REGIONE SICILIA PROVINCIA DI ENNA **COMUNE DI AIDONE**

OGGETTO

Progetto di un Impianto Agro-fotovoltaico denominato "Aidone-Giresi" da realizzarsi nel Comune di Aidone (EN) e delle relative opere di connessione nei Comuni di Aidone (EN), Raddusa e Ramacca (CT)

PROPONENTE

Edison Rinnovabili S.p.A.

Foro Buonaparte, 31 20121 Milano

TITOLO

PIANO DI DISMISSIONE

PROGETTISTA

Pietro ing. Zarbo

Via Giovanni XXIII, 12 92100 Agrigento p.iva: 02302580846

CODICE ELABORATO

REL4

		<u></u>		
		 (r		
		n°.Rev.	DESCRIZIONE REVISIONE	DAT
		0	Prima emissione	28 / 06
		<u> </u>		
				<u> </u>
		∥ Rif	. PROGET	ГО
		N.		

n°.Rev.	DESCRIZIONE REVISIONE	DATA	ELABORATO	VERIFICATO	APPROVATO
0	Prima emissione	28 / 06 /23	Arch S.Lo Bello	Ing. P. Zarbo	Edison Rinnovabili S.p.A.
(,					2)

Rif. PROGETTO											
N.	L	I			1				1	1	-

NOME FILE DI STAMPA

SCALA DI STAMPA DA FILE

INDICE

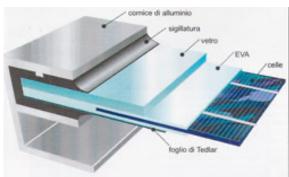
1.	Recupero dei materiali	3
2.	Moduli	4
3.	Inverter e quadri elettrici	5
4.	Cavi	6
5.	Strutture di sostegno	7
6.	Tabella di sintesi	8
7.	Iniziative in essere	8
8.	Piano dismissione	9
a.	Rimozione pannelli captanti e struttura sostegno	9
9.	Lavori sul suolo	11
9.	1 Premessa	11
9.		
9.	3 Cavidotti	11
9.	4 Sistemazione terreno	11
9.	5 Numero di addetti	12
10.	Conferimento del materiale inerte	
11.	Dettagli riguardanti il ripristino dello stato dei luoghi	14
12.	Computo Metrico opere dismissione	15
13.	Cronoprogramma Dismissione	17
a.	Generalità	17
b.	Cronoprogramma dismissione e ripristino dei luoghi	17
1/1	Conclusione	1Ω

1. Recupero dei materiali

Gli impianti fotovoltaici rappresentano un sistema di produzione dell'energia elettrica ecologico e sostenibile, ma anche un inconveniente quando sono difettosi o giungono alla fine del loro ciclo di vita. In quel momento sono da considerarsi rifiuti e, come tutti i rifiuti, hanno una ricaduta ambientale.

Tutti i componenti sono classificati e raggruppati e recuperati per il riciclaggio dei materiali che li compongono o verranno smaltiti secondo normativa vigente al momento dello smaltimento.

Prima dell'inizio delle attività di dismissione bisogna avere un piano esecutivo di dettaglio che dovrà, almeno, prevedere:


- Eventuale rimodulazione del cronoprogramma in base alla reperibilità delle risorse necessarie (persone e mezzi);
- Modalità di impacchettamento dei materiali da smaltire/recuperare condiviso con il destinatario della merce;
- o piano di conservazione dei documenti ambientali conformi alla normativa vigente del settore.

2. Moduli

I materiali che costituiscono i moduli fotovoltaici sono:

- ✓ silicio, che l'elemento con cui sono composte le celle nere o bluastre all'interno dei moduli;
- ✓ quantità trascurabili di elementi chimici non tossici inseriti nel silicio stesso;
- ✓ etil vinile acetato (EVA), polimerizzato ad alta temperatura e resistente agli UV, che ha la funzione di incapsulare le celle per prevenire penetrazioni di acqua ed umidità;

- vetro temperato e testurizzato a basso contenuto di ferro per la protezione frontale del modulo e per l'ottimizzazione della trasmissione della luce;
- √ fogli di materiale plastico (film di Tedlar) per garantire la massima protezione contro gli agenti
 atmosferici della posteriore del modulo;
- ✓ alluminio anodizzato per la cornice del modulo.

