

COMUNE DI APRILIA

PROVINCIA DI LATINA

REGIONE LAZIO

REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000.00 kW

MASSIMA IN IMMISSIONE PARI A 39.000,00 kW							
Denominazione II	mpianto:	APRILIA 3					
Ubicazione:		Comune di Aprilia (LT)					
020 Cod. Doc.: APR3-020	ORATO)200 D200-R_Rel-Dati-Qt-Vol-Sup	RELAZIONE DATI QUANTITA	TIVI, VOLUN	II E SUI	PERF	ICI	
Sviluppatore:	_	Project - Commissioning - Consulting	Scala:	ala: PROGETTO			
ENGINEERING ENERGY TERRA		ENGINEERING ENERGY TERRA PROJECTS SRL Str. Grigore Ionescu, 63, Bl: T73, sc. 2, Sect 2, Jud. Municipiul Bucuresti, Romania RO43492950	Data: 15/06/2023	PRELIMINARE	DEFINITIVO	AS BUILT	
Richiedente:		Geo Solar World 2 S.r.I. Via Pasquale Cotechini, 106 63822 Porto San Giorgio (FM) P.IVA 02509650442	Tecnici e Professio Ing. Luca Ferrac Iscritto al n. A34 Ingegneri della	cuti Pomp 4 dell'Alb	o dell'C		
Versione	Data	Descrizione	Redatto	Appro	vato	Autorizzato	
	15/06/2023	PROGETTO DEFINITIVO	L.F.P.	L.F.I	P.	L.F.P.	
01							
02							

II Tecnico: Dott. Ing. Luca Ferracuti Pompa

Il Richiedente:

Geo Solar World 2 S.r.l.

Doub Amla

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 2 di 11

SOMMARIO

1. OGGETTO	3
2. SUPERFICI E VOLUMI	
2.1 SUPERFICIE NETTA OCCUPATA DAI MODULI FOTOVOLTAICI	
2.2 STIMA DEL VOLUME DEGLI SCAVI PER LE FONDAZIONI DEI LOCALI TECNICI	
2.3 STIMA DEL VOLUME DEGLI SCAVI PER LA VIABILITÀ INTERNA	
2.4 STIMA DEL VOLUME DEGLI SCAVI DESTINATI AI CAVIDOTTI INTERRATI ESTERNI	
2.5 STIMA DEL VOLUME DEGLI SCAVI DESTINATI AI CAVIDOTTI INTERRATI MT/BT INTERNI AL CAMPO FOTOVOLTAICO	
2.6 SUPERFICIE DESTINATA ALLA FASCIA DI MITIGAZIONE	
2.7 SUPERFICI COMPLESSIVE E INDICE DI OCCUPAZIONE	
3. ENERGIA PRODOTTA	
3.1 POTENZA DELL'IMPIANTO FOTOVOLTAICO ED ENERGIA PRODOTTA	9
3.2 EMISSIONI NOCIVE EVITATE E RISPARMI IN TERMINI DI ENERGIA PRIMARIA	

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 3 di 11

1. OGGETTO

Il presente documento è parte della documentazione relativa al progetto per la costruzione e l'esercizio di un Impianto Fotovoltaico conforme alle vigenti prescrizioni di legge con potenza di picco pari a 53.902,29 kW da realizzare nel Comune di Aprilia (LT).

L'impianto sarà del tipo grid connected e l'energia elettrica prodotta sarà riversata completamente in rete, previa elevazione di tensione da 36 kV a 150 kV con allaccio presso una nuova sottostazione elettrica di Terna S.p.A. come da preventivo avente codice di rintracciabilità n. 202000641.

Il progetto prevede le seguenti opere da autorizzare:

- Generatore fotovoltaico, suddiviso in n. 6 sottocampi
- Elettrodotto interrato MT 36 kV
- Stazione di Elevazione di Utenza 36/150 kV
- Elettrodotto interrato AT 150 kV

Il proponente e soggetto responsabile è la società **Geo Solar World 2 S.r.l.**, corrente in Porto San Giorgio (FM) – Via Pasquale Cotechini, 106 – n. iscrizione REA FM 288605 – P.IVA 02509650442 – Amministratore Unico e Legale Rappresentante sig. luvalè Andrea.

