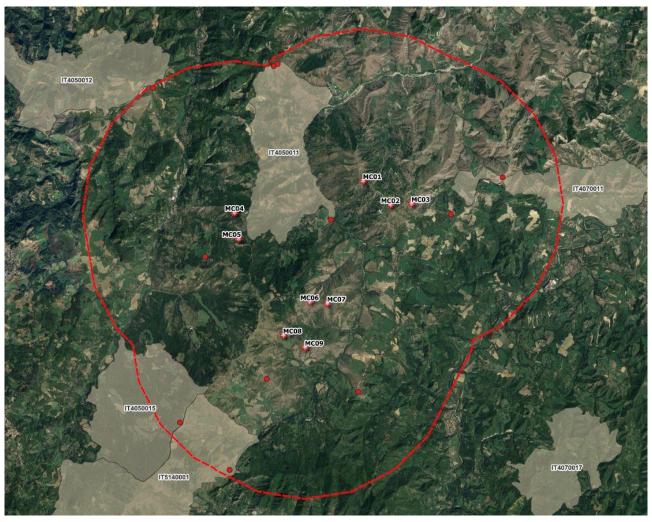


Figura 9 – In rosso tratteggiato = buffer di 5 km dagli aerogeneratori; MCxx = aerogeneratori; punti rossi = punti rilievi avifauna; poligoni = siti Natura 2000.

Risultati del monitoraggio

Risultati generali

Nel corso delle:

- 8 uscite (mapping transect e stazioni d'ascolto) dedicate ai passeriformi nidificanti;
- 24 giornate dedicate all'osservazione dei rapaci diurni e delle altre specie al di fuori del periodo riproduttivo;
- 3 serate dedicate agli uccelli notturni;

sono state contattate complessivamente 89 specie di uccelli (Tabella 1). I contatti complessivi ammontano a 4.388 e sono stati tutti georeferenziati in ambiente GIS (Figura 10). I dati vettoriali sono stati collegati a un apposto database che contiene tutte le informazioni relative alla tipologia di ciascun contatto. In Tabella 2 sono rendicontate de date nelle quali si sono effettuati i rilievi.

Specie	Nome comune	Numero
Andonologue	Airene senerine	contatti
Ardea cinerea Bubulcus ibis	Airone cenerino	3 315
	Airone guardabuoi Albanella minore	44
Circus pygargus	Albanella minore	1
Circus cyaneus		8
Strix aluco	Allocco Allodola	22
Alauda arvensis		+
Aquila pomarina	Aquila anatraia minore	4
Aquila chrysaetos	Aquila reale	1
Accipiter gentilis	Astore	
Lanius collurio	Averla piccola	29
Delichon urbicum	Balestruccio	3
Motacilla alba	Ballerina bianca	58
Cisticola juncidis	Beccamoschino	1
Circaetus gallicus	Biancone	12
Anthus campestris	Calandro	12
Hippolais polyglotta	Canapino comune	4
Acrocephalus arundinaceus	Cannareccione	1
Sylvia atricapilla	Capinera	168
Carduelis carduelis	Cardellino	137
Turdus pilaris	Cesena	1
Poecile palustris	Cincia bigia	1
Parus major	Cinciallegra	50
Cyanistes caeruleus	Cinciarella	15
Athene noctua	Civetta	2
Aegithalos caudatus	Codibugnolo	41
Phoenicurus phoenicurus	Codirosso comune	4
Phoenicurus ochruros	Codirosso spazzacamino	42
Columba palumbus	Colombaccio	116
Corvus cornix	Cornacchia grigia	90
Corvus corax	Corvo imperiale	2
Cuculus canorus	Cuculo	52
Oenanthe oenanthe	Culbianco	1
Phasianus colchicus	Fagiano comune	8
Pernis apivorus	Falco pecchiaiolo	21
Carduelis cannabina	Fanello	190
Fringilla coelebs	Fringuello	735
Egretta garzetta	Garzetta	20
Pica pica	Gazza	17
Anas platyrhynchos	Germano reale	18
Falco tinnunculus	Gheppio	147
Garrulus glandarius	Ghiandaia	42

Specie	Nome comune	Numero
Falco naumanni	Grillaio	8
Merops apiaster	Gruccione	6
Falco subbuteo	Lodolaio	7
Carduelis spinus	Lucherino	67
Phylloscopus bonelli	Luì bianco	3
Phylloscopus collybita	Luì piccolo	74
Turdus merula	Merlo	168
Sylvia melanocephala	Occhiocotto	8
Prunella modularis	Passera scopaiola	19
Alectoris rufa	Pernice rossa	6
Erithacus rubecula	Pettirosso	159
Sitta europaea	Picchio muratore	1
Dendrocopos major	Picchio rosso maggiore	1
Dendrocopos minor	Picchio rosso minore	1
Picus viridis	Picchio verde	9
Anthus pratensis	Pispola	58
Buteo buteo	Poiana	76
Anthus trivialis	Prispolone	23
Coturnix coturnix	Quaglia comune	1
Certhia brachydactyla	Rampichino comune	2
Regulus regulus	Regolo	33
Oriolus oriolus	Rigogolo	15
Hirundo rustica	Rondine	74
Apus apus	Rondone comune	65
Apus melba	Rondone maggiore	2
Saxicola torquatus	Saltimpalo	31
Troglodytes troglodytes	Scricciolo	7
Accipiter nisus	Sparviere	1
Anthus spinoletta	Spioncello	1
Sylvia communis	Sterpazzola	73
Sylvia cantillans	Sterpazzolina	85
Saxicola rubetra	Stiaccino	2
Sturnus vulgaris	Storno	344
Emberiza calandra	Strillozzo	116
Caprimulgus europaeus	Succiacapre	5
Corvus monedula	Taccola	25
Turdus viscivorus	Tordela	9
Turdus philomelos	Tordo bottaccio	38
Turdus iliacus	Tordo sassello	15
Streptopelia decaocto	Tortora dal collare	1
Streptopelia turtur	Tortora selvatica	58
Lullula arborea	Tottavilla	39
Upupa epops	Upupa	2
Luscinia megarhynchos	Usignolo	88
Carduelis chloris	Verdone	9
Serinus serinus	Verzellino	3
Emberiza cia	Zigolo muciatto	2
Emberiza cirlus	Zigolo nero	109
Totale o	contatti	4.388

Tabella 1 - Specie complessivamente rilevate nel corso del monitoraggio e numero di contatti

Tipologia monitoraggio	Numero complessivo uscite	Data uscita
Passeriformi nidificanti	8	29/04, 08/05, 30/05, 08/06, 10/06, 18/06, 25/06, 27/06
Rapaci diurni e altri uccelli	24	02/02, 15/03, 18/04, 29/04, 05/05, 08/05, 30/05, 08/06, 10/06, 18/06, 25/06, 27/06, 11/07, 07/08/, 31/08, 13/09, 27/09, 04/10, 12/10, 23/10, 27/10, 08/11, 09/11, 13/11
Uccelli notturni	3	05/05, 18/06, 11/07

Tabella 2 – Uscite di monitoraggio (anno 2023)

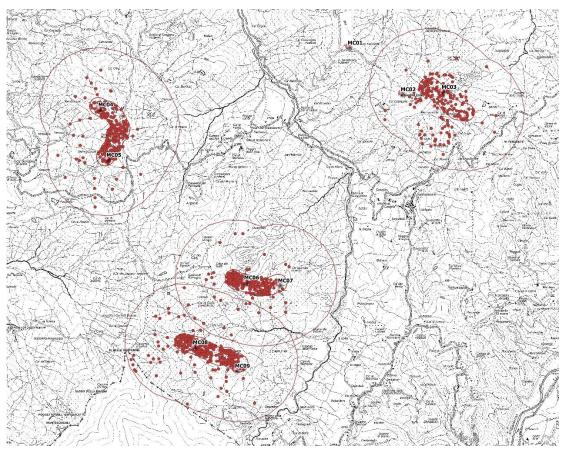


Figura 10 – Punti rossi = contatti (n. 4.388); linee rosse = buffer di 150 m e 1.000 m dai transetti di rilevamento; MCxx = aerogeneratori.

Uccelli nidificanti

Nelle otto uscite di campionamento dei passeriformi nidificanti (mapping transect e stazioni d'ascolto) sono state contattate 67 specie di uccelli (Tabella 3) pari al 75% delle specie complessivamente osservate durante l'intero monitoraggio. I contatti complessivi sono 1.368. La metodologia, specifica per i passeriformi, permette tuttavia anche di raccogliere informazioni piuttosto circostanziate su buone parte del popolamento ornitico dell'area. Tutti i contatti sono stati georeferenziati per consentire le successive elaborazioni (Figura 11).

Nome Comune	Numero contatti									
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu		
Airone cenerino	1				1					
Airone guardabuoi	54	58			17	20	21	8		
Albanella minore	9	2	6	1	3	1	1	7		
Allocco						2				

Numero contatti								
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu
Averla piccola		2	1	9	2	6	4	4
Balestruccio					2		1	
Ballerina bianca	3	1			1			
Beccamoschino							1	
Biancone			1	3		2		5
Calandro	1	1		4	1	3	1	1
Canapino comune				2	1	1		
Cannareccione		1						
Capinera	17	10	7	14	19	17	14	10
Cardellino	1	2		6		2	4	3
Cinciallegra	4					3		3
Cinciarella	2	1	1	1	1			
Civetta						1		
Codibugnolo			1		2			
Codirosso comune	1			1		2		
Codirosso spazzacamino				1			1	
Colombaccio	6	1	3	3	9	2	3	3
Cornacchia grigia	2	5		1	5	5	3	_
Cuculo	8	15	8	4	7	5	4	
Culbianco	1			-	-		-	
Fagiano comune	1	2		1	3			
Falco pecchiaiolo			3	4	1	5	3	
Fanello	4	10		2	_	3		
Fringuello	2	1	1	1		1	1	1
Garzetta		1	_	_		_	_	
Germano reale		_			18			
Gheppio	3	3	8	10	2	3	1	4
Ghiandaia	2	3	1	1	_		1	1
Gruccione		4	_	2			_	
Lodolaio			4	_		1		
Luì bianco	2	1	•					
Luì piccolo	7	2		2	2	1	1	
Merlo	8	12	14	11	13	7	7	8
Pernice rossa	1		1		2	,	,	1
Pettirosso	3	2			1	2	2	1
Picchio muratore				1	_			_
Picchio rosso maggiore				1				
Picchio verde		1					1	
Poiana	2	2	4	2	1	4	1	1
Prispolone		1	-	1	_	7	_	_
Quaglia comune		-					1	
Rampichino comune				1			-	1
Rigogolo	2	4	1	1	1	3	3	
Rondine	3	6					1	
Rondone comune	,	1		6	10	10	2	
Rondone maggiore		-			10	2		
Saltimpalo	1	4		5		5	3	5
Scricciolo	1	- -				1	,	
Sterpazzola	8	13	4	9	12	11	12	4
Sterpazzolina	6	10	5	10	15	14	16	8
Stiaccino	1	10	J	10	1.0	14	10	U
Storno						1	1	
Strillozzo	9	12	10	13	14	18	10	12
	9	12	10	13	14	3	10	12
Succiacapre Taccola		20				3		
Tortora dal collare								
Tortora dal collare	4	7	5	8	11	9	10	3
Tottavilla	8	6	1	0	11	9	4	3
IOLLAVIIIA	٥	0	1	<u> </u>		<u> </u>	4	

Nome Comune		Numero contatti									
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu			
Upupa	1			1							
Usignolo	16	12	11	12	11	10	8	8			
Verdone						2	2	1			
Verzellino		3									
Zigolo nero	9	1	1	2	9	4	5	5			

Tabella 3 – Specie campionate nelle otto uscite dedicate ai passeriformi nidificanti e numero di contatti

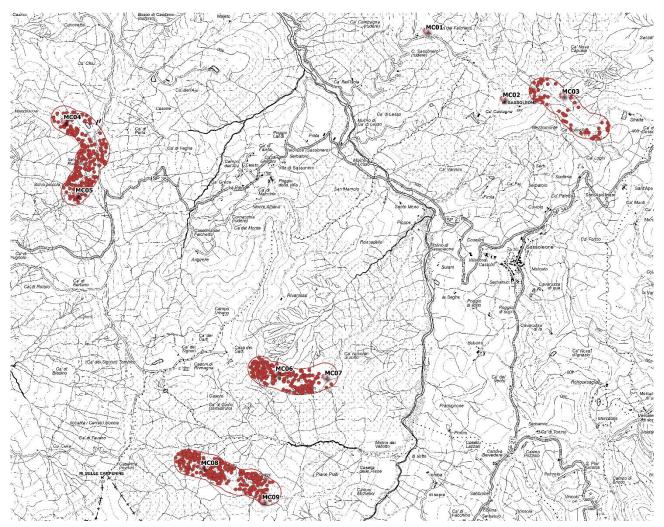


Figura 11 – Punti rossi = contatti (esclusi i rapaci); linee rosse = buffer di 150 m dai transetti/punti di rilevamento; MCxx = aerogeneratori.

Uccelli nidificanti (rapaci diurni e uccelli notturni esclusi)

A partire dalla check list di Tabella 3, sono stati esclusi i rapaci diurni e gli uccelli notturni (discussi nei paragrafi a seguire) e le specie non nidificanti nell'area buffer di 150 m in ragione sia dell'analisi dei dati raccolti che del loro status (Bagni *et al.*, 2003) e delle indagini effettuate nel vicino impianto eolico di Casoni di Romagna (Londi *et al.*, 2021). L'Airone guardabuoi, a esempio, non è nidificante nell'area d'indagine ma la frequenta in modo sistematico poiché attratto dalla presenza di bestiame al pascolo. Si è prodotta così una lista di uccelli nidificanti (46 specie) all'interno dell'area buffer di 150 m (Tabella 4), utile per valutare in sede di monitoraggio post operam le perturbazioni (dovute a disturbo, perdita di habitat e anche morte per collisione) generate nella comunità ornitica a seguito della costruzione dell'impianto eolico in progetto. L'analisi quali-quantitativa

delle comunità ornitiche è un metodo di grande affidabilità per la valutazione dello stato di salute degli ambienti naturali e per l'individuazione di avvenute modificazioni ecologiche. La rapidità di colonizzazione dei diversi ambienti e la sensibilità che mostrano alle variazioni ambientali, fanno degli uccelli un soggetto di studio tra i più appropriati per diagnosi ecologiche e per attività di monitoraggio del territorio. La distribuzione degli uccelli è determinata, almeno nella stagione riproduttiva, dalla occupazione di territori stabili e definiti. Solo nella fase della riproduzione gli uccelli sono molto selettivi nella scelta dell'ambiente, che deve soddisfare un insieme complesso di condizioni (protezione dai predatori, opportunità di nidificazione, presenza di risorse sufficienti alla sopravvivenza degli adulti e dei piccoli, ecc.) che definiscono l'ecologia della specie e determinano la selezione dell'habitat riproduttivo. In altri momenti dell'anno invece, per effetto della forte attitudine alla dispersione e del comportamento migratorio, il legame tra uccelli ed ambiente è estremamente allentato; nel caso di soste alimentari nel corso di un volo migratorio, ad esempio, gli uccelli sono poco "esigenti" e si limitano a sfruttare le risorse disponibili in un ambiente per un periodo spesso breve. L'evoluzione nel tempo della composizione e della struttura delle comunità di uccelli nidificanti fornisce pertanto un'indicazione piuttosto attendibile sulle avvenute modificazioni ecologiche di un territorio. Al fine di rendere successivamente confrontabili i dati raccolti, non si sono prodotte stime riguardo al numero di coppie presenti (i contatti canori riguardano nella maggior parte dei casi individui di sesso maschile), ma si è preferito presentare una media dei contatti registrati (canori e/o visivi).

		Numero contatti										
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu	Media			
Averla piccola		2	1	9	2	6	4	4	3,50			
Ballerina bianca	3	1			1				0,63			
Beccamoschino							1		0,13			
Calandro	1	1		4	1	3	1	1	1,50			
Canapino comune				2	1	1			0,50			
Capinera	17	10	7	14	19	17	14	10	13,50			
Cardellino	1	2		6		2	4	3	2,25			
Cinciallegra	4					3		3	1,25			
Cinciarella	2	1	1	1	1				0,75			
Codibugnolo			1		2				0,38			
Codirosso comune	1			1		2			0,50			
Codirosso spazzacamino				1			1		0,25			
Colombaccio	6	1	3	3	9	2	3	3	3,75			
Cornacchia grigia	2	5		1	5	5	3		2,63			
Cuculo	8	15	8	4	7	5	4		6,38			
Culbianco	1								0,13			
Fagiano comune	1	2		1	3				0,88			
Fanello	4	10		2		3			2,38			
Fringuello	2	1	1	1		1	1	1	1,00			
Ghiandaia	2	3	1	1			1	1	1,13			
Luì bianco	2	1							0,38			
Luì piccolo	7	2		2	2	1	1		1,88			
Merlo	8	12	14	11	13	7	7	8	10,00			
Pernice rossa	1		1		2			1	0,63			
Pettirosso	3	2			1	2	2	1	1,38			
Picchio muratore				1					0,13			
Picchio rosso maggiore				1					0,13			
Picchio verde		1					1		0,25			
Prispolone		1		1					0,25			
Quaglia comune							1		0,13			
Rampichino comune				1				1	0,25			
Rigogolo	2	4	1	1	1	3	3		1,88			
Saltimpalo	1	4		5		5	3	5	2,88			

Nama Camuna		Numero contatti										
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu	Media			
Scricciolo						1			0,13			
Sterpazzola	8	13	4	9	12	11	12	4	9,13			
Sterpazzolina	6	10	5	10	15	14	16	8	10,50			
Stiaccino	1	1							0,25			
Storno						1	1		0,25			
Strillozzo	9	12	10	13	14	18	10	12	12,25			
Tortora selvatica	4	7	5	8	11	9	10	3	7,13			
Tottavilla	8	6	1				4		2,38			
Upupa	1			1					0,25			
Usignolo	16	12	11	12	11	10	8	8	11,00			
Verdone				•		2	2	1	0,63			
Verzellino		3		•					0,38			
Zigolo nero	9	1	1	2	9	4	5	5	4,50			

Tabella 4 – Specie nidificanti (n = 46) nell'area buffer di 150 m e numero di contatti; evidenziate in azzurro le specie di interesse conservazionistico (n. = 17).

Le specie nidificanti rappresentano il 52% delle specie di uccelli complessivamente contattate durante l'intero monitoraggio dell'anno 2023. Tra le 46 specie nidificanti, 17 sono rappresentate da uccelli di interesse conservazionistico (per la definizione di specie di interesse conservazionistico si rimanda al paragrafo "Specie di interesse conservazionistico" e alla relativa Tabella 32). Per alcune di queste specie (Culbianco, Prispolone, Quaglia comune, Stiaccino) tuttavia, in ragione dell'esiguo numero dei contatti avvenuti, la nidificazione è da ritenersi poco probabile. La loro inclusione nella lista dei nidificanti è dovuta alla metodologia adottata. Sulla scorta della superficie indagata nei quattro transetti durante il mappaggio dei nidificanti (complessivamente 1,42 km²) è possibile fornire una densità media di contatti per km² (Figura 12, Tabella 5). Le specie con le maggiori densità di contatti (n. contatti/km² > 5) sono risultate essere Capinera, Strillozzo, Usignolo, Sterpazzolina, Merlo, Sterpazzola e Tortora selvatica. Ben rappresentati sono anche Cuculo, Zigolo nero, Colombaccio, Averla piccola e Saltimpalo (n. contatti/km² compreso tra 2 e 5).