I suddetti materiali che compongono un modulo fotovoltaico hanno come caratteristica comune quella di essere "non pericolosi" ai sensi della normativa vigente sui rifiuti (D.Lgs. n. 152 del 3 aprile 2006 e s.m.i.) e facilmente recuperabili secondo le modalità previste dal DM 05/02/1998 e s.m.i.

3. Inverter e quadri elettrici

Ai sensi e per gli effetti della normativa vigente sui rifiuti, gli inverter alla fine del loro ciclo di vita non sono da intendersi come Rifiuti da Apparecchiature Elettriche ed Elettroniche (RAEE) in quanto installazioni industriali e pertanto fisse (cfr. il documento "domande frequenti" della Commissione Europea).

Pur tuttavia, tali apparecchiature hanno tutte le caratteristiche necessarie per poter essere considerate RAEE e, pertanto, quando esse saranno da dismettere, verranno conferite ad aziende terze specializzate ed autorizzate per il recupero di tale tipologia di rifiuto.

4. Cavi

I cavi dell'impianto fotovoltaico sono classificabili "rifiuti non pericolosi" e ricadono nel campo di applicazione del DM 05/02/1998 recante "Individuazione dei rifiuti non pericolosi sottoposti alle procedure semplificate di recupero ai sensi degli articoli 31 e 33 del decreto legislativo 5 febbraio 1997, n. 22".

I componenti dei cavi sono sostanzialmente materiali non ferrosi, quali rame stagnato, e in gomma per il rivestimento esterno. Entrambe le tipologie di materiali sono facilmente recuperabili e/o riutilizzabili per l'ottenimento di nuovi prodotti plastici e semilavorati base di rame e/o alluminio da destinare, ad esempio, a fonderie.

5. Strutture di sostegno

Le strutture di sostegno dei moduli fotovoltaici che saranno utilizzate per la realizzazione dell'impianto sono in acciaio. Tale materiale, come già descritto per i cavi, è facilmente recuperabile per l'ottenimento di materie prime secondarie.

Per quanto attiene al ripristino del terreno non sarà necessario procedere a nessuna demolizione di fondazioni in quanto <u>non</u> si utilizzano elementi in calcestruzzo gettati in opera.

6. Tabella di sintesi

Nella tabella di seguito riportata vengono descritte le tipologie di materiale presenti nei principali componenti dell'impianto fotovoltaico, la loro classificazione ex art. 184 del D.Lgs. 3 aprile 2006 n. 152 e s.m.i., il loro codice CER ex Allegato D alla parte IV dell'anzidetto D.Lgs., le quantità impiegate per la realizzazione dell'impianto espresse in tonnellate ed, infine, la loro destinazione finale.

Componente	Tipologia	Classificazione	Codice CER	Quantità [ton]	Destinazione	
Silicio Rifiuti speciali non pericolosi		06.08.99	62	Recupero		
Modulo	Vetro	Rifiuti speciali non pericolosi	17.02.02	924	Recupero	
Modulo	Plastica	Rifiuti speciali non pericolosi	02.01.04	173	Recupero	
	Alluminio	Rifiuti speciali non pericolosi	17.04.02	123	Recupero	
Cavi	Rame	Rifiuti speciali non pericolosi	17.04.01	19	Recupero	
Struttura di sostegno	Alluminio	Rifiuti speciali non pericolosi	17.04.02	305	Recupero	
Struttura di sostegno	Acciao	Rifiuti speciali non pericolosi	17.04.05	352	Recupero	

8. Piano dismissione

Nel presente paragrafo vengono descritte le modalità di disattivazione e smantellamento dell'impianto, "AIDONE-GIRESI", a fine esercizio e il ripristino dei luoghi come ante operam e quindi il paragrafo contiene le indicazioni concernenti gli argomenti per la rimozione delle componenti dell'impianto, il loro trasporto ai centri di recupero riportando anche il numero presunto degli addetti da impiegare per l'esecuzione dei lavori di smantellamento (vedi anche computo metrico estimativo).

