

Direzione Progettazione e Realizzazione Lavori

S.S. 67 "Tosco Romagnola" Lavori di adeguamento della S.S. 67 nel tratto tra la località S.Francesco in Comune di Pelago e l'abitato di Dicomano.

Variante di Rufina (FI) - LOTTI 2A e 2B

PROGETTO DEFINITIVO

cop. FI462

PROGETTAZIONE:

RAGGRUPPAMENTO TEMPORANEO PROGETTISTI MANDATARIA:

MANDANTI:

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Ing. Riccardo Formichi - Società Pro Iter Srl Ordine Ingegneri Provincia di Milano n. 18045

IL GEOLOGO:

Geol. Massimo Mezzanzanica - Società Pro Iter SrL Ordine Geologi della Lombardia n. 762

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Ing. Massimo Mangini — Società Erre.Vi.A Srl Ordine Ingegneri Provincia di Varese n. 1502

VISTO: IL RESP. DEL PROCEDIMENTO:

Ing. Francesco Pisani

PROTOCOLLO:

DATA:

CANTIERIZZAZIONE - OPERE D'ARTE MINORI:

Ing. Marco Brugnerotto - Sinergo SpA Ordine Ingegneri Provincia di Venezia n. 4264

ASSE PRINCIPALE VASCA DI TRATTAMENTO

VASCA DI TRATTAMENTO 1+788.3

Relazione tecnica e di calcolo

CODICE PROGETTO PROGETTO LIV. PROG.		NOME FILE P01-TA04-STR-RE01-A.pdf			REVISIONE	SCALA
ACNOC	D 113 D 20	CODICE POITAO4STRRE01		Α	-	
D						
С						
В						
А	EMISSIONE		10/2023	BRIGHENTI	GALANTE	FORMICHI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV.

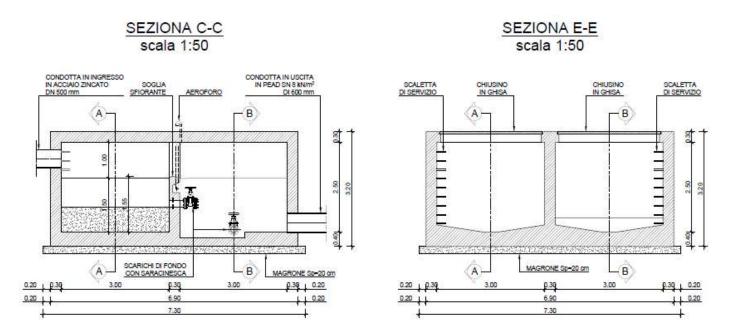
FOGLIO 2 di 80

Data
Ott' 23

INDICE

1	PREMESSA	3
1.1	Descrizione degli interventi	3
2	NORME DI RIFERIMENTO	7
2.1	Normativa nazionale cogente	7
2.2	Eurocodici	7
2.3	Norme EN, UNI, ISO	8
2.4	Norme CNR	9
3	VITA NOMINALE E CLASSI D'USO	10
4	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO	13
4.1	Straus7 R2.4.6	13
5	MATERIALI	14
5.1	Opere in elevazione e in fondazione	14
6	ANALISI STRUTTURALE E METODI DI VERIFICA	16
6.1	Criteri di verifica	16
6.2	Modello di calcolo	25
7	VASCA DI TRATTAMENTO TIPO TA01	30
7.1	ANALISI DEI CARICHI	30
7.2	Analisi sismica	38
7.3	SOLLECITAZIONI AGENTI E VERIFICHE	48
7.4	VERIFICA CAPACITA' PORTANTE FONDAZIONE SUPERFICIALE	75

1 PREMESSA


La presente costituisce la relazione di calcolo relativa al progetto delle vasche di trattamento delle acque di piattaforma stradale, nell'ambito dei lavori di realizzazione della nuova variante tra le località San Francesco e l'abitato di Dicomano alla strada statale n. 67 - Tosco-romagnola, ubicata nella provincia di Firenze, tra il comune di Pontassieve e il comune di Rufina.

La lunghezza dell'opera è approssimativamente di 3,474 km; la categoria stradale è del tipo extraurbano secondario C, con una corsia per senso di marcia e banchine laterali.

1.1 Descrizione degli interventi

In questa relazione si affronterà il dimensionamento della Vasca di Trattamento TA04, posto alla km 1+788.3, in adiacenza alla spalla sx del Viadotto Argomenna.

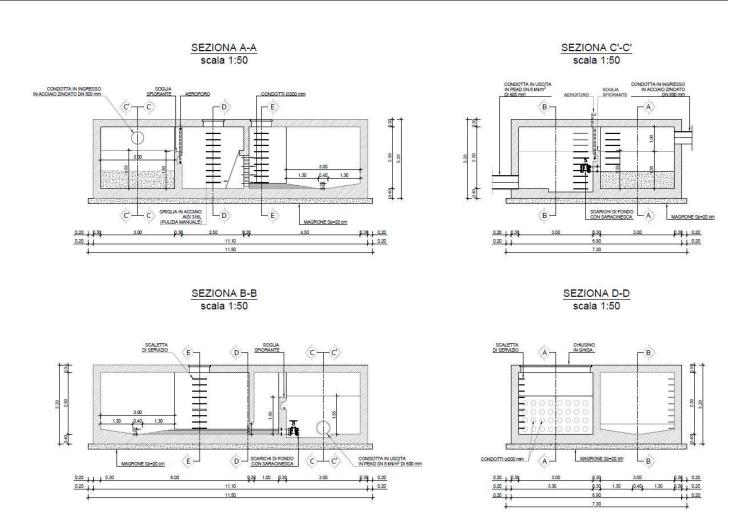
Trattasi di struttura scatolare in calcestruzzo armato gettati in opera; gli spessori dei piedritti esterni ed interni sono pari a 30 cm, mentre la soletta di base ha uno spessore pari a 40 cm. Le dimensioni in pianta massime sono pari a 10,80 m x 6,80 m. L'altezza dello scatolare è pari a 3,20 m, con un ricoprimento superiore pari a 0,65 m (altezza imbocchi per ingresso personale manutenzione.

Sezione trasversale

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
Progetto Infrastruture Territorio a.r.l.

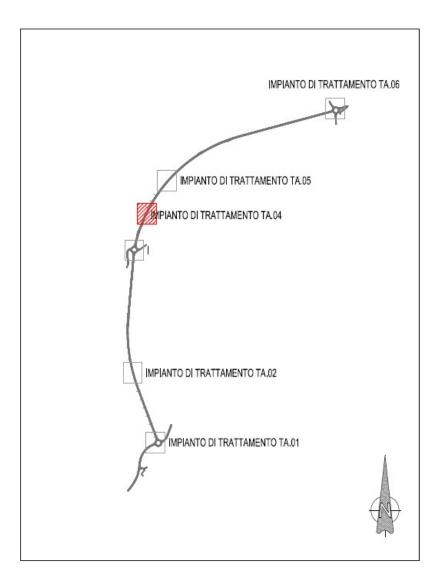

PROGETTAZIONE

MANDANTI

MANDANTI

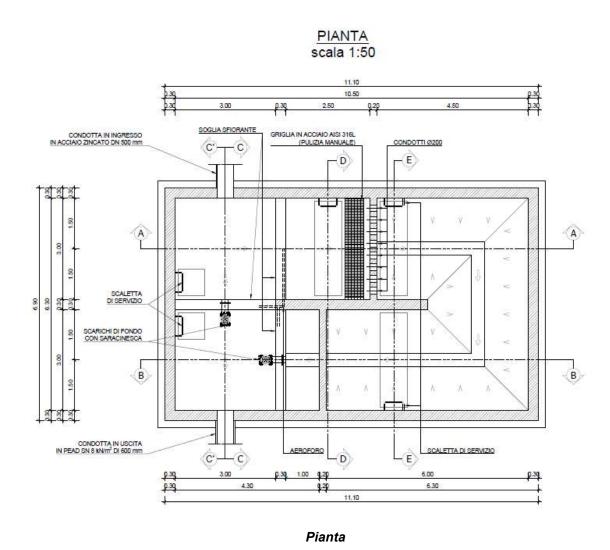
Data

Ott' 23


Sezione longitudinale

PO1-TA04-STR-RE 01

PROGETTAZIONE


MANDATARIA

Progetto

Pianta tracciamento

Si rimanda agli elaborati grafici per ulteriori chiarimenti in merito alle opere oggetto della presente relazione.

CODIFICA DOCUMENTO

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV. FOGLIO
A 7 di 80

Data

Otť 23

2 NORME DI RIFERIMENTO

I seguenti codici sono presi a riferimento per la progettazione. La normativa di riferimento è il D.M. 17/01/2018; quando quest'ultima non sia sufficientemente esaustiva si fa riferimento agli Eurocodici, norme CNR e norme UNI / UNI-ISO / UNI-EN / UNI-EN-ISO.

2.1 Normativa nazionale cogente

Legge 5 novembre 1971, N. 1086 – Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica

D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC)

C.M. 21/01/2019 n.7 – Istruzioni per l'applicazione delle "Norme tecniche per le Costruzioni" di cui al D.M. 17/01/2018

D.Lgs. 30/04/92, n. 285 e s.m.i. - "Nuovo Codice della Strada"

D.P.R.16/12/92 n.495 e s.m.i. "Regolamento di esecuzione e di attuazione del Codice della Strada"

2.2 Eurocodici

(Con le precisazioni riportate nelle Appendici Nazionali, la lista che segue è indicativa e non esaustiva dei codici eventualmente utilizzati nel seguito)

Eurocodice – Criteri generali di progettazione strutturale

[1] UNI EN 1990:2006

Eurocodice 1 – Azioni sulle strutture

- [2] UNI EN 1991-1-1:2004 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici
- [3] UNI EN 1991-1-4:2010 Parte 1-4: Azioni in generale Azioni del vento
- [4] UNI EN 1991-1-5:2004 Parte 1-5: Azioni in generale Azioni termiche
- [5] UNI EN 1991-1-6:2005 Parte 1-6: Azioni in generale Azioni durante la costruzione
- [6] UNI EN 1991-1-7:2014 Parte 1-7: Azioni in generale Azioni eccezionali
- [7] UNI EN 1991-2:2005 Parte 2: Carichi da traffico sui ponti
- [8] UNI EN 1991-3:2006 Parte 3: Azioni indotte da gru e da macchinari

Eurocodice 2 – Progettazione delle strutture in calcestruzzo

- [9] UNI EN 1992-1-1:2015 Parte 1-1: Regole generali e regole per gli edifici
- [10] UNI EN 1992-2:2006 Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi
- [11] UNI EN 1992-4:2018 Parte 4: Progettazione degli attacchi per utilizzo nel calcestruzzo

P01-TA04-STR-RE 01

PROGETTAZIONE

A S

FOGLIO 8 di 80

Otť 23

Eurocodice 3 – Progettazione delle strutture in acciaio

[12] UNI EN 1993-1-1:2014 Parte 1-1: Regole generali e regole per gli edifici

[13] UNI EN 1993-1-5:2019 Parte 1-5: Elementi strutturali a lastra

[14] UNI EN 1993-1-8:2005 Parte 1-8: Progettazione dei collegamenti

[15] UNI EN 1993-1-9:2005 Parte 1-9: Fatica

[16] UNI EN 1993-1-10:2005 Parte 1-10: Resilienza del materiale e proprietà attraverso lo spessore

[17] UNI EN 1993-1-11:2007 Parte 1-11: Progettazione di strutture con elementi tesi

[18] UNI EN 1993-2:2007 Parte 2: Ponti di acciaio

Eurocodice 4 – Progettazione delle strutture composte acciaio-calcestruzzo

[19] UNI EN 1994-1-1:2005 Parte 1-1: Regole generali e regole per gli edifici

[20] UNI EN 1994-2:2006 Parte 2: Regole generali e regole per i ponti

Eurocodice 7 - Progettazione geotecnica

[21] UNI EN 1997-1:2013 Parte 1: Regole generali

[22] UNI EN 1997-2:2007 Parte 2: Indagini e prove nel sottosuolo

Eurocodice 8 – Progettazione delle strutture per la resistenza sismica

[23] UNI EN 1998-1:2013 Parte 1: Regole generali, azioni sismiche e regole per gli edifici

[24] UNI EN 1998-2:2011 Parte 2: Ponti

[25] UNI EN 1998-5:2005 Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici

2.3 Norme EN, UNI, ISO

Calcestruzzo:

- [1] EN 206:2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità".
- [2] UNI 11104:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206

Acciaio per strutture metalliche e strutture composte:

- [3] EN 10025-1:2004
- [4] EN 10025-2:2019
- [5] EN 10025-3:2019
- [6] EN 10025-4:2019
- [7] EN 10025-5:2019

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

PROG

[8] EN 10025-6:2019

[9] EN 10210-1

[10] EN 10219-1

Bulloni e chiodi:

[11]EN 15048

[12]EN 14399

[13]EN 10263

Saldature:

[14] EN ISO 4063:2011

[15]EN 1011

[16] EN ISO 9692

2.4 Norme CNR

Per eventuali ulteriori riferimenti si sono considerate anche le Istruzioni e documenti tecnici del Consiglio Nazionale delle Ricerche (C.N.R.):

CNR-DT 207 R1/2018 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni

CNR-UNI 10011/97 Costruzioni in acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;

CNR-UNI 10016/98 Travi composte acciaio-calcestruzzo: istruzioni per il calcolo e l'esecuzione;

CNR-UNI 10030/87 Anime irrigidite di travi in parete piena

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

A 10 di 80

Ott' 23

3 VITA NOMINALE E CLASSI D'USO

La vita nominale V_N dell'opera strutturale in oggetto è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata.

L'effettiva durata della costruzione non è valutabile in sede progettuale, venendo a dipendere da eventi futuri fuori dal controllo del progettista. Di fatto, la grande maggioranza delle costruzioni ha avuto ed ha, anche attraverso successivi interventi di ripristino manutentivo, una durata effettiva molto maggiore della vita nominale quantificata nelle NTC.

La vita nominale dei diversi tipi di opere è quella indicata nella Tab. 2.4.I del D.M.18 di seguito riportata.

Tabella 2.4.I - Vita nominale V_N per diversi tipi di opere

	TIPI DI COSTRUZIONE	Vita Nominale V _N (in anni)
1	Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 1 <mark>0</mark> 0

Vita nominale V_N per diversi tipi di opere

Con riferimento alla tabella precedente si evidenzia che, ai sensi e per gli effetti del Decreto del Capo Dipartimento della Protezione Civile n. 3685 del 21 ottobre 2003 il carattere strategico di un'opera o la sua rilevanza per le conseguenze di un eventuale collasso, sono definiti dalla classe d'uso.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso, come definite nel D.M. 18.

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza

CODIFICA DOCUMENTO	PROGETTAZIONE			REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA PRO	MANDANTI		Α	11 di 80
TOTATION OTTOTICE OF	ITER Progetto	elieva)_V/		Data
	Infrastrutture Territorio s.r.l.	RICERGA MABILITÀ AMBIENTE	SINERO DVisionArchitecture		Ott' 23

critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U :

$$V_R = V_N \cdot C_U$$

Tale valore riveste notevole importanza in quanto, assumendo che la legge di ricorrenza dell'azione sismica sia un processo Poissoniano, è utilizzato per valutare, fissata la probabilità di superamento PVR corrispondente allo stato limite considerato (Tabella 3.2.1 della NTC), il periodo di ritorno TR dell'azione sismica cui fare riferimento per la verifica.

Il valore del coefficiente d'uso CU è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II.

Tab. 2.4.II - Valori del coefficiente d'uso Cu

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Valori del coefficiente d'uso

Nello specifico si considera quanto segue:

VITA NOMINALE DI PROGETTO (TAB. 2.4.1 §2.4.1 NTC 2018)

Tipo di costruzione	Costruzioni con livelli di prestazioni		
	ordinari		
Valore minimo vita nominale di progetto V _N (anni)	50		

CLASSI D'USO (§2.4.2 NTC 2018)

Classe d'uso dell'opera Classe IV

CODIFICA DOCUMENTO

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV.

FOGLIO 12 di 80

Data
Ott' 23

Descrizione:	Costruzioni con funzioni pubbliche o
	strategiche importanti, anche con
	riferimento alla gestione della protezione
	civile in
	caso di calamità. Industrie con attività
	particolarmente pericolose per l'ambiente.
	Reti viarie di tipo A o B, di cui al DM
	5/11/2001, n. 6792, "Norme funzionali e
	geometriche per la costruzione delle
	strade", e di tipo C quando appartenenti ad
	itinerari
	di collegamento tra capoluoghi di provincia
	non altresì serviti da strade di tipo A o B.
	Ponti e reti ferroviarie di
	importanza critica per il mantenimento delle
	vie di comunicazione, particolarmente dopo
	un evento sismico. Dighe connesse
	al funzionamento di acquedotti e a impianti
	di produzione di energia elettrica.

PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA (TAB. 2.4.II §2.4.3 NTC 2018)				
Classe d'uso dell'opera	Classe IV			
Coefficiente d'uso Cu	2			
Periodo di riferimento V _R (anni)	100			

CODIFICA DOCUMENTO

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV.

FOGLIO 13 di 80

Data Ott' 23

4 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO

I codici di calcolo automatico utilizzati per il calcolo e la verifica delle strutture e la redazione della presente relazione di calcolo di seguito presentati sono di sicura ed accertata validità e sono stati impiegati conformemente alle proprie caratteristiche. Tale affermazione è suffragata dai seguenti elementi:

- grande diffusione del codice di calcolo sul mercato;
- storia consolidata del codice di calcolo (svariati anni di utilizzo);
- utilizzo delle versioni più aggiornate (dopo test);
- pratica d'uso frequente in studio.

La progettazione generale si avvale inoltre di calcoli basati su fogli elettronici implementati e verificati dallo scrivente e validati, quando opportuno, mediante l'ausilio dei codici di calcolo più complessi cui sopra accennato.

