

TITOLO:

Opere per la connessione alla rtn progetto per la realizzazione di una stazione di smistamento a 132kv da inserire in entra-esce sulla linea Valcimarra-Camerino per la connessione dell'impianto eolico "Energia Monte San Pacifico" (P=36 MW)

CARATTERIZZAZIONE DELLE PERICOLOSITA' GEOLOGICHE DI UN TERRENO SITO NEL COMUNE DI CAMERINO, INDIVIDUATO PER IL POSIZIONAMENTO DELLA STAZIONE DI CONNESSIONE DELL'IMPIANTO EOLICO DI SAN SEVERINO MARCHE

COMMITTEN	TE:	
	Fred	. Olsen Renewables Italy S.r.l.
C.F.	_	
P.I.	_	
Via	Viale (Castro Pretorio 122
Città/Prov.	Roma	Roma

PROGETTC):	
Via	Loc. A	Arcofiato
Città/Prov.	Came	erino Roma
Foglio	63	
Particella	30-49	-50-51-52-53

Studio Geologico Dott. Geol. Massimo Gubinelli Via C. Levi, 9 62022 Castelraimondo MC Tel. uff. 0737 642526 Cell. 338 7013274 e-mail poderosa@libero.it

I GEOLOGI:	Elaborati associati al prosonto fascicolo
Dr. Massimo Gubinelli Dr. Fabio Lunerti	Relazione geologica
	Risposta sismica locale 🛛 🖂
	Tavole tabulazione indagini 🛛
Castelraimondo 24/01/2024	Pratica n. 21_22 Rev. 1

N
Data

Committente: FRED. OLSEN RENEWAR Cantiere: STACONESSIONE ALLA KI'N PROGETTO STACIONE DI SMITTAMETO A 132 KV DA INSERVE	BLES ITALY S.R.L PER LA REALIZZAZIONE DI UNA N DOPPIO ENTRA-ESCE SULLE LINEE		1			SON	DAC	GG N. 1
Comune/via: Data: 20/02/2022		vi Osoppo 38) (i4			QUOTA FONDO FO	4 2- 0ro	76 3.5m
GEOLOGO IN CANTIERE Dr. Massimo Gubinelli	Sondaggio a carotag	ggio continuo		uma AN			4	3.129940°° 3.084243°
	Macchina tipo trive	lsonda di fliodi			S.P.T	LONG	S.	5.004245
PROF. DAL P. S. SPESSOF. STRATT. LITOLOG CAMPION CAMPION	Campionatore H=_	cm D=15cm	RQD	* CAROTAGGIO	HON X 15	OLPI cm. PENETROM. TASCABILE Kg/cmq	CANNA	LITOLOGIA
0.5 INIZIO PERFORAZIONE DA -0 PIAZZOLA POSIZIONAMENTO FANNO RIFERIMENTO AL PIA	.4 m DAL P.C. PER SE MACCHINA. GLI SPI	BANCAMENT(ESSORI			0,5	1.5		DEPOSITO VEGETALE/E
1.0 LIMO SABBIOSO ARGI CALCINELLI E A TRA	LLOSO, CON CI ITI FRUSTOLI	ASTI,			0.7	1.5		COLLUVIALE
1.5 2.2 CARBONIOSI. DI COLO SCREZIATURE GRIGIE	DRE MARRONECC . ASCIUTTO,	DN			1.5 1.8	2.5 2.0		ML
2.0 2.2 2.2 PLASTICO. AL PASSAG SUBSTRATO E' PRESEN	GGIO CON IL NTE DEL PIETF	AME			2.0 2.2	2.5 2.5		
2.5 3.0 ARENACEO PELITI ALTERNATE AL CERATIEL CATE DI CO) ARENARIE				2.5 3.0	F.S. F.S		
3.5 8 MOLTO CONSISTENTE N DECOMPRESSE MOLTO	A ALTERATO E TRATTURATO	AVANA.						
4.0 3.6	DI CALCINELI	JI.						SUBSTRATO ALTERATO PELITICO
4.5 3.4 S1-C0 campione no	on analizzato - trov	vante						ARENACEO
5.0								011120
6.5 PELITI STRATIFICATI DA SOTTILI LIVELLI AVANA SEDIMENTO IN	ARENACEO/SAE	BIOSI						SUBSTRATO
7.0	NIEGRO							INTEGRO
7.5								ALS
8.0								
9.0								
9.5								
Carote sondaggio S1 Car	ntiere perfor	azione						
	1	9						
DEPOSITI ELUVIO COLLUVIALI	2							
2 SUBSTRATO ALTERATO								
	Sans R		* .*					
54 (16344 M 0-5								
SUBSTRATO	A AL							
	8		and the second second					
	9		STUDIO	DI GEO	LOGIA		GEO	AMBIENTE
54 C455A2 m. 5-10	0		Dr. Geol. Massi V. Levi, 9 - 620	imo Gubinelli 022 Castelraimono	lo MC - P.IVA	01395680430C.F.:	GBNMSM	71S04F051S

Common Yeak Converting Value Conv	Comr	nittente:	FRED. OLSEN RENEWAE	BLES ITALY S.R.L ER LA REALIZZAZIONE DI UNA	DITTA ESECUTRI	ICE						SON	DAC	GG N. 2
Date 2 2102/02/2 Conditional and a state of the	Comu	ne/via:	STAZIONE DI SMISTAMENTO A 132 KV DA INSERIRE IN "VALCIMARRA-CAMERINO" E "VALCIMARRA-CAPPU Camerino MC Loc. Arcofiato	I DOPPIO ENTRA-ESCE SULLE LINEE CCINI"	Geco srl	20						QUOTA	4	94
Sublicity or anticolization of Highd Sublicity of Highd Subli	Data	:	21/02/2022		60015 Falco	onar	a Mari	ttima	AN			FONDO FC	0RO -] ⊿	1.0m 3 129324°
Source of up of the set model Source of up of the set model Construction of the set model SET. SET. Set model Set	GEOLOGO	IN CANTIE	RE Dr. Massimo Gubinelli	Sondaggio a carotag	gio continuo)						LONG	1.	3.085892°
0 0	. [.]	NE		Senza circolazione	di fliodi					5	S.P.T.			
40 40 45 45 45 41 5 5 5 5 5 42 5 5 5 5 5 5 40 5	PROF DAL P SPESSO	LITOLOC CAMPIO		Campionatore H=_c	cm D=15cm	1	RQD	CARO	۶ TAGGI	PROF.	Nº COLP X 15 cm	PENETROM. TASCABILE Kg/cmq	CANN. PIEZOMETE	LITOLOGIA
19 12 12 13 12 13 13 13 13 13 13 13 13 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 14 13 15 14 14 13 15 14 14 13 15 14 14 13 15 14 14 14 13 15 14 14 14 14 15 14 14 14 15 14 14 14 15 14 <td< td=""><td>0,5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0,4 0.8</td><td></td><td>0.5 1.5</td><td></td><td></td></td<>	0,5									0,4 0.8		0.5 1.5		
13 CARBONIOSI. DI COLORE MARONECON SCREALTAURE GRIGIE, ASCIUTTO, PLASTICO. 2.55 12 13 12 13 14 3.0 3.1 12 3.3 3.3 12 3.3 3.3 12 3.3 3.3 12 3.3 3.3 12 3.3 3.3 12 3.3 3.3 12 3.3 3.3 13 10 1	1.0	2 1.0 C	LIMO SABBIOSO ARGI ALCINELLI E A TRAT	LLOSO, CON C TI FRUSTOLI	LASTI,					16		25		
22 23 33 23 PDEPOSITE 100 13 PDEPOSITE 23 PDEPOSITE 24 PDEPOSI	2.0		ARBONIOSI. DI COLC CREZIATURE GRIGIE. LASTICO	DRE MARRONECO ASCIUTTO,	N				2.	1.8 1.9 55	12	1.5 2.0		
10 13 13 13 13 13 13 13 13 13 13 13 13 13 14 13 14 13 14 14 13 14 14 15 14 14 15 14 14 15 14 14 15 14 15 14 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 15 14 15 16 15 16 15 16 <td< td=""><td>2.2</td><td>1.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.</td><td>2.1 2.3 2.4 3.0</td><td>4 12</td><td>3.0 2.5 2.5 3.0</td><td></td><td>DEPOSITO</td></td<>	2.2	1.4							3.	2.1 2.3 2.4 3.0	4 12	3.0 2.5 2.5 3.0		DEPOSITO
44 35 35 35 35 55 57 45 57 45 57 56 57 45 57 45 57 57 57 57 45 57 57 58 57 57 57 45 57 59 57 57 57 57 57 59 57 57 57 57 57 59 57 57 57 57 57 59 57 57 57 57 57 59 57 57 57 57 57 50 57 57 57 57 57 51 57 57 57 57 57 52 53 57 57 57 57 53 57 57 57 57 57 53 57 57 57 57 57 54 57 57 57 57 57 5	3.0 3.5									3.4 3.6 3.8 3.9		2.0 2.5 2.0 2.0		VEGETALE/E LUVIO COLLUVIALE
33 33 33 30 57 43 31 57 43 43 61 33 44 25 63 57 53 64 58 64 25 59 63 33 50 71 35 50 73 35 50 73 35 51 71 35 52 71 35 53 71 35 54 71 35 55 72 35 56 83 23 57 83 23 53 73 35 54 74 83 55 75 75 54 74 83 55 75 75 54 75 75 55 75 75 56 75 75 57 75 75 58 75 75	4.0 9.5									4.1		3.5 3.0		ML
53 57 4.5 60 6.1 3.5 63 6.4 2.5 70 5.7 4.5 73 6.4 2.5 74 7.1 3.5 75 6.1 3.5 76 6.1 3.5 77 3.5 1.7 78 7.1 3.5 79 7.1 3.5 70 7.1 3.5 71 3.5 1.7 72 3.5 1.7 73 7.1 3.5 74 7.1 3.5 75 1.1010.0510.001 L SUBSTRATO E' 8.3 75 1.1010.0510.001 L SUBSTRATO E' 8.3 75 1.1010.0510.11 L APENACEO / SABBIOSI 9.5 75 8.3 8.5 76 8.8 8.5 77 8.5 8.5 78 8.5 8.5 79 8.5 8.5 70 8.5 8.5 70 8.5 8.5 <td>4.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.8</td> <td></td> <td>3.0</td> <td></td> <td></td>	4.5									4.8		3.0		
60 41 33 63 1 33 70 1 33 71 33 33 80 1 34 81 1 35 82 1 35 83 1 1 84 23 1 85 1 1 35 86 1 1 35 80 1 1 1 35 81 23 1 35 82 33 25 33 83 1 1 1 1 84 25 25 33 25 83 1 1 1 1 1 94 1 1 1 1 1 95 1 1 1 1 1 96 1 1 1 1 1 1 97 1 1 1 1 1 1 98 1 1	5.5									5.7		4.5		
70 FRA 8.7 E 9.0 LIVELLO CON ABBONDANTE FRUSTOLI CARBONIOSI NERASTRI 6.9 3.5 80 AL PASSAGGIO CON IL SUBSTRATO E' PRESENTE DEL PIETRAME. IL CAMBIO LITOLOGICO E' NETTO. 7.7 3.5 90 PELITI STRITIFICATE GRIGIE ALTERNATE DAVANA. SEDI NENTO INTEGRO 9.1 9.1 7.0 PELITI STRITIFICATE GRIGIE ALTERNATE DAVANA. SEDI NENTO INTEGRO 9.5 F8. SUBSTRATO INTEGRO 7.0 DECONTILEUVO COLUMAL SUBSTRATO INTEGRO 3.1 3.5 SUBSTRATO INTEGRO 7.0 DEPOSITIELUVIO COLUMAL SUBSTRATO INTEGRO 9.5 F8. SUBSTRATO INTEGRO 7.0 DEPOSITIELUVIO COLUMAL SUBSTRATO INTEGRO 1.1 1.1 1.1 0.0 DEPOSITIELUVIO COLUMAL SUBSTRATO INTEGRO 1.1 1.1 1.1 0.0 DEPOSITIELUVIO COLUMAL SUBSTRATO 1.1 1.1 1.1 0.0 SUBSTRATO SUBSTRATO 1.1 1.1 1.1 1.1 0.0 SUBSTRATO SUBSTRATO 1.1 1.1 1.1 1.1 1.0 SUBSTRATO SUBSTRATO 1.1 1.1 1.1 1.1	6.0									6.1 6.4		3.5 2.5		
73 FRUSTOLI CARBONIOSI NERASTRI 77 35 80 AL PASSAGGIO CON IL SUBSTRATO E' 83 25 90 PELENTE DEL PIETRAME. IL CAMBIO 91 33 91 110LOGICO E' NETTO. 91 33 95 PELITI STRATIFICATE GRIGIE ALTERNATE DA SOTTILI LIVELLI ARENACEO/SABBIOSI AVANA. SEDIMENTO INTEGRO 96 F5. SUBSTRATO INTEGRO Carote sondaggio S2 Cantiere perforazione Eliti Elivico col NMALO Depositi ELIVIC col NMALO F5. 10 SUBSTRATO Eliti Stratificatione Substrato Depositi ELIVIC col NMALO Substrato Substrato Substrato Substrato	7.0	Т	RA 8.7 E 9.0 LIVEI	LO CON ABBON	DANTE					6.9		3.5		
AL PASSAGGIO CON IL SUBSTRATO E' PRESENTE DEL PIETRAME. IL CAMBIO LITOLOGICO E' NETTO. PELTII STRATIFICATE GRIGIE ALTERNATE AVANA. SEDIMENTO INTEGRO Carote sondaggio S2 Cantiere perforazione DEPOSITI ELLVIO COLUMAL DEPOSITI ELLVIO COLUMAL SUBSTRATO SUBSTRATO INTEGRO ALS EEDAMBIENTE EEDAMBIENTE Cet Musing Guide	7.5	F	RUSTOLI CARBONIOSI	NERASTRI						7.7		3.5		
90 91 <td< td=""><td>8.5</td><td>A A</td><td>L PASSAGGIO CON II</td><td>. SUBSTRATO E</td><td>,</td><td></td><td></td><td></td><td></td><td>8.3 8.4</td><td></td><td>2.5 2.5</td><td></td><td></td></td<>	8.5	A A	L PASSAGGIO CON II	. SUBSTRATO E	,					8.3 8.4		2.5 2.5		
100 PELITI STRATIFICATE GRIGIE ALTERNATE DA SOTTILI LIVELLI ARENACEO/SABBIOSI AVANA. SEDIMENTO INTEGRO 95 F.S. SUBSTRATO INTEGRO ALS Carote sondaggio S2 Cantiere perforazione DEPOSITI ELUVIC GOLEUMAL DEPOSITI ELUVIC GOLEUMAL DEPOSITI ELUVIC GOLEUMAL DEPOSITI ELUVIC GOLEUMAL DEPOSITI ELUVIC GOLEUMAL DEPOSITI ELUVIC GOLEUMAL	9.0		RESENTE DEL PIETRA ITOLOGICO E' NETTO	ME. IL CAMBI).	0					9.1 9.2		3.1 3.5		
ALS		P D A	ELITI STRATIFICATE A SOTTILI LIVELLI VANA. SEDIMENTO IN	: GRIGIE ALTE ARENACEO/SAB ITEGRO	RNATE BIOSI					9.6 9.8		F.S. F.S.		SUBSTRATO INTEGRO
	Car	rote so	ndaggio S2 Cai	ntiere perfo	razione	e								ALS
SUBSTRATO		EPOSITI E				5	ТИОЛІС		GEC	ILO	GIA			
		51	CASSA Z M 5 -10		AN CONTRACT	Dr.	Geol. Mass	simo Gul	oinelli					

Committente: Cantiere:FRED. OLSEN RENEWAL OPERF PER LA CONNESSIONE ALLA RIN PROGETTO STAZIONE DI SMISTAMENTO A 132 KV DA INSERRE I SMISTAMENTO A 132 KV DA INSERRE I CAUCIMARRA-CAMPLE Camerino MC Loc. Arcofiato 22/02/2022	BLES ITALY S.R.L PER LA REALIZZAZIONE DI UNA N DOPPIO ENTRA-ESCE SULLE LINEE ICICINI"	DITTA ESECUTRIC Geco srl vi Osoppo 33 60015 Falco	CE 8 nara Marit	ttima AN		SOND QUOTA FONDO FOR	AC 4 20 5	GG N. 3 77 m 43.128029°
GEOLOGO IN CANTIERE Dr. Massimo Gubinelli	Sondaggio a carota Macchina tino trive	ggio continuo				LONG	1	3.083248°
C.C.C. DRE GIA GIA	Senza circolazione	di fliodi			S.P.T.		LA RICA	
PROI STRAT E ITOLC	Campionatore H=_	cm D=15cm	RQD	8 CAROWACCTO		PENETROM. TASCABILE Kg/cmg	CAN	LIIOLOGIA
0,5 INIZIO PERFORAZIONE DA -1 PIAZZOLA POSIZIONAMENTO FANNO RIFERIMENTO AL PIA ARENARIE STRATIFICA AVANA ALTERNATE A	.0 m DAL P.C. PER SI MACCHINA. GLI SP NO SCAVATO ATE, DI COLOF	BANCAMENTO ESSORI					<u>a</u>	SUBSTRATO ALTERATO SFALS
GRIGI. MOLTO CONSIS	STENTE MA ALI	ERATO E						
2.0 DECOMPRESSE MOLTO D ASCIUTTO, PRESENZA	FRATTURATO. DI CALCINELI	ıI.						
2.5 AL PASSAGGIO CON II PRESENTE DEL PIETRA	L SUBSTRATO E AME ARENACEO	/						
3.0 3.1 3.1 IL PASSAGGIO ALLA I E' NETTO	LITOLOGIA SUC	CESSIVA						
3.5								
4.0								INTEGRO
4.5 PELITI STRATIFICAT	E GRIGIE ALTE	RNATE						ALS
5.0 DA SOTTILI LIVELLI AVANA. SEDIMENTO IN	NTEGRO	BIOSI						
5.5								
6.0								
6.5								
7.0								
7.5								
8.0								
8.5								
9.0								
9.5								
Carote sondaggio S3 Car	ntiere perfor	azione						
PART ATTEN	Ň							
SUBSTRATO ALTERATO								
La half - and								
SUBSTRATO								
13.5			11					
14.0		10-1						
14.5								
15.0			STUDIO				RC.	and an and
15.5					1100		GEO	AMBIENTE
16.0		all the	Dr. Geol. Mass - V. Levi, 9 - 62	imo Gubinelli 022 Castelraimond	o MC - P.IVA 013	95680430C.F.: GB	NMSM	71S04F051S

Co	mm ntie	ittente:	FRED. OLSEN RENEWAR	BLES ITALY S.R.L	DITTA ESECUTR	ICE							SON	DAC	GG N. 4
Co	mun	e/via	VALCIMARRA-CAMERINO" E "VALCIMARRA-CAPPU Camerino MC Loc. Arcofiato	N DOPPIO EN IRA-ESCE SULLE LINEE (CCINI"	Geco srl vi Osoppo 3	38							QUOTA	4 100 5	55 m
Da	ta:	TNI CANUT	22/02/2022	Sondaggio a carota	60015 Falc	ona	ra Ma	ritt	ima A	N			LAT	1	43.129640°
GEOL				Macchina tipo trive	lsonda	,							LONG	ا ۲	5.081724
COF.	SSORE	DLOGI		Campionatore H=_0	cm D=15cm						<u>ц</u>	S.P.T.	PENETROM.	ANNA METRIC	LITOLOGIA
PF DAI	SPE	LITC		1			RQD		* CAROT <i>I</i>	GGI	PRO	X 15 cm.	Kg/cmq	C. PIEZO	
0.5			LIMO SABBIOSO ARGII Calcinelli e a traj	LLOSO, CON CI Iti frustoli	ASTI,						0,5 0.7		1.0 1.5		DEPOSITI
0,5			CARBONIOSI. DI COLO	DRE MARRONECC	N										ELUVIO COLLUVIALI
1.0		1.2	SCREZIATURE GRIGIE. PLASTICO.	. ASCIUTTO,							1.2		2.0		ML
1.5		ទី									1.55 2.1	2 6	2.5		
2.0	3.6	S	AL PASSAGGIO CON II	L SUBSTRATO E	/						2.Ö ³	8	2.0		
2.5		1.5	PRESENTE DEL PIETRA	AME ARENACEO							2.7 2.8		2.0 2.5		
3.0											3.1		3.0 3.0		
3.5			E' NETTO	ITOLOGIA SUC	CESSIVA						3.5		2.0		
3.6 4.0											3.5		F.S.		
4.5											3.7		F.S.		
5.0			DA SOTTILI LIVELLI	E GRIGIE ALTE ARENACEO/SAE	RNATE BIOSI										SUBSTRATO
5.5			AVANA. SEDIMENTO IN	ITEGRO											INTEGRO
															ALS
6.0															
6.5															
7.0															
8.0															
8.5															
9.0															
9.5															
10.0															
Са	aro	ote sc	ondaggio S3 Car	ntiere perfor	azione										
S EV S															
P															
1	13	CUDA	TDATO ALTERATO	3											
	1. ALAS "	SUES													
			SUBSTRAT	0			A								
			54 CASSA 4 2 m 0 - 5		Call Marrie	1	P								
13.5				E	Sector H										
14.0	U														
14.5					1	2									
15.0					A BAR				DI C	FF		GIA		-	
15.5														GEO	AMBIENTE
16.0					1	Di	r. <i>Geol.</i> Ma /. Levi, 9 -	assir 620	no Gubin 22 Casteli	elli aimor	ndo MC	- P.IVA 013	95680430C.F.: (BNMSM	71S04F051S

Commi Cantie: Comune	ltente: re: e/via:	FRED. OLSEN RENEWAB OPER PER LA CONSESSIONE ALLA RIN PROGETIO P STAZIONE DI SMISTAMENTO A 123 V DA INSERIRE IN VALCIMARRA-CAPRU COMPOSITION DE VALCIMARRA-CAPRU	BLES ITALY S.R.L ER LA REALIZZAZIONE DI UNA I DOPPIO ENTRA-ESCE SULLE LINEE ICINI [®]	DITTA ESECUTRI Bitima di Zo	ICE eppa	Maur	izio	o SN	IC			SCA QUOTA	/0	N. 1
Data:		22/02/2022		62032 Cam	61 erino	o MC						FONDO FO LAT	RO 5	m 43.129151°
GEOLOGO II	N CANTII	ERE Dr. Massimo Gubinelli	Escavatore con brac	cio meccanic	co							LONG	1	3.084932°
DF. P.C. SORE	LOGIA			Γ			1			S	.P.T.	PENETROM.	NNA IETRICA	LITOLOGIA
PR(DAL SPES STR	LITO: CAMF				F	QD	CA	* ROTA	GGIO	PROF	Nº COLPI X 15 cm.	TASCABILE Kg/cmq	CAI	
		LIMO SABBIOSO ARGII	LOSO, CON CL	ASTI,										DEPOSITO
0,5		CARBONIOSI. DI COLC SCREZIATURE GRIGIE.	DRE MARRONECO ASCIUTTO,	N										VEGETALE/E LUVIO COLLUVIALE
1.5		PLASTICO. AL PASSAG	GIO CON IL	AME										ML
2.0 3.0	Ż	ARENACEO	IIE DEL FIEIN	AME										
2.5														
3.0		PEI.TTT ALTERNATE AL	ARFINARIT											
3.5 1.0		STRATIFICATE, DI CO	LORE GRIGIO-	AVANA.										SUBSTRATO ALTERATO
4.0		DECOMPRESSE MOLTO F ASCIUTTO, PRESENZA	RATTURATO. DI CALCINELI	T.										SFALS
4.5														
5.5		PELITI STRATIFICATE	GRIGIE ALTE	RNATE										
6.0		DA SOTTILI LIVELLI AVANA. SEDIMENTO IN	ARENACEO/SAB ITEGRO	BIOSI										SUBSTRATO INTEGRO
6.5	Par.													ALS
7.0														
7.5	and a second													
8.5														
9.0														
9.5														
Canti	ere s	scavo 1												
	1 Hap					*	*							
	TE				and the second s									
	Ett		A LAN	Frank										
		1824	C. Tot											
		102 3 3						AL A						
	and and													
		and the second												
an an anna anna anna anna anna anna an				ф.s.	5	TUDIC		I G	EO	LOI	GIA		GEO	AMBIENTE
the second		A Start		Jan -	Dr.	Geol. Mass	simo	Gubine	lli	In MC -	P IVA 0139	15680430C E + 0	BNMSM	71504E0515

Committente: Cantiere:	FRED. OLSEN RENEWAR OPERE PER LA CONNESSIONE ALLA RTN PROGETTO I STAZIONE DI SMISTAMENTO A 132 AV DA INSERIRE I "VALCIMARA-CAMERINO" E "VALCIMARA-CAPE	BLES ITALY S.R.L PER LA REALIZZAZIONE DI UNA N DOPPIO ENTRA-ESCE SULLE LINEE (CCINI"	DITTA ESECUTRIC Bitima di Ze	CE eppa Mau	izio SNC			'O _4	N. 2
Data:	Camerino MC Loc. Arcofiato 22/02/2022		via Farnese 62032 Came	61 erino MC			FONDO FOR	xo 5	5m 43.128238°
GEOLOGO IN CANTIE	ERE Dr. Massimo Gubinelli	Escavatore con brac	cio meccanic	0			LONG	1	3.083541°
PROF. DAL P.C. SPESSORE STRATTI LITOLOGIA LITOLOGIA				RQD	* CAROTAGGIO	S.P.T.	PENETROM. TASCABILE Kg/cmq	CANNA PIEZOMETRICA	LITOLOGIA
0,5	LIMO SABBIOSO ARGII CALCINELLI E A TRAT CARBONIOSI. DI COLO	LLOSO, CON CL TTI FRUSTOLI DRE MARRONECO	ASTI, N						DEPOSITO VEGETALE/E LUVIO
1.0 1.5	PLASTICO. AL PASSAC SUBSTRATO E' PRESEN	. ASCIUTTO, GGIO CON IL NTE DEL PIETR	AME						COLLUVIALE
2.0	ARENACEO								
2.5 3.0	PELITI STRATIFICATE DA SOTTILI LIVELLI	E GRIGIE ALTE ARENACEO/SAB	RNATE BIOSI						SUBSTRATO INTEGRO
3.5	AVANA. SEDIMENTO IN	NTEGRO							ALS
4.5									
4.0									
6.0									
6.5									
7.5									
8.0									
9.0									
9.5									
^{10.0} Cantiere s	scavo 2								
	A AMAIN	monaria 1 g							
			B						
A. C.									
Con a									
1 Providence				STUDIO	DI GEO	LOGIA		GEO	AMBIENTE
			de a	Dr. Geol. Mas - V. Levi, 9 - 62	simo Gubinelli 2022 Castelraimono	o MC - P.IVA 013	95680430C.F.: GI	BNMSM	71S04F051S

PROVA PENETROMETRICA STATICA

Committente: FRED. OLSEN RENEWABLES ITALY S.R.L Cantiere: ARCOFIATO Località: CAMERINO MC

Caratteristiche Strumentali PAGANI TG 63 (200 kN)

Rif. Norme	
ASTM D3441-86	
Diametro Punta conica meccanica	
Angolo di apertura punta	
Area punta	
Superficie manicotto	
Passo letture (cm)	
Costante di trasformazione Ct	

CORRELAZIONI USATE

orrelazioni incoerenti Correlazioni coesivi Vs		
Densità relativa	OCR	
 Baldi 1978 - Schmertmann (1976) 	Stress-History	🔵 Ladd e Foot (1977)
🔿 Schmertmann	O Piacentini Righi (1978)	🔵 Larsson (1991) S.G.I.
🔿 Harman (1976)		
🔿 Lancellotta (1983)	Modulo Edometrico	
🔿 Jamiolkowski (1985)	Robertson Campanella da :	Schmertmann
🔿 Larsson (1995)	C Lunne Christoffersen (1983)	Robertson Powell (1997)
	Kulhawy-Mayne (1990)	
Angolo d'attrito	O Mitchell - Gardner (1975)	
VEDERE SINGOLE PROVE	🔘 Buisman - Sanglerat	
	Modulo di deformazione a ta	glio
	Imai Tomauchi	
	O Rix, Stokoe (1991)	
	Modulo di reazione Ko	
	Kulhawy-Mayne (1990)	
	Peso unità di volume	
Modulo di Young	Meyerhof	
Schmertmann (1970-1978)		
🔿 Robertson Campanella (1983)		
O ISOPT-1 (1988)		

Correlazioni incoerenti	Correlazioni coesivi	Vs		
VEDERE SINGO	DLE PROVE		OCR Stress-History P.W.Mayne (1991) Piacentini Righi (1978) Larsson 1991 S.G.I. Jamiolkowski (1979) Schmertmann (1978) Modulo di deformazione a taglio Imai, Tomauchi Mayne, Rix (1993) Modulo di defomazione non drenato	e 0.5
Modulo Edometrico Mitchell Gardner (* Metodo generale o Buisman Buisman Sanglerat	1975) del modulo edometrico t		 Cancelli (1980) Ladd (1977) 	
 Meyerhof ed altri 				

FRMS

-

-

FRM*2

Probe CPT - Cone P Strumento utilizzat	enetration o PAGANI	Nr.3 TG 63 (2	200 kN)	Certif Verba Codio	ficato N ale di ac ce comn	r. 1000 cettazi nessan	del 00/(one nr. r. 00000	0/2020 100 del (00/00/20	20	
Committente: Cantiere: Località:	FRE ARC CAN	D. OLSE COFIATO	EN REN D MC	EWABL	.ES ITAI	LY S.R.L					Data: 08/02/20
ne courty					Sca	ala 1:10	0 - Qc:	1 cm=3	5.62 kg/a	m² - Fs	s: 1 cm=1.39 kg/cm²
Resistence punte Qc (kg/	cm ²)	1000-1		Resiste	SCa	ela 1:10 e Fs (kg/c	ю - Qc: ^{л 2})	1 cm=3	5.62 kg/c	m ² - Fe	s: 1 cm=1.39 kg/cm² e Stratigrafica (Daugles Olsen 1
Resistenza punta Qc (kg/ 0 30.4 60.8	(m²) 91.2	121.6	152.0	Resiste	Sca nza lateral 1.50	e Fs (%g/c 2.99	10 - Qc: π ²) 4.49	1 cm=3	5.62 kg/c Inte 7.48	m ² - F:	s: 1 cm=1.39 kg/cm ² e Stratignafice (Dougles Disen 1 ceptosmm suvice
Resistenza purta Qc (Kg/ 0 30.4 60.3	91.2	121.6	152.0	Resiste	Sca	əla 1:10 e Fs (Kg/c 2.99	10 - Qc: m ²) 4.19	1 cm=3	5.62 kg/c	m ² - Fs pretation a.or	s: 1 cm=1.39 kg/cm ² e Stratigrafica (Douglas Olsen 1 couluy/14.1 %, substratio sutesato strops

PRAH

FRMs

FRM:

PRIH2

STIMA PARAMETRI GEOTECNICI

PROVA1

TERRENI COESIVI

Coesione non drenata

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Cu
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Rolf	0.62
						Larsson	
						SGI 1995	
Strato 2	6.00	24.5	1.22	0.1	0.1	Rolf	1.02
						Larsson	
						SGI 1995	
Strato 3	6.60	70.667	2.44	0.1	0.1	Rolf	3.05
						Larsson	
						SGI 1995	
Strato 4	7.40	111.25	4.90	0.1	0.1	Rolf	4.82
						Larsson	
						SGI 1995	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eed
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Mitchell &	76.3
						Gardner	
						(1975)	
Strato 2	6.00	24.5	1.22	0.1	0.1	Mitchell &	61.3
						Gardner	
						(1975)	
Strato 3	6.60	70.667	2.44	0.1	0.1	Mitchell &	176.7
						Gardner	
						(1975)	
Strato 4	7.40	111.25	4.90	0.1	0.1	Mitchell &	278.1
						Gardner	
						(1975)	

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eu
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.1	0.1	0.1	Cancelli	569.6
						1980	
Strato 2	6.00	24.5	1.215	0.1	0.1	Cancelli	914.2
						1980	

Strato 3	6.60	70.667	2.444	0.1	0.1	Cancelli	2645.4
						1980	
Strato 4	7.40	111.25	4.9	0.1	0.1	Cancelli	4167.3
						1980	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	deformazio
				(kg/cm²)	efficace		ne a taglio
					(kg/cm²)		(kg/cm²)
Strato 1	0.80	15.25	1.10	0.1	0.1	Imai &	148.0
						Tomauchi	
Strato 2	6.00	24.5	1.22	0.1	0.1	Imai &	197.7
						Tomauchi	
Strato 3	6.60	70.667	2.44	0.1	0.1	Imai &	377.6
						Tomauchi	
Strato 4	7.40	111.25	4.90	0.1	0.1	Imai &	498.3
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Stress-Hist	5.8
						ory	
Strato 2	6.00	24.5	1.22	0.1	0.1	Stress-Hist	4.66
						ory	
Strato 3	6.60	70.667	2.44	0.1	0.1	Stress-Hist	>9
						ory	
Strato 4	7.40	111.25	4.90	0.1	0.1	Stress-Hist	>9
						ory	

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Meyerhof	1.9
Strato 2	6.00	24.5	1.22	0.1	0.1	Meyerhof	2.0
Strato 3	6.60	70.667	2.44	0.1	0.1	Meyerhof	2.2
Strato 4	7.40	111.25	4.90	0.1	0.1	Meyerhof	2.3

Fattori di compressibilità C Crm

Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica		
			(kg/cm ²)	efficace		
				(kg/cm²)		

Strato 1	0.80	15.25	1.10	0.1	0.1	0.15421	0.02005
Strato 2	6.00	24.5	1.22	0.1	0.1	0.12129	0.01577
Strato 3	6.60	70.667	2.44	0.1	0.1	0.09859	0.01282
Strato 4	7.40	111.25	4.90	0.1	0.1	0.09396	0.01222

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.80	15.25	1.10	0.1	0.1	Meyerhof	2.0
Strato 2	6.00	24.5	1.22	0.1	0.1	Meyerhof	2.1
Strato 3	6.60	70.667	2.44	0.1	0.1	Meyerhof	2.3
Strato 4	7.40	111.25	4.90	0.1	0.1	Meyerhof	2.3

Velocità onde di taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Jamiolkows	228.81
						ki et al	
						1985	
Strato 2	6.00	24.5	1.22	0.1	0.1	Jamiolkows	251.45
						ki et al	
						1985	
Strato 3	6.60	70.667	2.44	0.1	0.1	Jamiolkows	310.46
						ki et al	
						1985	
Strato 4	7.40	111.25	4.90	0.1	0.1	Jamiolkows	339.80
						ki et al	
						1985	

TERRENI INCOERENTI

Densità relativa

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Densità
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	relativa
				(kg/cm ²)	efficace		(%)
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Baldi 1978	52.1
						-	
						Schmertma	
						nn 1976	
Strato 2	6.00	24.5	1.22	0.1	0.1	Baldi 1978	55.8
						-	
						Schmertma	
						nn 1976	
Strato 3	6.60	70.667	2.44	0.1	0.1	Baldi 1978	85.9

						- Schmertma nn 1976	
Strato 4	7.40	111.25	4.90	0.1	0.1	Baldi 1978	98.8
						-	
						Schmertma	
						nn 1976	

Angolo di resistenza al taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Angolo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	d'attrito
				(kg/cm²)	efficace		(°)
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Meyerhof	23.85
						1951	
Strato 2	6.00	24.5	1.22	0.1	0.1	Meyerhof	28.0
						1951	
Strato 3	6.60	70.667	2.44	0.1	0.1	Meyerhof	45.0
						1951	
Strato 4	7.40	111.25	4.90	0.1	0.1	Meyerhof	45.0
						1951	

Modulo di Young

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Young
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Schmertma	38.1
						nn	
Strato 2	6.00	24.5	1.22	0.1	0.1	Schmertma	61.3
						nn	
Strato 3	6.60	70.667	2.44	0.1	0.1	Schmertma	176.7
						nn	
Strato 4	7.40	111.25	4.90	0.1	0.1	Schmertma	278.1
						nn	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Edometrico
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato	0.80	15.25	1.10	0.1	0.1	Robertson	62.1
						&	
						Campanella	
						da	
						Schmertma	
						nn	
Strato 2	6.00	24.5	1.22	0.1	0.1	Robertson	62.0

						&	
						Campanella	
						da	
						Schmertma	
						nn	
Strato 3	6.60	70.667	2.44	0.1	0.1	Robertson	82.6
						&	
						Campanella	
						da	
						Schmertma	
						nn	
Strato 4	7.40	111.25	4.90	0.1	0.1	Robertson	83.8
						&	
						Campanella	
						da	
						Schmertma	
						nn	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	G
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Imai &	148.0
						Tomauchi	
Strato 2	6.00	24.5	1.22	0.1	0.1	Imai &	197.7
						Tomauchi	
Strato 3	6.60	70.667	2.44	0.1	0.1	Imai &	377.6
						Tomauchi	
Strato 4	7.40	111.25	4.90	0.1	0.1	Imai &	498.3
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 2	6.00	24.5	1.22	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 3	6.60	70.667	2.44	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 4	7.40	111.25	4.90	0.1	0.1	Stress-Hist	0.0
						ory	

Modulo di reazione Ko

Pr	rof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ко
----	-------------	----	----	----------	----------	-------------	----

	(m)	(kg/cm²)	(kg/cm²)	litostatica (kg/cm²)	litostatica efficace (kg/cm ²)	e	
Strato 1	0.80	15.25	1.10	0.1	0.1	Kulhawy & Mayne (1990)	1.10
Strato 2	6.00	24.5	1.22	0.1	0.1	Kulhawy & Mayne (1990)	0.95
Strato 3	6.60	70.667	2.44	0.1	0.1	Kulhawy & Mayne (1990)	0.00
Strato 4	7.40	111.25	4.90	0.1	0.1	Kulhawy & Mayne (1990)	0.00

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	0.15421	0.02005
Strato 2	6.00	24.5	1.22	0.1	0.1	0.12129	0.01577
Strato 3	6.60	70.667	2.44	0.1	0.1	0.09859	0.01282
Strato 4	7.40	111.25	4.90	0.1	0.1	0.09396	0.01222

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Meyerhof	1.8
Strato 2	6.00	24.5	1.22	0.1	0.1	Meyerhof	1.8
Strato 3	6.60	70.667	2.44	0.1	0.1	Meyerhof	1.8
Strato 4	7.40	111.25	4.90	0.1	0.1	Meyerhof	1.8

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.80	15.25	1.10	0.1	0.1	Meyerhof	2.1
Strato 2	6.00	24.5	1.22	0.1	0.1	Meyerhof	2.1
Strato 3	6.60	70.667	2.44	0.1	0.1	Meyerhof	2.1
Strato 4	7.40	111.25	4.90	0.1	0.1	Meyerhof	2.1

Velocità onde di taglio.