a. Rimozione pannelli captanti e struttura sostegno

I pannelli captanti verranno rimossi uno alla volta con la seguente procedura esecutiva (vedi anche foto particolari pagine avanti):

- a) Scollegamento cavi solari delle stringhe e raccolta degli stessi nei centri di recupero/riciclaggio (codice CER 17.04.01)
- b) smontaggio staffe centrale e laterale di fissaggio del pannello;
- c) raccolta staffe in apposito contenitore per trasporto in centrale di recupero/ riciclaggio (codice CER 17.04.05);
- d) rimozione pannello e posizionamento in pedana di stoccaggio circa 30 pannelli/pallet per trasporto centro recupero/riciclaggio (codice silicio CER 06.08.99- codice EVA (etil vinile acetato) CER 17.02.02);
- e) Smontaggio blocchetti di fissaggio del profilato profilo traverse, raccolta blocchetti in apposito contenitore (scatole cartone) per trasporto in centrale di recupero/ riciclaggio (codice CER 17.04.05);
- f) Smontaggio supporti e asse di rotazione depositati per trasporto in centrale di recupero/ riciclaggio (codice CER 17.04.05);
- g) Estrazione profilato Palo in acciaio dal terreno tramite apposito macchinario (macchina battipalo con funzione inversa); imballaggio (tramite nastro avvolgente) per trasporto in centro recupero/riciclaggio (codice CER 17.04.05);
- h) raccolta in apposito contenitore di tutti la bulloneria in acciaio per trasporto in centro di recupero/riciclaggio (codice CER 17.04.05).

Considerando che i punti di accesso per lo svitamento dei bulloni è inferiore a metri due e che il peso per singolo elemento ha un peso massimo di 40 kg, non sono previsti attrezzature per l'imbracatura;

in caso di necessità in fase esecutiva saranno utilizzate tutte le misure necessarie al fine di svolgere i lavori nella totale sicurezza così come previsto dalle norme cogenti.

Una volta stoccati negli appositi contenitori/pallets e fissati al fine di un sicuro trasporto tutte le componenti che compongono l'impianto saranno trasportati nei centri di recupero e/o riciclaggio tramite mezzi di trasporto idonei (es. autocarri, camion, etc) una volta caricati sugli stessi tramite muletto a forchetta.

9. Lavori sul suolo

9.1 Premessa

Il suolo in fase di montaggio, al fine di minimizzare l'impatto e grazie alla struttura utilizzata (senza fondazione ma pali conficcati seguendo l'inclinazione naturale del terreno senza alcun movimento terra) non ha subito variazioni né nell'aspetto orografico né nell'aspetto fisico-chimico.

9.2 Fondazioni

La struttura di sostegno, fissata tramite pali conficcati nel terreno con apposita macchina battipalo, essendo senza fondazioni non sono necessarie opere per demolizione di calcestruzzi. Le aree ove è necessario demolire delle basi sono:

□ l'area dei locali tecnici in quanto presenta una piastra in cemento con relativa gabbia elettrosaldata per sostegno cabina prefabbricata (box tipo Enel); la suddetta piastra ha le seguenti dimensioni standard: lunghezza 27 m, larghezza 3 m, profondità dal piano di campagna 10 cm. Tale piastra sarà demolita con apposito scavatore e trasportata ai centri di recupero autorizzati secondo la vigente normativa;

□ l'area dell'edifico tecnico nella cabina MT Utente: tale edificio ha superficie di circa 125 mq e sarà demolito con il trasporto in discarica autorizzata dei materiali (materiale inerte e ferro);

9.3 Cavidotti

Non sono presenti cavidotti in cemento; i cavi sono interrati e passati in tubo corrugato di dimensione opportuni. Il ripristino dell'area avverrà con apposito mezzo (escavatore) per una profondità per raggiungere il cavidotto, in genere di almeno mt 1.00. Quindi si passerà al costipamento del fondo degli scavi, il rinterro con i materiali riutilizzabili accatastati durante la fase precedente ridefinendo il manto superficiale secondo il proprio aspetto originale. Tale modalità di intervento assicura anche il regolare deflusso delle acque meteoriche.

