

4. TECHNICAL CALCULATION

4.1. COOLING LOAD BREAKDOWN CALCULATION

External heat gains have been calculated using software liNear according to ASHRAE 2013 - Nonresidential Cooling Load Calculation; for more information see Appendix 1: LINEAR COOLING LOAD CALCULATION.

NOTES:

- It is assumed that batteries inside the Power Room will be cooled down throughout the 24 hours after discharge. •
- Ventilation latent heat load created by supplying outdoor air to the rooms is equal to: .
 - 1,1 kW for Power Room
 - 0.6 kW for MV Room .
- All mechanical equipment can support design IT load at design input parameters listed in Table 4 and Table 5 Error! . Reference source not found. If design input parameters change, additional calculation must be made to confirm if cooling capacity of mechanical equipment is sufficient.

Table 4: Cooling Load Calculation - Power Room

	SPACE NAME	EQUIPMENT TYPE		EQUIPM	ΣREQUIRED GROSS		
SPACE NO.			NO.	UNIT	ΣSENSIBLE HEAT [kW]	SPACE SENSIBLE COOLING CAPACITY [kW]	ΝΟΤ
		GIUSS	SAGO /LISC	ATE			
		UPS EXL S1 1250kVA	1	pcs	56,60		_N CONFIC
		UPS EXM2 250kVA	1	pcs	10,15		
		MDB	1	pcs	12,80		
		DB UPS	1	pcs	1,00		
		GPL	1	pcs	0,30		
	POWER ROOM	BATTERY HEAT GAINS	9	pcs	1,13	 	
-		MISC. ELECTRICAL EQUIPMENT AND CABLES LOSSES			8,50)
		LIGHTING (A ≈ 51m2)	10	W/m²	0,51		\
		PDX FAN HEAT LOAD	4	pcs	10,4		
		VENTILATION HEAT LOAD			0,86		
		EXTERNAL HEAT CAINS			1.00		

2. CRAH's fan heat gain seems high (around 11%), any chance to ennance the unit's efficiency? our expectation is 5% max.

3. Cable heat gain seems high, can you double check please ?

Table 5: Cooling Load Calculation - MV Room

COOLING LOAD BREAK DOWN CALCULATION

				EQUIPM	ENT	ΣREQUIRED GROSS	NOTE
SPACE NO.	SPACE NAME	EQUIPMENT TYPE	NO.	UNIT	ΣSENSIBLE HEAT [kW]	SPACE SENSIBLE COOLING CAPACITY [kW]	
		GIU	SSAGO /LISC	ATE			
		RMU	1	pcs	2,00	-	_N
	NV ROOM	DRY TRANSFORMER	1	pcs	21,56		CONFIG.
		GPL	1	pcs	0,25		
		MISC. ELECTRICAL EQUIPMENT AND CABLES LOSSES		pcs	1,50)
-		LIGHTING (A ≈ 20m2)	10	W/m ²	0,20	- 27,96	
		PDX FAN HEAT LOAD	1	pcs	1,47		
		VENTILATION HEAT LOAD			0,43		
		EXTERNAL HEAT GAINS			0.55		