0						
Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs

	(m)	(kg/cm²)	(kg/cm²)	litostatica (kg/cm²)	litostatica efficace (kg/cm ²)	e	(m/s)
Strato 1	0.80	15.25	1.10	0.1	0.1	Jamiolkows ki et al 1985	264.91
Strato 2	6.00	24.5	1.22	0.1	0.1	Jamiolkows ki et al 1985	296.13
Strato 3	6.60	70.667	2.44	0.1	0.1	Jamiolkows ki et al 1985	379.83
Strato 4	7.40	111.25	4.90	0.1	0.1	Jamiolkows ki et al 1985	422.58

Permeabilità

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	K
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(cm/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	15.25	1.10	0.1	0.1	Piacentini-	1.00E-11
						Righi 1988	
Strato 2	6.00	24.5	1.22	0.1	0.1	Piacentini-	5.61E-10
						Righi 1988	
Strato 3	6.60	70.667	2.44	0.1	0.1	Piacentini-	2.64E-07
						Righi 1988	
Strato 4	7.40	111.25	4.90	0.1	0.1	Piacentini-	3.47E-11
						Righi 1988	

Coefficiente di consolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Coefficient
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	e di
				(kg/cm²)	efficace		consolidazi
					(kg/cm²)		one
							(cm²/s)
Strato 1	0.80	15.25	1.10	0.1	0.1	Piacentini-	4.575E-07
						Righi 1988	
Strato 2	6.00	24.5	1.22	0.1	0.1	Piacentini-	4.122627E-
						Righi 1988	05
Strato 3	6.60	70.667	2.44	0.1	0.1	Piacentini-	0.05602717
						Righi 1988	
Strato 4	7.40	111.25	4.90	0.1	0.1	Piacentini-	1.158921E-
						Righi 1988	05

STIMA PARAMETRI GEOTECNICI

PROVA 2

TERRENI COESIVI

Coesione non drenata

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Cu
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Rolf	1.71
						Larsson	
						SGI 1995	
Strato 2	3.40	85.429	3.12	0.1	0.1	Rolf	3.69
						Larsson	
						SGI 1995	
Strato 3	4.00	109.0	6.56	0.1	0.1	Rolf	4.72
						Larsson	
						SGI 1995	
Strato 4	4.40	154.0	2.67	0.1	0.1	Rolf	6.69
						Larsson	
						SGI 1995	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eed
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Mitchell &	100.0
						Gardner	
						(1975)	
Strato 2	3.40	85.429	3.12	0.1	0.1	Mitchell &	213.6
						Gardner	
						(1975)	
Strato 3	4.00	109.0	6.56	0.1	0.1	Mitchell &	272.5
						Gardner	
						(1975)	
Strato 4	4.40	154.0	2.67	0.1	0.1	Mitchell &	385.0
						Gardner	
						(1975)	

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eu
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm ²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.289	0.1	0.1	Cancelli	1497.5
						1980	
Strato 2	3.40	85.429	3.124	0.1	0.1	Cancelli	3198.6
						1980	

Strato 3	4.00	109.0	6.556	0.1	0.1	Cancelli	4082.6
						1980	
Strato 4	4.40	154.0	2.667	0.1	0.1	Cancelli	5770.1
						1980	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	deformazio
				(kg/cm²)	efficace		ne a taglio
					(kg/cm²)		(kg/cm²)
Strato 1	0.60	40.0	2.29	0.1	0.1	Imai &	266.7
						Tomauchi	
Strato 2	3.40	85.429	3.12	0.1	0.1	Imai &	424.0
						Tomauchi	
Strato 3	4.00	109.0	6.56	0.1	0.1	Imai &	492.1
						Tomauchi	
Strato 4	4.40	154.0	2.67	0.1	0.1	Imai &	607.8
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Stress-Hist	>9
						ory	
Strato 2	3.40	85.429	3.12	0.1	0.1	Stress-Hist	>9
						ory	
Strato 3	4.00	109.0	6.56	0.1	0.1	Stress-Hist	>9
						ory	
Strato 4	4.40	154.0	2.67	0.1	0.1	Stress-Hist	>9
						ory	

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
				_	(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Meyerhof	2.1
Strato 2	3.40	85.429	3.12	0.1	0.1	Meyerhof	2.2
Strato 3	4.00	109.0	6.56	0.1	0.1	Meyerhof	2.3
Strato 4	4.40	154.0	2.67	0.1	0.1	Meyerhof	2.3

Fattori di compressibilità C Crm

Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica		
			(kg/cm²)	efficace		
			_	(kg/cm²)		

Strato 1	0.60	40.0	2.29	0.1	0.1	0.11184	0.01454
Strato 2	3.40	85.429	3.12	0.1	0.1	0.09594	0.01247
Strato 3	4.00	109.0	6.56	0.1	0.1	0.09403	0.01222
Strato 4	4.40	154.0	2.67	0.1	0.1	0.09621	0.01251

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.60	40.0	2.29	0.1	0.1	Meyerhof	2.2
Strato 2	3.40	85.429	3.12	0.1	0.1	Meyerhof	2.3
Strato 3	4.00	109.0	6.56	0.1	0.1	Meyerhof	2.3
Strato 4	4.40	154.0	2.67	0.1	0.1	Meyerhof	2.4

Velocità onde di taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Jamiolkows	277.21
						ki et al	
						1985	
Strato 2	3.40	85.429	3.12	0.1	0.1	Jamiolkows	322.40
						ki et al	
						1985	
Strato 3	4.00	109.0	6.56	0.1	0.1	Jamiolkows	338.42
						ki et al	
						1985	
Strato 4	4.40	154.0	2.67	0.1	0.1	Jamiolkows	362.51
						ki et al	
						1985	

TERRENI INCOERENTI

Densità relativa

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Densità
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	relativa
				(kg/cm ²)	efficace		(%)
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Baldi 1978	78.6
						-	
						Schmertma	
						nn 1976	
Strato 2	3.40	85.429	3.12	0.1	0.1	Baldi 1978	90.3
						-	
						Schmertma	
						nn 1976	
Strato 3	4.00	109.0	6.56	0.1	0.1	Baldi 1978	97.2

						- Schmertma nn 1976	
Strato 4	4.40	154.0	2.67	0.1	0.1	Baldi 1978	100.0
						-	
						Schmertma	
						nn 1976	

Angolo di resistenza al taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Angolo
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	d'attrito
				(kg/cm ²)	efficace		(°)
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Meyerhof	34.96
						1951	
Strato 2	3.40	85.429	3.12	0.1	0.1	De Beer	38.74
Strato 3	4.00	109.0	6.56	0.1	0.1	De Beer	39.9
Strato 4	4.40	154.0	2.67	0.1	0.1	De Beer	41.54

Modulo di Young

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Young
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Schmertma	100.0
						nn	
Strato 2	3.40	85.429	3.12	0.1	0.1	Schmertma	213.6
						nn	
Strato 3	4.00	109.0	6.56	0.1	0.1	Schmertma	272.5
						nn	
Strato 4	4.40	154.0	2.67	0.1	0.1	Schmertma	385.0
						nn	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Edometrico
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Robertson	81.0
						&	
						Campanella	
						da	
						Schmertma	
						nn	
Strato 2	3.40	85.429	3.12	0.1	0.1	Robertson	83.1
						&	
						Campanella	
						da	

	Schmertma						
	nn						
83.8	Robertson	0.1	0.1	6.56	109.0	4.00	Strato 3
	&						
	Campanella						
	da						
	Schmertma						
	nn						
85.2	Robertson	0.1	0.1	2.67	154.0	4.40	Strato 4
	&						
	Campanella						
	da						
	Schmertma						
	nn						

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	G
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Imai &	266.7
						Tomauchi	
Strato 2	3.40	85.429	3.12	0.1	0.1	Imai &	424.0
						Tomauchi	
Strato 3	4.00	109.0	6.56	0.1	0.1	Imai &	492.1
						Tomauchi	
Strato 4	4.40	154.0	2.67	0.1	0.1	Imai &	607.8
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm ²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 2	3.40	85.429	3.12	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 3	4.00	109.0	6.56	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 4	4.40	154.0	2.67	0.1	0.1	Stress-Hist	0.0
						ory	

Modulo di reazione Ko

Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ko
(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
	-	_	(kg/cm²)	efficace		
				(kg/cm²)		

Strato 1	0.60	40.0	2.29	0.1	0.1	Kulhawy &	0.00
						Mayne	
						(1990)	
Strato 2	3.40	85.429	3.12	0.1	0.1	Kulhawy &	0.00
						Mayne	
						(1990)	
Strato 3	4.00	109.0	6.56	0.1	0.1	Kulhawy &	0.00
						Mayne	
						(1990)	
Strato 4	4.40	154.0	2.67	0.1	0.1	Kulhawy &	0.00
						Mayne	
						(1990)	
						(1990)	

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	0.11184	0.01454
Strato 2	3.40	85.429	3.12	0.1	0.1	0.09594	0.01247
Strato 3	4.00	109.0	6.56	0.1	0.1	0.09403	0.01222
Strato 4	4.40	154.0	2.67	0.1	0.1	0.09621	0.01251

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Meyerhof	1.8
Strato 2	3.40	85.429	3.12	0.1	0.1	Meyerhof	1.8
Strato 3	4.00	109.0	6.56	0.1	0.1	Meyerhof	1.8
Strato 4	4.40	154.0	2.67	0.1	0.1	Meyerhof	1.8

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.60	40.0	2.29	0.1	0.1	Meyerhof	2.1
Strato 2	3.40	85.429	3.12	0.1	0.1	Meyerhof	2.1
Strato 3	4.00	109.0	6.56	0.1	0.1	Meyerhof	2.1
Strato 4	4.40	154.0	2.67	0.1	0.1	Meyerhof	2.1

Liquefazione - Accelerazione sismica massima (g)=0.15

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Fattore di
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	sicurezza a
				(kg/cm²)	efficace		liquefazion
					(kg/cm²)		e

Velocità onde di taglio.

Velocità onde di taglio.										
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs			
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)			
				(kg/cm²)	efficace					
					(kg/cm²)					
Strato 1	0.60	40.0	2.29	0.1	0.1	Jamiolkows	332.28			
						ki et al				
						1985				
Strato 2	3.40	85.429	3.12	0.1	0.1	Jamiolkows	397.15			
						ki et al				
						1985				
Strato 3	4.00	109.0	6.56	0.1	0.1	Jamiolkows	420.55			
						ki et al				
						1985				
Strato 4	4.40	154.0	2.67	0.1	0.1	Jamiolkows	456.13			
						ki et al				
						1985				

Permeabilità

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	K
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(cm/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.60	40.0	2.29	0.1	0.1	Piacentini-	1.00E-11
						Righi 1988	
Strato 2	3.40	85.429	3.12	0.1	0.1	Piacentini-	4.88E-08
						Righi 1988	
Strato 3	4.00	109.0	6.56	0.1	0.1	Piacentini-	1.00E-11
						Righi 1988	
Strato 4	4.40	154.0	2.67	0.1	0.1	Piacentini-	9.43E-04
						Righi 1988	

Coefficiente di consolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Coefficient
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	e di
				(kg/cm²)	efficace		consolidazi
					(kg/cm²)		one
							(cm^2/s)
Strato 1	0.60	40.0	2.29	0.1	0.1	Piacentini-	1.2E-06
						Righi 1988	
Strato 2	3.40	85.429	3.12	0.1	0.1	Piacentini-	0.01251253
						Righi 1988	
Strato 3	4.00	109.0	6.56	0.1	0.1	Piacentini-	3.27E-06

						Righi 1988	
Strato 4	4.40	154.0	2.67	0.1	0.1	Piacentini-	0
						Righi 1988	

STIMA PARAMETRI GEOTECNICI

PROVA 3

TERRENI COESIVI

Coesione non drenata

	Prof. Strato (m)	qc (kg/cm²)	fs (kg/cm²)	Tensione litostatica (kg/cm ²)	Tensione litostatica efficace (kg/cm ²)	Correlazion e	Cu (kg/cm²)
Strato 1	0.80	12.25	1.05	0.1	0.1	Rolf Larsson SGI 1995	0.49
Strato 2	2.00	91.667	3.72	0.3	0.3	Sunda relazione sperimental e	3.55
Strato 3	2.40	138.0	3.53	0.5	0.5	Sunda relazione sperimental e	4.21

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eed
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Mitchell &	61.3
						Gardner	
						(1975)	
Strato 2	2.00	91.667	3.72	0.3	0.3	Mitchell &	229.2
						Gardner	
						(1975)	
Strato 3	2.40	138.0	3.53	0.5	0.5	Mitchell &	345.0
						Gardner	
						(1975)	

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eu
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Cancelli	456.5
						1980	
Strato 2	2.00	91.667	3.722	0.3	0.3	Cancelli	3426.8
						1980	
Strato 3	2.40	138.0	3.533	0.5	0.5	Cancelli	5157.6
						1980	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	deformazio
				(kg/cm²)	efficace		ne a taglio
					(kg/cm²)		(kg/cm²)
Strato 1	0.80	12.25	1.05	0.1	0.1	Imai &	129.4
						Tomauchi	
Strato 2	2.00	91.667	3.72	0.3	0.3	Imai &	442.7
						Tomauchi	
Strato 3	2.40	138.0	3.53	0.5	0.5	Imai &	568.4
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Stress-Hist	3.77
						ory	
Strato 2	2.00	91.667	3.72	0.3	0.3	Stress-Hist	7.5
						ory	
Strato 3	2.40	138.0	3.53	0.5	0.5	Stress-Hist	6.93
						ory	

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
				-	(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Meyerhof	1.9
Strato 2	2.00	91.667	3.72	0.3	0.3	Meyerhof	2.2
Strato 3	2.40	138.0	3.53	0.5	0.5	Meyerhof	2.3

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm²)	(kg/cm ²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm ²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	0.17557	0.02282
Strato 2	2.00	91.667	3.72	0.3	0.3	0.0952	0.01238
Strato 3	2.40	138.0	3.53	0.5	0.5	0.09453	0.01229

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		saturo
				_	(kg/cm ²)		(t/m³)
Strato 1	0.80	12.25	1.05	0.1	0.1	Meyerhof	2.0
Strato 2	2.00	91.667	3.72	0.3	0.3	Meyerhof	2.3

Strato 3	2.40	138.0	3.53	0.5	0.5	Meyerhof	2.4
----------	------	-------	------	-----	-----	----------	-----

Velocità onde di taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Jamiolkows	219.05
						ki et al	
						1985	
Strato 2	2.00	91.667	3.72	0.3	0.3	Jamiolkows	326.95
						ki et al	
						1985	
Strato 3	2.40	138.0	3.53	0.5	0.5	Jamiolkows	354.68
						ki et al	
						1985	

TERRENI INCOERENTI

Densità relativa

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Densità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	relativa
				(kg/cm ²)	efficace		(%)
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Baldi 1978	42.9
						-	
						Schmertma	
						nn 1976	
Strato 2	2.00	91.667	3.72	0.3	0.3	Baldi 1978	81.3
						-	
						Schmertma	
						nn 1976	
Strato 3	2.40	138.0	3.53	0.5	0.5	Baldi 1978	86.0
						-	
						Schmertma	
						nn 1976	

Angolo di resistenza al taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Angolo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	d'attrito
				(kg/cm²)	efficace		(°)
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Meyerhof	22.5
						1951	
Strato 2	2.00	91.667	3.72	0.3	0.3	De Beer	35.39
Strato 3	2.40	138.0	3.53	0.5	0.5	De Beer	35.02

Modulo di Young

Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	1					

	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	Young
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Schmertma	30.6
						nn	
Strato 2	2.00	91.667	3.72	0.3	0.3	Schmertma	229.2
						nn	
Strato 3	2.40	138.0	3.53	0.5	0.5	Schmertma	345.0
						nn	

Modulo Edometrico

	Prof. Strato (m)	qc (kg/cm²)	fs (kg/cm²)	Tensione litostatica (kg/cm ²)	Tensione litostatica efficace	Correlazion e	Modulo Edometrico (kg/cm ²)
Strato 1	0.80	12.25	1.05	0.1	(kg/cm²) 0.1	Robertson	51.3
						Campanella	
						Schmertma	
Strato 2	2.00	91.667	3.72	0.3	0.3	Robertson	85.1
						Campanella	
						Schmertma	
Strato 3	2.40	138.0	3.53	0.5	0.5	Robertson &	88.6
						Campanella	
						Schmertma	
						nn	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	G
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm ²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Imai &	129.4
						Tomauchi	
Strato 2	2.00	91.667	3.72	0.3	0.3	Imai &	442.7
						Tomauchi	
Strato 3	2.40	138.0	3.53	0.5	0.5	Imai &	568.4
						Tomauchi	

Grado di sovraconsolidazione

orado ar so rracomson						
Prof. Strate	o qc	fs	Tensione	Tensione	Correlazion	Ocr

	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 2	2.00	91.667	3.72	0.3	0.3	Stress-Hist	0.0
						ory	
Strato 3	2.40	138.0	3.53	0.5	0.5	Stress-Hist	0.0
						ory	

Modulo di reazione Ko

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ko
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Kulhawy &	0.83
						Mayne	
						(1990)	
Strato 2	2.00	91.667	3.72	0.3	0.3	Kulhawy &	1.30
						Mayne	
						(1990)	
Strato 3	2.40	138.0	3.53	0.5	0.5	Kulhawy &	1.23
						Mayne	
						(1990)	

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	0.17557	0.02282
Strato 2	2.00	91.667	3.72	0.3	0.3	0.0952	0.01238
Strato 3	2.40	138.0	3.53	0.5	0.5	0.09453	0.01229

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Meyerhof	1.8
Strato 2	2.00	91.667	3.72	0.3	0.3	Meyerhof	1.8
Strato 3	2.40	138.0	3.53	0.5	0.5	Meyerhof	1.8

Peso unità di volume saturo

Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
	_	_	(kg/cm²)	efficace		saturo
				(kg/cm²)		(t/m³)

Strato 1	0.80	12.25	1.05	0.1	0.1	Meyerhof	2.1
Strato 2	2.00	91.667	3.72	0.3	0.3	Meyerhof	2.1
Strato 3	2.40	138.0	3.53	0.5	0.5	Meyerhof	2.1

Velocità onde di taglio.

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Jamiolkows	251.61
						ki et al	
						1985	
Strato 2	2.00	91.667	3.72	0.3	0.3	Jamiolkows	403.78
						ki et al	
						1985	
Strato 3	2.40	138.0	3.53	0.5	0.5	Jamiolkows	444.52
						ki et al	
						1985	

Permeabilità

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Κ
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(cm/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.80	12.25	1.05	0.1	0.1	Piacentini-	1.00E-11
						Righi 1988	
Strato 2	2.00	91.667	3.72	0.3	0.3	Piacentini-	2.10E-09
						Righi 1988	
Strato 3	2.40	138.0	3.53	0.5	0.5	Piacentini-	1.52E-05
						Righi 1988	

Coefficiente di consolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Coefficient
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	e di
				(kg/cm²)	efficace		consolidazi
					(kg/cm²)		one
							(cm²/s)
Strato 1	0.80	12.25	1.05	0.1	0.1	Piacentini-	3.675E-07
						Righi 1988	
Strato 2	2.00	91.667	3.72	0.3	0.3	Piacentini-	0.00057615
						Righi 1988	98
Strato 3	2.40	138.0	3.53	0.5	0.5	Piacentini-	6.300028
						Righi 1988	

STIMA PARAMETRI GEOTECNICI

PROVA 4

TERRENI COESIVI

Coesione non drenata

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Cu
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Lunne &	0.4
						Eide	
Strato 2	1.20	9.5	0.98	0.1	0.1	Lunne &	0.5
						Eide	
Strato 3	2.40	18.0	1.20	0.3	0.3	Lunne &	1.0
						Eide	
Strato 4	3.00	161.667	2.71	0.5	0.5	Lunne &	9.2
						Eide	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eed
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Mitchell &	56.0
						Gardner	
						(1975)	
Strato 2	1.20	9.5	0.98	0.1	0.1	Mitchell &	47.5
						Gardner	
						(1975)	
Strato 3	2.40	18.0	1.20	0.3	0.3	Mitchell &	90.0
						Gardner	
						(1975)	
Strato 4	3.00	161.667	2.71	0.5	0.5	Mitchell &	404.2
						Gardner	
						(1975)	

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Eu
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.6	0.0	0.0	Cancelli	261.1
						1980	
Strato 2	1.20	9.5	0.983	0.1	0.1	Cancelli	350.7
						1980	
Strato 3	2.40	18.0	1.2	0.3	0.3	Cancelli	662.2
						1980	
Strato 4	3.00	161.667	2.711	0.5	0.5	Cancelli	6042.7
						1980	

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	deformazio
				(kg/cm²)	efficace		ne a taglio
					(kg/cm²)		(kg/cm²)
Strato 1	0.40	7.0	0.60	0.0	0.0	Imai &	91.9
						Tomauchi	
Strato 2	1.20	9.5	0.98	0.1	0.1	Imai &	110.8
						Tomauchi	
Strato 3	2.40	18.0	1.20	0.3	0.3	Imai &	163.7
						Tomauchi	
Strato 4	3.00	161.667	2.71	0.5	0.5	Imai &	626.1
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Stress-Hist	4.47
						ory	
Strato 2	1.20	9.5	0.98	0.1	0.1	Stress-Hist	1.49
						ory	
Strato 3	2.40	18.0	1.20	0.3	0.3	Stress-Hist	1.23
						ory	
Strato 4	3.00	161.667	2.71	0.5	0.5	Stress-Hist	7.13
						ory	

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Meyerhof	1.8
Strato 2	1.20	9.5	0.98	0.1	0.1	Meyerhof	1.8
Strato 3	2.40	18.0	1.20	0.3	0.3	Meyerhof	2.0
Strato 4	3.00	161.667	2.71	0.5	0.5	Meyerhof	2.3

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	0.257	0.03341
Strato 2	1.20	9.5	0.98	0.1	0.1	0.207	0.02691
Strato 3	2.40	18.0	1.20	0.3	0.3	0.14089	0.01832
Strato 4	3.00	161.667	2.71	0.5	0.5	0.0975	0.01267
Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.40	7.0	0.60	0.0	0.0	Meyerhof	1.9
Strato 2	1.20	9.5	0.98	0.1	0.1	Meyerhof	1.9
Strato 3	2.40	18.0	1.20	0.3	0.3	Meyerhof	2.0
Strato 4	3.00	161.667	2.71	0.5	0.5	Meyerhof	2.4

Velocità onde di taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(m/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Jamiolkows	195.97
						ki et al	
						1985	
Strato 2	1.20	9.5	0.98	0.1	0.1	Jamiolkows	208.24
						ki et al	
						1985	
Strato 3	2.40	18.0	1.20	0.3	0.3	Jamiolkows	236.49
						ki et al	
						1985	
Strato 4	3.00	161.667	2.71	0.5	0.5	Jamiolkows	366.03
						ki et al	
						1985	

TERRENI INCOERENTI

Densità relativa

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Densità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	relativa
				(kg/cm²)	efficace		(%)
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Baldi 1978	37.4
						-	
						Schmertma	
						nn 1976	
Strato 2	1.20	9.5	0.98	0.1	0.1	Baldi 1978	26.1
						-	
						Schmertma	
						nn 1976	
Strato 3	2.40	18.0	1.20	0.3	0.3	Baldi 1978	32.5
						-	
						Schmertma	
						nn 1976	
Strato 4	3.00	161.667	2.71	0.5	0.5	Baldi 1978	88.6

			-	
			Schmertma	
			nn 1976	

Angolo di resistenza al taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Angolo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	d'attrito
				(kg/cm²)	efficace		(°)
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Meyerhof	20.14
						1951	
Strato 2	1.20	9.5	0.98	0.1	0.1	Meyerhof	21.27
						1951	
Strato 3	2.40	18.0	1.20	0.3	0.3	Meyerhof	25.08
						1951	
Strato 4	3.00	161.667	2.71	0.5	0.5	Meyerhof	45.0
						1951	

Modulo di Young

		Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo di
		(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Young
					(kg/cm²)	efficace		(kg/cm²)
						(kg/cm²)		
Stra	to 1	0.40	7.0	0.60	0.0	0.0	Schmertma	17.5
							nn	
Stra	to 2	1.20	9.5	0.98	0.1	0.1	Schmertma	23.8
							nn	
Stra	to 3	2.40	18.0	1.20	0.3	0.3	Schmertma	45.0
							nn	
Stra	to 4	3.00	161.667	2.71	0.5	0.5	Schmertma	404.2
							nn	

Modulo Edometrico

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Modulo
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	Edometrico
				(kg/cm²)	efficace		(kg/cm²)
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Robertson	50.0
						&	
						Campanella	
						da	
						Schmertma	
						nn	
Strato 2	1.20	9.5	0.98	0.1	0.1	Robertson	30.4
						&	
						Campanella	
						da	
						Schmertma	

	nn						
33.7	Robertson	0.3	0.3	1.20	18.0	2.40	Strato 3
	&						
	Campanella						
	da						
	Schmertma						
	nn						
90.0	Robertson	0.5	0.5	2.71	161.667	3.00	Strato 4
	&						
	Campanella						
	da						
	Schmertma						
	nn						

Modulo di deformazione a taglio

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	G
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(kg/cm²)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Imai &	91.9
						Tomauchi	
Strato 2	1.20	9.5	0.98	0.1	0.1	Imai &	110.8
						Tomauchi	
Strato 3	2.40	18.0	1.20	0.3	0.3	Imai &	163.7
						Tomauchi	
Strato 4	3.00	161.667	2.71	0.5	0.5	Imai &	626.1
						Tomauchi	

Grado di sovraconsolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ocr
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Stress-Hist	0.0
						ory	
Strato 2	1.20	9.5	0.98	0.1	0.1	Stress-Hist	0.0
						ory	
Strato 3	2.40	18.0	1.20	0.3	0.3	Stress-Hist	0.0
						ory	
Strato 4	3.00	161.667	2.71	0.5	0.5	Stress-Hist	0.0
						ory	

Modulo di reazione Ko

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Ko
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica	e	
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Kulhawy &	0.93

						Mayne	
						(1990)	
Strato 2	1.20	9.5	0.98	0.1	0.1	Kulhawy &	0.45
						Mayne	
						(1990)	
Strato 3	2.40	18.0	1.20	0.3	0.3	Kulhawy &	0.40
						Mayne	
						(1990)	
Strato 4	3.00	161.667	2.71	0.5	0.5	Kulhawy &	1.25
						Mayne	
						(1990)	

Fattori di compressibilità C Crm

	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(kg/cm ²)	(kg/cm²)	litostatica	litostatica		
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	0.257	0.03341
Strato 2	1.20	9.5	0.98	0.1	0.1	0.207	0.02691
Strato 3	2.40	18.0	1.20	0.3	0.3	0.14089	0.01832
Strato 4	3.00	161.667	2.71	0.5	0.5	0.0975	0.01267

Peso unità di volume

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm ²)	efficace		(t/m³)
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Meyerhof	1.8
Strato 2	1.20	9.5	0.98	0.1	0.1	Meyerhof	1.8
Strato 3	2.40	18.0	1.20	0.3	0.3	Meyerhof	1.8
Strato 4	3.00	161.667	2.71	0.5	0.5	Meyerhof	1.8

Peso unità di volume saturo

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Peso unità
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	di volume
				(kg/cm²)	efficace		saturo
					(kg/cm²)		(t/m³)
Strato 1	0.40	7.0	0.60	0.0	0.0	Meyerhof	2.1
Strato 2	1.20	9.5	0.98	0.1	0.1	Meyerhof	2.1
Strato 3	2.40	18.0	1.20	0.3	0.3	Meyerhof	2.1
Strato 4	3.00	161.667	2.71	0.5	0.5	Meyerhof	2.1

Velocità onde di taglio.

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Vs
	(m)	(kg/cm ²)	(kg/cm ²)	litostatica	litostatica	e	(m/s)
				(kg/cm ²)	efficace		
				_	(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Jamiolkows	220.61

						ki et al	
						1985	
Strato 2	1.20	9.5	0.98	0.1	0.1	Jamiolkows	237.02
						ki et al	
						1985	
Strato 3	2.40	18.0	1.20	0.3	0.3	Jamiolkows	275.43
						ki et al	
						1985	
Strato 4	3.00	161.667	2.71	0.5	0.5	Jamiolkows	461.37
						ki et al	
						1985	

Permeabilità

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	K
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	(cm/s)
				(kg/cm²)	efficace		
					(kg/cm²)		
Strato 1	0.40	7.0	0.60	0.0	0.0	Piacentini-	1.00E-11
						Righi 1988	
Strato 2	1.20	9.5	0.98	0.1	0.1	Piacentini-	1.00E-11
						Righi 1988	
Strato 3	2.40	18.0	1.20	0.3	0.3	Piacentini-	1.00E-11
						Righi 1988	
Strato 4	3.00	161.667	2.71	0.5	0.5	Piacentini-	1.19E-03
						Righi 1988	

Coefficiente di consolidazione

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazion	Coefficient
	(m)	(kg/cm²)	(kg/cm²)	litostatica	litostatica	e	e di
				(kg/cm²)	efficace		consolidazi
					(kg/cm²)		one
							(cm²/s)
Strato 1	0.40	7.0	0.60	0.0	0.0	Piacentini-	2.1E-07
						Righi 1988	
Strato 2	1.20	9.5	0.98	0.1	0.1	Piacentini-	2.85E-07
						Righi 1988	
Strato 3	2.40	18.0	1.20	0.3	0.3	Piacentini-	5.4E-07
						Righi 1988	
Strato 4	3.00	161.667	2.71	0.5	0.5	Piacentini-	0
						Righi 1988	

PROVA PENETROMETRICA DINAMICA SPT

Committente: FRED. OLSEN RENEWABLES ITALY S.R.L Descrizione: REALIZZAZIONE CENTRALE PER PARCO EOLICO Localita': CAMERINO MC - ARCOFIATO

Caratteristiche Tecniche-Strumentali Sonda: PROVE SPT IN FORO

Rif. Norme	DIN 4094	
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.76 m	
Peso sistema di battuta	4.2 Kg	
Diametro punta conica	50.46 mm	
Area di base punta	20 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	7 Kg/m	
Profondita' giunzione prima as	sta 0.80 m	
Avanzamento punta	0.30 m	
Numero colpi per punta	N(30)	
Coeff. Correlazione	1	
Rivestimento/fanghi	No	
-		

PROVA ...SPT1-S2

Strumento utilizzato...PROVE SPT IN FORO Prova eseguita in data 24/02/2023 Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi
2.70	12
2.85	4
3.00	10

STIMA PARAMETRI GEOTECNICI PROVA SPT1-S2

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-3.00	Terzaghi-Peck	0.95
DEPOSITI				
ELUVIO				
COLLUVILALI				
ML				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-3.00	Robertson (1983)	28.00
DEPOSITI				
ELUVIO				
COLLUVILALI				
ML				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-3.00	Trofimenkov	144.58
DEPOSITI			(1974), Mitchell e	
ELUVIO			Gardner	
COLLUVILALI				
ML				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey (Ka/am2)
		(III)		(Kg/cm ²)
Strato (1)	14.00	0.00-3.00	Apollonia	140.00
DEPOSITI				
ELUVIO				
COLLUVILALI				
ML				

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	14.00	0.00-3.00	A.G.I. (1977)	CONSISTENTE
DEPOSITI				
ELUVIO				
COLLUVILALI				
ML				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m ³)
Strato (1) DEPOSITI ELUVIO COLLUVILALI ML	14.00	0.00-3.00	Meyerhof	2.05

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m ³)
Strato (1) DEPOSITI ELUVIO COLLUVILALI ML	14.00	0.00-3.00	Meyerhof	2.25

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio (m/s)
Strato (1)	14.00	0.00-3.00	Ohta & Goto	116.78
DEPOSITI			(1978) Argille	
ELUVIO			limose e argille di	
COLLUVILALI			bassa plasticità	
ML				

TERRENI INCOERENTI Densita' relativa

Densita relativa					
Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
		(m)			(%)
Strato (1)	14.00	0.00-3.00	14.00	Meyerhof 1957	68.39
DEPOSITI					
ELUVIO					
COLLUVILAL					
I ML					

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	14.00	0.00-3.00	N1,60=17.85	Wolff	32.29
DEPOSITI				(1989) N160	
ELUVIO					
COLLUVILAL					
I ML					

Modulo di Young

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo di
		(m)			Young
					(Kg/cm²)
Strato (1)	14.00	0.00-3.00	14.00	Bowles (1982)	145.00
DEPOSITI				Sabbia Media	
ELUVIO					
COLLUVILAL					
I ML					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Modulo
		(m)			Edometrico
					(Kg/cm²)
Strato (1)	14.00	0.00-3.00	14.00	Begemann 1974	56.22
DEPOSITI				(Ghiaia con	
ELUVIO				sabbia)	
COLLUVILAL					
I ML					

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	14.00	0.00-3.00	14.00	Classificazione	MODERATAM
DEPOSITI				A.G.I	ENTE
ELUVIO					ADDENSATO
COLLUVILAL					

I ML			

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m ³)
Strato (1) DEPOSITI ELUVIO	14.00	0.00-3.00	14.00	Terzaghi-Peck 1948	1.53
COLLUVILAL I ML					

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' Volume Saturo (t/m ³)
Strato (1) DEPOSITI ELUVIO	14.00	0.00-3.00	14.00	Terzaghi-Peck 1948	1.95
COLLUVILAL I ML					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	14.00	0.00-3.00	14.00	(A.G.I.)	0.33
DEPOSITI					
ELUVIO					
COLLUVILAL					
I ML					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm ²)
Strato (1)	14.00	0.00-3.00	14.00	Ohsaki (Sabbie	776.74
DEPOSITI				pulite)	
ELUVIO					
COLLUVILAL					
I ML					

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Velocita' onde di taglio (m/s)
Strato (1) DEPOSITI ELUVIO	14.00	0.00-3.00	14.00	Ohta & Goto (1978) Limi	116.78

COLLUVILAL			
I ML			

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	14.00	0.00-3.00	14.00	Navfac	2.93
DEPOSITI				1971-1982	
ELUVIO					
COLLUVILAL					
I ML					

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm²)
Strato (1)	14.00	0.00-3.00	14.00	Robertson 1983	28.00
DEPOSITI					
ELUVIO					
COLLUVILAL					
I ML					

PROVA ...SPT1-S4

Strumento utilizzato...PROVE SPT IN FORO Prova eseguita in data 24/02/2023 Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi
1.70	2
1.85	6
2.00	8

STIMA PARAMETRI GEOTECNICI PROVA SPT1-S4

TERRENI COESIVI

Coesione non drenata

Descrizione	NSPT	Prof. Strato	Correlazione	Cu
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-2.00	Terzaghi-Peck	0.95
DEPOSITI				
ELUVIO				
COLLUVIALI ML				

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-2.00	Robertson (1983)	28.00
DEPOSITI				
ELUVIO				
COLLUVIALI ML				

Modulo Edometrico

Descrizione	NSPT	Prof. Strato	Correlazione	Eed
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-2.00	Trofimenkov	144.58
DEPOSITI			(1974), Mitchell e	
ELUVIO			Gardner	
COLLUVIALI ML				

Modulo di Young

Descrizione	NSPT	Prof. Strato	Correlazione	Ey
		(m)		(Kg/cm ²)
Strato (1)	14.00	0.00-2.00	Apollonia	140.00
DEPOSITI			_	

ELUVIO		
COLLUVIALI ML		

Classificazione AGI

Descrizione	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
Strato (1)	14.00	0.00-2.00	A.G.I. (1977)	CONSISTENTE
DEPOSITI				
ELUVIO				
COLLUVIALI ML				

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m ³)
Strato (1)	14.00	0.00-2.00	Meyerhof	2.05
DEPOSITI				
ELUVIO				
COLLUVIALI ML				

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m³)
Strato (1)	14.00	0.00-2.00	Meyerhof	2.25
DEPOSITI				
ELUVIO				
COLLUVIALI ML				

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
Strato (1)	14.00	0.00-2.00	Ohta & Goto	107.99
DEPOSITI			(1978) Argille	
ELUVIO			limose e argille di	
COLLUVIALI ML			bassa plasticità	

TERRENI INCOERENTI Densita' relativa

NSPT	Prof. Strato	N. Calcolo	Correlazione	Densita' relativa
	(m)			(%)
14.00	0.00-2.00	14.00	Meyerhof 1957	74.58
	NSPT 14.00	NSPT Prof. Strato (m) 14.00 0.00-2.00	NSPT Prof. Strato (m) 14.00 0.00-2.00 14.00	NSPTProf. Strato (m)N. CalcoloCorrelazione14.000.00-2.0014.00Meyerhof 1957

ML			

Angolo di resistenza al taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Angolo d'attrito
		(m)			(°)
Strato (1)	14.00	0.00-2.00	N1,60=21.86	Wolff	33.4
DEPOSITI				(1989) N160	
ELUVIO					
COLLUVIALI					
ML					

Modulo di Young

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo di Young (Kg/cm ²)
Strato (1) DEPOSITI	14.00	0.00-2.00	14.00	Bowles (1982) Sabbia Media	145.00
COLLUVIALI					

Modulo Edometrico

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Modulo Edometrico (Kg/cm ²)
Strato (1) DEPOSITI ELUVIO COLLUVIALI ML	14.00	0.00-2.00	14.00	Begemann 1974 (Ghiaia con sabbia)	56.22

Classificazione AGI

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Classificazione
		(m)			AGI
Strato (1)	14.00	0.00-2.00	14.00	Classificazione	MODERATAM
DEPOSITI				A.G.I	ENTE
ELUVIO					ADDENSATO
COLLUVIALI					
ML					

Peso unita' di volume

Descrizione	NSPT	Prof. Strato (m)	N. Calcolo	Correlazione	Peso Unita' di Volume (t/m ³)
Strato (1) DEPOSITI ELUVIO	14.00	0.00-2.00	14.00	Terzaghi-Peck 1948	1.53

COLLUVIALI			
ML			

Peso unita' di volume saturo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Peso Unita'
		(m)			Volume Saturo
					(t/m³)
Strato (1)	14.00	0.00-2.00	14.00	Terzaghi-Peck	1.95
DEPOSITI				1948	
ELUVIO					
COLLUVIALI					
ML					

Modulo di Poisson

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Poisson
		(m)			
Strato (1)	14.00	0.00-2.00	14.00	(A.G.I.)	0.33
DEPOSITI					
ELUVIO					
COLLUVIALI					
ML					

Modulo di deformazione a taglio dinamico

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	G
		(m)			(Kg/cm²)
Strato (1)	14.00	0.00-2.00	14.00	Ohsaki (Sabbie	776.74
DEPOSITI				pulite)	
ELUVIO					
COLLUVIALI					
ML					

Velocita' onde di taglio

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Velocita' onde
		(m)			di taglio
					(m/s)
Strato (1)	14.00	0.00-2.00	14.00	Ohta & Goto	107.99
DEPOSITI				(1978) Limi	
ELUVIO					
COLLUVIALI					
ML					

Coefficiente spinta a Riposo

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	K0
		(m)			
Strato (1)	14.00	0.00-2.00	14.00	Navfac	2.93
DEPOSITI				1971-1982	
ELUVIO					

COLLUVIALI			
ML			

Qc (Resistenza punta Penetrometro Statico)

Descrizione	NSPT	Prof. Strato	N. Calcolo	Correlazione	Qc
		(m)			(Kg/cm ²)
Strato (1)	14.00	0.00-2.00	14.00	Robertson 1983	28.00
DEPOSITI					
ELUVIO					
COLLUVIALI					
ML					

	Spessore	Peso di volume γ g/cm ³	Coesione non drenata Cu Kg/cm ²	Coesione drenata c' Kg/cm ²	Angolo d'attrito Φ°	Modulo Edometrico Ed Kg/cm ²	Coeff. Spinta Riposo K₀	Modulo Young Ey Kg/cm ²	Coeff di Poisson µ
DEPOSITI ELUVIO COLLUVIALI Tipo ML	, Z ,	1.8	0.95		32-33	56		140-145	0.4
Substrato alterato SFALS									
Substrato ALS	الكالك								

MASW1

EOLICO1-5, EOLICO1-5

Inizio registrazione: 20/02/2023 17:28:06 Durata registrazione: 0h00'01". Freq. campionamento: 512 Hz

Fine registrazione: 20/02/2023 17:29:04

Nomi canali: TR01 TR01; TR02 TR02; TR03 TR03; TR04 TR04; TR05 TR05; TR06 TR06; TR07 TR07; TR08 TR08; TR09 TR09; TR10 TR10; TR11 TR11; TR12 TR12; TR13 TR13; TR14 TR14; TR15 TR15; TR16 TR16

Array geometry (x): 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 m.

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.30	2.30	118	0.42
7.30	5.00	156	0.42
16.40	9.10	220	0.40
23.40	7.00	293	0.40
27.40	4.00	498	0.38
inf.	inf.	500	0.38

Vs_eq(0.0-30.0) = 231 m/s

Vs [m/s]

MASW 2

EOLICO2 16-5, EOLICO2 16-5

 Start recording:
 21/02/2023
 11:44:28
 End recording:
 21/02/2023
 11:44:44

 Trace length:
 0h00'01".
 0h00'01".
 Sampling rate:
 512 Hz

Channel labels: TR01 TR01; TR02 TR02; TR03 TR03; TR04 TR04; TR05 TR05; TR06 TR06; TR07 TR07; TR08 TR08; TR09 TR09; TR10 TR10; TR11 TR11; TR12 TR12; TR13 TR13; TR14 TR14; TR15 TR15; TR16 TR16

Array geometry (x): 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 m.

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

Depth at the bottom of the layer [m]	Thickness [m]	Vs [m/s]	Poisson ratio
2.90	2.90	138	0.45
4.70	1.80	217	0.40
13.50	8.80	358	0.38
18.70	5.20	538	0.35
29.90	11.20	540	0.35
inf.	inf.	580	0.35

Vs_eq(0.0-30.0) = 355 m/s

Vs [m/s]

RIFRAZIONE 1

Dott. Geol. Fabio Lunerti C.FISC: LNRFBA85A11H769G P.IVA: 02379620442 Via: Vicolo San Giuseppe n.14 62022 Gagliole - MC Tel: - 3336955128 Fax: Email: fabiolunerti@gmail.com Web:

REALIZZAZIONE CENTRALE DI DERIVAZIONE

and and and	Data: febbraio 2023
The second secon	II committente FRED. OLSEN RENEWABLES
	IL Tecnico
	II Progettista
Indagine geofisic	a tramite sismica a rifrazione

Easy Refract

Le indagini di sismica a rifrazione consentono di interpretare la stratigrafia del sottosuolo attraverso il principio fisico del fenomeno della rifrazione totale di un'onda sismica che incide su una discontinuità, individuata fra due corpi aventi proprietà meccaniche diverse (orizzonte rifrattorio). La condizione fondamentale per eseguire studi di sismica a rifrazione è quella per cui la successione di strati da investigare sia caratterizzata da velocità sismiche crescenti all'aumentare della profondità. In questo modo si possono valutare fino a 4 o 5 orizzonti rifrattori differenti.

Le prove si basano sulla misura dei tempi di percorso delle onde elastiche per le quali, ipotizzando le superfici di discontinuità estese rispetto alla lunghezza d'onda o, comunque, con deboli curvature, i fronti d'onda sono rappresentati mediante i relativi raggi sismici. L'analisi si avvale, poi, del principio di Fermat e della legge di Snell.

Il principio di Fermat stabilisce che il raggio sismico percorre la distanza tra sorgente e rilevatore seguendo il percorso per cui il tempo di tragitto è minimo. Per tale principio, dato un piano che separa due mezzi con caratteristiche elastiche diverse, il raggio sismico è quello che si estende lungo un piano perpendicolare alla discontinuità contente sia la sorgente che il ricevitore.

La legge di Snell è una formula che descrive le modalità di rifrazione di un raggio sismico nella transizione tra due mezzi caratterizzati da diversa velocità di propagazione delle onde o, equivalentemente, da diversi indici di rifrazione. L'angolo formato tra la superficie di discontinuità e il raggio sismico è chiamato angolo di incidenza θ i mentre quello formato tra il raggio rifratto e la superficie normale è detto angolo di rifrazione θ r. La formulazione matematica è:

$$v_2 \sin \theta_i = v_1 \sin \theta_i$$

Dove v1 e v2 sono le velocità dei due mezzi separati dalla superficie di discontinuità.

Per $v_1 > v_2$ si ha che $\theta_i > \theta_r$ e la sismica a rifrazione non è attuabile poiché il raggio rifratto andrebbe ad inclinarsi verso il basso. Per $v_1 < v_2$ si ha che $\theta_i < \theta_r$ ed esiste un angolo limite di incidenza per cui $\theta_r = 90^\circ$ ed il raggio rifratto viaggia parallelamente alla superficie di discontinuità. L'espressione che definisce l'angolo limite è:

$$\theta_i = \arcsin(v_1/v_2)$$

Il modo più semplice per analizzare i dati di rifrazione è quello di costruire un diagramma tempi-distanze in cui l'origine del sistema di riferimento è posto in corrispondenza della sorgente di generazione delle onde elastiche. In ascissa sono rappresentate le posizioni dei geofoni ed in ordinata i tempi dei primi arrivi. Ai geofoni più vicini alla sorgente giungono per primi gli impulsi che hanno seguito il percorso diretto in un tempo T dato dalla relazione

$$T = x_{i} / V_{1}$$

dove x_i è la distanza tra il punto di energizzazione e il punto di rilevazione.

L'equazione precedente rappresenta una retta che passa per l'origine degli assi tempi-distanze e il suo coefficiente angolare consente di calcolare la velocità V1 del primo mezzo come

$$V_1 = 1/\tan \alpha$$

I tempi di arrivo dei raggi rifratti, nel diagramma tempi-distanze, si dispongono secondo una retta che avrà pendenza minore di quella delle onde dirette.

Dott. Geol. Fabio Lunerti - Vicolo San Giuseppe n.14, 62022, Gagliole, (MC) - Tel.3336955128, e-mail:fabiolunerti@gmail.com, - P.Iva.02379620442

La curva tempi-distanze tende ad avere un andamento regolare secondo una spezzata i cui vertici sono i chiamati *punti di ginocchio* e rappresentano, fisicamente, la condizione in cui si verifica l'arrivo contemporaneo delle onde dirette e rifratte. Per ciascuno di segmenti individuati si determina, dunque, il tempo di ritardo t_i che rappresenta la differenza tra il tempo che il raggio sismico impiega a percorrere un tratto alla velocità propria dello strato in cui si trasmette ed il tempo che impiegherebbe a viaggiare lungo la componente orizzontale di quel tratto alla massima velocità raggiunta in tutto il percorso di rifrazione.