4.1 Straus7 R2.4.6

Strand7 (Straus7 in Italia) è un programma di calcolo agli elementi finiti di biblioteca tipo "general-purpose" costituito da un pre-processore, solutore and post-processore. (As the entire system has been designed, researched and developed by a sigle development team at G+D Computing Pty Ltd, Strand7 is a highly integrated system. © 1999 G+D Computing Pty Ltd). L'input (pre-processore) è grafico in ambiente Windows e comprende tools avanzati di meshing bi- e tridimensionale per applicazioni in ambito civile, geotecnico, meccanico, termomeccanico, navale e aeronautico, rappresentabili con elementi mono- e/o bi- e/o tri-dimensionali, elementi di contatto, gap, link, ecc... L'output (post-processore) è grafico e permette un report completo sia dal punto di vista numerico che grafico, con massima flessibilità e accuratezza. Strand7 è aperto in I/O nei confronti ai più diffusi pacchetti CAD e di modellazione FEM, come NASTRAN e non presenta limiti nella grandezza e complessità dei modelli. I solutori permettono la seguente gamma di analisi: statica lineare, frequenze naturali, stabilità dell'equilibrio, statica non lineare per geometria e materiale, dinamica in regime transitorio lineare e non lineare, risposta spettrale e armonica, trasmissione del calore.

5 MATERIALI

Si riportano nel seguito le principali caratteristiche dei materiali utilizzati sia per la progettazione del nuovo intervento che per la verifica dell'esistente.

5.1 Opere in elevazione e in fondazione

5.1.1 Calcestruzzo

Le opere in esame vengono realizzate con calcestruzzo le cui caratteristiche vengono riportate nel seguito.

Classe di resistenza		C28/35	
Resistenza caratteristica cubica a compressione	$R_{ck} =$	35	MPa
Resistenza caratteristica cilindrica a compressione	$f_{ck} =$	28	MPa
Resistenza di calcolo a compressione	$f_{cd} =$	15.87	MPa
Resistenza caratteristica cilindrica a compressione media	f _{cm} =	36	MPa
Resistenza caratteristica a trazione	$f_{ctk} =$	1.94	MPa
Resistenza di progetto a trazione	$f_{ctd} =$	1.29	MPa
Resistenza media a trazione	$f_{ctm} =$	2.77	MPa
Resistenza a trazione per flessione	$f_{cfm} =$	3.32	MPa
Modulo elastico medio	E _{cm} =	32308	N/mm ²
Peso specifico	w =	25	kN/m³

Classe di resistenza minima raccomandata (Prospetto 4.3N EN 1992-1-1:2005)

Corrosione indolla da carbonalazione	
Classe di esposizione (prospetto 4.1 EN 1992-1-1:2005)	XC2
Classe di resistenza minima	C25/30
Rapporto massimo a/c	0.55
Contenuto minimo di cemento (kg/m³)	320
Contenuto minimo di aria (%)	-
Altri requisiti	-

5.1.2 Acciaio per calcestruzzo ordinario

Barre ad aderenza migliorata B450C

Resistenza caratteristica a rottura	f _{tk} =	540	MPa
Resistenza caratteristica allo snervamento	$f_{yk} =$	450	MPa
Modulo elastico	E _s =	210000	N/mm ²
Coefficiente parziale di sicurezza	γs =	1.15	
Resistenza allo snervamento di progetto	$f_{yd} =$	391.30	MPa

CODIFICA DOCUMENTO

P01-TA04-STR-RE 01

PROGETTAZIONE

REV.

FOGLIO 15 di 80

Data
Ott' 23

5.1.3 Copriferro

Il copriferro e la classe minima di calcestruzzo da adottarsi vengono assunti in base al paragrafo §C4.1.6.1.3 C-NTC 2018.

Tabella C4.1.IV - Copriferri minimi in mm

			-	arre da c.a. enti a piastra		rre da c.a. ri elementi		vi da c.a.p. enti a piastra		vi da c.a.p. ri elementi
C _{min}	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Barre da C.A. - altri elementi

Classe Calcestruzzo:	C28/35
Condizioni ambientali:	ordinarie
Vita nominale costruzione:	50 [anni]
Tolleranza di posa:	10 [mm]

Pertanto per il caso in esame il copriferro prescritto per le solette è pari a:

$$c = 15 (C > C_0) + 10 (tolleranza) = 25 mm \rightarrow 45 mm$$

6 ANALISI STRUTTURALE E METODI DI VERIFICA

Si riporta nel seguito una breve descrizione dei metodi di calcolo e dei criteri di verifica adottati.

6.1 Criteri di verifica

In accordo alla normativa vigente il metodo di verifica adottato è il Metodo Semiprobabilistico agli Stati limite.

1.1.1 Verifiche agli Stati Limite Ultimi

1.1.1.1 Verifica per sollecitazioni di presso-flessione

Come previsto dal DM 17.01.2018 al § 4.1.2.3.4.2 con riferimento alla generica sezione la verifica di resistenza allo SLU si esegue controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

dove:

MRd è il valore di calcolo del momento resistente corrispondente a NEd;

NEd è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

MEd è il valore di calcolo della componente flettente dell'azione.

1.1.1.2 Verifiche a taglio

Per la verifica a sollecitazione tagliante si fa riferimento al caso di elementi senza armature resistenti a taglio, secondo quanto previsto dal Ministero delle Infrastrutture nel D.M. 17.01.2018 al punto 4.1.2.3.5.1.

Indicato con VEd il valore di calcolo dello sforzo di taglio agente allo SLU, si verifica controllando che risulti:

$$V_{Ed} < V_{Rd} = max \left\{ \left(0.18 \cdot k \cdot \frac{\sqrt[3]{100 \cdot \rho_{\ell} \cdot f_{ck}}}{\gamma_{c}} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d \right\}$$

dove:

$$k=1+\sqrt{\frac{200}{d}}\leq 2$$

con l'altezza utile della sezione espressa in mm

$$v_{min} = 0.035 \sqrt{k^3} \cdot \sqrt{f_{ck}}$$

$$\rho_\ell = \frac{A_{s\ell}}{b_w \cdot d} \le 0.02$$

con bw larghezza minima della sezione espressa in mm

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 \cdot f_{cd}$$

tensione media di compressione nella sezione

PROGETTAZIONE

P01-TA04-STR-RE 01

REV. FOGLIO Α 17 di 80 Data

Ott' 23

I carichi applicati alla struttura possono essere considerati come carichi distribuiti, pertanto la verifica al taglio viene condotta nella sezione dell'elemento con distanza non minore di d dal bordo dell'appoggio in accordo al §6.2.1 dell'EC2.

Qualora la verifica non andasse a buon fine è necessario ricorrere ad elementi provvisti di armature resistenti a taglio secondo quanto previsto al punto 4.1.2.1.3.2 del già citato D.M.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio-trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg9) \cdot sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio-compressione" si calcola con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'} \cdot \frac{ctg \, \alpha + ctg \, \vartheta}{1 + ctg^2 \, \vartheta}$$

La resistenza a taglio dell'elemento strutturale è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}; V_{Rcd})$$

Nelle precedenti espressioni, i nuovi parametri, introdotti rispetto al caso di elementi sprovvisti di armatura a taglio, assumono il seguente significato:

inclinazione dei puntoni di calcestruzzo rispetto all'asse dell'elemento θ

con la limitazione $1.0 \le \text{ctg } 9 \le 2.5$

inclinazione dell'armatura trasversale rispetto all'asse dell'elemento α

area dell'armatura trasversale A_{sw}

interasse tra due armature trasversali consecutive

 $f_{cd} = 0.5 \cdot f_{cd}$ resistenza a compressione ridotta del calcestruzzo d'anima

coefficiente maggiorativi pari a: α_{c}

> 1 per membrature non compresse

per $0 \le \sigma_{cp} < 0.25 \times f_{cd}$ $1 + \sigma_{cp}/f_{cd}$

1.25 per $0.25 f_{cd} \le \sigma_{cp} \le 0.5 \times f_{cd}$

 $2.5 \times (1-\sigma_{cp}/f_{cd})$ per $0.5 \times f_{cd} < \sigma_{cp} < f_{cd}$

Verifiche agli Stati Limite di esercizio

Le verifiche agli SLE si risolvono nel controllare che i valori di tensione nei materiali siano inferiori ai limiti di normativa (punto 4.1.2.2.5 del D.M. 17.01.2018).

Calcestruzzo compresso:

 σ_c < 0.60 × f_{ck} $\;$ per cls C32/40 \rightarrow σ_c < 19.92 N/mm² Combinazione rara

 σ_c < 0.45 × f_{ck} per cls C32/40 \rightarrow σ_c < 14.94 N/mm² Combinazione quasi permanente

Acciaio teso:

 $\sigma_{\text{s}} < 0.80 \times f_{\text{yk}} \quad \text{per acciaio B450} \rightarrow \sigma_{\text{s}} < 360.0 \text{ N/mm}^2$ Combinazione rara

6.1.1.1 Verifiche a fessurazione

Viene eseguita la verifica allo stato limite di apertura delle fessure con riferimento al D.M. 17.01.2018 "Norme Tecniche per le Costruzioni" (§ 4.1.2.2.4).

Prima di procedere alle verifiche a fessurazione è necessario definire delle apposite combinazioni di carico ed effettuare una valutazione relativa al grado di protezione delle armature metalliche contro la corrosione (in termini di condizioni ambientali e sensibilità delle armature stesse alla corrosione).

Si distinguono i seguenti casi:

Combinazioni di azioni:

- Frequente (indicata con FR);
- Quasi Permanente (indicata con QP).

Condizioni ambientali:

- o Ordinarie;
- Aggressive;
- Molto Aggressive.

Sensibilità delle armature alla corrosione:

- Sensibili (acciai da precompresso);
- Poco sensibili (acciai ordinari).

Come criteri di scelta dello stato limite di fessurazione si fa riferimento alla tabella di seguito riportata.

Gruppi di	Condizioni Combinazione d		Armatura					
esigenze	ambientali	azioni	Sensibile		Poco sensibil	е		
esigenze	ambientan	azioiii	Stato limite	Wd	Stato limite	Wd		
а	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃		
a	Ordinane	quasi perman.	apertura fessure	≤ w ₁	apertura fessure	≤ W2		
b	Aggressive	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂		
	Aggressive	quasi perman.	decompressione	-	apertura fessure	≤ w ₁		
С	Molto aggressive	frequente	formazione fessure	-	apertura fessure	≤ w ₁		
	Wiolio aggressive	quasi perman.	decompressione	-	apertura fessure	≤ w ₁		

Si considerano i seguenti valori limite di apertura delle fessure:

0.2 mm;

 $w_2 =$ 0.3 mm:

CODIFICA DOCUMENTO **PROGETTAZIONE** REV. FOGLIO Α 19 di 80 MANDATARIA MANDANTI P01-TA04-STR-RE 01 Data SINERGO DVIsionArchitecture Otť 23

0.4 mm.

 $w_3 =$

Con l'ausilio del programma di calcolo "STS Stati Limite", si procede al calcolo del valore caratteristico dell'ampiezza della fessura w_d, confrontandolo con i valori limite precedentemente definiti.

Il calcolo è condotto attraverso i seguenti passaggi:

- Valutazione della distanza media tra le fessure (Δ_{sm});
- Valutazione della deformazione media delle barre d'armatura (ε_{sm});
- Valutazione dell'ampiezza delle fessure (valore medio e valore di calcolo).

Per il calcolo di Δ_{sm} e ϵ_{sm} si utilizzano criteri consolidati riportati nella letteratura tecnica: in particolare si fa riferimento alla Circolare del Ministero dei Lavori Pubblici n°7 del 21/01/2019 ("Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018").

L'ampiezza media delle fessure è calcolata come prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \epsilon_{sm} \cdot \Delta_{sm}$$

Si ricava quindi il valore di calcolo di apertura delle fessure, da confrontare con i valori nominali w₁, w₂ e w₃ riportati precedentemente:

$$W_d = 1.7 \cdot W_m$$

In base alla tabella 4.1.III del D.M. 17.01.2018, la classe di esposizione individuata per le parti in calcestruzzo rivolte all'interno dei tombini idraulici riconduce a condizione ambientale del tipo "Aggressiva". Pertanto, secondo la tabella 4.1.IV:

Elemento	Classe di	Condizioni	Combinazione	Armatura pod	o sensibile
strutturale	esposizione	ambientali	Combinations	Stato Limite	W _d
Gettato in opera	XC4 – XF3	Aggressive	Frequente	Apertura fessure	\leq w ₃ = 0.3 mm
Cottato III opoid	7.51 7.10	7 (99: 300: 40	Quasi permanente	Apertura fessure	\leq w ₂ = 0.2 mm

Per quanto riguarda invece le parti in calcestruzzo perennemente a contatto con il terreno caratterizzanti quindi l'esterno dei tombini idraulici, si può far riferimento a una condizione ambientale del tipo "Ordinaria" dovuta alla classe di esposizione XC2 ("Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo") o XC3 ("Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con umidità da moderata ad alta"). Ne risulta che i limiti di apertura delle fessure sono i seguenti:

Elemento	Classe di	Condizioni	Combinazione	Armatura pod	co sensibile
strutturale	esposizione	ambientali	Combinations	Stato Limite	Wd
Gettato in opera	XC2 – XF1	Ordinarie	Frequente	Apertura fessure	\leq w ₃ = 0.4 mm

XC3 – XF1 Quasi permanente Apertura fessure		
---	--	--

6.1.2 Verifica della capacità portante

Come indicato da DM 17.01.2018 al § 6.4.2, viene condotta la verifica a capacità portante della fondazione seguendo la combinazione A1+M1+R3 dell'approccio 2.

I coefficienti parziali per i parametri geotecnici del terreno sono assunti unitari come indicato dalla Tab.6.2.II per la combinazione M1.

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente pazziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan φ' _k	Υψ	1.0	1,25
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1,0	1,4
Peso dell'unità di volume	YY	Yz	1,0	1,0

I coefficienti parziali per le azioni sono quelli considerati per le verifiche strutturali (A1) come indicato nella Tab. 5.1.V. riportata di seguito.

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε 1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	YE2 YE3 YE4	0,00 1,20	0,00 1,20	0,00 1,00

Il coefficiente γ₃ per la verifica della capacità portante viene assunto pari a 2.30 come indicato dalla Tab. 6.4.I

 ${\bf Tab.~6.4.I-Coefficienti~parziali~\gamma_{R}~per~le~verifiche~agli~stati~limite~ultimi~di~fondazioni~superficiali~}$

Verifica	Coefficiente parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1,1$

MANDANTI

REV. FOGLIO
A 21 di 80

Data

Otť 23

La verifica di capacità portante della fondazione risulta soddisfatta se il rapporto tra la pressione limite e la pressione massima sul terreno risulta maggiore di 1.00.

$$q_{lim}/q_{max} \ge 1.00$$

dove: q max = pressione massima sul terreno;

q _{lim} = pressione limite della fondazione, calcolata secondo Brinch-Hansen, ridotta di un fattore di sicurezza Fs pari a 2.30

Calcolo della pressione limite della fondazione

La capacità portata della fondazione è stata calcolata attraverso l'espressione proposta da Brinch-Hansen per le fondazioni superficiali; poiché la fondazione ed il piano campagna risultano orizzontali, si sono trascurati i corrispondenti fattori correttivi. Il carico limite è pertanto fornito dalle seguenti espressioni:

• Terreno con comportamento attritivo e coesivo:

$$q_{lim} = \frac{1}{2} \cdot \gamma' \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma} + c' \cdot N_{c} \cdot s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c} + q' \cdot N_{q} \cdot s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}$$

• Terreno con comportamento puramente coesivo:

$$q_{im} \!\!=\!\! c_u \!\cdot\! N_{\!c} \!\cdot\! s_{\!c}^{\ 0} \!\cdot\! d_{\!c}^{\ 0} \!\cdot\! i_{\!c}^{\ 0} \!\cdot\! b_{\!c}^{\ 0} \!\cdot\! g_{\!c}^{\ 0} \!+\! q \qquad ^{(*)}$$

dove: γ' = peso specifico terreno di fondazione (sommerso, se in presenza di falda);

B = larghezza equivalente della fondazione (in presenza di carichi eccentrici);

c' = coesione del terreno di fondazione in condizioni drenate;

 c_u = coesione del terreno di fondazione in condizioni non drenate;

q' = sovraccarico dovuto al peso del terreno posto sopra il livello di fondazione;

 N_{γ} , N_c , N_q = coefficienti di capacità portante;

 s_{γ} , s_{c} , s_{g} , s_{c}^{0} = coefficienti di forma;

 d_y , d_c , d_q , d_c^0 = coefficienti correttivi dipendenti dalla profondità del piano di posa;

 i_{γ} , i_c , i_q , i_c^0 = coefficienti correttivi dovuti alla presenza di carichi orizzontali;

 b_{7} , b_{c} , b_{c} , b_{c} , b_{c} = coefficienti correttivi dovuti all'inclinazione del piano di fondazione;

 $g_{y_1} g_{c_1} g_{g_2} g_{c_3}^0$ = coefficienti correttivi dovuti all'inclinazione del piano campagna.

(*) nel caso di piano campagna inclinato, all'espressione di q_{lim} per terreno puramente coesivo va aggiunto il termine:

$$-\ 0.5 \cdot \gamma \cdot B \cdot \left(1 - 0.4 \cdot \frac{B}{L}\right) \cdot 2\beta$$

con β inclinazione del piano del piano campagna rispetto all'orizzontale e L lunghezza della fondazione.

ΙΔΝΠΔΝΤΙ

A Poglio

A 22 di 80

Data

Ott' 23

Di seguito vengono riepilogate le espressioni utilizzate per determinare la larghezza equivalente della fondazione, l'entità sovraccarico e i valori dei diversi coefficienti.

a) Larghezza equivalente della fondazione:

$$B = B_R - 2 \cdot \frac{M}{N}$$

dove: B_R = larghezza reale della fondazione;

M = momento risultante sulla fondazione;

N = azione perpendicolare al piano di posa sulla fondazione.

b) Sovraccarico dovuto al peso del terreno posto sopra il livello di fondazione:

$$q' = \gamma_t \cdot D$$

dove: γ_t = peso del terreno di ricoprimento;

D = profondità del piano di posa della fondazione.

Nel presente caso, il carico q' è stato trascurato nel calcolo della capacità portante della fondazione.

- c) Coefficienti di capacità portante:
 - Terreno con comportamento attritivo e coesivo:

$$N_q \, = t g^2 \! \left(45^\circ + \frac{\phi'}{2} \right) \! \cdot e^{\pi \cdot t g(\phi')} \label{eq:Nq}$$

$$N_c = (N_\alpha - 1) \cdot ctg(\phi')$$

$$N_{\gamma} = 1.5 \cdot (N_{\alpha} - 1) \cdot tg(\phi')$$

dove: ϕ' = angolo di attrito del terreno di fondazione.

