Regione: Sicilia Provincia: Palermo Comune: Monreale

Località: Trenta-Ravanusa

IMPIANTO AGRIVOLTAICO "MONREALE-C.DA TRENTA" DELLA POTENZA DI 40 MW IN IMMISSIONE PROGETTAZIONE DEFINITIVA

Titolo: AGRFV-PA-REL005A0

Relazione Campi Elettromagnetici e rischio CEM

Allegato: | Progettazione:

C.1

Visti / Firme / Timbri:

Ing. Maurizio Moscoloni

Note:

11.04.2023	0	PRIMA EMISSIONE	Ing. M. Moscoloni	Ing. M. Moscoloni	FLEGONE srl				
Data	Rev.	Descrizione revisioni	Elaborato da:	Controllato da:	Approvato da:				
	REVISIONI —								

FLEGONE srl Via Monte Napoleone, 8 20121 MILANO MI flegonesrl@pec.it

UNI:A4 Scala:

INDICE

1	PREMESSA	2
2	NORMATIVA DI RIFERIMENTO	3
	3.1 Il Sito di Impianto	5
	3.2 Sintesi dei dati di impianto	8
4	. CALCOLO DEI CAMPI ELETTROMAGNETICI	.11
	4.1 CAMPI ELETTROMAGNETICI IMPIANTO FOTOVOLTAICO	.11
	4.2 CAMPI ELETTROMAGNETICI DELLE OPERE CONNESSE	13
	4.3 CONCLUSIONI	21
5	. VALUTAZIONE DEL RISCHIO ESPOSIZIONE AI CEM NEL LUOGO DI LAVORO)22
	5.1 Metodologia di valutazione	.22
	5.2 Procedura di valutazione del rischio	.26
	5.3 Fasi di lavoro e caratterizzazione dei lavoratori sensibili	.27
	5.4 Identificazione delle apparecchiature e/o luoghi di lavoro	.30
	5.5 I livelli di azione ed il controllo del loro superamento	.32
	5.5.1 Valori di azione	
	5.5.2 Lavoratori particolarmente a rischio CE	
	5.6 Sorgenti CEM presenti	
	5.7 Valutazioni del rischio	
	5.7.1 Esito della valutazione del rischio	
	5.8 conclusioni rischio CEM sui luoghi di lavoro	
	J.O COTICIOSIONI FISCHIO CLIN SUI IUOGIN UI IUVOTO	.тэ

1 PREMESSA

La società Flegone s.r.l., in ottemperanza a quanto previsto dell'art. 27-bis del D.Lgs. 152 del 2006, intende attivare la procedura di Valutazione d'Impatto Ambientale Nazionale ed all' Autorizzazione Unica Regionale per la realizzazione e l'esercizio di un impianto Agrovoltaico della potenza nominale quantificabile in 41 MWp, e potenza di immissione di 40,00 MW, la cui ubicazione ricade nel Comune di Monreale nella provincia di Palermo, nelle località" Contrada Trenta e Contrada Ravanusa".

L'impianto sarà costituito da cinque campi fotovoltaici, ubicate su due aree denominate "A" e "B". All'interno dei vari campi verranno installate delle cabine verso cui confluiranno le linee in CA provenienti dagli inverter. All'interno delle stesse verranno installati i trasformatori BT/AT con potenza nominale pari a 1,25 MVA e 3,5 MVA, in funzione delle caratteristiche del generatore, i trasformatori di servizio ed i quadri elettrici BT ed AT.

Le linee provenienti dalle cabine installate nei 5 campi confluiranno verso la cabina generale del parco fotovoltaico posizionata ad ovest al margine del confine stradale.

Tale cabina verrà collegata in antenna a 36 kV con una nuova stazione elettrica di trasformazione (SE) a 220/36 kV della RTN, da inserire in entra - esce sulla linea RTN a 220 kV "Partinico - Partanna", di cui al Piano di Sviluppo Terna, attraverso un elettrodotto interrato AT della lunghezza di circa 9 Km.

La connessione verrà realizzata secondo la STMG comunicata da Terna S.p.A con il preventivo cod pratica **202200551**, del 11/07/2022.

Scopo della presente relazione è quella di descrivere le emissioni elettromagnetiche associate alle infrastrutture elettriche presenti nell'impianto fotovoltaico in oggetto e connesse ad esso, ai fini della verifica del rispetto dei limiti della legge n.36/2001 e dei relativi Decreti attuativi.

In particolare, per l'impianto saranno valutate le emissioni elettromagnetiche dovute alle cabine elettriche, ai cavidotti ed alla stazione utente per la trasformazione. Si individueranno, in base al DM del MATTM del 29.05.2008, le DPA per le opere sopra dette.

Nel presente studio è stata presa in considerazione le condizioni maggiormente significative al fine di valutare la rispondenza ai requisiti di legge dei nuovi elettrodotti.

Inoltre, il capitolo 5 conterrà la valutazione del rischio di esposizione, da parte dei lavoratori, ai campi elettromagnetici prodotti nelle diverse fasi di:

- Costruzione;
- Collaudo e avviamento;
- Esercizio;
- Dismissione,

del parco agrofotovoltaico in argomento, con riferimento alle principali normative di settore quali il D. Lgs. 81/08 e la Direttiva Europea 35/2013.

FLEGONE S.R.L. pag. 2 DI 44

2. NORMATIVA DI RIFERIMENTO

Il panorama normativo italiano in fatto di protezione contro l'esposizione dei campi elettromagnetici si riferisce alla legge 22/2/01 n°36 che è la legge quadro sulla protezione dalle esposizioni ai campi elettrici, magnetici ed elettromagnetici completata a regime con l'emanazione del D.P.C.M. 8.7.2003.

Nel DPCM 8 Luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", vengono fissati i limiti di esposizione e i valori di attenzione, per la protezione della popolazione dalle esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) connessi al funzionamento e all'esercizio degli elettrodotti.

In particolare negli articoli 3 e 4 vengono indicate le seguenti 3 soglie di rispetto per l'induzione magnetica:

"Nel caso di esposizione a campi elettrici e magnetici alla frequenza di 50 Hz generati da elettrodotti non deve essere superato il limite di esposizione di 100 µT per l'induzione magnetica e 5kV/m per il campo elettrico intesi come valori efficaci" [art. 3, comma 1];

"A titolo di misura di cautela per la protezione da possibili effetti a lungo termine, eventualmente connessi con l'esposizione ai campi magnetici generati alla frequenza di rete (50 Hz), nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere, si assume per l'induzione magnetica il valore di attenzione di $10 \,\mu$ T, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio." [art. 3, comma 2];

"Nella progettazione di nuovi elettrodotti in corrispondenza di aree gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione dei nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio, ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, è fissato l'obiettivo di qualità di $3 \mu T$ per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio". [art. 4]

L'obiettivo qualità da perseguire nella realizzazione dell'impianto è pertanto quello di avere un valore di intensità di campo magnetico non superiore ai 3µT come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

FLEGONE S.R.L. pag. 3 DI 44

A tal proposito occorre precisare che nelle valutazioni che seguono è stata considerata normale condizione di esercizio quella in cui l'impianto FV trasferisce alla Rete di Trasmissione Nazionale la massima produzione (circa 40.000 kW ac).

Come detto, il 22 Febbraio 2001 l'Italia ha promulgato la Legge Quadro n.36 sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici (CEM) a copertura dell'intero intervallo di frequenze da 0 a 300.000 MHz.

Tale legge delinea un quadro dettagliato di controlli amministrativi volti a limitare l'esposizione umana ai CEM e l'art. 4 di tale legge demanda allo Stato le funzioni di stabilire, tramite Decreto del Presidente del Consiglio dei Ministri: i livelli di esposizione, dei valori di attenzione e degli obiettivi di qualità, le tecniche di misurazione e rilevamento.

Il 28 Agosto 2003 G.U. n.199, è stato pubblicato il Decreto del Presidente del Consiglio dei Ministri 8 Luglio 2003: "Fissazione dei limiti di esposizione, di attenzione e degli obiettivi di qualità per la protezione della popolazione dalla esposizione a campi elettrici, magnetici ed elettromagnetici generati a frequenze comprese tra 100 kHz e 300 GHz". L'art. 3 di tale Decreto riporta i limiti di esposizione e i valori di attenzione come riportato nelle Tabelle 1 e 2:

DENSITA' DI POTENZA Intervallo di FREQUENZA Valore efficace di Valore efficace di intensità di CAMPO intensità di CAMPO (MHz) dell'onda piana ELETTRICO (V/m) MAGNETICO (A/m) equivalente (W/m²) 0.1-3 60 0.2 >3 - 3000 0.05 20 1 >3000 - 300000 40 0.01 4

Tabella 1 Limiti di esposizione di cui all'art.3 del DPCM 8 luglio 2003.

Tabella 2 Valori di attenzione di cui all'art.3 del DPCM 8 luglio 2003 in presenza di aree, all'interno di edifici adibiti a permanenze non inferiori a quattro ore.

Intervallo di FREQUENZA	Valore efficace di intensità di CAMPO	Valore efficace di	DENSITA'DI POTENZA	
(MHz)	ELETTRICO (V/m)	intensità di CAMPO MAGNETICO (A/m)	dell'onda piana equivalente (W/m²)	
0.1 – 300000	6	0.016	0.10 (3 MHz – 300 GHz)	

L'art. 4, invece, riporta i valori di immissione che non devono essere superati in aree intensamente frequentate come riportato in Tabella 3:

Tabella 3 Obiettivi di qualità di cui all'art.4 del DPCM 8 luglio2003 all'aperto in presenza di aree intensamente frequentate.

Intervallo di FREQUENZA (MHz)	Valore efficace di intensita' di CAMPO ELETTRICO (V/m)	Valore efficace di intensita' di CAMPO MAGNETICO (A/m)	DENSITA'DI POTENZA dell'onda piana equivalente (W/m²)
0.1 - 300000	6	0.016	0.10 (3 MHz – 300 GHz)

FLEGONE S.R.L. pag. 4 DI 44

Per quanto riguarda la metodologia di rilievo il D.P.C.M. 8 Luglio 2003 fa riferimento alla norma CEI 211-7 del Gennaio 2001.

DOCUMENTI DI RIFERIMENTO

- [1] DPCM 8 luglio 2003: "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti".
- [2] DL 9 aprile 2008 nº 81 "Testo unico sulla sicurezza sul lavoro"
- [3] Norma CEI 0-2 "Guida per la definizione della documentazione di progetto degli impianti elettrici"
- [4] Norma CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche"
- [5] Norma CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6). Parte 1: Linee elettriche areee e in cavo."

DM del MATTM del 29.05.2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti"

3.1 Il Sito di Impianto

L'area di sedime su cui sorgerà l'impianto ricade all'interno del territorio comunale di Monreale, in provincia di Palermo, a circa 3,5 Km in direzione Sud dal centro Ruderi di Poggio Reale, a circa 11Km in direzione Nord-Est dal Centro abitato di Camporeale, a circa 10,8 Km in direzione Est dal centro abitato di Roccamena ed a 14 Km in direzione Ovest dal centro abitato di Gibellina, in una zona occupata da terreni agricoli e distante da agglomerati residenziali. Le opere di connessione tra le quali la SSE da 220 kV/30 kV ricadono anch'esse in territorio di Monreale (PA).

Il sito risulta accessibile dalla viabilità locale, e rurale che si collega alla viabilità statale costituita dalla A29 Palermo – Mazzara del Vallo, la SS 119, la SS 624 e dalla viabilità provinciale costituita dalla SP 20, SP 9, SP 47 bis, SP Gibellina Camporeale e dalla Strada Vicinale Ravanusa.

Nella cartografia del Catasto Terreni l'area di impianto è ricompresa nei Fogli nn° 184, 186, del Comune di Monreale. Le particelle interessate risultano le seguenti:

- A) Comune di Monreale (PA):
- Foglio n° 184, Particelle nn°16, 62, 63, 64, 65, 66, 67, 68, 102, 103, 115 e 127;
- Foglio n° 186, Particelle nn°101, 121, 127, 128 e 228(ex 31);

FLEGONE S.R.L. pag. 5 DI 44

Figura 1 Localizzazione su immagine satellitare

I lotti di terreno occupati dai campi fotovoltaici sono estesi rispettivamente:

- Area A "Trenta" Ha 62,50
- Area B "C.da Ravanusa" Ha 11,16

Si chiarisce che, all'interno delle 2 aree, individuate territorialmente con le lettere A e B, si è previsto di istallare 5 campi fotovoltaici che compongono l'intero parco

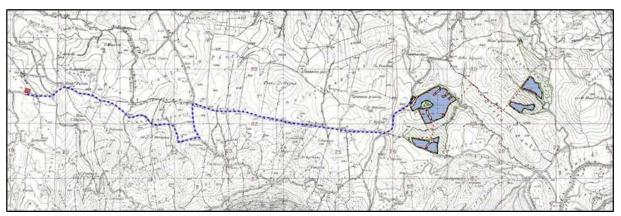


Figura 2 : Inquadramento impianto su base IGM 1:25.000

Dal punto di vista cartografico, le opere in progetto ricadono all'interno delle seguenti cartografie:

- Foglio I.G.M. in scala 1:25.000, di cui alla seguente codifica "258 IV-SO (MONTE PIETROSO)".
- Carta tecnica regionale CTR, scala 1:10.000, foglio nn° 607130, 606160.