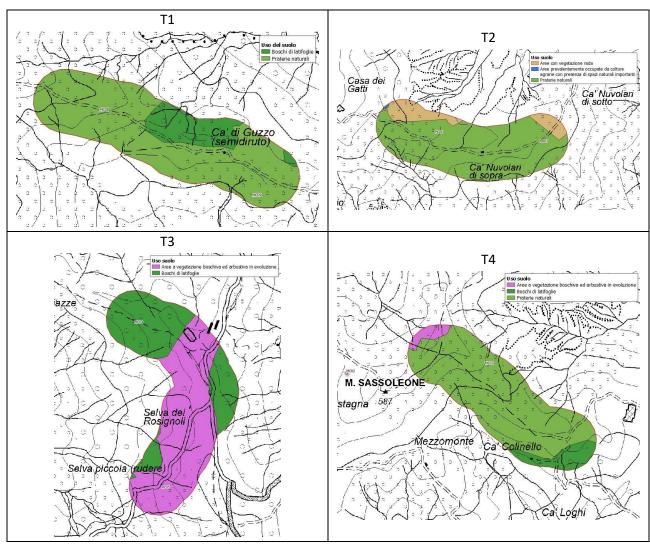


Figura 12 – Superficie indagata e tipologie ambientali presenti nei buffer di 150 m dei quattro transetti di mappaggio dei nidificanti

Nome Comune	Numero contatti/km2
Averla piccola	2,46
Ballerina bianca	0,44
Beccamoschino	0,09
Calandro	1,06
Canapino comune	0,35
Capinera	9,51
Cardellino	1,58
Cinciallegra	0,88
Cinciarella	0,53
Codibugnolo	0,27
Codirosso comune	0,35
Codirosso spazzacamino	0,18
Colombaccio	2,64
Cornacchia grigia	1,85
Cuculo	4,49
Culbianco	0,09
Fagiano comune	0,62
Fanello	1,68
Fringuello	0,70
Ghiandaia	0,80

Nome Comune	Numero contatti/km2
Luì bianco	0,27
Luì piccolo	1,32
Merlo	7,04
Pernice rossa	0,44
Pettirosso	0,97
Picchio muratore	0,09
Picchio rosso maggiore	0,09
Picchio verde	0,18
Prispolone	0,18
Quaglia comune	0,09
Rampichino comune	0,18
Rigogolo	1,32
Saltimpalo	2,03
Scricciolo	0,09
Sterpazzola	6,43
Sterpazzolina	7,39
Stiaccino	0,18
Storno	0,18
Strillozzo	8,63
Tortora selvatica	5,02
Tottavilla	1,68
Upupa	0,18
Usignolo	7,75
Verdone	0,44
Verzellino	0,27
Zigolo nero	3,17

Tabella 5 – Densità di contatti dei nidificanti per km²

Rapaci diurni

Le osservazioni condotte in periodo riproduttivo (riferite a un buffer di 1 km dai transetti di collegamento tra gli aerogeneratori), indicano presenti sei specie (Tabella 6). Indagini e osservazioni *ad hoc* hanno permesso di individuare come nidificanti certi all'interno dell'area buffer i soli Gheppio con due coppie (una a sud-ovest del transetto T4 e una tra il transetto T1 e il T2) e Poiana con una coppia a sud del transetto T4, e di indicare come poco probabile la nidificazione delle altre specie contattate. Potrebbero tuttavia essere sfuggite all'osservazione specie forestali o elusive come Astore e Sparviere.

Nama Camuna		Numero contatti							
Nome Comune	29-apr	08-mag	30-mag	08-giu	10-giu	18-giu	25-giu	27-giu	Media
Albanella minore	9	2	6	1	3	1	1	7	3,75
Biancone			1	3		2		5	1,38
Falco pecchiaiolo			3	4	1	5	3		2,00
Gheppio	3	3	8	10	2	3	1	4	4,25
Lodolaio			4			1			0,63
Poiana	2	2	4	2	1	4	1	1	2,13

Tabella 6 – Rapaci diurni osservati durante l'esecuzione dei rilievi dei nidificanti

Uccelli notturni

Nel corso delle tre uscite con il ricorso della tecnica del playback sono state contattate 3 specie (Tabella 7, Figura 13). L'Allocco è stato rilevato durante i campionamenti dei transetti T2 e T3, la Civetta nel T2 e il Succiacapre nei transetti T1 e T4. Nei buffer di 1 km dai transetti T2 e T3 sono probabilmente presenti tre

coppie di allocchi, mentre è presente una coppia di civette nel buffer del T2, nei pressi di un edificio rurale. Il numero massimo di contatti sonori avvenuti con il Succiacapre è di 3.

NomeComune	5 mag	18 giu	11 lug
Allocco	3	2	3
Civetta		1	1
Succiacapre		3	2

Tabella 7 – Uccelli notturni contattati e numero di individui

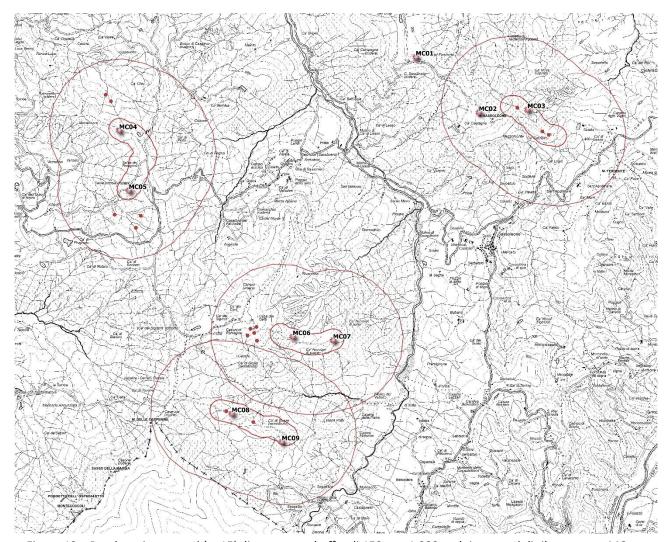


Figura 13 – Punti rossi = contatti (n. 15); linee rosse = buffer di 150 m e 1.000 m dai transetti di rilevamento; MCxx = aerogeneratori.

Rapaci diurni

Nelle 24 uscite dedicate al rilievo derapaci diurni in transito (avvistati entro l'area buffer di 1 km da ciascun transetto di collegamento tra gli aerogeneratori) sono state osservate 12 specie per un totale di 323 contatti (Tabella 8, Figura 14).

Nome comune	Numero contatti
Albanella minore	44
Albanella reale	1

Nome comune	Numero contatti
Aquila anatraia minore	1
Aquila reale	4
Astore	1
Biancone	12
Falco pecchiaiolo	21
Gheppio	147
Grillaio	8
Lodolaio	7
Poiana	76
Sparviere	1
Totale contatti	323

Tabella 8 – Rapaci diurni osservati e numero di contatti

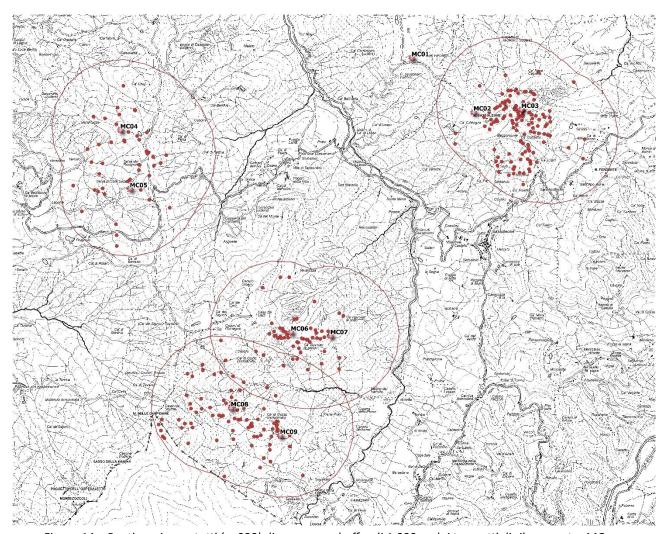


Figura 14 – Punti rossi = contatti (n. 323); linee rosse = buffer di 1.000 m dai transetti di rilevamento; MCxx = aerogeneratori.

L'andamento delle osservazioni di rapaci diurni (Figura 15) evidenzia tre picchi principali: 30 maggio (26 rapaci di 6 specie diverse), 31 agosto (31 rapaci di 7 specie diverse) e 23 ottobre (20 rapaci di 3 specie diverse). La media giornaliera nei 24 giorni di monitoraggio è stata di 13,5 contatti/giorno.

In Figura 16 e Figura 17 sono rendicontate le osservazioni di rapaci diurni suddivisi tra Accipitriformi (9 specie) e Falconiformi (3 specie).

Gheppio e Poiana sono le specie più avvistate (entrambe come detto in precedenza sono risultate anche essere nidificanti a meno di 1 km dagli aerogeneratori) e da sole rappresentano quasi il 70% del totale delle osservazioni. Il Gheppio è stato presente durante tutti i giorni di monitoraggio, con un picco di osservazioni (n = 13) in data 31 agosto. La Poiana, presente regolarmente, ha avuto un picco di contatti (n = 11) il 12 ottobre. L'Albanella minore, ragionevolmente nidificante nella valle del Sillaro, è stata osservata dal 29 aprile al 13 settembre. L'Albanella reale, specie migratrice e svernate e l'Aquila anatraia minore, migratore irregolare, sono state avvistate con un solo esemplare per specie in data 23 ottobre e 31 agosto. L'Aquila reale è stata contatta in modo irregolare dal 13 settembre al 8 novembre. Sparviere e Astore sono stati avvistati una sola volta (sono tuttavia specie piuttosto elusive e forestali). Biancone e Falco pecchiaiolo sono presenti dal 30 maggio al 31 agosto, con picchi di osservazioni rispettivamente il 27 giugno (n = 5) e il 18 giugno (n = 5). Il Grillaio è stato osservato solo due volte, 31 agosto e 13 settembre. La presenza del Lodolaio è piuttosto discontinua tra il 30 maggio e il 4 ottobre.

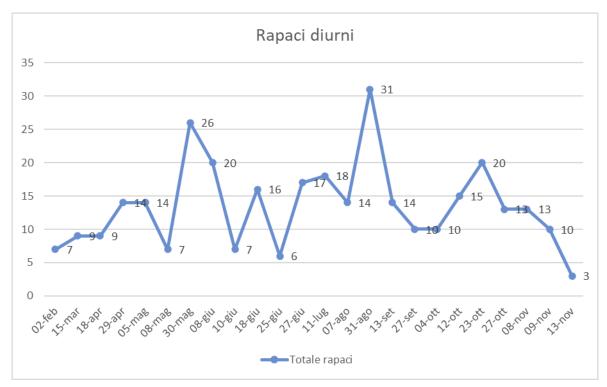


Figura 15 – Andamento delle osservazioni di rapaci diurni

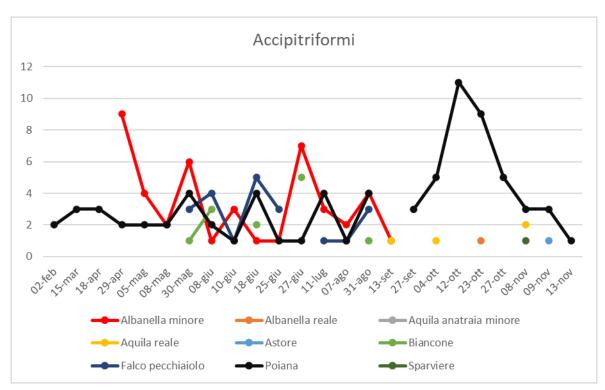


Figura 16 – Andamento delle osservazioni di Accipitriformi

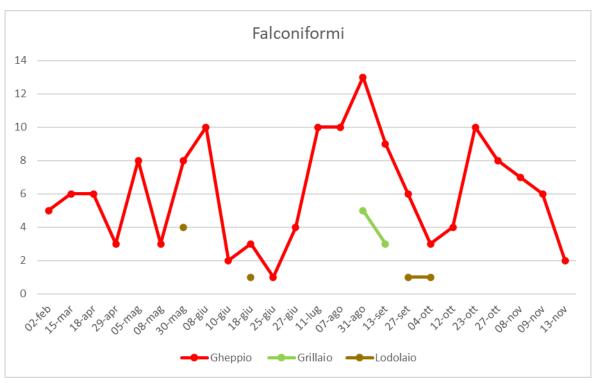


Figura 17 – Andamento delle osservazioni di Falconiformi

Flussi migratori

Durante le 24 giornate dedicate all'osservazione dei rapaci diurni sono stati registrare informazioni anche su tutti gli altri uccelli presenti. Ciò ha permesso, unitamente alle informazioni raccolte durante il campionamento dei nidificanti, di poter descrivere l'andamento delle osservazioni complessive durante

l'intero periodo di monitoraggio dal 2 febbraio al 13 novembre (Figura 18). Si è notato un movimento migratorio primaverile poco evidente e caratterizzato da numeri di individui decisamente bassi e un flusso migratorio autunnale più marcato e con un picco nei transiti il 23 ottobre (631 contatti con 30 specie diverse). Fringuello, Storno, Fanello e Pettirosso sono le specie più abbondanti nelle osservazioni autunnali.



Figura 18 – Andamento delle osservazioni complessive

Altri rilievi

Nelle 6 giornate dedicate alla raccolta di informazioni relative al popolamento ornitico dell'area all'interno del buffer di 5.000 m dagli aerogeneratori (Figura 9) sono state contattate le specie elencate in Tabella 9. Tre sole specie, Assiolo, Monachella e Ortolano, non sono state rilevate in occasione dei campionamenti precedentemente descritti.

Specie	Nome Comune	15 mar	29 apr	5 mag	6 mag	26 mag	18 giu
Bubulcus ibis	Airone guardabuoi		Х			Х	
Circus pygargus	Albanella minore		Х		Х		Χ
Strix aluco	Allocco			Х			
Alauda arvensis	Allodola				Х	Х	
Otus scops	Assiolo			Х			
Lanius collurio	Averla piccola				Х	Х	
Delichon urbicum	Balestruccio						Х
Motacilla alba	Ballerina bianca		Х	Х			Х
Circaetus gallicus	Biancone				Х		
Anthus campestris	Calandro		Х	Х	Х		
Sylvia atricapilla	Capinera		Х	Х	Х	Х	Х
Carduelis carduelis	Cardellino		Х		Х	Χ	
Parus major	Cinciallegra		Х	Х			Χ
Cyanistes caeruleus	Cinciarella	Х	Х				Х
Athene noctua	Civetta			Х			
Aegithalos caudatus	Codibugnolo	Х	Х			Х	Х
Phoenicurus phoenicurus	Codirosso comune			Χ			Χ

Specie	Nome Comune	15 mar	29 apr	5 mag	6 mag	26 mag	18 giu
Phoenicurus ochruros	Codirosso spazzacamino			Х			
Columba palumbus	Colombaccio		Х		Х	Х	Χ
Corvus cornix	Cornacchia grigia	Х	Х	Х	Х	Х	
Cuculus canorus	Cuculo		Х	Х	Х	Х	Х
Phasianus colchicus	Fagiano comune		Х		Х		Χ
Pernis apivorus	Falco pecchiaiolo			Х	Х	Х	
Carduelis cannabina	Fanello		Х				
Fringilla coelebs	Fringuello	Х			Х	Х	Х
Egretta garzetta	Garzetta		Х				
Pica pica	Gazza		Х	Х			
Falco tinnunculus	Gheppio	Х	Х	Х	Х	Х	Х
Garrulus glandarius	Ghiandaia	Х	Х	Х	Х	Х	
Merops apiaster	Gruccione			Х		Х	
Phylloscopus bonelli	Luì bianco					Х	
Phylloscopus collybita	Luì piccolo		Х	Х	Х	Х	
Turdus merula	Merlo	Х	Х		Х	Х	
Oenanthe hispanica	Monachella		Х				
Emberiza hortulana	Ortolano					Х	
Alectoris rufa	Pernice rossa		Х				
Erithacus rubecula	Pettirosso	Х	Х		Х	Х	
Dendrocopos major	Picchio rosso maggiore		Х		Х		Х
Picus viridis	Picchio verde			Х			Х
Buteo buteo	Poiana		Х		Х	Х	Х
Coturnix coturnix	Quaglia comune				Х		
Oriolus oriolus	Rigogolo				Х	Х	
Hirundo rustica	Rondine		Х	Х	Х		Х
Apus apus	Rondone comune			Х	Х	Х	Х
Saxicola torquatus	Saltimpalo				Х		
Troglodytes troglodytes	Scricciolo			Х			
Sylvia communis	Sterpazzola		Х			Х	
Sylvia cantillans	Sterpazzolina		Х				Χ
Sturnus vulgaris	Storno				Х		Χ
Emberiza calandra	Strillozzo		Х		Х	Х	
Turdus philomelos	Tordo bottaccio	Х			Х	Х	
Streptopelia decaocto	Tortora dal collare		Х				
Streptopelia turtur	Tortora selvatica	_	Х	Х	Х	Х	_
Lullula arborea	Tottavilla			Х	Х	Х	
Upupa epops	Upupa		Х	Х			
Luscinia megarhynchos	Usignolo		Х				Х
Carduelis chloris	Verdone			Х	Х	Х	
Serinus serinus	Verzellino		Χ				Χ
Emberiza cirlus	Zigolo nero					Х	

Tabella 9 – Specie contattate nel corso delle 6 uscite supplementari nel buffer di 5.000 m

Natura 2000

È stato creato un database contenete le informazioni sugli uccelli riportate nei formulari standard dei 5 siti Natura 2000 presenti a una distanza inferiore a 5 km dagli aerogeneratori (Figura 4). Attraverso tale database sono stati possibili confronti con le specie osservate durante i monitoraggi precedentemente descritti nell'intorno di 1 km dai transetti di collegamento tra gli aerogeneratori.

I cinque formulari elencano complessivamente 65 specie (Tabella 10), mentre i monitoraggi hanno permesso di individuare 89 differenti specie di uccelli (Tabella 1). Dal confronto tra le due tabelle (Tabella 1 e Tabella 10) emerge che:

• 36 specie sono state contattate durante i monitoraggi e sono anche presenti nei formulari (Tabella 11);

- 53 specie sono state contattate durante i monitoraggi ma non sono presenti nei formulari (Tabella 12);
- 29 specie sono presenti nei formulari ma non sono state rilevate durante i monitoraggi nei pressi degli
 aerogeneratori (Tabella 13). Ragionevolmente la presenza di tali specie nei formulari dipende del fatto
 che alcuni dei Siti Natura 2000 si estendono fino a un distanza di quasi 25 km dal parco eolico in
 oggetto e pertanto ospitano ambienti anche molto differenti da quello indagato con conseguenti
 popolamenti ornitici comprendenti anche altre specie.