• Terreno con comportamento puramente coesivo:

$$N_c = 2 + \pi$$

- d) Coefficienti di forma (per B<L):
 - Terreno con comportamento attritivo e coesivo:

$$s_{\gamma} = 1 + 0.4 \cdot \frac{B}{I}$$

$$s_q = 1 + \frac{B}{I} \cdot tg(\phi')$$

$$s_c = 1 + \frac{N_q}{N_c} \cdot \frac{B}{L}$$

• Terreno con comportamento puramente coesivo:

$$s_c^{0}=1+0.2\cdot\frac{B}{I}$$

dove: ϕ' = angolo di attrito del terreno di fondazione;

B = larghezza equivalente della fondazione (definita in precedenza);

CODIFICA DOCUMENTO	PROGETTAZIONE		REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA PRO	MANDANTI	Α	23 di 80
1011704 011112 01	/ ITER) VA		Data
	Progetto Infrastrutture Territorio s.r.l.	ENCECTA AMBUTA AMBUTA AMBUTA BINEFOO DVIsionArchitecture		Ott' 23

L = lunghezza della fondazione.

- e) Coefficienti dipendenti dalla profondità del piano di posa:
 - Terreno con comportamento attritivo e coesivo:

$$\begin{aligned} \mathbf{d_q} &= 1 + 2 \cdot \mathsf{tg}(\phi') \cdot [1 - \mathsf{sen}(\phi')]^2 \cdot \frac{\mathsf{D}}{\mathsf{B}_\mathsf{R}} & \mathsf{per} \, \mathsf{D}/\mathsf{B} \leq 1 \\ \\ \mathbf{d_q} &= 1 + 2 \cdot \mathsf{tg}(\phi') \cdot [1 - \mathsf{sen}(\phi')]^2 \cdot \mathsf{ctg}\!\!\left(\frac{\mathsf{D}}{\mathsf{B}_\mathsf{R}}\right) & \mathsf{per} \, \mathsf{D}/\mathsf{B} > 1 \\ \\ \mathbf{d_c} &= 1 + 0.4 \cdot \frac{\mathsf{D}}{\mathsf{B}_\mathsf{R}} & \mathsf{per} \, \mathsf{D}/\mathsf{B} \leq 1 \\ \\ \mathbf{d_c} &= 1 + 0.4 \cdot \mathsf{ctg}\!\!\left(\frac{\mathsf{D}}{\mathsf{B}_\mathsf{R}}\right) & \mathsf{per} \, \mathsf{D}/\mathsf{B} > 1 \\ \\ \mathbf{d_c} &= 1 + 0.4 \cdot \mathsf{ctg}\!\!\left(\frac{\mathsf{D}}{\mathsf{B}_\mathsf{R}}\right) & \mathsf{per} \, \mathsf{D}/\mathsf{B} > 1 \end{aligned}$$

Terreno con comportamento puramente coesivo:

$$d_c^0 = 1 + 0.4 \cdot \frac{D}{B_R}$$

$$per D/B \le 1$$

$$d_c^0 = 1 + 0.4 \cdot ctg \left(\frac{D}{B_R}\right)$$

$$per D/B > 1$$

dove: = angolo di attrito del terreno di fondazione;

> B_R = larghezza reale della fondazione;

= profondità del piano di posa della fondazione;

- Coefficienti correttivi dovuti alla presenza di carichi orizzontali: f)
 - Terreno con comportamento attritivo e coesivo:

$$\begin{split} i_{\gamma} = & \left[1 - \frac{0.7 \cdot H}{N + B \cdot L \cdot c' \cdot ctg(\phi')} \right]^{5} \\ i_{q} = & \left[1 - \frac{0.5 \cdot H}{N + B \cdot L \cdot c' \cdot ctg(\phi')} \right]^{5} \\ i_{c} = i_{q} - \frac{1 - d_{q}}{N_{q} - 1} \end{split}$$

Terreno con comportamento puramente coesivo:

$$i_c^{0} = 1 - \frac{m \cdot H}{B \cdot L \cdot c_u \cdot N_c} \qquad \qquad m = \frac{2 + B/L}{1 + B/L}$$

dove: = angolo di attrito del terreno di fondazione;

> c' = coesione del terreno di fondazione in condizioni drenate;

 \boldsymbol{c}_{u} = coesione del terreno di fondazione in condizioni non drenate;

В = larghezza equivalente della fondazione (definita in precedenza); L = lunghezza della fondazione;

N = azione perpendicolare al piano di posa sulla fondazione;

H = azione parallela al piano di posa sulla fondazione;

 N_q = coefficiente di capacità portante (definito in precedenza);

- g) Coefficienti correttivi dovuti all'inclinazione del piano di fondazione:
 - Terreno con comportamento attritivo e coesivo:

$$b_{\gamma} = \exp \left[-2.7 \cdot \eta \cdot tg(\phi') \right]$$

$$b_q = \exp \left[-2 \cdot \eta \cdot tg(\phi')\right]$$

$$b_c = 1 - \frac{\eta^o}{147^o}$$

• Terreno con comportamento puramente coesivo:

$$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$$

dove: ϕ' = angolo di attrito del terreno di fondazione;

 η = angolo di inclinazione del piano di fondazione rispetto all'orizzontale.

- h) Coefficienti correttivi dovuti all'inclinazione del piano campagna:
 - Terreno con comportamento attritivo e coesivo:

$$g_q = g_y = [1 - 0.5 \cdot tg(\beta)]^5$$

$$g_c = 1 - \frac{\beta^c}{147}$$

• Terreno con comportamento puramente coesivo

$$b_c = 1 - \frac{\beta^o}{147^o}$$

dove: ϕ' = angolo di attrito del terreno di fondazione;

 β = angolo di inclinazione del piano campagna rispetto all'orizzontale.

6.1.3 Metodo pseudo-statico

Il sisma per il caso in esame viene preso in conto secondo il metodo pseudostatico. L'analisi pseudo-statica lineare viene condotta applicando alla struttura un'azione sismica rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. I valori dei coefficienti sismici verticale e orizzontale vengono calcolati mediante le seguenti espressioni: coefficiente sismico orizzontale

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

coefficiente sismico verticale

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV. FOGLIO
A 25 di 80

Data

Ott' 23

$$k_v = \pm \frac{k_h}{2}$$

Essendo:

- β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito
- a_{max} = accelerazione orizzontale massima attesa al sito
- g = accelerazione di gravità

Il valore del coefficiente di riduzione βm assume i seguenti valori:

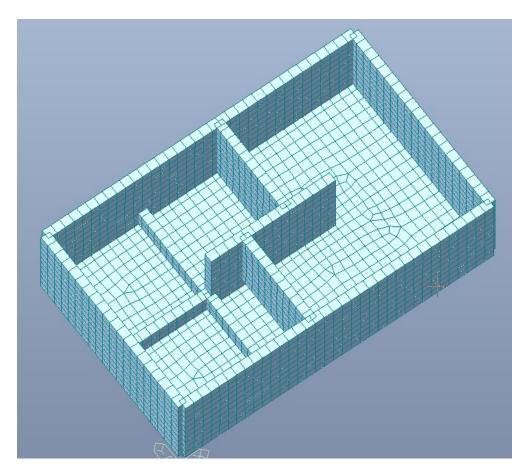
- $\beta_m = 0.38$ allo SLV
- $\beta_m = 0.47$ allo SLD.

6.2 Modello di calcolo

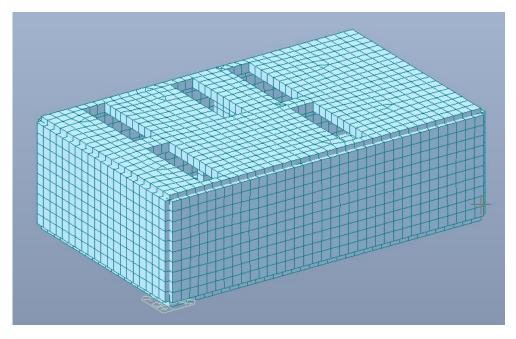
Viene realizzato un modello di calcolo tridimensionale agli elementi finiti attraverso elementi plate di spessore variabile. Tale modellazione è giustificata dal fatto che il manufatto in esame non è identificabile con uno stato piano di deformazione, dovuta anche alla diversa posizione in pianta e in altezza dei setti centrali.

Si riporta nel seguito un'immagine del modello utilizzato.

CODIFICA DOCUMENTO

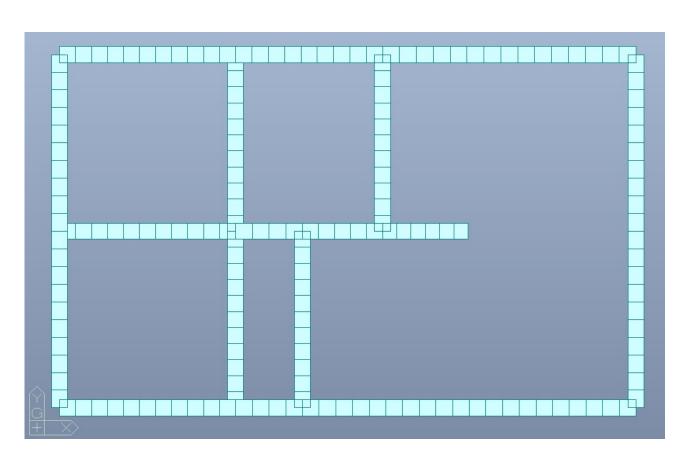

P01-TA04-STR-RE 01

PROGETTAZIONE


MANDATARIA
Progetto
Progetto
Territorio a.r.l.

MANDANTI

Data
Ott' 23


Modello di calcolo: vista interna

Modello di calcolo: vista isometrica

CODIFICA DOCUMENTO PROGETTAZIONE REV. FOGLIO Α MANDANTI 27 di 80 MANDATARIA P01-TA04-STR-RE 01 Data SINERGO DVIsionArchitecture

Ott' 23

Modello di calcolo: pianta elevazioni

La soletta inferiore poggia su molle alla Winkler, la cui costante è assunta, sulla base delle indagini e della caratterizzazione geologico-geotecnica effettuata, pari a:

$$k_w = 2000 \, kN/m^3$$

Si riporta nel seguito un dettaglio delle molle inserite nel modello di calcolo.

Dettaglio delle molle alla Winkler utilizzate nel modello di calcolo

6.2.1 Convenzioni di segno adottate

Per quanto riguarda i risultati riportati nella presente relazione, si faccia riferimento alle seguenti convenzioni di segno adottate dal programma di calcolo.

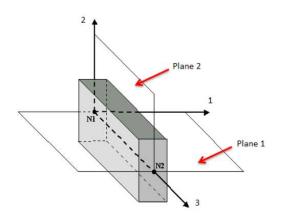
Per quanto riguarda gli elementi beam, le sollecitazioni vengono calcolate nei due piani indicati nella figura sottostante:

CODIFICA DOCUMENTO

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA


MANDANTI

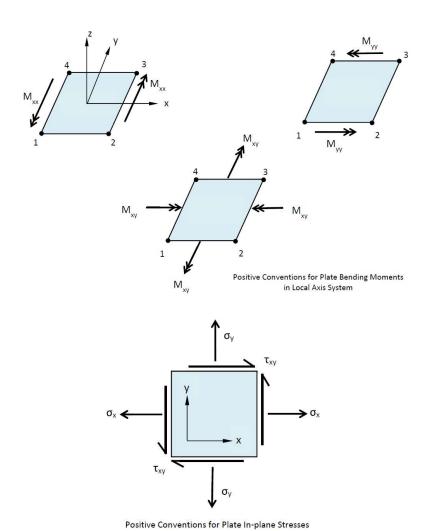
MANDANTI

A 28 di 80

Data

Ott' 23

Le convenzioni di segno adottate per i parametri della sollecitazione sono le seguenti:


Plane 1 Shearing action Bending action 2 N1 N2 Shearing action Bending action 2 N1 N2 3 2 N1 N2 3		Positive	Negative
Shearing action Bending action Bending action 2 N1 N2 N1 N2		N1 N2	1 N1 N2
2 N1 N2 N1 N2	Plane 1		
			2

Per gli elementi plates si faccia invece riferimento a quanto riportato nel seguito:

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
Progetto
Pr

In particolare i momenti e le forze agenti sugli elementi plates verranno riferite al sistema di riferimento globale.

7 **VASCA DI TRATTAMENTO TIPO TA01**

7.1 **ANALISI DEI CARICHI**

Si riporta nel seguito l'analisi dei carichi relativa all'opera in esame.

7.1.1 Pesi propri strutturali (g₁)

7.1.1.1 Calcestruzzo

Il peso degli elementi in calcestruzzo è calcolato con il seguente valore per unità di volume:

$$\gamma = 25.00 \text{ kN/m}^3$$

7.1.2 Carichi permanenti portati (g2)

I carichi permanenti da considerare vengono elencati nel seguito nel loro valore a metro di sviluppo di implacato. I carichi vengono espressi nel seguito per metro di larghezza del manufatto in esame; vengono poi moltiplicate per la larghezza dello stesso per ottenere i carichi da inserire nel modello di calcolo.

7.1.2.1 Rilevati e spinta delle terre (g₃) - Statica

Si riportano inoltre le caratteristiche del terreno assunte per il calcolo; si assume che la vasca sia interrata interamente nel terreno che costituisce il nuovo rilevato della Rotonda Sud.

Caratteristiche del terreno a tergo della piedritti esterni

Peso proprio	Υ =	20	kN/m³
Angolo di attrito	φ =	35	0
Coefficiente di spinta a riposo	$k_0 =$	0.426	

La geometria dei piedritti è invece la seguente:

Piedritti

Altezza piedritti	h =	3.2	m
Spessore piedritti	t =	0.3	m
Peso specifico materiale piedritti	Y =	25	kN/m³

Si suppongono in questo caso condizioni si spinta a riposo:

$$k_0 = 1 - sen\varphi$$

CODIFICA DOCUMENTO	PROGETTAZIONE			REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA PRO	MANDANTI		Α	31 di 80
101-1704-01K-KE 01	ITER Progetto Infrastrutture) VA		Data
	Infrastrutture Territorio s.r.l.	ERICERGA VIABILITÀ AMBIENTE	SINELO DVisionArchitecture		Ott' 23

Ter	ren	0	di	rin	ort	n

Altezza terreno di riporto	$h_{ter} =$	0.65	m
Peso specifico terreno di riporto	Y _{ter} =	20	kN/m³
Spinta verticale terreno di riporto	$p_{ter,v} =$	13	kN/m
Spinta orizzontale terreno di riporto	p _{ter,h} =	5.54	kN/m

Spinta delle terre (g₃)

Terreno a monte del muro frontale

Altezza terreno a monte del muro	h =	0.65	m
Spinta verticale terreno a monte	$p_{tm,v} =$	13	kN/m
Spinta orizzontale terreno a monte	$p_{tm,h} =$	5.54	kN/m

Si faccia riferimento al l'apposito paragrafo per la descrizione generale dei carichi da traffico utilizzati per il caso in esame.

Si riporta nel seguito il valore degli stessi, considerando un opportuno criterio di diffusione all'interno del rilevato. Si riporta inoltre la spinta sui piedritti dovuta ai carichi da traffico, quando questi stazionino al di fuori della soletta superiore, in prossimità del piedritto.

7.1.2.2 Rilevati e spinta delle terre (g₃) - Sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata secondo la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H si determina come da espressione seguente:

$$\Delta S_E = k_h \cdot \gamma \cdot H^2 = (a_{max}/g) \cdot \gamma \cdot H^2$$

Per il caso in esame:

Coefficiente di spinta di Wood

Accelerazione attesa al suolo	a _g =	0.224	g
Parametro S	S =	1.2	
Accelerazione orizzontale massima attesa al sito	a _{max} =	0.268	g
Coefficiente di riduzione dell'accelerazione massima attesa al sito	$\beta_m =$	1	
Coefficiente sismico orizzontale	k _h =	0.268	
Coefficiente sismico verticale	k _h =	0.134	

Sovraspinta delle terre (g₃)

Terreno a monte del muro frontale

kN/m Spinta orizzontale in condizioni sismiche terreno a monte 13.93 $p_{tm,sism,h} =$

7.1.3 Distorsioni e deformazioni impresse

Effetti reologici dovuti a ritiro (ε₂) e viscosità del calcestruzzo (ε₃)

Si riporta nel seguito il calcolo relative al coefficiente di viscosità del calcestruzzo, ricavato secondo i contenuti dell'Appendice B EN 1992-1-1:2004+A1. Il perimetro bagnato considerate nei calcoli è il seguente:

$$u = 1 + 1 = 2 m$$

Calcolo del coefficiente di viscosità (Appendice B EN 1992-1-1:2004+A1)			
Umidità relativa	R _H =	80	%
Coefficiente che tiene conto dell'effetto dell'umidità relativa sul coefficiente nominale di viscosità	φ _{RH} =	1.24	
Coefficienti che prondone in cente l'influenza della registenza del	$\alpha_1 =$	0.91	
Coefficienti che prendono in conto l'influenza della resistenza del	$\alpha_2 =$	0.97	
calcestruzzo	$\alpha_3 =$	0.94	
Coefficiente che tiene conto dell'effetto della resistenza del calcestruzzo sul coefficiente nominale di viscosità	$\beta(f_{cm}) =$	2.66	
Area della sezione trasversale	A _c =	400000	mm²
Perimetro dell'elemento a contatto con l'atmosfera (considerare anche un lato nelle sezioni di estremità)	u =	2000	mm
Dimensione fittizia dell'elemento	h ₀ =	400.00	mm
Età del calcestruzzo, in giorni, al momento considerato	t =	100000	giorni
Età del calcestruzzo, in giorni, al momento dell'applicazione del carico	$t_0 =$	7	giorni
Coefficiente che tiene conto dell'effetto dell'età del calcestruzzo al momento dell'applicazione del carico sul coefficiente nominale di viscosità	$\beta(t_0) =$	0.63	
Coefficiente nominale di viscosità	фо =	2.09	
Coefficiente dipendente dall'umidità relativa (R _H in %) e dalla dimensione	β _H =	1121.6	<1500a3,
fittizia dell'elemento (h ₀ in millimetri)	рн –	2	OK
Coefficiente atto a descrivere l'evoluzione della viscosità nel tempo dopo	Q (t to) -	1.00	
l'applicazione del carico	$\beta_{c}(t,t_{0}) =$	1.00	
Coefficiente di viscosità	$\varphi(t,t_0) =$	2.08	

Per quanto riguarda la deformazione totale da ritiro:

CALCOLO DELLA DEFORMAZIONE PER RITIRO (§11.2.10.6 NTC 2018)

Ritiro per essiccamento

Resistenza caratteristica a compressione	$f_{ck} =$	32	MPa
Umidità relativa	R _H =	80	%
Ritiro per essiccamento a tempo t = t ₀	$\epsilon_{c0} =$	-0.264	%
Perimetro bagnato	u =	2	m
Area sezione soletta	A _c =	0.4	m^2
$h_0 = 2A_c / u$	$h_0 =$	400.00	mm
Parametro kh	k _h =	0.725	%
Valore medio a tempo infinito della deformazione per ritiro da essiccamento	ε _{cd,∞} =	-0.0001914	

Ritiro autogeno

Valore medio a tempo infinito della deformazione per ritiro autogeno -0.000055 ε_{ca,∞} =

Deformazione totale per ritiro

Deformazione totale per ritiro a tempo t = t∞ -0.0002464 ε_{cs,∞} =

Si assume pertanto una variazione di temperatura uniforme equivalente, applicata nel modello di calcolo su tutta la soletta:

$$\Delta T_{eq} = \frac{\varepsilon_{cs} \cdot E_{c,\infty}}{\alpha_c \cdot E_{c,0}}$$

Sollecitazioni dovute alla deformazione da ritiro

Modulo di elasticità longitudinale t = t ₀	E _{c,0} =	33346	MPa
Modulo di elasticità longitudinale t = t∞	E _{c,∞} =	10811	MPa
Coefficiente di dilatazione termica calcestruzzo	α =	0.000012	1/°C
Sforzo normale agente sulla soletta per ritiro (compressione)	$N_{rit} =$	1065.5	kN
Variazione termica equivalente	$\Delta T_{eq} =$	-6.7	°C

7.1.3.2 Cedimenti vincolari (ε₄)

Non sono stati considerati cedimenti imposti come condizione di carico secondo quanto indicato dal § 5.1.3.2 delle NTC18, in quanto, visto lo schema statico (campate isostatiche in semplice appoggio), i loro effetti sono nulli ai fini della verifica delle strutture.