FLEGONE S.R.L. pag. 6 DI 44

Di seguito si riportano le coordinate assolute nel sistema UTM 33 WGS84 dell'impianto fotovoltaico e della sottostazione elettrica:

SISTEMA UTM 33 WGS84 – COORDINATE ASSOLUTE						
Posizione	Е	N	Н			
Impianto Fv - Campo A (baricentro area)	37.565911°	13.030970°	245m			
Impianto Fv - Campo B (baricentro area)	37.827420°	13.051404°	233 m			
Cabina di raccolta SSEU	37.824982°	13.028131°	246 m			
Cabina di Trasformazione 200/36 kV SE RTN	37.826002°	12.950700°	197 m			

Tabella 1 Coordinate assolute parco FV e SSE

FLEGONE S.R.L. pag. 7 DI 44

3.2 Sintesi dei dati di impianto

L'impianto nel suo complesso sarà costituito delle seguenti componenti:

- Un collegamento elettrico del parco fotovoltaico alla rete di trasmissione di alta tensione (RTN) che avverrà tramite uno stallo dedicato presso la SE attraverso una linea in cavo AT a tensione pari a 36 kV dello sviluppo di circa 9 Km. All'arrivo alla SE TERNA verranno effettuate le misure fiscali in AT.
 - Una cabina di raccolta all'interno della quale verranno collocati i manufatti contenenti:
 - il trasformatore di servizio completo di protezioni lato AT e lato BT;
 - i quadri elettrici in CA relativi ai servizi ausiliari;
 - il raddrizzatore con relative batterie per l'alimentazione dei servizi ausiliari a 110 Vcc;
 - un gruppo di continuità;
 - un gruppo elettrogeno.

Nella stessa area saranno predisposti anche i locali per l'impianto di supervisione (SCADA), un ambiente da dedicare ad ufficio e dei locali di servizio.

- 5 linee interrate in AT di lunghezza compresa tra circa 280 m e circa 3 km, che metteranno in collegamento la cabina di raccolta con le cabine dei 5 campi, configurabili come delle sottostazioni preposte alla trasformazione della tensione in AT;
- Un parco agrovoltaico composto da 5 campi (1, 2, 3, 4, 5) con le seguenti componenti principali:
 - n°18 cabina di generazione con un trasformatori della potenza variabile dai 3.200 kW e 1.600 kW, in relazione all'estensione del campo e di conseguenza al numero di moduli installati, contenenti ciascuno :
 - due quadri di parallelo inverter in corrente alternata ai quali confluiranno le uscite CA degli inverter dislocati nel campo;
 - un trasformatore in olio AT/BT di potenza variabile secondo le taglie pari a 3.200 kVA, 1.600 kVA, con doppio avvolgimento secondario;
 - quadri AT a protezione del trasformatore e delle linee in entra-esce.
 - N° 200 inverter trifase, aventi la funzione di convertire l'energia elettrica prodotta dai moduli da corrente continua a corrente alternata. A ciascun inverter, la cui potenza nominale è pari a 200 kW, verranno attestate 18 linee

FLEGONE S.R.L. pag. 8 DI 44

in CC provenienti da altrettante stringhe;

 64.780 moduli fotovoltaici del tipo monofacciali di potenza pari a 630 Wp, installati su strutture metalliche fisse di sostegno, raggruppati in stringhe da 18 moduli collegati in serie.

L'impianto è completato da:

- Tutte le infrastrutture tecniche necessarie alla conversione DC/AC della potenza generata dall'impianto e dalla sua consegna alla rete di trasmissione nazionale;
- Opere accessorie, quali: impianti di illuminazione, videosorveglianza, antintrusione, telecontrollo.

L'impianto nel suo complesso è in grado di alimentare dalla rete tutti i carichi rilevanti (ad es: quadri di alimentazione, illuminazione ecc..).

Inoltre, in mancanza di alimentazione dalla rete, tutti i carichi di emergenza potranno essere alimentati da un generatore temporaneo diesel di emergenza e da un sistema di accumulo ad esso connesso (sola predisposizione).

Il generatore fotovoltaico avrà una potenza nominale complessiva pari a 40.811 kWp, intesa come somma delle potenze di targa o nominali di ciascun modulo misurata in condizioni di prova standard (STC), ossia considerando un irraggiamento pari a 1000 W/m², con distribuzione dello spettro solare di riferimento (massa d'aria AM 1,5) e temperatura delle celle di 25°C, secondo norme CEI EN 904/1-2-3.

L'impianto fotovoltaico nel suo complesso sarà quindi formato da n 5campi di potenza complessiva pari a quella nominale dell'impianto, suddivisi poi in generatori di potenza variabile attestati alle rispettive cabine di trasformazione; gli inverter di stringa di ciascun generatore, dove avviene il parallelo delle stringhe e il monitoraggio dei dati elettrici, verranno attestate a gruppi presso le Cabine di trasformazione.

Nelle seguenti tabelle si riporta la composizione dei Campi e dei relativi generatori:

Area	Campo	Numero Pannelli	N Moduli per stringa	N Stringhe	Stringhe per Inverter	N Inverter	Tipo Inverter	P DC [kW]	P AC [kVA]
	1	11664	18	648	18	36	HUAWEI SUN2000-215KTL-H1	7348320	7200
Λ	2	16200	18	900	18	50	HUAWEI SUN2000-215KTL-H1	10206000	10000
Α	3	11644	18	648	18	36	HUAWEI SUN2000-215KTL-H1	7335720	7200
	4	9720	18	540	18	30	HUAWEI SUN2000-215KTL-H1	6123600	6000
В	5	15.552	18	864	18	48	HUAWEI SUN2000-215KTL-H1	9.797.760	9.600
	Totale	64780		3600		200		40811400	40000

Tabella 2 Composizione Campi

FLEGONE S.R.L. pag. 9 DI 44

Area	Campo	Linea	DA	А	L [m]	Ltot [m]	Tipo cavo	Sezioni [mm²]	Corrente Tratta [A]	Ptot [kVA]	Potenza Campo
			Linea 1	SC1	280,17		RG7H1R 26/45 kV	3x(1x70)	115,3	7186,8	
	1	1	SC1	SC2	816,71	1105,58	RG7H1R 26/45 kV	3x(1x70)	76,8	4791,568	7200
			SC2	SC3	8,7		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,784	
			Linea 2	SC6	971,56		RG7H1R 26/45 kV	3x(1x70)	160,1	9982,4	
	2	2	SC6	SC5	28,49	1049,53	RG7H1R 26/45 kV	3x(1x70)	115	7187,351	10000
	Z	Ζ	SC5	SC7	24,49	1049,53	RG7H1R 26/45 kV	3x(1x70)	77	4791,568	10000
Α			SC7	SC4	24,99		RG7H1R 26/45 kV	3x(1x70)	38	2395,784	
		3	Linea 3	SC10	803,22	847,20	RG7H1R 26/45 kV	3x(1x70)	115,3	7186,8	7200
	3		SC10	SC09	19,99		RG7H1R 26/45 kV	3x(1x70)	76,80	4791,2	
			SC09	SC08	23,99		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,8	
			Linea 4	SC12	2099,64		RG7H1R 26/45 kV	3x(1x70)	96	5986,8	
	4	4	SC12	SC13	262,42	2389,51	RG7H1R 26/45 kV	3x(1x70)	60,87	3791,2	6000
			SC13	SC11	27,45		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,6	
			Linea 5	SC17	3033,74		RG7H1R 26/45 kV	3x(1x70)	153,6	9578	
			SC17	SC18	25,62		RG7H1R 26/45 kV	3x(1x70)	115,2	7183,381	
В	5	5	SC18	SC14	696,54	3804,99	RG7H1R 26/45 kV	3x(1x70)	99,2	6187,441	9.600
			SC14	SC15	26,77		RG7H1R 26/45 kV	3x(1x70)	60,8	3791,665	
			SC15	SC16	22,32		RG7H1R 26/45 kV	3x(1x70)	22,4	1395,915	
SSE Monreale 3		AT	SE Terna	Cabina di Raccolta	9000,00	9000	RG7H1R 26/45 kV	3x(1x500)	640,3	39924,4	40000

Tabella 3 Configurazione Campi

Nella tabella seguente sono riportati i dati complessivi:

CONFIGURAZIONE IMPIANTO				
N° MODULI	64.780			
N° STRINGHE	3.600			
N° INVERTER	200			
POTENZA DC [MWp]	40,81			
POTENZA AC [MW]	40,00			

Tabella 4 Configurazione impianto

FLEGONE S.R.L. pag. 10 dl 44

4. CALCOLO DEI CAMPI ELETTROMAGNETICI

4.1 CAMPI ELETTROMAGNETICI IMPIANTO FOTOVOLTAICO

Moduli fotovoltaici

I moduli fotovoltaici lavorano in corrente e tensione continue e non in corrente alternata; per cui la generazione di campi variabili è limitata ai soli transitori di corrente (durante la ricerca del MPP da parte dell'inverter, e durante l'accensione o lo spegnimento) e sono comunque di brevissima durata. Nella certificazione dei moduli fotovoltaici alla norma CEI 82-8 (IEC 61215) non sono comunque menzionate prove di compatibilità elettromagnetica, poiché assolutamente irrilevanti.

Inverter

Gli inverter sono apparecchiature che al loro interno utilizzano un trasformatore ad alta frequenza per ridurre le perdite di conversione. Essi pertanto sono costituiti per loro natura da componenti elettronici operanti ad alte frequenze. D'altro canto il legislatore ha previsto che tali macchine, prima di essere immesse sul mercato, possiedano le necessarie certificazioni a garantirne sia l'immunità dai disturbi elettromagnetici esterni, sia le ridotte emissioni per minimizzarne l'interferenza elettromagnetica con altre apparecchiature elettroniche posizionate nelle vicinanze o con la rete elettrica stessa (via cavo).

A questo scopo gli inverter prescelti possiedono la certificazione di rispondenza alle normative di compatibilità elettromagnetica (EMC) (CEI EN 50273 (CEI 95-9), CEI EN 61000-6-3 (CEI 210-65), CEI EN 61000-2-2 (CEI 110-10), CEI EN 61000-3-2 (CEI 110-31), CEI EN 61000-3-3 (CEI 110-28), CEI EN 55022 (CEI 110-5), CEI EN 55011 (CEI 110-6))

Tra gli altri aspetti queste norme riguardano:

- i livelli armonici: le direttive del gestore di rete prevedono un THD globale (non riferito al massimo della singola armonica) inferiore al 5% (inferiore all'8% citato nella norma CEI 110-10). Gli inverter presentano un THD globale contenuto entro il 3%:
- Disturbi alle trasmissioni di segnale operate dal gestore di rete in super imposizione alla trasmissione di energia sulle sue linee;
- Variazioni di tensione e frequenza. La propagazione in rete di queste ultime è limitata dai relè di controllo della protezione di interfaccia asservita al dispositivo di

FLEGONE S.R.L. pag. 11 DI 44

interfaccia. Le fluttuazioni di tensione e frequenze sono però causate per lo più dalla rete stessa. Si rendono quindi necessarie finestre abbastanza ampie, per evitare una continua inserzione e disinserzione dell'impianto fotovoltaico.

- La componente continua immessa in rete. Il trasformatore elevatore contribuisce a bloccare tale componente. In ogni modo il dispositivo di interfaccia di ogni inverter interviene in presenza di componenti continue maggiori dello 0,5% della corrente nominale.

Le questioni di compatibilità elettromagnetica concernenti i buchi di tensione (fino ai 3 s in genere) sono in genere dovute al coordinamento delle protezioni effettuato dal gestore di rete locale.

Linee elettriche in corrente alternata

Per quanto riguarda il rispetto delle distanze da ambienti presidiati ai fini dei campi elettrici e magnetici, si è tenuto conto del limite di qualità dei campi magnetici, fissato dalla suddetta legislazione a 3 μ T, anche se per la particolarità dell'impianto le aree al suo interno sono da classificare ai sensi della normativa come luoghi di lavoro, e quindi con livelli di riferimento maggiori rispetto a questi ultimi.

Per i cavi in alta tensione non elicordati, di tipo unipolare posati a trifoglio si rimanda al capitolo 4.2 per il calcolo puntuale delle DPA in funzione di ciascuna configurazione.