Nome comune
Nitticora
Garzetta
Falco pecchiaiolo
Biancone
Falco di palude
Albanella reale
Albanella minore
Poiana
Aquila reale
Grillaio
Gheppio
Falco cuculo
Lodolaio
Lanario
Falco pellegrino
Quaglia comune
Re di quaglie
Gru
Tortora selvatica
Cuculo
Gufo reale
Gufo comune
Succiacapre
Rondone comune
Rondone maggiore
Martin pescatore
Upupa
Torcicollo
Picchio verde
Picchio rosso maggiore
Picchio rosso minore
Calandrella
Tottavilla
Topino
Rondine
Balestruccio
Calandro
Prispolone
Cutrettola
Usignolo
Codirosso comune
Stiaccino
Culbianco
Codirossone
Passero solitario
Canapino maggiore
Canapino comune
Sterpazzolina

Nome comune			
Bigia grossa			
Bigiarella			
Sterpazzola			
Beccafico			
Capinera			
Luì bianco			
Luì verde			
Luì grosso			
Pigliamosche			
Balia dal collare			
Balia nera			
Rigogolo			
Averla piccola			
Averla cenerina			
Averla capirossa			
Ortolano			
Magnanina comune			

Tabella 10 – Specie riportate nei formulari dei 5 siti Natura 2000

Nome comune
Albanella minore
Albanella reale
Aquila reale
Averla piccola
Balestruccio
Biancone
Calandro
Canapino comune
Capinera
Codirosso comune
Cuculo
Culbianco
Falco pecchiaiolo
Garzetta
Gheppio
Grillaio
Lodolaio
Luì bianco
Picchio rosso maggiore
Picchio rosso minore
Picchio verde
Poiana
Prispolone
Quaglia comune
Rigogolo
Rondine
Rondone comune
Rondone maggiore
Sterpazzola
Sterpazzolina
Stiaccino
Succiacapre
Tortora selvatica
Tottavilla
Upupa
Usignolo
durante i monitoraggi e anche n

Tabella 11 – Specie contattate durante i monitoraggi e anche presenti nei formulari standard

Nome comune
Airone cenerino
Airone guardabuoi
Allocco
Allodola
Aquila anatraia minore
Astore
Ballerina bianca
Beccamoschino
Cannareccione
Cardellino
Cesena
Cincia bigia
Cinciallegra
Cinciarella
Civetta
Codibugnolo
Codirosso spazzacamino
Colombaccio
Cornacchia grigia
Corvo imperiale
Fagiano comune
Fanello
Fringuello
Gazza
Germano reale
Ghiandaia
Gruccione
Lucherino
Luì piccolo
Merlo
Occhiocotto
Passera scopaiola
Pernice rossa
Pettirosso
Picchio muratore
Pispola
Rampichino comune
Regolo
Saltimpalo
Scricciolo
Sparviere
Spioncello
Storno
Strillozzo
Taccola
Tordela
Tordo bottaccio
Tordo sassello
Tortora dal collare
Verdone
Verzellino
Zigolo muciatto
Zigolo nero

Tabella 12 – Specie contattate durante i monitoraggi e non presenti nei formulari standard

Nome comune
Averla capirossa
Averla cenerina
Balia dal collare
Balia nera
Beccafico
Bigia grossa
Bigiarella
Calandrella
Canapino maggiore
Codirossone
Cutrettola
Falco cuculo
Falco di palude
Falco pellegrino
Gru
Gufo comune
Gufo reale
Lanario
Luì grosso
Luì verde
Magnanina comune
Martin pescatore
Nitticora
Ortolano
Passero solitario
Pigliamosche
Re di quaglie
Topino
Torcicollo

Tabella 13 – Specie presenti nei formulari standard e non contattate durante i monitoraggi

Mortalità per collisione, vulnerabilità delle specie di interesse conservazionistico e grado di rischio

Calcolo della mortalità per collisione

In un parco eolico, considerando le fasi di costruzione/dismissione dello stesso e di esercizio, gli uccelli possono subire impatti diretti (ad esempio durante il periodo della nidificazione, per distruzione di nidi) e indiretti (con sottrazione di ambienti utilizzati per lo svolgimento del ciclo biologico annuale). Ma certamente l'impatto diretto più noto e maggiormente studiato a carico di questa componente riguarda il funzionamento stesso degli aerogeneratori e considera le possibili collisioni tra esemplari in volo e pale in rotazione (De Lucas et al, 2007).

Il rischio di collisione dell'avifauna contro i rotori degli aerogeneratori del parco eolico in studio è stato analizzato per le specie di uccelli che, secondo quanto rilevato dall'analisi dei dati di monitoraggio dell'anno 2023, sono risultati maggiormente esposte, e di cui si sono ottenuti dati circa il potenziale numero individui in attraversamento (specie appartenenti agli Ordini Accipitriformes e Falconiformes).

Alle specie è stato applicato il metodo per la stima del numero di collisioni per anno (Band et al., 2007 e Scottish Natural Heritage, 2000 e 2010). Per la definizione del metodo per il calcolo delle potenziali collisioni si fa riferimento alle Linee Guida pubblicate da Scottish Natural Heritage (SNH), Windfarms and birds: calculating a theoretical collision risk assuming no avoiding action e il relativo foglio di calcolo in formato Excel. Successivamente è stato attribuito un giudizio al grado di impatto.

Le specie analizzate sono elencate in Tabella 14 mentre i dati tecnici dell'impianto eolico sono sintetizzate in Tabella 15.

Nome comune	Specie					
Albanella minore	Circus pygargus					
Albanella reale	Circus cyaneus					
Aquila anatraia minore	Aquila pomarina					
Aquila reale	Aquila chrysaetos					
Astore	Accipiter gentilis					
Biancone	Circaetus gallicus					
Falco pecchiaiolo	Pernis apivorus					
Gheppio	Falco tinnunculus					
Grillaio	Falco naumanni					
Lodolaio	Falco subbuteo					
Poiana	Buteo buteo					
Sparviere	Accipiter nisus					

Tabella 14 – Specie per le quali è stato applicato il metodo per la stima del numero di collisioni per anno.

Parametro	Valore				
Altezza torre	135 m				
Diametro rotore	170 m				
Area spazzata dal rotore	22.698 m ²				
Numero pale	3				
Spessore pale (massimo alla base)	4,5 m				
Angolo inclinazione pala (valore medio)	15°				
Tempo medio di rotazione	6,818 s				
Numero aerogeneratori	9				
Lunghezza impianto (MPC)	17.215 m				
Quota min - quota max	515 – 600 m slm				

Tabella 15 – Caratteristiche degli aerogeneratori e del parco eolico

Metodi per il calcolo della mortalità per collisione

Il numero effettivo di individui che potrebbero entrare in collisione con i rotori (C) si ottiene moltiplicando il numero di individui che potrebbero attraversare l'area spazzata dai rotori (U) per la probabilità di venire colpiti o di scontrarsi con le pale (P).

La formula è la seguente:

$$C = U \times P$$

 $U = u \times (A/S)$

A seguire i passaggi adottati nel calcolo.

Superficie di rischio complessiva: S

Tale parametro rappresenta la superficie perpendicolare al suolo costituita dalla massima lunghezza dell'impianto e dall'altezza della turbina più alta: S = L x H.

Per il calcolo di H, considerando l'aerogeneratore posto alla quota più elevata, all'altezza della torre (altezza torre + raggio del rotore) viene aggiunta la differenza di quota rispetto alla media altitudinale del parco eolico. H è pertanto uguale a 268 m.

Per la lunghezza complessiva (L) (perimetro del parco) è stato considerato il minimo poligono convesso in grado di ricomprendere l'intero parco eolico: di 17.2015 m.

La superficie di rischio complessiva (S) è di 4.613.620 m².

Area spazzata dai rotori: A

L'area totale spazzata dai rotori si ottiene moltiplicando il numero dei rotori per l'area spazzata da ciascun rotore come riportato nella scheda tecnica dell'impianto.

L'area spazzata da ciascuno dei 9 rotori è di 22.698 m²; l'area complessiva spazzata dai rotori (A) è pertanto di 204.282 m².

Coefficiente netto di rischio: (A/S)

Rappresenta il coefficiente di rischio nell'attraversamento delle superfici spazzate dai rotori ed è rappresentato dal rapporto tra superficie effettivamente spazzata dai rotori (A) e la superficie complessiva di rischio (S).

Per l'impianto in oggetto il valore è di 0,044

Numero di uccelli che possono attraversare la superficie di rischio in un anno: u.

Questo valore è stato calcolato per tutte le specie elencate in Tabella 14 sulla scorta delle osservazioni giornaliere effettuate nei 24 giorni di monitoraggio dei rapaci (Tabella 8). A scopo estremamente cautelativo tutte le osservazioni di rapaci sono state considerate a rischio.

È stata calcolata la media giornaliera di individui potenzialmente presenti (n. avvistamenti/n. giorni monitoraggio) e, per motivi prudenziali, si è considerato che la probabilità di presenza degli individui osservati per alcuni periodi dell'anno, sia ugualmente distribuita nei 12 mesi, senza tenere conto che per alcune specie la maggiore probabilità di passaggio sia solo in alcuni periodi dell'anno. Albanella minore, Biancone e Falco pecchiaiolo, a esempio, sono stati osservati al massimo per sei mesi nell'area dell'impianto. Pertanto, il numero di individui che potenzialmente possono attraversare la superficie di rischio corrisponde al numero medio giornaliero di individui x 365 giorni. Noti (u) e (A/S) per semplice calcolo si ottiene (U).

Rischio di collisione: P

Per il calcolo del rischio di collisione è stato utilizzato il foglio Excel prodotto dalla SNH (Scottish Natural Heritage) che calcola la probabilità di collisione in base alla distanza dal mozzo e fornisce una media dei valori sotto vento e sopra vento arrivando alla media finale.

I parametri tecnici dell'impianto impostati per il calcolo sono illustrati in Tabella 16. I valori inseriti sono prudenziali (es. larghezza pala, velocità di rotazione) e pertanto tendono a generare una probabilità di collisione maggiore.

Parametro tecnico	Valore		
K (forma della pala)	1 (pala tridimensionale)		
Numero pale	3		
Spessore pala (massimo alla base,	4,5 m		
decisamente minore verso l'estremità)			
Angolo inclinazione pala (valore medio poiché	15°		
variabile)			
Diametro rotore	170 m		
Velocità di rotazione della turbina (medio)	6,818 s		

Tabella 16 – Parametri tecnici inseriti nel foglio di calcolo

I parametri biologici delle specie di uccelli oggetto di analisi impostati per il calcolo sono la lunghezza, l'apertura alare, la velocità di volo e il tipo di volo. Essi sono sintetizzati in Tabella 17. I parametri dimensionali sono tratti da Brichetti & Fracasso (2003), quelli relativi alla velocità di volo da Cooke (1933) e per analogia a specie simili quando non disponibili. Tutti i valori impostati sono i maggiormente prudenziali tra quelli reperiti in bibliografia.

Nome comune	Lunghezza (m)	Apertura alare (m)	Velocità di volo (m/s)	Volo battuto (0) Veleggiatore (1)	
Albanella minore	0,47	1,25	8,5	1	
Albanella reale	0,52	1,25	11	1	
Aquila anatraia minore	0,68	1,65	15	1	
Aquila reale	0,93	2,40	15	1	
Astore	0,62	1,25	10	0	
Biancone	0,67	1,90	8	1	
Falco pecchiaiolo	0,60	1,45	8,5	1	
Gheppio	0,34	0,75	8,5	0	
Grillaio	0,32	0,70	8,5	0	
Lodolaio	0,36	0,85	10	0	
Poiana	0,57	1,35	8	1	
Sparviere	0,38	0,80	10	0	

Tabella 17 – Parametri biologici inseriti nel foglio di calcolo

Dopo aver stimato il numero di individui a rischio ed il rischio di collisione per ciascuna specie, il metodo prevede che si tenga in considerazione anche un altro fattore, ossia la <u>capacità di ogni specie di evitare le pale</u> degli aerogeneratori. Lo Scottish Natural Heritage raccomanda di utilizzare un valore pari al 98% per tutte le specie, ad eccezione di Albanella reale e Gheppio per i quali studi più approfonditi hanno indicato una capacità di evitare le pale pari rispettivamente al 99% (Albanella reale; per analogia anche Albanella minore) e al 95% (Gheppio; per analogia anche Grillaio e Lodolaio).

Il numero di collisioni/anno è calcolato con la seguente formula:

(numero di voli a rischio) x (rischio medio di collisione) x (capacità di evitare le pale)

È stato infine attribuito un giudizio all'impatto derivante dalla morte per collisione secondo quanto riportato nella seguente tabella.

Numero di collisioni/anno	Valore impatto
0 - 0,25	Molto basso
0,26 - 0,50	Basso
0,51 – 0,75	Medio
0,76 - 1	Alto
>1	Molto alto

Tabella 18 – Valore dell'impatto per collisione

Calcolo della mortalità per collisione

Con la metodologia sopra descritta si è proceduto attraverso il foglio di calcolo prodotto dalla SNH a stabilire il rischio di collisione (P) per le specie di rapaci osservate nei 24 giorni di monitoraggio. A seguire i fogli di calcolo del rischio di collisione per le diverse specie (n = 12).

	are in b	luo								W Band	28/12/2023	
Only enter input paramete	215 111 10	iue								VV Dallu	20/12/2023	
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	llision) as a	function of	radius				
NoBlades	3						Upwind:			Downwind:		
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution	
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r	
BirdLength	0,47	m	0,025	0,575	4,34	14,97	0,78	0,00097	13,63	0,71	0,00088	
Wingspan	1,25	m	0,075	0,575	1,45	5,44	0,28	0,00211	4,10	0,21	0,00159	
F: Flapping (0) or gliding (+1	1		0,125	0,702	0,87	4,15	0,22	0,00269	2,52	0,13	0,00163	
			0,175	0,860	0,62	3,81	0,20	0,00345	1,81	0,09	0,00164	
Bird speed	8,5	m/sec	0,225	0,994	0,48	3,63	0,19	0,00422	1,31	0,07	0,00153	
RotorDiam	170	m	0,275	0,947	0,39	3,04	0,16	0,00433	0,84	0,04	0,00119	
RotationPeriod	6,82	sec	0,325	0,899	0,33	2,82	0,15	0,00475	0,73	0,04	0,00122	
			0,375	0,851	0,29	2,53	0,13	0,00492	0,55	0,03	0,00107	
			0,425	0,804	0,26	2,30	0,12	0,00505	0,51	0,03	0,00113	
			0,475	0,756	0,23	2,10	0,11	0,00517	0,60	0,03	0,00147	
Bird aspect ratioo: β	0,38		0,525	0,708	0,21	1,93	0,10	0,00525	0,66	0,03	0,00179	
			0,575	0,660	0,19	1,78	0,09	0,00530	0,70	0,04	0,00208	
			0,625	0,613	0,17	1,65	0,09	0,00533	0,72	0,04	0,00233	
			0,675	0,565	0,16	1,52	0,08	0,00532	0,73	0,04	0,00256	
			0,725	0,517	0,15	1,41	0,07	0,00529	0,74	0,04	0,00276	
			0,775	0,470	0,14	1,30	0,07	0,00523	0,73	0,04	0,00293	
			0,825	0,422	0,13	1,20	0,06	0,00514	0,72	0,04	0,00308	
			0,875	0,374	0,12	1,11	0,06		0,70	0,04	-,	
			0,925	0,327	0,12	1,02	0,05	0,00487	0,68	0,04	0,00327	
			0,975	0,279	0,11	0,93	0,05	0,00469	0,66	0,03	0,00333	
				Overall p(collision)	=	Upwind	8,9%		Downwind	4,1%	

Tabella 19 – Calcolo del rischio di collisione (Band 2007) per Albanella minore

^	U	0	U	L	- 1			1	U	IX		
CALCULATION OF COI	LLISIOI	N RIS	K FOR B	IRD PAS	SING T	HROUGI	H ROTOR	AREA				
Only enter input paramet	ers in b	lue								W Band	28/12/2023	
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	llision) as a	function of	radius				
NoBlades	3						Upwind:			Downwind:		
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide	contribution		
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r	
BirdLength	0,52	m	0,025	0,575	5,62	19,18	0,77	0,00096	17,84	0,71	0,00089	
Wingspan	1,25	m	0,075	0,575	1,87	6,84	0,27	0,00205	5,50	0,22	0,00165	
F: Flapping (0) or gliding (+1	1		0,125	0,702	1,12	5,14	0,21	0,00257	3,50	0,14	0,00175	
			0,175	0,860	0,80	4,64	0,19	0,00325	2,64	0,11	0,00185	
Bird speed	11	m/sec	0,225	0,994	0,62	4,35	0,17	0,00392	2,04	0,08	0,00183	
RotorDiam	170	m	0,275	0,947	0,51	3,61	0,14	0,00397	1,40	0,06	0,00155	
RotationPeriod	6,82	sec	0,325	0,899	0,43	3,08	0,12	0,00400	0,99	0,04	0,00128	
			0,375	0,851	0,37	2,90	0,12	0,00435	0,91	0,04	0,00137	
			0,425	0,804	0,33	2,61	0,10	0,00444	0,74	0,03	0,00125	
			0,475	0,756	0,30	2,37	0,09	0,00451	0,61	0,02	0,00116	
Bird aspect ratioo: β	0,42		0,525	0,708	0,27	2,17	0,09	0,00455	0,52	0,02	0,00110	
			0,575	0,660	0,24	1,99	0,08	0,00458	0,59	0,02	0,00135	
			0,625	0,613	0,22	1,83	0,07	0,00458	0,64	0,03	0,00159	
			0,675	0,565	0,21	1,69	0,07	0,00456	0,67	0,03	0,00180	
			0,725	0,517	0,19	1,56	0,06	0,00452	0,69	0,03	0,00199	
			0,775	0,470	0,18	1,44	0,06	0,00445	0,70	0,03	0,00216	
			0,825	0,422	0,17	1,32	0,05	0,00437	0,70	0,03	0,00231	
			0,875	0,374	0,16	1,22	0,05	0,00426	0,69	0,03	0,00243	
			0,925	0,327	0,15	1,12	0,04	0,00413	0,68	0,03	0,00253	
			0,975	0,279	0,14	1,02	0,04	0,00398	0,67	0,03	0,00261	
				Overall p(collision)	=	Upwind	7,8%		Downwind	3,4%	
								Average	5,6%			

Tabella 20 – Calcolo del rischio di collisione (Band 2007) per Albanella reale

Only enter input paramete	re in bl	luo								W Band	28/12/2023	
only critici input parameters in blue		iue								vv Band	28/12/2023	
K: [1D or [3D] (0 or 1)	1		Calculation	n of alpha	and p(col	lision) as a	function of	radius				
NoBlades	3						Upwind:			Downwind:		
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution	
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r	
BirdLength	0,68	m	0,025	0,575	7,66	27,86	0,82	0,00102	26,52	0,78	0,00097	
Wingspan	1,65	m	0,075	0,575	2,55	9,73	0,29	0,00214	8,39	0,25	0,00185	
: Flapping (0) or gliding (+1	1		0,125	0,702	1,53	7,10	0,21	0,00260	5,46	0,16	0,00200	
			0,175	0,860	1,09	6,24	0,18	0,00320	4,24	0,12	0,00218	
Bird speed	15	m/sec	0,225	0,994	0,85	5,73	0,17	0,00378	3,41	0,10	0,00225	
RotorDiam	170	m	0,275	0,947	0,70	4,70	0,14	0,00379	2,49	0,07	0,00201	
RotationPeriod	6,82	sec	0,325	0,899	0,59	3,97	0,12	0,00378	1,87	0,05	0,00179	
			0,375	0,851	0,51	3,42	0,10	0,00376	1,43	0,04	0,00158	
			0,425	0,804	0,45	2,98	0,09	0,00372	1,11	0,03	0,00139	
			0,475	0,756	0,40	2,88	0,08	0,00402	1,12	0,03	0,00157	
Bird aspect ratioo: β	0,41		0,525	0,708	0,36	2,63	0,08	0,00405	0,98	0,03	0,00151	
			0,575	0,660	0,33	2,41	0,07	0,00406	0,87	0,03	0,00146	
			0,625	0,613	0,31	2,21	0,06	0,00405	0,78	0,02	0,00143	
			0,675	0,565	0,28	2,03	0,06	0,00403	0,72	0,02	0,00142	
			0,725	0,517	0,26	1,88	0,06	0,00399	0,69	0,02	0,00146	
			0,775	0,470	0,25	1,73	0,05	0,00394	0,72	0,02	0,00164	
			0,825	0,422	0,23	1,60	0,05	0,00387	0,75	0,02	0,00180	
			0,875	0,374	0,22	1,47	0,04	0,00378	0,76	0,02	0,00195	
			0,925	0,327	0,21	1,35	0,04	0,00367	0,77	0,02	0,00208	
			0,975	0,279	0,20	1,24	0,04	0,00355	0,77	0,02	0,00219	
				Overall p(collision)	=	Upwind	7,1%		Downwind	3,5%	
								Average	5,3%			