7.1.4 Carichi variabili

7.1.4.1 Azioni variabili da traffico. Carichi verticali (q₁), Incremento dinamico addizionale in presenza di discontinuità strutturali (q₂), Azione longitudinale di frenamento o di accelerazione (q₃), Azioni variabili da traffico. Azione centrifuga (q₄)

La vasca di trattamento è posta al centro della rotonda e non è sovrastata dalla piattaforma stradale, per cui non si considera la presenza di carico stradale. E' stata considerata la presenza di un mezzo per la manutenzione con peso mari a 20 kN/m^2 uniformemente distribuito sulla soletta superiore.

7.1.4.2 Azione del vento $(q_{5,1})$

L'azione del vento non è dimensionante per il caso in esame.

7.1.4.3 Azione della neve $(q_{5,2})$

Secondo normativa, il carico neve si considera non concomitante con i carichi da traffico, salvo che per ponti coperti. Poiché il carico neve risulta essere di intensità inferiore ai carichi mobili, viene trascurato.

7.1.4.4 Azioni della temperatura (q₇)

La variazione di temperatura riguarda principalmente la soletta superiore, in quanto elemento meno protetto termicamente della struttura, e maggiormente esposto all'irraggiamento e alla convezione.

Si considerano, secondo la norma, un effetto di variazione uniforme nello spessore della soletta (espansione/contrazione) e un gradiente di temperatura fra intradosso ed estradosso (estradosso caldo/estradosso freddo).

Variazione termica uniforme:

La massima escursione di temperatura viene ricavata in base a quanto prescritto al paragrafo 3.5.2 NTC 2018, essendo questa funzione dell'altitudine e della zona su cui sorge la costruzione.

Azione termica uniforme

Quota del suolo sul livello del mare nel sito dove è realizzata la costruzione	a _s =	115	m
Regione di appartenenza del sito in esame		Toscana	
Zona		Zona II	
Temperatura minima dell'aria esterna	$T_{min} =$	-15.46	°C
Temperatura massima dell'aria esterna	$T_{max} =$	41.31	°C
Temperatura iniziale	$T_0 =$	15	°C
Differenza di temperatura negativa	ΔT- =	-30.46	°C
Differenza di temperatura positiva	ΔT+ =	26.31	°C
Differenza di temperatura usato nei calcoli (arrot.)	ΔT =	31	°C

Variazione termica differenziale

Azione termica differenziale (Tab. 6.1 EN 1991-1-5)

Tipo di impalcato	Impalcato a solettone in c.a.			
Variazione termica differenziale (estradosso caldo)	$\Delta T_{M,heat} =$	15	°C	
Variazione termica differenziale (intradosso caldo)	$\Delta T_{M,cool} =$	8	°C	
Spessore strato di ricoprimento	h =	700	cm	
Coefficiente k _{sur}	k _{sur} =	0.6		
Variazione termica differenziale con ricoprimento (estradosso caldo)	$\Delta T_{M,heat} =$	9	°C	
Variazione termica differenziale con ricoprimento (intradosso caldo)	$\Delta T_{M,cool} =$	4.8		
Spessore elemento	h _{sol} =	1	m	
Gradiente di temperatura (estradosso caldo)	grad.+ =	9	°C/m	
Gradiente di temperatura (intradosso caldo)	grad =	4.80	°C/m	

A favore di sicurezza si userà, sia per il gradiente termico positivo che per quello negativo, il valore di calcolo più gravoso tra i due

7.1.4.5 Resistenze passive dei vincoli (q₉)

Non presenti nel caso in esame.

7.1.5 Azione sismica

L'azione sismica è definita dagli spettri di risposta elastici in accelerazioni orizzontali, definiti in base al §3.2.3.2.2 delle NTC18. In particolare lo spettro di risposta elastico della componente orizzontale è definito dalle espressioni seguenti:

$$\begin{aligned} 0 &\leq T \leq T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T \leq T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \\ T_C &\leq T \leq T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C}{T} \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \frac{T_C T_D}{T^2} \end{aligned}$$

nelle quali T e S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale.

Inoltre:

• a_g è l'accelerazione orizzontale massima al sito su suolo rigido, determinata in funzione della probabilità di superamento nel periodo di riferimento P_{V_R} ;

- S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente $S = S_S \cdot S_T$, essendo S_S il coefficiente di amplificazione stratigrafica (vd. Tabella 3.2.V) e S_T il coefficiente di amplificazione topografica (vd. Tab. 3.2.V);
- η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione η = 10/(5 + ξ) ≥ 0.55, dove ξ (espresso in percentuale) è valutato sulla base di materiali, tipologia strutturale e terreno di fondazione;
- F_0 è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2.2;
- T_C è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato da T_C = C_C · T_C* dove T_C*
 è definito al §3.2 e C_C è un coefficiente funzione della categoria di sottosuolo (vd. Tabella 3.2.IV);
- T_B è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante, $T_B = T_C/3$;
- T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione: $T_D = 4.0 \cdot (a_a/g) + 1.6$.

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_C^*)^{-0,50}$
Е	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Espressioni di Ss e Cc

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	

Valori del coefficiente di amplificazione topografica S₁

La categoria sismica è la categoria di sottosuolo B.

In base a quanto descritto nel D.M. 17/01/2018 la pericolosità sismica in un generico sito deve essere descritta:

- in termini di accelerazione orizzontale massima a_g e dei parametri che permettono di definire gli spettri di risposta nelle condizioni di sito di riferimento rigido orizzontale;
- in corrispondenza dei punti di un reticolo, denominato reticolo di riferimento, i cui nodi non distano più di 10 km.

CODIFICA DOCUMENTO	PROGETTAZIONE			REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA	MANDANTI		Α	37 di 80
01-1A04-0111-ICE 01	ITER Progetto Infrastrutture	ETENAS R. L. BICERCA VABILITÀ AMBIENTE	Sinergo)—VV		Data
	Territorio s.r.l.	TOURNE VARIETA AMBIENTE	SIIIEI GO DVisionArchitecture		Ott' 23

Le forme spettrali previste dal D.M. 17/01/2018 sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- aq accelerazione orizzontale massima del terreno;
- F⁰ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nelle norme tecniche NTC 2018 sono forniti, secondo un reticolo di riferimento e per differenti intervalli di riferimento, i parametri sismici a_g, F_O e T*_C per un sito rigido orizzontale (come definiti al paragrafo 3.2) necessari per la determinazione delle azioni sismiche.

Qualora l'area in esame non ricada in corrispondenza dei nodi del reticolo di riferimento, i valori dei parametri di interesse possono essere calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento, mediante la seguente espressione:

$$p = \frac{\sum_{i=1}^{4} \frac{p_i}{d_i}}{\sum_{i=1}^{4} \frac{1}{d_i}}$$

in cui:

Ρ

- p è il valore del parametro di interesse nel punto in esame;
- pi è il valore del parametro di interesse nell'i-esimo punto della maglia elementare contenente il punto in esame;
- di è la distanza del punto in esame dall'i-esimo punto della maglia suddetta.

Di seguito si riportano i valori dei parametri sismici a_g agli SLV, ricavati mediante il programma "Spettri NTC ver.1.0.3.xls", disponibile sul sito http://www.cslp.it/cslp/, inserendo le coordinate geografiche di inizio tracciato, fine tracciato e dei punti più significativi in corrispondenza delle principali opere d'arte maggiori.

P01-TA04-STR-RE 01

MANDANTI

A Section FOGLIO A Section Poglio Pog

Ott' 23

Comune	Zona sismica	Opera	ag [SLV; TR=949]
Rufina	2 [ag=0.216]	Inizio tracciato	0,207
		Viadotto 1 - Spalla Nord	0,208
	3 [ag=0.183]	Rotatoria	0,210
		Viadotto 2 - Spalla Nord	0,220
Pontassieve		Galleria - Imbocco Sud	0,220
		Galleria	0,222
		Galleria - Imbocco Nord	0,223
D. C.	2	Viadotto 3 - Spalla Nord	0,224
Rufina	[ag=0.216]	Fine tracciato	0,224

I valori riportati sono stati ottenuti in funzione del periodo di ritorno T_R e di una vita di riferimento V_R=100 anni.

Nell'ottica di una caratterizzazione sismica adeguata, sulla base della tipologia di rilievo e delle opere attraversate dal tracciato, si è scelto di utilizzare i dati dei parametri sismici relativi a fine tracciato, che forniscono, per l'area in esame, i valori di a_g più elevati. In particolare, si riportano di seguito i valori dei parametri sismici a_g , F_0 e $T^*_{c(s)}$ ricavati mediante il programma "Spettri NTC ver.1.0.3.xls" da utilizzare in fase progettuale:

Fine tracciato (11.498576- 43.837345)

	T _R (anni)	a _g (g)	F ₀	T* _C (s)
SLO	60	0,079	2,461	0,272
SLD	101	0,098	2,441	0,278
SLV	949	0,224	2,377	0,303
SLC	1950	0,280	2,409	0,314

7.2 Analisi sismica

L'analisi sismica di riferimento per il progetto in esame è l'analisi modale con spettro di risposta ("Analisi dinamica lineare" §7.2.6 NTC2018), che consiste nei punti seguenti:

- determinazione dei modi di vibrare della costruzione (analisi modale);
- calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- combinazione di tali effetti.

Ott' 23

Sono stati considerati tutti i modi con massa partecipante significativa, in particolare tutti i modi con massa partecipante superiore al 5% e un numero di modi la cui massa partecipante totale sia superiore allo 85%.

Gli effetti relativi ai singoli modi vengono combinati sia attraverso il metodo SRSS che CQC, optando per i risultati più conservativi.

Le analisi vengono condotte nei riguardi dello Stato Limite di Salvaguardia della Vita.

Lo zero sismico è assunto a quota estradosso fondazione.

7.2.1 Fattore di comportamento

Per il caso in esame, non essendo presenti elementi dissipativi, viene adottato fattore di comportamento unitario.

$$q = 1$$

7.2.2 Analisi modale

Si riportano nel seguito, in forma tabellare e grafica i principali modi di vibrare per il caso in esame. Si opta per un numero di modi tale per cui la percentuale di massa eccitata sia maggiore dell'85%.

ode	Mode	UX	UY	UZ	RX	RY	RZ
			EIGE	NVALUE ANAL	YSIS		
	Mode	Frequen	icy	Period	Televanas	4	8 9
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance	-	8 8
	1	28.5439	4.5429	0.2201	0.0000e+00	4	8 9
	2	46.2839	7.3663	0.1358	0.0000e+00		8 9
	3	341.8942	54.4142	0.0184	0.0000e+00		8 9
	4	552.9980	88.0124	0.0114	6.5291e-145		8 8
	5	628.9011	100.0927	0.0100	3.3476e-134		g .
	6	657.2272	104.6010	0.0096	2.7683e-130	y .	g .
	7	733.2651	116.7028	0.0086	4.4018e-122	7	8 9
	8	918.2111	146.1378	0.0068	8.8490e-103	4	g .
	9	984.4040	156.6728	0.0064	1.8641e-95	4	9
	10	993.7520	158.1605	0.0063	5.8003e-94	7	g g
	11	1009.6628	160.6928	0.0062	9.4838e-94	1	8 8
	12	1151.1614	183.2130	0.0055	5.1620e-83		S S
	13	1183.0080	188.2816	0.0053	2.3540e-82	1	g g
	14	1342.3971	213.6491	0.0047	2.1642e-71	1	8 9
	15	1433.7495	228.1883	0.0044	1.5573e-67		

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV. FOGLIO
A 40 di 80

Data

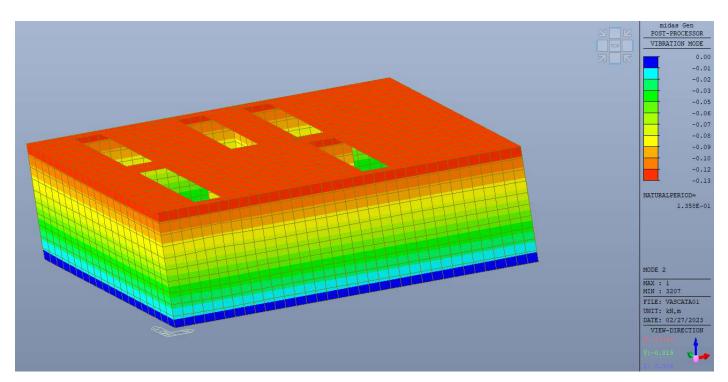
Ott' 23

Node	Mode	U	x	U	Υ	U	z	R	х	R	Y	R	Z
	,				MODA	L PARTICIPA	TION MASSE	S PRINTOUT					
	Mode	TRA	N-X	TRA	N-Y	TRA	N-Z	ROT	N-X	ROT	N-Y	ROT	N-Z
20 10	No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
20 10	1	0.0003	0.0003	84.8796	84.8796	0.0000	0.0000	90.1478	90.1478	0.0001	0.0001	2.1249	2.1249
20 10	2	85.1946	85.1948	0.0000	84.8796	0.0000	0.0000	0.0005	90.1483	89.8814	89.8815	0.3615	2.4864
20 11	3	0.1566	85.3514	0.5177	85.3973	0.0000	0.0000	0.3145	90.4627	0.1318	90.0133	66.1173	68.6037
	4	1.8847	87.2361	3.9686	89.3659	0.0000	0.0000	2.6651	93.1278	1.3366	91.3499	19.9179	88.5217
	5	0.0324	87.2685	0.3073	89.6732	0.0000	0.0000	0.1848	93.3126	0.0169	91.3668	6.5039	95.0256
00 10	6	0.0808	87.3493	0.0669	89.7401	0.0000	0.0000	0.0428	93.3554	0.0538	91.4206	0.2047	95.2303
20 11	7	4.3519	91.7012	3.1815	92.9216	0.0000	0.0000	2.0783	95.4337	3.0402	94.4607	3.5240	98.7542
	8	1.3339	93.0351	0.1187	93.0404	0.0000	0.0000	0.0776	95.5113	0.9387	95.3995	0.2959	99.0502
20 11	9	0.1365	93.1716	0.0297	93.0700	0.0000	0.0000	0.0228	95.5341	0.0829	95.4823	0.0214	99.0716
20 11	10	6.1488	99.3204	6.1624	99.2324	0.0000	0.0000	3.9784	99.5125	4.0844	99.5667	0.0000	99.0716
20 11	11	0.4152	99.7355	0.5030	99.7354	0.0000	0.0000	0.3182	99.8307	0.2677	99.8345	0.0104	99.0821
	12	0.0075	99.7430	0.0084	99.7439	0.0000	0.0000	0.0053	99.8360	0.0034	99.8379	0.0024	99.0845
10 11	13	0.0070	99.7500	0.0002	99.7441	0.0000	0.0000	0.0001	99.8361	0.0038	99.8417	0.0119	99.0964
10	14	0.0059	99.7559	0.0070	99.7511	0.0000	0.0000	0.0050	99.8411	0.0023	99.8440	0.0086	99.1050
20 11	15	0.0082	99.7641	0.0000	99.7511	0.0000	0.0000	0.0000	99.8411	0.0053	99.8493	0.0132	99.1182
10 2	Mode	TRA	N-X	TRA	N-Y	TRA	N-Z	ROT	N-X	ROT	N-Y	ROT	N-Z
30 19	No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
3 1	1	0.0002	0.0002	61.4949	61.4949	0.0000	0.0000	199.8884	199.8884	0.0003	0.0003	22.3889	22.3889
	2	61.7231	61.7233	0.0000	61.4949	0.0000	0.0000	0.0010	199.8894	199.2976	199.2979	3.8085	26.1974
30 19	3	0.1135	61.8367	0.3751	61.8700	0.0000	0.0000	0.6973	200.5867	0.2923	199.5902	696.6301	722.8275
10 11	4	1.3655	63.2022	2.8752	64.7452	0.0000	0.0000	5.9093	206.4960	2.9637	202.5538	209.8608	932.6882
20 11	5	0.0235	63.2257	0.2227	64.9678	0.0000	0.0000	0.4098	206.9058	0.0375	202.5913	68.5267	1001.2149
20 11	6	0.0585	63.2842	0.0485	65.0163	0.0000	0.0000	0.0948	207.0007	0.1193	202.7106	2.1566	1003.3715
20 11	7	3.1529	66.4371	2.3050	67.3213	0.0000	0.0000	4.6083	211.6090	6.7411	209.4516	37.1295	1040.5010
· 11	8	0.9664	67.4035	0.0860	67.4073	0.0000	0.0000	0.1721	211.7810	2.0815	211.5331	3.1180	1043.6190
70 11	9	0.0989	67.5024	0.0215	67.4288	0.0000	0.0000	0.0506	211.8316	0.1837	211.7168	0.2259	1043.8450
70 11	10	4.4548	71.9572	4.4646	71.8935	0.0000	0.0000	8.8215	220.6531	9.0565	220.7734	0.0003	1043.8452
20 11	11	0.3008	72.2579	0.3644	72.2579	0.0000	0.0000	0.7055	221.3586	0.5937	221.3670	0.1098	1043.9550
20 11	12	0.0054	72.2633	0.0061	72.2640	0.0000	0.0000	0.0118	221.3704	0.0076	221.3747	0.0257	1043.9807
20 10	13	0.0051	72.2684	0.0002	72.2641	0.0000	0.0000	0.0003	221.3706	0.0085	221.3831	0.1255	1044.1062
20 10	14	0.0043	72.2727	0.0051	72.2692	0.0000	0.0000	0.0111	221.3817	0.0051	221.3882	0.0905	1044.1967
	15	0.0059	72.2786	0.0000	72.2692	0.0000	0.0000	0.0000	221.3818	0.0118	221.4000	0.1392	1044.3359

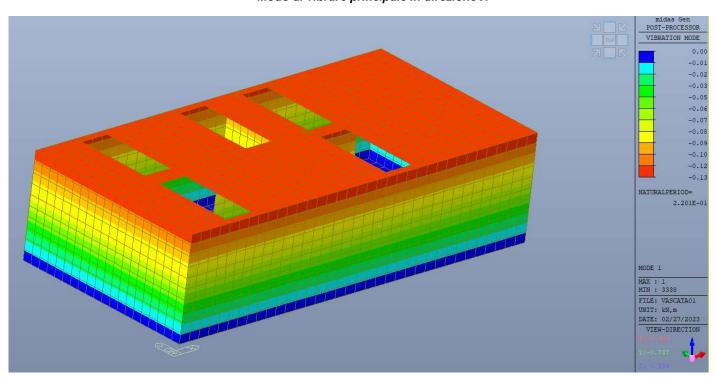
P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA


ARIA MANDANTI
PRO
ITER
Progetto
Infrastruture
Territorio s.r.l.

