

PROGETTO PER LA COSTRUZIONE E L'ESERCIZIO DI UN IMPIANTO EOLICO DELLA POTENZA DI 92,4 MW DENOMINATO "MONTESECCO" DA REALIZZARSI NEI COMUNI DI SERRACAPRIOLA E CHIEUTI (FG) CON LE RELATIVE OPERE DI CONNESSIONE ELETTRICHE

RELAZIONE SULLA SEGNALAZIONE CROMATICA E LUMINOSA

Rev. 01

Data: 22 dicembre 2023

QQR-WND-025.REL040

Committente:

Repsol Montepuccio 1 S.r.l. via Michele Mercati n. 39 00197 Roma (RM)

C. F. e P. IVA: **17293391003** PEC: repsolMontesecco1@pec.it

Progetto e sviluppo:

Queequeg Renewables, Itd

2nd Floor, the Works, 14 Turnham Green Terrace Mews, W41QU London (UK) Company number: 11780524 email: mail@quren.co.uk

SOMMARIO

1	Pre	emessa	3
2	Am	ıbito di applicazione	6
	2.1	Segnalazioni cromatiche	7
	2.2	Segnalazioni luminose	8

WIND-025.REL040

1 Premessa

Il settore energetico ha un ruolo cardinale nello sviluppo dell'economia, sia come fattore abilitante (fornire energia a costi competitivi, con limitato impatto ambientale e con elevata qualità del servizio è una condizione essenziale per lo sviluppo delle imprese e per le famiglie), sia come fattore di crescita di per sé (si pensi al grande potenziale economico della cosiddetta *Green economy*). Come riconosciuto nelle più recenti strategie energetiche europee e nazionali, assicurare un'energia più competitiva e sostenibile è uno degli obbiettivi di maggiore interesse per il futuro.

IEA (International Energy Agency) stima che per il 2023 un totale di oltre 1.7 miliardi di dollari verranno investiti in tecnologie a bassa emissione di CO2. Questo importo rappresenta oltre il 60% degli investimenti totali stimati in energia, con un aumento anno su anno di oltre il 55%.

La produzione energetica da fonte eolica ha vissuto negli ultimi anni un incremento massiccio nella efficienza, con conseguente abbassamento del costo dell'energia prodotto che si riversa su un prezzo all'utente finale (commerciale o privato) più competitivo. L'eolico 'onshore' rappresenta attualmente una delle fonti di produzione di energia più efficienti ed economiche disponibili.

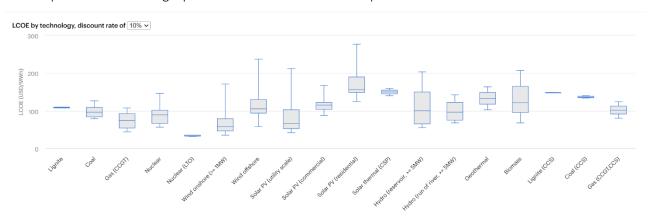


Figura 1.1 Costo del MWh per fonte di energia (fonte: IEA)

Ciò è il risultato dei progressivi miglioramenti nella tecnologia, scaturiti da importanti investimenti in ricerca applicata, e dalla diffusione globale degli impianti (economie di scala), alimentata dalle politiche di incentivazione adottate dai governi a livello mondiale. Lo scenario attuale, contraddistinto dalla riduzione degli incentivi, ha contribuito ad accelerare il progressivo annullamento del differenziale di costo tra la generazione elettrica convenzionale e la generazione FER.

In questo contesto, la misura dell'efficienza di prodotto di impianti come quello proposto ma più in generale delle stazioni di generazione elettrica, sono misurati da un parametro chiamati LCOE ("Levelized Cost of Energy" o "Costo Livellato dell'Elettricità") che indica in ultima sintesi il costo netto di produzione di una unità di energia generata durante il periodo di vita utile del produttore.

In questo contesto, la società Repsol Renovables S.A., controllata al 75% dal gruppo oli&gas Repsol SA, rappresenta uno dei principali player su scala mondiale nel settore delle FER, detenendo al momento circa 3,5

GW di asset rinnovabili in esercizio in tutto il mondo. La società è al momento attiva in Europa, Stati Uniti e in Cile e l'Italia, assieme alla Spagna, è al centro della sua strategia per il continente.

In tale direzione si inquadra il presente progetto di un impianto di produzione di energia elettrica da fonte eolica che Repsol Renovables SA, attraverso la controllata Repsol Montepuccio 1 S.r.l., ha in programma di realizzare nei comuni di Chieuti e Serracapriola, Regione Puglia.