Tabella 21 – Calcolo del rischio di collisione (Band 2007) per Aquila anatraia minore

CALCULATION OF COL	LISIO	N DISI	K FOD B	IDD DAS	SING T	HDOLIGI	H DOTOD	ΔDEΔ	J	11	L
Only enter input parameter			N FUR B	IKD PAS	SING I	nkoudi	ROTOR	AREA		W Band	28/12/2023
Only enter input paramete	CI 3 III D	iue								VV Danu	20/12/2020
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	llision) as a	function of	radius			
NoBlades	3		ouiouiuu	n or aipiia	una proc	illoion, do c	Upwind:			Downwin	d·
MaxChord	4.5		r/R	c/C	α	collide	Opmina.	contribution	collide	Dominion	contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0,93	m	0,025	0,575	7,66	31,52	0,92	0,00116	30,18	0,89	0,00111
Wingspan	2,4	m	0,075	0,575	2,55	10,95	0,32	0,00241	9,61	0,28	0,00211
F: Flapping (0) or gliding (+1	1		0,125	0,702	1,53	7,83	0,23	0,00287	6,19	0,18	0,00227
			0,175	0,860	1,09	6,76	0,20	0,00347	4,76	0,14	0,00244
Bird speed	15	m/sec	0,225	0,994	0,85	6,14	0,18	0,00405	3,82	0,11	0,00252
RotorDiam	170	m	0,275	0,947	0,70	5,03	0,15	0,00406	2,83	0,08	0,00228
RotationPeriod	6,82	sec	0,325	0,899	0,59	4,25	0,12	0,00405	2,16	0,06	0,00205
			0,375	0,851	0,51	3,66	0,11	0,00403	1,68	0,05	0,00185
			0,425	0,804	0,45	3,20	0,09	0,00399	1,33	0,04	0,00165
			0,475	0,756	0,40	2,82	0,08	0,00393	1,06	0,03	0,00148
Bird aspect ratioo: β	0,39		0,525	0,708	0,36	2,88	0,08	0,00443	1,23	0,04	0,00189
			0,575	0,660	0,33	2,66	0,08	0,00448	1,12	0,03	0,00188
			0,625	0,613	0,31	2,46	0,07	0,00451	1,03	0,03	0,00189
			0,675	0,565	0,28	2,28	0,07	0,00452	0,97	0,03	0,00192
			0,725	0,517	0,26	2,13	0,06	0,00452	0,94	0,03	0,00200
			0,775	0,470	0,25	1,98	0,06	0,00450	0,97	0,03	0,00221
			0,825	0,422	0,23	1,85	0,05	0,00447	1,00	0,03	0,00241
			0,875	0,374	0,22	1,72	0,05	0,00442	1,01	0,03	0,00259
			0,925	0,327	0,21	1,60	0,05	0,00435	1,02	0,03	0,00276
			0,975	0,279	0,20	1,49	0,04	0,00427	1,02	0,03	0,00291
				Overall p(c	collision)	=	Upwind	7,8%		Downwind	4,2%
								Average	6,0%		
								Average	0,0%		

Tabella 22 – Calcolo del rischio di collisione (Band 2007) per Aquila reale

Only enter input paramete	ere in h	lue								W Band	28/12/2023
Only enter input paramete	13 111 0	iuc								VV Danu	20/12/2020
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	llision) as a	function of	radius			
NoBlades	3						Upwind:			Downwin	
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0,62	m	0,025	0,575	5,11	19,82	0,87	0,00109	18,48	0,81	0,00102
Wingspan	1,25	m	0,075	0,575	1,70	7,05	0,31	0,00233	5,71	0,25	0,00189
F: Flapping (0) or gliding (+1	0		0,125	0,702	1,02	5,21	0,23	0,00286	3,57	0,16	0,00197
			0,175	0,860	0,73	4,64	0,20	0,00357	2,64	0,12	0,00203
Bird speed	10	m/sec	0,225	0,994	0,57	4,32	0,19	0,00428	2,00	0,09	0,00198
RotorDiam	170	m	0,275	0,947	0,46	3,63	0,16	0,00440	1,43	0,06	0,00173
RotationPeriod	6,82	sec	0,325	0,899	0,39	3,20	0,14	0,00458	1,11	0,05	0,00158
			0,375	0,851	0,34	2,87	0,13	0,00474	0,89	0,04	0,00147
			0,425	0,804	0,30	2,61	0,11	0,00487	0,73	0,03	0,00137
			0,475	0,756	0,27	2,38	0,10	0,00498	0,62	0,03	0,00130
Bird aspect ratioo: β	0,50		0,525	0,708	0,24	2,19	0,10	0,00507	0,70	0,03	0,00161
			0,575	0,660	0,22	2,03	0,09	0,00513	0,75	0,03	0,00190
			0,625	0,613	0,20	1,88	0,08	0,00516	0,79	0,03	0,00217
			0,675	0,565	0,19	1,74	0,08	0,00518	0,81	0,04	0,00242
			0,725	0,517	0,18	1,62	0,07	0,00516	0,83	0,04	0,00264
			0,775	0,470	0,16	1,50	0,07	0,00513	0,83	0,04	0,00283
			0,825	0,422	0,15	1,40	0,06	0,00506	0,83	0,04	0,00300
			0,875	0,374	0,15	1,29	0,06	0,00498	0,82	0,04	0,00315
			0,925	0,327	0,14	1,20	0,05	0,00487	0,80	0,04	0,00327
			0,975	0,279	0,13	1,10	0,05	0,00473	0,79	0,03	0,00337
				Overall p(c	collision)	=	Upwind	8,8%		Downwind	4,3%
								Average	6,5%		

Tabella 23 – Calcolo del rischio di collisione (Band 2007) per Astore

. LISIO I ers in b		K FOR B	IRD PAS	SING T	HDOLIGI		VDEV			
ers in b				01110	IIICOOOI	KOTOK	AREA			
S. Input parameters in side									W Band	28/12/2023
1		Calculation	n of alpha	and p(col	llision) as a	function of	radius			
3						Upwind:			Downwin	d:
4,5	m	r/R	c/C	α	collide		contribution	collide		contribution
15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
0,67	m	0,025	0,575	4,09	15,82	0,87	0,00109	14,48	0,80	0,00100
1,9	m	0,075	0,575	1,36	5,72	0,31	0,00236	4,38	0,24	0,00181
1		0,125	0,702	0,82	4,30	0,24	0,00295	2,66	0,15	0,00183
		0,175	0,860	0,58	3,89	0,21	0,00374	1,89	0,10	0,00182
8	m/sec	0,225	0,994	0,45	3,67	0,20	0,00454	1,35	0,07	0,00167
170	m	0,275	0,947	0,37	3,08	0,17	0,00466	0,87	0,05	0,00132
6,82	sec	0,325	0,899	0,31	2,94	0,16	0,00526	0,85	0,05	0,00152
		0,375	0,851	0,27	2,67	0,15	0,00551	0,69	0,04	0,00142
		0,425	0,804	0,24	2,45	0,13	0,00572	0,77	0,04	0,00179
		0,475	0,756	0,22	2,26	0,12	0,00590	0,84	0,05	0,00220
0,35		0,525	0,708	0,19	2,09	0,12	0,00605	0,90	0,05	0,00259
		0,575	0,660	0,18	1,95	0,11	0,00616	0,93	0,05	0,00294
		0,625	0,613	0,16	1,82	0,10	0,00625	0,95	0,05	0,00326
		0,675	0,565	0,15	1,70	0,09	0,00631	0,96	0,05	0,00355
		0,725	0,517	0,14	1,59	0,09	0,00634	0,96	0,05	0,00381
		0,775	0,470	0,13	1,49	0,08	0,00633	0,95	0,05	0,00404
		0,825	0,422	0,12	1,39	0,08	0,00630	0,93	0,05	0,00424
		0,875	0,374	0,12	1,30	0,07	0,00624	0,92	0,05	0,00441
		0,925	0,327	0,11	1,21	0,07	0,00614	0,89	0,05	0,00455
		0,975	0,279	0,10	1,12	0,06	0,00602	0,87	0,05	0,00465
			Overall p(collision)	=	Upwind	10,4%		Downwind	5,4%
							Average	7,9%		
	3 4,5 15 0,67 1,9 1 8 170 6,82	4,5 m 15 0,67 m 1,9 m 1 8 m/sec 170 m 6,82 sec	3	3	3 4,5 m r/R c/C α 15 radius chord alpha 0,67 m 0,025 0,575 4,09 1,9 m 0,075 0,575 1,36 1 0,125 0,702 0,82 0,175 0,860 0,58 8 m/sec 0,225 0,994 0,45 170 m 0,275 0,947 0,37 6,82 sec 0,325 0,899 0,31 0,375 0,851 0,27 0,425 0,804 0,24 0,475 0,756 0,22 0,425 0,606 0,18 0,625 0,613 0,16 0,625 0,613 0,16 0,675 0,665 0,15 0,725 0,517 0,14 0,775 0,470 0,13 0,825 0,422 0,12 0,875 0,327 0,110 0,975 0,327 0,110	3 4,5 m r/R c/C α collide 15 radius chord alpha length 0,67 m 0,025 0,575 4,09 15,82 1,9 m 0,075 0,575 1,36 5,72 1 0,125 0,702 0,82 4,30 0,175 0,860 0,58 3,89 8 m/sec 0,225 0,994 0,45 3,67 170 m 0,275 0,947 0,37 3,08 6,82 sec 0,325 0,899 0,31 2,94 0,375 0,851 0,27 2,67 0,425 0,804 0,24 2,45 0,475 0,756 0,22 2,26 0,35 0,525 0,708 0,19 2,09 0,575 0,660 0,18 1,95 0,675 0,665 0,15 1,70 0,725 0,517 0,14 1,59 0,825 0,422 0,12 1,39 0,825 0,422 0,12 1,39 0,825 0,422 0,12 1,39 0,875 0,374 0,12 1,30	3	3 4,5 m r/R c/C α collide alpha collide length contribution from radius r contribution 15 radius chord alpha length p(collision) from radius r 0,67 m 0,025 0,575 4,09 15,82 0,87 0,00109 1,9 m 0,075 0,702 0,82 4,30 0,24 0,00295 1 0,125 0,702 0,82 4,30 0,24 0,00295 8 m/sec 0,225 0,994 0,45 3,67 0,20 0,00454 170 m 0,275 0,947 0,37 3,08 0,17 0,00466 6,82 sec 0,325 0,899 0,31 2,94 0,16 0,00526 0,375 0,851 0,27 2,67 0,15 0,00551 0,425 0,804 0,24 2,45 0,13 0,0572 0,475 0,756 0,22 2,26 0,12 0,00505 0,525 0,708 0,19	3	3

Tabella 24 – Calcolo del rischio di collisione (Band 2007) per Biancone

Only enter input paramete	are in bl	luo								W Band	28/12/2023
only enter input paramete	215 111 101	iue								VV Dallu	20/12/2023
C: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and n/col	llicion) ac a	function of	radiue			
VoBlades	3		Calculatio	п от агрпа	and p(co	ilision) as a	Upwind:	idulus		Downwing	4.
MaxChord	4.5		r/R	c/C	α	collide	Opwilla.	contribution	collide	Downwiii	contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r		p(collision)	from radius
BirdLength	0.6	m	0.025	0.575	4,34	15.52	0.80	0,00100	14.19	0.73	0.00092
Vingspan	1,45	m	0,075	0,575	1,45		0,29	0,00218	4,28	0,22	0,00166
: Flapping (0) or gliding (+1	1		0,125	0,702	0,87	4,27	0,22	0,00276	2,63	0,14	0,00170
			0,175	0,860	0,62	3,89	0,20	0,00353	1,89	0,10	0,0017
lird speed	8,5	m/sec	0,225	0,994	0,48	3,69	0,19	0,00430	1,37	0,07	0,00160
RotorDiam	170	m	0,275	0,947	0,39	3,33	0,17	0,00474	1,12	0,06	0,00160
RotationPeriod	6,82	sec	0,325	0,899	0,33	2,95	0,15	0,00497	0,86	0,04	0,0014
			0,375	0,851	0,29	2,66	0,14	0,00517	0,68	0,04	0,0013
			0,425	0,804	0,26	2,43	0,13	0,00534	0,64	0,03	0,00142
			0,475	0,756	0,23	2,23	0,12	0,00549	0,73	0,04	0,0017
ird aspect ratioo: β	0,41		0,525	0,708	0,21	2,06	0,11	0,00560	0,79	0,04	0,0021
			0,575	0,660	0,19	1,91	0,10	0,00569	0,83	0,04	0,0024
			0,625	0,613	0,17	1,78	0,09	0,00575	0,85	0,04	0,0027
			0,675	0,565	0,16	1,65	0,09	0,00578	0,86	0,04	0,0030
			0,725	0,517	0,15	1,54	0,08	0,00578	0,87	0,04	0,0032
			0,775	0,470	0,14	1,43	0,07	0,00575	0,86	0,04	0,0034
			0,825	0,422	0,13	1,33	0,07	0,00569	0,85	0,04	0,0036
			0,875	0,374	0,12	1,24	0,06	0,00561	0,83	0,04	0,00378
			0,925	0,327	0,12	1,15	0,06	0,00549	0,81	0,04	0,00390
			0,975	0,279	0,11	1,06	0,05	0,00535	0,79	0,04	0,0039
				Overall p(collision)	=	Upwind	9,6%		Downwind	4,89
								Average	7,2%		

Tabella 25 – Calcolo del rischio di collisione (Band 2007) per Falco pecchiaiolo

Only enter input parameter	ers in bl	ue								W Band	28/12/2023
· ' '											
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and n/col	llieion\ ae a	function of	radiue			
NoBlades	3		Calculatio	н от агрна	anu p(co	ilisivii) as a	Upwind:	iauius		Downwin	4.
MaxChord	4,5	m	r/R	c/C	α	collide	Opwillu.	contribution	collide	DOWNWIN	contribution
Pitch (degrees)	15	***	radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0,34		0,025	0,575	4,34	14,77		0,00096	,	-	
Wingspan	0,75	m	0,075	0,575	1,45	5,37		0,00209	4,03		
F: Flapping (0) or gliding (+1	0		0,125	0,702	0,87	4,12		0,00266	2,48		
			0,175	0,860	0,62	3,78		0,00343	1,78	0,09	0,00161
Bird speed	8,5	m/sec	0,225	0,994	0,48	3,60	0,19	0,00420	1,29	0,07	0,00150
RotorDiam	170	m	0,275	0,947	0,39	3,07	0,16	0,00436	0,86	0,04	0,00123
RotationPeriod	6,82	sec	0,325	0,899	0,33	2,69	0,14	0,00453	0,60	0,03	0,00101
			0,375	0,851	0,29	2,40	0,12	0,00466	0,42	0,02	0,00081
			0,425	0,804	0,26	2,17	0,11	0,00477	0,38	0,02	0,00085
			0,475	0,756	0,23	1,97	0,10	0,00485	0,47	0,02	0,00116
Bird aspect ratioo: β	0,45		0,525	0,708	0,21	1,80	0,09	0,00489	0,53	0,03	0,00144
			0,575	0,660	0,19	1,65	0,09	0,00491	0,57	0,03	0,00169
			0,625	0,613	0,17	1,52	0,08	0,00491	0,59	0,03	0,00191
			0,675	0,565	0,16	1,39	0,07	0,00487	0,60	0,03	0,00211
			0,725	0,517	0,15	1,28	0,07	0,00480	0,61	0,03	0,00227
			0,775	0,470	0,14	1,17	0,06	0,00471	0,60	0,03	0,00241
			0,825	0,422	0,13	1,07	0,06	0,00458	0,59	0,03	0,00252
			0,875	0,374	0,12	0,98	0,05	0,00443	0,57	0,03	0,00260
			0,925	0,327	0,12	0,89	0,05	0,00425	0,55	0,03	0,00265
			0,975	0,279	0,11	0,80	0,04	0,00404	0,53	0,03	0,00267
				Overall p(c	collision)	=	Upwind	8,3%		Downwind	3,4%
									F 00/		
								Average	5,9%		

Tabella 26 – Calcolo del rischio di collisione (Band 2007) per Gheppio

Only enter input paramete	ers in b	lue								W Band	28/12/2023
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(co	llision) as a	function of	radius			
NoBlades	3						Upwind:			Downwin	d:
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0,32	m	0,025	0,575	4,34	14,56	0,75	0,00094	13,22	0,68	0,00086
Wingspan	0,7	m	0,075	0,575	1,45	5,30	0,27	0,00206	3,96	0,20	0,00154
F: Flapping (0) or gliding (+1	0		0,125	0,702	0,87	4,07	0,21	0,00263	2,44	0,13	0,00158
			0,175	0,860	0,62	3,75	0,19	0,00340	1,75	0,09	0,00159
Bird speed	8,5	m/sec	0,225	0,994	0,48	3,58	0,19	0,00417	1,26	0,07	0,00147
RotorDiam	170	m	0,275	0,947	0,39	3,05	0,16	0,00434	0,84	0,04	0,00120
RotationPeriod	6,82	sec	0,325	0,899	0,33	2,67	0,14	0,00449	0,58	0,03	0,00097
			0,375	0,851	0,29	2,38	0,12	0,00462	0,40	0,02	0,00078
			0,425	0,804	0,26	2,15	0,11	0,00472	0,36	0,02	0,00080
			0,475	0,756	0,23	1,95	0,10	0,00480	0,45	0,02	0,00111
Bird aspect ratioo: β	0,46		0,525	0,708	0,21	1,78	0,09	0,00484	0,51	0,03	0,00138
			0,575	0,660	0,19	1,63	0,08	0,00485	0,55	0,03	0,00163
			0,625	0,613	0,17	1,50	0,08	0,00484	0,57	0,03	0,00185
			0,675	0,565	0,16	1,37	0,07	0,00480	0,58	0,03	0,00204
			0,725	0,517	0,15	1,26	0,07	0,00473	0,59	0,03	0,00220
			0,775	0,470	0,14	1,15	0,06	0,00462	0,58	0,03	0,00233
			0,825	0,422	0,13	1,05	0,05	0,00450	0,57	0,03	0,00244
			0,875	0,374	0,12	0,96	0,05	0,00434	0,55	0,03	0,00251
			0,925	0,327	0,12	0,87	0,04	0,00415	0,53	0,03	0,00256
			0,975	0,279	0,11	0,78	0,04	0,00394	0,51	0,03	0,00257
				Overall p(c	collision)	=	Upwind	8,2%		Downwind	3,3%
								Average	5,8%		