9.4 Sistemazione terreno

Una volta costipate le aree necessarie (area locale tecnico e area passaggio cavidotti), considerato che non sono necessarie opere di protezioni di aree (quali scarpate, etc);

9.5 Numero di addetti

Premesso che la struttura sostegno che blocca i pannelli è una struttura facilmente rimovibile costituta dalle singole parti fissati tramite bulloni, il numero di addetti previsti per il lavoro eseguito fino al trasporto è sintetizzato nella seguente tabella:

Attività	Descrizione	Attrezzatura – strumenti - macchinari	Numero addetti medi/giorno	Numero giorni previsti
Scollegamento cavi di stringa	Scollegamento di tutti i cavi che collegano le stringhe raccolti in contenitori per trasporto cargo	DPI (guanti, elmetto, etc); muletto a forchetta per trasporto contenitore	9	120
Rimozione pannello fotovoltaico	Svitamento bulloni e sbloccaggio staffe e posizionamento pannelli in pallet	Svitatori elettrici, DPI (guanti, elmetto, cuffie, etc); muletto a forchetta per trasporto pallet	15	120
Rimozione quadri elettrici	Rimozione quadri elettrici sottocampo	Svitatori elettrici, Pinze taglio, giravite, DPI (guanti, elmetto, cuffie, etc); muletto a forchetta per trasporto pallet	2	80
Smontaggio struttura sostegno	Svitamento bulloni di serraggio della struttura, rimozione della struttura con relativo raccolta in pallett	Svitatori elettrici, DPI (guanti, elmetto, cuffie, etc); muletto a forchetta per trasporto pallet	18	240
Rimozione profilato sostegno struttura	Estrazione profilato costituente la struttura di sostegno precedentemente conficcata in terreno	Macchina battipalo, muletto forchetta, DPI (guanti, elmetto, cuffie, etc)	15	120

10. Conferimento del materiale inerte

Nell'ambito territoriale dell'area di progetto è stata condotta un'indagine mirata ad individuare i possibili siti di cava e di discarica autorizzata utilizzabili per la realizzazione del campo fotovoltaico facendo riferimento all'Elenco degli impianti autorizzati nella provincia di Enna e nell'area di 30 km risultano diversi siti autorizzati a smaltire il materiale.

Quindi in fase di dismissione sarà seguita la stessa procedura per la selezione del sito ove smaltire il materiale.

11. Dettagli riguardanti il ripristino dello stato dei luoghi

A fine impianto dovrà essere predisposto un progetto di ripristino del suolo. Tale progetto dovrà seguire i criteri minimi di seguito descritti; il progetto dovrà descrivere anche un piano di manutenzione.

Le azioni necessarie per ripristinare il suolo e riportarlo allo stato ante-operam:

- O Trattamento dei suoli: le soluzioni da dottare riguardano la stesura della terra vegetale, la preparazione e scarificazione del suolo secondo le tecniche classiche.
- O Il carico e la distribuzione della terra si realizza generalmente con una pala meccanica e con camion da basso carico, che la scaricheranno nelle zone d'uso. Quando le condizioni del terreno lo consentano si effettueranno passaggi con un rullo prima della semina.
- Opere di semina di specie erbacee: una volta terminati i lavori di trattamento del suolo, si procede alla semina di specie erbacee con elevate capacità radicanti in maniera tale da poter fissare il suolo. In questa fase è consigliata, per la semina delle specie erbacee, la tecnica dell'idrosemina. In particolare, è consigliabile l'adozione di un manto di sostanza organica triturata (torba e paglia), spruzzata insieme ad un legante ed ai semi; tale sistema consente un'immediata protezione dei terreni ancor prima della crescita delle specie seminate ed un rapido accrescimento delle stesse.
- Piantagioni di arbusti: lo scopo è quello di riprodurre, sulle nuove superfici, le caratteristiche visive del terreno circostante, lasciando inalterata la sua funzionalità ecologica e di protezione idrogeologica.
- O La scelta delle specie dovranno utilizzarsi i seguenti criteri:
 - carattere autoctono;
 - rusticità o ridotte richieste in quanto a suolo, acqua e semina;
 - presenza nei vivai.