Cabine elettriche di trasformazione e di campo

Per quanto riguarda i componenti dell'impianto sono da considerare le cabine elettriche di trasformazione, all'interno delle quali la principale sorgente di emissione è il trasformatore BT/MT.

In questo caso si valutano le emissioni dovute ai trasformatori di potenza 3200 kVA collocati nelle cabine di trasformazione.

La presenza del trasformatore BT/MT viene usualmente presa in considerazione limitatamente alla generazione di un campo magnetico nei locali vicini a quelli di cabina.

In base al DM del MATTM del 29.05.2008, cap.5.2.1, l'ampiezza delle DPA si determina come di seguito descritto.

Tale determinazione si basa sulla corrente di bassa tensione del trasformatore e considerando una distanza dalle fasi pari al diametro dei cavi reali in uscita dal trasformatore. Per determinare le DPA si applica quanto esposto nel citato cap.5.2.1 e cioè:

$$\frac{DPA}{\sqrt{I}} = 0.40942 \cdot x^{0.5242}$$

FLEGONE S.R.L. pag. 12 DI 44

dove:

DPA= distanza di prima approssimazione (m)

I= corrente nominale (A)

x= diametro dei cavi (m)

Considerando che I=2280A e che il cavo scelto sul lato BT del trasformatore è 3(2x400)mm², con diametro esterno pari a circa 29,2mm, si ottiene una DPA, arrotondata per eccesso all'intero superiore, pari a 3m.

D'altra parte, nel caso in questione la cabina è posizionata all'aperto e normalmente non è permanentemente presidiata.

Cautelativamente questi valori possono essere presi a riferimento anche per la cabina di impianto.

Altri cavi

Altri campi elettromagnetici dovuti al monitoraggio e alla trasmissione dati possono essere trascurati, essendo le linee dati realizzate normalmente in cavo schermato.

4.2 CAMPI ELETTROMAGNETICI DELLE OPERE CONNESSE

Linee elettriche in corrente alternata in alta tensione a 36 kV

Il campo magnetico è calcolato in funzione della corrente circolante nei cavidotti in esame e della disposizione geometrica dei conduttori.

Per quanto riguarda il valore del campo elettrico, trattandosi di linee interrate, esso è da ritenersi insignificante grazie anche all'effetto schermante del rivestimento del cavo e del terreno.

Nel seguito verranno pertanto esposti i risultati del solo calcolo del campo magnetico.

Configurazioni di calcolo

Per il calcolo dei campi magnetici dei collegamenti AT a 13 kV con la stazione di trasformazione di utenza sono state esaminate le configurazioni rappresentate nell'elaborato "CV. 9 Particolari costruttivi cavidotti" da cui è possibile rilevare le sezioni tipo di posa di cavidotti sia su strade sterrate che per strade asfaltate.

FLEGONE S.R.L. pag. 13 DI 44

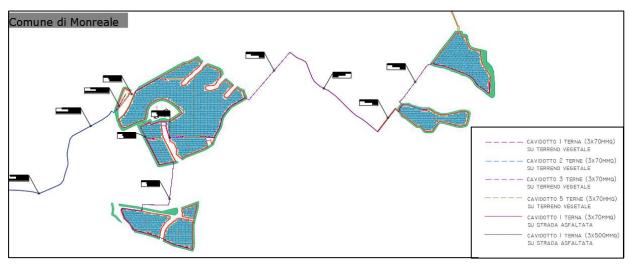


Figura 3 Layout Impianto con Cavidotti rif: "Tav CV.5 Planimetria impianto con tracciato cavidotti AT 36 kV

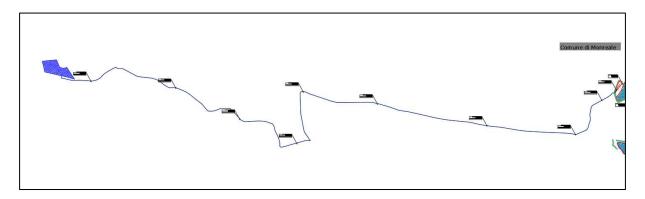


Figura 4 Cavidotto di collegamento RTN rif: "Tav CV.5 Planimetria impianto con tracciato cavidotti AT 36 kV

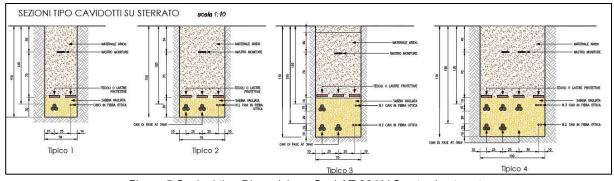


Figura 5 Sezioni tipo Disposizione Cavi AT 36 kV Su strade sterrate

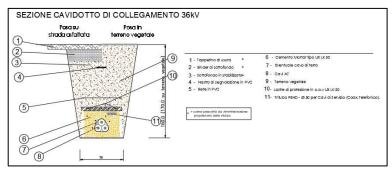


Figura 6 Sezioni tipo Disposizione Cavi MT Su Strade Asfaltate

FLEGONE S.R.L. pag. 14 DI 44

Per quanto concerne i cavidotti AT esterni, per il collegamento di ciascun campo al quadro MT della stazione di campo, è prevista la partenza con terne di cavi in parallelo con l'utilizzo di cavi unipolari di sezione pari a 70 mm², posati a trifoglio. All'interno del cavidotti in esame quindi si trovano sempre cavi AT a 36 kV unipolari aventi sezione costante con conduttore in alluminio, posate in differenti configurazioni determinate dalla presenza delle linee di collegamento dai diversi campi di cui è composto l'impianto fotovoltaico.

La corrente massima che può interessare la linea di collegamento MT per l'impianto in oggetto è la seguente:

Area	Campo	Linea	DA	А	L [m]	Ltot [m]	Tipo cavo	Sezioni [mm²]	Corrente Tratta [A]	Ptot [kVA]	Potenza Campo
			Linea 1	SC1	280,17		RG7H1R 26/45 kV	3x(1x70)	115,3	7186,8	
	1	1	SC1	SC2	816,71	1105,58	RG7H1R 26/45 kV	3x(1x70)	76,8	4791,568	7200
			SC2	SC3	8,7		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,784	
			Linea 2	SC6	971,56		RG7H1R 26/45 kV	3x(1x70)	160,1	9982,4	
	2	2	SC6	SC5	28,49	1049,53	RG7H1R 26/45 kV	3x(1x70)	115	7187,351	10000
	2	۷	SC5	SC7	24,49	1049,55	RG7H1R 26/45 kV	3x(1x70)	77	4791,568	7200
Α			SC7	SC4	24,99		RG7H1R 26/45 kV	3x(1x70)	38	2395,784	
		3	Linea 3	SC10	803,22	847,20	RG7H1R 26/45 kV	3x(1x70)	115,3	7186,8	
	3		SC10	SC09	19,99		RG7H1R 26/45 kV	3x(1x70)	76,80	4791,2	
			SC09	SC08	23,99		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,8	
		Linea 4 SC12 2099,64 4 4 SC12 SC13 262,42 2389,51	RG7H1R 26/45 kV	3x(1x70)	96	5986,8					
	4		SC12	SC13	262,42	2389,51	RG7H1R 26/45 kV	3x(1x70)	60,87	3791,2	6000
			SC13	SC11	27,45		RG7H1R 26/45 kV	3x(1x70)	38,4	2395,6	
			Linea 5	SC17	3033,74		RG7H1R 26/45 kV	3x(1x70)	153,6	9578	
			SC17	SC18	25,62		RG7H1R 26/45 kV	3x(1x70)	115,2	7183,381	
В	5	5	SC18	SC14	696,54	3804,99	RG7H1R 26/45 kV	3x(1x70)	99,2	6187,441	9.600
			SC14	SC15	26,77		RG7H1R 26/45 kV	3x(1x70)	60,8	3791,665	
			SC15	SC16	22,32		RG7H1R 26/45 kV	3x(1x70)	22,4	1395,915	
SSE Monreale 3		АТ	SE Terna	Cabina di Raccolta	9000,00	9000	RG7H1R 26/45 kV	3x(1x500)	640,3	39924,4	40000

Tabella 5 Collegamenti AT 36 kV

Nel calcolo, essendo il valore della induzione magnetica proporzionale alla corrente transitante nella linea, è stata presa in considerazione la configurazione di carico che prevede la posa dei cavi a trifoglio, con un valore di corrente però pari alla portata massima di ciascuna linea elettrica in cavo nelle condizioni normali, senza correzioni, secondo la Norma CEI 20-21. Le condizioni di calcolo sono pertanto più gravose di quelle effettive.

FLEGONE S.R.L. pag. 15 DI 44

La configurazione dell'elettrodotto è quella di assenza di schermature e distanza minima dei conduttori dal piano viario. Il calcolo è stato effettuato al suolo.

Calcolo del campo magnetico indotto

Nelle seguenti figure sono riportati gli andamenti dell'induzione magnetica per una sezione trasversale a quella di posa, per le diverse sezioni rappresentative.

Non è invece rappresentato il calcolo del campo elettrico prodotto dalla linea in cavo, poiché in un cavo schermato il campo elettrico esterno allo schermo è nullo.

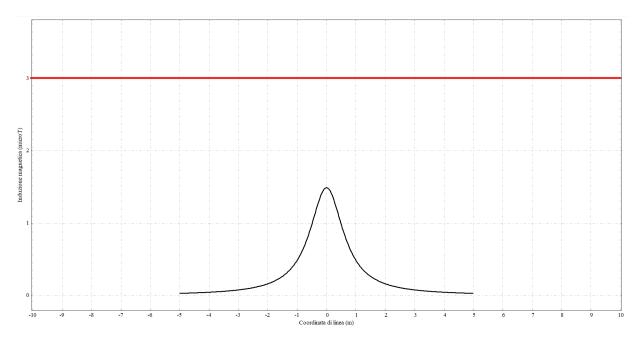


Figura 7 Andamento dell'induzione magnetica prodotta dalla linea in cavo per la tipologia 1 (una terna AT 36 kV)

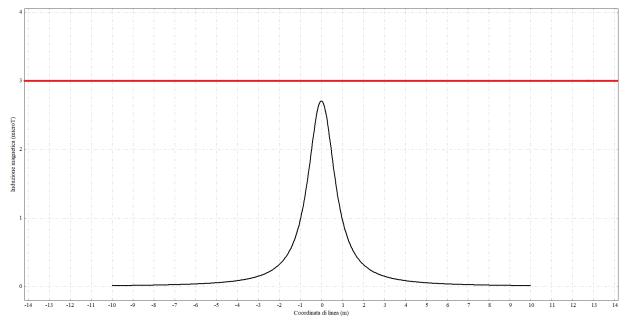


Figura 8:Andamento dell'induzione magnetica prodotta dalla linea in cavo per la tipologia 2 (due terne AT 36 KV)

FLEGONE S.R.L. pag. 16 DI 44

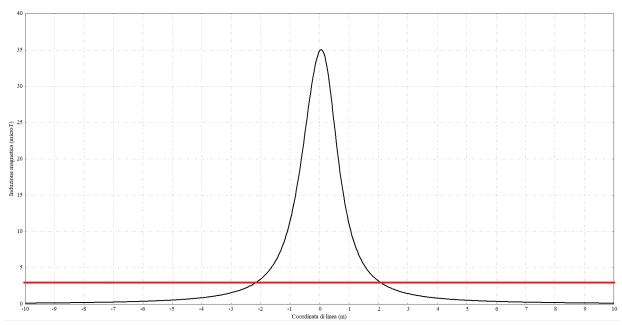


Figura 9: Andamento dell'induzione magnetica prodotta dalla linea in cavo per la tipologia 3 (tre terne AT 36 kV)

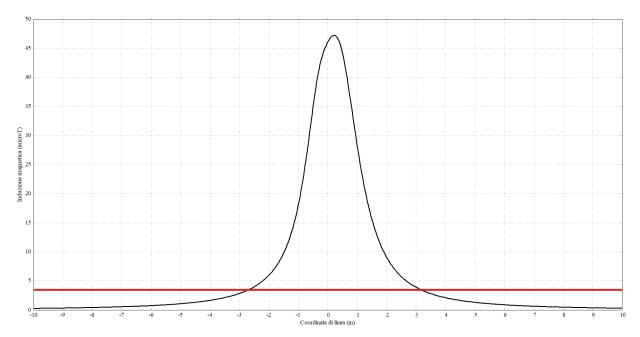


Figura 10: Andamento dell'induzione magnetica prodotta dalla linea in cavo per la tipologia 5 (cinque terne AT 36 kV)

Si può osservare come nel caso peggiore, Figura 10 , il valore di 3 μT è raggiunto a circa 3,50 m dall'asse del cavidotto.

E' da notare che la condizione di calcolo è ampiamente cautelativa, in quanto la corrente che fluirà nel cavidotto sarà quella prodotta dall'impianto fotovoltaico che, è certamente inferiore a quella di calcolo.