Tabella 27 – Calcolo del rischio di collisione (Band 2007) per Grillaio

Only enter input paramete	ers in b	lue								W Band	28/12/2023
, , , ,											
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and n/co	llieion\ ae s	function of	radiue			
NoBlades	3		Calculatio	ні от атріта	anu p(co	ilisivii) as a	Upwind:			Downwine	4.
MaxChord	4,5	m	r/R	c/C	α	collide	Opwilla.	contribution	collide	DOWNWIN	contribution
Pitch (degrees)	15		radius	chord	alpha	length	n(collision)	from radius r	length	n(collision)	from radius r
r ital (degrees)	- 10		radius	citora	aipiia	longar	p(comoron)	II OII I I I I I I I I I I I I I I I I	longai	p(comoron)	II OTTT Tadius I
BirdLength	0,36	m	0,025	0,575	5,11	17,77	0,78	0,00098	16,43	0,72	0,00090
Wingspan	0,85	m	0,075	0,575	1,70	6,37	0,28	0,00210	5,03	0,22	0,00166
F: Flapping (0) or gliding (+1	0		0,125	0,702	1,02	4,80	0,21	0,00264	3,17	0,14	0,00174
			0,175	0,860	0,73	4,35	0,19	0,00335	2,35	0,10	0,00181
Bird speed	10	m/sec	0,225	0,994	0,57	4,09	0,18	0,00405	1,78	0,08	0,00176
RotorDiam	170	m	0,275	0,947	0,46	3,41	0,15	0,00412	1,20	0,05	0,00145
RotationPeriod	6,82	sec	0,325	0,899	0,39	2,94	0,13	0,00421	0,85	0,04	0,00121
			0,375	0,851	0,34	2,61	0,11	0,00431	0,63	0,03	0,00104
			0,425	0,804	0,30	2,35	0,10	0,00439	0,47	0,02	0,00089
			0,475	0,756	0,27	2,12	0,09	0,00444	0,36	0,02	0,00076
Bird aspect ratioo: β	0,42		0,525	0,708	0,24	1,93	0,09	0,00447	0,44	0,02	0,00101
			0,575	0,660	0,22	1,77	0,08	0,00447	0,49	0,02	0,00124
			0,625	0,613	0,20	1,62	0,07	0,00445	0,53	0,02	0,00146
			0,675	0,565	0,19	1,48	0,07	0,00440	0,55	0,02	0,00164
			0,725	0,517	0,18	1,36	0,06	0,00433	0,57	0,02	0,00181
			0,775	0,470	0,16	1,24	0,05	0,00424	0,57	0,03	0,00195
			0,825	0,422	0,15						
			0,875	0,374	0,15		-		0,56		
			0,925	0,327	0,14				0,54	-	
			0,975	0,279	0,13	0,84	0,04	0,00362	0,53	0,02	0,00226
				Overall p(collision)	=	Upwind	7,6%		Downwind	3,19
								Average	5,4%		

Tabella 28 – Calcolo del rischio di collisione (Band 2007) per Lodolaio

			/ FOD D	BB B46		UDOLLO	LDOTOD	ADEA			
CALCULATION OF COL			K FOR B	RD PAS	SING	HROUGI	ROTOR	AREA			
Only enter input paramete	ers in bl	lue								W Band	28/12/2023
C: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	lision) as a	function of	radius			
NoBlades	3						Upwind:			Downwin	d:
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius r
BirdLength	0,57	m	0,025	0,575	4,09	14,39	0,79	0,00099	13,05	0,72	0,00090
Vingspan	1,35	m	0,075	0,575	1,36	5,24	0,29	0,00216	3,90	0,21	0,00161
F: Flapping (0) or gliding (+1	1		0,125	0,702	0,82	4,01	0,22	0,00276	2,38	0,13	0,00163
			0,175	0,860	0,58	3,69	0,20	0,00355	1,68	0,09	0,00162
Bird speed	8	m/sec	0,225	0,994	0,45	3,51	0,19	0,00434	1,19	0,07	0,00148
RotorDiam	170	m	0,275	0,947	0,37	3,20	0,18	0,00484	1,00	0,05	0,00151
RotationPeriod	6,82	sec	0,325	0,899	0,31	2,84	0,16	0,00509	0,75	0,04	0,00134
			0,375	0,851	0,27	2,57	0,14	0,00530	0,59	0,03	0,00121
			0,425	0,804	0,24	2,35	0,13	0,00548	0,67	0,04	0,00156
			0,475	0,756	0,22	2,16	0,12	0,00563	0,74	0,04	0,00194
Bird aspect ratioo: β	0,42		0,525	0,708	0,19	1,99	0,11	0,00576	0,80	0,04	0,00230
			0,575	0,660	0,18	1,85	0,10	0,00585	0,83	0,05	0,00262
			0,625	0,613	0,16	1,72	0,09	0,00591	0,85	0,05	0,00292
			0,675	0,565	0,15	1,60	0,09	0,00594	0,86	0,05	0,00318
			0,725	0,517	0,14	1,49	0,08	0,00594	0,86	0,05	0,00341
			0,775	0,470	0,13	1,39	0,08	0,00591	0,85	0,05	0,00361
			0,825	0,422	0,12	1,29	0,07	0,00585	0,83	0,05	0,00379
			0,875	0,374	0,12	1,20	0,07	0,00575	0,82	0,04	0,00393
			0,925	0,327	0,11	1,11	0,06	0,00563	0,79	0,04	0,00404
			0,975	0,279	0,10	1,02	0,06	0,00548	0,77	0,04	0,00412
				Overall p(collision)	=	Upwind	9,8%		Downwind	4,9%
								Average	7,3%		

Tabella 29 – Calcolo del rischio di collisione (Band 2007) per Poiana

CALCULATION OF COL	LIGIO			IDD DAG	CINIC T	HDOLICI	LDOTOD	ADEA	U	IX	
			CFURB	IKD PAS	SING	nkougi	ROTOR	AREA		W Band	28/12/2023
Only enter input paramete	ers in b	iue								vv Band	28/12/202
K: [1D or [3D] (0 or 1)	1		Calculatio	n of alpha	and p(col	llision) as a	function of	radius			
NoBlades	3						Upwind:			Downwin	d:
MaxChord	4,5	m	r/R	c/C	α	collide		contribution	collide		contribution
Pitch (degrees)	15		radius	chord	alpha	length	p(collision)	from radius r	length	p(collision)	from radius
BirdLength	0,38	m	0,025	0,575	5,11	17,52	0,77	0,00096	16,18	0,71	0,00089
Wingspan	0,8	m	0,075	0,575	1,70	6,29	0,28	0,00207	4,95	0,22	0,00163
F: Flapping (0) or gliding (+1	0		0,125	0,702	1,02	4,75	0,21	0,00261	3,11	0,14	0,0017
			0,175	0,860	0,73	4,31	0,19	0,00332	2,31	0,10	0,00178
Bird speed	10	m/sec	0,225	0,994	0,57	4,06	0,18	0,00402	1,75	0,08	0,00173
RotorDiam	170	m	0,275	0,947	0,46	3,39	0,15	0,00411	1,19	0,05	0,00144
RotationPeriod	6,82	sec	0,325	0,899	0,39	2,96	0,13	0,00424	0,87	0,04	0,00124
			0,375	0,851	0,34	2,63	0,12	0,00434	0,65	0,03	0,00107
			0,425	0,804	0,30	2,37	0,10	0,00442	0,49	0,02	0,00092
			0,475	0,756	0,27	2,14	0,09	0,00448	0,38	0,02	0,00080
Bird aspect ratioo: β	0,48		0,525	0,708	0,24	1,95	0,09	0,00451	0,46	0,02	0,0010
			0,575	0,660	0,22	1,79	0,08	0,00452	0,51	0,02	0,00130
			0,625	0,613	0,20	1,64	0,07	0,00450	0,55	0,02	0,00151
			0,675	0,565	0,19	1,50	0,07	0,00446	0,57	0,03	0,00170
			0,725	0,517	0,18	1,38	0,06	0,00440	0,59	0,03	0,00187
			0,775	0,470	0,16	1,26	0,06	0,00431	0,59	0,03	0,0020
			0,825	0,422	0,15	1,16	0,05	0,00419	0,59	0,03	0,00213
			0,875	0,374	0,15	1,05	0,05	0,00406	0,58	0,03	0,00223
			0,925	0,327	0,14	0,96	0,04	0,00389	0,56	0,02	0,00230
			0,975	0,279	0,13	0,86	0,04	0,00370	0,55	0,02	0,00234
				Overall p(collision)	=	Upwind	7,7%		Downwind	3,29
								Average	5,4%		
								Average	3,470		

Tabella 30 – Calcolo del rischio di collisione (Band 2007) per Sparviere

Moltiplicando per ciascuna specie il numero di individui che potrebbero attraversare l'area spazzata dai rotori (U), calcolato come descritto nel precedente paragrafo, per la probabilità di venire colpiti o di scontrarsi con le pale (P) e per la capacità di evitare il rischio, si ottiene la stima del numero di collisioni per anno per ciascuna specie (Tabella 31).

	Dati m	onitoragg	io 2023	netto di &/S)	nio		schio 9 sione (ę.	Nume	ero coll anno	isioni	
Nome comune	N° avvistamenti	Giorni monitoraggio	N° individui anno	Coefficiente nett rischio (A/S)	N° voli a rischio	Min	Max	Medio	% evitamento	Min	Max	Medio	Grado rischio collisione
Albanella minore	44	24	669	0,044	29,63	4,1	8,9	6,5	99	0,012	0,026	0,019	Molto basso
Albanella reale	1	24	15	0,044	0,67	3,4	7,8	5,6	99	0,000	0,001	0,000	Molto basso
Aquila anatraia minore	1	24	15	0,044	0,67	3,5	7,1	5,3	98	0,000	0,001	0,001	Molto basso
Aquila reale	4	24	61	0,044	2,69	4,2	7,8	6	99	0,001	0,002	0,002	Molto basso
Astore	1	24	15	0,044	0,67	4,3	8,8	6,5	98	0,001	0,001	0,001	Molto basso
Biancone	12	24	183	0,044	8,08	5,4	10,4	7,9	98	0,009	0,017	0,013	Molto basso
Falco pecchiaiolo	21	24	319	0,044	14,14	4,8	9,6	7,2	98	0,014	0,027	0,020	Molto basso
Gheppio	147	24	2236	0,044	98,99	3,4	8,3	5,9	95	0,168	0,411	0,292	Basso
Grillaio	8	24	122	0,044	5,39	3,3	8,2	5,8	95	0,009	0,022	0,016	Molto basso
Lodolaio	7	24	106	0,044	4,71	3,1	7,6	5,4	95	0,007	0,018	0,013	Molto basso
Poiana	76	24	1156	0,044	51,18	4,9	9,8	7,3	98	0,050	0,100	0,075	Molto basso
Sparviere	1	24	15	0,044	0,67	3,2	7,7	5,4	98	0,000	0,001	0,001	Molto basso

Tabella 31 – Calcolo del numero di collisioni/anno per ciascuna specie e relativo giudizio del grado di rischio collisione.

L'impatto derivante da collisione con le pale (utilizzando il valore medio di collisioni/anno) è molto basso per tutte le specie a eccezione del Gheppio (impatto basso), specie piuttosto comune e nidificante nell'area.

Vulnerabilità delle specie di interesse conservazionistico

Specie di interesse conservazionistico

Per specie di interesse conservazionistico si intendono gli uccelli:

- di Allegato I della Direttiva 2009/147/ CE
- SPEC secondo BirdLife International
- in una categoria di rischio di estinzione (IUCN 2021, 2022)

A partire dall'elenco delle 89 specie ornitiche complessivamente rilevate nel corso del monitoraggio dell'anno 2023 (Tabella 1), è stata condotta una verifica della categoria di tutela e di rischio di estinzione: 38 specie, pari al 43% delle rilevate, sono risultate essere di interesse conservazionistico. A tale elenco sono state aggiunte 4 specie di rapaci diurni (Asore, Lodolaio, Poiana, Sparviere, in buono stato di conservazione e non minacciati) per produrre la check list utilizzata successivamente ai fini del calcolo della vulnerabilità. L'elenco delle 42 specie ornitiche così composto, con le relative categorie di tutela e minaccia, è stato completato riportando lo status fenologico (Bagni et al, 2003) e il valore ornitico (Brichetti & Gariboldi, 1992) (Tabella 32). La legenda è resa in Tabella 33.

Flenco delle s	pecie ornitiche			Cate	gorie rischio esti	nzione	
	nservazionistico	Catego	orie di tutela	(IUCN	2022)	(IUCN 2021)	VALORE ORNITICO
Nome comune	Status fenologico (Bagni et al 2003)	SPEC	Dir. 2009/147/CE All. I	Categoria popolazione italiana	Categoria globale	Categoria Europea	Brichetti & Gariboldi 1992
Albanella minore	M reg, B		Х	VU	LC	LC	51,6
Albanella reale	M reg, W, B irr	3	Х	NA	LC	LC	
Allodola	SB, M reg, W	3		VU	LC	LC	30,2
Aquila anatraia minore	M irr		Х	NA	LC	LC	
Aquila reale	SB, M irr, W irr		Х	NT	LC	LC	53
Astore	SB, M reg, W			LC	LC	LC	59,4
Averla piccola	M reg, B	2	Х	VU	LC	LC	45,1
Balestruccio	M reg, B	2		NT	LC	LC	
Biancone	M reg, B		Х	LC	LC	LC	60,9
Calandro	M reg, B	3	Х	VU	LC	LC	44,2
Cannareccione	M reg, B			NT	LC	LC	53,8
Cardellino	SB, M reg, W			NT	LC	LC	27,9
Cesena	M reg, W			VU	LC	LC	40,4
Civetta	SB, M reg, W	3		LC	LC	LC	44
Cuculo	M reg, B			NT	LC	LC	36,4
Culbianco	M reg, B	3		LC	LC	LC	37,6
Falco pecchiaiolo	M reg, B		X	LC	LC	LC	47,9
Fanello	SB par, M reg, W	2		NT	LC	LC	36,1
Garzetta	M reg, B, W par		X	LC	LC	LC	54,6
Gheppio	SB, M reg, W	3		LC	LC	LC	46,4
Grillaio	M reg, B irr*	3	Х	LC	LC	LC	67,1
Lodolaio	M reg, B			LC	LC	LC	52,7
Passera scopaiola	SB par, M reg, W			NT	LC	LC	39,4
Pernice rossa	SB (ripopolamenti)	2		DD	NT	NT	58,2
Pispola	M reg, W	1		NA	LC	LC	
Poiana	SB, M reg, W			LC	LC	LC	46,3
Prispolone	M reg, B	3		LC	LC	LC	35,3
Quaglia comune	M reg, B, W irr?	3		DD	LC	NT	43,4
Regolo	SB, M reg, W	2		LC	LC	LC	37,6
Rondine	M reg, B, W irr	3		NT	LC	LC	33,5
Rondone comune	M reg, B	3		LC	LC	NT	37,8
Saltimpalo	SB par, M reg, W			EN	LC	LC	
Sparviere	SB, M reg, W			LC	LC	LC	42,9
Stiaccino	M reg, B reg?	2		VU	LC	LC	47,6
Storno	SB, M reg, W	3		LC	LC	LC	21,8
Strillozzo	SB, M reg, W	2		LC	LC	LC	

Elenco delle s	pecie ornitiche	_		Cate	gorie rischio estir	nzione	
	nservazionistico	Catego	rie di tutela	(IUCN	2022)	(IUCN 2021)	VALORE ORNITICO
Nome comune	Status fenologico (Bagni et al 2003)	SPEC	Dir. 2009/147/CE All. I	Categoria popolazione italiana	Categoria globale	Categoria Europea	Brichetti & Gariboldi 1992
Succiacapre	M reg, B	3	Х	LC	LC	LC	44,6
Tordo sassello	M reg, W	1		NA	NT	LC	
Tortora selvatica	M reg, B	1		LC	VU	VU	34
Tottavilla	SB, M irr	2	Х	LC	LC	LC	40,1
Verdone	SB par, M reg, W par			VU	LC	LC	31
Verzellino	SB par, M reg, W par	2	Х	LC	LC	LC	31,9

Tabella 32 – Specie di interesse conservazionistico e rapaci (n = 42): status fenologico, categorie di tutela, categorie di rischio di estinzione e valore ornitico (legenda in Tabella 33)

	1	I = 11.00					
		B = Nidificante					
		S = Sedentaria o Stazionaria					
		M = Migratrice					
		W = Svernante, presenza invernale					
Status fenologico	Bagni et al, 2003	A = Accidentale: viene indicato il numero di segnalazioni ritenute valide					
otatas renorogico	Bagin et al, 2003	(A) = Accidentale da confermare: segnalazione accettata con riserva					
		reg = regolare					
		irr = irregolare					
		par = parziale, parzialmente					
		? = dato dubbioso					
	Dir. Uccelli 2009/147 CE All. I	Specie che necessitano di misure di conservazione degli habitat e i cui siti di presenza					
	Bii. Occeiii 2003/147 CE Aii. 1	richiedono l'istituzione di zone di protezione speciale					
		SPEC1: specie di interesse conservazionistico mondiale					
		SPEC2: specie con status di conservazione europeo sfavorevole, con popolazioni					
		concentrate					
	SPEC	in Europa					
Categorie di tutela		SPEC3: specie con status di conservazione europeo sfavorevole, non concentrata in					
	(Species of European Conservation Concern), Birdlife International (2017)	Europa					
		Non SPEC-E: specie con status di conservazione europeo favorevole, concentrata in					
		Europa					
		Non SPEC: specie con status di conservazione europeo favorevole, non concentrata in					
		Europa					
		W: relativo alla popolazione svernante					
		Categorie di estinzione					
		EX: estinto					
	IUCN 2022	EW: estinto in ambiente selvatico					
	Categoria globale	RE: estinto nella regione					
		Categorie di minaccia					
		CR: gravemente minacciato					
Categorie di rischio di		EN: minacciato					
estinzione	IUCN 2021	VU: vulnerabile					
	Categoria europea	Categorie di minor preoccupazione					
		NT: quasi minacciato					
		LC: minor preoccupazione					
	IUCN 2022	DD: carente di dati					
	Categoria italiana	NA: non applicabile					
		NE: non valutata					
		calcolato accorpando 14 differenti parametri e ulteriori sottoparametri in 3 categorie					
		principali: a) valore intrinseco: valore biogeografico, valore distribuzione, trend areale,					
Valore ornitico	Brichetti & Gariboldi, 1992	livello territorialità, rarità ecologica, consistenza, trend popolazione, importanza					
		popolazione e areale, livello trofico, grado di antropofilia; b) livello di vulnerabilità; c)					
		valore antropico: valore naturalistico-ricreativo, valore scientifico, valore fruibilità					

Tabella 33 – Legenda di Tabella 32

Metodi per il calcolo della vulnerabilità

Se il rischio di collisione calcolato per i rapaci rappresenta una stima quantitativa reale ottenuta attraverso dati di monitoraggio, la vulnerabilità può fornire solo un'indicazione sull'importanza relativa dal punto di vista conservazionistico delle specie considerate e presenti nell'area di progetto. Per definire la vulnerabilità è stata utilizzata una matrice di calcolo (Piaquadio, 2022) che attribuisce a ciascuna specie di Tabella 32 un punteggio a seconda dello status fenologico, dell'inclusione in una delle categorie di tutela e di rischio d'estinzione e del valore ornitico (Tabella 34). La sommatoria di tali punteggi rappresenta la vulnerabilità, categorizzata come illustrato in Tabella 35.