Graficamente il tempo di ritardo è dato dall'intersezione della retta che comprende un segmento della curva tempidistanze con l'asse dei tempi.

Infine, dalla conoscenza dei tempi t_i è possibile ricavare gli spessori dei rifrattori mediante la relazione:

$$h_{(i-1)} = \frac{V_{(i-1)}V_i}{2\sqrt{V_i^2 - V_{(i-1)}^2}} \left(t_i - \frac{2h_1\sqrt{V_i^2 - V_1^2}}{V_1V_i} - \dots - \frac{2h_{(i-2)}\sqrt{V_i^2 - V_{(i-2)}^2}}{V_1V_{(i-2)}} \right)$$

In situazioni morfologiche complesse può essere utilizzato come metodo di elaborazione il Metodo Reciproco Generalizzato (Generalized Reciprocal Method) discusso da Palmer nel 1980.

Il metodo è basato sulla ricerca di una distanza intergeofonica virtuale XY tale che i raggi sismici che partono da punti di energizzazione simmetrici rispetto allo stendimento, arrivino al geofono posto in posizione X e a quello posto in posizione Y provenendo da un medesimo punto del rifrattore.

Il primo passo operativo è quello di costruire un diagramma tempi-distanze individuando nei sismogrammi ottenuti dai dati di campagna i primi arrivi delle onde sismiche. Per determinare la distanza XY ottimale è necessario considerare più punti di energizzazione tanto agli estremi quanto all'interno dello stendimento. Ciò permette di individuare con maggiore accuratezza i tempi relativi ad un medesimo rifrattore utili a caratterizzare le dromocrone, fondamentali all'interpretazione. Nelle interpretazioni multi strato, la generazione delle dromocrone può sfruttare tecniche di phantoming per sopperire alla mancanza dei dati per alcuni rifrattori.

Dalla costruzione delle dromocrone è possibile determinare la funzione velocità secondo l'equazione

$$T_{v} = \frac{T_{S_{1}Y} - T_{S_{2}X} + T_{S_{1}S_{s}}}{2}$$

dove T_{S1Y} e T_{S2X} sono i tempi di percorrenza dei raggi sismici per giungere, rispettivamente, dalla sorgente S1 ad X e dalla sorgente S2 ad Y mentre T_{S1S2} è il tempo di tragitto tra i due punti di scoppio S1 ed S2, esternamente simmetrici rispetto allo stendimento. T_v è il tempo calcolato su un geofono G posto tra X ed Y, non necessariamente coincidente con la posizione di un geofono dello stendimento.

Il calcolo della funzione T_v viene eseguito per ogni valore di XY compreso tra zero e metà dello stendimento con variazione pari alla distanza reale tra i geofoni dello stendimento. La migliore retta di regressione delle funzioni velocità ottenute, permette di determinare l'XY ottimo e la velocità del rifrattore che è ricavata dal coefficiente angolare.

Per mezzo della **funzione tempo-profondità** è possibile trovare la profondità del rifrattore espressa in unità di tempo. L'espressione di tale funzione è:

$$T_{G} = \frac{T_{S_{1}Y} + T_{S_{2}X} - \left(T_{S_{1}S_{2}} + \frac{XY}{V_{n}}\right)}{2}$$

Dove V_n è la velocità del rifrattore.

Analogamente a quanto avviene per la funzione velocità si determinano diverse funzioni tempo-profondità per l'insieme dei valori XY di studio. Tra le funzioni trovate, quella che presenta la maggiore articolazione compete al valore di XY ottimo.

Infine, è possibile determinare lo spessore del rifrattore in corrispondenza delle posizioni dei geofoni G mediante la relazione:

$$h = T_G \sqrt{\frac{V_n XY}{2T_G}}$$

h rappresenta la profondità minima dal geofono G dunque la morfologia del rifrattore è definita dall'inviluppo delle semicirconferenze di raggio h.

Uno dei principali vantaggi del G.R.M. è che il fattore di conversione della profondità è relativamente insensibile alle inclinazioni fino a circa 20°

Dati generali

Descrizione	REALIZZAZIONE CENTRALE DI DERIVAZIONE
Committente	FRED. OLSEN RENEWABLES
Zona	ARCOFIATO DI CAMERINO
Operatore	FABIO LUNERTI
Data	22/02/2023
Via	Loc. Arcofiato di Camerino
Latitudine	43.129899°[°]
Longitudine	13.085434°[°]

Geometria geofoni

	Posizione X	Posizione Z
	[m]	[m]
1	0.0	0.0
2	5.0	0.0
3	10.0	0.0
4	15.0	0.0
5	20.0	0.0
6	25.0	0.0
7	30.0	0.0
8	35.0	0.0
9	40.0	0.0
10	45.0	0.0
11	50.0	0.0
12	55.0	0.0
13	60.0	0.0
14	65.0	0.0
15	70.0	0.0
16	75.0	0.0

Dati battute

Battuta 1

Posizione sorgente X	0	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	0.4975
5.0	15.4218

10.0	21.3915
15.0	25.3713
20.0	27.3612
25.0	31.8385
30.0	37.3107
35.0	40.7930
40.0	42.7829
45.0	46.7627
50.0	48.7526
55.0	52.7324
60.0	56.2148
65.0	58.2047
70.0	60.6921
75.0	63.1794

Posizione sorgente X	5	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	13.4318
5.0	0.5000
10.0	13.4318
15.0	19.8990
20.0	22.8839
25.0	27.8586
30.0	31.3410

35.0	36.3157
40.0	38.3056
45.0	42.7829
50.0	46.7627
55.0	49.2501
60.0	52.2350
65.0	54.7223
70.0	57.2097
75.0	58.7021

Posizione sorgente X	15	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	23.3814
5.0	19.8990
10.0	12.9344
15.0	0.5000
20.0	13.4318
25.0	19.8990
30.0	25.3713
35.0	29.8486
40.0	33.3309
45.0	37.8082
50.0	39.3006
55.0	41.2905

60.0	46.7627
65.0	49.2501
70.0	51.2400
75.0	54.2249

Posizione sorgente X	25	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	31.3410
5.0	29.3511
10.0	24.8738
15.0	20.8940
20.0	15.4218
25.0	0.5000
30.0	15.4218
35.0	20.3965
40.0	26.3662
45.0	33.8284
50.0	38.8031
55.0	43.2804
60.0	46.2653
65.0	48.7526
70.0	51.2400
75.0	52.7324

Posizione sorgente X	35 [m]
Posizione sorgente Z	0 [m]

Posizione geofono	Tempo
[m]	[ms]
0.0	39.3006
5.0	37.8082
10.0	33.8284
15.0	31.3410
20.0	27.3612
25.0	20.8940
30.0	13.9293
35.0	0.5000
40.0	13.4318
45.0	20.3965
50.0	26.8637
55.0	32.8334
60.0	38.3056
65.0	41.2905
70.0	44.2753
75.0	46.2653

Battuta 6

Posizione sorgente X	45	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	44.7728
5.0	41.7880
10.0	40.2955
15.0	38.8031
20.0	36.8132
25.0	33.3309
30.0	26.3662
35.0	19.8990
40.0	15.4218
45.0	0.5000
50.0	15.4218
55.0	21.8889
60.0	27.3612
65.0	34.3258
70.0	39.7981
75.0	42.2854

Posizione sorgente X	55	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	53.2299
5.0	51.2400
10.0	48.2552
15.0	45.2703
20.0	44.2753
25.0	44.2753
30.0	39.3006
35.0	33.3309
40.0	28.8536
45.0	22.8839
50.0	15.9192
55.0	0.5000
60.0	15.9192
65.0	22.8839
70.0	29.3511
75.0	36.3157

Posizione sorgente X	65 [m]
Posizione sorgente Z	0 [m]

Posizione geofono	Tempo
[m]	[ms]
0.0	58.7021
5.0	55.7173
10.0	53.2299
15.0	51.2400
20.0	49.7476
25.0	48.7526
30.0	44.7728
35.0	42.2854
40.0	38.8031
45.0	35.8183
50.0	27.3612
55.0	22.3864
60.0	14.9243
65.0	0.5000
70.0	15.4218
75.0	21.8889

Posizione sorgente X	75 [m]
Posizione sorgente Z	0 [m]

Posizione geofono	Tempo
[m]	[ms]
0.0	60.6921
5.0	58.2047
10.0	54.7223
15.0	53.7274
20.0	52.2350
25.0	52.2350
30.0	48.2552
35.0	45.2703
40.0	43.2804
45.0	41.2905
50.0	39.7981
55.0	35.3208
60.0	26.8637
65.0	20.3965
70.0	13.4318
75.0	0.5000

Dromocrone

Dromocrone traslate

Interpretazione col metodo G,.R.M.

XY: 0

	Strato n. 1	Strato n. 2	Strato n. 3	Strato n. 4
G= 0.0 [m]	0.0	11.1	19.6	
REALIZZAZIONE CENTRALE DI DERIVAZIONE

G= 5.0 [m]	0.0	11.4	18.3	
G= 10.0 [m]	0.8	10.3	15.4	
G=15.0 [m]	1.7	8.2	15.3	
G= 20.0 [m]	1.2	9.9	16.1	
G= 25.0 [m]	2.0	8.8	16.4	
G= 30.0 [m]	1.8	8.8	19.1	
G= 35.0 [m]	1.5	9.3	20.6	
G= 40.0 [m]	1.8	8.3	21.6	
G= 45.0 [m]	2.7	7.7	19.4	
G= 50.0 [m]	2.5	8.9	18.7	
G= 55.0 [m]	2.9	8.3	18.5	
G= 60.0 [m]	2.8	9.5	18.0	
G= 65.0 [m]	3.6	7.3	18.6	
G= 70.0 [m]	3.7	7.1	19.5	
G=75.0 [m]	4.1	6.2	20.3	
Velocità [m/sec]	347.7	931.1	1963.4	2539.8
Descrizione	Coperture	Coperture	Substrato	Substrato
	detritiche limose	detritiche sabbiose	geologico	geologico
			(pelitico-arenacea)	(arenaceo-pelitica)

Altri parametri geotecnici

	Strato n. 1	Strato n. 2	Strato n. 3	Strato n. 4
Coefficiente	0.35	0.40	0.45	0.47
Poisson				
Densità [kg/m ³]	1700.00	1800.00	2000.00	2100.00
Vp [m/s]	347.68	931.14	1963.40	2539.85
Vs [m/s]	167.02	380.13	591.99	604.27
G0 [MPa]	47.42	260.10	700.90	766.80
Ed [Mpa]	205.49	1560.62	7709.90	13546.73
M0 [MPa]	158.07	1300.52	7009.00	12779.93
Ey [Mpa]	128.04	728.29	2032.61	2254.38

G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;

M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

RIFRAZIONE 2

Dott. Geol. Fabio Lunerti C.FISC: LNRFBA85A11H769G P.IVA: 02379620442 Via: Vicolo San Giuseppe n.14 62022 Gagliole - MC Tel: - 3336955128 Fax: Email: fabiolunerti@gmail.com Web:

REALIZZAZIONE CENTRALE DI DERIVAZIONE

	Data: febbraio 2023
State of the state	II committente FRED OLSEN RENEWABLES
	IL Tecnico
	II Progettista
Indagine geofisic	a tramite sismica a rifrazione

Easy Refract

Le indagini di sismica a rifrazione consentono di interpretare la stratigrafia del sottosuolo attraverso il principio fisico del fenomeno della rifrazione totale di un'onda sismica che incide su una discontinuità, individuata fra due corpi aventi proprietà meccaniche diverse (orizzonte rifrattorio). La condizione fondamentale per eseguire studi di sismica a rifrazione è quella per cui la successione di strati da investigare sia caratterizzata da velocità sismiche crescenti all'aumentare della profondità. In questo modo si possono valutare fino a 4 o 5 orizzonti rifrattori differenti.

Le prove si basano sulla misura dei tempi di percorso delle onde elastiche per le quali, ipotizzando le superfici di discontinuità estese rispetto alla lunghezza d'onda o, comunque, con deboli curvature, i fronti d'onda sono rappresentati mediante i relativi raggi sismici. L'analisi si avvale, poi, del principio di Fermat e della legge di Snell.

Il principio di Fermat stabilisce che il raggio sismico percorre la distanza tra sorgente e rilevatore seguendo il percorso per cui il tempo di tragitto è minimo. Per tale principio, dato un piano che separa due mezzi con caratteristiche elastiche diverse, il raggio sismico è quello che si estende lungo un piano perpendicolare alla discontinuità contente sia la sorgente che il ricevitore.

La legge di Snell è una formula che descrive le modalità di rifrazione di un raggio sismico nella transizione tra due mezzi caratterizzati da diversa velocità di propagazione delle onde o, equivalentemente, da diversi indici di rifrazione. L'angolo formato tra la superficie di discontinuità e il raggio sismico è chiamato angolo di incidenza θ i mentre quello formato tra il raggio rifratto e la superficie normale è detto angolo di rifrazione θ r. La formulazione matematica è:

$$v_2 \sin \theta_i = v_1 \sin \theta_i$$

Dove v1 e v2 sono le velocità dei due mezzi separati dalla superficie di discontinuità.

Per $v_1 > v_2$ si ha che $\theta_i > \theta_r$ e la sismica a rifrazione non è attuabile poiché il raggio rifratto andrebbe ad inclinarsi verso il basso. Per $v_1 < v_2$ si ha che $\theta_i < \theta_r$ ed esiste un angolo limite di incidenza per cui $\theta_r = 90^\circ$ ed il raggio rifratto viaggia parallelamente alla superficie di discontinuità. L'espressione che definisce l'angolo limite è:

$$\theta_i = \arcsin(v_1/v_2)$$

Il modo più semplice per analizzare i dati di rifrazione è quello di costruire un diagramma tempi-distanze in cui l'origine del sistema di riferimento è posto in corrispondenza della sorgente di generazione delle onde elastiche. In ascissa sono rappresentate le posizioni dei geofoni ed in ordinata i tempi dei primi arrivi. Ai geofoni più vicini alla sorgente giungono per primi gli impulsi che hanno seguito il percorso diretto in un tempo T dato dalla relazione

$$T = x_{i} / V_{1}$$

dove x_i è la distanza tra il punto di energizzazione e il punto di rilevazione.

L'equazione precedente rappresenta una retta che passa per l'origine degli assi tempi-distanze e il suo coefficiente angolare consente di calcolare la velocità V1 del primo mezzo come

$$V_1 = 1/\tan \alpha$$

I tempi di arrivo dei raggi rifratti, nel diagramma tempi-distanze, si dispongono secondo una retta che avrà pendenza minore di quella delle onde dirette.

Dott. Geol. Fabio Lunerti - Vicolo San Giuseppe n.14, 62022, Gagliole, (MC) - Tel.3336955128, e-mail:fabiolunerti@gmail.com, - P.Iva.02379620442

La curva tempi-distanze tende ad avere un andamento regolare secondo una spezzata i cui vertici sono i chiamati *punti di ginocchio* e rappresentano, fisicamente, la condizione in cui si verifica l'arrivo contemporaneo delle onde dirette e rifratte. Per ciascuno di segmenti individuati si determina, dunque, il tempo di ritardo t_i che rappresenta la differenza tra il tempo che il raggio sismico impiega a percorrere un tratto alla velocità propria dello strato in cui si trasmette ed il tempo che impiegherebbe a viaggiare lungo la componente orizzontale di quel tratto alla massima velocità raggiunta in tutto il percorso di rifrazione.

Graficamente il tempo di ritardo è dato dall'intersezione della retta che comprende un segmento della curva tempidistanze con l'asse dei tempi.

Infine, dalla conoscenza dei tempi t_i è possibile ricavare gli spessori dei rifrattori mediante la relazione:

$$h_{(i-1)} = \frac{V_{(i-1)}V_i}{2\sqrt{V_i^2 - V_{(i-1)}^2}} \left(t_i - \frac{2h_1\sqrt{V_i^2 - V_1^2}}{V_1V_i} - \dots - \frac{2h_{(i-2)}\sqrt{V_i^2 - V_{(i-2)}^2}}{V_1V_{(i-2)}} \right)$$

In situazioni morfologiche complesse può essere utilizzato come metodo di elaborazione il Metodo Reciproco Generalizzato (Generalized Reciprocal Method) discusso da Palmer nel 1980.

Il metodo è basato sulla ricerca di una distanza intergeofonica virtuale XY tale che i raggi sismici che partono da punti di energizzazione simmetrici rispetto allo stendimento, arrivino al geofono posto in posizione X e a quello posto in posizione Y provenendo da un medesimo punto del rifrattore.

Il primo passo operativo è quello di costruire un diagramma tempi-distanze individuando nei sismogrammi ottenuti dai dati di campagna i primi arrivi delle onde sismiche. Per determinare la distanza XY ottimale è necessario considerare più punti di energizzazione tanto agli estremi quanto all'interno dello stendimento. Ciò permette di individuare con maggiore accuratezza i tempi relativi ad un medesimo rifrattore utili a caratterizzare le dromocrone, fondamentali all'interpretazione. Nelle interpretazioni multi strato, la generazione delle dromocrone può sfruttare tecniche di phantoming per sopperire alla mancanza dei dati per alcuni rifrattori.

Dalla costruzione delle dromocrone è possibile determinare la funzione velocità secondo l'equazione

$$T_{v} = \frac{T_{S_{1}Y} - T_{S_{2}X} + T_{S_{1}S_{s}}}{2}$$

dove T_{S1Y} e T_{S2X} sono i tempi di percorrenza dei raggi sismici per giungere, rispettivamente, dalla sorgente S1 ad X e dalla sorgente S2 ad Y mentre T_{S1S2} è il tempo di tragitto tra i due punti di scoppio S1 ed S2, esternamente simmetrici rispetto allo stendimento. T_v è il tempo calcolato su un geofono G posto tra X ed Y, non necessariamente coincidente con la posizione di un geofono dello stendimento.

Il calcolo della funzione T_v viene eseguito per ogni valore di XY compreso tra zero e metà dello stendimento con variazione pari alla distanza reale tra i geofoni dello stendimento. La migliore retta di regressione delle funzioni velocità ottenute, permette di determinare l'XY ottimo e la velocità del rifrattore che è ricavata dal coefficiente angolare.

Per mezzo della **funzione tempo-profondità** è possibile trovare la profondità del rifrattore espressa in unità di tempo. L'espressione di tale funzione è:

$$T_{G} = \frac{T_{S_{1}Y} + T_{S_{2}X} - \left(T_{S_{1}S_{2}} + \frac{XY}{V_{n}}\right)}{2}$$

Dove V_n è la velocità del rifrattore.

Analogamente a quanto avviene per la funzione velocità si determinano diverse funzioni tempo-profondità per l'insieme dei valori XY di studio. Tra le funzioni trovate, quella che presenta la maggiore articolazione compete al valore di XY ottimo.

Infine, è possibile determinare lo spessore del rifrattore in corrispondenza delle posizioni dei geofoni G mediante la relazione:

$$h = T_G \sqrt{\frac{V_n XY}{2T_G}}$$

h rappresenta la profondità minima dal geofono G dunque la morfologia del rifrattore è definita dall'inviluppo delle semicirconferenze di raggio h.

Uno dei principali vantaggi del G.R.M. è che il fattore di conversione della profondità è relativamente insensibile alle inclinazioni fino a circa 20°

Dati generali

Descrizione	REALIZZAZIONE CENTRALE DI DERIVAZIONE
Committente	FRED OLSEN RENEWABLES
Zona	ARCOFIATO DI CAMERINO
Operatore	FABIO LUNERTI
Data	22/02/2023
Via	Camerino Arcofiato
Latitudine	43.128095°[°]
Longitudine	13.082224°[°]

Geometria geofoni

	Posizione X	Posizione Z
	[m]	[m]
1	0.0	0.0
2	5.0	0.0
3	10.0	0.0
4	15.0	0.0
5	20.0	0.0
6	25.0	0.0
7	30.0	0.0
8	35.0	0.0
9	40.0	0.0
10	45.0	0.0
11	50.0	0.0
12	55.0	0.0
13	60.0	0.0
14	65.0	0.0
15	70.0	0.0
16	75.0	0.0

Dati battute

Battuta 1

Posizione sorgente X	0 [m]
Posizione sorgente Z	0 [m]

Posizione geofono [m]	Tempo [ms]
0.0	0.5000
5.0	13.9293

10.0	20.8940
15.0	23.8788
20.0	25.8687
25.0	27.8586
30.0	31.3410
35.0	34.8233
40.0	37.3107
45.0	41.7880
50.0	44.7728
55.0	46.7627
60.0	49.2501
65.0	52.2350
70.0	56.7122
75.0	58.7021

Posizione sorgente X	5	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
	[113]
0.0	13.9293
5.0	0.5000
10.0	13.9293
15.0	21.8889
20.0	23.3814
25.0	25.8687
30.0	28.3561

35.0	31.8385
40.0	34.8233
45.0	37.8082
50.0	41.2905
55.0	43.7779
60.0	47.2602
65.0	50.7425
70.0	54.7223
75.0	56.7122

Posizione sorgente X	15	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	24.3763
5.0	21.8889
10.0	15.4218
15.0	0.5000
20.0	15.4218
25.0	21.8889
30.0	24.3763
35.0	28.3561
40.0	30.3460
45.0	33.8284
50.0	36.3157
55.0	39.3006

60.0	43.2804
65.0	45.7678
70.0	49.2501
75.0	52.7324

Posizione sorgente X	25	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	29.8486
5.0	27.3612
10.0	24.8738
15.0	22.8839
20.0	15.9192
25.0	0.5000
30.0	15.4218
35.0	22.3864
40.0	25.3713
45.0	28.8536
50.0	31.3410
55.0	33.8284
60.0	37.8082
65.0	39.7981
70.0	43.2804
75.0	46.7627

Posizione sorgente X	35	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	34.8233
5.0	33.3309
10.0	29.8486
15.0	27.8586
20.0	24.8738
25.0	21.3915
30.0	13.4318
35.0	0.5000
40.0	13.9293
45.0	21.8889
50.0	25.3713
55.0	28.3561
60.0	31.8385
65.0	35.3208
70.0	38.3056
75.0	42.2854

Battuta 6

Posizione sorgente X	45	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	42.7829
5.0	38.3056
10.0	36.3157
15.0	33.3309
20.0	29.8486
25.0	27.8586
30.0	25.8687
35.0	23.3814
40.0	13.9293
45.0	0.5000
50.0	15.4218
55.0	24.3763
60.0	28.8536
65.0	31.8385
70.0	34.3258
75.0	36.8132

Posizione sorgente X	55 [m]
Posizione sorgente Z	0 [m]

Posizione geofono	Tempo
[m]	[ms]
0.0	45.2703
5.0	44.2753
10.0	41.7880
15.0	38.8031
20.0	35.8183
25.0	32.8334
30.0	30.8435
35.0	28.8536
40.0	26.3662
45.0	23.8788
50.0	13.9293
55.0	0.5000
60.0	14.4268
65.0	25.8687
70.0	29.3511
75.0	32.8334

Posizione sorgente X	65	[m]
Posizione sorgente Z	0	[m]

Posizione geofono	Tempo
[m]	[ms]
0.0	50.7425
5.0	49.7476
10.0	47.7577
15.0	45.7678
20.0	42.2854
25.0	38.8031
30.0	36.8132
35.0	34.3258
40.0	32.3359
45.0	30.8435
50.0	27.8586
55.0	24.3763
60.0	13.9293
65.0	0.5000
70.0	13.4318
75.0	26.8637

Posizione sorgente X	75 [m]
Posizione sorgente Z	0 [m]

Posizione geofono	Tempo
[m]	[ms]
0.0	58.7021
5.0	57.7072
10.0	55.7173
15.0	52.7324
20.0	49.2501
25.0	45.7678
30.0	42.7829
35.0	42.2854
40.0	39.3006
45.0	37.3107
50.0	35.3208
55.0	32.8334
60.0	31.3410
65.0	27.3612
70.0	16.4167
75.0	0.5000

Dromocrone

Dromocrone traslate

Interpretazione col metodo G,.R.M.

XY: 0

	Strato n. 1	Strato n. 2	Strato n. 3
G= 0.0 [m]	1.4	1.4	

REALIZZAZIONE CENTRALE DI DERIVAZIONE

G= 5.0 [m]	0.0	2.1	
G= 10.0 [m]	0.6	2.9	
G=15.0 [m]	1.7	1.7	
G= 20.0 [m]	1.8	1.8	
G= 25.0 [m]	2.6	2.6	
G= 30.0 [m]	3.5	3.5	
G= 35.0 [m]	4.8	4.8	
G= 40.0 [m]	6.5	6.5	
G= 45.0 [m]	7.8	7.8	
G= 50.0 [m]	10.3	10.3	
G= 55.0 [m]	11.4	11.4	
G= 60.0 [m]	7.1	7.1	
G= 65.0 [m]	2.3	12.2	
G= 70.0 [m]	2.5	13.5	
G=75.0 [m]	2.6	14.2	
Velocità [m/sec]	356.9	1471.5	2357.6
Descrizione	Coperture detritiche	Substrato molto alterato	Substrato integro

Altri parametri geotecnici

	Strato n. 1	Strato n. 2	Strato n. 3
Coefficiente Poisson	0.38	0.47	0.45
Densità [kg/m³]	1700.00	1900.00	2000.00
Vp [m/s]	356.94	1471.49	2357.64
Vs [m/s]	157.03	350.09	710.86
G0 [MPa]	41.92	232.87	1010.63
Ed [Mpa]	216.59	4114.06	11116.97
M0 [MPa]	174.67	3881.19	10106.34
Ey [Mpa]	115.70	684.64	2930.84

G0: Modulo di deformazione al taglio;Ed: Modulo edometrico;M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;

INDAGINI GEOGNOSTICHE ESEGUITE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» E «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Oggetto: Indagine Geognostica

Committente: Dott. Geol. Massimo Gubinelli

Commessa: 119-23

Falconara M.ma, lì 05 Aprile 2023

Il Responsabile GECO srl Dott. Marco Gaggiotti

328-2040857

La presente relazione è ad uso esclusivo della pratica in oggetto. La pubblicazione integrale o di una sua parte è vietata senza il consenso dell'Autore.

INDICE

1. F	REMESSA	3
1.1	Geognostica	3
2. I	NDAGINI GEOTECNICHE E STRUMENTAZIONE UTILIZZATA	4
2.1	Indagini geotecniche	4
2.2	Attrezzature di perforazione	4
2.3	Prove S.P.T. (STANDARD PENETRATION TEST)	5
2.4	Campionamenti indisturbati	6

ALLEGATI INDAGINE GEOGNOSTICA:

All.1 – SONDAGGI GEOGNOSTICI – Documentazione fotografica;

All.2 – PROVE GEOTECNICHE DI LABORATORIO – Certificati ed elaborati

1. PREMESSA

Su incarico e per conto del Dott. Geol. Massimo Gubinelli, è stata eseguita una campagna di indagini geognostiche finalizzate al progetto di realizzazione di stazione smistamento linee "Valcimarra-Camerino" e "Valcimarra-Cappuccini" in loc. Arcofiato nel comune di Camerino (MC). Le indagini sono state eseguite secondo il programma riportato.

1.1 Geognostica

• esecuzione di n°4 sondaggi meccanici realizzati a carotaggio continuo (cc), spinti alle profondità variabili tra 5,00 m e 10,00 m dal p.c.

Sond.	Carot Cont	aggio inuo	Rivestimento		Data	
da a		а	(m)	installata		
S1	0,00	8,50	1,50	-	22/02/23	
S 2	0,00	10,00	1,50	-	22/02/23	
S 3	0,00	5,00	1,50	-	22/02/23	
S4	0,00	5,50	1,50	-	22/02/23	

Tab.1 – Elenco Sondaggi geognostici.

esecuzione di n°2 prove S.P.T. (Standard Penetrometer Test);

Sond	брт	Profondità (m)		Valore
3010 3.F.1.	da	а	Valore	
S2	SPT1	2,50	2,95	11-6-10
S4	SPT1	1,60	2,05	2-6-8

Tab.2 – Elenco prove S.P.T. eseguite.

 prelievo di n°2 campioni indisturbati tramite campionatore a pressione "a parete sottile di tipo aperto" (Shelby);

	Campione	Profondità (m)		
Sond. Indisturbato Shelby		da	а	
S 2	C1	1,00	1,40	
S4 C1		1,20	1,60	

Tab.3 – Elenco campioni di terreno prelevati.

Durante l'esecuzione del sondaggio è stata redatta dalla Direzione Lavori una stratigrafia dei terreni attraversati. Le carote di terreno prelevate sono state riposte in apposite cassette catalogatrici a scomparti.

2. INDAGINI GEOTECNICHE E STRUMENTAZIONE UTILIZZATA

2.1 Indagini geotecniche

Il sondaggio geotecnico, consente di effettuare perforazioni a rotazione a "carotaggio continuo" con diametro di foro variabile da 101 mm a 127 mm.

Le applicazioni di questo tipo di indagine sono le seguenti:

- Ricostruzioni stratigrafiche del sottosuolo e l'individuazione di possibili discontinuità presenti;
- Prelievo di campioni indisturbati e/o rimaneggiati per analisi di laboratorio;
- Prove in foro per la determinazione delle proprietà meccaniche dei terreni investigati;
- Installazione di strumentazione di varia tipologia in foro di sondaggio;
- Determinazione del livello piezometrico se presente.

2.2 Attrezzature di perforazione

Per l'esecuzione dei sondaggi è stata utilizzata una sonda a rotazione COMACCHIO GEO 305 avente le seguenti caratteristiche:

	16.2.	1,3,		
Potenza Motore Ergine Power	RW	HP	55,4	74
Livello Emissioni Emission Level	-		Stage 5/ Tier 4	firal (HT Une)
Corse Mast Mast Feed Stroke	mm.	ft-in	1.600 - 3.600	5'3" - 11 '10"
Forza di Spinta Feed Force	daN	lbs	3.500 - 5.000	7,868 - 11,240
Forza di Tiro Retract Force	daN	lbs	3.500 - 5.000	7,868 - 11,240
Coppla Rotary Max Rotary Torque Range	daNm	lb*#	470 - 1.100	3,465 - 8,113
Giri Rotary Max Rotary Speed Range	9	m	130	- 580
Serraggio Morse Clamp Range	mm	in .	45 - 305	1" % - 12"
Peso Weight	kg	lbs.	4.000 - 9.500	8,800 - 21,000

Fig. 1: Scheda tecnica sonda perforatrice COMACCHIO GEO 305.

2.3 Prove S.P.T. (STANDARD PENETRATION TEST)

La prova SPT serve a misurare la resistenza al taglio per terreni granulari (sabbie e ghiaie fini), tuttavia esistono delle correlazioni tali da permetterne l'utilizzo della prova in qualsiasi terreno sciolto e non facilmente campionabile.

Lo svolgimento della prova, secondo le modalità di esecuzione indicate dalle "Raccomandazioni dell'Associazione Geotecnica Italiana del 1977", prevede l'esecuzione di un foro di sondaggio con il quale si raggiunge la quota desiderata in un certo banco sabbioso. fermata la trivellazione, si inserisce nel terreno una batteria di aste con alla testa un campionatore standard detto Reymond.

La prova consiste nel registrare il numero di colpi necessari per far penetrare di 45 cm nel terreno a fondo foro un tubo campionatore di dimensioni standard, collegato alla superficie mediante batteria di aste in testa alle quali agisce un maglio del peso di 63.5 kg che cade liberamente da un'altezza di 0.76 m.

Durante la prova si misura:

- N1 = numero di colpi di maglio necessari a provocare l'avanzamento del campionatore per i primi 15 cm, assunti come tratto di "avviamento";
- N2 = numero di colpi che provoca la penetrazione del campionatore nei successivi 15 cm di profondità (30 cm);
- N3 = numero di colpi necessari per gli ultimi 15 cm di avanzamento (45 cm).

Si assume come resistenza alla penetrazione il valore: NSPT = N2 + N3

Si utilizzano le seguenti attrezzature standard:

- Aste d'infissione del diametro esterno 50 mm e peso di 7 kg/m;
- testa di battuta di acciaio avvitata sulle aste;

- maglio di acciaio di 63.5 kg;
- dispositivo automatico che consente la caduta del maglio da un'altezza di 0.76 m;
- campionatore standard (detto Raymond dalla società che lo ha introdotto per prima).
 Si tratta di un tubo carotiere avente diametro esterno di 51 mm, spessore 16 mm e lunghezza complessiva comprendente scarpa e raccordo alle aste di 813 mm.
- nei terreni ghiaiosi la scarpa del carotiere viene sostituita da una punta conica di diametro 51 mm, angolo 60°.

2.4 Campionamenti indisturbati

Per campioni indisturbati s'intendono quelli prelevati con apparecchiature idonee a conferire il massimo grado di qualità compatibilmente con la natura del terreno e cioè, in base alla classificazione proposta dalle Raccomandazioni AGI del 1977 (Pag.25):

Q.4 - Q.5 per terreni coesivi: possibilità di determinare tutte le caratteristiche con la sola eventuale eccezione di quelle meccaniche di resistenza e deformabilità;

Q.2 - Q.3 per terreni incoerenti o comunque difficili: determinabilità della reale composizione granulometrica e possibilmente anche del contenuto d'acqua naturale.

Campionamenti a pressione

Il campo d'impiego dei campionatori a pressione riguarda particolarmente i terreni di limitata consistenza ed a grana fine. Per l'avanzamento a pressione si impiegano campionatori a "parete sottile", e basso coefficiente di parete, per tale definizione si rimanda al paragrafo 3.3. delle Raccomandazioni AGI.

Il tubo d'infissione, in acciaio di qualità, funge anche da contenitore e pertanto deve essere resistente alla corrosione ed adeguatamente levigato all'interno (acciaio inossidabile o cadmiato o comunque trattato in modo opportuno).

Alla base il tubo deve risultare tagliente (angolo di taglio della scarpa a = $4^{\circ}-15^{\circ}$). I campionatori a pareti sottili possono essere:

a) di tipo aperto (campionatore Shelby). Il campionatore aperto risulta composto da una testa con valvola a sfera e relativi sfiati collegata con viti a brugola al tubo d'infissione che funge da contenitore del campione di terreno.

b) di tipo a pistone "libero" o "fisso o stazionario". In questo tipo di campionatore il pistone ha la funzione di chiudere il tubo campionatore all'estremità inferiore e viene sbloccato quando si vuole iniziare il prelievo.

Falconara M.ma, lì 05 Aprile 2023

Il Responsabile Dott. Geol. Marco Gaggiotti

💭 www.gecogeologia.com 🖂 info@gecogeologia.com 🐧 328.02.82.743 / 328.20.40.857

allegati indagine geognostica

All.1 – SONDAGGI GEOGNOSTICI: Stratigrafie e Documentazione fotografica

All.2 – PROVE GEOTECNICHE DI LABORATORIO – Certificati ed elaborati

www.gecogeologia.com info@gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 1 - postazione

www.gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 1 - cassette catalogatrici

Cassa n°1 da ml. 0.00 a ml. 5.00

Cassa nº2 da ml. 5.00 a ml. 10.00

www.gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 2 - postazione

www.gecogeologia.com 🖂 info@gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 2 - cassette catalogatrici

Cassa n°1 da ml. 0.00 a ml. 5.00

Cassa nº2 da ml. 5.00 a ml. 10.00

www.gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 3 - postazione

www.gecogeologia.com info@gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 3 - cassette catalogatrici

Cassa n°1 da ml. 0.00 a ml. 5.00

www.gecogeologia.com info@gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 4 - postazione

Geco Srl Servizi Geologici & Indagini Sismiche Via Osoppo, 38 / 60015 Falconara Marittima (AN) P. IVA 02541280422 tel e fax 071 9156126

www.gecogeologia.com info@gecogeologia.com

328.02.82.743 / 328.20.40.857

INDAGINI GEOGNOSTICHE ESEGUITE PER PROGETTO REALIZZAZIONE STAZIONE SMISTAMENTO LINEE «VALCIMARRA-CAMERINO» **E** «VALCIMARRA-CAPPUCCINI IN LOCALITA' ARCOFIATO - CAMERINO (MC)

Sondaggio 4 - cassette catalogatrici

Cassa nº1 da ml. 0.00 a ml. 5.00

Cassa nº2 da ml. 5.00 a ml. 10.00

a Ballar	GeoS	veva di Luigi D	Di Carlo			mod.PS 75-00/a	Rev.01 del 0	01/2021
	Laborator analisi ge	io sperimentale c otecniche	ii	- P IVA 03 06 20 20 718 - C.F. DCRLGU81A09D8	43E) -		-13
	Ministero Autorizz	<i>delle Infrastruttur</i> azione n° 02610	re e del Trasporti - 26/03/2010	T +39 0881 31 81 F +39 0881 31 81	66 67	2 -	OSI CERTI	1 V
GeoSveva Laboratorio di Analisi Geotecniche	- Montes - 71036	santo 64-66 Lucera (FG)		www.geosveva.it geosvevalaborat	Ministero Infrastrui e dei Tri ori@alice.it	odelle Sacio ture Sacio asporti ALGI	Sistema d Qualta ve UNI EN IS	rgeshone Infeato 10 9001 2015 Pag 1/1
Certificato nº:	31454	emesso il		04/03/23	INIZ	IO PROVA	FINE	PROVA
VERBALE DI ACCETTAZIONE	1	727	del	24/02/23	1	5/03/23	15	6/03/23
COMMITTENTE:	Spett.le	Dott. Mass	imo Gubine	elli				
SITO :	Arcofiat	0						
LOCALITA':	Camerir	10						
SONDAGGIO :	S2			DATA PRELIEVO)	21/02/23		Qualità
CAMPIONE :	C1			TIPO DI FUSTELLA		(Metallo)		Quanta
PROFONDITA' :	01.00-01	.40	(m)	TIPO DI CAMPIONE		Indisturba	ato	Q5
		AP	ERTUR	RA CAMPIO	NI			
			Modalità	<i>di prova:</i> UNI El	N ISO 14688	3-1		
Diametro		8.4	(cm)	Consis	tenza :	Media		
Lunghezza		21.5	(cm)	Plastic	ità :	Media		
Ŭ				Umidit	à :	Media		
Colore	: 2.	5Y 5/6						
Pocket	4		275 (KPa)	Vane t	est :		(KPa)	
Descrizione								

Limo con argilla di colore marrone.