2. SUPERFICI E VOLUMI

2.1 Superficie netta occupata dai moduli fotovoltaici

Nella tab. 1 sono indicati i valori relativi alla superficie complessiva occupata dai moduli fotovoltaici:

numero totale di moduli fotovoltaici	dime	nsioni pan	ingombro totale [m²]	
	L [m]	l [m]	A [m ²]	
87.646	1,134	2,465	2,795	244.997,74

Tabella 1

I moduli saranno posti su strutture ad inseguimento monoassiale (tracker orientabili) di tipo modulare, assemblabili per ospitare da 26 fino a 78 moduli, distribuiti su una superficie effettivamente occupata e recintata equivalente alla superficie disponibile, con un ingombro netto totale pari a 24,499774 ha come sopra indicato, corrispondente alla superficie teoricamente occupata dall'insieme dei moduli posti su una superficie piana ed accostati l'uno all'altro.

2.2 Stima del volume degli scavi per le fondazioni dei locali tecnici

All'interno dell'impianto fotovoltaico è prevista l'installazione dei seguenti manufatti prefabbricati in c.a.v. ad uso locali tecnici/di

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:	1
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023	
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 4 di 11	1

servizio:

- n. 6 Cabine di Parallelo;
- n. 20 Power Station ognuna composta da n. 2 elementi (QMT + QBT);
- n. 6 Control Room.
- n. 6 Vani Tecnici

Nella tab. 2 sono esposti i valori delle superfici che verranno occupate dai locali tecnici e del volume stimato degli scavi di sbancamento necessari alla realizzazione delle fondazioni in cls per l'alloggiamento degli stessi:

LOCALI TECNICI								
TIPO CABINA	QT [n]	L [m]	l [m]	H [m]	A tot [m³]	V tot [m²]		
CABINA DI PARALLELO	6	6,70	2,48	3,00	99,70	299,09		
POWER STATION	20	12,73	2,31	2,74	588,13	1611,47		
VANO TECNICO	6	6,70	2,48	3,00	99,70	299,09		
CONTROL ROOM	6	6,70	2,48	3,00	99,70	299,09		
TOTALE	38				887,21	2508,73		

FONDAZIONI							
∆ ingombro per lato [m]	A tot scavo [m²]	h scavo [m]	V scavi [m³]				
1,00	233,86		175,39				
1,00	1269,73		952,29				
1,00	233,86	0,75	175,39				
1,00	233,86		175,39				
	1.971,29		1.478,47				

Tabella 2

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 5 di 11

2.3 Stima del volume degli scavi per la viabilità interna

Nella tab. 3 sono indicati i valori relativi alla superficie complessiva occupata dalle strade e dai piazzali interni e sono stimati i volumi degli scavi necessari alla realizzazione degli stessi, tenendo conto di una profondità di escavazione media del terreno pari a 30 cm:

SCAVI VIABILITA' INTERNA						
RIF.	L [m]	A [m²]	h [m]	V [m³]		
SC1	2.210,75	7.737,62		2.321,29		
SC2	419,36	1.467,77		440,33		
SC3	873,32	3.056,61		916,98		
SC4	368,38	1.289,32	0,30	386,80		
SC5	836,67	2.928,33		878,50		
SC6	112,60	394,11		118,23		
TOTALE	4.821,07	16.873,76		5.062,13		

Tabella 3

2.4 Stima del volume degli scavi destinati ai cavidotti interrati esterni

Nella tab. 4 sono indicati i valori relativi al volume degli scavi per i cavidotti MT esterni al campo fotovoltaico:

SCAVI CAVIDOTTI MT ESTERNI							
TRATTA	L [m]	l [m]	h [m]	V [m³]			
MT	15.194,18	1,20	1,40	25.526,22			
AT	178,56	0,70	1,70	299,98			
	25.826,20						

Tabella 4

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 6 di 11

2.5 Stima del volume degli scavi destinati ai cavidotti interrati MT/BT interni al campo fotovoltaico

Nelle tab. 5.1 e 5.2 sono riportati i valori relativi al volume degli scavi per i cavidotti interni ai sottocampi:

SCAVI CAVIDOTTI MT INTERNI						
TRATTA	L [m]	l [m]	h [m]	V [m³]		
	1.168,00	0,30	1,20	420,48		
SC1	800,00	1,00	1,20	960,00		
301	46,86	2,10	1,20	118,09		
				1.498,57		
SC2	342,20	0,30	1,20	123,19		
	150,00	0,30		54,00		
	173,00	0,60	1,20	124,56		
SC3	213,00	1,00		255,60		
	133,00	1,30		207,48		
	764,83					
	140,00	0,30		50,40		
	75,00	0,60	1,20	54,00		
SC4	70,00	1,00	1,20	84,00		
	20,00	1,30		31,20		
				219,60		
	254,00	0,30	1.00	91,44		
SC5	370,00	0,60	1,20	266,40		
SC6	36,50	0,30	1,20	13,14		
	TOTALE					

Tabella 5.1 – Scavi cavidotti MT interni

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 7 di 11

SCAVI CAVIDOTTI BT INTERNI								
TRATTA	L [m]	l [m]	h [m]	V [m³]				
SC1	9.546,29			5.727,77				
SC2	1.734,19			1.040,51				
SC3	2.469,63	0.60	0.60	0.60	0.60	0.60	1.00	1.481,78
SC4	3.769,94	0,60	1,00	2.261,96				
SC5	2.302,78			1.381,67				
SC6	2.721,14			1.632,68				
	10.512,03							

Tabella 5.2 – Scavi cavidotti BT interni

2.6 Superficie destinata alla fascia di mitigazione

La superficie occupata dalla fascia di mitigazione è ottenuta moltiplicando il perimetro dell'impianto, che coincide con la lunghezza totale della recinzione, per la profondità della fascia di mitigazione pari a 3 m:

SUPERFICIE FASCIA DI MITIGAZIONE					
PERIMETRO	L [m]	l [m]	A [m²]		
SC1	2.237,33		6.712,00		
SC2	844,00	3,00	2.532,00		
SC3	774,82		2.324,45		
SC4	751,67		2.255,00		
SC5	1.160,67		3.482,00		
SC6	979,00		2.937,00		
TOTALE	4.607,82		13.823,45		

Tabella 6

2.7 Superfici complessive e indice di occupazione

Il valore della superficie totale disponibile rientrante nelle norme contrattuali come indicato nell'Elaborato "APR3-020107-R_Attestaz-Disp-Terreni" ammonta a 60 ha 87 a 93 ca.

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 8 di 11

L'area della superficie effettivamente occupata dall'impianto, ovvero la porzione di area totale disponibile delimitata dalla recinzione, è pari a 54 ha 19 a 40 ca (A'). Nella tab. 7 sono inoltre indicati i valori relativi a:

- area della superficie recintata compresa la fascia di mitigazione (A");
- area della superficie occupata dalle opere civili;
- indice di occupazione opere civili (superficie occupata dalle opere civili / superficie totale disponibile);
- indice di occupazione totale (superficie occupata dalle opere civili e dalla fascia di mitigazione / superficie totale disponibile; al numeratore la superficie occupata comprende anche la fascia di mitigazione):

Α	TOTALE SUPERFICIE DISPONIBILE [m²]	608.793,00
Α'	TOTALE SUPERFICIE RECINTATA [m²]	541.940,00
Α"	TOTALE SUPERFICIE RECINTATA COMPRESA LA MITIGAZIONE [m²]	555.763,45
В	SUPERFICIE OCCUPATA DAI MODULI FOTOVOLTAICI [m²]	244.997,74
С	SUPERFICIE OCCUPATA DALLA VIABILITA' INTERNA [m²]	16.873,76
D	SUPERFICIE OCCUPATA DAI LOCALI TECNICI [m²]	887,21
Е	TOTALE SUPERFICIE OCCUPATA DALLE OPERE CIVILI [m²]	262.758,71
	INDICE DI OCCUPAZIONE OPERE CIVILI [(B+C+D=E) / A]	43,16%
F	SUPERFICIE OCCUPATA DALLA FASCIA DI MITIGAZIONE [m²]	13.823,45
G	TOTALE SUPERFICIE OCCUPATA [m²]	276.582,16
	INDICE DI OCCUPAZIONE TOTALE [(B+C+D+F=G) / A]	45,43%