		PUNTEGGIO/PESO TOTALE	% PUNTEGGIO/PESO
FENOLOGIA	PUNTEGGIO/PESO	0,100	10,000
NIDIFICANTE	0,08		8,000
SVERNANTE	0,02		2,000
SPEC	PUNTEGGIO	0,100	10,000
NON SPEC	0,000		0,000
SPEC3	0,015		1,500
SPEC2	0,035		3,500
SPEC1	0,050		5,000
ALL. I DIR. 2009/147/CE	PUNTEGGIO	0,400	40,000
NO	0,00		0,000
SI	0,40		40,000
IUCN 2022 CATEGORIA GLOBALE	PUNTEGGIO	0,100	10,000
NE: non valutata	0,000		0,000
NA: non applicabile	0,000		0,000
DD: carente di dati	0,000		0,000
LC: minor preoccupazione	0,005		0,500
NT: quasi minacciato	0,010		1,000
VU: vulnerabile	0,015		1,500
EN: minacciato	0,025		2,500
CR: gravemente minacciato	0,045		4,500
IUCN 2021 CATEGORIA EUROPEA	PUNTEGGIO	0,100	10,000
NE: non valutata	0,000		0,000
NA: non applicabile	0,000		0,000
DD: carente di dati	0,000		0,000
LC: minor preoccupazione	0,005		0,500
NT: quasi minacciato	0,010		1,000
VU: vulnerabile	0,015		1,500
EN: minacciato	0,025		2,500
CR: gravemente minacciato	0,045		4,500
IUCN 2022 CATEGORIA ITALIANA	PUNTEGGIO	0,100	10,000
NE: non valutata	0,000		0,000
NA: non applicabile	0,000		0,000
DD: carente di dati	0,000		0,000
LC: minor preoccupazione	0,005		0,500
NT: quasi minacciato	0,010		1,000
VU: vulnerabile	0,015		1,500
EN: minacciato	0,025		2,500
CR: gravemente minacciato	0,045		4,500
VALORE ORNITICO (Brichetti 1992)	PUNTEGGIO	0,100	10,000
21,8-35,6	0,005		0,500
35,7-49,4	0,012		1,200
49,5-63,1	0,020		2,000
63,2-76,9	0,028		2,800
77-90,7	0,035		3,500
TOTALE		1,000	100,000

Tabella 34 – Matrice di attribuzione dei punteggi per categorie fenologiche, di tutela, di rischio estinzione e di valore ornitico, assegnati alle singole specie.

Classi di intervallo punteggio totale	Valore Vulnerabilità
0 - 0,20	Molto basso
0,21 - 0,40	Basso
0,41 - 0,60	Medio
0,61 - 0,80	Alto
0,81 - 1,00	Molto alto

Tabella 35 - Classi di intervalli basate sul punteggio totale massimo possibile e valore di Vulnerabilità.

Vulnerabilità delle specie di interesse conservazionistico

La vulnerabilità delle 42 specie di interesse conservazionistico è risultata essere molto bassa per 30 specie (71%) e media per 12 (29%) (Tabella 36). Tra gli uccelli con grado medio di vulnerabilità figurano 7 specie di rapaci diurni (Albanella minore, Albanella reale, Aquila anatraia minore, Aquila reale, Biancone, Falco pecchiaiolo e Grillaio), un Ardeide (Garzetta) e 4 passeriformi (Averla piccola, Calandro, Succiacapre e Tottavilla). Le risultanze dell'indagine condotta nell'anno 2023 hanno mostrato come nessuno dei rapaci con grado medio di vulnerabilità è nidificante nell'area buffer di 1.000 m dai transetti di monitoraggio. L'Albanella minore è stata osservata per soli 6 mesi (la specie non è svernante in regione). L'Albanella reale, specie migratrice e svernate e l'Aquila anatraia minore, migratore irregolare, sono state avvistate con un solo esemplare per specie in ottobre e agosto. L'Aquila reale è stata contatta in modo irregolare da settembre a novembre. Biancone e Falco pecchiaiolo sono presenti da maggio ad agosto/settembre. Il Grillaio è stato osservato solo due volte in agosto e settembre. Neanche la Garzetta è nidificante nell'area d'indagine. Le quattro specie di passeriformi sono invece tutte nidificanti all'interno dell'area buffer di 150 m dai transetti di monitoraggio. Averla piccola, Calandro e Succiacapre nell'area d'indagine sono nidificanti e migratori (pertanto assenti in inverno) mentre la Tottavilla è sedentaria e parzialmente migratrice. L'Averla piccola è presente con una densità pari a 2,46 contatti/km², il Calandro con una densità di 1,06 contatti/km², la Tottavilla con una densità di 1,68 contatti/km². Il Succiacapre, rilevato durante il monitoraggio degli uccelli notturni, è stato contattato nei transetti T1 e T4 con un massimo di 3 contatti/sera. Stante le considerazioni espresse in particolare sulla fenologia e sulla frequentazione dei rapaci dell'area, l'impatto del parco eolico sulle specie di interesse conservazionistico è complessivamente basso.

Elenco delle specie	ASSEGNAZIONE PUNTEGGIO								
ornitiche di interesse				Catego	orie rischio estinz	ione			
conservazionistico	Status fenologico	Catego	rie di tutela	(IUCN 2	2022)	(IUCN 2021)	Valore ornitico	PUNTEGGIO	GRADO
Nome comune	(Bagni et al 2003)	SPEC	Dir. 2009/147/CE All. I	Categoria Categoria popolazione italiana		Categoria Europea	(Brichetti & Gariboldi 1992)	TOTALE	VULNERABILITA'
Albanella minore	0,080	0,000	0,400	0,015	0,005	0,005	0,020	0,53	MEDIO
Albanella reale	0,020	0,015	0,400	0,000	0,005	0,005	0,000	0,45	MEDIO
Allodola	0,080	0,015	0,000	0,015	0,005	0,005	0,005	0,13	MOLTO BASSO
Aquila anatraia minore	0,000	0,000	0,400	0,000	0,005	0,005	0,000	0,41	MEDIO
Aquila reale	0,080	0,000	0,400	0,010	0,005	0,005	0,020	0,52	MEDIO
Astore	0,080	0,000	0,000	0,005	0,005	0,005	0,020	0,12	MOLTO BASSO
Averla piccola	0,080	0,035	0,400	0,015	0,005	0,005	0,012	0,55	MEDIO
Balestruccio	0,080	0,035	0,000	0,010	0,005	0,005	0,000	0,14	MOLTO BASSO
Biancone	0,080	0,000	0,400	0,005	0,005	0,005	0,020	0,52	MEDIO
Calandro	0,080	0,015	0,400	0,015	0,005	0,005	0,012	0,53	MEDIO
Cannareccione	0,080	0,000	0,000	0,010	0,005	0,005	0,020	0,12	MOLTO BASSO
Cardellino	0,080	0,000	0,000	0,010	0,005	0,005	0,005	0,11	MOLTO BASSO
Cesena	0,020	0,000	0,000	0,015	0,005	0,005	0,012	0,06	MOLTO BASSO
Civetta	0,080	0,015	0,000	0,005	0,005	0,005	0,012	0,12	MOLTO BASSO
Cuculo	0,080	0,000	0,000	0,010	0,005	0,005	0,012	0,11	MOLTO BASSO
Culbianco	0,080	0,015	0,000	0,005	0,005	0,005	0,012	0,12	MOLTO BASSO
Falco pecchiaiolo	0,080	0,000	0,400	0,005	0,005	0,005	0,012	0,51	MEDIO
Fanello	0,080	0,035	0,000	0,010	0,005	0,005	0,012	0,15	MOLTO BASSO
Garzetta	0,080	0,000	0,400	0,005	0,005	0,005	0,020	0,52	MEDIO
Gheppio	0,080	0,015	0,000	0,005	0,005	0,005	0,012	0,12	MOLTO BASSO

Grillaio	0,020	0,015	0,400	0,005	0,005	0,005	0,028	0,48	MEDIO
Lodolaio	0,080	0,000	0,000	0,005	0,005	0,005	0,020	0,12	MOLTO BASSO
Passera scopaiola	0,080	0,000	0,000	0,010	0,005	0,005	0,012	0,11	MOLTO BASSO
Pernice rossa	0,080	0,035	0,000	0,000	0,010	0,010	0,020	0,16	MOLTO BASSO
Pispola	0,020	0,050	0,000	0,000	0,005	0,005	0,000	0,08	MOLTO BASSO
Poiana	0,080	0,000	0,000	0,005	0,005	0,005	0,012	0,11	MOLTO BASSO
Prispolone	0,080	0,015	0,000	0,005	0,005	0,005	0,005	0,12	MOLTO BASSO
Quaglia comune	0,080	0,015	0,000	0,000	0,005	0,010	0,012	0,12	MOLTO BASSO
Regolo	0,080	0,035	0,000	0,005	0,005	0,005	0,012	0,14	MOLTO BASSO
Rondine	0,080	0,015	0,000	0,010	0,005	0,005	0,005	0,12	MOLTO BASSO
Rondone comune	0,080	0,015	0,000	0,005	0,005	0,010	0,012	0,13	MOLTO BASSO
Saltimpalo	0,080	0,000	0,000	0,025	0,005	0,005	0,000	0,12	MOLTO BASSO
Sparviere	0,080	0,000	0,000	0,005	0,005	0,005	0,012	0,11	MOLTO BASSO
Stiaccino	0,080	0,035	0,000	0,015	0,005	0,005	0,012	0,15	MOLTO BASSO
Storno	0,080	0,015	0,000	0,005	0,005	0,005	0,005	0,12	MOLTO BASSO
Strillozzo	0,080	0,035	0,000	0,005	0,005	0,005	0,000	0,13	MOLTO BASSO
Succiacapre	0,080	0,015	0,400	0,005	0,005	0,005	0,012	0,52	MEDIO
Tordo sassello	0,020	0,050	0,000	0,000	0,010	0,005	0,000	0,09	MOLTO BASSO
Tortora selvatica	0,080	0,050	0,000	0,005	0,015	0,015	0,005	0,17	MOLTO BASSO
Tottavilla	0,080	0,035	0,400	0,005	0,005	0,005	0,012	0,54	MEDIO
Verdone	0,080	0,000	0,000	0,015	0,005	0,005	0,005	0,11	MOLTO BASSO
Verzellino	0,080	0,035	0,000	0,005	0,005	0,005	0,005	0,14	MOLTO BASSO

Tabella 36 - Punteggi per categorie fenologiche, di tutela, di rischio estinzione e di valore ornitico, assegnati alle singole specie e grado di Vulnerabilità.

Grado di rischio

Metodo di calcolo del grado di rischio

Il grado di rischio (impatto) dell'impianto eolico è stato calcolato attraverso una matrice (Tabella 37) che mette in relazione il rischio di collisione (Tabella 31) con la vulnerabilità (Tabella 36). È stato pertanto calcolato per le 12 specie di rapaci diurni per le quali sono disponibili i dati relativi al numero di collisioni/anno.

			Valore rischio collisione					
		Molto basso	Basso	Medio	Alto	Molto alto		
	Molto basso	Molto basso	Molto basso	Basso	Basso	Medio		
Valore	Basso	Molto basso	Basso	Medio	Medio	Alto		
Vulnerabilità	Medio	Basso	Medio	Medio	Alto	Alto		
Vuillerabilita	Alto	Basso	Medio	Alto	Alto	Molto alto		
	Molto alto	Medio	Alto	Alto	Molto alto	Molto alto		

Tabella 37 – Matrice di calcolo del grado di rischio (impatto)

Grado di rischio

<u>Il grado di rischio, ossia il giudizio sintetico di impatto dell'impianto eolico per le specie analizzate, è complessivamente basso</u> (Tabella 38).

Nome comune	Valore rischio collisione	Valore vulnerabilità	Grado di rischio (impatto)
Albanella minore	Molto basso	Medio	Basso
Albanella reale	Molto basso	Medio	Basso
Aquila anatraia minore	Molto basso	Medio	Basso
Aquila reale	Molto basso	Medio	Basso
Astore	Molto basso	Molto basso	Molto basso
Biancone	Molto basso	Medio	Basso
Falco pecchiaiolo	Molto basso	Medio	Basso
Gheppio	Basso	Molto basso	Molto basso
Grillaio	Molto basso	Medio	Basso
Lodolaio	Molto basso	Molto basso	Molto basso
Poiana	Molto basso	Molto basso	Molto basso
Sparviere	Molto basso	Molto basso	Molto basso

Tabella 38 – Grado di rischio (impatto) dell'impianto eolico

Conclusioni Uccelli

Le risultanze del monitoraggio avifaunistico dell'anno 2023 hanno permesso di avere un quadro decisamente dettagliato sul popolamento ornitico del sito interessato dalla costruzione del parco eolico e hanno consentito di produrre modelli di mortalità per collisione, vulnerabilità delle specie di interesse conservazionistico e di grado di rischio attendibili e basati su dati originali.

Visti i risultati dei modelli di mortalità per collisione (grado rischio di collisione molto basso), vulnerabilità delle specie di interesse conservazionistico (grado complessivo di vulnerabilità basso) e grado di rischio complessivo (valore grado di rischio basso), si ritiene l'impatto del parco eolico in oggetto basso.

Note sull'impianto eolico di Casoni di Romagna

In *Londi et al.* (2021), a termine del secondo ciclo di monitoraggio post operam (2016-2021) del vicino impianto eolico di Casoni di Romagna, viene presentato un quadro riassuntivo dei dati raccolti negli anni precedenti (2007 ante operam, 2009-2014 primo ciclo post operam) e presentate le conclusioni sulle variazioni registrate dal 2007 al 2021.

A seguire l'estratto da *Londi* et al (2021) in merito alle variazioni registrate a seguito della costruzione dell'impianto di casoni di Romagna.

Facendo riferimento a quanto emerso al termine della prima fase di monitoraggio post operam (CECCARELLI & GELLINI 2014; CAODURO 2015a), sulla base dei dati raccolti nel 2021 si possono fare le seguenti sintetiche considerazioni.

- Complessivamente, il numero di specie nidificanti ha avuto negli anni un andamento
 fluttuante: se negli anni immediatamente seguenti alla costruzione dell'impianto è stata
 registrata una diminuzione, a partire dal 2014 si rileva un'inversione di tendenza, fino a
 raggiungere nel 2018 un valore addirittura superiore a quello ante opera. Nel 2021 il
 numero di specie censite sono risultate inferiori, ma comunque paragonabili, a quanto
 osservato durante i rilievi ante operam.
- Considerando le singole specie, la situazione è abbastanza articolata. Alcune specie dopo aver avuto un crollo negli anni successivi alla costruzione dell'impianto (2009-2010), hanno mostrato un trend positivo, tornando ad occupare l'area con densità paragonabili o superiori rispetto all'ante operam, a volte probabilmente anche grazie alla situazione generalmente positiva (o non negativa) che si registra a scala vasta (tottavilla, sterpazzolina di Moltoni, sterpazzola, luì piccolo e zigolo nero), altre volte invece in controtendenza rispetto alla situazione generale (saltimpalo e strillozzo). Altre specie hanno invece mostrato un declino sostanziale, pur con qualche oscillazione, in linea del resto con gli andamenti registrati a scala nazionale (calandro, prispolone, fanello); altre infine hanno avuto un andamento abbastanza fluttuante (averla piccola, usignolo e allodola);
- Per quanto riguarda i rapaci, in entrambi le stagioni il numero delle specie registrate è stato piuttosto variabile se si considerano anche le specie migratrici, mentre non sembra esserci stato un impatto significativo sul popolamento di nidificanti. Per quanto riguarda la frequentazione dell'area invece, durante la stagione primaverile, il crollo delle presenze registrato nel primo anno di monitoraggio post operam è stato consistente, ma parzialmente compensato negli anni seguenti, con un crescita continua e piuttosto regolare fino al 2021, anche se il numero di contatti giornalieri è sempre stato inferiore rispetto al 2007. Il periodo estivo-autunnale ha visto negli anni più fluttuazioni, probabilmente a causa della variabilità nei flussi migratori.
- Analizzando le singole specie di rapaci rilevate durante la stagione primaverile, nel primo anno di monitoraggio post operam (2009), erano stati osservati solo il biancone, la poiana e il gheppio, la cui presenza è stata confermata con regolarità anche successivamente, mentre solo negli anni successivi è tornata ad essere regolare la presenza del falco pecchiaiolo, dell'albanella minore e del lodolaio. La presenza delle altre specie, come lanario e falco pellegrino è risultata piuttosto variabile. Nessuna delle specie osservate prima della costruzione dell'impianto ha abbandonato l'area dell'impianto.

- Nel 2018 il falco pecchiaiolo è stato ritenuto nidificante per la prima volta e la sua presenza è stata confermata anche nel 2021; le osservazioni negli anni precedenti erano invece verosimilmente da attribuire ad individui in migrazione.
- Il con la parziale eccezione del falco di palude (solo per la migrazione post-riproduttiva) per il quale il flusso rilevato si colloca comunque nei valori mediamente riscontrati lungo l'Appennino settentrionale.

Sempre in *Londi* et al (2021) sono presentati anche i risultati relativi alla ricerca delle carcasse al fine di quantificare la perdita di individui per collisione con le pale o per differenza di pressione generata dalla rotazione delle pale. A seguire l'estratto.

Confrontando il numero di carcasse recuperate nel 2021 con quelle raccolte negli anni precedenti in cui lo sforzo di campionamento è stato paragonabile (2011, 2013, 2014, 2016, 2017, 2018, 2019, 2020), è evidente una differenza notevole rispetto al 2013 e 2014, quando furono rinvenuti molti più cadaveri, mentre il dato del 2021 è sostanzialmente paragonabile a quello del 2011, del 2016 e 2020 seppure in tutti i casi rimanga una certa variabilità interannuale. Si conferma sostanzialmente la tendenza generale al ritrovamento di un maggior numero di carcasse di chirotteri rispetto agli uccelli e la maggior parte dei ritrovamenti avviene durante la stagione estivo-autunnale, tendenza peraltro già verificata in contesti simili.

Tabella 15. Confronto dei risultati della ricerca di carcasse; sono riportati solo gli anni in cui lo sforzo di ricerca è risultato paragonabile a quello del 2021.

	2011	2013	2014	2016	2017	2018	2019	2020	2021
	CARCASSE CHIROTTERI								
n. carcasse prim/estate	4	10	4	2	2	1	2	2	2
n. carcasse estate/autunno	2	13	11	7	0	9	9	5	3
totale chirotteri	6	23	15	9	2	10	11	7	5
	CAF	RCASS	SE UC	CELLI	[
n. carcasse prim/estate							1		
n. carcasse estate/autunno				1				2	2
totale uccelli				1			1	2	2

3.4.2. Specie coinvolte

Per quanto riguarda le specie coinvolte, da segnalare la presenza di due individui di N. leisleri, probabilmente individui in migrazione; la specie è stata rinvenuta frequentemente anche negli anni passati, in particolare nel 2013, quando furono trovati 11 individui. Del resto, proprio per il suo comportamento migratorio risulta una delle specie, in generale, più sensibili a impatti di tipo diretto (RODRIGUES ET AL. 2008).

Tra le altre specie, un individuo di *E. serotinus*, uno di *P. kuhlii*, la specie più comune nell'area, e un *H. savii*, che nel biennio 2013-2014 risultava in assoluto la specie rinvenuta con maggiore frequenza nell'ambito della ricerca delle carcasse.