Analisi effettuate certificati :

 n°31455 Determinazione del peso specifico assoluto dei grani - n°31456 Peso di volume allo stato naturale n°31457 Determinazione del contenuto naturale d'acqua - n°31458 Analisi Granulometrie per sedimentazione e setacciatura - n°31459 Limite di Liquidità e di Plasticità - n°31460 Limite di ritiro - n°31461 Prova di taglio diretto consolidata drenata - n°31462 Prova di taglio residuo - n°31463 Triassiale UU

LO SPERIMENTATORE Geom.Giovanni Turco

IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

GeoSveva

Laboratorio di Analisi Geotecniche

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e del Trasporti Autorizzazione nº 02610 - 26/03/2010

- Montesanto 64-66 - 71036 Lucera (FG)

- PIVA 03 06 20 20 718 + C.F. DCRLGU81A09D643E T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it

mod.PO 75-03 Rev.01 del 01/2021

CERTIFIED E-A 9001

Pag 1/1

Certificato nº:	31456	emesso il		04/03/2	23		INIZIO PROVA	FINE	PROVA
VERBALE DI ACCETTAZ	IONE	1727	del	24/02/2	.3		15/03/23	10/	03/23
COMMITTENTE: SITO : LOCALITA''	Spett.le I Arcofiato Camerin	Dott. Mass o o	imo Gubi	inelli					
SONDAGGIO : CAMPIONE :	S2 C1			DATA TIPO DI	PRELIE FUSTELL	VO .A	21/02/23 (Metallo)		Qualità
PROFONDITA' :	01.00-01	.40	(m)	TIPO DI	CAMPION	NE	Indisturba	ato	Q5
	PESO		DLUM	EALL	O ST	ATO	NATURALE		
			Modalit	à di prov	a: UNI E	ISO 1	17892-1		
	Determ	inazione	mediar	nte fuste	ella tara	ta			
F	- ustella r	۱°	1		γ	=	18.94	KN/m ³	
F	⁻ ustella r	۱°	2	•	Y	=	18.75	KN/m ³	
F	⁻ ustella r	۱°	3		Y	=	18.84	KN/m ³	
Peso volum (media delle tre mis	e allo . ure)	stato n	atura	le			γ = 18	.85	KN/m ³
						çoğ	a contorne alloridine	\$	
LO SPERIM Geom.Gi	unitatore ovanni Tu	irco				IL I Do	DIRETTORE DEL LABOI	RATORIO O	

	G	eoSveva o	li Luigi Di Carl	0		mod	.PO 75-04 Rev.01 d	el 01/2021
	La	boratorio sperii alisi geotecnici	nentale di		- PIVA 03.08.20.20.71	8	-	
	M	nistero delle In utorizzazione	frastrullure e dei n° 02610 - 26/01	Trasporti 3/2010	T +39 0881 31 81 E +39 0881 31 81	66	, 🏯	
GeoSvev	a - I	Montesanto 8 71036 Lucera	4-66 (FG)		www.geosveva. geosvevalabora	Ministero del Infrestruture e del Traspo atori@alice.it	e Socio di ALCI	Sistema di useisene Qualitatione Uni ENI SOL autoritation Pag 1/1
Numero certificato:	31457	emesso	il	04/03/2	:3	INIZIO PRO	AVC	INE PROVA
VERBALE DI ACCETTAZ	IONE	1727	del	24/02/2	23	15/03/2	3	16/03/23
COMMITTENTE: SITO : LOCALITA':	Spett.le Arcofiat Cameri	Dott. Mas to no	simo Gubi	inelli				
SONDAGGIO :	S2			DATA	PRELIEVO	21	/02/23	Qualità
CAMPIONE :	C1	1.40	(m)			M) n	etallo) disturbato	05
PROFONDITA :	01.00-0	1.40	(m)	TIPO DI	CAMPIONE		uistui bato	QS
C	ONTE	ENUTC	D'AC				JRALE	
			wodant	a di prov	a: ASTIVID 22	10/2005		
	Tempe	eratura d	li essicca	zione :	110	°C		
Co	ntenito	re N°	2		Wn =	21.5	%	
Co	ntenito	re N°	42		Wn =	21.2	%	
Co	ntenito	re Nº	10		\//n =	21.3	%	
Contenuto d (media delle tre misu	l'acqu ure)	ia allo	stato i	natura	le	Wn =	21.3	5 %
						eallo	iginale	
					Cog	a conton		
LO SPERIM Geom.Gi		E urco				L DIRETTORE DE Dott.Ing.Luigi	L LABORATOR Di Carlo	RIO

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010 - P IVA 03 06 20 20 718 - C.F. DCRLGU81A090643E

T +39 0881 31 81 66 F +39 0881 31 81 67 Ministero Jene Infrastruttue

mod.PQ 75-01 Rev.01/2021

Laboratorio di	Analisi Geotecr	a - Mo - 710	ntesanto 64- 036 Lucera (F	66 FG)	www.ge geosve	osveva.it Intrast e del 1 valaboratori@alice.it	utiue Tasporti i	ALGI Dualita sertificato ALGI UNI EH (SU 4001 5018 Pag 1/2
Numero cer	tificato:	31458	ta di emissi	one:	04/03/23	INIZIO PRO	OVA FI	NE PROVA
VERBALE D		ZIONE	1727	del	24/02/23	15/03/23		20/03/23
COMMIT	TENTE:	Spett.le D	ott. Mass	imo Gubine	elli			
SITO :		Arcofiato						
I OCAL IT	'A'	Camerino)					
SONDAC	GIO :	S2	-		DATA PRELIE	VO		
CAMPIO	NE ·	C1			TIPO DI FUSTEL			Qualit
PROFON	IDITA'	01 00-01	40	(m)	TIPO DI CAMPIO	NE		
	Buint .	01.00 01.	ANI			ACTOLOA		
			AN	ALISI G	RANULO	METRICA		
				Modalità	di prova: AST	M D 422 / 2007		
	ŀ	Analisi con va	gli			Analisi con o	densimetro	
Setaccio	diametro	peso	trattenuto	passante	diametro			
	(mm)	grani (g)	(%)	(%)	grani (mm)	correzioni		0.00
4"	101.60			100.00	101.60	dispersivo	Cd	-3.00
3	75.00			100.00	75.00	menisco	Cm	0.50
2	50.00			100.00	50.00	temperatura	intercetta	-5.00
1.5	37.50			100.00	37.50	temperatura	pendenza	0.25
1"	25.00			100.00	25.00	caratteristic	ne fisiche	10.00
0.75	19.00	1.01	0.00	100.00	19.00	peso campion	ne secco g	40.00
0.375	9.50	4.84	2.88	97.12	9.50	peso specific	KIN/m ⁻	26.349
4	4.75	0.12	2.95	97.05	4.75	taratura den	simetro	1
10	2.00	3.01	4.74	95.26	2.00	intercetta		15.5/3
18	0.85	1.07	5.38	94.62	0.850	pendenza		-0.235
40	0.43	0.80	5.85	94.15	0.425			
60	0.25	0.92	6.40	93.60	0.250			
140	0.11	10.73	12.78	87.22	0.106			
200	0.07	11.88	19.85	80.15	0.074			
0.45	< 0.074	134.72	80.15	ssante al 2	200			
Somma (g)		168.09						
Peso iniziale	e (g)	168.20						
Perdita (g)		0.11	_				inale	
		Analsi con	densimetro			Percentuale	Dametro	
Tempo	Tempe_ ratura	Lettura	Lettura + C _M	Correzione temperatura	Percentuale parziale	totale %	grani mm	
min	°C	R	R'		%	7809	0.0576	
0.50	00.00	07.00	07 50	1	07.50	200	0.0522	

Tompo	ratura	Lottora	+ C _M	temperatura	parziale
min	°C	R	R'		%
0.50	20.00	27.00	27.50		97.56
1.00	20.00	26.00	26.50		93.57
2.00	20.00	25.00	25.50		89.59
4.00	20.00	23.00	23.50		81.63
8.00	20.00	22.50	23.00		79.64
15.00	20.00	21.50	22.00		75.66
30.00	20.00	21.00	21.50		73.67
60.00	20.00	19.00	19.50		65.70
120.00	20.00	17.00	17.50		57.74
240.00	20.00	15.00	15.50		49.77
480.00	20.00	13.00	13.50		41.81
1440.00	20.00	10.00	10.50		29.86

	Percentuale	Diametro
	totale o	grani
	%	mm
	7809	0.0576
	75.00	0.0532
	71.81	0.0377
8	65.42	0.0214
y	63.83	0.0152
	60.64	0.0137
	59.04	0.0097
	52.66	0.0069
	46.28	0.0049
	39.89	0.0034
	33.51	0.0024
	23.94	0.0014

IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigt Di Carlo

						GeoSv	veva di Luigi Di Carlo			U-CI XI'NOIII	I INCULUTION INCLU	17071
						Laborator, analisi ger	io sperimentale di otecniche	- P IVA 00	3.06.20.20.718 3LGU81A09D643E		•	
						Ministero Autorizza	delle Infrastrutture e del Trasp azione n° 02610 - 26/03/2010	oorti T +39 0 F +39 0	881 31 81 66 881 31 81 66		1	
Muero conflictor. 31458 Data di ensistene. 0403/2023 Paga NUZIO PROVA File PROVA Consulta Dintrittori. Spetta Dintrittoria Spetta Dintrittoria 2423/2033 2003/2023	GeoSvev: Laboratorio di Analisi Geotecni	Che D				- Montes - 710361	santo 64-66 Lucera (FG)	geosve	eosveva.it evalaboratori@	Ministero delle Infrastrutture e dei Tracporth RiiCe, it	Socio	ຣິແປລາໄຟ ເຊັ່ງຊ່ວຍອາຍ ປານສາຍ, ປະທານອອກ ປາຊາ Elkris ວ່າ ອາດີ . ວິດາວົ
Translation Accertations Translation Contrintion STO : Anotholic STO :	Numero certificato:	31	458 Data di	emissione:	04	1/03/2023	CIC DED		INI	ZIO PROVA	Ĩ	JE PROVA
SIDI: HALLE: Spette DOL Masmo Guinen SOUDAGGIO : Sections s: CAMPIONE : CI PROFONDTA : Camenio SOUDAGGIO : S: CAMPIONE : CI PROFONDTA : Camenio SOUDAGGIO : S: CAMPIONE : CI PROFONDTA : Camenio SOUDAGGIO : S: CAMPIONE : CI PROFONDTA : CAMPIONETRACA	VERBALE DI ACCETTAZION	ш	172	del	24	1/02/2023	2 29 212		-	5/03/2023	5	0/03/2023
Soundadio S2 CAMPIONE C1 PLOFONDITA': OLIGINAL GAMULONETRICA OLIGINAL GAMULONETRICA DATA PRELIEVO Z100000 Z1000000000000000000000000000000000000	SITO : Arcofiato	Spet	tt.le Dott. Mas	simo Gubinelli			LOCALITA':	Came	erino			
OTRA GRANUTCHERCA Outra manual Outra manual Image: state in the state in th	SONDAGGIO :	01	S2 CAMP	: IONE :	G	PROFONDIT	ra' :	01.00-01.40	(m)	DATA PF	RELIEVO	21/02/2023
Testing					Ŭ	URVA GRANL	ILOMETRICA					
Inc Incl		argilla		limo			sabbia		ghiaia	0	iott.	
0 0			fine	medio	osso	fine	media grossa	fine	media	grossa		
0 0	% 100										Ē	
0000 0000 0000 0000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000 0000 0.000 0.000 0.000												
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	06											
70 70 70 60 60 60 60 20 0.00 0.00 1.00 20 0.00 0.00 1.00 20 0.00 1.00 1.00 20 0.00 1.00 1.00 20 0.00 0.00 1.00 20 0.00 1.00 1.00 20 0.00 1.00 1.00 20 0.00 1.00 1.00 20 0.00 1.00 0.00% 20 0.00 1.00 0.00% 20 0.00 1.00 0.00% 20 0.00 0.00 0.00% 20 0.00% 2.00% 0.00% 20 0.00% 2.00% 0.00% 20 0.00% 2.00% 0.00% 20 0.00% 2.00% 0.00% 20 0.00% 0.00% 0.00% 20 0.00% 0.00% 0.00%	80											
000 0.00 0.00 10.00 000 0.00 100 10.00 000 0.10 100 10.00 000 0.10 100 10.00 000 0.10 100 10.00 000 0.10 100 10.00 000 0.10 10.00 10.00 000 0.10 10.00 10.00 000 0.10 10.00 10.00 000 0.10 100 10.00 000 0.10 100 10.00 000 0.00 10.00 11.00% 000 001 001 001 001 001 000 6101A 000 001 001 001	20				•							
000 0.100 1.000 1.000 001 0.100 0.100 1.000 001 0.100 1.000 1.000 001 0.100 1.000 1.000 001 0.100 1.000 1.000 001 0.100 1.000 1.000 001 0.100 1.000 1.0000 001 0.100 1.000 1.0000 001 0.100 1.0000 1.0000 001 0.100 1.0000 1.0000 001 0.100 0.100 1.0000 001 0.100 0.1000 1.0000 000% 0.000 0.00% 0.00% 000% 0.0010010 0.00% 0.00% 0001 0.0010010 0.00% 0.00%												
000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.100 1.000 17.00% Destrivention 0.000 0.010 0.00% DottingLugi DrCario 0.001 0.00% DottingLugi DrCario 0.001 0.00%	00											
40 <	20											
30 0.001 0.000 1.000 10.000 20 0.001 0.010 0.000 1.000 10.000 0.001 0.010 0.010 0.000 1.000 10.000 0.001 0.010 0.010 0.000 1.000 10.000 0.001 0.010 0.000 1.000 10.000 100.000 1.00 0.010 0.100 1.000 10.000 100.000 1.00 0.001 0.000 1.000 17.00% 1.00 0.001 0.001 0.00% 0.00% 1.00 0.001 0.00% 0.00% 1.00 0.00% 0.00% 0.00% 1.00 0.00% 0.00% 0.00% 1.00 0.00% 0.00% 0.00% 1.00 0.00% 0.00% 0.00% 1.00 0.00% 0.00% 0.00%	40											
20 0.001 0.000 1.000 1.000 10 0.010 0.100 1.000 1.000 0.001 0.000 0.100 1.000 1.000 0.001 0.100 1.000 1.000 1.0000 0.001 0.100 1.000 1.000 1.0000 0.001 0.100 1.000 1.0000 1.0000 0.001 0.100 1.0000 1.0000 1.0000 0.001 0.100 1.0000 1.0000 1.0000 0.001 0.100 1.0000 1.0000 1.0000 0.001 0.1000 0.1100 1.700% 0.001 0.0010 0.0010 0.0010 0.001 0.0010 0.0010	30											
10 10 0.010 1000 10.000 10.000 0.001 0.010 0.100 1.000 10.000 10.000 0.001 0.010 0.100 1.000 10.000 10.000 0.001 0.010 0.100 1.000 10.000 10.000 0.001 0.010 0.100 1.000 10.000 10.000 0.001 0.010 0.100 1.000 10.000 10.000 1.000 0.010 0.100 1.000 10.000 10.000 1.000 0.010 0.100 0.100 17.00% 1.000 0.0100 0.0100 0.0100 0.0100 1.000 0.0100 0.0100 0.0100 0.00%		•	9									
10 100 1.000 1.000 10000 0.001 0.010 0.010 0.100 1.000 10.000 0.001 0.010 0.010 0.100 1.000 10.000 DEFINIZIONE GRANULOMETRICA: DEFINIZIONE GRANULOMETRICA: ARGILLA 30.00% Limo con argiila sabbioso debolmente ghiaioso LIMO 47.00% Lo SPERIMENTORE IL DIRETTORE del LABORATORIO GHIAIA 6.00% Geom.citorami Turco Dottling.Luigi brCarlo CIDITOLI CIDITOLI	20			<u>0</u>								
0 0.001 0.100 10.000 10.000 0.001 0.010 0.100 10.000 10.000 0.001 0.010 0.100 10.000 10.000 DEFINIZIONE GRANULOMETRICA: DEFINIZIONE GRANULOMETRICA: ARGILLA 30.00% Limo con argilla sabbioso debolmente ghiaioso LIMO 47.00% Lo SPERIMENTORE IL DIRETTORE del LABORATORIO GHIAIA 6.00% Geom cionami Turco Dott.Ingi brcarlo CIOTTOLI 0.00%	10			OI								
0.001 0.010 0.000 1.000 10.000 100.000 0.011 DEFINIZIONE GRANULOMETRICA: ARGILLA 30.00% 1.000 argilla sabbioso debolmente ghiaioso LIMO 47.00% Lo SPERIMENTATORE IL DIRETTORE del LABORATORIO SABBIA 17.00% Lo SPERIMENTATORE IL DIRETTORE del LABORATORIO GHIAIA 6.00% Ceom.cionami Turco Dott.Ing.Luigi bi carlo CIOTTOLI 17.00%	0											
DEFINIZIONE GRANULOMETRICA: ARGILLA 30.00% Limo con argilla sabbioso debolmente ghiaioso LIMO 47.00% LO SPERIMENTATORE IL DIRETTORE del LABORATORIO SABBIA 17.00% Geom.Gioramii Turco Dott.Ing.Luigi bicarlo CIOTTOLI 6.00%	, 0	0.001		0.010		0.100	1.000		10.000 dia	ametro (mm)	100.000	
Limo con argilla sabbioso debolmente ghiaioso LIMO 47.00% LO SPERIMENTATORE IL DIRETTORE del LABORATORIO SABBIA 17.00% Geom.Giovanni Turco Dott.Ing.Luigi bi Carlo CIOTTOLI 6.00%				DEFINIZIO	ONE GRAN	ULOMETRIC	A:	ARGILLA	30.00	%		
LO SPERIMENTATORE Geom.Giovarmi Turco Dott.Ing.Luigi Di Carlo CIOTTOLI CIOTTOLI CIOTTOLI			Limo c	on argilla sabbic	oso deboli	nente ghiaios	0	LIMO	47.00	%		
LO SPERIMEATATORE Geom. Giovarmii Turco Dott.Ing.Luigi Di Carlo CIOTTOLI GIOTTOLI								SABBIA	17.00	%		
Geom. Giovannii Turco Dott.Ing.Luigi Di Carlo CIOTTOLI		O SPERIN	NEWTATORE		IL DIRE	ETTORE del LA	BORATORIO	GHIAIA	6.00	%		
		Geom. Gio	Vami Turco		1	Jott.Ing.Luigi	N Carlo	CIOTTOLI				

n.H.J.La	Geosveva di	Luigi Di Carlo				mod.PQ 75-0	6/a Rev.0	01 del 01/2021
	Laboratorio sperime analisi geotecniche	entale di	- F - C	NVA 03.06.20.20.718 F DCRLGU81A09D6	43E		-	월 🖉 🐼
	Ministero delle lufra Autorizzazione n°	astrutture e dei T 1 02610 - 26/03/2	<i>rasporti</i> T 2010 F	+39 0881 31 81 6 +39 0881 31 81 6	66 67	ale a	-	
GeoSveva	- Montesanto 64- - 71036 Lucera (1	-66 FG)	w	ww.geosveva.it jeosvevalaborati	Minister Infrastru e der D ori@alice.it	n delle ifture rasporti	Sacio ALGI	Sistems di pesterne Qualità centricator UNI ENI ISO 901 2015 Pag 1/1
Numero certificato: 314	59 emesso il		04/03/23		INIZIO F	ROVA		FINE PROVA
VERBALE DI ACCETTAZIONE	1727	del	24/02/23		15/0	3/23		20/03/23
COMMITTENTE: Spe	tt.le Dott. Mass	imo Gubin	elli					
eennin i min epe	ofiato							
SITO : Arc								
SITO : Arc LOCALITA': Can	nerino							
SITO : Arc LOCALITA': Can SONDAGGIO : S2	nerino		DATA PF	RELIEVO		21/02/23		0.1
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1	nerino		DATA PF	RELIEVO JSTELLA		21/02/23 (Metallo))	Quali
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LIN	nerino 0-01.40 IITI DI CO	(m) NSIST	DATA PF TIPO DI FU TIPO DI CA ENZA L	RELIEVO JSTELLA AMPIONE	E PLA	21/02/23 (Metallo) Indistur	oato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LIN	0-01.40 IITI DI CO	(m) NSIST Modalità Ne granulomet	DATA PE TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO N° 40 (0	EPLA 17892-2 0,425 mm)	21/02/23 (Metallo) Indisturi	oato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES	10-01.40	(m) NSIST Modalità NE GRANULOMET LI	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE / MITE LIQU	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO N° 40 (C IDO	DEPLA 17892-2 0,425 mm) LIMITE P	21/02/23 (Metallo) Indisturi	opato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES	10-01.40 IITI DI CO EGUITA SULLA FRAZION /INO n. DNTENITORE	(m) NSIST Modalità NE GRANULOMET LI 1 8	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE / MITE LIQU 2 30	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO Nº 40 (0 IDO 3 19	DEPLA 17892-2 ^{0,425 mm)} LIMITE P 1 1	21/02/23 (Metallo) Indisturi	opato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES NUMERO C NUMERO C	0-01.40 IITI DI CO EGUITA SULLA FRAZION /INO n. DNTENITORE) DI COLPI	(m) NSIST Modalità NE GRANULOMET LI 1 8 16	DATA PE TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A MITE LIQU 2 30 23	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO Nº 40 (C IDO 3 19 39	EPLA 17892-2 0,425 mm) LIMITE P 1 1	21/02/23 (Metallo) Indisturi STIC LASTIC 2 122	oato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES NUMERO C NUMERO C NUMERO C	10-01.40 IITI DI CO EGUITA SULLA FRAZION /INO n. ONTENITORE DI COLPI A (g)	(m) NSIST Modalità NE GRANULOMET LI 1 8 16 23.078	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A MITE LIQU 2 30 23 23.444	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO N° 40 (C IDO 3 19 39 17.133	DEPLA 17892-2 0,425 mm) LIMITE P 1 1 - 20.343	21/02/23 (Metallo) Indisturi STIC STIC 2 122 - 19.619	opato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES NUMERO C NUMERO C NUMERO C	INO n. ONTENITORE DI COLP1 A (g) O + TARA (g)	(m) NSIST Modalità NE GRANULOMET LI 1 8 16 23.078 35.504	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A MITE LIQU 2 30 23 23.444 31.518	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO Nº 40 (C IDO 3 19 39 17.133 26.802	DEPLA 17892-2 0,425 mm) LIMITE P 1 1 - 20.343 30.998	21/02/23 (Metallo) Indisturi STIC STIC 2 122 - 19.619 33.028	opato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES NUMERO NUMERO TAF PESO UMID PESO SECO	INO n. ONTENITORE DI COLPI A (g) O + TARA (g)	(m) NSIST Modalità NE GRANULOMET LI 1 8 16 23.078 35.504 31.1	DATA PE TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A MITE LIQU 2 30 23 23.444 31.518 28.77	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO Nº 40 (0 IDO 3 19 39 17.133 26.802 23.75	DEPLA 17892-2 0,425 mm) LIMITE P 1 1 - 20.343 30.998 28.73	21/02/23 (Metallo) Indisturi STIC STIC 2 122 - 19.619 33.028 30.15	oato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES NUMERO C NUMERO C NUMERO C NUMERO C NUMERO C NUMERO C	10-01.40 ITTI DI CO EGUITA SULLA FRAZION /INO n. ONTENITORE D DI COLPI A (g) O + TARA (g) O + TARA (g) IN ACQUA (g)	(m) NSIST Modalità Me GRANULOMET LI 1 8 16 23.078 35.504 31.1 4.404	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE / MITE LIQU 2 30 23 23.444 31.518 28.77 2.748	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO N° 40 (C IDO 3 19 39 17.133 26.802 23.75 3.052	DEPLA 17892-2 0,425 mm) LIMITE P 1 1 - 20.343 30.998 28.73 2.268	21/02/23 (Metallo) Indisturi STIC STIC 2 122 - 19.619 33.028 30.15 2.878	oato	Quali Q5
SITO : Arc LOCALITA': Can SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA' : 01.0 LA PROVA E' STATA ES LA PROVA E' STATA ES NUMERO C NUMERO C	INO n. O-01.40 IITI DI CO EGUITA SULLA FRAZION /INO n. ONTENITORE D DI COLPI A (g) O + TARA (g) O + TARA (g) IN ACQUA (g) ECCO (g)	(m) NSIST Modalità Me GRANULOMET LI 1 8 16 23.078 35.504 31.1 4.404 8.022	DATA PF TIPO DI FU TIPO DI CA ENZA L di prova: RICA PASSANTE A MITE LIQU 2 30 23 23.444 31.518 28.77 2.748 5.326	RELIEVO JSTELLA AMPIONE LIQUIDO UNI EN ISO AL SETACCIO N° 40 (C IDO 3 19 39 17.133 26.802 23.75 3.052 6.617	DEPLA 17892-2 0,425 mm) LIMITE P 1 1 - 20.343 30.998 28.73 2.268 8.387	21/02/23 (Metallo) Indisturi STIC 2 122 - 19.619 33.028 30.15 2.878 10.531	oato	Quali

51

27

23

1.250

%

%

RISULTATI

LIMITE LIQUIDO(LL) =LIMITE PLASTICO(LP) =INDICE DI PLASTICITA'(IP) =INDICE DI CONSISTENZA(IC) =

LO SPERIMENTATORE Geom.Giovanni Turco

IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

Libration Superformed all services Physics 200787 Physics 200		GeoSveva	di Luigi Di Car	10		mod.PQ 75-00	5/b Rev.01 del	01/2021
Amata addit infermature view Transmit Laboration view of the state of the stat		Laboratorio speri analisi geotecnic	mentale di he	- P (- C,F	VA 03.06.20.20.718 DCRLGU81A09D641	E KA	-	
Image: Construction		Ministero delle Ir Autorizzazione	frastrutture a de n° 02610 - 26/0	ei Trasporti T + 13/2010 F +	39 0881 31 81 66 39 0881 31 81 67	See.	-	ISQ 9001
Numero certificato: 31460 emesso ii 04/03/23 INIZIO PROVA FINE PROV/ 15/03/23 20/03/23 COMMITTENTE: SpetLe Dott. Massimo Gubinelli 15/03/23 20/0	GeoSveva	- Montesanto 6 - 71036 Lucera	64-66 a (FG)	ge	w.geosveva.it osvevalaboratoi	Ministero delle infrastrutture e del Trasporti i@alice.it	Sincho ALGI	Sistemo il gentione Qualità Gentricato UNI EN ISO SOVI 2015 Pag 1/1
Vereaue Di Accertazione 1727 del 24/02/23 15/03/23 20/03/23 COMMITTENTE: Spetile Dott. Massimo Gubinelli SITO : Arcofiato Qua LOCALITA': Camerino SONDAGGIO : S2 DATA PRELIEVO 21/02/23 Qua SONDAGGIO : S2 DATA PRELIEVO 21/02/23 Qua PROFONDITA': 01.00-01.40 (m) TIPO DI FUSTELLA (Metallo) Qua LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 Qua Qua Capsula di monel n. Peso capsula (g) volume capsula (gi) 17.604 18.084 volume capsula (gi) volume capsula (cm ³) 15.070 16.065 Peso capsula + terreno rimescolato secco (gi) 33.8 34.85 9 Volume finale (cm ³) 9 10 0 0 CONTENUTO IN ACQUA (g) 8.963 9.219 16.196 16.766 Contenuto d'acqua (%) Volume vuoti (cm ³) 6.07 6.07 6.07 LIMITE DI RITIRO MEDIO (LR) = <th>Numero certificato: 3'</th> <th>1460 emesso</th> <th></th> <th>04/03/23</th> <th></th> <th>INIZIO PROVA</th> <th>FIN</th> <th>E PROVA</th>	Numero certificato: 3'	1460 emesso		04/03/23		INIZIO PROVA	FIN	E PROVA
COMMITTENTE: Spett.le Dott. Massimo Gubinelli SITO : Arcofiato LCCALITA': Camerino SONDAGGIO : \$2 DATA PRELIEVO CAMPIONE : C1 TIPO DI FUSTELLA (Metallo) PROFONDITA': 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 1º. Prova 2º Prova Capsula di monel n. Peso capsula (g) volume capsula (g) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) Peso capsula + terreno rimescolato secco (g) CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) LIMITE DI RITIRO (LR) = 17.66243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.6243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 18.337 9	VERBALE DI ACCETTAZION	NE 1727	del	24/02/23		15/03/23	2	0/03/23
SITO : Arcofiato LOCALITA: Camerino SONDAGGIO : S2 CAMPIONE : C1 PROFONDITA : 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato Q LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 1º. Prova 2º Prova Capsula di monel n. Peso capsula (g) volume capsula (cm ³) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 18.337 Valume 4.824 Valume vuoti (cm ³)	COMMITTENTE: SI	pett.le Dott. Mas	ssimo Gub	inelli				
Camerino Camerino SONDAGGIO \$2 DATA PRELIEVO TIPO DI FUSTELLA (Metallo) 21/02/23 (Metallo) Qua PROFONDITA' 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato Qua LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 Capsula di monel n. Peso capsula (g) volume capsula (g) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) R4 R31 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 LIMITE DI RITIRO 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119	SITO : AI	rcofiato						
SONDAGGIO \$2 DATA PRELIEVO TIPO DI FUSTELLA 21/02/23 (Metallo) Qua PROFONDITA' 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato Qua LIMITI DI RITIRO Indisturbato Qua Capsula di monel n. Peso capsula (g) volume capsula (cm ³) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato (g) Qua + terreno rimescolato (g) 17.604 18.084 Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato (g) Qua + terreno rimescolato (g) 33.8 34.85 Qua + terreno rimescolato (g) Peso SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 9 10 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119	LOCALITA': Ca	amerino						
CAMPIONE : C1 TIPO DI FUSTELLA (Metallo) Cura PROFONDITA': 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato Quia LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 Capsula di monel n. Peso capsula (g) volume capsula (g) volume capsula (cm ³) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) 15.070 16.065 Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 LIMITE DI RITIRO 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119	SONDAGGIO : S	2		DATA PR	ELIEVO	21/02/23		Qualité
PROFONDITA': 01.00-01.40 (m) TIPO DI CAMPIONE Indisturbato Q LIMITI DI RITIRO Modalità di prova: ASTM D 4943 / 2008 1º Prova 2º Prova Capsula di monel n. Peso capsula (g) volume capsula (cm ³) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) 17.604 18.084 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119	CAMPIONE : C	1		TIPO DI FUS	STELLA	(Metallo)		Quanta
Limite di ritiro medio In del otaminete Inded del otaminete Limite di ritiro medio Modalità di prova: ASTM D 4943 / 2008 11. Prova 2ª Prova Capsula di monel n. Peso capsula (g) volume capsula (g) volume capsula (g) R4 R31 Peso capsula (g) volume capsula (cm ³) 15.070 16.065 Peso capsula + terreno rimescolato (g) 42.763 44.069 Peso capsula + terreno rimescolato secco (g) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119		1 00-01 40	(m)		MPIONE	Indisturt	pato	05
LIMITE DI RITIRO Modalità di prova: ASTM D 4943 / 2008 1ª. Prova 1ª. Prova Capsula di monel n. Peso capsula (gi) volume capsula (gi) Peso capsula + terreno rimescolato (gi) 17.604 18.084 Peso capsula + terreno rimescolato secco (gi) 33.8 34.85 Peso capsula + terreno rimescolato secco (gi) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (gi) 8.963 9.219 PESO SECCO (gi) 16.196 16.766 Contenuto d'acqua (%) Volume vuoti (cm ³) 6.07 Volume vuoti (cm ³) E.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 Matter di ritiro medio PER = 18.33715818	NOI ONDITA . V	1.00-01.40	(11)	TH O DI OAI		malotari		QU
Modalità di prova: ASTM D 4943 / 2008 1ª. Prova 2ª Prova Capsula di monel n. R4 R31 Peso capsula (g) 17.604 18.084 volume capsula (cm ³) 15.070 16.065 Peso capsula + terreno rimescolato (g) 33.8 34.85 Peso capsula + terreno rimescolato secco (g) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) 8.963 9.219 PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 Limite di ritiro medio QMB = 18.33715818 Magazzzzzzzzzzz			LI	NITI DI R	TIRO			
$ \begin{array}{c} 1^{9} \text{ Prova} & 2^{9} \text{ Prova} \\ \hline & Capsula di monel n. \\ Peso capsula (g) \\ volume capsula (g) \\ volume capsula (cm^3) \\ Peso capsula + terreno rimescolato (g) \\ Peso capsula + terreno rimescolato seco (g) \\ Volume finale (cm^3) & 9 & 10 \\ \hline & CONTENUTO IN ACQUA (g) \\ PESO SECCO (g) \\ Contenuto d'acqua (%) \\ Volume vuoti (cm^3) & 6.07 & 6.07 \\ \hline & LIMITE DI RITIRO (LR) = 17.86243517 & 18.81188119 \\ \hline & LIMITE DI RITIRO MEDIO (LR) = 17.86243517 & 18.81188119 \\ \hline & LIMITE DI RITIRO MEDIO (LR) = 17.86243517 & 18.81188119 \\ \hline & LIMITE DI RITIRO MEDIO (LR) = 18.8337 & 9 \\ \hline & Magnetical di ritiro medio & 200 \\ \hline & Magnetical di acqua (M) \\ & Magnetical di ac$			Modali	tà di prova:	ASTM D 4943	/ 2008		
1 ⁴ . Prova 2 ^a . Prova Capsula di monel n. Peso capsula (g) volume capsula (g) Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) R4 R31 Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm ³) 15.070 16.065 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 LIMITE DI RITIRO LIMITE DI RITIRO LIMITE DI RITIRO LIMITE DI RITIRO LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO MEDIO LIMITE DI RITIRO MEDIO LIMITE DI RITIRO MEDIO MEDIO LIMITE DI RITIRO MEDIO MEDIO LIMITE DI RITIRO MEDIO MEDIO MER = 18.33715818								
$\begin{array}{c c} Capsula di monel n. \\ Peso capsula (g) \\ volume capsula (cm^3) \\ Peso capsula + terreno rimescolato (g) \\ Peso capsula + terreno rimescolato secco (g) \\ Volume finale (cm^3) \\ Peso seco (g) \\ Volume finale (cm^3) \\ Peso SECCO (g) \\ Contenuto d'acqua (%) \\ Volume vuoti (cm^3) \\ LIMITE DI RITIRO (LR) = \\ LIMITE DI RITIRO (LR) = \\ IT.86243517 \\ I8.81188119 \\ IMITE DI RITIRO MEDIO (LR) = \\ IMITE$						1ª Prova	2*	Prova
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Cansula d	i monel n	D4		D31
ress capsula (g) 17.604 18.084 volume capsula (cm ³) 15.070 16.065 Peso capsula + terreno rimescolato (g) 42.763 44.069 Peso capsula + terreno rimescolato secco (g) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) 8.963 9.219 PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) 55.3408249 54.98628176 Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119				Dapsula a		47 004		40.004
volume capsula (cm ²) 15.070 16.065 Peso capsula + terreno rimescolato (g) 42.763 44.069 Peso capsula + terreno rimescolato secco (g) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) 8.963 9.219 PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) Volume vuoti (cm ³) 6.07 Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119				Peso ca	ipsula (g)	17.604		18.084
Peso capsula + terreno rimescolato (g) Peso capsula + terreno rimescolato secco (g) Volume finale (cm3) 42.763 3.8 44.069 3.8 Peso capsula + terreno rimescolato secco (g) Volume finale (cm3) 3.8 9 34.85 9 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm3) 8.963 6.07 9.219 16.196 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 18.81188119 17.86243517 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 18.81188119 10.833715818 Limite di ritiro medio 2.96 R = 18 337 9				volume caps	ula (cm°)	15.070		16.065
Peso capsula + terreno rimescolato secco (g) 33.8 34.85 Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) 8.963 9.219 PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) 55.3408249 54.98628176 Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 10 10 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 18.33715818 18 LIMITE DI RITIRO MEDIO (LR) = 18.337 9		Pes	o capsula	+ terreno rimes	colato (g)	42.763		44.069
Volume finale (cm ³) 9 10 CONTENUTO IN ACQUA (g) PESO SECCO (g) Contenuto d'acqua (%) Volume vuoti (cm ³) 8.963 9.219 16.196 16.766 55.3408249 54.98628176 6.07 6.07 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 LIMITE DI RITIRO MEDIO (LR) = 17.86243517 LIMITE DI RITIRO MEDIO (LR) = 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 18.33715818 LIMITE DI RITIRO MEDIO (LR) = 18.33715818		Peso caps	ula + terre	no rimescolato	secco (g)	33.8		34.85
CONTENUTO IN ACQUA (g) 8.963 9.219 PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) 55.3408249 54.98628176 Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188111 LIMITE DI RITIRO MEDIO (LR) = 18.33715818 18.33715818				Volume fin	ale (cm ³)	9		10
PESO SECCO (g) 16.196 16.766 Contenuto d'acqua (%) 55.3408249 54.98628170 Volume vuoti (cm ³) 6.07 6.07 LIMITE DI RITIRO (LR) = 17.86243517 18.81188119 LIMITE DI RITIRO MEDIO (LR) = 10.00000000000000000000000000000000000			CONT	ENUTO IN AC	QUA(g)	8.963	-	9.219
Limite di ritiro medio $Limite di ritiro medio$				PESO SE	CCO(a)	16 196		16 766
Volume vuoti (cm3)S3.3408249S4.3802317LIMITE DI RITIRO (LR) =17.8624351718.81188119LIMITE DI RITIRO MEDIO (LR) =18.833715818Limite di ritiro medio $24^{\text{Photomestation}}$ Limite di ritiro medio $24^{\text{Photomestation}}$				Contenuto d'a	coup (%)	EE 2409240	54	00620476
LIMITE DI RITIRO $(LR) = 17.86243517$ 18.81188119 LIMITE DI RITIRO MEDIO $(LR) = 18.33715818$ LIMITE DI RITIRO MEDIO $(LR) = 18.337$				Valumanu		00100245	J4.	6 07
LIMITE DI RITIRO $(LR) =$ LIMITE DI RITIRO MEDIO $(LR) =$ 17.86243517 18.81188119 18.81188119 18.81188119 18.81188119 19.92 19.92 19.933715818 19.92				volume vi	loti (cm)	6.07		6.07
LIMITE DI RITIRO MEDIO (LR) =			LIMI	TE DI RITIRO	(LR) =	17.86243517	18	81188119
Limite di ritiro medio					(18)=	182	3715818	
Limite di ritiro medio			WITE DITA	TINO MEDIO	(LK)-	WOIDERS.	5715010	
Limite di ritiro medio						ne all		
Limite di ritiro medio						non		
	Limite di ritiro	medio			in the second se	LR = 18	.337	%
(media delle due misure)	(media delle due misure	e)			<u>69</u> 2			
₩					4			

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

- Montesanto 64-66 - 71036 Lucera (FG) - P.IVA 03:06:20:20:718 - C.F. DCRLGUB1A09D643E T +39:0881:31:81:66 F +39:0881:31:81:67

www.geosveva.it

geosvevalaboratori@alice.it

6 7 Ministero delle

nistero delle restrutture Socio dell'Tresporti ALCA

mod.PQ 75-11/a Rev.01 del 01/2013

Pag 1/5

Numero certificato:	31461	emesso	il	04/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	ZIONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le I	Dott. Mas	simo Gu	binelli		
SITO :	Arcofiato)				
LOCALITA':	Camerin	o				
SONDAGGIO :	S2			DATA PRELIEVO	21/02/23	0
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	Qualita
PROFONDITA' :	01.00-01	40	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO DIRETTO

Modalità di prova: UNI EN ISO 17892-10

dati generali:			Provino nº1	Provino n°2	Provino nº3
Sezione provino	(cm ²)		36.00	36.00	36.00
Altezza iniziale	(mm)		23.00	23.00	23.00
Altezza finale	(<i>mm</i>)		22.56	22.40	22.25
Num tara 1			1.00	2.00	3.00
Peso tara 1	(g)		143.82	142.87	137.52
Tara + p. umido iniziale	(g)		307.74	310.04	303.61
Num tara 2			1.00	2.00	3.00
Peso tara 2	(g)		0.00	0.00	0.00
Tara + p. umido finale	(g)		165.25	166.34	164.82
Tara + p. provino secco	(g)		134.88	136.81	135.23
D Consolidazione 24 h	(<i>mm</i>)		0.44	1.83	2.08
Peso di volume iniziale	(KN/m ³)	Y (1)	19.41	19.80	19.67
Peso di volume finale	(KN/m ³)	YO	19.95	20.23	20.18
Peso di volume secco	(KN/m^3)	Y d (1)	15.97	16.20	16.02
Contenuto acqua iniziale	(%)	Wn (i)	21.53	22.19	22.82
Contenuto acqua finale	(%)	Wn (f)	22.52	21.58	21.88
Saturazione iniziale	(%)	Sr (i)	89.07	95.22	95.03
Saturazione finale	(%)	Sr (f)	97.91	99.34	99.40
ndice dei vuoti iniziale		e (i)	0.65	0.63	0.65
ndice dei vuoti finale		e (f)	0.62	0.58	0.59
Peso vol. secco finale	(KN/m^3)	Yd (F)	16.29	16.64	16.56

	1	-	L	
	-	-	-	
Ge	05	Sv	e	va

Laboratorio di Analisi Geotecniche

11

12

13

14

15

16

17

18 19

20

21

22

23

24

0.183

0.178

0.176

0.173

0.170

0.168

0.166

0.167

0.167

0.164

0.163

0.162

0.160

0.159

0.074

0.080

0.085

0.091

0.097

0.103

0.110

0.118

0.122

0.126

0.132

0.138

0.144

0.149

2.652

2.903

3.155

3.406

3.658

3.909

4.161

4.412

4.664

4.915

5.167

5.418

5.670

5.921

50.786

49.509 48.938

48.064

47.324

46.686

46.215

46.518

46.283

45.678

45.319

44.899

44.479

44.059

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 · 26/03/2010

www.geosveva.it

PIVA 03.06.20.20.718 C.F. DCRLGU81A09D643E T +39 0881 31 81 66 F+39 0881 31 81 67

e dei Trasporti

mod.PQ 75-11/a Rev.01 del 01/2013

CERTIFIED

Dea 2/F

Laboratorio di	Analisí Geotecnich	- 71036	Lucera (FG)		geosvevalaborato	ori@alice.it		Pag	g 3/5
Numero ce	ertificato:	31461	Data di emis	ssione:	04/03/23	INIZIO	PROVA	FINE I	ROVA
VERBALE DI	ACCETTAZIO	NE	1727	del	24/02/23	15/0	3/23	22/0)3/23
COMMITT	ENTE:	Spett.le Do	ott. Massim	no Gubine	elli				
SITO :		Arcofiato							
LOCALIT	۹':	Camerino							
SONDAG	GIO :	S2			DATA PRELIEVO		21/02/23		0
CAMPION	IE :	C1			TIPO DI FUSTELLA		(Metallo)		Qualita
PROFON	DITA' :	01.00-01.4	0	(m)	TIPO DI CAMPIONE		Indisturbat	0	Q5
			PF		I TAGLIO DIRETTO)			
				Moda	alità di prova: UNI EN ISO 1	7892-10			
Fase di Ro	ottura:				Provino nº1	velocità	di prova :	0.005	(mm/min)
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)	letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)
1	0.000	0.003	0	0.000			N. Contraction		
2	0.109	0.022	0.384	30.250					
3	0.144	0.026	0.640	39.997					
4	0.167	0.035	0.894	46.383					
5	0.180	0.037	1.148	49.879					
6	0.183	0.043	1.392	50.753					
7	0.186	0.054	1.643	51.593					
8	0.187	0.055	1.897	52.030					
9	0.187	0.062	2.149	51.828					
10	0.183	0.068	2.400	50.854					

98 σ= (Kpa) $\tau_r =$ 52.03 (Kpa) $S_h =$ 89 (mm) Diagramma Sforzo di taglio Spostamento Orizzontale

IL DIRETTORE del LABORATORIO Dott.Ing.Luigi Di Carlo

LO SPERIMENTATORE Geom.Giovann Turco

Laboratorio di Analisi Geotecniche

a

GeoSve

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 -26/03/2010

F +39 0881 31 81 67

Soc

Sistema

Pag 5/5

Certificato nº:	31461	Data di d	emissione:	04/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZI	ONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le	Dott. Mas	simo Gubir	nelli		
SITO : LOCALITA':	Arcofiato Camerin	0 0				
SONDAGGIO :	S2			DATA PRELIEVO	21/02/23	
CAMPIONE :	C1			TIPO DI FUSTELLA	(Metallo)	
PROFONDITA' :	01.00-01	.40	(m)	TIPO DI CAMPIONE	Indisturbate	o Q5
			PROVA D			
			Мо	dalità di prova: UNI EN ISO 1	7892-10	
Fase di Rottura:				Provino nº3	velocità di prova :	0.005 (mm/min)

	T (Kpa)	Sh (mm)	Sv (mm)	Forza (KN)	letture n°
	0.108	0.093	-0.051	0.000	1
	42.289	0.308	-0.089	0.152	2
	68.628	0.517	-0.087	0.247	3
	86.106	0.755	-0.079	0.310	4
	96.922	0.986	-0.076	0.349	5
	103.706	1.220	-0.074	0.373	6
	107.586	1.467	-0.071	0.387	7
	110.214	1.707	-0.067	0.397	8
	112.414	1.950	-0.065	0.405	9
	114.767	2.185	-0.061	0.413	10
	116.447	2.424	-0.049	0.419	11
	116.294	2.669	-0.047	0.419	12
	115.133	2.911	-0.046	0.414	13
	114.583	3.148	-0.044	0.413	14
	113.972	3.388	-0.042	0.410	15
	113.178	3.631	-0.038	0.407	16
	112.475	3.872	-0.037	0.405	17
	112.017	4.109	-0.037	0.403	18
	111.497	4.346	-0.034	0.401	19
(Pa)					
di taglio τ (P					
- 0 Sorzo .0					
			10		
		ORE	ERIMENTAT	LO SPE Geom.	

a Ballan	GeoSveva	di Luigi Di C	Carlo		mod.PQ 75-11,	/bRev.01 del 01/2013
	Laboratorio spe analisi geotecni	rimentale di she		- PIVA 03.06.20.20.718 - C.F. DCRLGU81A090	543E	🛫 9 6 6 6 7
	Ministero delle I Autorizzazione	<i>nfrastruttur</i> e e e n° 02610 - 2	e dei Trasporti 16/03/2010	T +39 0881 31 81 F +39 0881 31 81	66 67	
GeoSveva Laboratorio di Analisi Geotecniche	- Montesanto - 71036 Lucer	64-66 a (FG)		www.geosveva.it geosvevalaborat	nimstero della Infrastruttere a dei Trasporti cori@alice.it	Social Superson Super
Certificato nº: 31	462 ta di emis	sione:	04/03/23		INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZIONI	E 1727	del	24/02/23		15/03/23	22/03/23
COMMITTENTE: Sp	ett.le Dott. Mas	simo Gul	binelli			
SITO : Arc LOCALITA': Ca	cofiato merino					
SONDAGGIO : S2			DATA P	RELIEVO	21/02/23	Qualità
CAMPIONE : C1			TIPO DI F	USTELLA	(Metallo)	Quanta
PROFONDITA': 01	.00-01.40	(m)	TIPO DI C	AMPIONE	Indisturb	ato Q5