SINERGO DVIsionArchitecture


REV.

FOGLIO 41 di 80

Data Ott' 23

Modo di vibrare principale in direzione X

Modo di vibrare principale in direzione Y

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

Data

Ott' 23

7.2.3 Riepilogo dei carichi agenti

Si riporta nel seguito un riassunto dei carichi agenti sul manufatto in esame.

P01-TA04-STR-RE 01

MANDANTI

REV.

FOGLIO 43 di 80

Data
Ott' 23

7.2.4 Combinazioni di carico e fasi di calcolo

7.2.4.1 Combinazioni S.L.U.

Allo Stato Limite Ultimo la combinazione di riferimento è quella fondamentale:

$$\gamma$$
G1·G1 + γ G2·G2 + γ P·P + γ Q1·Qk1 + γ Q2· ψ 02·Qk2 + γ Q3· ψ 03·Qk3 + ...

dove:

G₁ valore caratt. delle azioni da peso proprio;

G₂ valore caratt. delle azioni da carichi permanenti portati;

Qk1 valore caratt. dell'azione variabile di base di ogni combinazione;

Qki valore caratt. delle azioni variabili tra loro indipendenti;

P valore caratt. delle deformazioni impresse;

 γ_G , γ_Q , γ_P coefficienti parziali per le azioni;

 $\psi_{0\iota}$ coefficienti di comb. per le verifiche allo stato limite ultimo.

7.2.4.2 Combinazioni S.L.E.

Agli Stati limite di Esercizio si considerano invece le seguenti:

- Combinazione caratteristica (rara)

$$G1 + G2 + P + Qk1 + \psi02\cdot Qk2 + \psi03\cdot Qk3 + ...$$

- Combinazione frequente

G1 + G2 +P+
$$\psi$$
11.Qk1 + ψ 22.Qk2 + ψ 23.Qk3 + ...

Combinazione quasi permanente

$$G1 + G2 + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$$

7.2.4.3 Casi di carico elementari

I casi di carico elementari inseriti nel modello sono quelle riportate nel seguito.

- 1: g1
- 2: g2
- 3: Ritiro e3
- 4: T+
- 5: T-
- 6: DT+
- 7: DT-
- 8: Qtr Tandem
- 9: Qtr distr

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
PRO
ITER
Progetto
Infrastruture

MANDANTI

REV.

FOGLIO 44 di 80

Data
Ott' 23

10: Spinta g2

11: Spinta terreno a monte

14: Pseudostatico G1 - ORIZZ

15: Pseudostatico G1 - VERT

16: Pseudostatico G2 - ORIZZ

17: Pseudostatico G2 - VERT

18: Spinta Wood

Si riportano inoltre nel seguito i carichi così come inseriti nel modello di calcolo.

7.2.4.4 Combinazioni considerate

La definizione delle combinazioni maggiormente restrittive per i diversi elementi costituenti la struttura in oggetto allo stato limite ultimo e di esercizio, è stata sviluppata facendo uso dei "Factor Envelopes" presenti in Straus7. In tale procedura le combinazioni di carico vengono generate automaticamente dal programma che determina le combinazioni stesse moltiplicando i contributi derivanti dalle singole condizioni di carico tramite i fattori di combinazione riportati nel seguito per i diversi stati limite presi in considerazione. Il risultato conduce alla massimizzazione/minimizzazione dei valori di tutte le combinazioni in ogni elemento componente il modello di calcolo. In questo modo il software cicla tutte le possibili combinazioni, definendo come risultato finale l'inviluppo massimo e minimo di un determinato parametro in un dato elemento, con i relativi valori concomitanti.

Si richiede inoltre la creazione di SET di condizioni elementari di carico che all'interno raggruppano carichi similari (per esempio si raggruppano i carichi accidentali su un set, i carichi permanenti su un altro e così via). Ad ogni set si possono attribuire proprietà esclusive (comando OR che considera che all'interno di quel set la singola condizione di carico non potrà coesistere con le altre) o multiple (comando AND che considera che all'interno di quel set la singola condizione di carico potrà coesistere con le altre).

Si schematizzano nel seguito i diversi "Factor Envelopes" utilizzati.

SLU (azione variabile dominante: temperatura)

1: g1	1	1.35	<none></none>
2: g2	1	1.35	<none></none>

CODIFICA DOCUMENTO PROGETTAZIONE REV. **FOGLIO** Α 45 di 80 MANDATARIA MANDANTI P01-TA04-STR-RE 01 PRO ITER Data EIRAS 8. R. L. sinergo Ott' 23 3: Ritiro e3 1 1.2 <None> 4: T+ 0 1.5 OR {Temperature} 5: T-0 1.5 OR {Temperature} 6: DT+ OR {Temperature} 0 1.5 7: DT-0 1.5 OR {Temperature} 10: Spinta g2 1 1.35 <None> 11: Spinta terreno a monte 1 1.35 <None> 14: Pseudostatico G1 - ORIZZ 0 0 <None> 15: Pseudostatico G1 - VERT 0 0 <None> 16: Pseudostatico G2 - ORIZZ 0 0 <None> 17: Pseudostatico G2 - VERT 0 0 <None> 18: Spinta Wood 0 0 <None> SLU (azione variabile dominante: traffico) 1: g1 1 1.35 <None> 2: g2 1 1.35 <None> 3: Ritiro e3 1.2 <None> 1 4: T+ 0 0.9 OR {Temperature} 5: T-0 0.9 OR {Temperature} 6: DT+ 0 0.9 OR {Temperature} 7: DT-0 0.9 OR {Temperature} 10: Spinta g2 1 1.35 <None> 1.35 11: Spinta terreno a monte 1 <None> 14: Pseudostatico G1 - ORIZZ 0 0 <None> 15: Pseudostatico G1 - VERT 0 0 <None> 16: Pseudostatico G2 - ORIZZ 0 0 <None> 17: Pseudostatico G2 - VERT 0 <None> 0 18: Spinta Wood 0 0 <None> **SLE Rara** 1 1: g1 1 <None> 2: g2 1 1 <None> 3: Ritiro e3 1 <None> 1 4: T+ 0 0.6 OR {Temperature} 5: T-0 0.6 OR {Temperature} 6: DT+ 0 0.6 OR {Temperature} 7: DT-0 0.6 OR {Temperature} 10: Spinta g2 <None> 1 1 11: Spinta terreno a monte 1 1 <None>

CODIFICA DOCUMENTO	PROGETTAZIONE				REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA	MANDANTI			Α	46 di 80
PUI-1AU4-51R-RE UI	PRO ITER		2_V/			Data
	Infrastrutture Territorio s.r.l.	BOCRICA WAGILITÀ AMBIENTE	SINEIGO DVisionArchitecture			Ott' 23
14: Pseudostatico G1 - ORIZ	Z		0	0	<n< td=""><td>lone></td></n<>	lone>
15: Pseudostatico G1 - VERT			0	0		lone>
16: Pseudostatico G2 - ORIZ			0	0		lone>
17: Pseudostatico G2 - VERT			0	0		lone>
18: Spinta Wood			0	0		lone>
io. Opinia rrood			· ·	· ·	•	10110
SLE Frequente						
1: g1			1	1	<n< td=""><td>lone></td></n<>	lone>
2: g2			1	1		lone>
3: Ritiro e3			1	1		lone>
4: T+			0	0.5		mperature}
5: T-			0	0.5	-	mperature}
6: DT+			0	0.5	-	mperature}
7: DT-			0	0.5	-	mperature}
10: Spinta g2			1	1	•	lone>
11: Spinta terreno a monte			1	1		lone>
14: Pseudostatico G1 - ORIZ	Z		0	0		lone>
15: Pseudostatico G1 - VERT			0	0		lone>
16: Pseudostatico G2 - ORIZ			0	0		lone>
17: Pseudostatico G2 - VERT			0	0		
18: Spinta Wood			0	0		lone>
			-	-		
SLE Quasi Permanente						
1: g1			1	1	<n< td=""><td>lone></td></n<>	lone>
2: g2			1	1	<n< td=""><td>lone></td></n<>	lone>
3: Ritiro e3			1	1	<n< td=""><td>lone></td></n<>	lone>
4: T+			0	0.5	OR {Te	mperature}
5: T-			0	0.5	-	mperature}
6: DT+			0	0.5	-	mperature}
7: DT-			0	0.5	-	mperature}
10: Spinta g2			1	1	-	lone>
11: Spinta terreno a monte			1	1	<n< td=""><td>lone></td></n<>	lone>
14: Pseudostatico G1 - ORIZ	Z		0	0	<n< td=""><td>lone></td></n<>	lone>
15: Pseudostatico G1 - VERT	_		0	0	<n< td=""><td>lone></td></n<>	lone>
16: Pseudostatico G2 - ORIZZ			0	0	<none></none>	
17: Pseudostatico G2 - VERT			0	0	<none></none>	
18: Spinta Wood			0	0	<none></none>	
SLV						

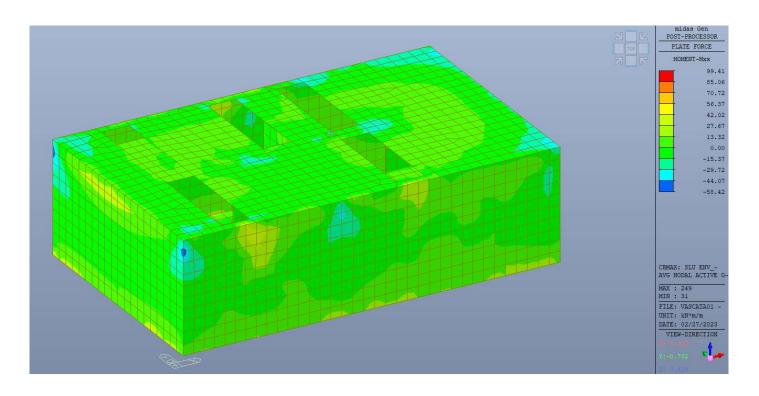
PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
PROFIDER
PR

1: g1	1	1	<none></none>
2: g2	1	1	<none></none>
3: Ritiro e3	1	1	<none></none>
4: T+	0	0.5	OR {Temperature}
5: T-	0	0.5	OR {Temperature}
6: DT+	0	0.5	OR {Temperature}
7: DT-	0	0.5	OR {Temperature}
10: Spinta g2	1	0	<none></none>
11: Spinta terreno a monte	1	0	<none></none>
14: Pseudostatico G1 - ORIZZ	-1	1	<none></none>
15: Pseudostatico G1 - VERT	-0.3	0.3	<none></none>
16: Pseudostatico G2 - ORIZZ	-1	1	<none></none>
17: Pseudostatico G2 - VERT	-0.3	0.3	<none></none>
18: Spinta Wood	0	1	<none></none>

7.3 SOLLECITAZIONI AGENTI E VERIFICHE


Si riportano nel seguito gli esiti delle verifiche condotte per il manufatto in esame.

7.3.1 Sollecitazioni agenti

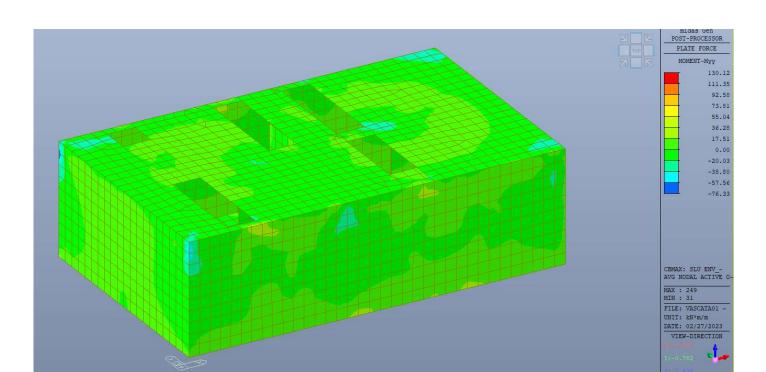
Si riportano i diagrammi delle sollecitazioni ottenuti per le combinazioni ed i relativi inviluppi.

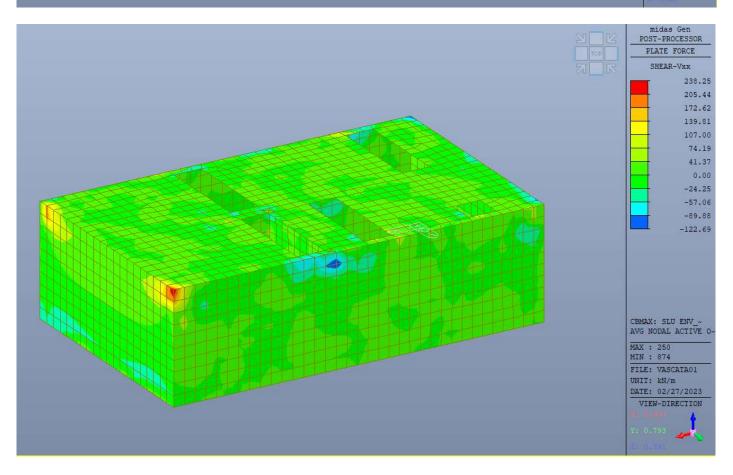
A favore di sicurezza si eseguono le verifiche con sollecitazioni di inviluppo. Si riportano pertanto i diagrammi delle stesse.

Inviluppo SLU

P01-TA04-STR-RE 01

PROGETTAZIONE


MANDANTI



REV.

FOGLIO 49 di 80

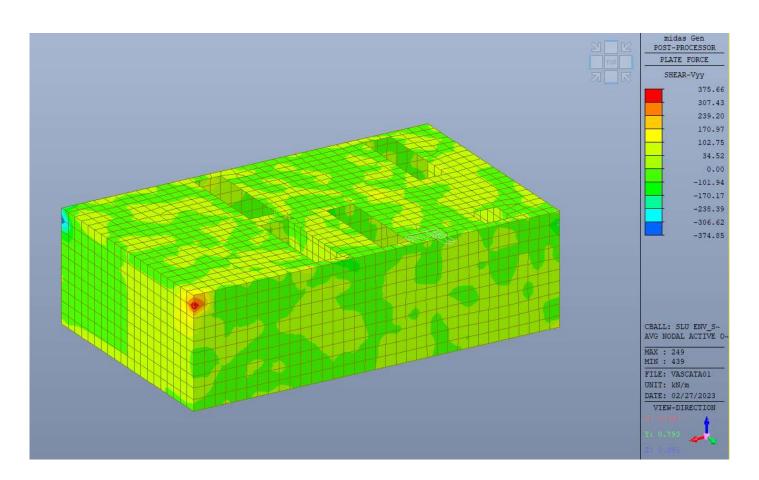
Data
Ott' 23

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE


MANDANTI

MANDANTI

MANDANTI

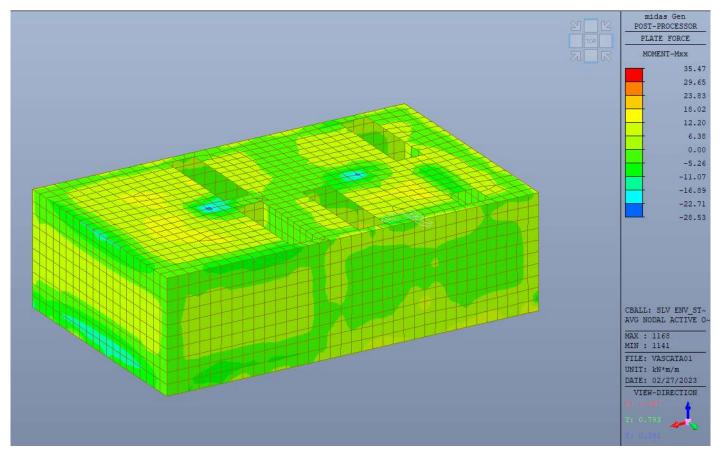
Data

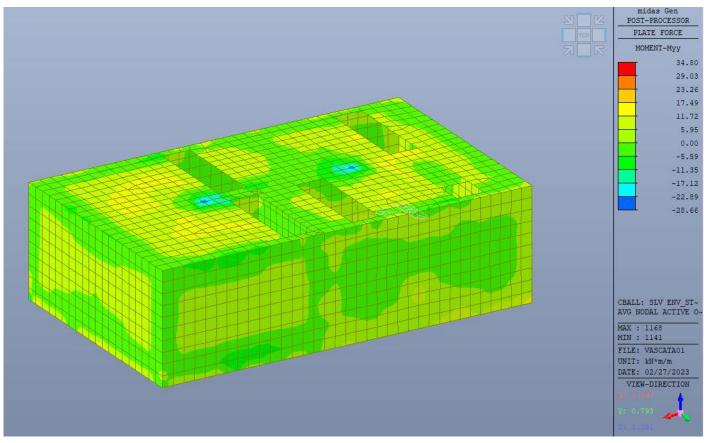
Ott' 23

Inviluppo SLV

P01-TA04-STR-RE 01

PROGETTAZIONE


MANDANTI



REV.