In considerazione del rapido evolversi della tecnologia, che oggi mette a disposizione aerogeneratori di provata efficienza, con potenze di circa un ordine di grandezza superiori rispetto a quelle disponibili solo vent'anni or sono, il progetto proposto prevede l'installazione e la messa in esercizio di n. 14 turbine della potenza nominale di 6.6 MW ciascuna, posizionate su torri di sostegno metalliche dell'altezza indicativa di 134 m, nonché l'approntamento delle opere accessorie indispensabili per il funzionamento e la gestione degli aerogeneratori (viabilità, piazzole, distribuzione elettrica di impianto, cavidotto di connessione alla RTN e opere accessorie necessarie al funzionamento dell'impianto stesso). Gli aerogeneratori in progetto saranno dislocati tra quote altimetriche indicativamente comprese nell'intervallo tra i 133 e i 225 m s.l.m.

La potenza complessiva del parco eolico sarà di 92,4 MW, con una potenza elettrica in immissione di 93 MWac come stabilito dal preventivo di connessione rilasciato dal Gestore della Rete di Trasmissione Nazionale (Terna) con codice pratica 202303650 del 11/08/2023.

Le opere da realizzare riguardano i comuni di Chieuti, Serracapriola, San Paolo di Civitate, Torremaggiore, nonché i comuni di Rotello e San Martino in Pensilis in ove è previsto il potenziamento/rifacimento di direttrici RTN 150kV esistenti e la realizzazione di due nuovi elettrodotti RTN a 150kV.

Nello scenario progettuale prospettato, l'elettrodotto in antenna a 36 kV per il collegamento della centrale alla citata stazione RTN costituisce impianto di utenza per la connessione, mentre lo stallo arrivo produttore a 36 kV nella medesima stazione costituisce impianto di rete per la connessione.

In coerenza con la normativa nazionale e regionale applicabile, la procedura autorizzativa dell'impianto si articola attraverso le seguenti fasi:

- istanza di Valutazione di Impatto Ambientale ai sensi dell'art. 23 del D.Lgs. 152/2006 (Testo Unico Ambientale) al Ministero dell'Ambiente e della Sicurezza Energetica (MASE) ed al Ministero della Cultura (MiC), in quanto intervento di cui alla tipologia progettuale di cui al punto 2 dell'Allegato 2 parte seconda del TUA "impianti eolici per la produzione di energia elettrica sulla terraferma con potenza complessiva superiore a 30 MW", oltre alle successive modifiche e integrazioni di legge.
- istanza di Autorizzazione Unica ai sensi dell'art.12 DLgs 387/2003, del D.M. 10/09/2010, trattandosi di un impianto di produzione di energia elettrica da fonti rinnovabili di potenza pari 92,4 MW.

Le interdistanze tra le turbine, dovute dalle accresciute dimensioni degli aerogeneratori scelti per lo sviluppo del progetto proposto, contribuiscono ad affievolire i principali impatti o disturbi ambientali

caratteristici della tecnologia, quali l'eccessivo accentramento di turbine in aree ristrette (in particolare il disordine visivo determinato dal cosiddetto "effetto selva"), le probabilità di collisione con l'avifauna e la chirotterofauna, attenuate dalla ridotta velocità di rotazione dei gruppi rotore, la pressione acustica e l'ombreggiamento intermittente (shadow flickering).

La presente costituisce la relazione tecnico-illustrativa generale del progetto definitivo delle opere civili indispensabili per assicurare il processo costruttivo e l'ottimale esercizio della centrale (viabilità di servizio, piazzole, opere di regimazione dei deflussi e ripristini). La descrizione delle opere elettromeccaniche è riportata nello specifico progetto delle infrastrutture elettriche e qui solo introdotta per praticità.

2 Ambito di applicazione

Gli aerogeneratori a progetto hanno una dimensione tale che la navigazione aerea potrebbe essere ostacolata durante la fase di esercizio dell'impianto. Per questo motivo, lo Stato Maggiore di Difesa ha approvato la circolare n. 146/394/4422 del 9 Agosto 2000 "Segnalazione delle opere costituenti ostacolo alla navigazione aerea" una serie di prescrizioni per la messa in norma delle strutture che possano rappresentare un rischio alla navigazione di aerei ed elicotteri.

La circolare suddivide gli ostacoli in verticali e lineari, stabilendo a seconda dei casi la tipologia di segnalazione (cromatica, luminosa o di entrambi i tipi), a seconda che gli stessi ricadano all'interno o all'esterno del centro urbano abitato.

Il progetto prevede l'installazione di quindici aerogeneratori di ultima generazione ad asse orizzontale (HAWTG, *Horizontal axis wind turbine generators*) di potenza pari a 6,6 MW ciascuno, per una potenza complessiva di 92,4 MW, denominati in progressione da WTG-A a WTG-P. Gli aerogeneratori saranno montati su torri tubolari di acciaio che porteranno il mozzo del rotore a un'altezza da terra di 134 metri, e l'altezza massima dal suolo di ogni macchina sarà pertanto pari a 220 metri.