PROVA DI TAGLIO RESIDUO

Modalità di prova: ASTM D 3080 / 2004									
dati generali:		Provino nº1	Provino n°2	Provino n°3					
Sezione provino	cm ²	36.00	36.00	36.00					
Altezza iniziale	mm	23.00	23.00	23.00					
Altezza finale	mm	22.56	22.40	22.25					
Num tara 1		1.00	2.00	3.00					
Peso tara 1	g	143.82	142.87	137.52					
Tara + p. umido iniziale	g	307.74	310.04	303.61					
Num tara 2		1.00	2.00	3.00					
Peso tara 2	g	0.00	0.00	0.00					
Tara + p. umido finale	g	165.25	166.34	164.82					
Tara + p. provino secco	g	134.88	136.81	135.23					
Peso specifico grani	KN/m ³								
Peso di volume iniziale	KN/m ³	19.41	19.80	19.67					
Peso di volume finale	KN/m ³	19.95	20.23	20.18					
Peso di volume secco	KN/m ³	15.97	16.20	16.02					
Contenuto acqua iniziale	%	21.53	22.19	22.82					
Contenuto acqua finale	%	22.52	21.58	21.88					
Saturazione iniziale	%	89.07	95.22	95.03					
Saturazione finale	%	97.91	99.34	99.40					
Indice dei vuoti iniziale		0.65	0.63	0.65					
Indice dei vuoti finale		0.62	0.58	0.59					
Peso vol. secco finale	KN/m ³	16.29	16.64	16.56					

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.16

GeoSveva

PROFONDITA' :

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

(m)

- Montesanto 64-66 - 71036 Lucera (FG)

01.00-01.40

- P.IVA 03 05 20 20 718 - C.F. DCRLGUB1A090643E T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it geosvevalaboratori@alice.it

mod.PQ 75-11/bRev.01 del 01/2013

Indisturbato

Pag 3/5

Q5

Certificato nº:		31462	Data di e	emissione:	04/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCET	TAZIO	ONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENT	Ξ:	Spett.le	Dott. Mas	simo Gubir	nelli		
SITO :		Arcofiato	D				
LOCALITA':		Camerin	0				
SONDAGGIO	1	S2			DATA PRELIEVO	21/02/23	
CAMPIONE	5	C1			TIPO DI FUSTELLA	(Metallo)	

PROVA DI TAGLIO RESIDUO

TIPO DI CAMPIONE

				Moda	alità di prova:	UNI EN ISO	17892-10			
Fase di Ro	ttura:				Provino nº1	1	velocità	di prova :	0.005	(mm/min)
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)		letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)
1	0.017	-0.001	0.165	4.700		36	0.117	0.091	6.355	32.532
2	0.040	0.004	0.362	11.117						
3	0.075	0.021	0.743	20.966						
4	0.089	0.021	0.916	24.795						
5	0.100	0.027	1.124	27.911						
6	0.109	0.029	1.345	30.155						
7	0.117	0.033	1.590	32.373						
8	0.121	0.034	1.836	33.482						
9	0.122	0.037	2.074	33.931						
10	0.123	0.040	2.328	34.248						
11	0.124	0.050	2.574	34.433			1			-
12	0.124	0.050	2.818	34.486						
13	0.123	0.054	3.055	34.274						
14	0.123	0.059	3.299	34.169						
15	0.122	0.065	3.541	33.878					1.0	
16	0.122	0.065	3.785	33.799			σ=	980	(Kpa)	
17	0.121	0.065	4.028	33.720			$\tau_r =$	34 49	(Kpa)	
18	0.120	0.068	4.277	33.456			Sh=	2.82	(mm)	
19	0.120	0.069	4.529	33.245						
20	0.120	0.069	4.773	33.245		Diagramma Sf	orzo di tanio-Spo	stamento Oriz	zontale	
21	0.119	0.070	5.013	33.060			KOLL			
22	0.119	0.082	5.253	32.928	100 +		-0[1			
23	0.118	0.084	5.501	32.743	СРа	.0	9			
24	0.118	0.085	5.746	32.690	÷	- OPIE				
25	0.118	0.087	5.994	32.664	P 50	<u> </u>				
26	0.117	0.090	6.237	32.505	agli					
27	0.117	0.091	6.355	32.532	1	0000			-0-0-00	
28	0.117	0.091	6.355	32.532	20 (Z	0				
29	0.117	0.091	6.355	32.532	+ 0 Sor	ď				+
30	0.117	0.091	6.355	32.532	0.0	0 1.00	2.00 3.00	4.00 5.00	6.00 7	.00 8.00
31	0.117	0.091	6.355	32.532			Sp	iostamento Or	izzontale (mi	n)
32	0.117	0.091	6.355	32.532			Provino 1	Provino 2	Pr	ovino 3
33	0.117	0.091	6.355	32.532						
34	0.117	0.091	6.355	32.532						
35	0.117	0.091	6.355	32.532						

IL DIRETTORE de LABORATORIO Dott.Ing.Luigi Di Carlo

p-		GeoS	oveva di Luig	gi Di Carlo			n	10d.PQ 75-11/bR	lev.01 del 01/201.	3
1		Laborati analisi g	orio sperimenta jeotecniche	le di	- P' IV - C F	A 03 06 20 20 713 DCRLGU81A09D6	43E		 	-/3
L		Minister	o delle Infrastru zazione nº 026	lture e dei Tras \$10 - 26/03/201	sport/ T +3	9 0881 31 81 6	36	4 -	CERT 150	\checkmark
Goo	STOTES						Ministera o Inirastrutto	iene re So	Sistema di .	iesteris.
Laboratorio d	JVCVO i Analisi Geotecnich	- Monte - 71036	esanto 64-66 8 Lucera (FG)		geo	w.geosveva.it isvevalaborati	^{e dei ™as} ori@alice.it	parti AL	GI Pag	aoni 2015 4/5
Certificato	n°:	31462	Data di emi	ssione:	04/03/23		INIZIO P	ROVA	FINE PI	ROVA
VERBALE DI	ACCETTAZION	E	1727	del	24/02/23		15/03	3/23	22/03	/23
001414173				0.11						
	IENTE:	Spett.le Do	ott. Massin	no Gubine	9///					
SILO :	Λ1.	Arconato								
SONDAC		Camerino						01/02/23		
CAMPION		01						Metallo)		
CAMPION		61	5	Section 1	TIPODIF	USTELLA				
PROFON	DITA' :	01.00-01.4	0	(m)	TIPO DI C	AMPIONE		Indisturbat	0	Q5
			PI	ROVA DI	TAGLIO	RESIDUC)			
				Moda	alità di prova:	UNI EN ISO 1	7892-10			
Fase di Ro	ottura:				Provino nº2	2	velocità d	li prova :	0.005 (mm/min)
letture	Forza	Sv	Sh	т		letture	Forza	Sv	Sh	Т
n°	(KN)	(mm)	(mm)	(Kpa)		n°	(KN)	(mm)	(mm)	(Kpa)
1	0.000	0	0	0.000		36	0.215	0.163	7.034	59.789
2	0.068	0.086	0.320	18.860		37	0.215	0.167	7.231	59.789
3	0.093	0.105	0.541	25.749						
4	0.129	0.106	0.730	35.789		1.2				
5	0.154	0.108	0.927	42.696						
6	0.172	0.111	1.124	47.889						
/ 0	0.188	0.111	1.321	56.016						
9	0.202	0.113	1.715	58,713						
10	0.211	0.113	1.912	60.572						
11	0.222	0.127	2.109	61.757						
12	0.226	0.127	2.306	62.759						
13	0.228	0.127	2.503	63.196						
14	0.228	0.127	2.700	63.470						
15	0.230	0.127	2.897	63.925				400		
16	0.230	0.127	3.094	64.016			$\sigma = \tau =$	64.00	(Kpa)	
17	0.229	0.120	3.488	63 214			S.=	909	(mm)	
10	0.220	0.120	3 685	62 814			U n	Olimot	(min)	
20	0.225	0.120	3.882	62.595		Diagramma Sta		etamonto Oria	zontalo	
21	0.224	0.127	4.079	62.212		Diagramma Sio		Stamento Onz	20111010	
22	0.222	0.131	4.276	61.757	100 +		anto			
23	0.222	0.132	4.473	61.720	Pa)	.0	99			
24	0.222	0.139	4.670	61.665	Ξ.	- OPIe				1.2
25	0.223	0.139	4.867	61.848	o 50 -	Coros			~~~~~~~~~~	1010
26	0.221	0.139	5.064	61.356	tagl	P				
27	0.220	0.139	5.261	60.019	ē	1				
20	0.219	0.140	5 655	60.918	orzo					
30	0.216	0.144	5.852	59.953	S 0 d	0 100 3	200 300	4.00 5.00	6.00 7	00 8 00
31	0.215	0.148	6.049	59.807	0.0	0 1.00 2	Sp	ostamento O	rizzontale (mn	n)
32	0.215	0.148	6.246	59.789		Pr	rovino 1 🛛 🛁	Provino 2	Pr	ovino 3
33	0.215	0.152	6.443	59.789		1				
34	0.215	0.158	6.64	59.789						
35	0.215	0.160	6.837	59.789			1			
		00					A			
	LO SP	ERIMENTA	TORE			IL DIRETTO	ORE del LAB	ORATORIO		
	Geom	.Giovanni T	urco			Dott	Ing.Luigi Di	Carlo		2

LO SPERIMENTATORE Geom.Giovanni Turco

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecnicha

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

PIVA 03 06 20 30 718 C.F. DCRLGU81A09D643E T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it

Secia ALGI dei Trasponi geosvevalaboratori@alice.it

mod.PQ 75-11/bRev.01 del 01/2013

CERTIFIED 4-10 9001 Sulems di gustione Qual la certificato UNI EM 60 9001 201

Pag 5/6

Certificato nº:	31462	Data di e	emissione:	04/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	ZIONE	1727	del	24/02/23	15/03/23	22/03/23

the second s				•		
COMMITTENTE	E:	Spett.le Dott. Ma	assimo Gub	inelli		
SITO :		Arcofiato				
LOCALITA':		Camerino				
SONDAGGIO	:	S2		DATA PRELIEVO	21/02/23	
CAMPIONE	÷ .	C1		TIPO DI FUSTELLA	(Metallo)	
PROFONDITA'	:	01.00-01.40	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO RESIDUO

				Moda	alità di pro	ova: UNI EN IS	SO 17892-10					
Fase di Ro	ottura:				Provino	n°3	velo	ocità	di prova :	0.00	05 (mm/	/min)
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)		letture n°	For (KI	za V)	Sv (mm)	Sh (mm)	()	T (pa)
1	0.000	0.015	0	0.000								
2	0.033	0.037	0.129	9.167								
3	0.063	0.059	0.322	17.500								
4	0.088	0.060	0.566	24.444								
5	0.115	0.060	0.727	31.944								
6	0.140	0.066	0.916	38.889								
7	0.160	0.069	1.105	44.444								
8	0.175	0.072	1.294	48.611								
9	0.190	0.076	1.483	52.778								
10	0.210	0.085	1.673	58.333								
11	0.220	0.095	1.862	61.111								
12	0.235	0.112	2.051	65.278								
13	0.245	0.122	2.240	68.056								
14	0.255	0.135	2.429	70.833								
15	0.265	0.144	2.618	73.611					J			
16	0.275	0.160	2.807	76.389				σ=	294	(Kpa)		
17	0.285	0.173	2.996	79.167			1.9	$\tau_r =$	89.73	(Kpa)		
18	0.295	0.173	3.185	81.944				$S_{h} =$	5 27	(mm)		
19	0.300	0.174	3.374	83.333					Oliz			
20	0.305	0.177	3.564	84.722		Diagramma	Sforzo di tac	lieso	ostamento Ori	zzontale		
21	0.310	0.183	3.753	86.111	1.00	Diagramma		SV.				
22	0.315	0.183	3.942	87.500	100	0 +		1		~		
23	0.313	0.183	4.131	86.938	Ра		01	0000	00000000	0		
24	0.318	0.183	4.320	88.205	Ŧ		100000					
25	0.320	0.187	4.509	88.895	P 51		200					
26	0.321	0.187	4.698	89.050	aglio							
27	0.322	0.187	4.887	89.514	17 17	8						
28	0.323	0.187	5.076	89.669	D OZ	8						
29	0.323	0.187	5.265	89.725	Sor	0 8		1				
						0.00 1.00	2.00 3	.00	4.00 5.00) 6.00	7.00	8.00
								St	ostamento O	rizzontale (mm)	2
							Provino 1		Provino 2		Provino 3	3
					-				and the state			
							Λ					
	10.000	10					L.					
	LO SPI	ERIMENTAT	ORE			IL DIRE	I TORE de	LAB	ORATORIC			
	Geom	.Giovanni T	urco			D	ott.Ing.Lui	gi Di	Carlo			

Laboratorio di Analisi Geotecniche

va

GeoSve

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66 - 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010 - P IVA 03 06 20 20 718 - C.F DCRLGU81A09D643E T +39 0881 31 81 66 F +39 0881 31 81 67

mod.PQ 75-14 Rev.01 del 01/2013

www.geosveva.it infrastruiture Sacio e dei Trasporti ALGI geosvevalaboratori@alice.it

Pag 1/2

ertificato nº:	31463	emesso il		04/03/23		INIZIO PROVA	FINE PROVA
ERBALE DI ACCETTA	ZIONE	1727	del	24/02/23		15/03/23	22/03/23
OMMITTENTE:	Spett.le	Dott. Mass	imo Gubin	elli			
ITO :	Arcofiate	0					
OCALITA':	Camerin	0					
ONDAGGIO ·	S2			DATA P	RELIEVO	21/02/23	
AMPIONE	C1				ISTELLA	(Metallo)	
ANTONE .	01				OUTLELA	(metano)	
ROFONDITA' :	01.00-01	.40	(m)	TIPO DI C	AMPIONE	Indisturba	ito Q5
PROVA D	I COMPR	RESSION	IE TRIAS	SIALE N	ON CONSO	DLIDATA NON DR	ENATA UU
			Modalità	di prova:	UNI CEN IS	017892-8	
Fase di	rottura : P1	Fase di	rottura : P2	Fase di i	rottura : P3		
З	$\sigma_1 - \sigma_3$	3	01-03	3	01-03		
%	kPa	%	kPa	%	kPa		
0.00	0.00			-			
0.15	6.52						
0.61	82.20			-			
1.10	168 37	-					
2 11	189.30	-					
2.63	203.59						
3.16	214.19						
3.65	222.30						
4.17	228.46		1				
4.68	233.55		-				
5.20	236.88						
5./1	240.94	-	-				
6.73	246.39						
7.25	248.71						
7.76	250.34						
8.26	252.07						
8.77	253.24						
9.30	254.01						
9.79	254.78		-				
10.32	255.50					×	Y
11.34	256.20					inica	
11.87	256.62					ail ⁹	
12.36	256.80					×10.	
12.88	257.07					0	
13.40	257.67					ALL Y	
13.91	257.44					×9	
14.43	256.94	-				CON.	
14.95	254.95					<u>%</u>	
15.99	253.82				~08	Y.	
16.49	252.74	1			<u> </u>		
17.03	251.55						
17.55	250.04						
18.06	248.35	-					
0.00	0.00						
0.00	0.00				-		
0.00	0.00			-			
0.00	0.00						
	DED DA	ATOPE					2
LOS	PERMENT	ATORE			IL DIRETT	In LABORATORI	
Geo	m.Giovann	i Turco			Dott	ing.Luigi Di Carlo	

	Ч	2	ul)	
1				ľ
	1			
	-			L

Laboratorio di Analisi Gentechiche

GeoSve

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e del Trasporti Autorizzazione n° 02610 - 26/03/2010 - FINA 03.06.20.20.718 - C.F. DCRLGU81A09D643E T +39.0881.31.81.66 F +39.0881.31.81.67

geosvevalaboratori@alice.it

www.geosveva.it

۵ 🎽

mod.PQ 75-14 Rev.01 del 01/2013

Socio ALGI

Pag 2/2

/23 INIZIO PROVA FINE PROVA
15/03/23 15/03/23 22/03/23
A PRELIEVO 21/02/23
DI FUSTELLA (Metallo)
DI CAMPIONE Indisturbato Q5

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA UU

Modalità di prova: UNI CEN ISO17892-8

Provino	H0	Ao	γn KN/m ³	γd KN/m ³	₩₀ %	W _f %
1	73.00	11.33	19.85	16.48	20.45	20.57
2						
3						

W _f	S ₀	Sf		
%	%	%		
20.57	91.70	99.52		

Provino	σ _{1c} kPa	σ _{3c} kPa	σ₁'。 kPa	ε %	ס' ₁ -ס' ₃ kPa
1	50.00	50.00	0.00	8.77	253.24

-		
	- 88	
1		

GeoSveva Laboratorio di Analisi Geotecniche

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

- PIVA 03.06.20.20.718 - C.F. DCRLGU81A09D643E T +39.0881.31.81.66

F +39 0881 31 81 67

SOCIO AL GI

mod.PS 75-00/a Rev.01 del 01/2021

www.geosveva.it Infrastruttue geosvevalaboratori@alice.it

Pag 1/1

Certificato nº:	31464	emesso il		05/03/23	INIZIO	PROVA	FINE	PROVA
VERBALE DI ACCETTAZIONE	17	27	del	24/02/23	15/	03/23	15	/03/23
COMMITTENTE:	Spett.le I	Dott. Massi	imo Gubin	elli				
SITO :	Arcofiato	0						
LOCALITA':	Camerin	0						
SONDAGGIO :	S 4			DATA PRELIEVO		21/02/23		Qualità
CAMPIONE :	C2			TIPO DI FUSTELLA		(Metallo)		Quanta
PROFONDITA' :	01.20-01.60		(m)	TIPO DI CAMPIONE	Indisturb		ato (Q5
		AP	ERTU	RA CAMPIONI				
			Modalita	à di prova: UNI EN ISO	14688-1			
Diametro	:	8.4	(cm)	Consistenza	:	Media		
Lunghezza	1.1	31.5	(cm)	Plasticità	:	Media		
				Umidità	4	Media		
Colore	: 6/6	6 2.5y						
Pocket	1.		250 (KPa) Vane test	:		(KPa)	
Descrizione Limo con argilla	di colore m	narrone-verd	astro					

Analisi effettuate certificati :

 n°31465 Determinazione del peso specifico assoluto dei grani - n°31466 Peso di volume allo stato naturale n°31467 Determinazione del contenuto naturale d'acqua - n°31468 Analisi Granulometrie per sedimentazione e setacciatura - n°31469 Limite di Liquidità e di Plasticità - n°31470 Limite di ritiro - n°31471 Prova di taglio diretto consolidata drenata - n°31472 Prova di taglio residuo - n°31473 Triassiale UU

Geom.Giovanhi Turco

IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

	all.la	Ge	oSveva di l	Luigi Di Carlo	D			mod.P	Q 75-04 Rev.01 d	el 01/2021
		Lab	oratorio sperime lisi geotecniche	entale di		- P.IVA 03.06 - C.F. DCRLGI	20 20 718 J81A09D643E	(2)	-	
CONSERVEN • Andread Bellet Wave generative and the andread Bellet and the an		Min	istero delle Infra torizzazione n°	strutture e dei 02610 - 26/03	Trasporti I/2010	T +39 0881 F +39 0881	31 81 66	Some of	-	
Numero certificato: 31467 emeso it 05/03/23 INZIO PROVA FINE PROVA VERALE DA CETTAZIONE 1727 del 24/02/23 15/03/23 16/03/23 COMMITTENTE: SpetLe Dott Massimo Gubinelli STO : Arcofiato LOCALITA: Camerino SONDAGGIO : 54 DATA PRELIEVO 21/02/23 Qualité SONDAGGIO : 54 DATA PRELIEVO 21/02/23 Qualité PROFONDITA': 012/01/60 (m) TIPO DI CAMPIONE Indisturbato Q5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 Wn = 24.3 % Contenitore N° 42 Wn = 24.4 % Contenitore N° 2 Wn = 24.4 % Contenuto d'acqua allo stato naturale Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Loserdone della tre misure Loserdone della tre	GeoSver Laboratorio di Analisi Geot	Va - M ecniche - 71	ontesanto 64- 1036 Lucera (F	66 °G)		www.geos geosveva	veva.it laboratori(Ministaro delle Initastrutture e del Trasporti Dalice.it	Souto ALGI	Biolemini destione Qualta celeficato UNI et lism soon ed ra Pag 1/1
COMMITTENTE: SpetLe Dott. Massimo Gubinelli SITO : Arcofato LCOALITA': Camerino SINDAGGIO : S4 CAMPIONE : C2 PROFONDITA': 01.20.01.60 (m) TIPO DI CAMPIONE Indisturbato Q6 CONTENUTO D'ACQUA ALLO STATO NATURALE Modelità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ► Wn = 24.3 % Contenitore N° 42 ► Wn = 24.8 % Contenitore N° 2 ► Wn = 24.4 %	Numero certificato: VERBALE DI ACCETT	31467 AZIONE	emesso il 1727	del	05/03/2 24/02/2	3 3		INIZIO PRO 15/03/23	VA F	FINE PROVA 16/03/23
SITO : Arcofiato LCOALITA: Camerino SONDAGGIO : SA CAMPIONE : C2 IPO DI FUSTELLA (Metallo) Qualità Indisturbato QG CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ► Vn = 24.3 % Contenitore N° 42 ► Wn = 24.4 %	COMMITTENTE	Spett.le	Dott. Mass	imo Gubi	nelli					
SONDAGGIO : S4 DATA PRELIEVO 24/02/23 (Medilo) CAMPIONE : C2 TIPO DI FUSTELLA (Medilo) Q5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ► Wn = 24.3 % Contenitore N° 42 ► Wn = 24.8 % Contenitore N° 2 ► Wn = 24.4 % Contenitore N° 2 ► Wn = 24.4 % Contenitore N° 2 ► Wn = 24.4 %	SITO : LOCALITA':	Arcofiato Camerin	0							
CAMPIONE : C2THP O I PASTELLA (Metailo) PROFONDITA': 01.20-01.60 (m) TIPO DI CAMPIONE Indisturbato Q5 CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ► Wn = 24.3 % Contenitore N° 42 ► Wn = 24.8 % Contenitore N° 2 ► Wn = 24.4 % Contenitore N° 2 ► Wn = 24.4 % Contenitore N° 2 ► Wn = 24.4 %	SONDAGGIO	S4			DATA	PRELIEV	0	21/0	2/23	Qualità
INCLORENTAL (III) INCLORENTAL INCLORENTAL CONTENUTO D'ACQUA ALLO STATO NATURALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ► Wn = 24.3 % Contenitore N° 40 ► Wn = 24.8 % Contenitore N° 42 ► Wn = 24.8 % Contenitore N° 2 ► Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.47 %		C2	60	(m)			A F	(Me Indi	tallo) isturbato	05
CONTENUTOR ACQUA ACQUA ACLOSTATO NATORALE Modalità di prova: ASTM D 2216 / 2005 Temperatura di essiccazione : 110 °C Contenitore N° 40 ▶ Wn = 24.3 % Contenitore N° 42 ▶ Wn = 24.8 % Contenitore N° 2 ▶ Wn = 24.4 % Contenitore N° 2 ▶ Wn = 24.4 % Contenitore N° 2 ▶ Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Contenuto d'acqua allo stato naturale	FROI ONDITA	01.20-01					-	NATU		QU
Temperatura di essiccazione : 110 °C Contenitore N° 40 M 2 Wn = 24.3 % Contenitore N° 42 Wn = 24.8 % Contenitore N° 2 Wn = 24.4 % Contenitore N° 2 Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.47 %		CONTE	NUTO	Modalita	à di prov	a: ASTM	D 2216	2005	RALE	
Contenitore N° 40 ► Wn = 24.3 % Contenitore N° 42 ► Wn = 24.8 % Contenitore N° 2 ► Wn = 24.4 % Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.4 %		4								
Contenitore N° 40 Vin = 24.3 % Contenitore N° 42 Vin = 24.8 % Contenitore N° 2 Vin = 24.4 % Contenuto d'acqua allo stato naturale Vin = 24.4 % Win = 24.47 % Win = 24.47 %		Tempe	ratura di	essicca	izione :		110 °C			
Contenitore N° 42 Vin = 24.8 % Contenitore N° 2 Vin = 24.4 % Contenuto d'acqua allo stato naturale wn = 24.4 % (media delle tre misure) Vin = 24.47 % wn = 24.47 %	c	Contenitor	e N°	40	•	Wn	=	24.3	%	
Contenitore N° 2 Wn = 24.4 % <u>Contenuto d'acqua allo stato naturale</u> Wn = 24.4 % (media delle tre misure) Wn = 24.47 % Wn = 24.47 % Wn = 24.47 % United a delle tre misure)	c	Contenitor	e N°	42		Wn	=	24.8	%	
Contenuto d'acqua allo stato naturale Wn = 24.47 % (media delle tre misure) (media delle tre misure)	C	Contenitor	e N°	2	•	W/n	-	24.4	%	
Contenuto d'acqua allo stato naturale Wn = 24.47 % (media delle tre misure) Wn = 24.47 %		Jontenitor	0.11	2		VVII		27.7		
Contenuto d'acqua allo stato naturale (media delle tre misure) Wn = 24.47 % Une se										
Contenuto d'acqua allo stato naturale Wn = 24.47 % (media delle tre misure) Wn = 24.47 % Lo SPERIMENT TODE Geom. Giovarini Turco Lo IREPORE DEL LABORATORIO DotLing Luigi Di Carlo	0.1.1									
LO SPERIMENTADE Geom. Giovanni Turco	(media delle tre m	d'acqu iisure)	a allo s	stato r	natura	le	V	Vn =	24.4	7 %
LO SPERIMENTACAE Geom. Giovanni Turco									NO	
LO SPERIMENTA CHE Geom. Giovanni Turco								Ś	dinat	
LO SPERIMENTADAE Geom. Giovanni Turco								e 3110		
LO SPERIMENTADA Geom. Giovanni Turco								torme		
LO SPERIMENT TOPE Geom.Giovanni Turco								211		
LO SPERIMENTATORE Geom.Giovanni Turco							COPIE			
LO SPERIMENTATORE Geom.Giovanni Turco										
LO SPERIMENTATORE Geom.Giovanni Turco LO SPERIMENTATORE Dott.Ing.Luigi Di Carlo										
LO SPERIMENTATORE Geom.Giovanni Turco IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo										
LO SPERIMENTATORE Geom.Giovanni Turco Dott.Ing.Luigi Di Carlo										
LO SPERIMENTATORE Geom.Giovanni Turco Dott.Ing.Luigi Di Carlo										
LO SPERIMENTATORE Geom.Giovanni/Turco IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo								N		
Geom.Giovanni/Turco Dott.Ing Luigi Di Carlo	LO SPER						IL DI	RETORE DEL	LABORATO	RIO
	Geom.	Giovanni	irco				Dot	t.Ing.Luigi D	i Carlo	

Numero certificato:

VERBALE DI ACCETTAZIONE

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

1727

ta di emissione:

Ministero delle Infrastrutture e dei Trasporti Autorizzazione n° 02610 - 26/03/2010

del

- P.IVA 03.06.20.20.718 - C.F. DCRLGU81A09D643E

T +39 0881 31 81 66 F +39 0881 31 81 67 Ministero delle Infrastruttue e dei Trasporti

mod.PO 75-01 Rev.01/2021

Qualità

COMMITTENTE	2:	Spett.le Dott. M	assimo Gub	inelli
SITO :		Arcofiato		
LOCALITA':		Camerino		
SONDAGGIO	:	S4		D
CAMPIONE	:	C2		TI
PROFONDITA'	-	01.20-01.60	(m)	TI

31468

(m) TIPO DI CAMPIONE

DATA PRELIEVO

TIPO DI FUSTELLA

05/03/23

24/02/23

ANALISI GRANULOMETRICA

Modalità di prova: ASTM D 422 / 2007

	A	nalisi con va	gli		
Setaccio	diametro (mm)	peso grani (g)	trattenuto (%)	passante (%)	diametro grani (mm)
4"	101.60			100.00	101.60
3	75.00			100.00	75.00
2	50.00			100.00	50.00
1.5	37.50			100.00	37.50
1"	25.00			100.00	25.00
0.75	19.00			100.00	19.00
0.375	9.50	4.84	2.05	97.95	9.50
4	4.75	1.66	2.76	97.24	4.75
10	2.00	2.34	3.75	96.25	2.00
18	0.85	1.58	4.42	95.58	0.850
40	0.43	0.83	4.77	95.23	0.425
60	0.25	0.74	5.09	94.91	0.250
140	0.11	8.95	8.88	91.12	0.106
200	0.07	21.76	18.11	81.89	0.074
0.45	< 0.074	193.07	81.89	ssante al 2	200
Somma (g)		235.77			
Peso iniziale	(g)	236.00	4		
Perdita (g)		0.23			

Analisi con densimetro

correzioni		
dispersivo	Cd	-3.00
menisco	Cm	0.50
temperatura	intercetta	-5.00
temperatura	0.25	
caratteristich	e fisiche	
peso campior	ne secco g	40.00
peso specific	KN/m ³	26.441
taratura dens	simetro	
intercetta		15.573
pendenza	-0.235	

		Analsi con o	lensimetro		
Tempo	Tempe_ ratura	Lettura	Lettura + C _M	Correzione temperatura	Percentuale parziale
min	°C	R	R'		%
0.50	20.00	26.50	27.00		95.37
1.00	20.00	25.50	26.00		91.40
2.00	20.00	24.50	25.00		87.42
4.00	20.00	23.00	23.50		81.46
8.00	20.00	22.00	22.50		77.49
15.00	20.00	20.00	20.50	1	69.54
30.00	20.00	18.50	19.00	1.0.0	63.58
60.00	20.00	14.00	14.50		45.70
120.00	20.00	13.00	13.50		41.72
240.00	20.00	11.00	11.50		33.78
480.00	20.00	10.00	10.50		29.80
1440.00	20.00	8.50	9.00		23.84

IL DIRETTORE DEL LABORATORIO Dott.Ing. uigi Di Carlo

					G	eoSveva di L	uigi Di Carlo			mod.PQ 75-01	Rev.01 del 01,	2021
					9 1 9	iboratorio sperimer ialisi geotecniche	ttale di	- P.IVA 03.06.2 - C.F. DCRLGU	0 20 718 81A09D643E	3		
					MI	inistero delle Infras utorizzazione nª (trutture e dei Trasporti 02610 - 26/03/2010	T +39 0881 F +39 0881	31 81 66 31 81 67			ISO CONTRACTOR
GeoSveva Laboratorio di Analisi Geotecnichi	a a					Montesanto 64-6 71036 Lucera (F	(9) (9)	www.geosv geosvevali	eva.it iboratori@al	Ministero delle hifrastrutture e del Trasporti CO.ªE	Sevio ALGI	સાંગતાન તે પૂર પ્રાળં ન અન્નાવિત્સા વસ્તવિત્સા વિશ્વાસ વસ્તવિત્સા ગ્રિ. છે. ગ્રે. છે. છે. છે. છે. છે. છે.
Numero certificato:	31468 D	lata di emi	issione:		05/03/2023				IZINI	O PROVA	FIN	E PROVA
VERBALE DI ACCETTAZIONE		1727	del		24/02/2023		rag ziz		15	/03/2023	20	/03/2023
COMMITTENTE:	Spett.le Doti	t. Massir	no Gubine	illi								
SITO : Arcofiato							OCALITA':	Camerin	0			
SONDAGGIO :	<mark>84</mark>	CAMPIO	 NE	C3	PROFO	NDITA' :	0	1.20-01.60	(m)	DATA PR	ELIEVO	21/02/2023
					CURVA GF	RANULOME	<i>IRICA</i>					
	argilla		limo			sabbia			ghiaia	0	ott.	
	fine		medio	grosso	fine	media	grossa	fine	nedia	grossa		
200 YOU												
00												
06												
80												
01												
0												
60												
50	C											
40	je je											
		•										
30		10										
20												
10			Š									
			i O									
0.0	01	3	.010	. 6.	0.100		1.000		0.000 diar	netro (mm)	100.000	
			DEFIN	IZIONE G	RANULOME	TRICA:		ARGILLA	22.00%	9		
	L	imo arg.	illoso sabt	osoic				LIMO	56.00%	9		
								SABBIA	18.00%	9		
P	SPERIMENTATI	ORE		ILI	DIRETTORE d	Iel IABORAT	ORIO	GHIAIA	4.00%			
Ğ	som.Giovanni Tu	Irco			Dott.Ing.L	uigi Di Carlo		CIOTTOLI				
	1				7							

a Balla	Ge	eoSveva di l	Luigi Di Carlo				mod.PQ 75-06/a	Rev.01 del 01/20	21
	Lab	oratorio sperime Ilisi geotecniche	intale di		- P IVA 03 06 20 20 - C.F. DCRLGU81A	718 090643E		- 94	1-13
	Mir Au	ustero delle luira torizzazione n°	strutture e dei 02610 - 26/03/	Trasporti 2010	T +39 0881 31 F +39 0881 31	81 66 81 67			
GeoSvev	7 a. - N niche - 7	lontesanto 64- 1036 Lucera (F	66 FG)		www.geosvev geosvevalabo	a.it e der 1 oratori@alice.it	m delle uffure 5 Trasporti A	itero Sistana. Galta Unita (Unita) Pag	d gastone serticato ISO 960 (2015 1/1
Numero certificato:	31469	emesso il		05/03/23	3	INIZIO	PROVA	FINE P	ROVA
ERBALE DI ACCETTA	ZIONE	1727	del	24/02/23	l.	15/0	03/23	20/0	3/23
COMMITTENTE: SITO : OCALITA':	Spett.le Arcofiat Camerin	Dott. Mass o	imo Gubir	nelli					
SONDAGGIO : CAMPIONE :	S4 C2			DATA F	PRELIEVO FUSTELLA		21/02/23 (Metallo)		Qualità
PROFONDITA' :	01.20-01	.60	(m)	TIPO DI O	CAMPIONE		Indisturbat	to	Q5
		DICO	NCICT	ENIZA		O E DI	STICO		
		DICO	112121	ENZA	LIQUID	UEPLA	431100	-	
			Modalità	di prova	: UNI EN IS	50 17892-2			
LA PROVA E' S	TATA ESEGUIT	A SULLA FRAZION	E GRANULOMET	RICA PASSANT	E AL SETACCIO Nº	40 (0,425 mm)			
	DROVINO	-	L		UIDO		LASTICO		
NUM			02	1	3	15	45		
NOM			13	24	37	-			
	TARA (a)	39.208	39,149	39,481	21.477	17.728		
PESC	UMIDO + T	ARA(g)	50.806	52.692	49.66	33.052	27.164		
PESC	SECCO + T	ARA(g)	46.56	47.89	46.21	30.74	25.3		
CONT	ENUTO IN A	CQUA(g)	4.246	4.802	3.45	2.312	1.864		
P	ESO SECCO	D(g)	7.352	8.741	6.729	9.263	7.572		
CONTE	NUTO IN A	CQUA (%)	57.753	54.937	51.271	24.960	24.617		
			CONTENU	TO NATURA	LE IN ACQUA	= 24.47	%		
				100	70	Car	ta di Casagra	nde	1
				90	60 -	- S.	1000		
				80 0	50 -				
			_	70 5	d		СН	/	
				60 .5	etic 40	CL	No.	/	
	-			50 2	06 astio	CI	L-OL		
							101		
				40 0	e ee		24	MU OU	
				30	ipul 10	ML-OL	L-OH	WH - OH	
				20 00		10 30	40 50 60	70 80 !	90 100

10

54 25

29 1.011

100⁰

%

%

Ø

10

C-Argilleinurganiche M-Lini inorganici O-Argille e Limi organici

RISUI	TATI
1 15 417	E LIOLUE

25

10

LIMITE LIQUIDO	(LL)=
LIMITE PLASTICO	(LP)=
INDICE DI PLASTICITA'	(IP)=
INDICE DI CONSISTENZA	(IC)=

LO SPERIMENTATORE Geom.Giovanni Turco

IL DIRETTORE DEL LABORATORIO Dott.Ing.Luigi Di Carlo

40

Limite di Liquidità LL

30

60

70 80

L= Bassa compressibilità I = media compressibilità H = Alta compressibilità

50

90

100

Numero di colpi

atorio sperimentale di geotecniche ero delle Infrastrutture e d itzzazione n° 02610 - 26 itesanto 64-66 36 Lucera (FG) emesso il 1727 del ott. Massimo Gu 0 (m) LI Modal Peso capsula so capsula + terro	PIVA 03 06 20 20 718 -C.F. DORLGUBLADDOR der Trasport/ (03/2010 T +39 0881 31 81 0 F +39 0881 31 81 0 www.geosveva.it geosvevalaborati 05/03/23 24/02/23 binelli DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO Vità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	A3E 66 7 Ministero delle infrastruttura e der Trasport ori@alice.it INIZIO PROVA 15/03/23 21/02/23 (Metallo) Indisturba 12 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Steep Steep <th< th=""></th<>
ero delle Infrastruture e d rizzazione nº 02610 - 26 nizzazione nº 02610 - 26 nizzazione nº 02610 - 26 nizzazione nº 02610 - 26 nemesso il 1727 del ott. Massimo Gu 0 (m) LI Modal Peso capsula so capsula + terro	der Trasporti (03/2010 T + 39 0881 31 81 0 F + 39 0881 31 81 0 www.geosveva.it geosvevalaborati 05/03/23 24/02/23 binelli DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO Vità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	66 67 Ministero delle infastrititua e der Trasport ori@alice.it INIZIO PROVA 15/03/23 21/02/23 (Metallo) Indisturba 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Socio Socio <th< th=""></th<>
emesso il 1727 del ott. Massimo Gu (m) Modal Peso capsula so capsula + terro	www.geosvevalaborati 05/03/23 24/02/23 binelli DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO Vità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	Americano dette in det risport ori@alice.it INIZIO PROVA 15/03/23 21/02/23 (Metallo) Indisturba 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Stoop ALGI Statem - translate Dash serting Pag 1/1 FINE PROVA 20/03/23 Qualità Qualità Q5 2ª Prova R32 25.302 19.310 60.14 48.2
emesso il 1727 del ott. Massimo Gu 0 (m) LI Modal Peso capsula so capsula + terre	05/03/23 24/02/23 binelli DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO Ità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	INIZIO PROVA 15/03/23 21/02/23 (Metallo) Indisturba 1 ^a Prova R11 28.301 20.150 62.45 50.29 11.75	FINE PROVA 20/03/23 Qualità ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m) 0 (m) LI Modal Peso capsula so capsula + terro	binelli DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	21/02/23 (Metallo) Indisturba 43 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Qualità ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m) LI <i>Modal</i> Peso capsula so capsula + terre	DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	21/02/23 (Metallo) Indisturba 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Qualità ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m) LI <i>Modal</i> Peso capsula so capsula + terre	DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO Ità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	21/02/23 (Metallo) Indisturba 43 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Qualità ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m)	DATA PRELIEVO TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	21/02/23 (Metallo) Indisturba 43 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	Qualità ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m) Ll <i>Modal</i> Peso capsula so capsula + terre	TIPO DI FUSTELLA TIPO DI CAMPIONE MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	(Metallo) Indisturba 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	ato Q5 2ª Prova R32 25.302 19.310 60.14 48.2
0 (m) LI <i>Modal</i> Peso capsula so capsula + terre	TIPO DI CAMPIONE MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	Indisturba 13 / 2008 1 ^a Prova R11 28.301 20.150 62.45 50.29 11 75	2ª Prova R32 25.302 19.310 60.14 48.2
LI <i>Modal</i> Peso capsula so capsula + terre	MITI DI RITIRO lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	1 ^a Prova R11 28.301 20.150 62.45 50.29 11.75	2ª Prova R32 25.302 19.310 60.14 48.2
Modal Peso capsula so capsula + terre	lità di prova: ASTM D 494 Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	1 ^a Prova R11 28.301 20.150 62.45 50.29 11.75	2ª Prova R32 25.302 19.310 60.14 48.2
Peso capsula so capsula + terre	Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	1ª Prova R11 28.301 20.150 62.45 50.29 11.75	2ª Prova R32 25.302 19.310 60.14 48.2
Peso capsula so capsula + terre	Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	R11 28.301 20.150 62.45 50.29 11.75	R32 25.302 19.310 60.14 48.2
Peso capsula so capsula + terre	Capsula di monel n. Peso capsula (g) volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	R11 28.301 20.150 62.45 50.29 11.75	R32 25.302 19.310 60.14 48.2
Peso capsula so capsula + terre	volume capsula (cm ³) + terreno rimescolato (g) eno rimescolato secco (g) Volume finale (cm ³)	28.301 20.150 62.45 50.29 11.75	25.302 19.310 60.14 48.2
Peso capsula so capsula + terre	+ terreno rimescolato (g) eno rimescolato secco (g)	62.45 50.29	60.14 48.2
so capsula + terr	eno rimescolato secco (g) Volume finale (cm ³)	50.29	48.2
	Volume finale (cm ³)	11.75	TOTA
	volumo maio (om)	11.70	11.25
CON	ITENUTO IN ACQUA (a)	12 16	11 94
0011	PESO SECCO (g)	21.989	22.898
	Contenuto d'acqua (%)	55.30037746	52.14429208
	Volume vuoti (cm ³)	8.40	8.06
LIM	IITE DI RITIRO (LR) =	17.09945882	16.94471133
		Nº	<i>b</i> /
LIMITE DI F	RITIRO MEDIO (LR) =		208507
		231101	
		atorne	
lio		$\delta LR = 17.$	022 %
	<u> </u>	·	
	9/		
	IL DIRETTO		0
	Dott.	Ing Luigi Di Carlo	2
0			
30		1	
	LIMITE DI F	LIMITE DI RITIRO MEDIO (LR) =	LIMITE DI RITIRO MEDIO (LR) = tione alloine

GeoSveva

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010 - P.IVA 0306 2020 718 - C.F. DCRLGU81A09D643E T. +39 0881 31 81 66 F. +39 0881 31 81 67

geosvevalaboratori@alice.it

www.geosveva.it

ter Trasparti

mod.PQ 75-11/a Rev.01 del 01/2013

ALGI

Pag 1/5

Numero certificato:	31471 em	nesso il	05/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	ZIONE 17	27 del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le Dott	. Massimo Gul	binelli		
SITO :	Arcofiato				
LOCALITA':	Camerino				
SONDAGGIO :	S4		DATA PRELIEVO	21/02/23	Qualità
CAMPIONE :	C2		TIPO DI FUSTELLA	(Metallo)	Quanta
PROFONDITA' :	01.20-01.60	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO DIRETTO