Tabella 7

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 9 di 11

3. ENERGIA PRODOTTA

3.1 Potenza dell'impianto fotovoltaico ed energia prodotta

Nella tab. 8 sono indicati i valori della potenza nominale dell'impianto (somma della potenza dei singoli moduli fotovoltaici in Corrente Continua) e dell'energia elettrica prodotta in un anno ed in 30 anni:

,	•					
	POTENZA DELL'IMPIANTO ED ENERGIA ELETTRICA PRODOTTA					
	totale n. moduli Potenza Modulo [Wp] Potenza dell'Impianto [kV					
	87.646	615	53.902,29			
Yield (Producibilità Attesa Annua) [kWh/kWp] (*)	1.691					
Energia Prodotta in un anno [MWh]	91.149					
Energia Prodotta in 30 anni [TWh]	2.734					
(*) Valore derivante dal calcolo della producibilità con software PV-Syst (fig. 1)						

Tabella 8

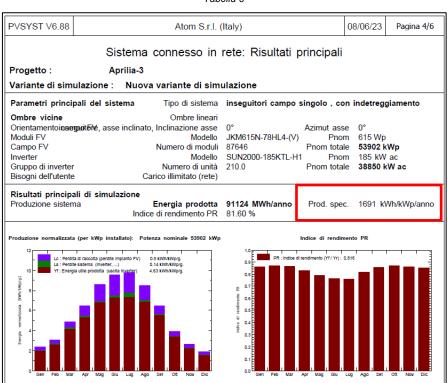


Figura 1: stralcio delle elaborazioni sw PV-Syst con evidenziato il valore dello yield

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 10 di 11

3.2 Emissioni nocive evitate e risparmi in termini di energia primaria

In tab. 9 sono riportati i valori dei fattori di emissione ed il relativo risparmio in termini di emissioni evitabili, grazie all'impianto fotovoltaico di progetto, dei seguenti composti:

- A) Gas serra dal settore elettrico per la produzione di energia elettrica e calore (GHG):
 - Anidride carbonica CO₂
 - Metano CH₄
 - Protossido di azoto N₂O
- B) Inquinanti atmosferici (kt) emessi per la produzione di energia elettrica e calore:
 - Ossidi di azoto NO,
 - Ossidi di zolfo SO_x
 - Composti organici volatili non metanici COVNM
 - Monossido di carbonio CO
 - Ammoniaca NH₃
 - Materiale particolato (polveri sottili) PM₁₀

I valori delle emissioni specifiche, espressi in g/kWh, sono relativi all'anno 2020, come riportato presso il "Rapporto ISPRA 363/2022 – Indicatori di efficienza e decarbonizzazione del sistema energetico nazionale e del settore elettrico – Tabelle 2.31 e 2.34", documento più aggiornato disponibile alla data della redazione della presente:

Energia prodotta [MWh/anno]		FATTORI DI EMISSIONE ED EMISSIONI EVITABILI in base al Rapporto ISPRA n. 363/2022 - dati relativi al 2020							
91.149	GAS SERRA (G	HG) (valori ripre: 2.31)	si dalla Tabella		INQUINANTI	ATMOSFERICI (v	alori ripresi dalla	Tabella 2.34)	
Composto	CO ₂	CH₄	N ₂ O	NO _x	SO _x	COVNM	CO	NH ₃	PM ₁₀
Emissioni specifiche in atmosfera [g/kWh]	263,4	0,64	1,3	0,2054	0,0455	0,0902	0,09248	0,00028	0,00237
Emissioni evitate in 1 anno [t]	24.008,59	58,34	118,49	18,72	4,15	8,22	8,43	0,03	0,22
Emissioni evitate in 30 anni [t]	720.257,60	1.750,06	3.554,80	561,55	124,42	246,65	252,88	0,766	6,48

Tabella 9

La stima delle emissioni evitabili si ottiene moltiplicando ciascun fattore di emissione per la producibilità annua.