Avendo una altezza massima *tip* pari a 220 metri dal piano campagna, e sviluppandosi in distanza modesta lungo la direttrice lineare, i generatori a progetto ricadono fattispecie di ostacoli lineari, e pertanto le segnalazioni cromatiche e luminose saranno entrambe necessarie.

Tabella 1 – Coordinate in WGS83 33N (32633) e quota degli aerogeneratori

Si riportano di seguito in tabella coordinate e quota di ognuna delle 14 turbine.

Aerogeneratore X Y Z (m.s

Aerogeneratore	X	Υ	Z (m.s.l.m)
WTG-A	509222.319	4631367.319	164.8
WTG-B	509679.461	4631637.829	180.0
WTG-C	509744.324	4630086.487	133.1
WTG-D	510773.860	4628455.403	174.5
WTG-E	511189.731	4631765.720	134.7
WTG-F	511501.916	4630478.427	136.5
WTG-G	514358.874	4629098.017	223.5
WTG-H	514766.995	4632551.589	198.4
WTG-I	514815.801	4631774.483	210.8
WTG-L	514841.557	4630647.356	216.0
WTG-M	515058.087	4629286.267	180.9
WTG-N	515656.526	4630646.323	199.4
WTG-O	515649.623	4632392.084	183.8
WTG-P	516509.101	4632373.038	133.7

2.1 Segnalazioni cromatiche

Figura 2 - Colore impiegato segnalazione del traffico con codice RAL3020

Le punte delle pale installate su gli aerogeneratori riporteranno una marcatura verniciata con colore codice RAL 3020 (o analoga di eguale efficacia cromatica rispetto alla colorazione della pala o in contrasto con lo sfondo). La striscia coprirà circa un settimo della lunghezza totale della pala calcolata dall'asse di rotazione.

In sede esecutiva potranno variare il numero delle segnalazioni per pala e la loro dimensione, in funzione delle prescrizioni accordate dagli enti competenti.

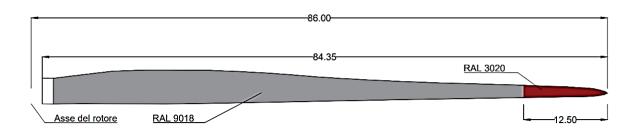


Figura 3 - Rappresentazione della segnalazione cromatica sulla pala

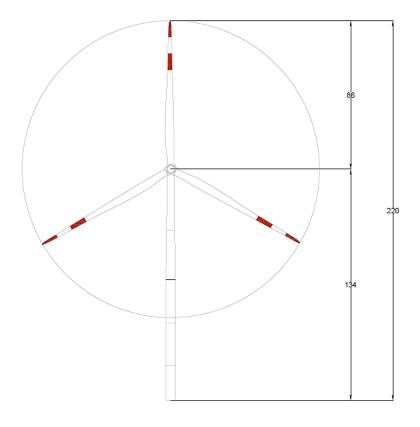


Figura 4 - Segnalazione cromatica su prospetto frontale dell'aerogeneratore

WIND-025.REL040

2.2 Segnalazioni luminose

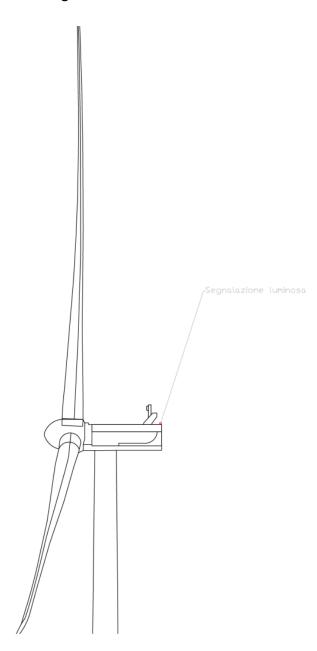


Figura 5 - Posizionamento del beacon

La navicella dell'aerogeneratore monterà un beacon ad emissione luminosa continua di colore rosso, con intensità pari a 2000 CAD (candele), sufficiente ad essere distinto a 5 km di distanza dall'aerogeneratore di notte in condizioni di visibilità tersa, come prescritto dalla norma. Il beacon sarà alimentato da un sistema UPS (uninterruptible power system) che garantisca il suo funzionamento anche in caso di assenza di alimentazione della rete elettrica fino a un massimo di 12 ore continuative.

Il sistema di segnalazione luminosa sarà collegato al sistema di controllo SCADA e al sistema di monitoraggio per segnalare prontamente eventuali malfunzionamenti e permettere un intervento tempestivo.

La normativa dell'Ente Internazionale dell'Aviazione Civile (International Civil Aviation Organization) inquadra la segnalazione luminosa in oggetto come "classe C".

WIND-025.REL040