FLEGONE S.R.L. pag. 17 DI 44

Il tracciato di posa dei cavi è stato studiato in modo che il valore di induzione magnetica sia sempre inferiore a $3\,\mu T$ in corrispondenza dei ricettori sensibili (abitazioni e aree in cui si prevede una permanenza di persone per più di 4 ore nella giornata), pertanto è esclusa la presenza di tali recettori all'interno della fascia calcolata.

Calcolo delle fasce di rispetto

Per la determinazione dell'ampiezza della fascia di rispetto è stata effettuata la simulazione di calcolo per i casi presentati nei paragrafi precedenti.

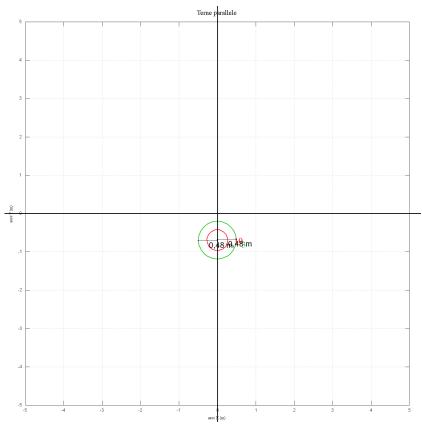


Figura 11 Curve di equilivello per il campo di induzione magnetica generato dalla linea AT (tipologia 1 – una terne AT 36 kV)

FLEGONE S.R.L. pag. 18 DI 44

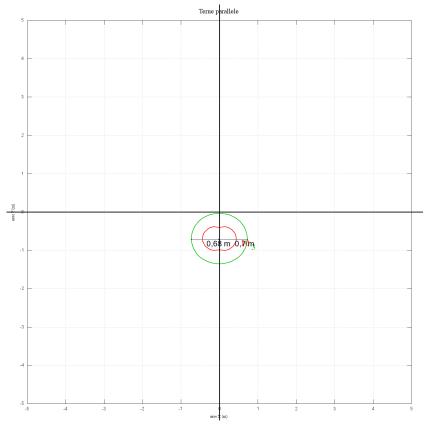


Figura 12: Curve di equilivello per il campo di induzione magnetica generato dalla linea AT (tipologia 2 – due terne AT 36 kV)

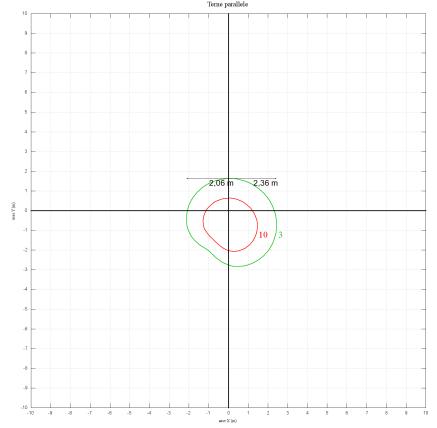


Figura 13: Curve di equilivello per il campo di induzione magnetica generato dalla linea MT (Sezione 3 – tre terne AT 36 kV)

FLEGONE S.R.L. pag. 19 di 44

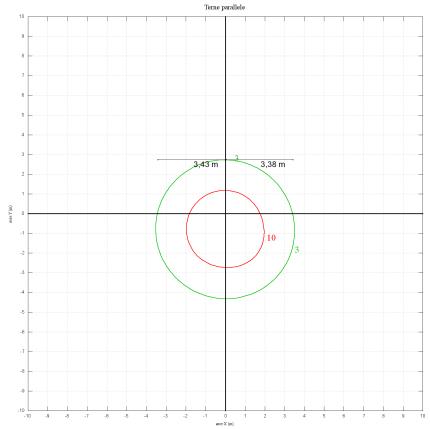


Figura 14: Curve di equilivello per il campo di induzione magnetica generato dalla linea AT (Tipologia 5 – cinque terne AT 36 kV)

Si può quindi considerare che l'ampiezza della fascia di rispetto vari tra **0,50 m**, a cavallo dell'asse del cavidotto, nel caso della sezione con una terna fino a circa **3,43 m**, a cavallo dell'asse del cavidotto, nel caso della sezione con **5 terne**.

Come si può vedere dall'elaborato CV.1 "Inquadramento impianto su mappa catastale", non ci sono recettori sensibili all'interno delle fasce suddette.

FLEGONE S.R.L. pag. 20 di 44

4.3 CONCLUSIONI

Le uniche radiazioni associabili a questo tipo di impianti sono le radiazioni non ionizzanti costituite dai campi elettrici e magnetici a bassa frequenza (50 Hz), prodotti rispettivamente dalla tensione di esercizio degli elettrodotti e dalla corrente che li percorre. I valori di riferimento, per l'esposizione ai campi elettrici e magnetici, sono stabiliti dalla Legge n. 36 del 22/02/2001 e dal successivo DPCM 8 Luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete di 50 Hz degli elettrodotti". In generale, per quanto riguarda il campo elettrico in alta tensione a 36 kV esso è notevolmente inferiore a 5 kV/m (valore imposto dalla normativa).

Mentre per quel che riguarda il campo di induzione magnetica il calcolo nelle varie sezioni di impianto ha dimostrato come non ci siano fattori di rischio per la salute umana a causa delle azioni di progetto, poiché è esclusa la presenza di recettori sensibili entro le fasce per le quali i valori di induzione magnetica attesa non sono inferiori agli obiettivi di qualità fissati per legge; mentre il campo elettrico generato è nullo a causa dello schermo dei cavi o assolutamente trascurabile negli altri casi per distanze superiori a qualche cm dalle parti in tensione.

Infatti per quanto riguarda il campo magnetico, relativamente ai cavidotti AT 36 kV, realizzati mediante l'uso di cavi unipolari posati a trifoglio, è stata calcolata un'ampiezza della semi-fascia di rispetto pari al massimo a 3.43 m e con un minimo di 0,50 m; sulla base della scelta del tracciato, si esclude la presenza di luoghi adibiti alla permanenza di persone per durate non inferiori alle 4 ore al giorno.

Per ciò che riguarda le cabine di trasformazione l'unica sorgente di emissione è rappresentata dal trasformatore BT/MT, quindi in riferimento al DPCM 8 luglio 2003 e al DM del MATTM del 29.05.2008, l'obbiettivo di qualità si raggiunge, nel caso peggiore (trasformatore da 3.200 kVA), già a circa 3 m (DPA) dalla cabina stessa.. Comunque considerando che nelle cabine di trasformazione non è prevista la presenza di persone per più di quattro ore al giorno e che l'intera area dell'impianto fotovoltaico sarà racchiusa all'interno di una recinzione metallica che impedisce l'ingresso di personale non autorizzato, si può escludere pericolo per la salute umana.

L'impatto elettromagnetico può pertanto essere considerato non significativo.

FLEGONE S.R.L. pag. 21 DI 44

5. Valutazione del rischio esposizione ai CEM nel luogo di lavoro

5.1 Metodologia di valutazione

Il Decreto Legislativo 81/08 ha fissato i requisiti minimi per la protezione dei lavoratori contro i Rischi per la salute e la sicurezza derivante dall'esposizione ai Campi Elettromagnetici (da 0 Hz a 300 GHz) durante il lavoro. Le disposizioni del D.Lgs. riguardano la protezione dai rischi per la salute e la sicurezza dei lavoratori dovuti agli effetti nocivi a breve termine conosciuti nel corpo umano derivanti dalla circolazione di correnti indotte e dall'assorbimento di energia, nonché da correnti di contatto, ma non disciplinano la protezione da eventuali effetti a lungo termine e non riguardano i rischi risultanti dal contatto con i conduttori in tensione.

Dal 1 Luglio 2016 è recepita la Direttiva 2013/35/UE in materia di disposizioni minime di sicurezza e salute relative all'esposizione dei lavoratori ai rischi derivanti dagli agenti fisici.

Definizioni ricorrenti

CAMPI ELETTROMAGNETICI: campi magnetici statici e campi elettrici, magnetici ed elettromagnetici variabili nel tempo di frequenza inferiore o pari a 300 GHz;

Corrente di contatto (Ic): la corrente di contatto tra una persona e un oggetto è espressa in Ampere (A). Un conduttore che si trova in un campo elettrico può essere caricato dal campo.

Densità di corrente (J): è definita come la corrente che passa attraverso una sezione unitaria perpendicolare alla sua direzione in un volume conduttore quale il corpo umano o una sua parte. E' espressa in Ampere a metro quadro (A/mq).

Intensità di campo elettrico (E): è una grandezza vettoriale che corrisponde alla forza esercitata su una particella carica indipendentemente dal suo movimento nello spazio. E' espressa in Volt per metro (V/m).

Intensità di campo magnetico (H): è una grandezza vettoriale che, assieme all'induzione magnetica, specifica un campo magnetico in qualunque punto dello spazio. E' espressa in Ampere per metro (A/m).

Induzione magnetica (B): è una grandezza vettoriale che determina una forza agente sulle cariche in movimento. E' espressa in Tesla (T). Nello spazio libero e nei materiali biologici l'induzione magnetica e l'intensità del campo magnetico sono legate dall'equazione 1 A m-1 = 4π 10-7 T.

Assorbimento specifico di energia (SA): si definisce come l'energia assorbita per unità di massa di tessuto biologico e si esprime in Joule per chilogrammo (J/kg). Nella presente direttiva esso si impiega per limitare gli effetti non termici derivanti da esposizioni a microonde pulsate.

FLEGONE S.R.L. pag. 22 DI 44

Tasso di assorbimento specifico di energia (SAR): si tratta del valore mediato su tutto il corpo o su alcune parti di esso, del tasso di assorbimento di energia per unità di massa di tessuto corporeo ed è espresso in Watt per chilogrammo (W/kg). Il SAR a corpo intero è una misura ampiamente accettata per porre in rapporto gli effetti termici nocivi dell'esposizione a radiofrequenze (RF). Oltre al valore del SAR mediato su tutto il corpo, sono necessari anche valori locali del SAR per valutare e limitare la deposizione eccessiva di energia in parti piccole del corpo conseguenti a particolari condizioni di esposizione, quali ad esempio il caso di un individuo in contatto con la terra, esposto a RF dell'ordine di pochi MHz e di individui esposti nel campo vicino di un'antenna.

VALORI DI AZIONE: l'entità dei parametri direttamente misurabili, espressi in termini di intensità di campo elettrico (E), intensità di campo magnetico (H), induzione magnetica (B), corrente indotta attraverso gli arti (IL), e densità di potenza (S), che determina l'obbligo di adottare una o più delle misure specificate nel presente capo. Il rispetto di questi valori assicura il rispetto dei pertinenti valori limite di esposizione.

VALORI LIMITE DI ESPOSIZIONE: limiti all'esposizione a campi elettromagnetici che sono basati direttamente sugli effetti sulla salute accertati e su considerazioni biologiche. Il rispetto di questi limiti garantisce che i lavoratori esposti ai campi elettromagnetici sono protetti contro tutti gli effetti nocivi a breve termine per la salute conosciuti;

Tra le grandezze sopra citate, possono essere misurate direttamente l'induzione magnetica, la corrente di contatto, le intensità di campo elettrico e magnetico, e la densità di potenza.

Effetti dell'esposizione ai CEM nei luoghi di lavoro

Un CEM si identifica con la propagazione nello spazio di campi elettrici e magnetici variabili nel tempo. Alcuni campi provocano la stimolazione degli organi sensoriali, dei nervi e dei muscoli, mentre altri causano riscaldamento. È importante notare che tutti questi effetti hanno una soglia al di sotto della quale non vi è alcun rischio e le esposizioni inferiori alla soglia non sono in alcun caso cumulative. Gli effetti causati dall'esposizione sono transitori, essendo limitati alla durata dell'esposizione, e cessano o diminuiscono quando finisce l'esposizione. Ciò significa che non vi sono ulteriori rischi per la salute una volta terminata l'esposizione.

Il tipo di effetto che i CEM hanno sulle persone dipende sostanzialmente da:

- √ frequenza del CEM;
- ✓ intensità del CEM.

In funzione della frequenza, le radiazioni generate da un CEM si dividono in:

- ✓ Radiazioni Ionizzati (IR) con frequenze superiori a 300 GHz (raggi UV, raggi gamma e raggi X);
- ✓ Radiazioni Non Ionizzanti (NIR) con frequenza fino a 300 GHz (campi elettromagnetici a frequenze estremamente basse, radiofrequenze, microonde, infrarosso, luce visibile).