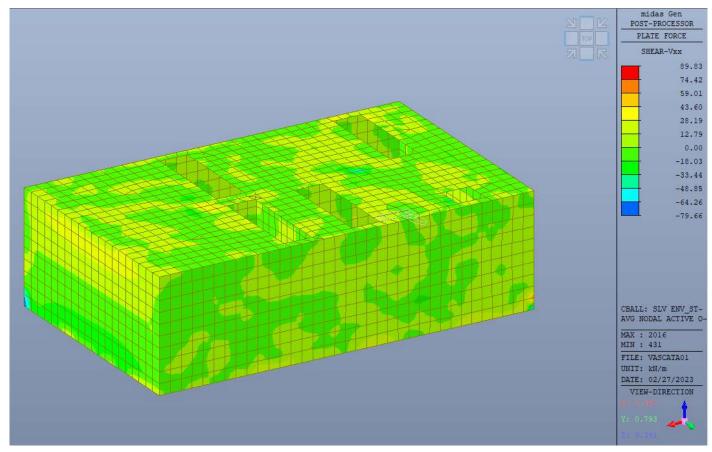
FOGLIO 51 di 80

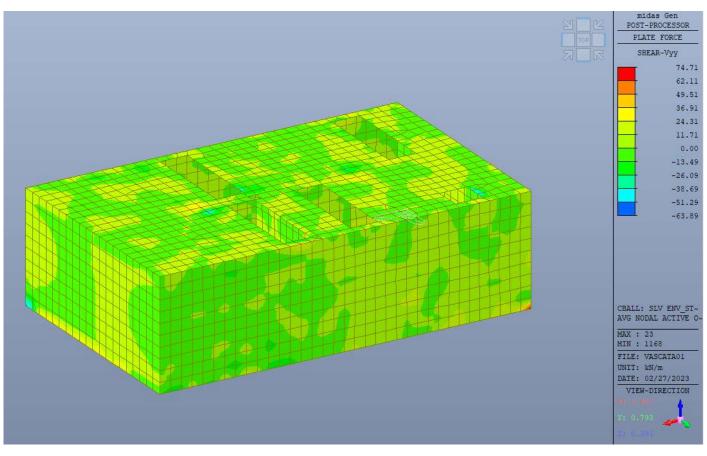
Data
Ott' 23

P01-TA04-STR-RE 01

PROGETTAZIONE

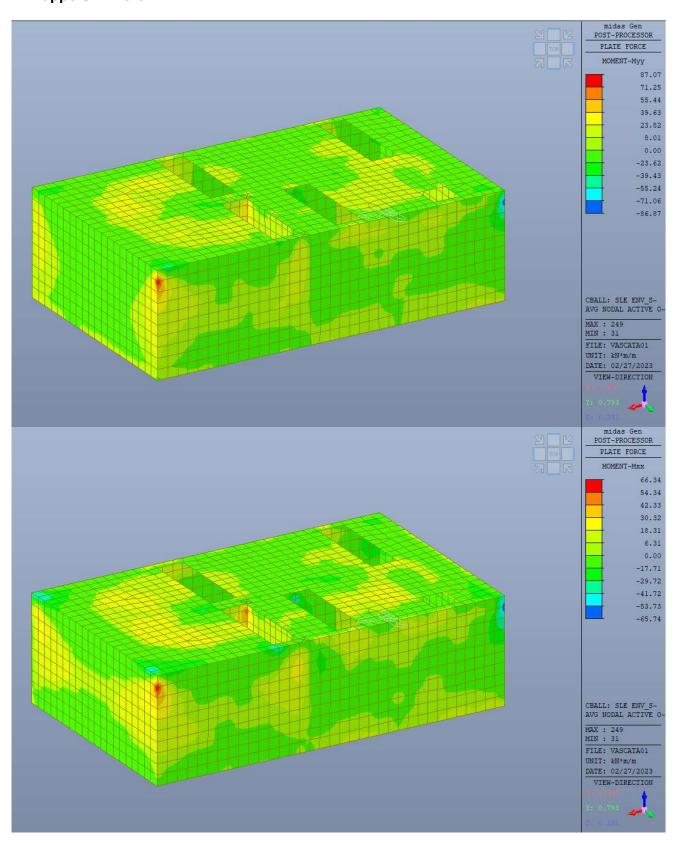
MANDANTI




REV.

FOGLIO 52 di 80

Data


P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

Progetta

Inviluppo SLE Rara

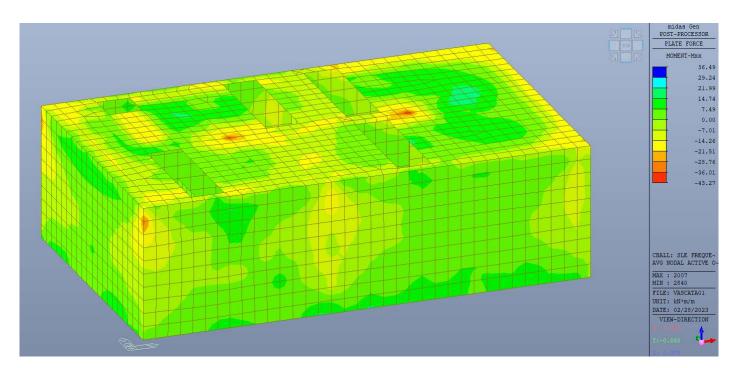
P01-TA04-STR-RE 01

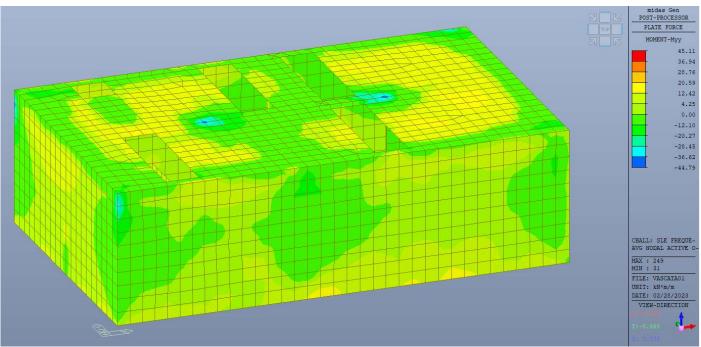
PROGETTAZIONE

MANDATARIA

PROGETTAZIONE


MANDANTI

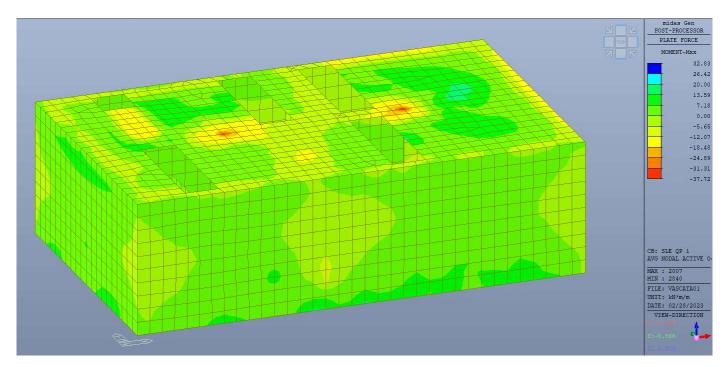

Progetto
Progettoria repritorio a.r.i.

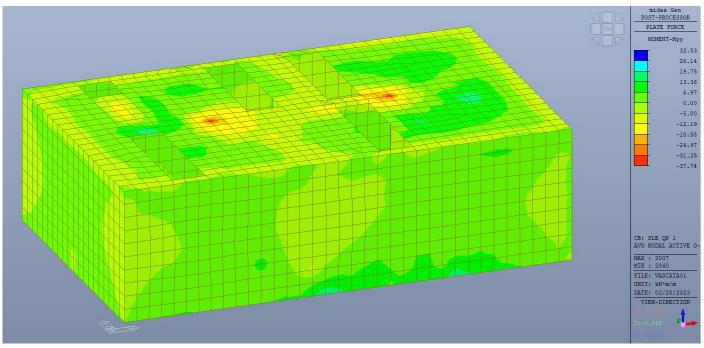

Progettoria repritorio a.r.i.

Progettoria progettoria repritorio a.r.i.

Progettoria valuativa della progettoria prog

Inviluppo SLE Quasi Permanente


P01-TA04-STR-RE 01


PROGETTAZIONE MANDATARIA MANDANTI PRO ITER
Progetto
Infrastrutture
Territorio s.r.l.

REV. FOGLIO Α 55 di 80 Data

Otť 23

P01-TA04-STR-RE 01

JANDANTI

REV. FOGLIO

A 56 di 80

Data

Ott' 23

7.3.2 Verifiche piedritti verticali

Si prevedono barre Φ 20/20 cm superiori ed inferiori per i piedritti verticali. Si riporta la verifica della sola soletta da 30 cm, in quanto è il caso più gravoso. Le verifiche sono pertanto soddisfatte:

DATI GENERALI SEZIONE DI TRAVE SENZA STAFFE IN C.A.

NOME SEZIONE: Verifica soletta 30 cm

(Percorso File: L:\da 20001\20073 Rufina Lotti2A-2B\20073 Mat di Lav\20073 Bozze JB\Calcolo\Vasche di trattamento\TA.01\Verifica soletta 30 cm.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resistenza compress. di progetto fcd:	17.00	MPa
	Deform. unitaria max resistenza ec2:	0.0020	
	Deformazione unitaria ultima ecu:	0.0035	
	Diagramma tensioni-deformaz.: Para	bola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
	Coeff.Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	18.0	MPa
	Sc limite S.L.E. comb. Frequenti:	18.0	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	13.5	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. a snervamento fyk:	450.0	MPa
	Resist. caratt. a rottura ftk:	450.0	MPa
	Resist. a snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef:	200000.0	MPa
	Diagramma tensioni-deformaz.:	Bilineare finito	
	Coeff. Aderenza istant. \(\beta 1 \times \beta 2 : \)	1.00	
	Coeff. Aderenza differito \$1*\$2:	0.50	
	Comb.Rare - Sf Limite:	360.0	MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base:	100.0	cm
Altezza:	30.0	cm
Barre inferiori:	5Ø20	(15.7 cm^2)
Barre superiori:	5Ø20	(15.7 cm^2)
Coprif.Inf.(dal baric. barre):	4.5	cm
Coprif.Sup.(dal baric. barre):	4.5	cm
Coprif.Lat. (dal baric.barre):	1.0	cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)
Mx	Momento flettente [kNm] intorno all'asse x baric. della sezione
	con verso positivo se tale da comprimere il lembo sup. della sezione
VY	Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT	Momento torcente [kN m]				
N°Comb.	N	Mx	Vy	MT	
1	0.00	99.41	0.00	0.00	
2	0.00	-98.62	0.00	0.00	
3	0.00	130.12	0.00	0.00	
4	0.00	-76.33	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	87.00
2	0.00	-86.00
3	0.00	66.00
4	0.00	-65.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	36.00 (53.54)
2	0.00	-44.00 (-53.54)
3	0.00	45.00 (53.54)
4	0.00	-44 00 (-53 54)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 32.00 (53.54)
2 0.00 -37.00 (-53.54)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 0.0 cm Interferro netto minimo barre longitudinali: 19.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx) Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]
As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Comb Ver N Mx N re Mx re Mis.Sic. Yn x/d C.Rid. As Tesa

Ott' 23

1	S	0.00	99.41	1.387	22.1	0.31	0.83	15.7 (4.3)
2	S	0.00	-98.62	1.398	7.9	0.31	0.83	15.7 (4.3)
3	S	0.00	130.12	1.060	22.1	0.31	0.83	15.7 (4.3)
4	S	0.00	-76 33	1 806	7 9	0.31	0.83	15 7 (4 3)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. n	Deform. unit. massima del calcestruzzo a compressione					
Yc max	Ordinata in cm	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)					
es min	Deform. unit. m	Deform. unit. minima nell'acciaio (negativa se di trazione)					
Ys min	Ordinata in cm	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)					
es max	Deform. unit. n	nassima nell'accia	aio (positiva s	e di compress	sione)		
Ys max	Ordinata in cm	della barra corris	sp. a es max (s	sistema rif. X,	Y,O sez.)		
Comb	ec max	Yc max	es min	Ys min	es max		

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00087	30.0	0.00037	25.5	-0.00196	4.5
2	0.00087	0.0	0.00037	4.5	-0.00196	25.5
3	0.00087	30.0	0.00037	25.5	-0.00196	4.5
4	0.00087	0.0	0.00037	4.5	-0.00196	25.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Ss min	Minima tensione di trazione (-) nell'acciaio [MPa]
Ys min	Ordinata in cm della barra corrisp. a Ss min (sistema rif. X,Y,O)
Dw Eff.	Spessore di calcestruzzo [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza in cm tra le barre tese efficaci.
	(D harry = 0 indice experience guarantees a $5(a\pm O/2)$ and calcula difference in use la $(CA+1+1)N^2$

(D barre = 0 indica spaziatura superiore a $5(c+\varnothing/2)$ e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Com	b Ver	Sc max	Yc max	Sc min	Yc min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	7.63	30.0	0.00	21.9	-246.9	25.5	7.3	731	15.7	0.0
2	S	7.54	0.0	0.00	8.1	-244.0	4.5	7.3	731	15.7	0.0
3	S	5.79	30.0	0.00	21.9	-187.3	25.5	7.3	731	15.7	0.0
4	S	5.70	0.0	0.00	8.1	-184.4	4.5	7.3	731	15.7	0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Vor

Egita varifiaa

Ver	Esito verifi	Esito verifica								
e1	Minima de	Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata								
e2	Massima d	Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata								
K2	= 0.5 per fl	= 0.5 per flessione; $=(e1 + e2)/(2*e2)$ in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC								
Kt	fattore di d	fattore di durata del carico di cui alla (7.9) dell'EC2								
e sm	Deformazio	Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es								
srm	Distanza m	Distanza massima in mm tra le fessure								
wk	Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.							e.		
M fess.		di prima fessurazio		,	•					
N°Comb Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.		
1 S -0.	.00155 0.0	00057	0.50	0.60	0.000777 (0.000741)	285 0.221 (9	990.00)	53.54		
2 S -0.	.00154 0.0	00057	0.50	0.60	0.000762 (0.000732)	285 0.217 (9	990.00)	-53.54		
3 S -0.	00118 0.0	00043	0.50	0.60	0.000562 (0.000562)	285 0.160 (9	990.00)	53.54		
-		00043	0.50	0.60	0.000553 (0.000553)	285 0.158 (9	,	-53.54		

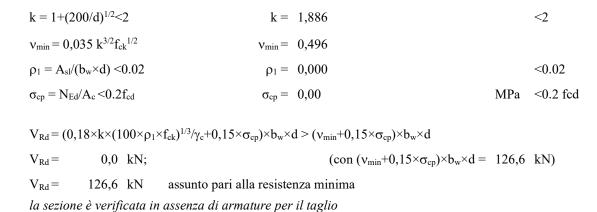
COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Coml	b Ver	Sc max	Yc max	Sc min	Yc min	Ss min	Ys min	Dw Eff.	Ac Eff	. As Eff.	D barre
1	S	3.16	30.0	0.00	21.9	-102.1	25.5	7.3	73	1 15.7	0.0
2	S	3.86	0.0	0.00	8.1	-124.8	4.5	7.3	73	15.7	0.0
2 3	S	3.95	30.0	0.00	21.9	-127.7	25.5	7.3	73	15.7	0.0
4	S	3.86	0.0	0.00	8.1	-124.8	4.5	7.3	73	1 15.7	0.0
COMB	COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)										
N°Coml	b Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1	S	-0.00064	0.00024		0.50	0.60	0.000306 (0.000306)	285 0	.087 (0.40)	53.54
2	S	-0.00079	0.00029		0.50	0.60	0.000375 (0.000375)	285 0	.107 (0.40)	-53.54
2 3	S	-0.00080	0.00030		0.50	0.60	0.000383 (0.000383)	285 0	.109 (0.40)	53.54
4	S	-0.00079	0.00029		0.50	0.60	0.000375		285 0	.107 (0.40)	-53.54
COMB	INAZ	IONI QU	ASI PERMA	ANENTI IN	ESERCIZ	ZIO - VEI	RIFICA MA	ASSIME TE	ENSIONI N	NORMALI	
N°Coml	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff	. As Eff.	D barre
1	S	2.81	30.0	0.00	21.9	-90.8	25.5	7.3	73	1 15.7	0.0
2	S	3.24	0.0	0.00	8.1	-105.0	4.5	7.3	73	1 15.7	0.0
COMB	SINAZ	IONI QU	ASI PERMA	ANENTI IN	ESERCIZ	ZIO - VEI	RIFICA AP	ERTURA I	FESSURE	(NTC/EC2)
N°Coml	b Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1 2		-0.00057 -0.00066	0.00021 0.00024		0.50 0.50	0.40 0.40	0.000272 (0.000315 (.078 (0.30) .090 (0.30)	53.54 -53.54
7	S	-0.00000	0.00024		0.50	0.40	0.000313 (0.000313)	200 0	.050 (0.30)	-55.54

A taglio i piedritti sono verificati senza specifica armatura a taglio; nelle zone in cui il valore di taglio agente supera il taglio resistente (fascia superiore dei piedritti), si prevede la disposizione di ganci aggiuntivi Φ10 su maglia 20x20 cm.