Per quanto riguarda l'entità del risparmio di energia in termini di Energia Primaria espressa in **tep (tonnellate equivalenti di petrolio**), riprendendo il valore dell'energia annua prodotta dall'impianto e moltiplicandolo per il fattore di conversione dei kWh in tep di cui alla Delibera EEN 03/08 pari a **0,187** * **10-3 tep/kWh** si ricava:

ELABORATO 020200	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE DATI QUANTITATIVI, VOLUMI E SUPERFICI	Pag. 11 di 11

RISPARMIO IN TERMINI DI ENERGIA PRIMARIA (tep)					
Fattore di conversione (Delibera EEN 3/08)	0,187 * 10 ⁻³ tep/kWh				
Energia prodotta	91.148.772 kWh/anno				
Risparmio ottenibile	17.045 tep/anno				

Tabella 10

Porto San Giorgio, li 15/06/2023

In Fede II Tecnico (Dott. Ing. Luca Ferracuti Pompa

Allegati:

- Calcolo della Producibilità con Software PV-Syst

PVSYST V6.88 Atom S.r.I. (Italy) 08/06/23 Pagina 1/6

Sistema connesso in rete: Parametri di simulazione

Progetto: Aprilia-3

Luogo geografico Genio Civile Paese Italia

UbicazioneLatitudine41.55° NLongitudine12.69° EOra definita comeOra legaleFuso orario TU+1Altitudine51 m

Albedo 0.20

Dati meteo: Genio Civile PVGIS api TMY - TMY

Variante di simulazione : Nuova variante di simulazione

Data di simulazione 08/06/23 14h14

Parametri di simulazione Tipo di sistema inseguitori campo singolo , con indetreggiamento

Piano a inseguimento, asse inclinato Inclinazione asse 0° Azimut asse 0° Limitazioni di rotazione Phi minimo -60° Phi massimo 60°

Tracking algorithm Astronomic calculation

Strategia Backtracking N. di eliostati 138 Campo (array) singolo

Distanza eliostati 8.00 m Larghezza collettori 4.97 m Banda inattiva Sinistra 0.02 m Destra 0.02 m

Angolo limite indetreggiamento

Limiti phi +/- 5**F.á**ttore di occupazione (GCR) 62.1 %

Modelli utilizzati Trasposizione Perez Diffuso Importato

Orizzonte Orizzonte libero
Ombre vicine Ombre lineari

Bisogni dell'utente : Carico illimitato (rete)

Caratteristiche campi FV (6 tipi di campi definiti)

Modulo FV Si-mono Modello JKM615N-78HL4-(V) definizione customizzata dei parametri Costruttore JINKOSOLAR

Sottocampo "Sottocampo #1"

Numero di moduli FV In serie 26 moduli In parallelo 1642 stringhe Numero totale di moduli FV N. di moduli 42692 Potenza nom. unit. 615 Wp

Potenza globale campo Nominale (STC) **26256 kWp** In cond. di funz. 25285 kWp (50°C)

Caratt. di funzionamento campo FV (50°C) U mpp 1144 V I mpp 22097 A

Sottocampo "Sottocampo #2"

Numero di moduli FV In serie 26 moduli In parallelo 209 stringhe Numero totale di moduli FV N. di moduli 5434 Potenza nom. unit. 615 Wp

Potenza globale campo Nominale (STC) 3342 kWp In cond. di funz. 3218 kWp (50°C)

Caratt. di funzionamento campo FV (50°C) U mpp 1144 V I mpp 2813 A

Sottocampo "Sottocampo #3"

Numero di moduli FV In serie 26 moduli In parallelo 415 stringhe Numero totale di moduli FV N. di moduli 10790 Potenza nom. unit. 615 Wp

Potenza globale campo Nominale (STC) 6636 kWp In cond. di funz. 6391 kWp (50°C)

Caratt. di funzionamento campo FV (50°C) U mpp 1144 V I mpp 5585 A

Sottocampo "Sottocampo #4"

Numero di moduli FV In serie 26 moduli In parallelo 560 stringhe Numero totale di moduli FV N. di moduli 14560 Potenza nom. unit. 615 Wp

Potenza globale campo Nominale (STC) 8954 kWp In cond. di funz. 8624 kWp (50°C)