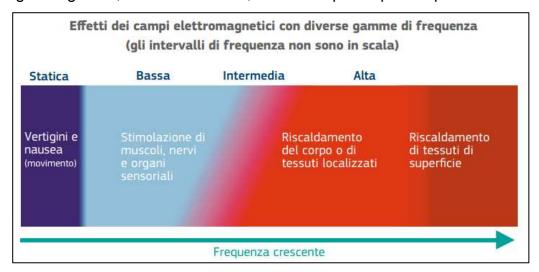
FLEGONE S.R.L. pag. 23 DI 44

Per una migliore comprensione si rimanda, a tal proposito, all'immagine appresso indicata:

Grafico esplicativo della suddivisione delle radiazioni in non ionizzanti e ionizzanti

Nel caso in esame i CEM cui possono essere esposti i lavoratori sono riconducibili a campi a frequenze estremamente basse (Extremely Low Frequency, ELF); infatti, in Italia, linee elettriche, cabine di trasformazione, elettrodomestici funzionano a frequenza industriale costante, pari a 50 Hz.

La Guida non vincolante di buone prassi per l'attuazione della direttiva 2013/35/UE relativa ai campi elettromagnetici - Commissione Europea - Direzione Generale per l'Occupazione, gli Affari Sociali e l'Inclusione - Unità B 3, identifica gli effetti diretti e indiretti accertati che sono provocati dai CEM.


Gli effetti diretti sono i cambiamenti provocati in una persona dall'esposizione a un CEM. La Direttiva prende in considerazione solo gli effetti noti che si basano su meccanismi conosciuti, ma opera una distinzione fra effetti sensoriali ed effetti sulla salute, considerati più gravi. Gli effetti diretti sono i seguenti:

- √ vertigini e nausea provocati da CEM statici (associati di norma al movimento, ma possibili anche in assenza di movimento);
- ✓ effetti su organi sensoriali, nervi e muscoli provocati da campi a bassa frequenza (fino a 100 kHz);
- ✓ riscaldamento di tutto il corpo o di parti del corpo causato da campi ad alta frequenza (pari o superiore a 10 MHz); in presenza di valori superiori a qualche GHz il riscaldamento si limita in misura sempre maggiore alla superficie del corpo;
- ✓ effetti su nervi e muscoli e riscaldamento causato da freguenze intermedie (100)

FLEGONE S.R.L. pag. 24 DI 44

kHz-10 MHz).

L'immagine seguente, tratta dalla Guida, sintetizza quanto prima riportato:

Gli effetti diretti possono, quindi, suddivisi in:

- ✓ **effetti non termici**, come la stimolazione di nervi, muscoli ed organi sensoriali,
- ✓ effetti termici, come il riscaldamento dei tessuti.

Con riferimento agli effetti indiretti si ravvisa quanto segue. Possono essere provocati dalla presenza, nel campo elettromagnetico, di oggetti che possono determinare pericoli per la sicurezza o la salute. Gli effetti indiretti sono i seguenti:

- ✓ interferenze con apparecchiature e altri dispositivi medici elettronici;
- ✓ interferenze con apparecchiature o dispositivi medici impiantabili attivi, per esempio stimolatori cardiaci o defibrillatori;
- ✓ interferenze con dispositivi medici portati sul corpo, per esempio pompe insuliniche;
- ✓ interferenze con dispositivi impiantabili passivi (per esempio protesi articolari, chiodi, fili o piastre di metallo);
- ✓ effetti su schegge di metallo, tatuaggi, body piercing e body art;
- ✓ rischio propulsivo di oggetti ferromagnetici non fissi in un campo magnetico statico;
- √ innesco involontario di detonatori;
- √ innesco di incendi o esplosioni a causa di materiali infiammabili o esplosivi;
- ✓ scosse elettriche o ustioni dovute a correnti di contatto quando una persona tocca un oggetto conduttore in un campo elettromagnetico e uno dei due non e collegato a terra.

Alla luce delle considerazioni effettuate, atteso che la frequenza dei CEM è di 50 Hz, andranno presi in considerazione:

FLEGONE S.R.L. pag. 25 DI 44

- ✓ effetti diretti non termici;
- ✓ effetti indiretti connessi direttamente con la salute e la sicurezza dei lavoratori.

Con riferimento all'intensità, la Guida definisce:

- ✓ Livelli di Azione (LA): sono fissati in termini di grandezze di campo esterne, rilevabili con relativa facilità tramite misurazioni o calcoli.
- ✓ Valori Limite di Esposizione: sono definiti in termini di grandezze presenti nel corpo che non possono essere misurate o calcolate facilmente.

La direttiva definisce anche **livelli di azione** (**LA**) fissati in termini di grandezze di campo esterne, rilevabili con relativa facilità tramite misurazioni o calcoli. Questi LA sono ottenuti dai VLE sulla base di ipotesi prudenziali, e pertanto la conformità ai LA pertinenti garantisce sempre la conformità al VLE corrispondente. Tuttavia, è possibile mantenere la conformità al VLE pur avendo superato un LA.

5.2 Procedura di valutazione del rischio

L'iter seguito per la valutazione del caso in esame, in conformità alle norme in vigore, contempla le seguenti attività:

- 1. Identificazione delle fasi di lavoro e dei lavoratori a rischio.
- 2. Identificazione delle sorgenti di CEM nei luoghi di lavoro.
- 3. Controllo dei Livelli di Azione, LA, e del superamento degli stessi.
- 4. Controllo dei Valori Limite di Esposizione, VLE, e del superamento degli stessi.
- 5. Verifica dei livelli di riferimento di cui alla Raccomandazione 1999/519/CE (0 300 GHz).
- 6. Esito della valutazione del rischio.
- 7. Identificazione delle misure di sicurezza.

La valutazione del rischio Campi elettromagnetici parte da un censimento iniziale di sorgenti ed apparati presenti nel luogo di lavoro ed oltre alla Direttiva 2013/35/UE prende in considerazione la "Guida non vincolante di buone prassi per l'attuazione della direttiva 2013/35/UE relativa ai campi elettromagnetici" elaborata dalla Commissione Europea".

La maggior parte delle sorgenti dei campi elettromagnetici presenti nelle case e negli ambienti di lavoro produce livelli di esposizione estremamente bassi, tanto che la maggior parte delle attività lavorative comuni difficilmente causa esposizioni superiori ai livelli di azione o ai valori limite di esposizione stabiliti dalla direttiva EMF.

La guida elenca (in Tabella 3.2) molte attività lavorative, apparecchiature e luoghi di lavoro comuni e indica la necessità o meno di effettuare una valutazione per:

- i lavoratori con dispositivi impiantabili attivi;
- altri lavoratori particolarmente a rischio;

FLEGONE S.R.L. pag. 26 DI 44

lavoratori non particolarmente a rischio.

Se per tutte le attività svolte in un luogo di lavoro viene apposto un «No» nelle tre colonne, non è necessario effettuare una valutazione specifica in relazione alla direttiva EMF, dato che non dovrebbero esserci rischi di questo tipo.

In genere, in queste situazioni non sono necessari ulteriori provvedimenti. Sarà comunque necessario effettuare una valutazione generale del rischio in conformità alle prescrizioni della direttiva quadro. Conformemente a tale direttiva, i datori di lavoro dovranno tener conto dei mutamenti di circostanze e riesaminare la necessità di una valutazione specifica dei campi elettromagnetici alla luce di eventuali cambiamenti.

Un «sì» nella colonna 1 non significa quindi che il campo accessibile è decisamente superiore a un valore limite di esposizione, bensì che non è possibile essere certi che il valore limite di esposizione sia sempre rispettato, tenendo presente il margine di variazione che può verificarsi sul luogo di lavoro. Si consiglia quindi di effettuare una valutazione specifica per ciascun luogo di lavoro per confrontare i valori calcolati/misurati con i **Limiti di azione** (LA) ed **Limiti di esposizione** (VLE).

Sulla base delle indicazioni della Guida, nel seguito verrà eseguita la valutazione specifica per ciascun luogo di lavoro per confrontare i valori attesi delle grandezze in gioco con i Limiti di Azione (LA) e i Valori Limite di Esposizione (VLE).

5.3 Fasi di lavoro e caratterizzazione dei lavoratori sensibili

Il Parco Fotovoltaico in oggetto, interessa diverse categorie di lavoratori esposti a potenziali CEM per tutta la durata della vita dell'opera, e quindi nelle fasi di realizzazione, collaudo, esercizio e manutenzione, ed in ultimo la dismissione.

Nel seguito sono tabellati, per ogni fase del ciclo dell'opera la tipologia dei lavoratori interessati.

Fase di Lavoro	Categorie di lavoratori
	Operai Edili
Costruzione	Operai elettrici
	Professionisti tecnici
Callauda a auriamenta	Operai elettrici
Collaudo e avviamento	Professionisti tecnici
Correizio o manutanziano	Manutentori
Esercizio e manutenzione	Professionisti tecnici
	Operai Edili
Dismissione	Operai elettrici
	Professionisti tecnici

Appare opportuno precisare che la norma identifica due tipologie di lavoratori sensibili al rischio di esposizione ai CEM:

FLEGONE S.R.L. pag. 27 DI 44

- Lavoratori non particolarmente a rischio;
- Lavoratori particolarmente a rischio, così come specificati dalla tabella seguente:

Lavoratori esposti a particolari rischi	Esempi
Lavoratori portatori di dispositivi medici impiantabili attivi (Active Implanted Medical Devices, AIMD	Stimolatori cardiaci, defibrillatori cardiaci, impianti cocleari, impianti nel tronco encefalico, protesi dell'orecchio interno, neurostimolatori, codificatori della retina, pompe impiantate per l'infusione di farmaci
Lavoratori portatori di dispositivi medici impiantabili passivi contenenti metallo	Protesi articolari, chiodi, piastre, viti, clip chirurgiche, clip per aneurisma, stent, protesi valvolari cardiache, anelli per annuloplastica, impianti contraccettivi metallici e tipi di dispositivi medici impiantabili attivi
Lavoratori portatori di dispositivi medici indossati sul corpo	Pompe esterne per infusione di ormoni
Lavoratrici in gravidanza	

Tabella 6 Lavoratori esposti a particolari rischi secondo la direttiva relativa ai campi elettromagnetici

Per i lavoratori particolarmente a rischio la valutazione è di solito più complessa. È possibile che i LA per gli effetti diretti non garantiscano una protezione adeguata a questi lavoratori, rendendo necessaria una valutazione separata. I lavoratori portatori di dispositivi medici impiantabili o dispositivi medici indossati sul corpo talvolta ricevono informazioni specifiche sui livelli di sicurezza dell'intensità di campo. In questo caso tali informazioni costituiranno criteri di valutazione e dovranno quindi essere anteposte a qualsiasi altra informazione più generale eventualmente disponibile. Per esempio, la valutazione relativa a un portatore di pacemaker, analizzata nello studio del caso dei dispositivi al plasma a radiofrequenza (RF) si avvale dei dati del fabbricante. Laddove non siano disponibili informazioni specifiche per i dispositivi medici impiantabili o i dispositivi medici indossati sul corpo, e per le lavoratrici in gravidanza i datori di lavoro devono far riferimento agli orientamenti contenuti nell'appendice E della guida non vincolante di attuazione della direttiva 2013/35/UE.

I campi elettromagnetici possono provocare interferenze con il corretto funzionamento delle apparecchiature mediche elettroniche così come possono interferire con qualsiasi altra attrezzatura elettronica. Tuttavia, poiché tali attrezzature possono avere una funzione vitale per le cure mediche, le conseguenze delle interferenze possono essere gravi.

L'interferenza pertanto non dovrebbe verificarsi a condizione che i campi, diversi dai campi magnetici statici, non superino i valori istantanei dei livelli di riferimento della raccomandazione (1999/519/CE) del Consiglio. L'AIMD deve inoltre rimanere esente dall'influenza dei campi magnetici statici inferiori a 0,5 mT.

FLEGONE S.R.L. pag. 28 DI 44

Premesso ciò, la norma effettua una ulteriore distinzione, così articolata:

- ✓ Lavoratori con dispositivi impiantabili attivi (AIMD);
- ✓ Altri lavoratori particolarmente a rischio (che includono lavoratori portatori di dispositivi medici impiantabili passivi contenenti metallo, lavoratori portatori di dispositivi medici indossati sul corpo, lavoratrici in gravidanza);
- ✓ Lavoratori non particolarmente a rischio.

Tale articolazione viene utilizzata nella tabella 3.2 della Guida, in cui viene indicato, in funzione del tipo di apparecchiatura o luogo di lavoro e in funzione della tipologia di lavoratori, di cui al precedente elenco, la necessità o meno di effettuare una valutazione dei CEM:

Tipo di apparecchiatura o	Lavoratori non particolarmente a rischio	Lavoratori particolarmente a rischio (esclusi quelli con dispositivi impiantabili attivi)	Lavoratori con dispositivi impiantabili attivi
luogo di lavoro	(1)	(2)	(3)

Tabella 7 Estratto dalla tabella 3.2 della Guida

In relazione alle indicazioni della Guida, se per tutte le attività svolte in un luogo di lavoro viene apposto un "No" nelle tre colonne (relative ai lavoratori), non è necessario effettuare una valutazione specifica in relazione alla direttiva EMF, dato che non dovrebbero esserci rischi di questo tipo.