Modalità di prova: UNI EN ISO 17892-10 Provino nº3 dati generali: Provino nº1 Provino n°2 (cm^2) 36.00 36.00 36.00 Sezione provino 23.00 23.00 23.00 Altezza iniziale (mm) 22.25 22.00 21.75 Altezza finale (mm) 2.00 3.00 1.00 Num tara 1 141.65 144.87 136.45 Peso tara 1 (g) 303.85 306.65 298.82 Tara + p. umido iniziale (g) 3.00 Num tara 2 1.00 2.00 0.00 Peso tara 2 (g)0.00 0.00 Tara + p. umido finale (g) 167.60 165.11 166.76 Tara + p. provino secco 140.57 138.69 138.44 (g) D Consolidazione 24 h 1.00 1.25 2.22 (mm)19.23 19.16 19.21 Peso di volume iniziale (KN/m^3) Y (1) Peso di volume finale 20.75 20.68 20.41 (KN/m^3) Y (1) 16.65 16.43 16.40 Peso di volume secco (KN/m^3) Yd(1) Wn (i) 15.51 16.65 17.16 Contenuto acqua iniziale (%) Wn (f) 19.05 20.45 (%) 19.23 Contenuto acqua finale Sr (i) 71.09 73.61 75.53 Saturazione iniziale (%) Sr (f) 99.86 98.34 98.47 Saturazione finale (%) 0.61 Indice dei vuoti iniziale e () 0.59 0.56 Indice dei vuoti finale e (f) 0.52 16.95 Peso vol. secco finale (KN/m^3) Y d (1) 17.40

~ ~	

Laboratorio di Analisi Geotecniche

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

PIVA 03 06 20 20 718 C F. DCRLGU81A09D643E T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it

geosvevalaboratori@alice.it

mastrutture

CERTIFIED Sacio

mod.PQ 75-11/a Rev.01 del 01/2013

Pag 3/5

Numero certificato:	31471	Data di	emissione:	05/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZI	ONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le	Dott. Mas	ssimo Gubir	nelli		
SITO :	Arcofiato	0				
LOCALITA':	Camerin	0				
SONDAGGIO :	S4			DATA PRELIEVO	21/02/23	Qualità
CAMPIONE :	C2			TIPO DI FUSTELLA	(Metallo)	Quanta
PROFONDITA' :	01.20-01	.60	(m)	TIPO DI CAMPIONE	Indisturbate	D Q5

PROVA DI TAGLIO DIRETTO

p.II.	-	GeoS	veva di Luig	i Di Carlo				mod.PQ 75-11/	a Rev.01 del 01/2	013
1	E 3	Laborati analisi ç	orio sperimentali jeotecniche	e di	- P IVA 03 - C F, DCR	06 20 20 718 LGU81A09D643E	(A		- e	-13
		Minister Autoriz	o delle Infrastrut zazione nº 026	ture e dei Tras 10 - 26/03/2011	corti T +39 08 F +39 08	381 31 81 66 381 31 81 67		Sur -		
Geos Laboratorio di Ar	Devera	- Monte - 7103	esanto 64-66 6 Lucera (FG)		www.ge geosve	osveva.it valaboratori	Ministeri Infrastrutt e dei Tra @alice.it	aelle WP Spolfi	Socio Sistema Sualita s LIGI INITEN I Pag	1 gishole 2 (ficsto 30 4001 2015 3 4/5
umero cer ERBALE DI A	tificato:	31471	Data di emis	ssione: del	05/03/23 24/02/23		INIZIO F 15/0	PROVA 3/23	FINE F	PROVA 03/23
		Spott In D	ott Maeein	no Gubine						
		Vracfiato	JUL. 191855111	no Gubine						
		Arconato								
OUALITA		Jamerino						24/02/22		
UNDAGG		54			DATA PREL	TEVO		21/02/23		
AMPIONE	= : (52			TIPO DI FUS	TELLA		(Metallo)		
ROFOND	ITA' : (01.20-01.6	0	(m)	TIPO DI CAN	IPIONE		Indisturba	ato	Q
			PF	ROVA DI	TAGLIO DI	RETTO	0.40			
asa di Dof	tura			Wodal	Provino nº2	EN 150 1789	velocità	di prova :	0.005	(mm/m
							Foround	ai piova .	0.000	(univiti
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kna)	le	tture n°	Forza (KN)	Sv (mm)	Sh (mm)	
1	0.000	-0.003	0.000	0.098		-	()			
2	0.109	-0.003	0.358	30.278						
3	0.154	-0.003	0.547	42.778						
4	0.194	-0.003	0.751	53.889						
5	0.224	0.000	0.951	62.222						
6	0.244	-0.003	1,151	67.778						
7	0.264	-0.003	1.351	73.333						
8	0.274	-0.003	1.551	76.111						
9	0.284	-0.003	1.751	78.889						
10	0.289	-0.003	1.951	80.278					-	
11	0.294	-0.003	2.151	81.667	-					
12	0.299	-0.003	2.351	84 444	-					
14	0.304	-0.003	2.001	85 833						-
15	0.309	-0.003	2.951	86,111						
16	0.309	-0.003	3,151	85.833			σ=	196	(Kpa)	
17	0.308	-0.003	3.351	85.556			$\tau_r =$	86.1%	(Kpa)	
18	0.307	-0.003	3.551	85.278			S _b =	2.95	(mm)	
19	0.306	-0.003	3.751	85.000				offer a	19 A A A	
20	0.305	-0.003	3.951	84.722	Diao	ramma Sforzo	di taglio-So	stamento Or	izzontale	
21	0.304	-0.003	4.151	84.444			ne	1	1	
22	0.303	-0.003	4.351	84.167	a)		1011			
23	0.302	-0.003	4.551	83.889	KP (KP	c	31.			
					р 100 р	30	000000	0000000	9	
					glio	Solar				
					ži 50	P 7				
					po /					
					2012					
					0.00	1.00 2.	3.00	4.00	5.00 6.0	0 7. n)
						Provin	Spo	Provino 2	Dro	vino 3
						PIOVIN			Plu	
						1	2			
	LO SPE	RIMENTA	TORE		IL	DIRETTOP	E del LAE	ORATORI	0	
						Dath In	L Lutet Di	Carlo		
	Geom.	Giøvanni 1	urco			Dott.in	g.Luigi Di	Carlo		

GeoS

Fase di Rottura:

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione n° 02610 -26/03/2010

F+39 0881 31 81 67

Soc

mod.PO 75-11/a Rev.01 del 01/2013

Sistema

Pag 5/5

31471	Data di	emissione:	05/03/23	INIZIO PROVA	FINE PROVA
TAZIONE	1727	del	24/02/23	15/03/23	22/03/23
: Spett.le	Dott. Mas	ssimo Gubir	nelli		
Arcofiate	D				
Camerin	0				
: S4			DATA PRELIEVO	21/02/23	
: C2			TIPO DI FUSTELLA	(Metallo)	
: 01.20-01	.60	(m)	TIPO DI CAMPIONE	Indisturbato	Q5
	31471 TAZIONE Spett.le Arcofiate Camerin S4 C2 : 01.20-01	31471Data diTAZIONE1727Spett.le Dott. MasArcofiatoCamerinoS4C201.20-01.60	31471 Data di emissione: TAZIONE 1727 del E: Spett.le Dott. Massimo Gubir Arcofiato Camerino : S4 : C2 : 01.20-01.60 (m)	31471Data di emissione:05/03/23TAZIONE1727del24/02/23E:Spett.le Dott. Massimo GubinelliArcofiato Camerino:S4:C2:01.20-01.60(m)TIPO DI CAMPIONE	31471Data di emissione:05/03/23INIZIO PROVATAZIONE1727del24/02/2315/03/23E:Spett.le Dott. Massimo GubinelliArcofiatoCamerino:S4DATA PRELIEVO21/02/23:C2TIPO DI FUSTELLA(Metallo):01.20-01.60(m)TIPO DI CAMPIONEIndisturbato

PROVA DI TAGLIO DIRETTO

Modalità di prova: UNI EN ISO 17892-10 Provino n°3 velo

velocità di prova :

0.005 (mm/min)

letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)	
1		0.000			
2	0.148	0.049	0.320	41.111	
3	0.225	0.047	0.588	62.500	
4	0.280	0.047	0.874	77.778	
5	0.325	0.066	1.168	90.278	
6	0.367	0.071	1.457	101.944	
7	0.387	0.093	1.746	107.500	
8	0.402	0.112	2.035	111.667	
9	0.412	0.140	2.324	114.444	
10	0.417	0.148	2.613	115.833	
11	0.422	0.167	2.902	117.222	
12	0.427	0.183	3.191	118.611	
13	0.434	0.194	3.480	120.556	
14	0.439	0.225	3.769	121.944	
15	0.442	0.230	4.058	122.778	
16	0.445	0.236	4.347	123.611	
17	0.452	0.255	4.636	125.556	
18	0.456	0.288	4.925	126.667	
19	0.459	0.296	5.214	127.500	
20	0.454	0.312	5.503	126.111	
21	0.449	0.331	5.792	124.722	
					()
		1			KPa
					= 10
					1 O
					agli
					di t
					D OZ
					Sor
					1000
		1.			
	LO SPI Geom	ERUMENTAT	TORE		

letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)
_	2281			

IL DIRETTORE del LABORATORIO Dott.Ing.Luigi Di Carlo

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.34

GeoSveva

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e del Trasporti Autorizzazione nº 02610 - 26/03/2010 - P IVA 03 06 20 20 718 - C.F. DCRLGU81A09D643E

T+39 0881 31 81 66

F +39 0881 31 81 67

mod.PQ 75-11/bRev.01 del 01/2013

Socio ALGI

www.geosveva.it Intrastrutture geosvevalaboratori@alice.it Sidema di gestone Usalità castificato UNI EN ISO 9001 20 Pag 1/5

Certificato nº:	31472 ta di er	nissione:	05/03/23	INIZIO PROVA	FINE PROVA	
VERBALE DI ACCETTA	ZIONE 1727	del	24/02/23	22/03/23	29/03/23	
COMMITTENTE:	Spett.le Dott. N	lassimo Gul	binelli			
SITO :	Arcofiato					
LOCALITA':	Camerino					
SONDAGGIO :	S4		DATA PRELIEVO	21/02/23	Qualità	
CAMPIONE :	C2		TIPO DI FUSTELLA	(Metallo)	Qualita	
PROFONDITA' :	01.20-01.60	(m)	TIPO DI CAMPIONE	Indisturbato	Q5	

PROVA DI TAGLIO RESIDUO

dati generali:		Provino nº1	Provino n°2	Provino nº3
Sezione provino	cm ²	36.00	36.00	36.00
Altezza iniziale	mm	23.00	23.00	23.00
Altezza finale	mm	22.00	21.75	22.25
Num tara 1		1.00	2.00	3.00
Peso tara 1	g	136.45	144.87	141.65
Tara + p. umido iniziale	g	298.82	306.65	303.85
Num tara 2		1.00	2.00	3.00
Peso tara 2	g	0.00	0.00	0.00
Tara + p. umido finale	g	167.60	165.11	166.76
Tara + p. provino secco	g	140.57	138.69	138.44
Peso specifico grani	KN/m ³			
Peso di volume iniziale	KN/m ³	19.23	19.16	19.21
Peso di volume finale	KN/m ³	20.75	20.68	20.41
Peso di volume secco	KN/m ³	16.65	16.43	16.40
Contenuto acqua iniziale	%	15.51	16.65	17.16
Contenuto acqua finale	%	19.23	19.05	20.45
Saturazione iniziale	%	71.09	73.61	75.53
Saturazione finale	%	99.86	98.34	98.47
Indice dei vuoti iniziale		0.59	0.61	0.61
Indice dei vuoti finale		0.52	0.52	0.56
Peso vol. secco finale	KN/m ³	17.40	17.37	16.95

- P-	1.1.1	Geos	Sveva di Lui	gi Di Carlo				mod.PQ 75-11/2	Rev.01 del 01/20	13
1		Laborat analisi j	orio sperimenta geotecniche	ile di	- 19 (1 - 10 F	VA 03 05 20 20 718 F DORLGU81A0906	143E		- 4	-13
L	_	Ministe. Autori	ro delle Infrastri zzazione n° 02	<i>itture e dei Tra</i> : 610 - 26/03/201	sporti T + 10 F +	39 0881 31 81 39 0881 31 81	66 87	2 -		
Geo Laboratorio d	Sveva Analisi Geotecnich	- Mont - 7103	esanto 64-66 6 Lucera (FG)	ww ge	w.geosveva.it osvevalaborat	Minister Infrastra e der Tr ori@alice.it	n dente iffure asporti	ALGI Salvoa ALGI JAN EN Paç	d sections entreats \$0.5001 2015 1 3/5
Certificato	n°:	31472	Data di emi	ssione:	05/03/23		INIZIO I	PROVA	FINE F	ROVA
VERBALE DI	ACCETTAZION	IE	1727	del	24/02/23		15/0	3/23	22/0	3/23
соммітт	ENTE:	Spett.le Do	ott. Massin	no Gubine	elli					
SITO :		Arcofiato								
	A':	Camerino								
SONDAG	GIO :	S4			DATA PF	RELIEVO		21/02/23		
CAMPION	IE :	C2			TIPO DI F	USTELLA		(Metallo)		
PROFON	DITA' :	01.20-01.6	0	(m)	TIPO DI C	AMPIONE		Indisturba	ito	Q5
			PI		TAGLIO	RESIDUC)			
					TAGLIO	RESIDUC				
				Moda	alità di prova:	UNI EN ISO 1	7892-10		0.005	
rase di Ro	ottura:				Provino nº	1	velocita	di prova :	0.005	(mm/min)
letture	Forza	Sv	Sh	T		letture	Forza	Sv	Sh	T
n°	(KN)	(mm)	(mm)	(Kpa)		n°	(KN)	(mm)	(mm)	(кра
2	0.000	-0.003	0.000	0.000						
3	0.002	0.019	0.140	3 589						
4	0.022	0.019	0.587	5.982						
5	0.030	0.019	0.763	8.438						
6	0.037	0.019	0.960	10.265						
7	0.045	0.019	1.158	12.622						
8	0.052	0.019	1.355	14.400						
9	0.065	0.022	1.552	17.956						
10	0.070	0.019	1.750	19.556						
11	0.081	0.019	1.947	22.400						
12	0.086	0.019	2.144	23.930						
14	0.092	0.019	2.541	26.575						
15	0.098	0.019	2.335	27.331						
16	0.100	0.019	2.933	27.771			σ=	980	(Kpa)	
17	0.101	0.019	3.131	27.960			$\tau_r =$	28.02	(Kpa)	
18	0.101	0.019	3.328	28.023			S _h =	3.33	(mm)	
19	0.101	0.019	3.525	27.960				<u> </u>		
20	0.100	0.019	3.723	27.897		Diagramma Sfor	rzo di taglio Sp	ostamento Ori	zzontale	
21	0.100	0.019	3.920	27.708	100 —		tolli			
22	0.099	0.019	4.117	27.519	(ec		-offi			
23	0.098	0.019	4.314	27.331	(KI	i D	7			
24	0.098	0.019	4.512	27.200	P 50	COX.				
26	0.097	0.019	4.906	26.890	aglic					
27	0.096	0.022	5.104	26.701	di t	~	0000000			
28	0.095	0.019	5.301	26.386	02	0-0000000				
29	0.094	0.019	5.498	26.071	S O O	0 1.00	2.00 3.00	4.00	5.00 6.00) 7.00
30	0.093	0.019	5.696	25.945	0.0		Sp	ostamento Or	izzontale (mm	1)
31	0.093	0.022	5.893	25.756		Pro	vino 1	Provino 2	Pro	vino 3
			-							
		1.					Λ			
	LO SP	ERIMENTAT	TORE			IL DIRETTO	ORE DELLAE	BORATORIO	C	
	Geom	.Giovanni T	urco			Dott.	ing.Luigi Di	Carlo		

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.37

Laboratorio di Analisi Geotecniche

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66 - 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

- P IVA 03 06 20 20 718 - C.F. DCRLGU81A09D643E

T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it

Inasi Sacia ALGI dei Trasporti geosvevalaboratori@alice.it

mod.PQ 75-11/bRev.01 del 01/2013

Bisteria di gestione Qualda senticato UNI EN 150 3001 2019

Pag 4/5

Certificato nº:	31472	Data di	emissione:	05/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZ	IONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le	Dott. Mas	ssimo Gubir	nelli		
SITO :	Arcofiato	0				
LOCALITA':	Camerin	0				
SONDAGGIO :	S 4			DATA PRELIEVO	21/02/23	
CAMPIONE :	C2			TIPO DI FUSTELLA	(Metallo)	
PROFONDITA' :	01.20-01	.60	(m)	TIPO DI CAMPIONE	Indisturbat	o Q5

PROVA DI TAGLIO RESIDUO

-				Moda	lità di p	rova: L	JNI EN ISC	0 17892-10)			
Fase di Ro	ottura:				Provin	o n°2		velo	ocità	di prova :	0.005	i (mm/min)
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)			letture n°	For (K	rza N)	Sv (mm)	Sh (mm)	T (Kpa)
1	0.000	0.000	0.000	0.000								
2	0.034	0.000	0.288	9.375								
3	0.047	0.000	0.455	13.125		1						
4	0.061	0.000	0.685	16.875								
5	0.074	0.000	0.913	20.625								
6	0.088	0.000	1.135	24.375								
7	0.101	0.000	1.357	28.125								
8	0.112	0.000	1.579	31.150								
9	0.128	-0.003	1.801	35.600								
10	0.141	0.000	2.024	39.120								
11	0.153	0.000	2.246	42.574								
12	0.165	0.000	2.468	45.961								
13	0.176	0.000	2.690	49.016								
14	0.187	0.000	2.912	51.872								
15	0.196	0.000	3.135	54.462								
16	0.203	0.000	3.357	56.521					σ=	196	(Kpa)	
17	0.208	-0.003	3.579	57.717					$\tau_r =$	58,85	(Kpa)	
18	0.211	0.000	3.801	58.514				3	$S_h =$	25	(mm)	
19	0.212	0.000	4.023	58.846					i	9		
20	0.212	0.000	4.246	58.846		Di	iagramma S	forzo di ta	lies	stamento Or	zzontale	
21	0.211	0.000	4.468	58.713			agranna c		C/			
22	0.210	-0.003	4.690	58.447	10			19				
23	0.209	0.000	4.912	58.182	Ра			CO'				
24	0.208	-0.003	5.134	57.850	Ξ		ć	NO/		1.1.1.1		
25	0.206	0.000	5.357	57.318	10	50	$\mathcal{O}^{\mathcal{O}}$	×	00	000000	0-0-0-0-0-0	b
26	0.205	0.000	5.579	56.986	aglic							
27	0.205	0.000	5.801	56.853	to I		00	C. C.				
28	0.204	0.000	6.023	56.787	00		000					
1					Sorz	0						
	1				0,	0.00	1.00	2.00	3.00	4.00	5.00 6.0	00 7.00
1									Spo	ostamento O	rizzontale (m	m)
1								Provino 1		Provino 2	Pr	ovino 3
		_										
		10						N				
	LO SPI	ERIMENTAT	TORE			-	IL DIRET	TORE	LAB	ORATORIO	D C	
4	Geom	.Giovanni T	urco				Do	tt.Ing.Lu	igi Di	Carlo		

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.38

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analist geotecniche

- Montesanto 64-66

- 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

P.IVA 03.06.20.20.718 C.F. DCRLGU81A09D643E

www.geosveva.it

T +39 0881 31 81 66 F +39 0881 31 81 67

Social e dei Trasporti geosvevalaboratori@alice.it

mod.PQ 75-11/bRev.01 del 01/2013

Pag 5/6

Certificato nº:	31472	Data di	emissione:	05/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTAZ	IONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le	Dott. Ma	ssimo Gubii	nelli		
SITO :	Arcofiat	0				
LOCALITA':	Camerin	10				
SONDAGGIO :	S4			DATA PRELIEVO	21/02/23	
CAMPIONE :	C2			TIPO DI FUSTELLA	(Metallo)	
PROFONDITA' :	01.20-01	.60	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO RESIDUO

				Moda	lità di prov	va: UNI EN ISO	17892-10				
Fase di Ro	ottura:				Provino	n°3	velocità	di prova :	0.005 (mm/min		
letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)		letture n°	Forza (KN)	Sv (mm)	Sh (mm)	T (Kpa)	
1	0.000	0.000	0.000	-0.064							
2	0.050	0.030	0.240	13.879							
3	0.086	0.044	0.412	23.856		· · · · · · · · · · · · · · · · · · ·					
4	0.117	0.052	0.590	32.426							
5	0.145	0.063	0.757	40.357							
6	0.170	0.066	0.938	47.329							
7	0.192	0.068	1.113	53.468							
8	0.214	0.077	1.285	59.353							
9	0.231	0.079	1.466	64.149		N					
10	0.245	0.090	1.641	68.179							
11	0.256	0.104	1.816	71.057							
12	0.264	0.112	1.992	73.231							
13	0.270	0.123	2.169	75.022							
14	0.275	0.137	2.350	76.301		1					
15	0.276	0.151	2.530	76.685							
16	0.277	0.159	2.706	77.005			σ=	294	(Kpa)		
17	0.277	0.164	2.889	77.069			$\tau_r =$	77.05	(Kpa)		
18	0.277	0.173	3.069	77.005			S _h =	289	(mm)		
19	0.276	0.178	3.245	76.685			Í	9			
20	0.276	0.183	3.422	76.621		Diagramma Sfo	orzo di taglicospo	stamento Oriz	zontale		
21	0.276	0.189	3.600	76.557	100		and a		1		
22	0.275	0.194	3.778	76.493	a)		do				
23	0.275	0.200	3.956	76.429	(KF		00000000	00000000	•		
24	0.275	0.205	4.134	76.365	Р	10	•				
25	0.275	0.211	4.312	76.301	<u>9</u> 50	AC Y					
26	0.274	0.216	4.490	76.237	taç	8					
27	0.274	0.222	4.668	76.173	ġ	8					
28	0.274	0.227	4.845	76.109	0 DIZ	/					
					S C	0.00 1.00 Pr	2.00 3.00 Spc ovino 1	4.00 ostamento Ori Provino 2	5.00 6.00 zzontale (mm) 7.00 1) vino 3	
	LOSP	ERIME	TORE					ORATORIC			

Dott.Ing. uigi Di Carlo

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.39

Geom.Giovanni Turco

GeoSveva

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

- P IVA 03 06 20 20 718 - C.F. DCRLGU81A09D643E

T +39 0881 31 81 66 F +39 0881 31 81 67

Secio ALGI

mod.PQ 75-14 Rev.01 del 01/2013

ertificato nº	:	31473	emesso il		04/03/23		INIZIO PROVA	FINE PROVA
ERBALE DI	ACCETTA	ZIONE	1727	del	24/02/23		15/03/23	22/03/23
OMMITT	ENTE:	Spett.le D	ott. Massi	mo Gubin	elli			
ITO :		Arcofiato						
OCALITA	Δ'.	Camerino						
		CA CA					21/02/23	
ANDION		34				RELIEVO	(Motalla)	
AMPION		62			TPO DI FI	USTELLA	(Metallo)	
ROFON	DITA' :	01.20-01.0	60	(m)	TIPO DI C	AMPIONE	Indisturbato	Q
PR	ROVA D		ESSION	E TRIAS	SIALE N	ON CONSC	LIDATA NON DREN	IATA UU
				Modalità	di prova:	UNI CEN IS	017892-8	
-	Fase di r	ottura : P1	Fase di r	ottura : P2	Fase di i	rottura : P3		
	З	$\sigma_1 - \sigma_3$	3	$\sigma_1 - \sigma_3$	3	$\sigma_1 - \sigma_3$		
	%	kPa	%	kPa	%	kPa		
	0.00	0.00						
	0.40	106.58			-			
	0.88	141.24						
	1.39	173.83						
	2.35	182.49			-			
	2.77	190.64						
	3.29	198.06						
	3.79	204.00						
	4.32	208.79			-			
-	4.82	213.15						
	5.34	210.75						
-	6.36	219.09			-			
-	6.88	224.65						
	7.40	227.25						
	7.91	229.08						
	8.42	230.64						
-	8.93	232.01			-			
-	9.44	233.19	-					
	10.47	235.20						
	10.98	235.83					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	11.49	236.42					illia	
	12.02	236.71					ail ⁹	
	12.51	237.01						
	13.05	236.77					N.Y	
	13.00	237.03					arth -	
	14.58	237.28			-		NO.	
-	15.08	237.09					6)	
	15.61	236.53					0/	
	16.12	235.84				~ Q2	7	
	16.64	235.04				Y		
	17.16	235.32						
	17.67	235.09						
H	18.20	234.24						
	19.70	234.57						
	19.75	234.21						
	20.28	233.49						
	20.79	232.77						
	21.28	231.94						
	21.81	230.87						
Ļ	22.34	230.21						
	22.84	229.05					 Use the second se	

Laboratorio di Analisi Geotecniche

GeoSve

GeoSveva di Luigi Di Carlo

Laboratorio sperimentale di analisi geotecniche

- Montesanto 64-66 - 71036 Lucera (FG)

Ministero delle Infrastrutture e dei Trasporti Autorizzazione nº 02610 - 26/03/2010

PIVA 03:06:20:20:718 C.F. DCRLGU81A09D643E T +39 0881 31 81 66 F +39 0881 31 81 67

www.geosveva.it editasiniture geosvevalaboratori@alice.it

mod.PQ 75-14 Rev.01 del 01/2013

Sistema di gestione Qualità certificato UNI SN 180 3001 2013

Pag 2/2

Certificato nº:	31473	emesso	il	04/03/23	INIZIO PROVA	FINE PROVA
VERBALE DI ACCETTA	AZIONE	1727	del	24/02/23	15/03/23	22/03/23
COMMITTENTE:	Spett.le	Dott. Mas	simo Gul	binelli		
SITO :	Arcofiat	0				
LOCALITA':	Camerin	10				
SONDAGGIO :	S4			DATA PRELIEVO	21/02/23	OZUALITA
CAMPIONE :	C2			TIPO DI FUSTELLA	(Metallo)	QZUALIT?
PROFONDITA' :	01.20-01	.60	(m)	TIPO DI CAMPIONE	Indisturbato	Q5
PROVA		DEADIO	ALC: TOTAL	COLLE NON CONSC	DUDATA NON DOC	IATA LILL

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA UU

Modalità di prova: UNI CEN ISO17892-8

Provino	H0	Ao	γn	γd	Wo	W _f	S ₀	S _f
			KN/m ³	KN/m ³	%	%	%	%
1	73.00	11.33	18.87	15.13	24.78	24.51	89.24	95.67
2								
3								

Provino	σ _{1c} kPa	σ _{3c} kPa	σ₁'。 kPa	ε %	σ' ₁ -σ' ₃ kPa
1	100.00	100.00	0.00	8.93	232.01

LO SPERIMENT Geom. Glovanni Turco

Documento nº 01095 stampato il 05/04/2023 composto da 41 pagine : pag.41

	RI	EGIONE MARC	HE	
	COM	UNE DI CAMI	ERINO	
		Provincia di MACERATA		
OGGETTC ANALIS): I GEOTECNICHE	DI LABORATOR	RIO	
VERBALE n° 1727 24/02/2023	LOCALITA' : CANTIERE : 2	Camerino Arcofiato		
O RIASSUNTIVO		COMMITTENTE	: Dott. Massimo Gub Campioni anal 1727 S2 C1 m 01.00-01.4 1727 S4 C2 m 01.20-01.4	izzati: 40 60
QUADR				
PRSE 682	DATA ACCETTAZIONE 24/02/2023		DATA DI EMISSIONE 05/04/2023	RQ -

COMMITTENTE :	Dott. Massimo Gubinelli	
DATA	24/02/2023	
LOCALITA' :	Camerino	
CANTIERE :	Arcofiato	

QUADRO SINOTTICO Prove di laboratorio

	VERBALE n°				Ger	ierali					E	Granulomet	trie		LIM	IITI di Atter	perg	E.L.L.	Taglio	Diretto	Taglio f	Residuo	UIU		Triass. CIL		1	Triass. CIC)	Edom	Edom
	1727	γs	γ	W	γ sat	γd	e	n	Sr	G	S	I.L.	A	Potenz.	LL	LP	IP	Cu	φ	c	φr	Cr	Cu	φʻu	C'u	Es	φ'	C'	Es	Ed *	Ed**
_	Campione	KN/m ³	KN/m ³	%	KN/m ³	KN/m ³		%	%	%	%	%	%	Liquefaz.	%	%		KPa	o.	KPa	9	KPa	КРа	o	KPa	Mpa	o	KPa	Мра	Мра	Mpa
1	1727 S2 C1 m 01.00-01.40	26.349	18.846	21.354	19.556	15.530	0.697	41.062	82.353	6.00%	17.00%	47.00%	30.00%	0	51	27	23.3	1 III	20.52	13.82	16.48	1.05	127.16								
2	1727 S4 C2 m 01.20-01.60	26.441	18.923	24.468	19.371	15.203	0.739	42.501	89.252	4.00%	18.00%	56.00%	22.00%	D.	54	25	28.8		21.24	16.54	14.19	0.29	117.92								
									_						_			-									-				
_									_															-			_				
				-			-								4			-				-		-			_				
						-		-										-				-	2.3								
-										-														-							
																								1							
										-	-							1													
											-																				
							6																								
																	1.11														
														te.																	

 γ_s = Peso specifico dei grani (KN/m³)

- W = Contenuto in acqua naturale (%)
- γ_{sat} = Peso di volume saturo (KN/m³) γd = Peso secco (KN/m³)
- e = Indice dei pori
- n = Porosità (%)

- Folosita (76)

Sr = Grado di saturazione (%) G = Ghiaia (%) S = Sabbia (%) L = Limo (%)

A = Argilla (%)

LL = Limite LIQUIDO (%) LP = Limite Plastico (%) Ic = Indice di consistenza Cu = Coesione non drenata (KPa) c = Coesione drenata (KPa) φ = Angolo di attrito (*) φr = Angolo di attrito residuo (°)

Ed* = Modulo edometrico alla pressione di 200 KPa Ed** = Modulo edometrico alla pressione di 400 KPa φu = Angolo di attrito non drenato -TRX CU (*) Cu = Coesione non drenata - TRX CU (KPa) # = Materiale insufficiente Cu = Coesione non drenata - TRX CU (KPa) $E_{\rm s}\text{=} \mbox{Modulo elastico secante al 50 \% del carico a rottui}$

VERBALE DI	ACCETTA	ZIONE	1727	del	24/0	02/23				Pag 1/1
COMMITT	ENTE:	Spett.le D	ott. Mass	imo Gubin	elli					
SITO :		Arcofiato								
LOCALITA	A':	Camerino						041	00/00	
CAMPION		S2				RELIEVO		21/ (Mo	02/23	Qualità
DROEONI		01 00 01 4	0	(100)				(India	sturboto	05
FROFUNI	JIA .							TTUAT		QJ
<u> </u>	rattorict	QUADR		133UN	IIVO F	FOTOGRA		TTUAT	E	
v	=	26 349	KNI/m ³	7		FOTOGRA	TIA	unation		
IS	1.20	40.040			3	5.11				
γ	=	18.846	KN/m*				ALTERNA			
Wn	=	21.354	%			N.	VENALE N'3			
Ysat	. =	19.556	KN/m ³		6	Ten 1	PAMPIONE (
γd	=	15.530	KN/m ³				PTELEVATE %	A Keil-Da		
е	=	0.697				3	an an	- tont		
n	=	41.062	%				the state	Lakel .		
Sr	=	82.353	%				0 5 10	15 20 25 3	x)-35 40	
L	imiti di d	consistenza					C	aratteristic	he Mecca	niche
LIMITE LIQU	JIDO		(LL)=	51	%		Espansi	one lateral	e libera	
LIMITE PLAS	STICO		(LP)=	27	%		σ =		kPa	
INDICE DI P	LASTICIT	'A'	(IP)=	23.3			Cu=		kPa	
NDICE DI CONSISTENZA $(IC) =$		1.25			Taglio D	iretto				
LIMITE RITH	RO		(LR)=	18	%		c' =	13.82	kPa	
							Φ'=	20.52	o	
Caratte	eristiche	granulome	triche	Sost	tanze orga	niche	Taglio R	Residuo		
ARGILLA		30.00%		S.O.		%	c' =	1.05	kPa	
LIMO		47.00%		Conte	nuto di ca	rbonati	Φ'=	16.48	o	
SABBIA		17.00%		CaCo ₃		%				kPa
CHIAIA		6 0.0%		l			Torsiona	le		o
DEFINIZIO	NE GRA	NULOMETR	ICA:		Compres	sione trias	siale			
				nn	Cu=	127.16	kPa			
mo con argi	illa sabbi	oso debolme	ente ghiaic	25						
				D	c _{cu} =		kPa	c. ^{cn} =		kPa
Compress	ione Edd	ometrica		- 0	$\Phi_{cu} =$		0	Φ' _{cu} =		0
σν	е	М	Cv							_
kPa		Мра	cm²/s	CL	C'd=		kPa	Φ' _{cd} =		0
					Pormosh	ilità		Proctor		
					k=		m/s	Carat	teristiche	All'ottimo
								V -		/KN/m ³
								r = Yd=		(KN/m ³)
								W=		%

		INTI	ERPRETAZIONE		
VERBALE DI ACCETTA	ZIONE 1727	del	24/02/23	Pi	ag 1/1
COMMITTENTE:	Spett.le Dott. Massin	no Gubin	elli		
SITO :	Arcofiato				
LOCALITA':	Camerino				
SONDAGGIO :	S2		DATA PRELIEVO	21/02/23	Qualità
CAMPIONE :	C1		TIPO DI FUSTELLA	(Metallo)	Quanta
PROFONDITA' :	01.00-01.40	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

			Moda	lità di prova: \	JNI EN ISO	17892-10		
aratteris	tiche dei pr	ovini:						
Provino	H₀ mm	A₀ cm2	γ _n KN/m3	γ _d KN/m3	Sr _(i) %	Sr _(f) %	Wn _(i) %	Wn _(f) %
1	23.00	36.00	19.41	15.97	89.07	97.91	21.53	22.52
2	23.00	36.00	19.80	16.02	95.22	99.34	22.19	21.58
3	23.00	36.00	19.67	16.02	95.03	99.40	21.88	21.88
Provino	Velocità mm/min	σ normale [kPa]	τ picco [kPa]	S _h mm				
1	0.005	98.06	52.03	1.891667				
2	0.005	196.10	80.28	3.155				
3	0.005	294.02	116.45	2.424				

INTERPRETAZIONE

VERBALE DI ACCETTAZIONE		727 del	24/02/23	Pa	ag 1/1
COMMITTENTE:	Spett.le Dott. Ma	ssimo Gubin	elli		
SITO :	Arcofiato				
LOCALITA':	Camerino				
SONDAGGIO :	S2		DATA PRELIEVO	21/02/23	Qualità
CAMPIONE :	C1		TIPO DI FUSTELLA	(Metallo)	Qualita
PROFONDITA' :	01.00-01.40	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO RESIDUO

Modalità di prova: UNI EN ISO 17892-10

Caratteristiche dei provini:

Provino	H₀ mm	A₀ cm2	γ _n KN/m3	γ _d KN/m3	Sr _(i) %	Sr _(f) %	Wn _(i) %	Wn _(f) %
1	23.00	36.00	19.41	15.97	89.07	97.91	21.53	22.52
2	23.00	36.00	19.80	16.02	95.22	99.34	22.19	21.58
3	23.00	36.00	19.67	16.02	95.03	99.40	21.88	21.88

Provino	Velocità mm/min	σ normale [kPa]	τ picco [kPa]	S _h mm
1	0.005	200.00	34.49	3.094
2	0.005	300.00	64.02	3.094
3	0.005	400.00	89.73	5.2654

c'= **1.05** (Kpa) φ= **16.48** °

VERBALE DI ACCETT	AZIONE	1727 del	24/02/23	Pa	ag 1/1
COMMITTENTE:	Spett.le Dot	t. Massimo Gul	binelli		
SITO : LOCALITA':	Arcofiato Camerino				
SONDAGGIO : CAMPIONE :	S2 C1		DATA PRELIEVO TIPO DI FUSTELLA	21/02/23 (Metallo)	Qualità
PROFONDITA' :	01.00-01.40	(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA UU

Modalità di prova: #RIF!

Provino	HO	Ao	γn KN/m ³	γd KN/m ³	₩₀ %
1	73.00	11.33	19.85	16.48	20.45

W _f	S ₀	S _f
%	%	%
20.57	91.70	99.52

Provino	σ _{1c} kPa	σ _{3c} kPa	σ ₁ '。 kPa	ε %	σ ₁ -σ ₃ kPa
1	50.00	50.00	0.00	8.77	253.24

 Risultati elaborazione fase di Rottura

 Cu
 127.16
 Kpa

 φ'
 0.00 °

VERBALE D	ACCETTA	AZIONE	1727	del	24	/02/23				Pag 1/1
COMMIT	TENTE:	Spett.le D	ott. Mass	imo Gubir	nelli					
SITO :		Arcofiato								
LOCALIT	A':	Camerino	•		12120			2020	_	
SONDAG	GIO :	S4			DATA F	PRELIEVO		21/	02/23	Qualità
		01 00 01 0	20	1	TIPO DI	FUSTELLA		(Me	tallo)	0.5
FROFUN	DITA .	01.20-01.6		(m)	TIPO DI	CAMPIONE		Indis	sturbato	Q5
		QUADR	KO RIA	ISSUN	IIVO .	ANALIS	SIEFFE	TTUAT	E	
C	aratterist	tiche Genera	ali	-	1	FOTOGRA	FIA			
γs	-	26.441	KN/m ³			UT V	El agranda			
γ	=	18.923	KN/m ³		8	4 -	-			
Wn	=	24.468	%				VERTIALE IN 1			
γsat	=	19.371	KN/m ³				PROFONDITA' (M	Derive of		
γd	-	15.203	KN/m ³				PRELEVATE			
е	=	0.739			1.01	and the second		1		
n	=	42.501	%			and in the second			-	
Sr	=	89.252	%			in the second se	5 10 15	20 25 30.3	5 dQ 45	
1	Limiti di d	consistenza	,				С	aratteristic	he Mecca	niche
LIMITE LIQU	JIDO		(LL)=	54	%		Espans	ione lateral	e libera	
LIMITE PLA	STICO		(LP)=	25	%		σ=		kPa	
INDICE DI F	PLASTICIT	'A'	(IP)=	28.8			Cu=		kPa	
INDICE DI C	CONSISTE	INZA	(IC)=	1.01			Taglio D	Diretto		
LIMITE RITI	RO		(LR)=	17	%		c' =	16.54	kPa	
							Φ'=	21.24	0	
Caratt	eristiche	granulome	triche	Sos	tanze org	aniche	Taglio F	Residuo		
ARGILLA		22.00%		S.O.		%	c' =	0.29	kPa	
LIMO		56.00%		Conte	nuto di c	arbonati	Φ'=	14.19	0	
SABBIA		18.00%		CaCo ₃		%	Torsiona	10		kPa
GHIAIA		4.00%		kannanan			TOISIONA	le		0
DEFINIZIO	NE GRA	NULOMETR	ICA:	5	Compre	ssione trias	siale			
i.	imo oraille	oco cobbioco		5	Cu=	117.92	kPa			
L	into argini	USU SAUDIUS	,		C =		kPa	c' =		kPa
				cn	ф =		in u	φ' -		N U
Compress	ione Edo	ometrica M	Cv	1	Ф си [—]		8	Ψ cu =		0
kDo	C	Mag	2/2	9	C'd=		kPa	ф' .=		0
KFd		мра	cm /s	Ŭ	0u-		кга	+ cd −		
					Permeal	bilità		Proctor		
					k=		m/s	Caratt	eristiche /	All'ottimo
					Į			Y =		(KN/m ³)
								Yd=		(KN/m ³)
								VV=		%

			INTI	ERPRETAZIONE		
VERBALE DI ACCETTA	ZIONE	1727	del	24/02/23	Pa	ag 1/1
COMMITTENTE:	Spett.le Dott.	Massim	no Gubin	elli		
SITO : LOCALITA':	Arcofiato Camerino					
SONDAGGIO : CAMPIONE :	S4 C2			DATA PRELIEVO TIPO DI FUSTELLA	21/02/23 (Metallo)	Qualità
PROFONDITA' :	01.20-01.60		(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI TAGLIO DIRETTO

Modalità di prova: UNI EN ISO 17892-10

Caratteristiche dei provini:

Provino	H₀ mm	A₀ cm2	γ _n KN/m3	γ _d KN/m3	Sr _(i) %	Sr _(f) %	Wn _(i) %	Wn _(f) %
1	23.00	36.00	19.23	16.65	71.09	99.86	15.51	19.23
2	23.00	36.00	19.16	16.40	73.61	98.34	16.65	19.05
3	23.00	36.00	19.21	16.40	75.53	98.47	20.45	20.45

Provino	Velocità mm/min	σ normale [kPa]	τ picco [kPa]	S _h mm
1	0.005	98.06	51.92	2.225
2	0.005	196.10	86.11	2.950667
3	0.005	294.02	127.50	5.214

c' = 16.54 (Kpa) $\phi' = 21.24$ °

INTERPRETAZIONE Pag 1/1 VERBALE DI ACCETTAZIONE 1727 del 24/02/23 COMMITTENTE: Spett.le Dott. Massimo Gubinelli SITO : Arcofiato LOCALITA': Camerino SONDAGGIO : 21/02/23 **S**4 DATA PRELIEVO Qualità CAMPIONE **TIPO DI FUSTELLA** (Metallo) 3 C2 PROFONDITA' : 01.20-01.60 (m)**TIPO DI CAMPIONE** Indisturbato Q5 **PROVA DI TAGLIO RESIDUO** Modalità di prova: UNI EN ISO 17892-10 Caratteristiche dei provini: Provino H₀ Wn (f) A₀ Sr (i) Sr (f) Wn (i) γn Yd cm2 KN/m3 % mm KN/m3 % % % 1 36.00 19.23 16.65 71.09 99.86 15.51 19.23 23.00 2 23.00 36.00 19.16 16.40 73.61 98.34 16.65 19.05 3 16.40 23.00 36.00 19.21 75.53 98.47 20.45 20.45 Provino Velocità σ normale τ picco Sh mm/min [kPa] [kPa] mm 0.005 4.2455 1 200.00 28.02 2 4.2455 0.005 300.00 58.85 3 0.005 400.00 77.07 2.888906 300 250 (KPa) 200 taglio τ 150 Sorzo di 100 50 0 50 150 200 250 400 450 0 100 300 350 500 Pressione verticale σ (Kpa)

c' = 0.29 (Kpa) φ= 14.19 °

Ŷ

VERBALE DI ACCETTA	ZIONE	1727	del	24/02/23	Pa	ag 1/1
COMMITTENTE:	Spett.le Dot	t. Mass	imo Gul	pinelli		
SITO : LOCALITA':	Arcofiato Camerino					
SONDAGGIO : CAMPIONE :	S4 C2			DATA PRELIEVO TIPO DI FUSTELLA	21/02/23 (Metallo)	Qualità
PROFONDITA' :	01.20-01.60		(m)	TIPO DI CAMPIONE	Indisturbato	Q5

PROVA DI COMPRESSIONE TRIASSIALE NON CONSOLIDATA NON DRENATA UU

Modalità di prova: #RIF!