Caratt. di funzionamento campo FV (50°C) U mpp 1144 V I mpp 7536 A

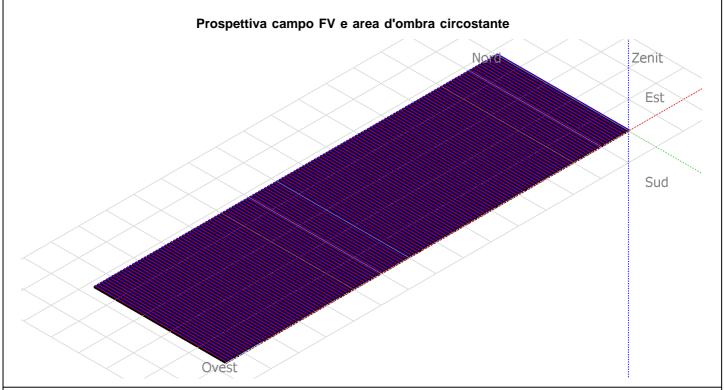
PVSYST V6.88 Atom S.r.l. (Italy) 08/06/23 Pagina 2/6

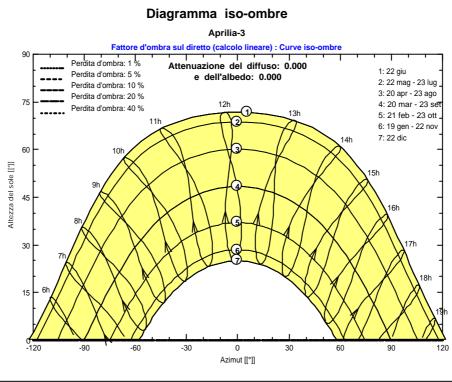
Sistema connes	sso in rete	: Parametri	di simulazion	ne	
Sottocampo "Sottocampo #5" Numero di moduli FV Numero totale di moduli FV Potenza globale campo Caratt. di funzionamento campo FV (50°C)	In serie N. di moduli ominale (STC) U mpp	26 moduli 5694 3502 kWp 1144 V	In parallelo Potenza nom. unit. In cond. di funz. I mpp	219 stringhe 615 Wp 3372 kWp (50°C) 2947 A	
Sottocampo "Sottocampo #6" Numero di moduli FV Numero totale di moduli FV Potenza globale campo No Caratt. di funzionamento campo FV (50°C)	In serie N. di moduli ominale (STC) U mpp	26 moduli 8476 5213 kWp 1144 V	In parallelo Potenza nom. unit. In cond. di funz. I mpp	326 stringhe 615 Wp 5020 kWp (50°C) 4387 A	
· · · · · · · · · · · · · · · · · · ·	ominale (STC) erficie modulo	53902 kWp 244998 m²	Totale	87646 moduli	
Inverter definizione customizzata dei parametri Caratteristiche Tensione di f	Modello Costruttore unzionamento	SUN2000-185K HUAWEI 500-1500 V	TL-H1 Potenza nom. unit.	185 kWac	
Sottocampo "Sottocampo #1"	N. di inverter	101 unità	Potenza totale	18685 kWac	
Sottocampo "Sottocampo #2"	N. di inverter	13 unità	Rapporto Pnom Potenza totale Rapporto Pnom	1.41 2405 kWac 1.39	
Sottocampo "Sottocampo #3"	N. di inverter	26 unità	Potenza totale Rapporto Pnom	4810 kWac 1.38	
Sottocampo "Sottocampo #4"	N. di inverter	35 unità	Potenza totale Rapporto Pnom	6475 kWac 1.38	
Sottocampo "Sottocampo #5"	N. di inverter	14 unità	Potenza totale Rapporto Pnom	2590 kWac 1.35	
Sottocampo "Sottocampo #6"	N. di inverter	21 unità	Potenza totale Rapporto Pnom	3885 kWac 1.34	
Totale	N. di inverter	210	Potenza totale	38850 kWac	
Fattori di perdita campo FV					
Perdite per sporco campo Fatt. di perdita termica	Uc (cost)	29.0 W/m²K	Fraz. perdite Uv (vento)	1.0 % 0.0 W/m²K / m/s	
Perdita ohmica di cablaggio	Campo#1 Campo#2 Campo#3 Campo#4 Campo#5 Campo#6 Globale	0.81 mOhm 6.4 mOhm 3.2 mOhm 2.4 mOhm 6.1 mOhm 4.1 mOhm	Fraz. perdite Fraz. perdite Fraz. perdite Fraz. perdite Fraz. perdite Fraz. perdite Fraz. perdite	1.5 % a STC 1.5 % a STC	
Perdita di qualità moduli Perdite per "mismatch" moduli Perdita disadattamento Stringhe Effetto d'incidenza, parametrizzazione ASHF		1 - bo (1/cos i -	Fraz. perdite Fraz. perdite Fraz. perdite	-0.8 % 1.0 % a MPP 0.10 % 0.05	
Fattori di perdita sistema					
Trasformatore esterno Perdita ferro (c Perdite resi	connesso 24h) stive/induittive	53216 W 0.084 mOhm	Fraz. perdite Fraz. perdite	0.1 % a STC 0.7 % a STC	