Pertanto, la valutazione andrà effettuata laddove sarà apposto un "Si".

Per i lavoratori particolarmente a rischio la valutazione è di solito più complessa. È possibile che i LA per gli effetti diretti non garantiscano una protezione adeguata a questi lavoratori, rendendo necessaria una valutazione separata che dovrà essere effettuata in fase esecutiva, confrontando i valori misurati in campo o desunti dai dati del fabbricante, con i livelli di riferimento della Raccomandazione 1999/519/CE.

I lavoratori portatori di dispositivi medici impiantabili o dispositivi medici indossati sul corpo dovranno pertanto ricevere informazioni specifiche sui livelli di sicurezza dell'intensità di campo. In questo caso tali informazioni costituiranno criteri di valutazione e dovranno, quindi, essere anteposte a qualsiasi altra informazione più generale eventualmente disponibile.

L'interferenza pertanto non dovrebbe verificarsi a condizione che i campi, diversi dai campi magnetici statici, non superino i valori istantanei dei livelli di riferimento della raccomandazione (1999/519/CE) del Consiglio. L'AIMD deve inoltre rimanere esente dall'influenza dei campi magnetici statici inferiori a 0,5 mT.

Per le lavoratrici in gravidanza, il datore di lavoro dovrà fare riferimento agli orientamenti

FLEGONE S.R.L. pag. 29 DI 44

contenuti nell'appendice E della Guida per l'attuazione della Direttiva EMF.

5.4 Identificazione delle apparecchiature e/o luoghi di lavoro

Il progetto, come detto nei capitoli precedenti, prevede la realizzazione di un Parco Fotovoltaico, al cui interno, oltre le caratteristiche dei luoghi di lavoro e delle attrezzature propri dell'ingegneria infrastrutturale, comprende impianti ed attrezzature riconducibili a quelle elencate nella Tabella 3.2 della Guida, da cui è possibile ricavare oltre la definizione delle fonti alche la necessità di procedere alla valutazione del rischio per i lavoratori addetti.

Estrapolando le indicazioni dalla suddetta guida per la parte riguardante i circuiti elettrici e l'edilizia leggera, le indicazioni che si sono ricavate risultano dalla tabella seguente:

Tipo di apparecchiatura o luogo di lavoro	Lavoratori non particolarmente a rischio	Lavoratori particolarmente a rischio (esclusi quelli con dispositivi impiantabili attivi)	Lavoratori con dispositivi impiantabili attivi
	Alimentazione eletti	rica	
Circuito elettrico in cui i conduttori sono vicini l'uno all'altro e con una corrente netta pari o inferiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici	No	No	No
Circuito elettrico in cui i conduttori sono vicini l'uno all'altro e con una corrente netta superiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetic	Sì	Sì	Sì
Circuiti elettrici all'interno di un impianto, con corrente di fase nominale pari o inferiore a 100 A per un singolo circuito — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici	No	No	No
Impianti elettrici con corrente di fase nominale superiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici	Sì	Sì	Sì
Generatori e generatori di emergenza — lavori con	No	No	Sì
Inverter, compresi quelli su sistemi fotovoltaici	No	No	Sì
Circuito a cavo sotterraneo o isolato, con qualsiasi tensione	No	No	No

FLEGONE S.R.L. pag. 30 di 44

Tipo di apparecchiatura o luogo di lavoro	Lavoratori non particolarmente a rischio	Lavoratori particolarmente a rischio (esclusi quelli con dispositivi impiantabili attivi)	Lavoratori con dispositivi impiantabili attivi
nominale — esposizione a campi elettrici			
	Industria leggera		
Utensili (elettrici portatili e trasportabili) — luoghi di lavoro contenenti	No	No	No
Utensili (elettrici portatili e trasportabili per esempio trapani, levigatrici, seghe circolari e smerigliatrici angolari) — utilizzo di	No	No	Si
	Edilizia		
Macchinari per cantieri (per esempio betoniere, vibratori, gru ecc.) — lavoro in stretta prossimità	No	No	Sì

Sulla base di quanto riportato in tabella si sono identificate le fonti CEM da tenere in considerazione per l'impianto in argomento nelle diverse fasi di vita e cioè nella fase di realizzazione ed in quella di collaudo, esercizio, manutenzione e dismissione. Tali fonti, risultano di seguito indicate, per le diverse fasi di lavoro:

❖ Fase di costruzione e dismissione

- > Luogo di lavoro Parco fotovoltaico
 - ◆ Sorgente CEM : Macchinari per cantieri (gru, vibratori, betoniere ecc..)
 - ◆ Utensili (elettrici portatili e trasportabili)
- luoghi di lavoro Cabine elettriche di Trasformazione 36/0.8 kV
 - ◆ Sorgente CEM: Macchinari per cantieri (gru, vibratori, betoniere ecc..)
 - ◆ Utensili (elettrici portatili e trasportabili)

Fase di Collaudo, avviamento ed esercizio dell'impianto

- Luogo di lavoro Parco fotovoltaico
 - ♦ Sorgente CEM:
 - ♦ Inverter
 - ◆ Cabine di trasformazioni AT/BT 36/0.8
 Kv
 - Circuito a cavo sotterraneo o isolato, con qualsiasi tensione nominale

FLEGONE S.R.L. pag. 31 DI 44

5.5 I livelli di azione ed il controllo del loro superamento

I Livelli di azione **LA** sono definiti negli allegati II e III della direttiva relativa ai campi elettromagnetici.

La direttiva definisce una serie di LA differenti, alcuni dei quali applicabili simultaneamente.

I LA riguardano gli effetti diretti o indiretti. Alle basse frequenze, i campi elettrici e magnetici possono essere considerati indipendenti (la cosiddetta «approssimazione quasi-statica») ed entrambi inducono campi elettrici nel corpo. Pertanto, alle basse frequenze esistono LA per i campi elettrici e magnetici. Ci sono anche LA per la corrente di contatto.

Con l'aumentare della frequenza, i campi provocano un accoppiamento più intenso e l'interazione con il corpo si modifica, producendo una deposizione di energia che a sua volta provoca effetti termici. Per queste frequenze ci sono LA per i campi elettrici e magnetici. A frequenze superiori a 6 GHz, esiste un LA supplementare per la densità di potenza, che è correlato all'intensità dei campi elettrici e magnetici. Ci sono anche LA per le correnti indotte attraverso gli arti, a loro volta correlati agli effetti termici, e per le correnti di contatto.

<u>Se i LA non sono superati, si può ipotizzare che le esposizioni siano conformi ai VLE e che non sono necessarie ulteriori valutazioni.</u> In talune circostanze il superamento di alcuni LA può essere accettabile.

Se i livelli di azione sono superati si dovrebbe proseguire con il controllo dei VLE. Il Datore di lavoro può però decidere di adottare specifiche misure per ridurre l'esposizione.

5.5.1 Valori di azione

Nella nuova Direttiva vengono fissati:

- Livelli di azione inferiori e superiori per l'intensità del campo elettrico LA(E)
- Livelli di azione inferiori e superiori per l'induzione magnetica B LA(B)
- Livelli di azione per le correnti di contatto LA(Ic)
- Livelli di azione per l'induzione magnetica di campi magnetici statici LA(B0)

Sia i livelli di azione inferiori che i superiori sono espressi in termini di campo elettrico (unità di misura V/m) e sono rappresentati dai valori efficaci della intensità del campo elettrico nel punto di misura, la loro espressione varia al variare della frequenza.

Per quanto riguarda invece il campo magnetico i livelli di azione inferiori sono derivati dai limiti per gli effetti sensoriali per le frequenze fino a 400 Hz, oltre questa frequenza derivano dagli effetti sanitari per il campo elettrico interno. I livelli superiori invece derivano dai valori limite relativi agli effetti sanitari per un campo elettrico interno

FLEGONE S.R.L. pag. 32 DI 44

correlato alla stimolazione elettrica dei tessuti nervosi periferici e autonomi nella testa e nel tronco.

Nel seguito si prenderanno in considerazione solo i campi magnetici a bassa frequenza

CAMPI MAGNETICI STATICI – 0 Hz

Se la frequenza inserita è compresa tra 0 ed 1 Hz occorre verificare il rispetto del LA rispetto ai campi magnetici statici, in particolare ai limiti dell'induzione magnetica imposti nella seguente tabella:

LA per induzione magnetica di campi magnetici statici			
Rischi LA(B0)			
Interferenza con dispositivi impiantati attivi, ad esempio stimolatori cardiaci	0,5 mT		
Rischio di attrazione e propulsivo nel campo periferico di sorgenti ad alta intensità (> 100 mT)	3 mT		

Tabella B4 Allegato II Direttiva 2013/35/UE

Nota 1: la frequenza f è espressa in Hertz (Hz)

Nota 2: i valori limite sono espressi in termini di induzione magnetica

CAMPI A BASSA FREQUENZA: 1 Hz - 10 MHz

Nella Direttiva 2013/35/EU i valori limite per gli effetti sanitari vengono espressi in funzione del campo elettrico interno inteso come valore di picco spaziale per l'intero corpo del soggetto esposto. Per gli effetti sensoriali viene fissato un limite solo per il range di frequenze compreso tra 1 Hz e 400 Hz per una azione di protezione dagli effetti del campo elettrico sul sistema nervoso centrale e da effetti transitori quali l'induzione di fosfeni retinici e modifiche minori di determinate funzioni cerebrali che si manifestano solo per gli intervalli di frequenza considerati nel quadro normativo. Anche in questo caso la quantità dosimetrica considerata è il campo elettrico interno limitato ai valori di picco spaziale nella testa del soggetto esposto.

LA per esposizione a campi elettrici compresi tra 1 Hz e 10 MHz				
Gamma di frequenza	Intensità di campo elettrico LA(E) superiori [Vm-1] (RMS)			
1 ≤ f < 25 Hz	2,0 × 104	2,0 × 104		
25 ≤ f < 50 Hz	5,0 × 105/f	2,0 × 104		
50 Hz ≤ f < 1,64 kHz	5,0 × 105/f	1,0 × 106/f		
1,64 ≤ f < 3 kHz	5,0 × 105/f	6,1 × 102		
3 kHz ≤ f ≤ 10 MHz	1,7 × 102	6,1 × 102		

Tabella B1 Allegato II Direttiva 2013/35/UE

Nota 1: la frequenza f è espressa in Hertz (Hz)

Nota 2: i valori limite sono espressi come intensità di campo elettrico

LA per esposizione a campi magnetici compresi tra 1 Hz e 10 MHz

FLEGONE S.R.L. pag. 33 DI 44

Gamma di frequenza	Induzione magnetica LA (Β) inferiori [μΤ] (RMS)	Induzione magnetica LA (B) superiori [µT] (RMS)	Induzione magnetica LA per esposizione arti a campo magnetico localizzato [µT] (RMS)
1 ≤ f < 8 Hz	2,0 × 105/f2	3,0 × 105/f	9,0 × 105/f
8 ≤ f < 25 Hz	2,5 × 104/f	3,0 × 105/f	9,0 × 105/f
25 ≤ f < 300 Hz	1,0 × 103	3,0 × 105/f	9,0 × 105/f
300 Hz ≤ f < 3 kHz	3,0 × 105/f	3,0 × 105/f	9,0 × 105/f
3 kHz ≤ f ≤ 10 MHz	1,0 × 102	1,0 × 102	3,0 × 102

Tabella B2 Allegato II Direttiva 2013/35/UE

Nota 1: la frequenza f è espressa in Hertz (Hz)

Nota 2: i valori limite sono espressi come intensità di campo elettrico

I LA per corrente di contatto IC			
Frequenza LA (IC) corrente di contatto stazionari [mA] (RMS)			
fino a 2,5 kHz	1,0		
2,5 ≤ f < 100 kHz	0,4 f		
100 kHz ≤ f ≤ 10 000 kHz	40		

Tabella B3 Allegato II Direttiva 2013/35/UE

Nota 1: la frequenza f è espressa in Hertz (Hz)

Nota 2: i valori limite sono espressi in termini di induzione magnetica

VLE relativi agli effetti sensoriali per un'intensità di campo elettrico interno compresa tra 1 Hz e 400 Hz		
Gamma di frequenza VLE relativi agli effetti sensoriali		
1 Hz ≤ f < 10 Hz	0,7/f Vm ⁻¹ (picco)	
$10 \text{ Hz} \le f < 25 \text{ Hz}$ 0,07/f Vm ⁻¹ (picco)		
25 Hz ≤ f ≤ 400 Hz	0,0028 f Vm ⁻¹ (picco)	

Tabella A3 Direttiva 2013/35/UE

Nota 1: la frequenza f è espressa in Hertz (Hz)

Nota 2: i valori limite sono espressi come intensità di campo elettrico

5.5.2 Lavoratori particolarmente a rischio CE

È obbligatorio tener conto dei lavoratori particolarmente a rischio e la direttiva identifica specificamente quattro gruppi di lavoratori che rientrano in questa categoria:

- lavoratori portatori di dispositivi medici impiantabili attivi;
- lavoratori portatori di dispositivi medici impiantabili passivi;
- lavoratori con dispositivi medici portati sul corpo;
- lavoratrici in gravidanza.