Provino	H0	Ao	γn KN/m ³	γd KN/m ³	₩₀ %
1	73.00	11.33	18.87	15.13	24.78

W _f	S ₀	Sf
%	%	%
24.51	89.24	95.67

Provino	σ _{1c}	σ _{3c}	σ _{1'c}	3	σ ₁ -σ ₃
	kPa	kPa	kPa	%	kPa
1	100.00	100.00	0.00	8.93	232.01
			_		
	10				

 Risultati elaborazione fase di Rottura

 Cu
 117.92
 Kpa

 φ'
 0.00 °

VERIFICA DI STABILITA' ANTE OPERA

Relazione di calcolo VERIFICA STABILITA' SEZ C-C

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

- 1. Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (j), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (t) e confrontate con la resistenza disponibile (t_f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a n, il problema presenta le seguenti incognite:

- n valori delle forze normali N_i agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali E_i agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X_i agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E_i;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2). Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n - 2) - (4n) = 2n - 2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di Fellenius (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

- n valori delle forze normali N_i;
- n valori delle forze da taglio T_i;
- 1 fattore di sicurezza.

Incognite (2n+1). Le equazioni a disposizione sono:

- n equazioni di equilibrio alla traslazione verticale;
- n equazioni relative al criterio di rottura;
- equazione di equilibrio dei momenti globale.

$$F = \frac{\Sigma \left\{ c_{i} \times l_{i} + (W_{i} \times \cos\alpha_{i} - u_{i} \times l_{i}) \times \tan\varphi_{i} \right\}}{\Sigma W_{i} \times \sin\alpha_{i}}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.

Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_{y} = 0, \quad \sum M_{0} = 0 \quad \text{Criterio di rottura}$$

$$F = \frac{\Sigma \{c_{i} \times b_{i} + (W_{i} - u_{i} \times b_{i} + \Delta X_{i}) \times \tan \varphi_{i}\} \times \frac{\sec \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \varphi_{i} / F}}{\Sigma W_{i} \times \sin \alpha_{i}}$$

I valori di F e di DX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre DX = 0 ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di Bishop ordinario, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Metodo di Janbu (1967)

Janbu estese il metodo di Bishop a superfici di scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio). A tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

Azioni sul concio i-esimo secondo le ipotesi di Janbu e rappresentazione d'insieme dell'ammasso

Assumendo $DX_i = 0$ si ottiene il metodo ordinario. Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$$F_{corretto} = f_0 \cdot F$$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici. Tale correzione è molto attendibile per pendii poco inclinati.

Metodo di Bell (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, W, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali X e Z applicate esternamente al profilo del pendio, infine, la risultante degli sforzi totali normali e di taglio s e t agenti sulla superficie potenziale di scivolamento.

Lo sforzo totale normale può includere un eccesso di pressione dei pori u che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da Taylor.

In accordo con la legge della resistenza di Mohr-Coulomb in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

in cui:

F = il fattore di sicurezza;

 $c_i =$ la coesione efficace (o totale) alla base

dell'i-esimo concio;

dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:

$$\sigma_{ci} = \left[C_1(1 - K_z)\frac{W_i \cos \alpha_i}{L_i}\right] + C_2 f(x_{ci}, y_{ci}, z_{ci})$$

in cui il primo termine dell'equazione include l'espressione:

$W_i \cos \alpha_i / L_i =$ valore dello sforzo normale totale associato con il metodo ordinario dei conci

Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0} \right)$$

dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo.

Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_z).

Lo sforzo normale totale alla base di un concio è dato da:

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C₃. Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

Metodo di Sarma (1973)

Il metodo di Sarma è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica K_c) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica.

Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in n strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia.

Le equazioni da prendere in considerazione sono:

- L'equazione di equilibrio alla traslazione orizzontale del singolo concio;
- L'equazione di equilibrio alla traslazione verticale del singolo concio;
- L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

$$N_i \cos \alpha_i + T_i \sin \alpha_i = W_i - \Delta X_i$$
$$T_i \cos \alpha_i - N_i \sin \alpha_i = KW_i + \Delta E_i$$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

$$SDE_i = 0$$

 $SDX_i = 0$

dove $E_i e X_i$ rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico i. L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel metodo di Sarma la soluzione del problema passa attraverso la risoluzione di due equazioni:

Azioni sull' iesimo concio, metodo di Sarma

$$\sum \Delta X_{i} \cdot tg(\psi_{i}^{'} - \alpha_{i}) + \sum \Delta E_{i} = \sum \Delta_{i} - K \cdot \sum W_{i}$$
$$\sum \Delta X_{i} \cdot \left[(y_{mi} - y_{G}) \cdot tg(\psi_{i}^{'} - \alpha_{i}^{'}) + (x_{i}^{'} - x_{G}) \right] = \sum W_{i} \cdot (x_{mi} - x_{G}) + \sum \Delta_{i} \cdot (y_{mi} - y_{G})$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di K (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione K corrispondente al fattore di sicurezza F = 1, ossia l'accelerazione critica. Si ha pertanto:

K=KcAccelerazione critica se F=1F=FsFattore di sicurezza in condizioni statiche se K=0

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne X_i ed E_i tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura.

E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze X_i:

$$\Delta X_{i} = \lambda \cdot \Delta Q_{i} = \lambda \cdot (Q_{i+1} - Q_{i})$$

dove Q_i è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla i-esima faccia del concio i, e l rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di K_c , l e F, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

Metodo di Spencer (1967) Il metodo è basato sull'assunzione:

- 1. le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo q;
- 2. tutti i momenti sono nulli $M_i = 0$ con i=1....n.

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale ametodo di Morgenstern e Price quando la funzione f(x) = 1. Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

1)
$$\sum Q_i R \cos(\alpha - \theta) = 0$$

dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} (W \cos \alpha - \gamma_{w} hl \sec \alpha) \frac{tg\alpha}{F_{s}} - W sen\alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg\phi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci;

R = raggio dell'arco di cerchio;

 θ = angolo d'inclinazione della forza Q_i rispetto all'orizzontale. Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$\sum (Q_i \cos \theta) = 0$$
$$\sum (Q_i \sin \theta) = 0$$

Con l'assunzione delle forze Q_i parallele fra loro, si può anche scrivere:

2)
$$\sum Q_i = 0$$

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia:

$$F_{sm} = F_{sf}$$

Metodo di Morgenstern e Price (1965)

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo $X = \lambda f(x)E$, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili.

La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza F_s , il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

$$c'\sec^{2}\frac{\alpha}{F_{s}} + tg\phi'\left(\frac{dW}{dx} - \frac{dX}{dx} - tg\alpha\frac{dE}{dx} - \sec\alpha\frac{dU}{dx}\right) =$$
$$= \frac{dE}{dx} - tg\alpha\left(\frac{dX}{dx} - \frac{dW}{dx}\right)$$

Azioni sul concio i-esimo secondo le ipotesi di Morgenster e Price e rappresentazione d'insieme dell'ammasso

Una seconda equazione, detta "equazione dei momenti", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

$$\mathbf{X} = \frac{\mathbf{d} \left(\mathbf{E}_{\gamma} \right)}{\mathbf{dx}} - \gamma \frac{\mathbf{dE}}{\mathbf{dx}}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento. Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

Metodo di Zeng e Liang (2002)

Zeng e Liang hanno effettuato una serie di analisi parametriche su un modello bidimensionale sviluppato con codice agli elementi finiti, che riproduce il caso di pali immersi in un terreno in movimento (drilled shafts). Il modello bidimensionale riproduce un striscia di terreno di spessore unitario e ipotizza che il fenomeno avvenga in condizioni di deformazione piana nella direzione parallela all'asse dei pali. Il modello è stato utilizzato per indagare l'influenza sulla formazione dell'effetto arco di alcuni parametri come l'interasse fra i pali, il diametro e la forma dei pali, e le proprietà meccaniche del terreno. Gli autori individuano nel rapporto tra l'interasse e il diametro dei i pali (s/d) il parametro adimensionale determinante per la formazione dell'effetto arco. Il problema risulta essere staticamente indeterminato, con grado di indeterminatezza pari a (8n-4), ma nonostante ciò è possibile ottenere una soluzione riducendo il numero delle incognite e assumendo quindi delle ipotesi semplificative, in modo da rendere determinato il problema.

Le assunzioni che rendono il problema determinato sono:

-Ky sono assunte orizzontali per ridurre il numero totale delle incognite da (n-1) a (7n-3);

-Le forze normali alla base della striscia agiscono nel punto medio, riducendo le incognite da n a (6n-3);

-La posizione delle spinte laterali è ad un terzo dell'altezza media dell'inter-striscia e riduce le incognite da (n-1) a (5n-2); -Le forze (Pi-1) e Pi si assumono parallele all'inclinazione della base della striscia

(α i), riducendo il numero di incognite da (n-1) a (4n-1);

-Si assume un'unica costante di snervamento per tutte le strisce, riducendo le incognite da (n) a (3n-1);

Il numero totale di incognite quindi è ridotto a (3n), da calcolare utilizzando il fattore di trasferimento di carico. Inoltre si deve tener presente che la forza di stabilizzazione trasmessa sul terreno a valle dei pali risulta ridotta di una quantità R, chiamato fattore di riduzione, calcolabile come:

$$\mathbf{R} = \frac{1}{s/d} + \left(1 - \frac{1}{s/d}\right) \cdot \mathbf{R}_{p}$$

Il fattore R dipende quindi dal rapporto fra l'interasse presente fra i pali e il diametro dei pali stessi e dal fattore R_p che tiene conto dell'effetto arco.

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{v}W$$

Essendo:

- $F_H e F_V$ rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- W peso concio;
- K_x coefficiente sismico orizzontale;
- K_v coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m'n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Stabilizzazione di pendii con l'utilizzo di pali

La realizzazione di una cortina di pali, su pendio, serve a fare aumentare la resistenza al taglio su determinate superfici di scorrimento. L'intervento può essere conseguente ad una stabilità già accertata, per la quale si conosce la superficie di scorrimento oppure, agendo preventivamente, viene progettato in relazione alle ipotetiche superfici di rottura che responsabilmente possono essere assunte come quelle più probabili. In ogni caso si opera considerando una massa di terreno in movimento su un ammasso stabile sul quale attestare, per una certa lunghezza, l'allineamento di pali.

Il terreno, nelle due zone, ha una influenza diversa sull'elemento monoassiale (palo): di tipo sollecitativi nella parte superiore (palo passivo – terreno attivo) e di tipo resistivo nella zona sottostante (palo attivo – terreno passivo). Da questa interferenza, fra "sbarramento" e massa in movimento, scaturiscono le azioni stabilizzanti che devono perseguire le seguenti finalità:

- 1. conferire al pendio un coefficiente di sicurezza maggiore di quello posseduto;
- 2. essere assorbite dal manufatto garantendone l'integrità (le tensioni interne, derivanti dalle sollecitazioni massime trasmesse sulle varie sezioni del singolo palo, devono risultare inferiori a quelle ammissibili del materiale) e risultare inferiori al carico limite sopportabile dal terreno, calcolato, lateralmente considerando l'interazione (palo-terreno).

Carico limite relativo all'interazione fra i pali ed il terreno laterale

Nei vari tipi di terreno che non hanno un comportamento omogeneo, le deformazioni in corrispondenza della zona di contatto non sono legate fra di loro. Quindi, non potendo associare al materiale un modello di comportamento perfettamente elastico (ipotesi che potrebbe essere assunta per i materiali lapidei poco fratturati), generalmente si procede imponendo che il movimento di massa sia nello stato iniziale e che il terreno in adiacenza ai pali sia nella fase massima consentita di plasticizzazione, oltre la quale si potrebbe verificare l'effetto indesiderato che il materiale possa defluire, attraverso la cortina di pali, nello spazio intercorrente fra un elemento e l'altro.

Imponendo inoltre che il carico assorbito dal terreno sia uguale a quello associato alla condizione limite ipotizzata e che fra due pali consecutivi, a seguito della spinta attiva, si instauri una sorta di effetto arco, gli autori T. Ito e T. Matsui (1975) hanno ricavato la relazione che permette di determinare il carico limite. A questa si è pervenuto facendo riferimento allo schema statico, disegnato nella figura precedente e alle ipotesi anzidette, che schematicamente si ribadiscono.

- Sotto l'azione della spinte attiva del terreno si formano due superfici di scorrimento localizzate in corrispondenza delle linee AEB ed A'E'B;
- Le direzioni EB ed E'B' formano con l'asse x rispettivamente angoli +($45 + \varphi/2$) e -($45 + \varphi/2$);
- Il volume di terreno, compreso nella zona delimitata dai vertici AEBB'E'A' ha un comportamento plastico, e quindi è consentita l'applicazione del criterio di rottura di Mohr-coulomb;
- La pressione attiva del terreno agisce sul piano A-A';
- I pali sono dotati di elevata rigidezza a flessione e taglio.

Detta espressione, riferita alla generica profondità Z, relativamente ad un spessore di terreno unitario, è la seguente:

$$P(Z) = C \cdot D_{1}(D_{1}/D_{2})^{k_{1}} \left[\frac{1}{(N_{\phi}tag\phi)} e^{k_{2}} - 2(N_{\phi})^{k_{2}}tag\phi - 1 \right] + K_{3} - C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k_{2}} \right] + \gamma Z / N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k_{1}} \cdot e^{k_{2}} - D_{2} \right] + K_{3} - C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k_{2}} \right] + \gamma Z / N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k_{1}} \cdot e^{k_{2}} - D_{2} \right] + N_{3} - C \left[D_{1} \cdot K_{3} - D_{2}/(N_{\phi})^{k_{2}} \right] + \gamma Z / N_{\phi} \left[D_{1}(D_{1}/D_{2})^{k_{1}} \cdot e^{k_{2}} - D_{2} \right]$$

dove i simboli utilizzati assumono il significato che segue:

C = coesione terreno;

 ϕ = angolo di attrito terreno;

- γ = peso specifico terreno;
- $D_1 = interasse tra i pali;$

 $D_2 =$ spazio libero fra due pali consecutivi;

$$N_{0} = tag^2(\pi/4 + \phi/2)$$

$$\begin{split} \mathbf{K}_{1} &= \left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\\ \mathbf{K}_{2} &= \left(\mathbf{D}_{1} - \mathbf{D}_{2}\right) / \mathbf{D}_{2} \cdot \mathbf{N}_{\phi} tag(\pi/8 + \phi/4)\\ \mathbf{K}_{3} &= \left[2 tag\phi + 2 \left(\mathbf{N}_{\phi}\right)^{1/2} + 1 / \left(\mathbf{N}_{\phi}\right)^{1/2}\right] / \left[\left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\right] \end{split}$$

La forza totale, relativamente ad uno strato di terreno in movimento di spessore H, è stata ottenuta integrando l'espressione precedente.

In presenza di terreni granulari (condizione drenata), nei quali si può assumere c = 0, l'espressione diventa:

$$\boldsymbol{P} = \frac{1}{2\gamma} \cdot \boldsymbol{H}^2 / N_{\varphi} \Big[\boldsymbol{D}_1 (\boldsymbol{D}_1 / \boldsymbol{D}_2)^{k_1} \cdot \boldsymbol{e}^{k_2} - \boldsymbol{D}_2 \Big]$$

Per terreni coesivi (condizioni non drenate), con $\phi = 0$ e C $\neq 0$, si ha:

$$P(z) = C[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + \gamma \cdot Z(D_1 - D_2)$$
$$P = \int_0^H P(Z) dZ$$
$$P = C \cdot H[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + 1/2\gamma H^2(D_1 - D_2)$$

Il dimensionamento della cortina di pali, che come già detto deve conferire al pendio un incremento del coefficiente di sicurezza e garantire l'integrità del meccanismo palo-terreno, è abbastanza problematica. Infatti tenuto conto della complessità dell'espressione del carico P, influenzata da diversi fattori legati sia alle caratteristiche meccaniche del terreno sia alla geometria del manufatto, non è facile con una sola elaborazione pervenire alla soluzione ottimale. Per raggiungere lo scopo è necessario pertanto eseguire diversi tentativi finalizzati:

- A trovare, sul profilo topografico del pendio, la posizione che garantisca, a parità di altre condizioni, una distribuzione dei coefficienti di sicurezza più confortante;
- A determinare la disposizione planimetrica dei pali, caratterizzata dal rapporto fra interasse e distanza fra i pali (D2/D1), che consenta di sfruttare al meglio la resistenza del complesso palo-terreno; sperimentalmente è stato riscontrato che, escludendo i casi limiti (D₂ = 0 P→∞ e D₂ = D₁ P→ valore minimo), i valori più idonei allo scopo sono quelli per i quali tale rapporto risulta compreso fra 0,60 e 0,80;
- A valutare la possibilità di inserire più file di pali ed eventualmente, in caso affermativo, valutare, per le file successive, la posizione che dia più garanzie in termini di sicurezza e di spreco di materiali;
- Ad adottare il tipo di vincolo più idoneo che consente di ottenere una distribuzione più regolare delle sollecitazioni; sperimentalmente è stato constatato che quello che assolve, in maniera più soddisfacente, allo scopo è il vincolo che impedisce le rotazioni alla testa del palo.

Metodo del carico limite di Broms

Nel caso in cui il palo sia caricato ortogonalmente all'asse, configurazione di carico presente se un palo inibisce il movimento di una massa in frana, la resistenza può essere affidata al suo carico limite orizzontale.

Il problema di calcolo del carico limite orizzontale è stato affrontato da Broms sia per il mezzo puramente coesivo che per il mezzo incoerente, il metodo di calcolo seguito è basato su alcune ipotesi semplificative per quanto attiene alla reazione esercitata dal terreno per unità di lunghezza di palo in condizioni limite e porta in conto anche la resistenza a rottura del palo (Momento di plasticizzazione).

Elemento Rinforzo

I Rinforzi sono degli elementi orizzontali, la loro messa in opera conferisce al terreno un incremento della resistenza allo scorrimento.

Se l'elemento di rinforzo interseca la superficie di scorrimento, la forza resistente sviluppata dall'elemento entra nell'equazione di equilibrio del singolo concio, in caso contrario l'elemento di rinforzo non ne influenza la stabilità.

Le verifiche di natura interna hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, quelle calcolate sono la verifica a rottura dell'elemento di rinforzo per trazione e la verifica a sfilamento (Pullout). Il parametro che fornisce la resistenza a trazione del rinforzo, T_{Allow} , si calcola dalla resistenza nominale del materiale con cui è realizzato il rinforzo ridotto da opportuni coefficienti che tengono conto dell'aggressività del terreno, danneggiamento per effetto creep e danneggiamento per installazione.

L' altro parametro è la resistenza a sfilamento (Pullout) che viene calcolata attraverso la seguente relazione:

$$T_{\text{Pullout}} = 2 \cdot \text{Le} \cdot \sigma' \mathbf{v} \cdot \mathbf{f}_{b} \cdot \tan(\delta)$$

Per geosintetico a maglie chiuse:

$$f_b = \frac{\tan(\delta)}{\tan(\phi)}$$

dove:

d Rappresenta l'angolo di attrito tra terreno e rinforzo;

TPulloutResistenza mobilitata da un rinforzo ancorato per una lunghezza Le all'interno della parte stabile del terreno;

Le Lunghezza di ancoraggio del rinforzo all'interno della parte stabile;

f_b Coefficiente di Pullout;

 σ'_{V} Tensione verticale, calcolata alla profondità media del tratto di rinforzo ancorato al terreno.

Ai fini della verifica si sceglie il valore minimo tra T_{Allow} e $T_{Pullout}$, la verifica interna verrà soddisfatta se la forza trasmessa dal rinforzo generata a tergo del tratto rinforzato non supera il valore della T'.

Ancoraggi

Gli ancoraggi, tiranti o chiodi, sono degli elementi strutturali in grado di sostenere forze di trazione in virtù di un'adeguata connessione al terreno.

Gli elementi caratterizzanti un tirante sono:

- testata: indica l'insieme degli elementi che hanno la funzione di trasmettere alla struttura ancorata la forza di trazione del tirante;
- fondazione: indica la parte del tirante che realizza la connessione con il terreno, trasmettendo al terreno stesso la forza di trazione del tirante.

Il tratto compreso tra la testata e la fondazione prende il nome di parte libera, mentre la fondazione (o bulbo) viene realizzata iniettando nel terreno, per un tratto terminale, tramite valvole a perdere, la malta, in genere cementizia. L'anima dell'ancoraggio è costituita da un'armatura, realizzata con barre, fili o trefoli.

Il tirante interviene nella stabilità in misura maggiore o minore efficacia a seconda se sarà totalmente o parzialmente (caso in cui è intercettato dalla superficie di scorrimento) ancorato alla parte stabile del terreno.

Bulbo completamente ancorato

Bulbo parzialmente ancorato

Le relazioni che esprimono la misura di sicurezza lungo una ipotetica superficie di scorrimento si modificheranno in presenza di ancoraggi (tirante attivo, passivo e chiodi) nel modo seguente:

- per i tiranti di tipo attivo, la loro resistenza si detrae dalle azioni (denominatore);

$$Fs = \frac{R_d}{E_d - \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}$$

- per tiranti di tipo passivo e per i chiodi, il loro contributo si somma alle resistenze (numeratore)

$$Fs = \frac{R_d + \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}{E_d}$$

 $Con \ R_{j} \ si \ indica \ la \ resistenza \ dell'ancoraggio \ e \ viene \ calcolata \ dalla \ seguente \ espressione:$

$$\mathbf{R}_{j} = \mathbf{T}_{d} \cdot \cos \Psi_{i} \cdot \left(\frac{1}{i}\right) \cdot \left(\frac{\mathbf{L}_{e}}{\mathbf{L}_{a}}\right)$$

dove:

uove.	
Td	tiro esercizio;
Yi	inclinazione del tirante rispetto all'orizzontale;
i	interasse;
Le	lunghezza efficace;
*	

La lunghezza d'ancoraggio.

I due indici (i, j) riportati in sommatoria rappresentano rispettivamente l'i-esimo concio e il j-esimo ancoraggio intercettato dalla superficie di scorrimento dell'i-esimo concio.

Analisi di stabilità dei pendii con : MORGENSTERN-PRICE (1965) S

Lat./Long.	43.129261/13.083946 °	
Calcolo eseguito secondo	NTC 2018	
Numero di strati	3.0	
Numero dei conci	10.0	
Grado di sicurezza ritenuto accettabile	1.1	
Coefficiente parziale resistenza	1.0	
Analisi	Condizione drenata	
Superficie di forma circolare		

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	-27.52 m
Ordinata vertice sinistro inferiore yi	87.1 m
Ascissa vertice destro superiore xs	106.14 m
Ordinata vertice destro superiore ys	133.46 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali		
Tipo opera:	2 - Opere ordinarie	
Classe d'uso:	Classe IV	
Vita nominale:	50.0 [anni]	
Vita di riferimento:	100.0 [anni]	
Parametri sismici su sito di rife	rimento	
Categoria sottosuolo:	С	
Categoria topografica:	T1	

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]
	[anni]			
S.L.O.	60.0	0.863	2.441	0.291
S.L.D.	101.0	1.079	2.437	0.301
S.L.V.	949.0	2.373	2.566	0.338
S.L.C.	1950.0	2.962	2.598	0.348

Coefficienti sismici orizzontali e verticali Opera:

Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	1.2945	0.2	0.0264	0.0132
S.L.D.	1.6185	0.24	0.0396	0.0198
S.L.V.	3.15	0.28	0.0899	0.045
S.L.C.	3.6407	0.28	0.104	0.052

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale

0.09 0.045

Vertici profilo

Nr	Х	у
	(m)	(m)
1	14.24	40.7
2	29.42	42.04
3	41.9	43.35
4	48.27	44.06
5	54.07	44.66
6	58.91	45.23
7	66.8	46.54
8	74.61	47.17
9	78.86	47.77
10	87.59	48.59
11	101.03	49.86
12	109.34	50.5

Falda

Nr.	Х	у
	(m)	(m)
1	14.24	40.69
2	29.42	42.03
3	41.9	43.34
4	48.27	44.05
5	54.07	44.65
6	58.91	45.22
7	66.8	46.53
8	74.61	47.16

9	78.86	47.76
10	87.59	48.58
11	101.03	49.85
12	109.34	50.49

N	Х	у
	(m)	(m)
1	14.24	37.58
2	25.21	38.45
3	35.22	39.71
4	50.89	41.05
5	57.19	41.6
6	59.24	41.6
7	74.45	44.99
8	83.11	45.7
9	91.54	47.11
10	101.86	47.98
11	109.34	48.93

Vertici strato2

N	Х	у
	(m)	(m)
1	14.24	36.23
2	23.12	36.85
3	33.51	37.78
4	44.84	38.87
5	54.76	40.11
6	58.1	40.27
7	67.17	41.66
8	74.7	43.52
9	81.76	43.91
10	94.17	45.54
11	105.41	46.47
12	109.34	47.03

Coefficienti parziali azioni

		====	
Sfavorevoli: Permanenti, variabili	1.0	1.0	
Favorevoli: Permanenti, variabili	1.0	1.0	

Coefficienti parziali per i parametri geotecnici del terreno

	=======================================
1.25	
1.25	
1.4	
Si	
	1.25 1.25 1.4 Si

Strato	Coesione	Coesione	Angolo	Peso unità	Peso saturo	Litologia	
	(kg/cm2)	non drenata	resistenza	di volume	(Kg/m3)		
		(kg/cm2)	al taglio	(Kg/m3)			
			(°)				
1	0.1		20	1800	1900	ML	
						DEPOSITO	
						ELUVIO	
						COLLUVI	
						ALI	
						LIMOSO	
2	0.1		26	1800	1900	SFALS	
						SUBSTRA	
						ТО	
						ALTERAT	
						0	
						ARGILLE	
						ALTERNA	
						TE AD	
						ARENARI	
						E	
3	0.2		35	2100	2200	ALS	
						SUBSTRA	
						ТО	
						INTEGRO	
						ARGILLE	
						ALTERNA	
						TE A	
						ARENARI	
						E	
	Strato	Strato Coesione (kg/cm2) 1 0.1 2 0.1 3 0.2	Strato Coesione (kg/cm2) Coesione non drenata (kg/cm2) 1 0.1 2 0.1 3 0.2	StratoCoesione (kg/cm2)Coesione non drenata (kg/cm2)Angolo resistenza al taglio (°)10.12020.12630.235	StratoCoesione (kg/cm2)Coesione non drenata (kg/cm2)Angolo resistenza al taglio (°)Peso unità di volume (Kg/m3)10.120180020.126180030.2352100	StratoCoesione (kg/cm2)Coesione non drenata (kg/cm2)Angolo resistenza al taglio (°)Peso unità di volume (Kg/m3)Peso saturo (Kg/m3)10.1201800190020.1261800190030.23521002200	StratoCoesione (kg/cm2)Coesione non drenata (kg/cm2)Angolo resistenza al taglio (°)Peso unità di volume (Kg/m3)Peso saturo (Kg/m3)Litologia10.12018001900ML20.12018001900ML20.12018001900SFALS20.12618001900SFALS20.12618001900SFALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.23521002200ALS30.2404040440404044040404404040440404404044040440440440440440440440440440440440

Risultati analisi pendio [NTC 2018]

Stratigrafia

Fs minimo individuato	1.59	
Ascissa centro superficie	52.68 m	
Ordinata centro superficie	119.55 m	
Raggio superficie	79.01 m	

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio ; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Ei, Ei-1: Forze agenti normalmente alle facce del concio; Xi, Xi-1: Forze di tipo tagliante applicate sulle facce laterali .

 $xc = 52.678 \ yc = 119.551 \ Rc = 79.015 \ Fs = 1.587$ Lambda = 0.00

Nr.	В	Alfa	Li	Wi	
	m	(°)	m	(Kg)	
1	7.17	-10.48	7.29	15327.83	
2	3.36	-6.61	3.38	15821.3	
3	3.01	-4.29	3.01	17906.9	
4	5.8	-1.1	5.8	41990.93	
5	4.85	2.77	4.85	39735.07	
6	7.89	7.41	7.95	70239.18	
7	4.79	12.07	4.9	40508.39	
8	3.02	14.98	3.13	21994.19	
9	4.24	17.73	4.46	25681.66	
10	8.53	22.7	9.25	24848.32	

Sforzi sui conci

Nr.	Xi	Ei	Xi-1	Ei-1	N'i	Ti	Ui
	(Kg)	(Kg)	(Kg)	(Kg)	(Kg)	(Kg)	(Kg)
1	662.24	7771.0	0.0	0.0	6034.36	4783.39	1083.35
2	1023.75	12013.03	662.24	7771.0	7486.04	3078.31	2440.09
3	1261.14	14798.71	1023.75	12013.03	8976.11	3166.16	3104.87
4	1628.59	19110.54	1261.14	14798.71	21446.51	8196.48	3800.67
5	1616.81	18972.26	1628.59	19110.54	20466.4	7476.53	4296.3
6	1327.77	15580.61	1616.81	18972.26	35219.53	12667.14	4602.09
7	734.63	8620.44	1327.77	15580.61	18932.96	7124.28	4249.87
8	255.57	2998.99	734.63	8620.44	9556.19	3927.41	3559.3
9	-246.71	-2894.95	255.57	2998.99	10711.16	4879.14	2879.37
10	-700.3	-8217.62	-246.71	-2894.95	9483.19	6400.12	1294.83

Relazione di calcolo VERIFICA STABILITA' SEZ D-D

Analisi di stabilità dei pendii con : MORGENSTERN-PRICE (1965)

Lat./Long.		43.129261/13.083946 °			
Calcolo eseguito secondo		NTC 2018			
Numero di strati		3.0			
Numero dei conci		10.0 1.1			
Grado di sicurezza rit	enuto accettabile				
Coefficiente parziale	resistenza	1.0			
Analisi			Condizione drenata		
Superficie di forma ci	ircolare ====================================			============	
Maglia dei Centri					
Ascissa vertice sinistro inferiore xi			-37.29 m		
Ordinata vertice sinis	tro inferiore yi		90.3 m		
Ascissa vertice destro	superiore xs		106.12 n	n	
Ordinata vertice destro superiore ys			130.29 m		
Passo di ricerca			10.0		
Numero di celle lungo	0 X	10.0			
	оу =====================		10.0		
Coefficienti sismici [[N.T.C.]		=======================================		
Dati generali		A H H			
Tipo opera:	2	- Opere ordinarie			
Classe d'uso:		Classe IV			
Vita nominale:		50.0 [anni]			
Vita di riferimento:		100.0 [ann1]			
Parametri sismici su	sito di riferimento				
Categoria sottosuolo:		С			
Categoria topografica:		T1			
S.L.	TR	ag	F0	TC*	
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]	
	[anni]				
S.L.O.	60.0	0.863	2.441	0.291	
S.L.D.	101.0	1.079	2.437	0.301	
S.L.V.	949.0	2.373	2.566	0.338	
S.L.C.	1950.0	2.962	2.598	0.348	

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendi	e Fondazioni
----------------------------	--------------

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	1.2945	0.2	0.0264	0.0132
S.L.D.	1.6185	0.24	0.0396	0.0198
S.L.V.	3.15	0.28	0.0899	0.045
S.L.C.	3.6407	0.28	0.104	0.052

Coefficiente azione sismica orizzontale	0.09
Coefficiente azione sismica verticale	0.045

Vertici profilo

Nr	Х	у
	(m)	(m)
1	-16.27	53.16
2	-4.2	54.26
3	4.68	55.16
4	12.36	55.85
5	21.84	56.55
6	31.02	56.85
7	40.59	58.15
8	48.07	58.65
9	52.26	58.85
10	58.65	59.64
11	63.93	60.24
12	71.91	61.44
13	76.6	62.24
14	85.38	63.63
15	92.16	64.43
16	95.75	65.13

Falda

Nr.	Х	У
	(m)	(m)
1	-16.27	53.15
2	-4.2	54.25
3	4.68	55.15
4	12.36	55.84
5	21.84	56.54
6	31.02	56.84
7	40.59	58.14
8	48.07	58.64
9	52.26	58.84
10	58.65	59.63
11	63.93	60.23
12	71.91	61.43
13	76.6	62.23
----	-------	-------
14	85.38	63.62
15	92.16	64.42
16	95.75	65.12

Vertici strato1

N	Х	у
	(m)	(m)
1	-16.27	50.55
2	-4.09	52.29
3	0.24	52.64
4	21.51	54.76
5	34.31	55.64
6	46.59	56.88
7	52.24	57.14
8	64.16	58.47
9	70.95	59.0
10	80.75	60.76
11	95.75	63.13

Vertici strato2

N	Х	у
	(m)	(m)
1	-16.27	49.16
2	1.39	51.44
3	9.08	52.41
4	25.86	53.73
5	40.91	54.91
6	51.03	55.95
7	60.67	57.06
8	71.13	58.23
9	80.08	59.69
10	87.08	60.8
11	91.73	61.35
12	95.75	61.69

Coefficienti parziali azioni

		====	
Sfavorevoli: Permanenti, variabili	1.0	1.0	
Favorevoli: Permanenti, variabili	1.0	1.0	

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1.25	
Coesione efficace	1.25	
Coesione non drenata	1.4	
Riduzione parametri geotecnici terreno	Si	

Strat	igra	fia
Duu	1510	un

Strato	Coesione (kg/cm2)	Coesione non drenata	Angolo resistenza	Peso unità di volume	Peso saturo (Kg/m3)	Litologia	
		(Kg/CIII2)	ai tagiio (°)	(K g/III5)			
1	0.1		20	1800	1900	ML	
						DEPOSITO	
						ELUVIO	
						COLLUVI	
						ALI	
						LIMOSO	
2	0.1		26	1800	1900	SFALS	
						SUBSTRA	
						TO	
						ALTERAT	
						AKGILLE	
						F	
3	0.2		35	2100	2200		
5	0.2		55	2100	2200	SUBSTRA	
						ТО	
						INTEGRO	
						ARGILLE	
						ALTERNA	
						TE A	
						ARENARI	
						E	

Risultati analisi pendio [NTC 2018]

Fs minimo individuato	1.72	
Ascissa centro superficie	70.27 m	
Ordinata centro superficie	96.3 m	
Raggio superficie	37.68 m	

N°	Хо	Yo	Ro	Fs
1	-8.6	90.3	37.2	4.55
2	-1.4	92.3	40.7	2.26
3	5.7	90.3	37.4	2.55
4	12.9	92.3	39.2	2.63
5	20.1	90.3	42.1	2.84

Numero di superfici esaminate....(141)

6	27.2	92.3	37.8	2.79
7	34.4	90.3	35.3	2.48
8	41.6	92.3	36.8	2.45
9	48.8	90.3	34.3	2.43
10	55.9	92.3	41.1	2.44
11	63.1	90.3	32.6	1.87
12	70.3	92.3	33.6	1.73
13	77.4	90.3	30.3	1.85
14	84.6	92.3	29.1	6.38
15	-8.6	94.3	41.5	3.60
16	-1.4	96.3	44.5	2.30
17	5.7	94.3	42.1	2.49
18	12.9	96.3	43.2	2.63
19	20.1	94.3	45.1	2.87
20	27.2	96.3	41.8	2.73
21	34.4	94.3	39.3	2.49
22	41.6	96.3	40.8	2.42
23	48.8	94.3	38.3	2.37
24	55.9	96.3	39.8	2.35
25	63.1	94.3	36.1	1.98
26	70.3	96.3	37.7	1.72
27	77.4	94.3	34.1	1.88
28	84.6	96.3	32.9	9.91
29	-8.6	98.3	45.4	3.67
30	-1.4	100.3	48.3	2.32
31	5.7	98.3	45.9	2.35
32	12.9	100.3	47.2	2.63
33	20.1	98.3	49.1	2.93
34	27.2	100.3	45.8	2.72
35	34.4	98.3	43.3	2.49
36	41.6	100.3	44.8	2.42
37	48.8	98.3	42.3	2.31
38	55.9	100.3	43.7	2.24
39	63.1	98.3	40.7	1.78
40	70.3	100.3	41.2	1.76
41	77.4	98.3	37.6	1.97
42	84.6	100.3	36.7	18.30
43	-8.6	102.3	49.0	4.94
44	-1.4	104.3	52.2	2.36
45	5.7	102.3	49.7	2.41
46	12.9	104.3	51.2	2.64
47	20.1	102.3	49.0	2.86
48	27.2	104.3	49.7	2.69
49	34.4	102.3	47.3	2.53
50	41.6	104.3	48.8	2.39
51	48.8	102.3	46.3	2.28
52	55.9	104.3	47.3	2.04
53	63.1	102.3	44.2	1.91
54	70.3	104.3	45.2	1.76

55	77.4	102.3	41.2	2.23
56	84.6	104.3	40.6	21.14
57	-8.6	106.3	53.0	5.00
58	-1.4	108.3	56.1	2.41
59	5.7	106.3	53.6	2.47
60	12.9	108.3	55.2	2.64
61	20.1	106.3	53.0	2.81
62	27.2	108.3	53.7	2.65
63	34.4	106.3	51.3	2.54
64	41.6	108.3	52.7	2.36
65	48.8	106.3	50.3	2.24
66	55.9	108.3	51.0	2.14
67	63.1	106.3	48.6	1.75
68	70.3	108.3	49.2	1.74
69	77.4	106.3	44.8	2.56
70	-8.6	110.3	57.3	3.79
71	-1.4	112.3	60.5	2.27
72	5.7	110.3	57.4	2.48
73	12.9	112.3	59.2	2.62
74	20.1	110.3	62.1	2.72
75	27.2	112.3	57.7	2.62
76	34.4	110.3	55.2	2.55
77	41.6	112.3	56.7	2.35
78	48.8	110.3	54.2	2.20
79	55.9	112.3	55.6	2.20
80	63.1	110.3	52.2	1.83
81	70.3	112.3	53.2	1.75
82	77.4	110.3	48.3	3.44
83	-8.6	114.3	61.3	3.83
84	-1.4	116.3	63.9	2.49
85	5.7	114.3	61.3	2.54
86	12.9	116.3	63.2	2.60
87	20.1	114.3	61.0	2.76
88	27.2	116.3	61.7	2.62
89	34.4	114.3	59.2	2.54
90	41.6	116.3	60.7	2.35
91	48.8	114.3	65.9	2.13
92	55.9	116.3	59.3	1.95
93	63.1	114.3	56.5	1.75
94	70.3	116.3	56.5	1.90
95	77.4	114.3	52.3	3.50
96	-8.6	118.3	65.2	3.85
97	-1.4	120.3	68.3	2.30
98	5.7	118.3	65.9	2.36
99	12.9	120.3	67.2	2.62
100	20.1	118.3	69.1	2.77
101	27.2	120.3	65.7	2.62
102	34.4	118.3	63.2	2.54
103	41.6	120.3	70.7	2.30

105 55.9 120.3 62.9 2.03 106 63.1 118.3 60.1 1.84 107 70.3 120.3 60.1 2.08 108 77.4 118.3 55.9 4.99 109 -8.6 122.3 69.2 3.85 110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 73.1 2.70 114 27.2 124.3 69.7 2.62 115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.9 2.50 118 55.9 124.3 63.8 2.29 121 77.4 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.40 125 12.9 128.3 75.6 2.52 124 5.7 126.3 73.9 2.20 131 55.9 128.3 71.1 1.74 132 63.1 126.3 63.6 7.52 134 7	104	48.8	118.3	67.2	2.15	
106 63.1 118.3 60.1 1.84 107 70.3 120.3 60.1 2.08 108 77.4 118.3 55.9 4.99 109 -8.6 122.3 69.2 3.85 110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 73.1 2.70 114 27.2 124.3 69.7 2.62 115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 124 5.7 126.3 75.0 2.67 126 20.1 126.3 75.0 2.67 126 20.1 126.3 73.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 63.6 7.52 124 5.7 126.3 63.6 7.52 125 1	105	55.9	120.3	62.9	2.03	
107 70.3 120.3 60.1 2.08 108 77.4 118.3 55.9 4.99 109 -8.6 122.3 69.2 3.85 110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 73.1 2.70 114 27.2 124.3 69.7 2.62 115 34.4 122.3 72.9 2.50 116 41.6 124.3 66.6 2.13 117 48.8 122.3 64.2 1.77 120 70.3 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 75.9 2.40 125 12.9 128.3 73.7 2.61 126 20.1 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 135	106	63.1	118.3	60.1	1.84	
108 77.4 118.3 55.9 4.99 109 -8.6 122.3 69.2 3.85 110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 72.9 2.50 114 27.2 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 116 41.6 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.6 2.52 124 5.7 126.3 77.1 2.74 127 27.2 128.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 76.9 2.11 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20	107	70.3	120.3	60.1	2.08	
109-8.6 122.3 69.2 3.85 110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 73.1 2.70 114 27.2 124.3 69.7 2.62 115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 76.9 2.40 129 41.6 128.3 77.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 135 -86	108	77.4	118.3	55.9	4.99	
110 -1.4 124.3 72.2 2.32 111 5.7 122.3 69.8 2.40 112 12.9 124.3 71.1 2.63 113 20.1 122.3 73.1 2.70 114 27.2 124.3 69.7 2.62 115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 73.7 2.61 126 20.1 126.3 73.9 2.19 130 48.8 126.3 73.9 2.19 131 55.9 128.3 71.1 1.93 132 63.1 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 3	109	-8.6	122.3	69.2	3.85	
1115.7122.369.82.4011212.9124.371.12.6311320.1122.373.12.7011427.2124.369.72.6211534.4122.372.92.5011641.6124.368.72.3011748.8122.372.82.0511855.9124.366.62.1311963.1122.364.21.7712070.3124.363.82.2912177.4122.359.95.02122-8.6126.372.95.12123-1.4128.375.62.521245.7126.373.62.4412512.9128.375.02.6712620.1126.377.12.7412727.2128.373.92.1913048.8126.373.92.2013155.9128.371.11.9313263.1126.368.41.7413370.3128.367.82.2713477.4126.363.67.52135-8.6130.376.95.111365.7130.377.52.4713720.1130.380.92.3913948.8130.378.32.1814063.1130.372.01.8014177.4130.3 <td>110</td> <td>-1.4</td> <td>124.3</td> <td>72.2</td> <td>2.32</td> <td></td>	110	-1.4	124.3	72.2	2.32	
11212.9124.371.12.6311320.1122.373.12.7011427.2124.369.72.6211534.4122.372.92.5011641.6124.368.72.3011748.8122.372.82.0511855.9124.366.62.1311963.1122.364.21.7712070.3124.363.82.2912177.4122.359.95.02122-8.6126.372.95.12123-1.4128.375.62.521245.7126.377.12.7412512.9128.375.02.6712620.1126.377.12.7412727.2128.376.92.4012941.6128.379.92.1913048.8126.373.92.2013155.9128.371.11.9313263.1126.363.67.52135-8.6130.376.95.111365.7130.377.52.4713720.1130.380.92.3913834.4130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	111	5.7	122.3	69.8	2.40	
11320.1122.3 73.1 2.7011427.2124.369.72.6211534.4122.372.92.5011641.6124.368.72.3011748.8122.372.82.0511855.9124.366.62.1311963.1122.364.21.7712070.3124.363.82.2912177.4122.359.95.02122-8.6126.372.95.12123-1.4128.375.62.521245.7126.373.62.4412512.9128.375.02.6712620.1126.377.12.7412727.2128.373.72.6112834.4126.376.92.4012941.6128.379.92.1913048.8126.373.92.2013155.9128.371.11.9313263.1126.368.41.7413370.3128.367.82.2713477.4126.363.67.52135-8.6130.376.95.111365.7130.377.52.4713720.1130.380.92.3913834.4130.380.92.3913948.8130.378.32.1814063.1130.3<	112	12.9	124.3	71.1	2.63	
11427.2124.369.72.62115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 80.9 2.39 138 34.4 130.3 80.9 2.39 139 48.8 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	113	20.1	122.3	73.1	2.70	
115 34.4 122.3 72.9 2.50 116 41.6 124.3 68.7 2.30 117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80	114	27.2	124.3	69.7	2.62	
11641.6124.368.72.3011748.8122.372.82.0511855.9124.366.62.1311963.1122.364.21.7712070.3124.363.82.2912177.4122.359.95.02122-8.6126.372.95.12123-1.4128.375.62.521245.7126.373.62.4412512.9128.375.02.6712620.1126.377.12.7412727.2128.373.72.6112834.4126.376.92.4012941.6128.379.92.1913048.8126.373.92.2013155.9128.371.11.9313263.1126.363.67.5213477.4126.363.67.52135-8.6130.376.95.111365.7130.377.52.4713720.1130.380.92.3913834.4130.380.92.3913948.8130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	115	34.4	122.3	72.9	2.50	
117 48.8 122.3 72.8 2.05 118 55.9 124.3 66.6 2.13 119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 75.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	116	41.6	124.3	68.7	2.30	
11855.9124.366.62.13119 63.1 122.3 64.2 1.77 12070.3124.3 63.8 2.2912177.4122.3 59.9 5.02 122-8.6126.372.9 5.12 123-1.4128.375.62.52124 5.7 126.373.62.4412512.9128.375.02.6712620.1126.377.12.7412727.2128.373.72.6112834.4126.376.92.4012941.6128.379.92.1913048.8126.373.92.2013155.9128.361.41.7413370.3128.367.82.2713477.4126.363.67.52135-8.6130.376.95.111365.7130.377.52.4713720.1130.382.12.6313834.4130.380.92.3913948.8130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	117	48.8	122.3	72.8	2.05	
119 63.1 122.3 64.2 1.77 120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 67.5 9.67	118	55.9	124.3	66.6	2.13	
120 70.3 124.3 63.8 2.29 121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80	119	63.1	122.3	64.2	1.77	
121 77.4 122.3 59.9 5.02 122 -8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	120	70.3	124.3	63.8	2.29	
122-8.6 126.3 72.9 5.12 123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	121	77.4	122.3	59.9	5.02	
123 -1.4 128.3 75.6 2.52 124 5.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	122	-8.6	126.3	72.9	5.12	
1245.7 126.3 73.6 2.44 125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	123	-1.4	128.3	75.6	2.52	
125 12.9 128.3 75.0 2.67 126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	124	5.7	126.3	73.6	2.44	
126 20.1 126.3 77.1 2.74 127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	125	12.9	128.3	75.0	2.67	
127 27.2 128.3 73.7 2.61 128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	126	20.1	126.3	77.1	2.74	
128 34.4 126.3 76.9 2.40 129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	127	27.2	128.3	73.7	2.61	
129 41.6 128.3 79.9 2.19 130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 138 34.4 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	128	34.4	126.3	76.9	2.40	
130 48.8 126.3 73.9 2.20 131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 80.9 2.39 138 34.4 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	129	41.6	128.3	79.9	2.19	
131 55.9 128.3 71.1 1.93 132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	130	48.8	126.3	73.9	2.20	
132 63.1 126.3 68.4 1.74 133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	131	55.9	128.3	71.1	1.93	
133 70.3 128.3 67.8 2.27 134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80	132	63.1	126.3	68.4	1.74	
134 77.4 126.3 63.6 7.52 135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	133	70.3	128.3	67.8	2.27	
135 -8.6 130.3 76.9 5.11 136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	134	77.4	126.3	63.6	7.52	
136 5.7 130.3 77.5 2.47 137 20.1 130.3 82.1 2.63 138 34.4 130.3 80.9 2.39 139 48.8 130.3 78.3 2.18 140 63.1 130.3 72.0 1.80 141 77.4 130.3 67.5 9.67	135	-8.6	130.3	76.9	5.11	
13720.1130.382.12.6313834.4130.380.92.3913948.8130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	136	5.7	130.3	77.5	2.47	
13834.4130.380.92.3913948.8130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	137	20.1	130.3	82.1	2.63	
13948.8130.378.32.1814063.1130.372.01.8014177.4130.367.59.67	138	34.4	130.3	80.9	2.39	
14063.1130.372.01.8014177.4130.367.59.67	139	48.8	130.3	78.3	2.18	
141 77.4 130.3 67.5 9.67	140	63.1	130.3	72.0	1.80	
	141	77.4	130.3	67.5	9.67	

VERIFICHE DI STABILITA' POST OPERA SEZ C-C

Relazione di calcolo

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

- 1. Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (ϕ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ_f), valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.). Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N_i agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali E_i agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X_i agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E_i;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2). Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n - 2) - (4n) = 2n - 2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite. I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di Fellenius (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

- n valori delle forze normali N_i;
- n valori delle forze da taglio T_i;
- 1 fattore di sicurezza.