frazione di tempo 0.3 % indisponibilità del sistema 1.1 giorni, 3 periodi

Perdite ausiliarie Ventilatori costanti 50.0 kW ... dalla soglia di potenza 0.0 kW

Sistema connesso in rete: Definizione ombre vicine


Progetto: Aprilia-3


Bisogni dell'utente

Variante di simulazione : Nuova variante di simulazione

Parametri principali del sistema	Tipo di sistema	inseguitori campo s	ingolo , con	indetreggiamento
Ombre vicine	Ombre lineari			
Orientamentoinaemoitele, asse inclinato	, Inclinazione asse	0°	Azimut asse	0°
Moduli FV	Modello	JKM615N-78HL4-(V)	Pnom	615 Wp
Campo FV	Numero di moduli	87646	Pnom totale	53902 kWp
Inverter	Modello	SUN2000-185KTL-H1	Pnom	185 kW ac
Gruppo di inverter	Numero di unità	210.0	Pnom totale	38850 kW ac

Carico illimitato (rete)

PVSYST V6.88 08/06/23 Atom S.r.l. (Italy) Pagina 4/6

Sistema connesso in rete: Risultati principali

Aprilia-3 Progetto:

Nuova variante di simulazione Variante di simulazione :

Parametri principali del sistema Tipo di sistema inseguitori campo singolo, con indetreggiamento

Ombre vicine Ombre lineari

Orientamentoinaemoit 61/e, asse inclinato, Inclinazione asse Moduli FV Modello

Numero di moduli 87646 Campo FV Modello Inverter Gruppo di inverter Numero di unità

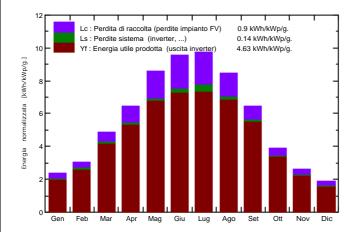
Bisogni dell'utente Carico illimitato (rete)

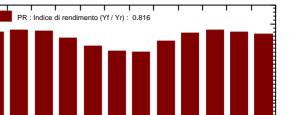
Azimut asse 0° JKM615N-78HL4-(V) Pnom 615 Wp Pnom totale 53902 kWp

SUN2000-185KTL-H1 185 kW ac Pnom 210.0 Pnom totale 38850 kW ac

Risultati principali di simulazione

Produzione sistema Energia prodotta 91124 MWh/anno 1691 kWh/kWp/anno Prod. spec.


0.9


0.7 0.6

0.4 0.3

Indice di rendimento PR 81.60 %

Produzione normalizzata (per kWp installato): Potenza nominale 53902 kWp

Indice di rendimento PR

Nuova variante di simulazione Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	GlobInc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	
Gennaio	60.7	30.41	11.32	73.3	66.4	3508	3403	0.861
Febbraio	71.5	34.72	13.71	85.3	78.3	4122	4009	0.872
Marzo	124.3	50.50	12.62	150.5	140.2	7218	7044	0.868
Aprile	160.8	64.13	14.77	192.9	180.5	8859	8654	0.832
Maggio	219.8	69.52	18.76	266.7	252.7	11638	11385	0.792
Giugno	234.0	63.95	22.34	286.3	272.4	12241	11780	0.763
Luglio	244.3	58.71	27.22	300.8	286.7	12973	12316	0.760
Agosto	211.8	56.90	24.54	262.5	248.9	11776	11521	0.814
Settembre	157.0	50.76	23.08	194.4	182.6	9183	8978	0.857
Ottobre	100.0	44.28	20.89	121.1	112.1	5825	5680	0.870
Novembre	65.9	30.99	18.00	79.6	72.6	3796	3688	0.860
Dicembre	48.0	22.71	13.15	58.2	52.7	2766	2667	0.849
Anno	1698.1	577.60	18.39	2071.7	1946.2	93904	91124	0.816

Legenda:

GlobHor

Irraggiamento orizz. globale

DiffHor Irraggiamento diffuso orizz. T_Amb

GlobInc

Globale incidente piano coll.