Per i lavoratori particolarmente a rischio la valutazione è di solito più complessa. È

FLEGONE S.R.L. pag. 34 di 44

possibile che i LA per gli effetti diretti non garantiscano una protezione adeguata a questi lavoratori, rendendo necessaria una valutazione separata. I lavoratori portatori di dispositivi medici impiantabili o dispositivi medici indossati sul corpo talvolta ricevono informazioni specifiche sui livelli di sicurezza dell'intensità di campo. In questo caso tali informazioni costituiranno criteri di valutazione e dovranno quindi essere anteposte a qualsiasi altra informazione più generale eventualmente disponibile. Per esempio, la valutazione relativa a un portatore di pacemaker, analizzata nello studio del caso dei dispositivi al plasma a radiofrequenza (RF) si avvale dei dati del fabbricante. Laddove non siano disponibili informazioni specifiche per i dispositivi medici impiantabili o i dispositivi medici indossati sul corpo, e per le lavoratrici in gravidanza i datori di lavoro devono far riferimento agli orientamenti contenuti nell'appendice E della guida non vincolante di attuazione della direttiva 2013/35/UE.

I campi elettromagnetici possono provocare interferenze con il corretto funzionamento delle apparecchiature mediche elettroniche così come possono interferire con qualsiasi altra attrezzatura elettronica. Tuttavia, poiché tali attrezzature possono avere una funzione vitale per le cure mediche, le conseguenze delle interferenze possono essere gravi.

L'interferenza pertanto non dovrebbe verificarsi a condizione che i campi, diversi dai campi magnetici statici, non superino i valori istantanei dei livelli di riferimento della raccomandazione (1999/519/CE) del Consiglio. L'AIMD deve inoltre rimanere esente dall'influenza dei campi magnetici statici inferiori a 0,5 mT.

Per i lavoratori particolarmente a rischio (portatori di dispositivi medici, lavoratrici in gravidanza, ecc.) è possibile che i LA non garantiscano una protezione adeguata, rendendo necessaria una valutazione separata che si esegue confrontando i valori misurati o desunti dai dati del fabbricante con i livelli di riferimento della Raccomandazione 1999/5191/CE.

Intervallo di frequenza	Intensità di campo E (V/m)	Intensità di campo H (A/m)	Campo B (µT)	Densità di potenza ad onda piana equivalente Seq (W/m2)
0-1 Hz	-	3,2 × 10 ⁴	4 × 10 ⁴	-
1-8 Hz	10000	$3,2 \times 10^4/f^2$	4 × 10 ⁴ /f ²	-
8-25 Hz	10000	4000/f	5000/f	-
0,025-0,8 kHz	250/f	4/f	5/f	-
0,8-3 kHz	250/f	5	6,25	-
3-150 kHz	87	5	6,25	-
0,15-1 MHz	87	0,73/f	0,92/f	-
1-10 MHz	87/f ^{1/2}	0,73/f	0,92/f	-
10-400 MHz	28	0,073	0,092	2
400-2 000 MHz	1,375 f ^{1/2}	0,0037 f ^{1/2}	0,0046 f ^{1/2}	f/200
2-300 GHz	61	0,16	0,20	10

Tabella 2 Raccomandazione 1999/516/CE - Livelli di riferimento per i campi elettrici, magnetici ed elettromagnetici

(0 Hz-300 GHz, valori efficaci (rms) non perturbati)

FLEGONE S.R.L. pag. 35 DI 44

Gamma di frequenza	Corrente di contatto massima (mA)	
0 Hz - 2,5 kHz	0,5	
2,5 KHz - 100 kHz	0,2 f	
100 KHz - 110 MHz	20	

Tabella 3 Raccomandazione 1999/516/CE - Livelli di riferimento per le correnti di contatto da oggetti conduttori

5.6 Sorgenti CEM presenti

Premesso che nel caso in esame, la corrente è a 50 Hz, quindi a bassa frequenza, si riporta nel seguito i valori dell'intensità di campo magnetico e di induzione magnetica per le sorgenti CEM per le quali risulta necessario procedere alla valutazione ed il controllo della L.A.

Cabine di trasformazioni AT/BT

Le cabine, soprattutto quelle di progetto, così come i circuiti elettrici all'interno di esso, da misure sperimentali dedotte dalla letteratura, per potenze di 4,8 MW, hanno i seguenti valori di riferimento:

Punto	Intensità campo elettrico	Induzione magnetica	
di misura	[V/m]	[mT]	
Area Trasformatore	5,90	79,00	
Area Convertitore	316,00	53,00	

Per il prosieguo delle verifiche, si assumeranno i valori massimi e cioè per l'intensità del campo elettrico **316,00 V/m** e per l'induzione magnetica **79,00 mT.**

Con riferimento alle macchine da cantiere e agli utensili da lavoro si fanno le seguenti riflessioni.

L'approvazione della Direttiva europea 2012/11/CE (modifica della direttiva 2004/40/CE sulle prescrizioni minime di sicurezza e di salute relative all'esposizione dei lavoratori ai rischi derivanti dai campi elettromagnetici) ha posto l'attenzione sul problema delle emissioni di campi elettromagnetici in ambiente lavorativo e della conseguente esposizione da parte dei lavoratori.

Il testo unico sulla sicurezza nei luoghi di lavoro (D. Lgs. 81/2008) obbliga il datore di lavoro alla valutazione di tutti i rischi per la salute e la sicurezza, con specifico riferimento alla valutazione dei rischi derivanti da esposizione ad agenti fisici e, fra questi, ai campi elettromagnetici.

Per fare questo il datore di lavoro deve valutare l'esposizione dei lavoratori ai campi elettromagnetici conformemente alle norme di riferimento e sulla base delle tipologie di

FLEGONE S.R.L. pag. 36 DI 44

apparecchiature, impianti e macchine presenti nel luogo di lavoro e, dove necessario, deve procedere con misurazioni strumentali per verificare il rispetto dei limiti previsti dalla normativa.

Sia la direttiva 2004/40/CE che il D. Lgs. 81/2008 prevedono che i datori di lavoro mettano a disposizioni dei lavoratori macchine ed apparecchiature sicure e, nel caso specifico, che non comportino rischi di esposizione a campi elettromagnetici per i lavoratori esposti.

Il requisito essenziale di sicurezza e di tutela della salute 1.5.10 della direttiva 2006/42/CE (Direttiva Macchine) stabilisce che "le emissioni indesiderabili di radiazioni da parte della macchina (comprese quelle non ionizzanti, di cui i campi elettromagnetici fanno parte) devono essere eliminate o essere ridotte a livelli che non producono effetti negativi sulle persone". Si aggiunge inoltre che "ogni emissione di radiazioni non ionizzanti funzionali durante la regolazione, il funzionamento e la pulitura deve essere ridotta a livelli che non producono effetti negativi sulle persone".

È quindi necessario, da parte del fabbricante, valutare se la macchina dia origine a campi elettromagnetici potenzialmente pericolosi per le persone esposte, con particolare riferimento alle postazioni in cui è prevista la presenza dell'operatore.

Bisogna sottolineare che, come previsto dal requisito essenziale di sicurezza e di tutela della salute 1.7.4.2 (contenuto delle istruzioni), la Direttiva Macchine prevede che il manuale di istruzioni debba contenere:

- ✓ le informazioni in merito ai rischi residui che permangono, malgrado siano state adottate le misure di protezione integrate nella progettazione della macchina e malgrado le protezioni e le misure di protezione complementari adottate;
- ✓ le istruzioni sulle misure di protezione che devono essere prese dall'utilizzatore, incluse, se del caso, le attrezzature di protezione individuale che devono essere fornite:
- ✓ <u>se la macchina può emettere radiazioni non ionizzanti che potrebbero nuocere</u> <u>alle persone, in particolare se portatrici di dispositivi medici impiantabili attivi o</u> <u>non attivi, le informazioni riguardanti le radiazioni emesse per l'operatore e le</u> <u>persone esposte.</u>

Inoltre, il requisito essenziale di sicurezza e di tutela della salute, della direttiva macchine, 1.7.4.3 prescrive che "le pubblicazioni illustrative o promozionali che descrivono le caratteristiche delle prestazioni della macchina devono contenere le stesse informazioni delle istruzioni per quanto concerne le emissioni". Quindi, in presenza di campi elettromagnetici significativi, bisognerebbe indicare nel manuale di istruzioni anche il valore rilevato dalle misure strumentali e la relativa classificazione.

Risulta evidente che tali prescrizioni hanno il duplice obbiettivo di incentivare la riduzione di emissioni di radiazioni da parte delle macchine (campi elettromagnetici, radiazioni ottiche, ecc.) e di fornire gli strumenti necessari, al datore di lavoro, per adempiere ai propri obblighi in materia di salute e sicurezza negli ambienti di lavoro in cui la macchina verrà installata.

FLEGONE S.R.L. pag. 37 DI 44

La valutazione delle radiazioni elettromagnetiche, emesse dal macchinario, effettuata dal fabbricante (con riferimento alla norma UNI EN 12198, armonizzata ai sensi della Direttiva Macchine 2006/42/CE) permette di definire la corretta classificazione della macchina. La valutazione delle radiazioni elettromagnetiche, se necessario, consente anche di prendere idonee misure di protezione per l'eliminazione o la riduzione dei rischi connessi con l'esposizione a tali emissioni.

Se è vero che la valutazione dei rischi presenti sul luogo di lavoro compete al datore di lavoro, che ha installato la macchina, è anche vero che detta valutazione potrebbe essere stata fatta sulla base delle informazioni fornite dal fabbricante, che devono essere complete e corrette.

A tal proposito la norma UNI EN 12198 stabilisce che, nella procedura per la valutazione del rischio dovuto all'emissione di radiazioni da un macchinario, è possibile ignorare alcune tipologie di emissioni definite "trascurabili" basandosi sull'esperienza, sui calcoli e sulle misurazioni di tecnici esperti. Un aiuto in tal senso viene dato dalla norma CEI EN 50499, che fornisce un **elenco apparecchiature considerate "conformi a priori"** in quanto le emissioni originate sono inferiori ai limiti minimi della Raccomandazione 1999/519/CE sulle esposizioni a campi elettromagnetici per la popolazione.

Fanno parte di questo elenco:

- apparecchiatura di illuminazione (escluse le illuminazioni speciali alimentate in RF);
- computer e apparecchiature IT;
- telefoni mobili e telefoni senza filo;
- caricabatterie per il normale uso domestico, destinati all'utilizzo in garage, nei negozi, nell'industria leggera e nelle fattorie (trattati nella norma CEI EN 60335-2-29);
- apparecchiature audio e video (esclusi i tipi speciali, che utilizzano trasmettitori radio usati tipicamente nel settore delle radiodiffusioni);
- antenne delle stazioni base (solo per distanze dall'antenna superiori a quelle di sicurezza definite per l'esposizione della popolazione);
- apparecchiature portatili alimentate a batteria, esclusi i trasmettitori a radio frequenza;
- apparecchiature elettriche per il riscaldamento di locali (esclusi i riscaldatori a microonde);
- strumentazione, apparecchiature di misura e controllo;
- reti di alimentazione elettrica (50 Hz) nei luoghi di lavoro e circuiti di distribuzione e trasmissione dell'elettricità che attraversano o sorvolano il luogo di lavoro; in questo caso le esposizioni ai campi elettrici e magnetici devono essere considerate separatamente.

I seguenti elementi sono conformi per l'esposizione ai campi magnetici:

FLEGONE S.R.L. pag. 38 DI 44

- tutte le installazioni elettriche con un valore nominale della corrente di fase non superiore a 100 A;
- tutti i circuiti singoli all'interno di un'installazione, con un valore nominale della corrente di fase non superiore a 100 A;
- tutti i circuiti i cui conduttori sono vicini e hanno una corrente netta non superiore a 100 A;
- sono compresi tutti i componenti delle reti che soddisfano i criteri precedenti (inclusi i cablaggi, le apparecchiature di manovra, i trasformatori, ecc.);

I seguenti elementi sono conformi per l'esposizione ai campi elettrici:

- tutti i circuiti di cavi sotterranei o isolati, con qualsiasi tensione nominale;
- tutti i circuiti aerei nudi con tensione nominale non superiore a 100 kV;
- le linee aeree non superiori a 125 kV che sorvolano il luogo di lavoro;
- le linee aeree che sorvolano il luogo di lavoro di qualsiasi tensione, se il luogo di lavoro è all'interno.