Le precedenti attività sono da espletare nelle aree non coltivate durante il periodo di presenza dell'impianto fotovoltaico in considerazione del fatto che l'intervento è tipo Agrivoltaico e quindi le aree sono già trattate per il mantenimento del suolo in stato di coltivazione.

12. Computo Metrico opere dismissione

Il costo finale per la dismissione e successivo smaltimento delle componenti costituenti un impianto fotovoltaico **AIDONE-GIRESI** è di circa 1.128.676 euro e cioè circa 37.600 euro/MW, rivalutabile con gli indici ISTAT (vedi relazione Computo metrico opere di dismissione).

Dettaglio Attività	Dettaglio Fasi	Costo (euro)			
	Lavaggio vetri	18.060			
Smontaggio e	Smontaggio:	144.480			
smaltimento pannelli:	Smaltimento	Si ritiene che gli oneri per lo smaltimento siano ricoperti dai ricavi delle vendite del materiale recuperabile (in questo caso vetro ed alluminio)			
	Smontaggio inseguitori:	150.500			
Smontaggio e smaltimento inseguitori e relativi ancoraggi	Smontaggio ancoraggi:	138.460			
	smaltimento	Si ritiene che gli oneri per lo smaltimento siano ricoperti dai ricavi delle vendite del materiale recuperabile (in alluminio/acciaio/materi ale ferroso)			
Smontaggio e Smaltimento parti	Smontaggio:	72.240			
elettriche	smaltimento	Si ritiene che gli oneri per lo smaltimento siano ricoperti dai ricavi delle vendite del materiale recuperabile (rame coperto/sfilato, etc)			
Demolizione e smaltimento cabine c.a.	Demolizione:	21.070			

	smaltimento di 3500 t di cemento armato contenente fino al 10% di impurità (metallo, plastica, ecc) a 20€/t	18.060
Smantellamento recinzione, impianto di illuminazione e	Smontaggio:	36.120
videosorveglianza e relativo smaltimento	smaltimento di 350 t di cemento armato contenente fino al 10% di impurità (metallo, plastica, ecc) a 20€/t.	6.020
Smantellamento e recupero stabilizzato	Smantellamento:	66.220
utilizzato per le strade interne all'impianto	Smaltimento in discarica per 10.000 t di stabilizzato utilizzato per le strade interne all'impianto. Costo unitario 10€/t.	78.260
Aratura terreno e lavori per la semina	A corpo	180.600
Dismissione di SSE (app. elettromeccaniche, quadri MT, Trasformatore e demolizione basamenti)	A corpo	198.660

13. Cronoprogramma Dismissione

a. Generalità

Il cronoprogramma è un elaborato, prevalentemente di tipo grafico, adottato per la pianificazione di una serie di attività.

Di queste, ne rappresenta lo sviluppo temporale, imposto o scelto, con un'articolazione che comprende tutte le fasi di realizzazione di un'opera e di attuazione di un qualsiasi accadimento gestionale, e pur essendo finalizzato principalmente alla rappresentazione della tempistica delle lavorazioni, la buona redazione di un cronoprogramma rappresenta la base per la corretta gestione economica e finanziaria dell'operazione cui si riferisce.

b. Cronoprogramma dismissione e ripristino dei luoghi

Nel seguito, sotto forma di diagramma di Gantt, vengono rappresentate le pianificazioni temporali (previsione di durata e periodo di svolgimento) delle principali attività necessarie per la dismissione dell'impianto fotovoltaico denominato **AIDOMNE-GIRESI**

	Anno		ANNO 1							ANNO 2							
	Attività lavorative / Mesi	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
A	Smontaggio pannelli																
В	Smontaggio strutture di supporto																
С	Demolizione dei manufatti cabine																
D	Sfilaggio cavi																
E	smantellamento viabilità interna																
F	trasporto a discarica materiali																
F	Rimodellamento estesa dle terreno																
G	Smonatggio SSE																
Н	Atitivtà di semina																

14. Conclusione

Grazie alla tipologia di struttura utilizzata, una volta dismesso l'impianto, l'area si ritroverà sistemata in maniera naturale nelle condizioni originali "ante operam", inoltre sarà prevista la sistemazione a verde.