GlobEff EArray Globale "effettivo", corr. per IAM e ombre

E_Grid

Energia effettiva in uscita campo Energia iniettata nella rete

PR Indice di rendimento

Sistema connesso in rete: Grafici speciali

Progetto: Aprilia-3

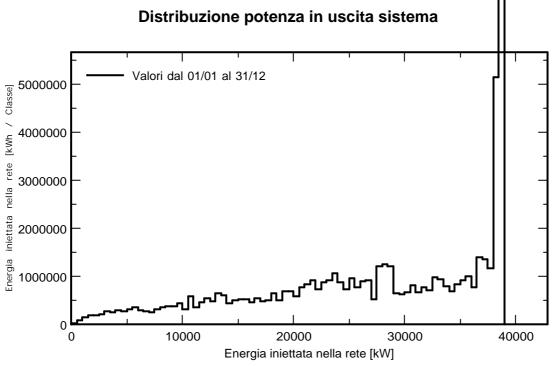
Gruppo di inverter

Variante di simulazione : Nuova variante di simulazione

Parametri principali del sistema Tipo di sistema inseguitori campo singolo, con indetreggiamento Ombre vicine Ombre lineari Orientamentoinaequoit6Ne, asse inclinato, Inclinazione asse Azimut asse Moduli FV JKM615N-78HL4-(V) Modello Pnom 615 Wp Numero di moduli 87646 Campo FV Pnom totale 53902 kWp Inverter Modello SUN2000-185KTL-H1 Pnom 185 kW ac

Numero di unità

Bisogni dell'utente Carico illimitato (rete)


Diagramma giornaliero entrata/uscita

210.0

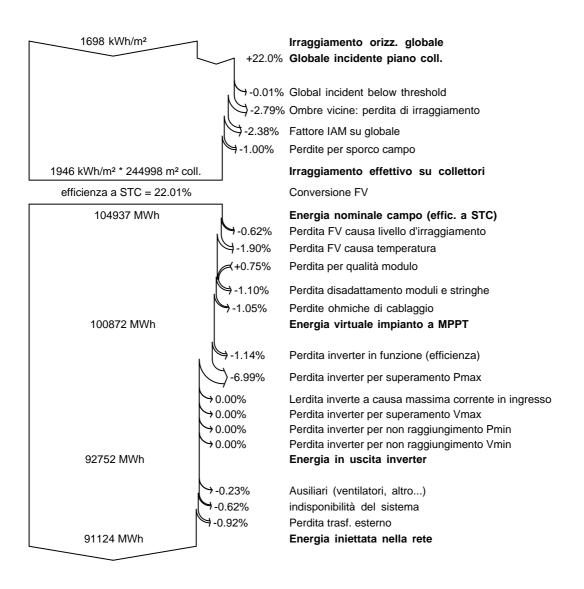
Pnom totale

38850 kW ac

Sistema connesso in rete: Diagramma perdite

Progetto: Aprilia-3

Variante di simulazione : Nuova variante di simulazione


Parametri principali del sistema Tipo di sistema inseguitori campo singolo , con indetreggiamento

Ombre vicine Ombre lineari

Orientamentoinaemoit 61/e, asse inclinato, Inclinazione asse Azimut asse 0° Moduli FV Modello JKM615N-78HL4-(V) Pnom 615 Wp Pnom totale Campo FV Numero di moduli 87646 53902 kWp Inverter SUN2000-185KTL-H1 Modello Pnom 185 kW ac Gruppo di inverter Numero di unità 210.0 Pnom totale 38850 kW ac

Bisogni dell'utente Carico illimitato (rete)

Diagramma perdite sull'anno intero