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2018 § 4.1.2.1.3

• Caratteristiche della sezione


$b_{\rm w} = 1000$	mm	larghezza		$f_{yk} =$	450	MPa	resist. cara	tteristica
h = 300	mm	altezza		$\gamma_s = $	1,15		coeff. sicu	rezza
c = 45	mm	copriferro		$f_{yd} =$	391,3	MPa	resist. di ca	alcolo
$f_{ck} = 30$	MPa	resist. caratteristica	Armatura longitudinale tesa:					
$\gamma_c = 1,50$		coeff. sicurezza		$\mathbf{A}_{\mathrm{sl},1} =$	0	0 =	0 = 0.0	$0 cm^2$
$\alpha_{cc} = 0.85$		coeff. riduttivo		$A_{\rm sl,2} =$	0	Ø	0 = 0.0	$0 cm^2$
d = 255	mm	altezza utile		$\mathbf{A}_{\mathrm{sl},3} =$	0	Ø	0 = 0.0	$0 cm^2$
$f_{cd} = 17,00$) MPa	resist. di calcolo					0,0	$0 cm^2$
$f_{ctd} = 1,35$	MPa	resist. di calcolo						

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

 $N_{ed} = 0.0 \text{ kN}$ $V_{ed} = 0.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

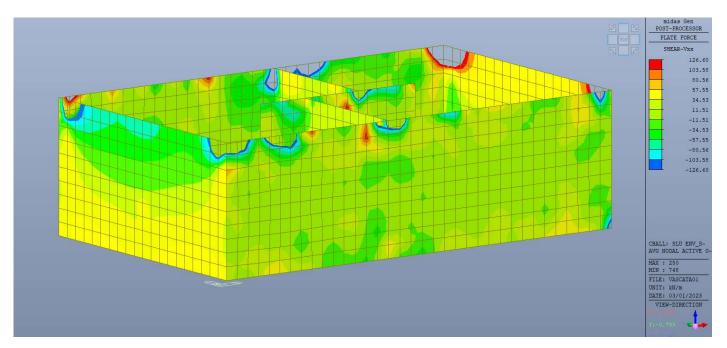


Figura 1: Taglio Vxx: zone in cui è necessaria armatura integrativa

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

MANDANTI

MANDANTI

MANDANTI

Data

Ott' 23

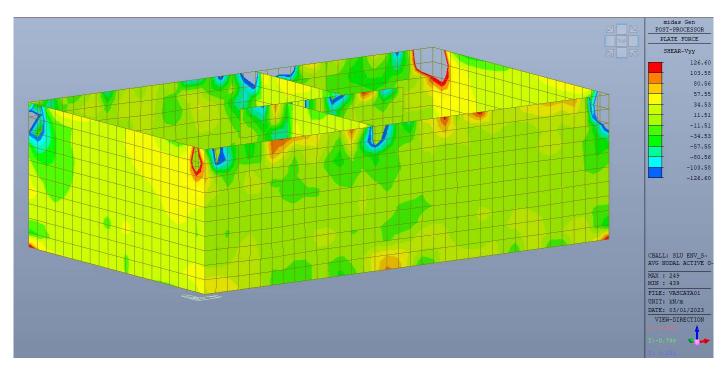


Figura 2: Taglio Vyy: zone in cui è necessaria armatura integrativa

• Elementi con armature trasversali resistenti a taglio

 $\theta = 30,0$ ° inclinaz. bielle cls angolo ammissibile

 $(\theta = 17.5$ ° inclinaz. bielle cls per rottura bilanciata acciaio-cls: angolo non ammissibile)

 $\alpha = 90.0$ ° inclinaz. staffe

Armatura a taglio (staffatura):

 $A_{sw}/s = staffe Ø 10 mm con n^{\circ} bracci (trasv)$ 5 passo 20 cm = 0,196 cm²/cm

 $V_{Rsd} = 0.90 \times d \times (A_{sw}/s) \times f_{yd} \times (\cot g\alpha + \cot g\theta) \times sen\alpha \qquad \qquad V_{Rsd} = \qquad 305,4 \quad kN$

 $f_{cd} = 8,50$ MPa resist. di calcolo ridotta

 $\alpha_c = 1,000$ coeff. maggiorativo

 $V_{Rcd} = 0.90 \times d \times b_w \times \alpha_c \times f_{cd} \times (\cot g\alpha + \cot g\theta) / (1 + \cot g^2\alpha) \qquad \qquad V_{Rcd} = \qquad 844.7 \quad kN$

 $V_{Rd} = min(V_{Rcd}, V_{Rsd})$ $V_{Rd} = 305,4$ > 300,0 kN c.s.= 1,02

la sezione armata a taglio risulta verificata.

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

Progetto
Progetto
Territorio a.r.i.

MANDANTI

MANDANTI

A 62 di 80

Data
Ott' 23

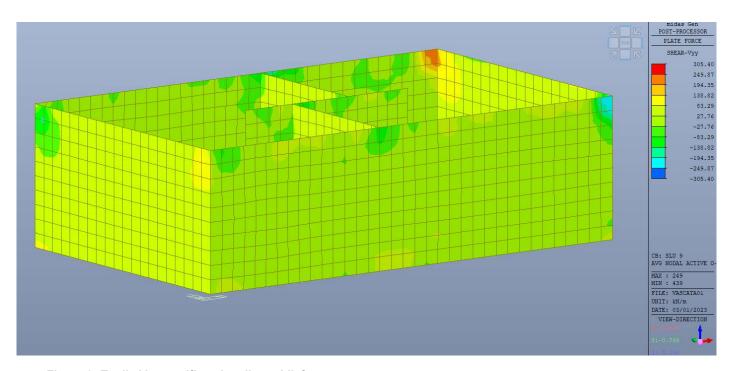


Figura 3: Taglio Vyy: verifica al taglio soddisfatta

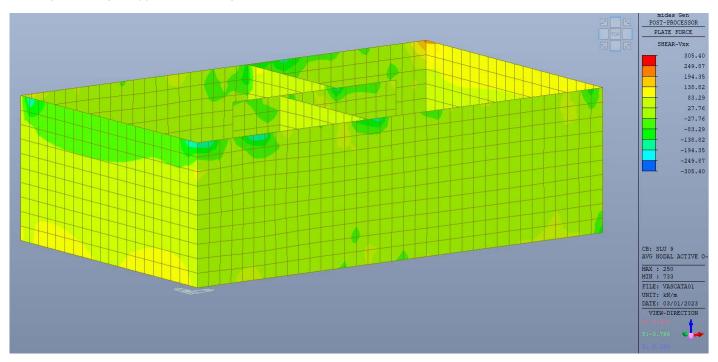


Figura 4: Taglio Vxx: verifica al taglio soddisfatta

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

A 63 di 80

Otť 23

7.3.3 <u>Verifica soletta superiore</u>

Si prevedono barre Φ 20/20 cm superiori ed inferiori per la soletta superiore. Le verifiche sono pertanto soddisfatte:

DATI GENERALI SEZIONE DI TRAVE SENZA STAFFE IN C.A.

NOME SEZIONE: Verifica soletta sup 30 cm

(Percorso File: L:\da 20001\20073 Rufina Lotti2A-2B\20073 Mat di Lav\20073 Bozze JB\Calcolo\Vasche di trattamento\TA.01\Verifica soletta sup 30 cm.sez)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35	
	Resistenza compress. di progetto fcd:	17.00	MPa
	Deform. unitaria max resistenza ec2:	0.0020	
	Deformazione unitaria ultima ecu:	0.0035	
	Diagramma tensioni-deformaz.: Para	bola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.90	MPa
	Coeff.Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	18.0	MPa
	Sc limite S.L.E. comb. Frequenti:	18.0	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.400	mm
	Sc limite S.L.E. comb. Q.Permanenti:	13.5	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. a snervamento fyk:	450.0	MPa
	Resist. caratt. a rottura ftk:	450.0	MPa
	Resist. a snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef:	200000.0	MPa
	Diagramma tensioni-deformaz.:	Bilineare finito	
	Coeff. Aderenza istant. \(\beta 1 \times \beta 2 : \)	1.00	
	Coeff. Aderenza differito \(\beta 1 \cdot \beta 2 :	0.50	
	Comb.Rare - Sf Limite:	360.0	MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0	cm
30.0	cm
5Ø20	(15.7 cm^2)
5Ø20	(15.7 cm^2)
4.5	cm
4.5	cm
1.0	cm
	30.0 5Ø20 5Ø20 4.5 4.5

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)
Mx	Momento flettente [kNm] intorno all'asse x baric. della sezione
	con verso positivo se tale da comprimere il lembo sup. della sezione
VY	Taglio [kN] in direzione parallela all'asse Y del riferim. generale
) (T	M. FINE T

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	0.00	30.88	0.00	0.00
2	0.00	-94.47	0.00	0.00
3	0.00	40.86	0.00	0.00
4	0.00	-93.45	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sfor	ZO	no	rma	ıle	[kN]	applicato	nel l	oaric	entro	(positivo	se di compress.)	

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	22.38
2	0.00	-67.21
3	0.00	29.06
4	0.00	-67.43

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	19.73 (53.54)
2	0.00	-54.15 (-53.54)
3	0.00	26.42 (53.54)
4	0.00	-54.24 (-53.54)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	16.96 (53.54)
2	0.00	-47.22 (-53.54)
3	0.00	22.63 (53.54)
4	0.00	-47.30 (-53.54)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 0.0 cm Interferro netto minimo barre longitudinali: 19.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)
Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long, trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

Ott' 23

N°Com	nb Ver	N	Mx	N re	Mx re Mis.Sic.	Yn	x/d	C.Rid.	As Tesa
1	S	0.00	30.88		4.465	22.1	0.31	0.83	15.7 (4.3)
2	S	0.00	-94.47		1.459	7.9	0.31	0.83	15.7 (4.3)
3	S	0.00	40.86		3.374	22.1	0.31	0.83	15.7 (4.3)
4	S	0.00	-93.45		1.475	7.9	0.31	0.83	15.7 (4.3)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del calcestruzzo a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00087	30.0	0.00037	25.5	-0.00196	4.5
2	0.00087	0.0	0.00037	4.5	-0.00196	25.5
3	0.00087	30.0	0.00037	25.5	-0.00196	4.5
4	0.00087	0.0	0.00037	4.5	-0.00196	25.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Ss min	Minima tensione di trazione (-) nell'acciaio [MPa]
Ys min	Ordinata in cm della barra corrisp. a Ss min (sistema rif. X,Y,O)
Dw Eff.	Spessore di calcestruzzo [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre	Distanza in cm tra le barre tese efficaci.
	(D barre = 0 indica spaziatura superiore a $5(c+\emptyset/2)$ e nel calcolo di fess. si usa la $(C4.1.11)$ NTC/ (7.14) EC2)

N°Com	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.96	30.0	0.00	21.9	-63.5	25.5	7.3	731	15.7	0.0
2	S	5.89	0.0	0.00	8.1	-190.7	4.5	73	731	15.7	0.0

1	S	1.96	30.0	0.00	21.9	-63.5	25.5	7.3	731	15.7	0.0
2	S	5.89	0.0	0.00	8.1	-190.7	4.5	7.3	731	15.7	0.0
3	S	2.55	30.0	0.00	21.9	-82.5	25.5	7.3	731	15.7	0.0
4	S	5.91	0.0	0.00	8.1	-191.3	4.5	7.3	731	15.7	0.0
4	S	5.91	0.0	0.00	8.1	-191.3	4.5	7.3	731	15.7	0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

3

S -0.00052

S -0.00120

0.00019

0.00044

Ver		Esito	verifica							
e1		Mini	ma deformazione unita	ria (trazione: segn	o -) nel cal	lcestruzzo in sez. fessurata				
e2		Mass	sima deformazione unit	aria (compress.: se	egno +) ne	l calcestruzzo in sez. fessurata				
K2		= 0.5	= 0.5 per flessione; $=(e1 + e2)/(2*e2)$ in trazione eccentrica per la $(7.13)EC2$ e la $(C4.1.11)$ NTC							
Kt		fatto	fattore di durata del carico di cui alla (7.9) dell'EC2							
e sm		Defo	Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es							
srm		Dista	Distanza massima in mm tra le fessure							
wk		Aper	tura delle fessure in mi	m fornito dalla (7.8	B)EC2 e da	ılla (C4.1.7)NTC. Tra parentes	si è indicato il	valore limite	.	
M fes	s.	Mon	nento di prima fessuraz	ione [kNm]		•				
N°Comb	Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.	
1	S	-0.00040	0.00015	0.50	0.60	0.000191 (0.000191)	285 0.054	(990.00)	53.54	
2	S	-0.00120	0.00044	0.50	0.60	0.000572 (0.000572)	285 0.163	(990.00)	-53.54	

0.60

0.60

0.50

0.50

0.000247 (0.000247)

0.000574 (0.000574)

285 0.070 (990.00)

285 0.164 (990.00)

53.54

-53.54

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Com	b Ver	Sc max	Yc max	Sc min	Yc min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.73	30.0	0.00	21.9	-56.0	25.5	7.3	731	15.7	0.0
2	S	4.75	0.0	0.00	8.1	-153.6	4.5	7.3	731	15.7	0.0
3	S	2.32	30.0	0.00	21.9	-75.0	25.5	7.3	731	15.7	0.0
4	S	4.76	0.0	0.00	8.1	-153.9	4.5	7.3	731	15.7	0.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

N°Com	b Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00035	0.00013	0.50	0.60	0.000168 (0.000168)	285	0.048 (0.40)	53.54
2	S	-0.00097	0.00036	0.50	0.60	0.000461 (0.000461)	285	0.131 (0.40)	-53.54
3	S	-0.00047	0.00017	0.50	0.60	0.000225 (0.000225)	285	0.064 (0.40)	53.54
4	S	-0.00097	0.00036	0.50	0.60	0.000462 (0.000462)	285	0.132 (0.40)	-53.54

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.50	30.0	0.00	21.9	-48.1	25.5	7.3	731	15.7	0.0
2	S	4.14	0.0	0.00	8.1	-134.0	4.5	7.3	731	15.7	0.0
3	S	1.98	30.0	0.00	21.9	-64.2	25.5	7.3	731	15.7	0.0
4	S	4.15	0.0	0.00	8.1	-134.2	4.5	7.3	731	15.7	0.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

N°Comb	o Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00030	0.00011	0.50	0.40	0.000144 (0.000144)	285	0.041 (0.30)	53.54
2	S	-0.00084	0.00031	0.50	0.40	0.000402 (0.000402)	285	0.115 (0.30)	-53.54
3	S	-0.00040	0.00015	0.50	0.40	0.000193 (0.000193)	285	0.055 (0.30)	53.54
4	S	-0.00084	0.00031	0.50	0.40	0.000403 (0.000403)	285	0.115 (0.30)	-53.54

A taglio la soletta superiore è verificata senza specifica armatura a taglio, a meno di punti locali trascurabili ai fini delle verifiche

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2018 § 4.1.2.1.3

• Caratteristiche della sezione

b _w =	= 1000	mm	larghezza		$f_{yk} =$	450	MPa	resist.	caratteristica	
h =	= 300	mm	altezza		$\gamma_s = $	1,15		coeff.	sicurezza	
c =	= 45	mm	copriferro		$f_{yd} =$	391,3	MPa	resist.	di calcolo	
f_{ck} =	= 30	MPa	resist. caratteristica	Armatura longitudinale tesa:						
γ _c =	= 1,50		coeff. sicurezza		$A_{sl,1} =$	0	0 =	0 =	0,00	cm^2
α _{cc} =	= 0,85		coeff. riduttivo		$A_{sl,2} =$	0	Ø	0 =	0,00	cm^2
d=	= 255	mm	altezza utile		$A_{sl,3} =$	0	Ø	0 =	0,00	cm^2
f_{cd} =	= 17,00	MPa	resist. di calcolo						0,00	cm^2
f _{ctd} =	= 1,35	MPa	resist. di calcolo							

• Sollecitazioni (compressione<0, trazione>0, taglio in valore assoluto)

<2

$$v_{min} = 0.035 \text{ k}^{3/2} f_{ck}^{1/2}$$
 $v_{min} = 0.496$

$$\rho_1 = A_{sl}/(b_w \times d) < 0.02 \qquad \qquad \rho_1 = \ 0,000 \qquad \qquad < 0.02$$

$$\sigma_{cp} = N_{Ed}/A_c < 0.2 f_{cd} \qquad \qquad \sigma_{cp} = ~0.00 \qquad \qquad MPa ~~ < 0.2 ~fcd \label{eq:sigmaconstraint}$$

$$V_{Rd}\!=\!(0.18\times\! k\times\! (100\times\! \rho_1\times\! f_{ck})^{1/3}\!/\gamma_c\!+\!0.15\times\! \sigma_{cp})\times\! b_w\times\! d>(\nu_{min}\!+\!0.15\times\! \sigma_{cp})\times\! b_w\times\! d$$

$$V_{Rd} = 0,0 \text{ kN};$$
 $(con (v_{min} + 0.15 \times \sigma_{cp}) \times b_w \times d = 126.6 \text{ kN})$

 V_{Rd} = 126,6 kN assunto pari alla resistenza minima la sezione è verificata in assenza di armature per il taglio

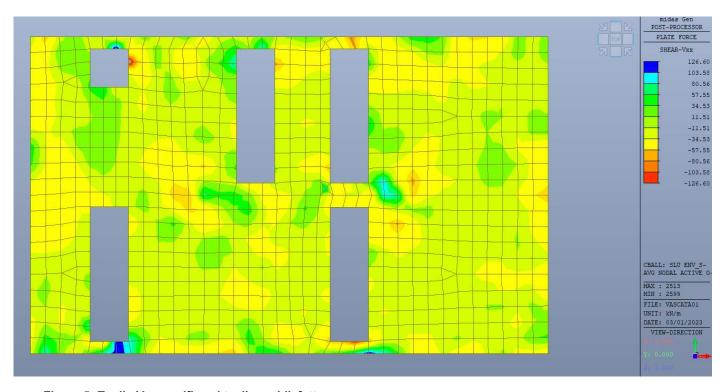


Figura 5: Taglio Vxx: verifica al taglio soddisfatta

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
Progetto
Frogetto
Fr

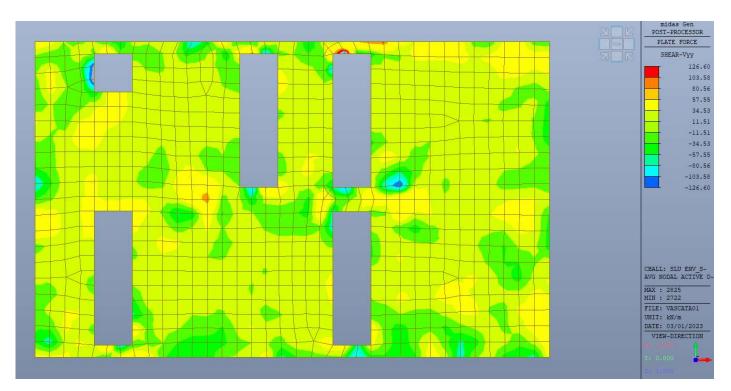


Figura 6: Taglio Vyy: verifica al taglio soddisfatta

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDANTI

REV. FOGLIO 69 di 80

Data
Ott' 23

7.3.4 Verifica soletta inferiore

Si prevedono barre Φ 20/20 cm superiori ed inferiori per la soletta superiore. Le verifiche sono pertanto soddisfatte:

DATI GENERALI SEZIONE DI TRAVE SENZA STAFFE IN C.A.