Se la macchina non ricade fra queste tipologie sarà necessario procedere con le misurazioni strumentali al fine di valutare il livello di emissione di radiazioni, assegnare la corretta categoria di emissione, determinare le misure di protezione appropriate e fornire le informazioni necessarie agli utilizzatori della macchina.

Pertanto, si ritiene più corretto rinviare la definizione quantitativa dei CEM elettromagnetici prodotti dagli inverter, macchine e utensili da lavoro nell'ambito delle valutazioni preliminari del datore di lavoro prima che inizino le attività.

Si può comunque, ipotizzare, che i valori di campo elettrico e induzione magnetica di macchinari da cantiere e utensili elettrici siano paragonabili a quelli definiti per le cabine di trasformazioni e linee elettriche aeree.

5.7 Valutazioni del rischio

Sulla base delle considerazioni prima riportate, si è proceduto alla valutazione del rischio CEM per le sorgenti ed i luoghi di lavoro individuati.

STEP 1: Identificazione sorgenti Campi Elettromagnetici

Denominazione:	Impianti elettrici con corrente di fase nominale superiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici		
Valutazione richiesta per:	Lavoratori non a rischioLavoratori a rischioLavoratori con dispositivi impiantabili adattabili		
Presenza di lavoratori non a rischio:		Sì	
Presenza di lavoratori a ris	chio:	Sì	
Presenza di lavoratori con	disp. impiantabili attivi:	Sì	

FLEGONE S.R.L. pag. 39 DI 44

STEP 2: Controllo superamento livelli di azione

Denominazione sorgente:	Impianti elettrici con corrente di fase nominale superiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici			
Frequenza F (Hz):	50,00			
Campi a bassa frequenza (1 Hz - 10 MHz)				
	Valore atteso	Valore calcolato	Controllo L.A.	
Intensità Campo Elettrico LA(E) inferiori [V/m]		316,00	10.000,00	≤ L. A.
Intensità Campo Elettrico LA(E) superiori [V/m]		316,00	20.000,00	≤ L. A.
Induzione Magnetica LA(B) inferiori [µT]		79,00	1.000,00	≤ L. A.
Induzione Magnetica LA(B) superiori [µT]		79,00	6.000,00	≤ L. A.
Induzione Magnetica LA esp. arti a C.M. localizzato [µT]		<18.000,00	18.000,00	≤ L. A.
Corrente di contatto Ic [mA]		<1,00	1,00	≤ L. A.

Risultato controllo superamento L. A. sorgente: $\leq L$. A.

STEP 3: Controllo superamento valori limite di esposizione

Non sono presenti sorgenti per cui occorre verificare il superamento dei valori limite di esposizione.

Livelli di riferimento Raccomandazioni 1999/519/CE (0 - 300 GHz)

Per i lavoratori particolarmente a rischio (portatori di dispositivi medici, lavoratrici in gravidanza, ecc.) è possibile che i LA non garantiscano una protezione adeguata, rendendo necessaria una valutazione separata che si esegue confrontando i valori misurati o desunti dai dati del fabbricante con i livelli di riferimento della Raccomandazione 1999/5191/CE.

Denominazione sorgente:	Impianti elettrici con corrente di fase nominale superiore a 100 A — compresi cavi elettrici, commutatori, trasformatori ecc. — esposizione a campi magnetici		
Frequenza F (Hz):	50,00		
Condizioni di rischio:	Dispositivi medici		
	Valore atteso	Valore calcolato	Controllo V.R.
Intensità di campo E [V/m]	316,00	5.000,00	≤ L. R.
Intensità di campo H [A/m]	< 80,00	80,00	≤ L. R.
Campo B [μT]	< 100,00	100,00	≤ L. R.
Densità di potenza ad onda piana equivalente Seq [W/m2]	0,00	-	-
Corrente di contatto massima [mA]	< 0,5	0,50	≤ L. R.

Risultato controllo superamento V. R. sorgente: \leq L. R.

FLEGONE S.R.L. pag. 40 di 44

5.7.1 Esito della valutazione del rischio

Poiché tutti i valori risultano inferiori rispetto ai LA, il rischio viene valutato **BASSO**: pertanto, il rischio risulta **ACCETTABILE**, e non è necessario procedere alla valutazione successiva (superamento dei VLE).

Si possono pertanto escludere rischi relativi alla salute dei lavoratori nei confronti della esposizione a CEM.

Si precisa, tuttavia, che, la valutazione dei CEM va effettuata certamente per i lavoratori con dispositivi impiantabili attivi che utilizzeranno macchine da cantiere o utensili da lavoro elettrici. In questo caso sarà cura del datore di lavoro procedere con la valutazione prima di consentirne l'uso.

Il datore di lavoro deve assicurarsi che l'esposizione dei lavoratori ai CEM non superi i VLE relativi agli effetti sanitari e i VLE relativi agli effetti sensoriali, di cui all'Allegato XXXVI del D. Lgs. 81/2008.

Qualora l'esposizione dei lavoratori ai CEM superi uno qualsiasi dei VLE, il datore di lavoro dovrà adottare misure immediate in conformità all'articolo 210, comma 7 del D. Lgs. 81/2008.

D'altra parte, si considera che i VLE siano rispettati qualora il datore di lavoro dimostri che i pertinenti LA di cui all'allegato XXXVI del D. Lgs. 81/2008 non siano stati superati. Il rispetto dei LA garantisce, infatti, il rispetto dei pertinenti VLE.

Nel caso in cui l'esposizione superi i LA, il datore di lavoro dovrà adottare misure in conformità all'articolo 210 del D. Lgs. 81/2008, salvo che la valutazione effettuata ai sensi dell'articolo 209, comma 1 del D. Lgs. 81/2008, dimostri che non siano superati i pertinenti VLE e che possono essere esclusi rischi per la sicurezza.

Va in ultimo puntualizzato che la valutazione del rischio **BASSO** per tutte le mansioni e senza alcuna limitazione di accesso alle parti elettriche o alle cabine, deve essere convalidata dal Medico Competente in quanto, se ci fossero lavoratori con limitazioni (es. patologie cardiache, portatori di elettrostimolatori impiantati, ecc..) questi dovrebbero essere allertati e gestiti di conseguenza in modo da non essere sottoposti al rischio.

5.7.2 Identificazione delle misure di sicurezza

La valutazione dei rischi ha evidenziato che risultano rispettati i LA ed il rischio di esposizione ai CEM sia stato definito **BASSO**. Pur tuttavia di seguito si riportano alcune misure di mitigazione del rischio.

Il personale dovrà essere adeguatamente formato, informato ed addestrato in merito a:

- misure adottate in applicazione alle normative di riferimento
- entità e al significato dei VLE e dei LA, nonché ai possibili rischi associati e alle

FLEGONE S.R.L. pag. 41 DI 44

misure preventive adottate;

- eventuali effetti indiretti dell'esposizione;
- risultati della valutazione, della misurazione o del calcolo dei livelli di esposizione ai CEM rilevati;
- eventuali sintomi e sensazioni temporanei dovuti a effetti sul sistema nervoso centrale o periferico;
- diritto a una sorveglianza sanitaria;
- procedure di lavoro sicure per ridurre al minimo i rischi derivanti dall'esposizione.

La formazione dovrà essere particolarmente curata per lavoratori esposti a rischi particolari, ovvero per coloro che sono dotati di dispositivi medici impiantati attivi o passivi o dispositivi medici portati sul corpo e le lavoratrici in gravidanza che abbiano segnalato la propria condizione al datore di lavoro.

Inoltre, ai fini della prevenzione degli effetti indiretti dell'esposizione, il personale dovrà essere formato in particolare sui seguenti elementi, relativi ai macchinari individuati come fonti di campi elettromagnetici:

- casi di controindicazione all'esposizione ai campi elettromagnetici emessi dai macchinari;
- corrette modalità comportamentali da adottare in prossimità dei macchinari, che in genere comprendono il divieto di introdurre oggetti metallici di qualsiasi tipo ed apparecchiature elettriche all'interno dell'area, se non espressamente autorizzate dal responsabile della sicurezza.

Nell'utilizzo delle attrezzature, dovranno essere seguite sempre le informazioni contenute nel manuale di istruzioni e nelle istruzioni operative. Nel caso di attrezzature particolarmente complesse, l'utilizzo è effettuato solo se si è abilitati e si è seguito il relativo corso di formazione.

Il datore di lavoro, nell'ambito della valutazione del rischio, dovrà anche prendere in considerazione la possibilità di rischi indiretti per la salute quali:

- interferenza con attrezzature e dispositivi medici elettronici (compresi stimolatori cardiaci e altri dispositivi impiantati);
- rischio propulsivo di oggetti ferromagnetici per campi magnetici statici con induzione magnetica superiore a 3 mT;
- incendi ed esplosioni dovuti all'accensione di materiali infiammabili provocata da scintille prodotte da campi indotti, correnti di contatto o scariche elettriche.

Nelle attività lavorative ove siano presenti macchinari o impianti emettitori di CEM, il datore di lavoro dovrà:

- ✓ prevenire l'esposizione di individui con controindicazioni assolute o relative ai livelli di emissione degli apparati;
- ✓ ridurre al minimo l'esposizione dei lavoratori ai CEM irradiati da tali apparati.

FLEGONE S.R.L. pag. 42 DI 44

È necessario che gli apparati emettitori di CEM siano installati in aree di lavoro adibite ad uso esclusivo degli stessi e ad idonea distanza dalle altre aree di lavoro, ove il personale stazioni per periodi prolungati. Inoltre, per prevenire effetti indiretti, problemi interferenziali e per evitare esposizioni inutili, è importante evitare che in prossimità delle sorgenti di CEM vengano posizionati, se non previa idonea valutazione tecnica, oggetti metallici di qualsiasi tipo ed apparecchiature elettriche.

In generale la distanza di rispetto tra l'area di installazione dell'apparato, definita area ad accesso controllato, e le altre aree di lavoro, ad accesso libero, dipende dalle caratteristiche tecnologiche dell'apparecchiatura, e dovrà essere stimata dal datore di lavoro che effettua la valutazione del rischio.

Le aree di lavoro ove i valori di esposizione possono risultare superiori ai livelli di riferimento dovranno essere delimitate con cartelli di segnalazione di presenza di campi elettromagnetici, conformi alle normative vigenti in materia di segnaletica di sicurezza.

L'accesso a tali aree sarà consentito solo a personale autorizzato, previa valutazione dell'assenza di controindicazioni fisiche all'esposizione. L'accesso al personale non autorizzato dovrà essere interdetto possibilmente mediante barriere fisiche.

5.8 conclusioni rischio CEM sui luoghi di lavoro

La presente relazione, in conformità alle disposizioni normative, è stata redatta al fine di condurre uno studio quali-quantitativo volto a valutare l'impatto elettromagnetico delle opere da realizzare sui lavoratori e, sulla base delle risultanze, individuare eventuali misure di prevenzione da porre in atto; ciò al fine di garantire la tutela dei lavoratori dalle esposizioni ai CEM.

Una volta individuate le possibili sorgenti dei CEM, per ciascuna di esse è stata condotta una valutazione di tipo analitico, volta a determinare i valori previsti da confrontare con Livelli di Azione, LA, e le classi di lavoratori soggette alle sorgenti, verificando per ciascuna di esse la compatibilità.

Dallo studio è risultato che tutti valori previsti risultano inferiori ai LA e, pertanto, il rischio è stato valutato **BASSO** e il rischio è risultato **ACCETTABILE**.

Ciò ha determinato nello scrivente la consapevolezza che non risulta necessario procedere ad ulteriori adempimenti, oltre a quanto identificato nell'elenco delle misure di sicurezza.

Si possono, quindi, escludere rischi relativi alla salute dei lavoratori nei confronti della esposizione a CEM.

Si rimanda, comunque, alla fase esecutiva con le misure effettive di campo, prima di autorizzare l'ingresso dei lavoratori particolarmente a rischio nelle aree interessate dall'emissione dei CEM di cui alle sorgenti individuate.

Il presente documento dovrà essere oggetto di revisione da parte del datore di lavoro

FLEGONE S.R.L. pag. 43 DI 44

prima della fase realizzativa dell'opera, dettagliando i contenuti all'interno del Documento di Valutazione dei Rischi aziendale, con particolare attenzione alla valutazione del rischio CEM, e quindi nel Piano Operativo della Sicurezza, POS.

La valutazione dovrà essere condotta ai sensi del D. Lgs. 81/2008, e dovrà essere soggetta ad aggiornamento periodico, ove si verifichino significative variazioni normative che potrebbero renderla superata.

La valutazione dei rischi dovrà essere condotta dal datore di lavoro e dal Responsabile del Servizio di Prevenzione e Protezione, con la collaborazione del Medico Competente, per quanto di sua competenza e con il coinvolgimento preventivo del Rappresentante dei Lavoratori per la Sicurezza.

FLEGONE S.R.L. pag. 44 DI 44