Per quanto riguarda gli uccelli, non c'è stata una specie particolarmente soggetta all'impatto con gli aerogeneratori, infatti è stato trovato al massimo un individuo per specie e in tutto il monitoraggio sono stati trovati solo cinque uccelli, appartenenti quindi a cinque specie differenti. L'unica specie di particolare interesse per la conservazione è stato ritrovato nel 2021, il succiacapre.

Monitoraggio Chirotteri

A cura di: Dino Scaravelli

Rilevatori: Dino Scaravelli, Elisa Padulosi

Analisi bioacustica: Pamela Priori, Dino Scaravelli

Informazioni sui chirotteri dell'area di indagine

Le specie di Chirotteri segnalate per il Parco Regionale della Vena del gesso romagnola sono 20, a fronte di un totale di 24 specie segnalate per l'intera regione Emilia-Romagna (Bertozzi et al, 2016) (Tabella 39).

L'area considerata in un buffer di 5 km dagli aerogeneratori in progetto (Figura 1, Figura 4) in generale ha mostrato la disponibilità di informazioni sulle presenze di importanti popolazioni di Chirotteri già sottolineate ai tempi della raccolta di informazioni relative all'Atlante provinciale dei Mammiferi (Scaravelli et al., 2001). Le grotte della "Vena del gesso" avevano già dato alcuni dati importanti (Bassi e Fabbri 1985; Bassi 2009). Bertozzi (2013) riassume i dati storici e aggiornati per la grotta del Re Tiberio con riscontri di *Rhinolophus ferrumequinum, Rhinolophus euryale, Myotis myotis, Myotis blythii, Miniopterus schreibersii*. Le grandi colonie conosciute dagli anni 90 per i tunnel della vicina Cava di Monte Tondo vedevano importanti colonie riproduttive miste di *M. schreibersii* con *M.* myotis e *M. blythii* e lo svernamento degli stessi oltre che delle tre specie di *Rhinolophus* (Scaravelli et al., 2001).

Nome italiano	Taxon
Rinolofo euriale	Rhinolophus euryale
Rinolofo maggiore	Rhinolophus ferrumequinum
Rinolofo minore	Rhinolophus hipposideros
Vespertilio di Bechstein	Myotis bechsteinii
Vespertilio di Blyth	Myotis blythii
Vespertilio di Daubentòn	Myotis daubentonii
Vespertilio smarginato	Myotis emarginatus
Vespertilio maggiore	Myotis myotis
Vespertilio mustacchino	Myotis mystacinus
Vespertilio di Natterer	Myotis nattereri
Pipistrello albolimbato	Pipistrellus kuhlii
Pipistrello nano	Pipistrellus pipistrellus
Nottola di Leisler	Nyctalus leisleri
Nottola comune	Nyctalus noctula
Pipistrello di Savi	Hypsugo savii
Serotino comune	Eptesicus serotinus
Barbastello	Barbastella barbastellus
Orecchione meridionale	Plecotus austriacus
Miniottero	Miniopterus schreibersii
Molosso di Cestoni	Tadarida teniotis

Tabella 39 – Specie presenti nel Parco regionale della Vena del gesso Romagnola

Per la Grotta del Re Tiberio Bertozzi (2013) suggerisce come la presenza registrata di *M. emarginatus* e *M. nattereri* in autunno faccia pensare a fenomeni di *swarming* nella grotta ma i numeri citati e osservazioni personali operate proprio all'imbocco della grotta per tale funzione fanno invero propendere per un uso occasionale (Scaravelli & Altringham 2008).

Nei monitoraggi operati per l'Ente di gestione per i Parchi e la Biodiversità Romagna (Bertozzi 2021) risultano le importanti concentrazioni di chirotteri nella zona centrale della vena ed in particolare nei tunnel della cava di Monte Tondo (Tabella 40) che evidenziano le numerosità consistenti sia per il periodo invernale, con aggregazioni di *M. schreibersii* che sono stimate fino a 19000 esemplari cui si affiancano altrettanto consistenti numeri di Rinolofi, e sia nel periodo estivo dove la colonia mista di M. schreibersii, M. myotis e M. blythii raccoglie fino a 6000 esemplari cui dal 2015 si è aggiunta una colonia riproduttiva di R. euryale di 200 esemplari, probabile migrazione dalla Grotta del Re Tiberio, dove non si trovano più, e forse incrementata da esemplari dalla Grotta della Lucerna, raggiungendo nel 2020 gli 800 esemplari.

L'area del Parco evidenzia la presenza di un contingente importante di presenze nelle cavità della zona centrale e orientale dell'area protetta, mentre vi sono ancora poche informazioni sulle presenze nella ex cava Spes di Borgo Tossignano (Bassi 2009) e le piccole cavità presenti nella zona occidentale non sono state studiate in quanto a presenze di chirotteri.

Anno	stagione	R. hipposideros	R. ferrumequinum	R. euryale	E. serotinus	M. schreibersii	M. myotis	M. blythii
2014	inverno	63	1275			17-19000		
2014	estate					3000-4000	centinaia	centinaia
2015	inverno	129	1262	2	4	14-16000		
2015	estate	2	4	150-200		5000-6000	centinaia	centinaia
2016	inverno	141	1249	2		10-12000		
2016	estate		alcuni	150		5000-6000	centinaia	centinaia
2017	inverno	214	1377			14-16000		
2017	estate	2	1	150		5000-6000	centinaia	centinaia
2018	inverno	145	1344			16000		
2018	estate		2	200		5000-6000	centinaia	centinaia
2019	inverno	184	1395	1		16500-17000		
2019	estate	1	1	200		5000-6000	centinaia	centinaia
2020	inverno	220	1480		1	14500-15500		
2020	estate	4		7-800		5000-6000	centinaia	centinaia

Tabella 40 – Rilievi presenze nei tunnel della cava Saint Gobain (Bertozzi 2021)

Metodi di rilievo presso il parco eolico in progetto

I monitoraggi per i chirotteri prevedono in primis una valutazione della presenza di roost significativi e colonie nell'area di almeno 5 km intorno al potenziale impianto (*sensu* Agnelli et al. 2004, Rodriguez et al. 2014). Nella stagione post-ibernazione i monitoraggi prevedono l'uso di metodi bioacustici (*sensu* Agnelli et al. 2004, Rodriguez et al. 2014), ovvero registrando gli ultrasuoni emessi dai chirotteri, previamente convertiti in suoni udibili in modalità espansione temporale, su supporto digitale. Le registrazioni sono state effettuate in punti d'ascolto di 30 minuti in corrispondenza o comunque in prossimità delle piazzole ove saranno installati gli aerogeneratori. La registrazione inizia al tramonto e si protrae generalmente fino alla mezzanotte.

Le registrazioni sono state effettuate mediante bat detector Pettersson Elektronic D244x in time expansion riportando tutti i suoni trasdotti in registrazione su supporto digitale. Le registrazioni sono state quindi analizzate con il software dedicato Batsound, utilizzando per la determinazione delle specie il proprio archivio di riferimento oltre che Russo & Jones (2002), Tupinier (1997), Russ (1999) e Barataud (2015). Per la valutazione dei contatti/ora si considera come contatto una sequenza acustica ben definita e come sequenza continua un contatto ogni 5 secondi.

I punti e le date di rilievo sono presentati in Figura 19, Figura 20, Figura 21, Tabella 41.

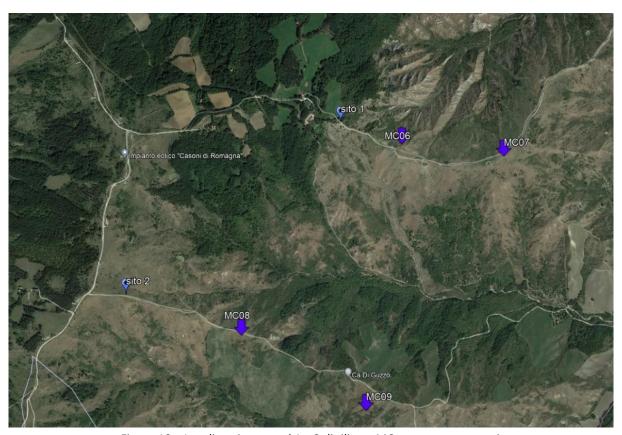


Figura 19 – Localizzazione punti 1 e 2 di rilievo; MCxx = aerogeneratori.

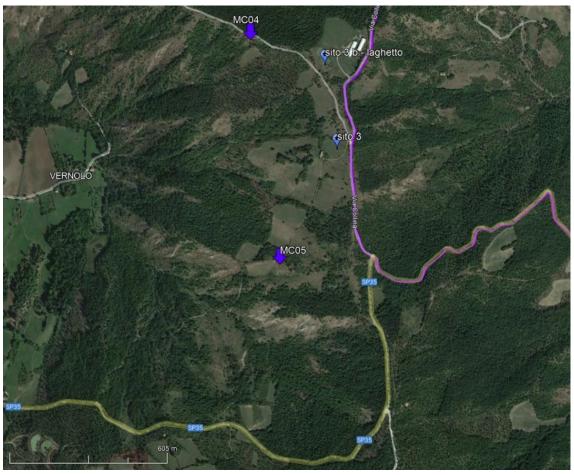


Figura 20 – Localizzazione punti 3 e 3b laghetto di rilievo; MCxx = aerogeneratori.

Figura 21 – Localizzazione punto 4 di rilievo; MCxx = aerogeneratori.

Numo	 Data uscita
14	03/05, 20/06, 02/07, 11/07, 22/07, 02/08, 10/08, 27/08, 10/09, 16/09, 22/09, 30/09, 06/10, 16/10

Tabella 41 – Date dei rilievi (anno 2023)

Risultati

Ricerca roost

Nell'ambito delle giornate di rilievo dei potenziali roost sono state esplorare le aree nell'intorno di 5 km dal sito di costruzione degli aerogeneratori per verificare le potenziali colonie presenti. In prossimità delle zone di impianto non sono stati rilevati edifici, ipogei o semplici rifugi che ospitino colonie.

A distanza di circa 1,5 km dal punto più vicino di rilievo in prossimità di un potenziale aeromotore, vi è una piccola cavità e poco oltre altre 3 (Figura 22). Al margine dei rilievi in due date (27/8 e 16/9) sono stati operati rilievi al tramonto per potenziali uscite di esemplari. È stato rilevato solo un *R. ferrumequinum* in data 16/9. Questi rinolofi, soprattutto i maschi, sono distribuiti per il riposo in buona parte delle grotte della vena del gesso.

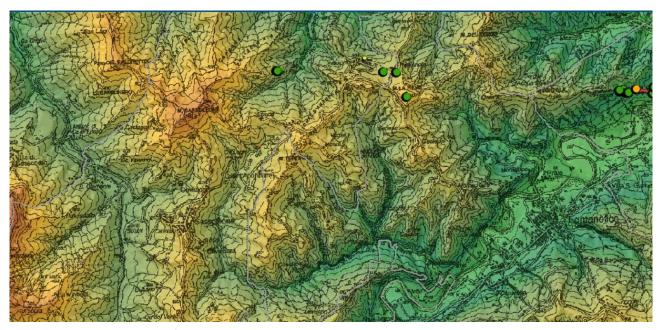


Figura 22 – Cavità rilevate prossime al sistema delle potenziali piazzole degli aerogeneratori.

Si ritiene poco probabile vi siano aggregazioni significative negli ambiti di impianto dove le specie presenti, per lo più antropofile, trovano probabilmente rifugio in piccoli roost negli edifici o altre strutture o alberi che sono presenti nei dintorni. Si ricorda che specie anche poco vagili nei chirotteri hanno ambiti di movimento per la ricerca di cibo di 1-3 km, coprendo in linea d'aria facilmente tutta l'estensione dall'impianto.

Rilievi bioacustici

Le specie rilevate nel 2023 nei siti di monitoraggio sono otto, a coprire interamente lo spazio interessato dall'impianto eolico (Tabella 42). La coppia di specie Vespertilio maggiore e Vespertilio minore *Myotis myotis* e *M. blythii* è solo raramente distinguibile dal punto di vista bioacustico e qui considerata quindi come unico taxon. Entrambe le specie sono presenti nell'attiguo sito della Vena del Gesso. Sono specie inserite nell'Allegato II della Direttiva Habitat così come il Barbastello. Per il resto si tratta di specie generaliste e ampiamente diffuse.

La distribuzione delle specie è riportata in (Tabella 43) ove sono indicati in termini di passaggi medi per ora nei diversi siti di monitoraggio e nelle diverse date.

Taxon	Nome comune	Status
Pipistrellus kuhlii	Pipistrello albolimbato	Specie antropofila, diffusa e abbondante
Pipistrellus pipistrellus	Pipistrello nano	Specie antropofila, diffusa e abbondante
Hypsugo savii	Pipistrello di Savi	Specie antropofila, diffusa e abbondante
Eptesicus serotinus	Serotino	Specie antropofila, non numerosa
Myotis myotis/blythii	Vespertilio maggiore/minore	Entrambe specie legata agli ambienti ipogei nell'ambito mediterraneo Riportate in Allegato II direttiva Habitat, legate alle macchie, margine di coltivi e aree aperte
Myotis daubentonii	Vespertilio di Daubenton	Specie legata agli ambienti con acque aperte dove foraggia, Rifugi in edifici ponti ed ipogei. Diffusa
Myotis sp.	Vespertilio sp.	
Nyctalus leisleri	Nottola di Leisler	Specie legata ai boschi e agli ambienti di mantello, diffusa
Barbastella barbastellus	Barbastello	Specie legata agli ambienti boschivi, macchie e mantello di boschi ben conservati. Riportata in Allegato II direttiva Habitat

Tabella 42 – Specie rilevate

Sono state rilevate presenze preminentemente delle specie comuni ed antropofile, ad eccezione del rilievo di *M. myotis* e *B. barbastellus* che sono specie in Allegato II, ma con passaggi davvero poco significativi. Sul lago indagato sono stati rilevati in foraggiamento un buon numero di *M. daubentonii* e tale invaso può venire usato per l'abbeverata da parte delle diverse specie presenti nell'area.

I passaggi registrati occasionalmente mentre ci si sposta da un punto all'altro mostrano un concentrarsi delle diverse specie soprattutto negli ambiti freschi alla base delle vallette, dove le presenze entomatiche sono maggiori e il vento è meno impattante sulle attività di foraggiamento.

Nelle aree di crinale e delle praterie secche e in parte calanchive le presenze diminuiscono soprattutto nelle serate ventose.

						Sit	0 1								
taxon	03- mag	20- giu	02- lug	11- lug	22- lug	02- ago	10- ago	27- ago	10- set	16- set	22- set	30- set	06- ott	16- ott	тот
P.kuhlii	2	8	2	6	3,5	7	2,5	9,5	7,5	6	4,5	7	2,5	1	69
P.pipistrellus	3	4	1	2,5	2	3	1,5	2	1,5	2	3	2,5	1	2	31
H.savii	2	9	2,5	7	3,5	4	2,5	7,5	4,5	3	2,5	8	1,5	2	59,5
E.serotinus	1	2		0,5		1,5					1,5	2			8,5
M.myotis				0,5								1,5			2
M.daubentonii															0
Myotis sp.	1	1							1				1		4
N.leisleri							0,5	2,5	4	1,5	0,5	2			11
B.barbastellus													0,5		0,5
totale passaggi medi	9	24	5,5	16,5	9	15,5	7	21,5	18,5	12,5	12	23	6,5	5	
						Sit	o 2								
taxon	03- mag	20- giu	02- lug	11- lug	22- lug	02- ago	10- ago	27- ago	10- set	16- set	22- set	30- set	06- ott	16- ott	тот
P.kuhlii	1	8	2	7	6,5	8	7,5	4,5	3,5	7,5	4,5	3,5	1	2,5	67
P.pipistrellus	2	4	1	2,5	3	4,5	4	3,5	2,5	4,5	2	1	2,5	1,5	38,5
H.savii		6,5	2	4,5	5	6,5	2	7,5	8	3,5	2,5	1,5	4	2,5	56
E.serotinus		2			1			2,5	1						6,5
M.myotis					1,5							0,5			2
M.daubentonii															0
Myotis sp.		1					0,5				0,5			0,5	2,5
N.leisleri							1	1,5	2	1,5	0,5	2,5			9
B.barbastellus											0,5				0,5
totale passaggi medi	3	21,5	5	14	17	19	15	19,5	17	17	10,5	9	7,5	7	
						Sit	o 3								
taxon	03- mag	20- giu	02- lug	11- lug	22- lug	02- ago	10- ago	27- ago	10- set	16- set	22- set	30- set	06- ott	16- ott	тот
P.kuhlii	1	5	2	2,5	3	2,5	7	2,5	3	4	1,5				34
P.pipistrellus	2	6	1		1,5	2		1,5					1,5		15,5
H.savii	3	4		3	4,5	1,5		2,5	2,5	3	1	2,5	1		28,5
E.serotinus		1,5				1						1			3,5
M.myotis															0
M.daubentonii															0
Myotis sp.					1								1		2
N.leisleri								1	0,5	2					3,5
B.barbastellus															0
totale passaggi medi	6	16,5	3	5,5	10	7	7	7,5	6	9	2,5	3,5	3,5	0	

Segue

						Sito 3B I	aghetto								
taxon	03- mag	20- giu	02- lug	11- lug	22- lug	02- ago	10- ago	27- ago	10- set	16- set	22- set	30- set	06- ott	16- ott	тот
P.kuhlii	5	12		2,5	3	4	8	2	1,5	2	1,5	2			43,5
P.pipistrellus	2	6			1,5				2						11,5
H.savii	3	8	1	3	4,5	5	7	3,5	2	1,5	0,5	1	0,5		40,5
E.serotinus		1,5										1			2,5
M.myotis															0
M.daubentonii	4	10	1	3	2,5	4,5	3,5	2,5	1,5		2				34,5
Myotis sp.								0,5	1	0,,5					1,5
B.barbastellus												1			1
totale passaggi medi	14	37,5	2	8,5	11,5	13,5	18,5	8,5	8	3,5	4	5	0,5	0	
						Site	o 4								
taxon	03- mag	20- giu	02- lug	11- lug	22- lug	02- ago	10- ago	27- ago	10- set	16- set	22- set	30- set	06- ott	16- ott	тот
P.kuhlii	2	4		3	2,5	4,5	8	7	9,5	4,5	7	2	3,5		57,5
P.pipistrellus	1	6	1	1,5		2	1,5	2	1,5	3	2			1,5	23
H.savii	3	6		2,5	4,5	6	7	4,5	6,5	5	3,5	1,5	0,5	2	52,5
E.serotinus		2			1,5					1,5	1				6
M.myotis	1	1								0,5		1	0,5		4
M.daubentonii															0
Myotis sp.	1								1		0,5		1		3,5
N.leisleri								1	0,5	1,5	0,5	1			4,5
B.barbastellus		2			0,5	1					1	0,5			5
totale passaggi medi	8	21	1	7	9	13,5	16,5	14,5	19	16	15,5	6	5,5	3,5	

Tabella 43 – Specie e passaggi medi per serata

La diversità nei siti di rilievo è comparabile (Tabella 44) così come simile è il sito esterno sul laghetto dove è presente in più *M. daubentonii* che appunto foraggia sulle acque del laghetto.