NOME SEZIONE: Verifica soletta inf 40 cm

 $(Percorso\ File:\ L:\ da\ 20001\ 20073\ Rufina\ Lotti 2A-2B\ 20073\ Mat\ di\ Lav\ 20073\ Bozze\ JB\ Calcolo\ Vasche\ di\ trattamento\ TA.01\ Verifica\ soletta\ inf\ 40\ cm.sez)$

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35
----------------	---------	--------

Resistenza compress. di progetto fcd: 17.00 MPa 0.0020 Deform. unitaria max resistenza ec2: Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32836.0 MPa Resis. media a trazione fctm: 2.90 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 18.0 MPa Sc limite S.L.E. comb. Frequenti: 18.0 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. O.Permanenti: 13.5 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

450.0 MPa Resist. caratt. a snervamento fyk: Resist. caratt. a rottura ftk: 450.0 MPa Resist. a snerv. di progetto fyd: 391.3 MPa Resist. ultima di progetto ftd: 391.3 MPa Deform. ultima di progetto Epu: 0.068 200000.0 Modulo Elastico Ef: MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. B1*B2: 1.00 Coeff. Aderenza differito \$1*\$2: 0.50 Comb.Rare - Sf Limite: 360.0 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 40.0 cm Barre inferiori: 5Ø20 (15.7 cm^2) 5Ø20 (15.7 cm^2) Barre superiori: Coprif.Inf.(dal baric. barre): 4.5 cm Coprif.Sup.(dal baric. barre): 4.5 cm Coprif.Lat. (dal baric.barre): 1.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)
Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MANDANTI

REV. FOGLIO Α 70 di 80

Data Ott' 23

MT		Momento torcente [[kN m]	
N°Comb.	N	Mx	Vy	MT
1	0.00	46.79	0.00	0.00
2	0.00	-58.84	0.00	0.00
3	0.00	41.23	0.00	0.00
4	0.00	-58.85	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	36.37
2	0.00	-42.31
3	0.00	28.80
4	0.00	-42.13

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	49.29 (93.75)
2	0.00	-32.03 (-93.75)
3	0.00	45.16 (93.75)
4	0.00	-32.58 (-93.75)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Mx

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	0.00	44.48 (93.75)
2	0.00	-29.15 (-93.75)
3	0.00	40.64 (93.75)
4	0.00	-29.57 (-93.75)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 0.0 cm 22.5 Interferro netto minimo barre longitudinali: cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

S = combinazione verificata / N = combin. non verificataVer

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa) As Tesa

P01-TA04-STR-RE 01

N°Com	ıb Ver	N	Mx	N re	Mx re Mis.Sic.	Yn	x/d	C.Rid.	As Tesa
1	S	0.00	46.79		4.205	30.6	0.27	0.77	15.7 (5.9)
2	S	0.00	-58.84		3.344	9.4	0.27	0.77	15.7 (5.9)
3	S	0.00	41.23		4.772	30.6	0.27	0.77	15.7 (5.9)
4	S	0.00	-58.85		3.343	9.4	0.27	0.77	15.7 (5.9)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del calcestruzzo a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00071	40.0	0.00037	35.5	-0.00196	4.5
2	0.00071	0.0	0.00037	4.5	-0.00196	35.5
3	0.00071	40.0	0.00037	35.5	-0.00196	4.5
4	0.00071	0.0	0.00037	4.5	-0.00196	35.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata	
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]	
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)	
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([MPa]	
Ye min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)	
Ss min	Minima tensione di trazione (-) nell'acciaio [MPa]	
Ys min	Ordinata in cm della barra corrisp. a Ss min (sistema rif. X,Y,O)	
Dw Eff.	Spessore di calcestruzzo [cm] in zona tesa considerata aderente alle barre	
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)	
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)	
D barre	Distanza in cm tra le barre tese efficaci.	

 $(D \ barre=0 \ indica \ spaziatura \ superiore \ a \ 5(c+\varnothing/2) \ e \ nel \ calcolo \ di \ fess. \ si \ usa \ la \ (C4.1.11)NTC/(7.14)EC2)$

N°Com	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.84	40.0	0.00	30.2	-72.4	35.5	10.1	1007	15.7	0.0
2	S	2.14	0.0	0.00	9.8	-84.2	4.5	10.1	1007	15.7	0.0
3	S	1.46	40.0	0.00	30.2	-57.3	35.5	10.1	1007	15.7	0.0
4	S	2.13	0.0	0.00	9.8	-83.9	4.5	10.1	1007	15.7	0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

S -0.00049

0.00016

Ver		Esito	verifica							
el		Minir	Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata							
e2		Massi	Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata							
K2		= 0.5	= 0.5 per flessione; $=(e1 + e2)/(2*e2)$ in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC							
Kt		fattore	e di durata del carico o	li cui alla (7.9) del	l'EC2					
e sm	l	Defor	Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es							
srm	srm Distanza massima in mm tra le fessure									
wk	wk Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.							.		
M fe	ess.		ento di prima fessuraz			•				
N°Comb	b Vei	r e1	e2	K2	Kt	e sm	srm	wk	M Fess.	
1	S	-0.00043	0.00014	0.50	0.60	0.000217 (0.000217)	393 0.083	5 (990.00)	93.75	
2	S	-0.00049	0.49 0.00016 0.50 0.60 0.000253 (0.000253) 393 0.099 (990.00) -93.75							
3	S	-0.00034	0.00011	0.50	0.60	0.000172 (0.000172)	393 0.068	8 (990.00)	93.75	

0.50 0.60

0.000252 (0.000252)

393 0.099 (990.00)

-93.75

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Com	ıb Ver	Sc max	Yc max	Sc min	Yc min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	2.50	40.0	0.00	30.2	-98.1	35.5	10.1	1007	15.7	0.0
2	S	1.62	0.0	0.00	9.8	-63.8	4.5	10.1	1007	15.7	0.0
3	S	2.29	40.0	0.00	30.2	-89.9	35.5	10.1	1007	15.7	0.0
4	S	1.65	0.0	0.00	9.8	-64.9	4.5	10.1	1007	15.7	0.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

N°Coml	o Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00058	0.00019	0.50	0.60	0.000294 (0.000294)	393	0.116 (0.40)	93.75
2	S	-0.00037	0.00012	0.50	0.60	0.000191 (0.000191)	393	0.075 (0.40)	-93.75
3	S	-0.00053	0.00017	0.50	0.60	0.000270 (0.000270)	393	0.106 (0.40)	93.75
4	S	-0.00038	0.00012	0.50	0.60	0.000195 (0.000195)	393	0.076 (0.40)	-93.75

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Com	b Ver	Sc max	Yc max	Sc min	Ye min	Ss min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	2.25	40.0	0.00	30.2	-88.6	35.5	10.1	1007	15.7	0.0
			0.0	0.00	9.8		4.5			15.7	
3	S	2.06	40.0	0.00	30.2	-80.9	35.5	10.1	1007	15.7	0.0
4	S	1.50	0.0	0.00	9.8	-58.9	4.5	10.1	1007	15.7	0.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00052	0.00017	0.50	0.40	0.000266 (0.000266)	393	0.104 (0.30)	93.75
2	S	-0.00034	0.00011	0.50	0.40	0.000174 (0.000174)	393	0.068 (0.30)	-93.75
3	S	-0.00048	0.00015	0.50	0.40	0.000243 (0.000243)	393	0.095 (0.30)	93.75
4	S	-0.00035	0.00011	0.50	0.40	0.000177 (0.000177)	393	0.069 (0.30)	-93.75

A taglio la soletta inferiore è verificata senza specifica armatura a taglio.

VERIFICA A TAGLIO DELLA SEZIONE IN C.A. SECONDO T.U. 14/01/2008 § 4.1.2.1.3

• Caratteristiche della sezione

$b_w =$	1000	mm	larghezza	f_y	_{'k} =	450	MPa	resist. cara coeff.	tteristica
h=	400	mm	altezza	n	$t_{\rm s} =$	1,15		sicurezza resist. di	
c =	45	mm	copriferro resist.	f_y	_{'d} =	391,3	MPa	calcolo	
$f_{ck} =$	30	MPa	caratteristica	Armatura longitudinale	tesa	:			
$\gamma_c =$	1,50		coeff. sicurezza	$A_{ m sl}$,1 =	0	Ø	0 = 0.00	cm^2
$\alpha_{cc} =$	0,85		coeff. riduttivo	$A_{ m sl}$,2 =	0	Ø	0 = 0.00	cm^2
d =	355	mm	altezza utile	$A_{ m sl}$,3 =	0	Ø	0 = 0.00	cm^2
$f_{cd} =$	17,00	MPa	resist. di calcolo					0,00	cm^2

CODIFICA DOCUMENTO	PROGETTAZIONE		REV.	FOGLIO
P01-TA04-STR-RE 01	MANDATARIA PRO	MANDANTI	Α	73 di 80
1 01-1704-011-NE 01	ITER Progetto	ν		Data
	Infrastrutture Territorio s.r.l.	SINERGO DVISIONARCHITE		Ott' 23

 $f_{ctd} = 1,35$ MPa resist. di calcolo

• **Sollecitazioni** (compressione<0, trazione>0, taglio in valore assoluto)

$$N_{ed} = 0.0 \text{ kN}$$
 $V_{ed} = 0.0 \text{ kN}$

• Elementi senza armature trasversali resistenti a taglio

= 157,6 kN assunto pari alla resistenza minima

la sezione è verificata in assenza di armature per il taglio

Figura 7: Taglio Vyy: verifica al taglio soddisfatta

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

MANDATARIA

PROGETTAZIONE

MANDANTI

MANDANTI

Data

Ott' 23

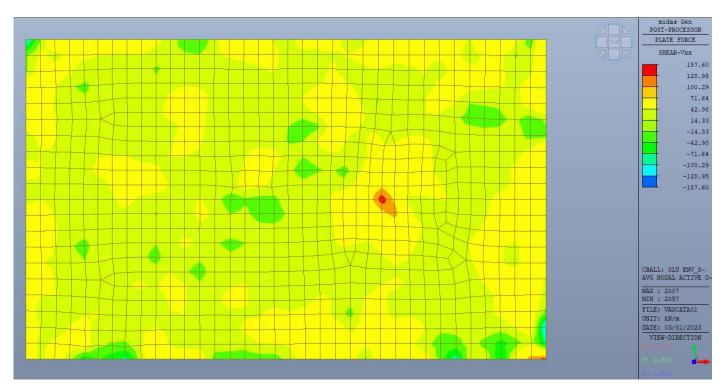


Figura 8: Taglio Vxx: verifica al taglio soddisfatta

P01-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA

MANDANTI

MANDANTI

MANDANTI

MANDANTI

A 75 di 80

Data

Ott' 23

7.4 VERIFICA CAPACITA' PORTANTE FONDAZIONE SUPERFICIALE

In accordo con le NTC2018 par. 6.4.2, di seguito sono riportate le verifiche geotecniche delle fondazioni, condotte applicando la combinazione di coefficienti parziali A1-M1-R3, sia in tensioni totali (condizioni non drenate) che in tensioni efficaci (condizioni drenate).

La stima del valore caratteristico della capacità portante delle fondazioni superficiali viene condotta in accordo all'equazione di Brinch Hansen:

 $q_{lim} = 0.5 \; \gamma_c \; B' \; N_{\gamma} \; s_{\gamma} \; i_{\gamma} \; b_{\gamma} \; g_{\gamma} \; + \; c' \; N_c \; s_c \; d_c \; i_c \; b_c \; g_c \; + \; q \; N_q \; s_q \, d_q \, i_q \; b_q \, g_q$

P01-TA04-STR-RE 01

Le espressioni che forniscono i valori dei fattori di capacità portante (N) e dei fattori correttivi (s, d, i, b, g) sono riportate nella tabella seguente.

.= σ 0	N _c	(N _q -1)cotanφ	Hansen
ori d acitè ante	Nγ	1,5*(N _q -1)tanφ	Hansen
Fattori di capacità portante	N _q	Hansen	
		Fattori di forma	
	S _c	1 per fondazioni nastriformi	Hansen
	Sγ	1 per fondazioni nastriformi	Hansen
	Sq	1 per fondazioni nastriformi	Hansen
		Fattori di approfondimento	
	d _c	1+0,4k	Hansen e Vesic
	dγ	1	Hansen e Vesic
	dq	1+2tanφ(1-sinφ)k	Hansen e Vesic
ttivi		Fattori di inclinazione carico	
orre	i _c	i _q -(1-i _q)/(N _q -1)	Hansen e Vesic
Fattori correttivi	iγ	(1-(0,7*H)/(N+B'*c*cotgφ))^5	Hansen
atto	iq	(1-(0,5*H)/(N+B'*c*cotgφ))^5	Hansen
ш.		Fattori di Inclinazione fondazione*	
	b _c	1-η/147°	Hansen
	bγ	e ^{(-2,7*} ηtanφ)	Hansen
	bq	e (-2*ηtanφ)	Hansen
		Fattori di Inclinazione piano campagna*	*
	g c	g_q -[(1- g_q)/(N_c * tan ϕ)]	Hansen
	gγ	(1- tanβ)²	Hansen
	g _q	gγ	Hansen

Si omettono le verifiche di stabilità globale in quanto le caratteristiche geometriche della fondazione e del sito consentono di escludere la possibilità che si inneschino fenomeni di instabilità e le considerazioni sulla subsidenza sono state già illustrate al punto precedente.

Di seguito si riportano in forma sintetica le verifiche di capacità portante delle fondazioni delle cabine in tensioni totali (condizioni non drenate) e tensioni efficaci (condizioni drenate).

Si può notare come le verifiche siano ampiamente soddisfatte con rapporti E_d/R_d sempre inferiori al 30%.

La pressione agente in fondazione si ricava direttamente dal modello di calcolo, in combinazione SLU; data la tipologia strutturale si assume che sul piano fondazionale agiscano solo sollecitazioni di compressione

PO1-TA04-STR-RE 01

PROGETTAZIONE

MANDATARIA
PROGETTAZIONE

MANDATARIA
PROGETTAZIONE

MANDATARIA
PROGETTAZIONE

MANDATARIA
PROGETTAZIONE

MANDATARIA
Progetto
Infridativiture

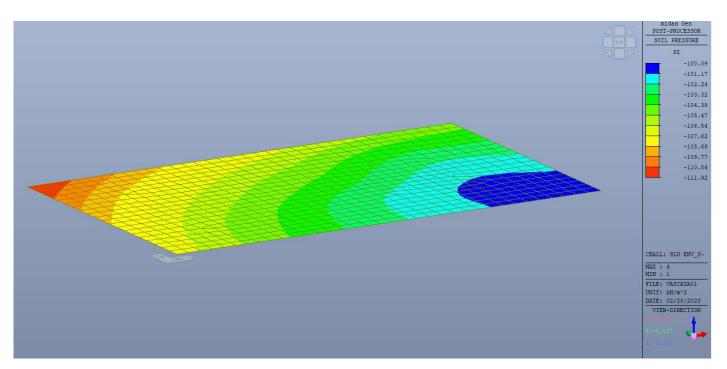


Figura 9: Sollecitazione massima in fondazione; Pmax = 112 kN/m^2

<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $\mathsf{qlim} = \mathsf{c''Nc''} \ \mathsf{sc''dc''ic''bc''gc} + \mathsf{q''Nq''sq''dq''iq''bq''gq} + 0,5^*\gamma^*\mathsf{B''N\gamma''s\gamma''d\gamma''i\gamma''b\gamma''g\gamma'}$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

(Per fondazione nastriforme L = 100 m)

B = 6,60 (m)

L = 10,80 (m)

D = 3,85 (m)

P01-TA04-STR-RE 01

PRO ITER MANDANTI

REV. FOGLIO 78 di 80

Data Ott' 23

$$\beta f = 0,00$$
 (°)

$$\beta p = 0.00$$
 (°)

AZIONI

	valori di input		Valori di
	permanenti	temporanee	calcolo
N [kN]	7983,36	0,00	7983,36
Mb [kNm]	0,00	0,00	0,00
MI [kNm]	0,00	0,00	0,00
Tb [kN]	0,00	0,00	0,00
TI [kN]	0,00	0,00	0,00
H [kN]	0,00	0,00	0,00

Peso unità di volume del terreno

$$\gamma_1 = 20,00$$
 (kN/mc)
 $\gamma = 20,00$ (kN/mc)

Valori caratteristici di resistenza del terreno

c' =
$$7,00$$
 (kN/mq)
 φ' = $28,00$ (°)

Profondità della falda

$$Zw = 3,00$$
 (m)

$$e_B = 0,00$$
 (m) $B^* = 6,60$ (m) $e_L = 0,00$ (m) $L^* = 10,80$ (m)

q : sovraccarico alla profondità D

$$q = 68,50$$
 (kN/mq)

$\boldsymbol{\gamma}$: peso di volume del terreno di fondazione

$$\gamma = 10,00$$
 (kN/mc)

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 33,30$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 48.03$$

$s_c,\, s_q,\, s_\gamma$: fattori di forma

1,62

1,38

$s_c = 1 + B*Nq / (L*Nc)$

$$s_c = 1,44$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1,43$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.76$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$i_q = (1 - H/(N + B*L* c' \cot q\phi'))^m$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 1,00$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot q_{\phi}))^{(m+1)}$$

$$i_{\gamma} = 1,00$$

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

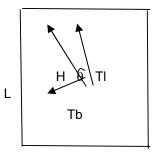
per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan ϕ ' (1 - sen ϕ ')²) * arctan (D / B*)

$$d_q = 1,15$$

$$d_c = d_q - (1 - d_q) / (N_c tan\phi')$$

$$d_c = 1,15$$

$$d_{\gamma} = 1$$


$$d_{\gamma} = 1,00$$

b_c, b_q, b_γ : fattori di inclinazione base della fondazione

$\theta = arctg(Tb/TI) = 90,00$ (°)

m = 1,62 (-)

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

В

P01-TA04-STR-RE 01

MANDANTI

REV. Α

FOGLIO 80 di 80

Data Ott' 23

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c = 1,00$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1,00$$

g_c, g_q, g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c tan \phi')$$

$$g_c = 1,00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1,00$$

Carico limite unitario

$$q_{lim} = 4938,03$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 112,00 (kN/m^2)$$

 (kN/m^2)

Coefficiente di sicurezza

$$Fs = q_{lim}/q =$$