Incognite (2n+1). Le equazioni a disposizione sono:

- n equazioni di equilibrio alla traslazione verticale;
- n equazioni relative al criterio di rottura;
- equazione di equilibrio dei momenti globale.

$$F = \frac{\Sigma \left\{ c_i \times l_i + (W_i \times \cos \alpha_i - u_i \times l_i) \times \tan \phi_i \right\}}{\Sigma W_i \times \sin \alpha_i}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.

Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_{y} = 0, \quad \sum M_{0} = 0 \quad \text{Criterio di rottura}$$

$$F = \frac{\Sigma \{c_{i} \times b_{i} + (W_{i} - u_{i} \times b_{i} + \Delta X_{i}) \times \tan \varphi_{i}\} \times \frac{\sec \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \varphi_{i} / F}}{\Sigma W_{i} \times \sin \alpha_{i}}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X = 0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Metodo di Janbu (1967)

Janbu estese il metodo di Bishop a superfici di scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio). A tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

Azioni sul concio i-esimo secondo le ipotesi di Janbu e rappresentazione d'insieme dell'ammasso

Assumendo $\Delta X_i = 0$ si ottiene il metodo ordinario. Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

 $F_{corretto} = f_0 \cdot F$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici. Tale correzione è molto attendibile per pendii poco inclinati.

Metodo di Bell (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, W, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali X e Z applicate esternamente al profilo del pendio,

infine, la risultante degli sforzi totali normali e di taglio σ e τ agenti sulla superficie potenziale di scivolamento.

Lo sforzo totale normale può includere un eccesso di pressione dei pori u che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da Taylor.

In accordo con la legge della resistenza di Mohr-Coulomb in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

in cui:

 \mathbf{F} = il fattore di sicurezza;

 c_i = la coesione efficace (o totale) alla base dell'i-esimo concio;

 ϕ_i = l'angolo di attrito efficace (= 0 con la coesione totale) alla base dell'i-esimo concio; L_i = la lunghezza della base dell'i-esimo concio; u_{ci} = la pressione dei pori al centro della base dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:

$$\sigma_{ci} = \left[C_1(1 - K_z)\frac{W_i \cos \alpha_i}{L_i}\right] + C_2 f(x_{ci}, y_{ci}, z_{ci})$$

in cui il primo termine dell'equazione include l'espressione:

 $W_i \cos \alpha_i / L_i =$ valore dello sforzo normale totale associato con il metodo ordinario dei conci Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0} \right)$$

dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo.

Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_Z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_Z).

Lo sforzo normale totale alla base di un concio è dato da:

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C₃. Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

Metodo di Sarma (1973)

Il metodo di Sarma è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica K_c) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica.

Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in n strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia.

Le equazioni da prendere in considerazione sono:

- L'equazione di equilibrio alla traslazione orizzontale del singolo concio;
- L'equazione di equilibrio alla traslazione verticale del singolo concio;
- L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

$$N_i \cos \alpha_i + T_i \sin \alpha_i = W_i - \Delta X_i$$

$$T_i \cos \alpha_i - N_i \sin \alpha_i = KW_i + \Delta E_i$$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

$$\begin{split} & \Sigma \Delta E_i = 0 \\ & \Sigma \Delta X_i = 0 \end{split}$$

dove E_i e X_i rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico i.

L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel **metodo di Sarma** la soluzione del problema passa attraverso la risoluzione di due equazioni:

Azioni sull' iesimo concio, metodo di Sarma

$$\sum \Delta X_{i} \cdot tg(\psi_{i}^{'} - \alpha_{i}) + \sum \Delta E_{i} = \sum \Delta_{i} - K \cdot \sum W_{i}$$
$$\sum \Delta X_{i} \cdot \left[(y_{mi} - y_{G}) \cdot tg(\psi_{i}^{'} - \alpha_{i}^{'}) + (x_{i}^{'} - x_{G}) \right] = \sum W_{i} \cdot (x_{mi} - x_{G}) + \sum \Delta_{i} \cdot (y_{mi} - y_{G})$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di K (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione K corrispondente al fattore di sicurezza F = 1, ossia l'accelerazione critica. Si ha pertanto:

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne X_i ed E_i tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura.

E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze X_i:

$$\Delta \mathbf{X}_{i} = \lambda \cdot \Delta \mathbf{Q}_{i} = \lambda \cdot \left(\mathbf{Q}_{i+1} - \mathbf{Q}_{i} \right)$$

dove Q_i è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla i-esima faccia del concio i, e λ rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di K_c , $\lambda \in F$, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

Metodo di Spencer (1967)

Il metodo è basato sull'assunzione:

- 1. le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo θ ;
- 2. tutti i momenti sono nulli M_i =0 con i=1....n.

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale ametodo di Morgenstern e Price quando la funzione f(x) = 1. Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

1)
$$\sum Q_i R \cos(\alpha - \theta) = 0$$

dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} (W \cos \alpha - \gamma_{w} hl \sec \alpha) \frac{tg\alpha}{F_{s}} - W sen\alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg\phi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci;

 \mathbf{R} = raggio dell'arco di cerchio;

 θ = angolo d'inclinazione della forza Q_i rispetto all'orizzontale. Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$\sum (Q_i \cos \theta) = 0$$
$$\sum (Q_i \sin \theta) = 0$$

Con l'assunzione delle forze Q_i parallele fra loro, si può anche scrivere:

$$2) \qquad \sum Q_i = 0$$

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia:

$$F_{sm} = F_{sf}$$

Metodo di Morgenstern e Price (1965)

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo $X = \lambda f(x)E$, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili.

La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza F_s , il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

$$c'\sec^{2}\frac{\alpha}{F_{s}} + tg\phi'\left(\frac{dW}{dx} - \frac{dX}{dx} - tg\alpha\frac{dE}{dx} - \sec\alpha\frac{dU}{dx}\right) = \frac{dE}{dx} - tg\alpha\left(\frac{dX}{dx} - \frac{dW}{dx}\right)$$

Azioni sul concio i-esimo secondo le ipotesi di Morgenster e Price e rappresentazione d'insieme dell'ammasso

Una seconda equazione, detta "**equazione dei momenti**", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

$$X = \frac{d(E_{\gamma})}{dx} - \gamma \frac{dE}{dx}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento. Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

Metodo di Zeng e Liang (2002)

Zeng e Liang hanno effettuato una serie di analisi parametriche su un modello bidimensionale sviluppato con codice agli elementi finiti, che riproduce il caso di pali immersi in un terreno in movimento (drilled shafts). Il modello bidimensionale riproduce un striscia di terreno di spessore unitario e ipotizza che il fenomeno avvenga in condizioni di deformazione piana nella direzione parallela all'asse dei pali. Il modello è stato utilizzato per indagare l'influenza sulla formazione dell'effetto arco di alcuni parametri come l'interasse fra i pali, il diametro e la forma dei pali, e le proprietà meccaniche del terreno. Gli autori individuano nel rapporto tra l'interasse e il diametro dei i pali (s/d) il parametro adimensionale determinante per la formazione dell'effetto arco. Il problema risulta essere staticamente indeterminato, con grado di indeterminatezza pari a (8n-4), ma nonostante ciò è possibile ottenere una soluzione riducendo il numero delle incognite e assumendo quindi delle ipotesi semplificative, in modo da rendere determinato il problema.

Le assunzioni che rendono il problema determinato sono:

-Ky sono assunte orizzontali per ridurre il numero totale delle incognite da (n-1) a (7n-3);

-Le forze normali alla base della striscia agiscono nel punto medio, riducendo le incognite da n a (6n-3); -La posizione delle spinte laterali è ad un terzo dell'altezza media dell'inter-striscia e riduce le incognite da (n-1) a (5n-2);

-Le forze (Pi-1) e Pi si assumono parallele all'inclinazione della base della striscia

(α i), riducendo il numero di incognite da (n-1) a (4n-1);

-Si assume un'unica costante di snervamento per tutte le strisce, riducendo le incognite da (n) a (3n-1);

Il numero totale di incognite quindi è ridotto a (3n), da calcolare utilizzando il fattore di trasferimento di carico. Inoltre si deve tener presente che la forza di stabilizzazione trasmessa sul terreno a valle dei pali risulta ridotta di una quantità R, chiamato fattore di riduzione, calcolabile come:

$$\mathbf{R} = \frac{1}{s/d} + \left(1 - \frac{1}{s/d}\right) \cdot \mathbf{R}_{p}$$

Il fattore R dipende quindi dal rapporto fra l'interasse presente fra i pali e il diametro dei pali stessi e dal fattore R_p che tiene conto dell'effetto arco.

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{v}W$$

Essendo:

- $F_H e F_V$ rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- W peso concio;
- **K**_{**x**} coefficiente sismico orizzontale;
- **K**_V coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia $m \times n$ e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

Stabilizzazione di pendii con l'utilizzo di pali

La realizzazione di una cortina di pali, su pendio, serve a fare aumentare la resistenza al taglio su determinate superfici di scorrimento. L'intervento può essere conseguente ad una stabilità già accertata, per la quale si conosce la superficie di scorrimento oppure, agendo preventivamente, viene progettato in relazione alle ipotetiche superfici di rottura che responsabilmente possono essere assunte come quelle più probabili. In ogni caso si opera considerando una massa di terreno in movimento su un ammasso stabile sul quale attestare, per una certa lunghezza, l'allineamento di pali.

Il terreno, nelle due zone, ha una influenza diversa sull'elemento monoassiale (palo): di tipo sollecitativi nella parte superiore (palo passivo – terreno attivo) e di tipo resistivo nella zona sottostante (palo attivo – terreno passivo). Da questa interferenza, fra "sbarramento" e massa in movimento, scaturiscono le azioni stabilizzanti che devono perseguire le seguenti finalità:

- 1. conferire al pendio un coefficiente di sicurezza maggiore di quello posseduto;
- 2. essere assorbite dal manufatto garantendone l'integrità (le tensioni interne, derivanti dalle sollecitazioni massime trasmesse sulle varie sezioni del singolo palo, devono risultare inferiori a quelle ammissibili del materiale) e risultare inferiori al carico limite sopportabile dal terreno, calcolato, lateralmente considerando l'interazione (palo-terreno).

Carico limite relativo all'interazione fra i pali ed il terreno laterale

Nei vari tipi di terreno che non hanno un comportamento omogeneo, le deformazioni in corrispondenza della zona di contatto non sono legate fra di loro. Quindi, non potendo associare al materiale un modello di comportamento perfettamente elastico (ipotesi che potrebbe essere assunta per i materiali lapidei poco fratturati), generalmente si procede imponendo che il movimento di massa sia nello stato iniziale e che il terreno in adiacenza ai pali sia nella fase massima

consentita di plasticizzazione, oltre la quale si potrebbe verificare l'effetto indesiderato che il materiale possa defluire, attraverso la cortina di pali, nello spazio intercorrente fra un elemento e l'altro.

Imponendo inoltre che il carico assorbito dal terreno sia uguale a quello associato alla condizione limite ipotizzata e che fra due pali consecutivi, a seguito della spinta attiva, si instauri una sorta di effetto arco, gli autori T. Ito e T. Matsui (1975) hanno ricavato la relazione che permette di determinare il carico limite. A questa si è pervenuto facendo riferimento allo schema statico, disegnato nella figura precedente e alle ipotesi anzidette, che schematicamente si ribadiscono.

- Sotto l'azione della spinte attiva del terreno si formano due superfici di scorrimento localizzate in corrispondenza delle linee AEB ed A'E'B;
- Le direzioni EB ed E'B' formano con l'asse x rispettivamente angoli +(45 + $\varphi/2$) e -(45 + $\varphi/2$);
- Il volume di terreno, compreso nella zona delimitata dai vertici AEBB'E'A' ha un comportamento plastico, e quindi è consentita l'applicazione del criterio di rottura di Mohr-coulomb;
- La pressione attiva del terreno agisce sul piano A-A';
- I pali sono dotati di elevata rigidezza a flessione e taglio.

Detta espressione, riferita alla generica profondità Z, relativamente ad un spessore di terreno unitario, è la seguente:

$$P(Z) = C \cdot D_1 (D_1 / D_2)^{k_1} \left[\frac{1}{(N_{\phi} tag\phi)} e^{k_2} - 2(N_{\phi})^{k_2} tag\phi - 1 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} \right] + \gamma Z / N_{\phi} \left[D_1 (D_1 / D_2)^{k_1} \cdot e^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} \right] + \gamma Z / N_{\phi} \left[D_1 (D_1 / D_2)^{k_1} \cdot e^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} \right] + \gamma Z / N_{\phi} \left[D_1 (D_1 / D_2)^{k_1} \cdot e^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} \right] + \gamma Z / N_{\phi} \left[D_1 (D_1 / D_2)^{k_1} \cdot e^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1 \cdot K_3 - D_2 / (N_{\phi})^{k_2} - D_2 \right] + K_3 - C \left[D_1$$

dove i simboli utilizzati assumono il significato che segue:

 \mathbf{C} = coesione terreno;

 ϕ = angolo di attrito terreno;

 γ = peso specifico terreno;

 D_1 = interasse tra i pali;

 D_2 = spazio libero fra due pali consecutivi;

$$\mathbf{N}_{\mathbf{\phi}} = \mathrm{tag}^2(\pi/4 + \varphi/2)$$

$$\begin{split} \mathbf{K}_1 &= \left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\\ \mathbf{K}_2 &= \left(\mathbf{D}_1 - \mathbf{D}_2\right) / \mathbf{D}_2 \cdot \mathbf{N}_{\phi} tag\left(\pi/8 + \phi/4\right)\\ \mathbf{K}_3 &= \left[2 tag\phi + 2 \left(\mathbf{N}_{\phi}\right)^{1/2} + 1 / \left(\mathbf{N}_{\phi}\right)^{1/2}\right] / \left[\left(\mathbf{N}_{\phi}\right)^{1/2} tag\phi + \mathbf{N}_{\phi} - 1\right] \end{split}$$

La forza totale, relativamente ad uno strato di terreno in movimento di spessore H, è stata ottenuta integrando l'espressione precedente.

In presenza di terreni granulari (condizione drenata), nei quali si può assumere c = 0, l'espressione diventa:

$$\boldsymbol{P} = \frac{1}{2\gamma} \cdot \boldsymbol{H}^2 / N_{\varphi} \Big[\boldsymbol{D}_1 (\boldsymbol{D}_1 / \boldsymbol{D}_2)^{k_1} \cdot \boldsymbol{e}^{k_2} - \boldsymbol{D}_2 \Big]$$

Per terreni coesivi (condizioni non drenate), con $\phi = 0$ e C $\neq 0$, si ha:

$$P(z) = C[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + \gamma \cdot Z(D_1 - D_2)$$
$$P = \int_0^H P(Z) dZ$$
$$P = C \cdot H[D_1(3\ln(D_1/D_2) + (D_1 - D_2)/D_2 \tan \pi/8) - 2(D_1 - D_2)] + 1/2 \gamma H^2(D_1 - D_2)$$

Il dimensionamento della cortina di pali, che come già detto deve conferire al pendio un incremento del coefficiente di sicurezza e garantire l'integrità del meccanismo palo-terreno, è abbastanza problematica. Infatti tenuto conto della complessità dell'espressione del carico P, influenzata da diversi fattori legati sia alle caratteristiche meccaniche del terreno sia alla geometria del manufatto, non è facile con una sola elaborazione pervenire alla soluzione ottimale. Per raggiungere lo scopo è necessario pertanto eseguire diversi tentativi finalizzati:

- A trovare, sul profilo topografico del pendio, la posizione che garantisca, a parità di altre condizioni, una distribuzione dei coefficienti di sicurezza più confortante;
- A determinare la disposizione planimetrica dei pali, caratterizzata dal rapporto fra interasse e distanza fra i pali (D2/D1), che consenta di sfruttare al meglio la resistenza del complesso palo-terreno; sperimentalmente è stato riscontrato che, escludendo i casi limiti (D2 = 0 P→∞ e D2 = D1 P→ valore minimo), i valori più idonei allo scopo sono quelli per i quali tale rapporto risulta compreso fra 0,60 e 0,80;
- A valutare la possibilità di inserire più file di pali ed eventualmente, in caso affermativo, valutare, per le file successive, la posizione che dia più garanzie in termini di sicurezza e di spreco di materiali;
- Ad adottare il tipo di vincolo più idoneo che consente di ottenere una distribuzione più regolare delle sollecitazioni; sperimentalmente è stato constatato che quello che assolve, in maniera più soddisfacente, allo scopo è il vincolo che impedisce le rotazioni alla testa del palo.

Metodo del carico limite di Broms

Nel caso in cui il palo sia caricato ortogonalmente all'asse, configurazione di carico presente se un palo inibisce il movimento di una massa in frana, la resistenza può essere affidata al suo carico limite orizzontale.

Il problema di calcolo del carico limite orizzontale è stato affrontato da Broms sia per il mezzo puramente coesivo che per il mezzo incoerente, il metodo di calcolo seguito è basato su alcune ipotesi semplificative per quanto attiene alla reazione esercitata dal terreno per unità di lunghezza di palo in condizioni limite e porta in conto anche la resistenza a rottura del palo (*Momento di plasticizzazione*).

Elemento Rinforzo

I Rinforzi sono degli elementi orizzontali, la loro messa in opera conferisce al terreno un incremento della resistenza allo scorrimento.

Se l'elemento di rinforzo interseca la superficie di scorrimento, la forza resistente sviluppata dall'elemento entra nell'equazione di equilibrio del singolo concio, in caso contrario l'elemento di rinforzo non ne influenza la stabilità.

Le verifiche di natura interna hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, quelle calcolate sono la verifica a rottura dell'elemento di rinforzo per trazione e la verifica a sfilamento (*Pullout*). Il parametro che fornisce la resistenza a trazione del rinforzo, T_{Allow} , si calcola dalla resistenza nominale del materiale con cui è realizzato il rinforzo ridotto da opportuni coefficienti che tengono conto dell'aggressività del terreno, danneggiamento per effetto creep e danneggiamento per installazione.

L' altro parametro è la resistenza a sfilamento (Pullout) che viene calcolata attraverso la seguente relazione:

$$T_{\text{Pullout}} = 2 \cdot \text{Le} \cdot \sigma' \mathbf{v} \cdot \mathbf{f}_{b} \cdot \tan(\delta)$$

Per geosintetico a maglie chiuse:

$$f_b = \frac{\tan(\delta)}{\tan(\phi)}$$

dove:

δ Rappresenta l'angolo di attrito tra terreno e rinforzo;
 T_{Pullout} Resistenza mobilitata da un rinforzo ancorato per una lunghezza L_e all'interno della parte stabile del terreno;
 L_e Lunghezza di ancoraggio del rinforzo all'interno della parte stabile;
 f_b Coefficiente di *Pullout*;

 σ'_{V} Tensione verticale, calcolata alla profondità media del tratto di rinforzo ancorato al terreno.

Ai fini della verifica si sceglie il valore minimo tra T_{Allow} e $T_{Pullout}$, la verifica interna verrà soddisfatta se la forza trasmessa dal rinforzo generata a tergo del tratto rinforzato non supera il valore della T'.

Ancoraggi

Gli ancoraggi, tiranti o chiodi, sono degli elementi strutturali in grado di sostenere forze di trazione in virtù di un'adeguata connessione al terreno.

Gli elementi caratterizzanti un tirante sono:

- **testata:** indica l'insieme degli elementi che hanno la funzione di trasmettere alla struttura ancorata la forza di trazione del tirante;
- **fondazione**: indica la parte del tirante che realizza la connessione con il terreno, trasmettendo al terreno stesso la forza di trazione del tirante.

Il tratto compreso tra la testata e la fondazione prende il nome di parte libera, mentre la fondazione (o bulbo) viene realizzata iniettando nel terreno, per un tratto terminale, tramite valvole a perdere, la malta, in genere cementizia. L'anima dell'ancoraggio è costituita da un'armatura, realizzata con barre, fili o trefoli.

Il tirante interviene nella stabilità in misura maggiore o minore efficacia a seconda se sarà totalmente o parzialmente (caso in cui è intercettato dalla superficie di scorrimento) ancorato alla parte stabile del terreno.

Bulbo completamente ancorato

Bulbo parzialmente ancorato

Le relazioni che esprimono la misura di sicurezza lungo una ipotetica superficie di scorrimento si modificheranno in presenza di ancoraggi (tirante attivo, passivo e chiodi) nel modo seguente:

- per i tiranti di *tipo attivo*, la loro resistenza si detrae dalle azioni (denominatore);

$$Fs = \frac{R_d}{E_d - \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}$$

- per tiranti di tipo passivo e per i chiodi, il loro contributo si somma alle resistenze (numeratore)

$$Fs = \frac{R_d + \sum_{i,j} R_{i,j} \cdot \frac{1}{\cos \alpha_i}}{E_d}$$

 $Con \ R_{j} \ si \ indica \ la \ resistenza \ dell'ancoraggio \ e \ viene \ calcolata \ dalla \ seguente \ espressione:$

$$\mathbf{R}_{j} = \mathbf{T}_{d} \cdot \cos \Psi_{i} \cdot \left(\frac{1}{i}\right) \cdot \left(\frac{\mathbf{L}_{e}}{\mathbf{L}_{a}}\right)$$

dove:

T_d tiro esercizio;

- Ψ_i inclinazione del tirante rispetto all'orizzontale;
- i interasse;

Le lunghezza efficace;

La lunghezza d'ancoraggio.

I due indici (i, j) riportati in sommatoria rappresentano rispettivamente l'i-esimo concio e il j-esimo ancoraggio intercettato dalla superficie di scorrimento dell'i-esimo concio.

Analisi di stabilità dei pendii con : MORGENSTERN-PRICE (1965)

 Lat./Long.	43.129261/13.083946 °	
Calcolo eseguito secondo	NTC 2018	
Numero di strati	4.0	
Numero dei conci	10.0	
Grado di sicurezza ritenuto accettabile	1.1	
Coefficiente parziale resistenza	1.0	
Analisi	Condizione drenata	
Superficie di forma circolare		

Angolo di resistenza a taglio 35° Coesione 0.2 kg/cm²

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	11.38 m
Ordinata vertice sinistro inferiore yi	61.01 m
Ascissa vertice destro superiore xs	110.22 m
Desse di ricerce	09.98 III 10.0
Numero di celle lungo y	10.0
Numero di celle lungo y	10.0
Tvullero ul cene lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Classe d'uso:	Classe IV
Vita nominale:	50.0 [anni]
Vita di riferimento:	100.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo:

Categoria topografica:

C T1

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]
	[anni]			
S.L.O.	60.0	0.863	2.441	0.291
S.L.D.	101.0	1.079	2.437	0.301
S.L.V.	949.0	2.373	2.566	0.338
S.L.C.	1950.0	2.962	2.598	0.348

Coefficienti sismici orizzontali e verticali

Opera:

Opere di sostegno

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	1.2945	0.18	0.0238	0.0119
S.L.D.	1.6185	0.24	0.0396	0.0198
S.L.V.	3.15	0.31	0.0996	0.0498
S.L.C.	3.6407	0.31	0.1151	0.0575

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale 0.0996 0.0498

Vertici profilo

Nr	Х	у
	(m)	(m)
1	9.41	45.46
2	15.98	45.94
3	22.29	50.13
4	85.83	49.97
5	87.34	51.79
6	89.45	51.94
7	91.08	53.78
8	103.68	55.22
9	110.35	55.73

Falda

Nr.	Х	у
	(m)	(m)
1	9.61	42.17
2	16.19	42.92

3	24.93	43.52
4	85.83	49.96
5	87.9	50.53
6	96.13	52.65
7	100.79	52.93
8	106.3	53.61
9	110.46	53.94

Vertici strato1

Ν	Х	у
	(m)	(m)
1	9.41	45.46
2	11.53	45.59
3	15.93	45.94
4	28.99	47.16
5	44.99	48.72
6	54.88	50.05
7	85.83	49.97
8	87.38	51.77
9	89.47	51.92
10	91.12	53.82
11	103.68	55.22
12	110.35	55.73

Vertici strato2

N	Х	у
	(m)	(m)
1	9.41	42.11
2	28.77	43.92
3	41.54	45.03
4	52.91	46.14
5	59.96	47.48
6	65.83	48.59
7	69.24	49.41
8	73.56	49.98
9	80.38	50.0
10	85.91	50.01
11	87.3	51.68
12	110.35	53.91

Vertici strato3

N	Х	у
	(m)	(m)
1	9.41	41.19
2	22.76	42.04
3	35.54	43.22
4	48.53	44.39
5	54.48	45.15
6	61.59	46.26
7	67.81	47.64

8	73.27	48.19
9	78.93	48.81
10	87.78	49.85
11	94.89	50.61
12	110.35	52.3

Coefficienti parziali azioni

		====	 	
Sfavorevoli: Permanenti, variabili	1.0	1.0		
Favorevoli: Permanenti, variabili	1.0	1.0		

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1.25	
Coesione efficace	1.25	
Coesione non drenata	1.4	
Riduzione parametri geotecnici terreno	Si	

Stratigrafia

Strato	Coesione	Coesione	Angolo	Peso unità	Peso unità	Litologia	
	(kg/cm²)	non drenata	resistenza	di volume	di volume		
		(kg/cm²)	al taglio	(Kg/m³)	saturo		
			(°)		(Kg/m³)		
1	0.3		38	1800.00	2100.00	RI	
						TERRENO	
						DI	
						RIPORTO	
						COMPATT	
						ATO	
2	0.1		20	1800	1900	ML	
						DEPOSITI	
						ELUVIO	
						COLLUVI	
						ALI	
3	0.1		26	2100	2200	SFALS	
						SUBSTRA	
						ТО	
						ALTERAT	
						0	
4	0.2		35	2100	2200	ALS	
						SUBSTRA	
						ТО	
						ITEGRO	

Fs minimo individuato	1.36	
Ascissa centro superficie	85.51 m	
Ordinata centro superficie	63.25 m	
Raggio superficie	13.25 m	

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio ; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Ei, Ei-1: Forze agenti normalmente alle facce del concio; Xi, Xi-1: Forze di tipo tagliante applicate sulle facce laterali .

$xc = 85.512 \ yc = 63.25 \ Rc = 13.245 \ Fs = 1.364$ Lambda = 0.00

Nr.	В	Alfa	Li	Wi
	m	(°)	m	(Kg)
1	0.94	3.55	0.94	1060.7
2	0.54	6.77	0.55	1561.12
3	1.33	10.88	1.36	4472.79
4	0.77	15.55	0.8	2316.48
5	1.1	19.81	1.17	3940.8
6	0.53	23.6	0.58	2406.51
7	1.35	28.15	1.53	5769.63
8	0.94	33.89	1.13	2928.22
9	0.94	38.94	1.2	1944.41
10	0.94	44.38	1.31	721.39

Sforzi sui conci

Nr.	Xi	Ei	Xi-1	Ei-1	N'i	Ti	Ui
	(Kg)						

Risultati analisi pendio [A2+M2+R2]

1	419.52	754.42	0.0	0.0	663.77	740.58	73.61
2	782.91	1407.9	419.52	754.42	1212.26	667.24	206.87
3	1035.58	1862.28	782.91	1407.9	3950.13	1925.46	305.71
4	1176.85	2116.32	1035.58	1862.28	1966.08	1031.53	308.83
5	1081.98	1945.71	1176.85	2116.32	3494.98	1687.98	251.96
6	1063.77	1912.98	1081.98	1945.71	2143.96	951.5	136.67
7	433.65	779.84	1063.77	1912.98	5090.56	2351.64	0.0
8	58.0	104.3	433.65	779.84	2324.22	1158.34	0.0
9	-138.91	-249.79	58.0	104.3	1396.52	1004.8	0.0
10	0.49	0.88	-138.91	-249.79	566.69	890.03	0.0

VERIFICA DI STABILITA' POST OPERA SEZ D-D

Analisi di stabilità dei pendii con : MORGENSTERN-PRICE (1965)

 Lat./Long.	43.129261/13.083946 °	
Calcolo eseguito secondo	NTC 2018	
Numero di strati	4.0	
Numero dei conci	10.0	
Grado di sicurezza ritenuto accettabile	1.1	
Coefficiente parziale resistenza	1.0	
Analisi	Condizione drenata	
Superficie di forma circolare		

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	14.87 m
Ordinata vertice sinistro inferiore yi	70.81 m
Ascissa vertice destro superiore xs	126.89 m
Ordinata vertice destro superiore ys	81.77 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera:

Classe d'uso:	Classe IV
Vita nominale:	50.0 [anni]
Vita di riferimento:	100.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo:

Categoria topografica:

C T1

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]
	[anni]			
S.L.O.	60.0	0.863	2.441	0.291
S.L.D.	101.0	1.079	2.437	0.301
S.L.V.	949.0	2.373	2.566	0.338
S.L.C.	1950.0	2.962	2.598	0.348

Coefficienti sismici orizzontali e verticali

Opera:

Opere di sostegno

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	1.2945	0.18	0.0238	0.0119
S.L.D.	1.6185	0.24	0.0396	0.0198
S.L.V.	3.15	0.31	0.0996	0.0498
S.L.C.	3.6407	0.31	0.1151	0.0575

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale 0.0996 0.0498

Vertici profilo

Nr	Х	У
	(m)	(m)
1	12.91	58.24
2	19.72	58.85
3	24.4	59.15
4	31.12	63.53
5	106.59	63.93
6	108.52	65.66
7	110.28	65.64
8	111.85	67.39
9	113.24	68.41
10	118.05	69.12
11	122.79	69.72
12	125.66	69.89

Falda

Nr. X y			
	Nr.	Х	У

	(m)	(m)
1	12.61	55.61
2	16.21	55.88
3	24.56	56.9
4	32.09	57.95
5	95.73	63.8
6	106.75	63.53
7	108.52	65.65
8	110.89	65.9
9	113.35	66.29
10	119.71	67.25
11	123.11	67.7
12	125.66	68.21
Vertici strato1		
Ν	Х	У
	(m)	(m)
1	12.54	55.53
2	12.73	57.92
3	22.19	59.07
4	30.4	59.54
5	48.75	61.26
6	65.37	62.41
7	78.46	63.56
8	81.04	63.75
9	107.21	64.03
10	108.42	65.57
11	110.47	65.85
12	111.82	67.44
13	113.26	68.45
14	118.17	69.12
15	125.37	69.87
16	125.66	69.89
17	125.66	69.89
Vertici strato2		
N	X	V

Ν	Х	У
	(m)	(m)
1	12.54	55.53
2	12.54	55.59
3	31.15	57.8
4	46.97	59.29
5	61.72	60.56
6	80.4	61.94
7	92.18	63.11
8	95.79	63.75
9	106.68	63.96
10	108.32	65.55
11	118.4	67.04

12	125.66	68.18
Vertici strato3		
N	Х	у
	(m)	(m)
1	12.54	54.39
2	21.7	55.04
3	30.83	56.32
4	41.34	57.38
5	52.7	58.54
6	65.65	59.92
7	84.96	61.52
8	96.53	62.79
9	101.52	63.53
10	106.51	63.43
11	107.89	64.28
12	118.72	65.76
13	125.66	66.66

Coefficienti parziali azioni

		====	
Sfavorevoli: Permanenti, variabili	1.0	1.0	
Favorevoli: Permanenti, variabili	1.0	1.0	

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio	1.25	
Coesione efficace	1.25	
Coesione non drenata	1.4	
Riduzione parametri geotecnici terreno	Si	

Stratigrafia

Strato	Coesione	Coesione	Angolo	Peso unità	Peso unità	Litologia	
	(kg/cm²)	non drenata	resistenza	di volume	di volume		
		(kg/cm²)	al taglio	(Kg/m³)	saturo		
			(°)		(Kg/m³)		
1	0.3		38	1800	2100.00	RI	
						TERRENO	
						VEGETAL	
						E	
2	0.1		20	1800	1900	ML	
						DEPOSITI	
						ELUVIO	
						COLLUVI	
						ALI	
3	0.1		26	2100	2200	SFALS	

						SUBSTRA	
						ТО	
						ALTERAT	
						Ο	
ĺ	4	0.2	35	2100	2200	ALS	
						SUBSTRA	
						ТО	
						INTEGRO	
- 1							

Risultati analisi pendio [A2+M2+R2]

Fs minimo individuato	1.34	
Ascissa centro superficie	110.08 m	
Ordinata centro superficie	74.64 m	
Raggio superficie	9.9 m	

Numero di superfici esaminate....(107)

N°	Хо	Yo	Ro	Fs	
1	20.5	71.4	13.0	5.56	
2	26.1	70.8	14.1	1.76	
3	31.7	71.4	14.6	2.17	
4	37.3	70.8	13.8	4.92	
5	42.9	71.4	15.4	8.77	
6	98.9	71.4	14.3	4.11	
7	104.5	70.8	10.8	2.67	
8	110.1	71.4	6.4	1.39	
9	115.7	70.8	9.1	3.10	
10	121.3	71.4	3.7	4.79	
11	20.5	72.4	14.0	5.61	
12	26.1	71.9	15.1	1.76	
13	31.7	72.4	15.7	2.14	
14	37.3	71.9	14.9	4.40	
15	42.9	72.4	16.5	8.00	
16	93.3	71.9	16.3	7.00	
17	98.9	72.4	15.4	4.71	
18	104.5	71.9	11.9	2.68	
19	110.1	72.4	7.2	1.46	
20	115.7	71.9	6.2	2.84	
21	121.3	72.4	4.4	4.69	
22	20.5	73.5	15.0	5.10	
23	26.1	73.0	16.2	1.77	
24	31.7	73.5	16.8	2.12	
25	37.3	73.0	15.9	4.18	
26	42.9	73.5	17.6	7.46	

27	93.3	73.0	17.4	6.13
28	98.9	73.5	16.5	3.70
29	104.5	73.0	15.9	2.34
30	110.1	73.5	8.0	1.50
31	115.7	73.0	7.5	2.49
32	121.3	73.5	4.7	6.43
33	20.5	74.6	17.0	2.43
34	26.1	74.1	17.3	1.82
35	31.7	74.6	17.9	2.10
36	37.3	74.1	17.0	4.01
37	42.9	74.6	18.7	7.03
38	93.3	74.1	17.1	6.62
39	98.9	74.6	19.0	2.91
40	104.5	74.1	15.5	2.32
41	110.1	74.6	9.9	1.34
42	115.7	74.1	8.0	2.63
43	121.3	74.6	5.8	6.06
44	20.5	75.7	17.0	25.37
45	26.1	75.2	18.4	1.83
46	31.7	75.7	19.0	2.09
47	37.3	75.2	18.0	3.88
48	42.9	75.7	19.7	6.70
49	93.3	75.2	19.6	4.87
50	98.9	75.7	18.7	3.00
51	104.5	75.2	15.2	2.24
52	110.1	75.7	10.5	1.46
53	115.7	75.2	9.5	2.26
54	20.5	76.8	19.1	2.36
55	26.1	76.3	19.5	1.85
56	31.7	76.8	20.1	2.09
57	37.3	76.3	19.1	3.77
58	42.9	76.8	20.8	6.42
59	93.3	76.3	19.3	5.46
60	98.9	76.8	19.8	2.81
61	104.5	76.3	14.8	2.15
62	110.1	76.8	11.2	1.47
63	115.7	76.3	10.1	2.47
64	26.1	77.4	20.6	1.86
65	31.7	77.9	21.2	2.09
66	37.3	77.4	20.2	3.68
67	42.9	77.9	21.9	6.19
68	93.3	77.4	20.4	4.99
69	98.9	77.9	22.3	2.44
70	104.5	77.4	15.6	2.10
71	110.1	77.9	12.8	1.46
72	115.7	77.4	11.6	2.18
73	20.5	79.0	21.1	2.35
74	26.1	78.5	21.6	1.88

75	31.7	79.0	22.3	2.09
76	37.3	78.5	21.2	3.60
77	42.9	79.0	23.0	5.99
78	93.3	78.5	22.9	4.04
79	98.9	79.0	23.4	2.33
80	104.5	78.5	20.2	1.86
81	110.1	79.0	14.4	1.59
82	115.7	78.5	11.5	2.69
83	20.5	80.1	22.2	2.34
84	26.1	79.6	22.6	1.83
85	31.7	80.1	23.4	2.09
86	37.3	79.6	22.3	3.54
87	42.9	80.1	24.0	5.82
88	93.3	79.6	24.0	3.73
89	98.9	80.1	23.1	2.44
90	104.5	79.6	15.9	1.72
91	110.1	80.1	15.1	1.47
92	115.7	79.6	13.0	2.48
93	20.5	81.2	23.2	2.63
94	26.1	80.7	24.8	1.79
95	31.7	81.2	24.5	2.09
96	37.3	80.7	23.3	3.49
97	42.9	81.2	23.3	6.25
98	93.3	80.7	23.7	4.14
99	98.9	81.2	22.8	2.56
100	104.5	80.7	16.7	1.54
101	110.1	81.2	15.8	1.63
102	115.7	80.7	13.0	3.56
103	26.1	81.8	25.8	1.78
104	37.3	81.8	24.4	3.45
105	93.3	81.8	26.2	3.21
106	104.5	81.8	17.6	1.45
107	115.7	81.8	13.8	4.36