Taxon	Sito 1	Sito 2	Sito 3	Sito 3 laghetto	Sito 4
P.kuhlii	1	1	1	1	1
P.pipistrellus	1	1	1	1	1
H.savii	1	1	1	1	1
E.serotinus	1	1	1	1	1
M.myotis	1	1			1
M.daubentonii				1	
Myotis sp.	1	1	1	1	1
N.leisleri	1	1	1	1	1
B.barbastellus	1	1		1	1
diversità	8	8	6	8	8

Tabella 44 – Diversità nei siti rilevati.

L'andamento fenologico è altresì molto simile nei siti indagati (Figura 23), data l'esigua distanza tra tutti questi e le tipologie ambientali non molto diverse tra loro.

La stagione non ha permesso rilievi tra inizio maggio e fine giugno per l'impossibilità di accedere ai luoghi in riferimento alle pessime condizioni climatiche che hanno causato all'alluvione di maggio 2023.

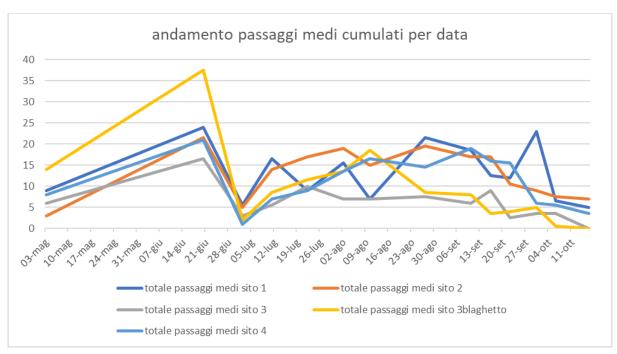


Figura 23 – Andamento medio di passaggi nei diversi siti nelle date di rilievo.

Si può considerare come i passaggi medi siano appunto simili nei siti indagati. Una giornata ventosa e coperta nel mese di luglio mostra quale importante variabilità possa essere generata da variazioni delle condizioni climatiche per il foraggiamento dei Chirotteri in un sito. In Figura 24 si utilizza la media dei passaggi nell'insieme dei siti per esplicitare meglio i dati fenologici rilevati.

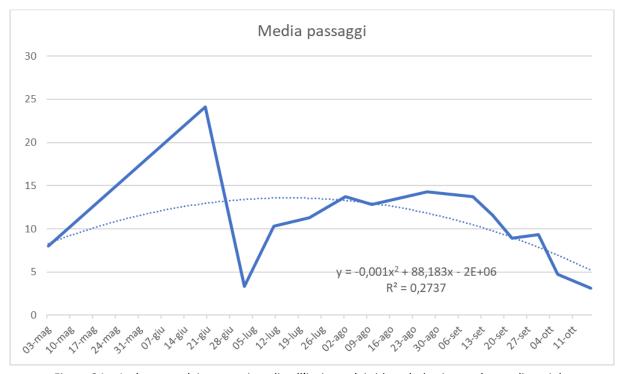


Figura 24 – Andamento dei passaggi medi nell'insieme dei siti e relativa interpolata polinomiale.

Conclusioni Chirotteri

In definitiva il sito di costruzione dell'impianto eolico (e le relative sotto aree analizzate) appare essere frequentato in massima parte da contingenti di specie generaliste con qualche raro passaggio di specie di rilevanza per la conservazione. Non appare esservi una comunità ricca di elementi di elevato rango per la conservazione.

L'indagine ha evidenziato con metodi bioacustici la presenza nel sito di cantiere di 8 taxa nell'anno 2023 tra cui solo *Nyctalus leisleri* e *Eptesicus* serotinus sono da considerarsi specie a maggior rischio di impatto, per il volo alto e il foraggiamento in quota, e anche *Hysugo savii* che al momento appare essere la specie che ha i maggiori problemi nei parchi eolici italiani. Si tratta comunque di specie non di "speciale rilevanza per la conservazione". I rilievi effettuati nel sito hanno mostrato una frequentazione scarsa delle specie più sensibili e meno antropofile. Queste, come i vespertili e Barbastello, appaiono presenti in modo occasionale e legate a foraggiamento su serate con molti insetti e poco vento.

<u>Viste le risultanze dei monitoraggi effettuati e la possibilità di dedurre trend generali in atto, si ritiene che il rischio di impatto come sopra analizzato e definito possa essere decisamente basso</u>.

Note sull'impianto eolico di Casoni di Romagna

Il campo eolico di Casoni di Romagna è posto in vicinanza di una parte del proposto impianto (Figura 25).

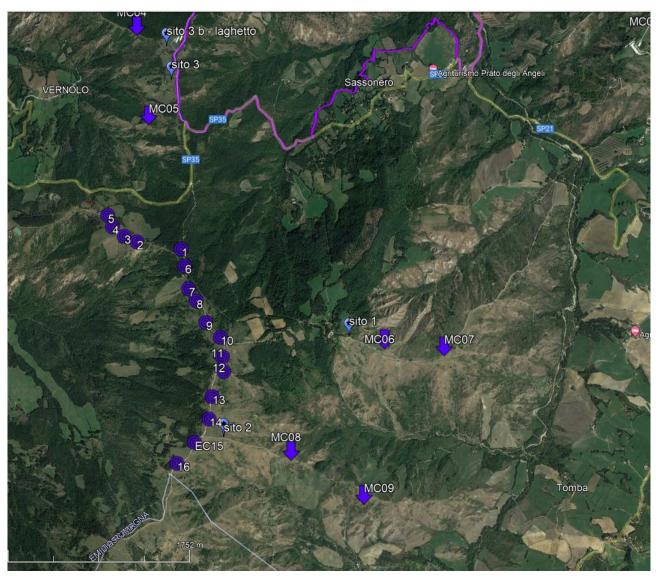


Figura 25 – Posizione dell'impianto eolico di Casoni di Romagna.

Sono stati acquisiti i risultati di monitoraggio operati negli anni passati nel post opera dell'impianto di Casoni di Romagna. Il piano di monitoraggio considera in media 8 giorni di rilievo bioacustico e 12 giorni di rilievo per la presenza di carcasse di individui abbattuti per impatto o barotrauma (ad es. Cutini et al 2020). Le specie rilevate negli anni sono 12 e comprendono le specie rilevate nel monitoraggio dell'anno 2023 presso l'impianto in progetto (Tabella 45).

Taxon	status
Myotis bechsteinii	molto raro
Myotis daubentonii	pochi rilievi
Myotis mystacinus	raro
Pipistrellus kuhlii	abbondante
Pipistrellus pipistrellus	abbondante
Nyctalus leisleri	soprattutto tarda estate
Nyctalus noctula	pochi rilievi
Hypsugo savii	abbondante
Eptesicus serotinus	presenze discrete
Barbastella barbastellus	raro
Miniopterus schreibersii	poche presenze
Tadarida teniotis	poche presenze

Tabella 45 – Specie rilevate nel sito di Casoni (Cutini et al., 2020).

In Cutini et al. 2020 vengono anche riportati i risultati comparati per gli anni di monitoraggio (Tabella 46).

Numero di specie di chirotteri e contatti registrati negli anni durante il monitoraggio ante-operam (2007) e post-operam (anni successivi al 2009).

	2007	2009	2010	2011	2013	2014	2016	2017	2019
numero specie	7	3	8	6	12	9	9	10	12
contatti totali	62	8	61	108	210	171	316	378	220

Tabella 46 – Cutini et al. 2020 (estratto).

La media degli esemplari abbattuti ritrovati è riportata in Tabella 47.

	2011	2013	2014	2016	2017	2018	2019
n. carcasse prim/estate	4	10	4	2	2	1	2
n. carcasse estate/autunno	2	13	11	7	0	9	9
Totale	6	23	15	9	2	10	11

Confronto dei risultati della ricerca di carcasse; sono riportati solo gli anni in cui lo sforzo di ricerca è risultato paragonabile a quello del 2019.

Tabella 47 – Cutini et al. 2020 (estratto).

Al momento le zone oggetto del monitoraggio dell'anno 2023 si allineano con le specie censite in modo abbondante nelle aree di Casoni di Romagna. Il numero superiore di specie (solo specie rare) nel monitoraggio di Casoni di Romagna appare dovuto al rilievo prolungato negli anni.

Note su rilievi effettuati nei siti Natura 2000

Sono stati effettuati rilievi in due siti Natura 2000: IT4050011 Media Valle del Sillaro e IT4070011 Vena del Gesso Romagnola.

Il sito IT4050011 Media Valle del Sillaro ha nel proprio Formulario citate le seguenti specie di chirotteri:

- 1308 Barbastella barbastellus
- 1310 Miniopterus schreibersii
- 1324 Myotis myotis
- 1304 Rhinolophus ferrumequinum
- 5365 Hypsugo savii
- 1314 Myotis daubentonii
- 1312 Nyctalus noctula
- 2016 Pipistrellus kuhlii
- 1309 Pipistrellus pipistrellus

Nelle operazioni di rilievo effettuate nell'anno 2023 sono state anche raccolte informazioni di presenza nel sito, con transetti che sono descritti in Figura 26. I rilievi hanno raccolto dati riportati in Tabella 48.

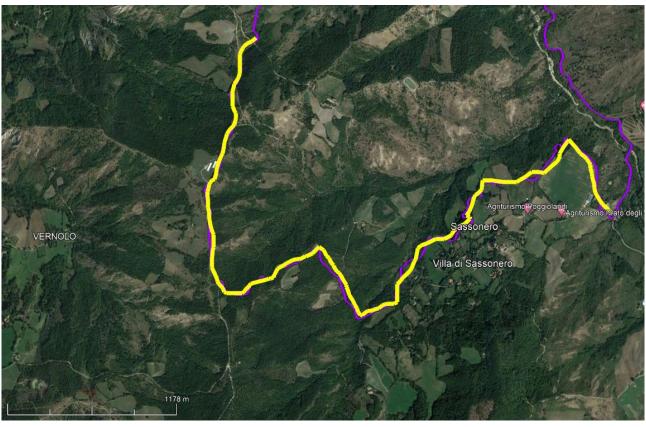


Figura 26 – Transetto nel sito IT4050011 Media Valle del Sillaro.

taxon	11-lug	10-ago	16-set
P.kuhlii	4	3	5
P.pipistrellus	1		1.5
H.savii	4	7	2.5
E.serotinus			1
N.leisleri		2	3,5

Tabella 48 – Rilievi nel sito Natura 2000 IT4050011 Media Valle del Sillaro.

Per quanto attiene il sito IT4070011 Vena del Gesso Romagnola, con le sue 20 specie già citate, i rilievi ulteriori sono stati eseguiti lungo un transetto che dal sito 4 di rilievo porta a Gesso e poi verso Fontanelice (Figura 27) rilevando quanto riportato in Tabella 49.

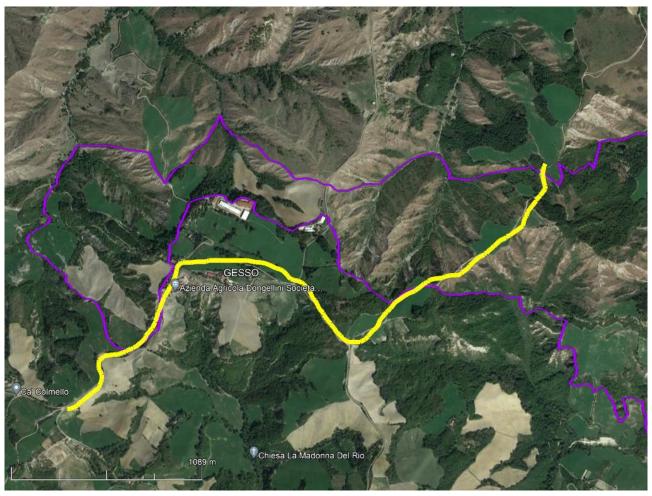


Figura 27 – Transetto nel sito IT4070011 Vena del Gesso Romagnola.

taxon	22-lug	27-ago	22-set	30-set
P.kuhlii	2,5	4,5	2,5	5
P.pipistrellus	3	3,5	2	4,5
H.savii	6,5	4,5	3	4
E.serotinus			1	
N.leisleri		3		
T.teniotis				1

Tabella 49 – Rilievi nel sito Natura 2000 IT4070011 Vena del Gesso Romagnola.

In entrambi i siti si ritrovano le specie registrate negli attigui siti del campo eolico in progetto a parte un rilevamento di Molosso di Cestoni aggiuntivo derivante dagli spazi aerei nei pressi di Gesso.

Bibliografia

- Astiaso Garcia D., Canavero G., Curcuruto S., Ferraguti M., Nardelli R., Sammartano L., Sammuri G., Scaravelli D., Spina F., Togni S., Zanchini E., 2012. Il protocollo di monitoraggio avifauna e chirotterofauna dell'Osservatorio Nazionale su Eolico e Fauna. In: Mezzavilla F., Scarton F. (a cura di), Atti Secondo Convegno Italiano Rapaci Diurni e Notturni. Quaderni Faunistici n. 3
- Agnelli P., Martinoli A., Patriarca E., Russo D., Scaravelli D., Genoveso P. (a cura di), 2004. Linee guida per il monitoraggio dei Chirotteri: indicazioni metodologiche per lo studio e la conservazione dei pipistrelli in Italia. Quad. Cons. Natura, 19, Min. Ambiente Ist. Naz. Fauna Selvatica
- Bagni L., Sighele M., Passarella M., Premuda G., Tinarelli R., Cocchi L. & Leoni G., 2003. Check-list degli uccelli dell'Emilia-Romagna dal 1900 al giugno 2003 Picus 29: 85-107
- Band, W., Madders, M. & Whitfield, D.P., 2007. Developing field and analytical methods to assess avian collision risk at wind farms. In: de Lucas, M., Janss, G.F.E. & Ferrer, M. (Eds.) 2007. Birds and Wind Farms: Risk Assessment and Mitigation, pp 259-275. Quercus, Madrid
- Bassi S., 2009. Chirotteri troglofili dell'Appennino Romagnolo dati e osservazioni a seguito di un censimento ultradecennale (Mammalia Chiroptera). Quaderno di Studi e Notizie di Storia Naturale della Romagna, 29: 57-74.
- Bassi S., I. Fabbri 1985. Dati preliminari del primo censimento dei Chirotteri delle grotte romagnole, in Vita nelle grotte. Atti Incontro Nazionale di Biospeleologia, Città di Castello, pp. 153-164.
- Bertozzi M., 2013. Pipistrelli dei gessi di Monte Tondo. In "I gessi e la cava di Monte Tondo" (Ercolani M., Lucci P., Piastra S., Sansavini B., a cura di). Memorie dell'Istituto Italiano di Speleologia s.II, vol. XXVI. pp. 347-360.
- Bertozzi M., 2021. Monitoraggio chirotteri (Chiroptera) Tunnel della cava Saint Gobain e Grotta del Re Tiberio Borgo Rivola (Riolo Terme, RA) Parco regionale della Vena del Gesso Romagnola Dati 2014-2020. Relazione ined., Ente di gestione per i Parchi e la Biodiversità Romagna.
- Bertozzi M., Costa M., Noferini A., 2016. I Mammiferi e gli Uccelli della Vena del Gesso Romagnola. Quaderni del parco 3. Parco regionale della Vena del Gesso Romagnola. 116 pp.
- Bibby C.J., Hill D.A., Burgess N.D., 1992. Bird census Technique. Academic Press Inc. Oxford. 280 pp
- BirdLife International, 2017. European birds of conservation concern: populations, trends and national responsibilities. Cambridge, UK: BirdLife International.
- BirdLife International, 2021. European Red List of Birds. Luxembourg: Publications Office of the European Union
- BirdLife HBW- Version 7.0 (December 2022) with subspecies
- Brichetti P. & Fracasso G., 2003. Ornitologia italiana. Vol. 1 Gaviidae-Falconidae. Alberto Perdisa Editore, Bologna
- Brichetti P. & Gariboldi A., 1992. Un "valore" per le specie ornitiche nidificanti in Italia. Riv. ital. Orn. 62: 73-87 Cutini S., G. Londi, T. Campedelli, G. Tellini Florenzano, 2020 Studio della Chirotterofauna. Impianto eolico Casoni di Romagna, Comuni di Monterenzio e Castel del Rio (BO). DREAM Italia
- Dallolio F., R. Margutti, D., Scaravelli, 2016. Ambiente disturbato? Sorprese dal monitoraggio fotografico nel territorio della Cava di Monte Tondo (Riolo Terme, RA). Hystrix, Italian Journal of Mammalogy, 27 (supp.): 91
- De Lucas M., Guyonne F.E. Janss, Miguel Ferrer (eds.), 2007. Birds and wind farms Risk assessment and migration. Quercus, Madrid

- Landi S., 2006. Rilievi su Rhinolophus euryale nella Vena del Gesso romagnola. Tesi di laurea triennale in Scienze Naturali, Alma Mater Studiorum Università di Bologna, A.A. 2005-2006.
- Londi G., Campedelli T., Cutini S., Ridente D., 2021. Monitoraggio post operam, Avifauna, Ricerca delle carcasse. Relazione conclusiva monitoraggio impianto eolico Casoni di Romagna.
- Margutti R., Zembo I., Sartor S., 2013 La cava di Monte Tondo oggi. In "I gessi e la cava di Monte Tondo" (Ercolani M., Lucci P., Piastra S., Sansavini B., a cura di). Memorie dell'Istituto Italiano di Speleologia s.II, vol. XXVI. pp. 489-535. 84
- Pavan G., A. Favaretto, B. Bovelacci, D. Scaravelli, S. Macchio, H. Glotin, 2015. Bioacustica e ecoacustica applicate al monitoraggio e alla gestione ambientale. Rivista Italiana di Acustica, 39 (2): 68-74.
- Piaquadio L. (a cura di), 2022. Centrale eolica offshore "Rimini" Studio naturalistico e impatto potenziale del progetto su avifauna e chirotteri
- Priori P., Margutti R., Scaravelli D., 2014. Analysis of the distribution of hibernating bats in old gypsum quarry tunnels in relation with temperature variation. Hystrix, 25 (supp.): 34.
- Rondinini, C., Battistoni, A., Teofili, C. (compilatori), 2022. Lista Rossa IUCN dei vertebrati italiani 2022 Comitato Italiano IUCN e Ministero dell'Ambiente e della Sicurezza Energetica, Roma
- Scaravelli D. e J. Altrigham, 2008. Swarming behaviour in bats: a overview and an Italian case. XXIII Conv. Naz. Soc. It. Etologia. Arcavacata, rende (CS) 17-20/09/2008: 44.
- Scaravelli D., 2004. Rapporto indagine sulle presenze di Chirotteri nell'area della cava di Monte Tondo (Borgo Rivola RA) e presso la grotta "vento che soffia" in particolare. Rapp. Ined. Saint Gobain
- Scaravelli D., 2005. Rapporto installazione bat box e batboard per Chirotteri nell'area di cava di Monte Tondo (Borgo Rivola, RA). Rapp. Ined. Saint Gobain
- Scaravelli D., 2015. Rapporto monitoraggio con fototrappole della fauna presente nella cava Monte Tondo. Rapp. Ined. Saint Gobain
- Scaravelli D., S. Gellini, L. Cicognani, C. Matteucci (a cura di) 2001. Atlante dei Mammiferi della Provincia di Ravenna. Amm. Prov. Ravenna e ST.E.R.N.A., Brisighella.
- SNH (2000) Windfarms and Birds Calculating a theoretical collision risk assuming no avoiding action. SNH Guidance Note. (http://www.snh.gov.uk/docs/C205425.pdf)
- SNH (2010) Use of avoidance rates in the SNH wind farm collision risk model. SNH Guidance Note