

COMUNE DI APRILIA

PROVINCIA DI LATINA

REGIONE LAZIO

Dunk Ander

REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000.00 kW

	MASS	IMA IN IMMISSION	E PARI A 3	9.00)0,00 k	W		
Denominazione Ir	mpianto:	APRIL	IA 3					
Ubicazione:		Comune di <i>i</i>	Aprilia (LT)					
020	ORATO 0800 20800-R_Rel-Geologica		RELAZIONE G	BEOL	OGICA			
Sviluppatore:		Project - Commissioning - Cons		Scala: -	_		PROGE	тто
ENGINEERING	ENERGY TERRA	ENGINEERING ENERGY TERRA PROJECTS SRL Str. Grigore Ionescu, 63, Bl: T73, sc. 2, Sect 2, Jud. Municipiul Bucuresti, Romania RO43492950		Data: 15/ 0	06/2023	PRELIMINARE	DEFINITIVO	AS BUILT
Richiedente:		Geo Solar World 2 S.r.l. Via Pasquale Cotechini, 106 63822 Porto San Giorgio (FM) P.IVA 02509650442		Geol.	e Professioni Davide Ma o al n. 1.511 zio	rchese	ine dei	Geologi
Versione	Data	Descrizion	ne.		Redatto	Approv	rato	Autorizzato
	15/06/2023	PROGETTO DEFI			D.M	L.F.F		L.F.P.
01								
02								
03								
	II Geolo Dott. Davide I	_	Ge	eo So	II Richieden O lar Wor		r.l.	

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 2 di 47

SOMMARIO

1. OGGETTO	3
2. INQUADRAMENTO GEOGRAFICO ED UBICAZIONE DEL PROGETTO	5
3. INQUADRAMENTO GEOLOGICO REGIONALE	15
4. INQUADRAMENTO GEOLOGICO DELL'AREA	17
5. INQUADRAMENTO IDROGEOLOGICO	19
6. CARATTERIZZAZIONE GEOTECNICA	
7. MODELLO SISMICO	34
1. SISMICITÀ DELL'AREA	34
2. CARATTERISTICHE SISMICHE DEL SITO E PARAMETRI SISMICI DI PROGETTO	37
8. CONSIDERAZIONI CONCLUSIVE	46

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 3 di 47

1. OGGETTO

Il presente documento è parte della documentazione relativa al progetto per la costruzione e l'esercizio di un Impianto Fotovoltaico conforme alle vigenti prescrizioni di legge con potenza di picco pari a 53.902,29 kW da realizzare nel Comune di Aprilia (LT).

L'impianto sarà del tipo grid connected e l'energia elettrica prodotta sarà riversata completamente in rete, previa elevazione di tensione da 36 kV a 150 kV con allaccio presso una nuova sottostazione elettrica di Terna S.p.A. come da preventivo avente codice di rintracciabilità n. 202000641.

Il progetto prevede le seguenti opere da autorizzare:

- Generatore fotovoltaico, suddiviso in n. 6 sottocampi
- Elettrodotto interrato MT 36 kV
- Stazione di Elevazione di Utenza 36/150 kV
- Elettrodotto interrato AT 150 kV

Il proponente e soggetto responsabile è la società **Geo Solar World 2 S.r.l.**, corrente in Porto San Giorgio (FM) – Via Pasquale Cotechini, 106 – n. iscrizione REA FM 288605 – P.IVA 02509650442 – Amministratore Unico e Legale Rappresentante sig. Iuvalè Andrea.

La presente Relazione Geologico-Sismica è destinata a fornire indicazioni sulla natura delle litologie affioranti ed il loro assetto stratigrafico, sulla natura geotecnica dei terreni oltre che presentare una modellazione sismica dell'area di studio. Sono state, pertanto, effettuate indagini sismiche in situ al fine di individuare la categoria sismica del sottosuolo (*D.M.* 17 *gennaio 2018*) e indagini in situ secondo quanto prescrive il *Regolamento regionale n. 26 del 26 ottobre 2020 - Allegato C* e successive modifiche con la *Delibera di Giunta Regionale Lazio del 13 aprile 2021 n. 189*. Tale regolamento prevede che le indagini da effettuare siano funzione del Livello di Rischio Sismico dell'Opera.

Questo viene definito dai seguenti parametri:

CC	DMUNE DI APRILIA (LT)
Zona sismica	2b
Classe d'uso	II
Livello di Rischio Sismico	medio

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 4 di 47

	PERICOLOSITA'					
		Zona Sismica				
PROGETTI	1	2a	2b	3a	3b	
classi d'uso I e II	MEDIO	MEDIO	MEDIO	BASSO	BASSO	
classe d'uso III	ALTO	ALTO	MEDIO	MEDIO	MEDIO	
classe d'uso IV	ALTO	ALTO	ALTO	MEDIO	MEDIO	

Schema dei 3 Livelli di Rischio Sismico (Basso, Medio, Alto), contenuto nel Regolamento regionale n.26 del 26 ottobre 2020, determinati in funzione della zona sismica e della classificazione del progetto

Pertanto lo studio è stato impostato secondo le seguenti procedure:

- Analisi bibliografica dei dati relativi alla geologia ed alle caratteristiche stratigrafiche, idrogeologiche e strutturali dell'area, ricavati da ricerche e studi eseguiti in precedenza nella zona.
- Rilevamento geomorfologico dell'area atto a descrivere l'eventuale presenza di fenomeni di dissesto in atto o
 potenziali.
- Rilevamento geologico di superficie finalizzato alla caratterizzazione geologico-stratigrafica dei terreni affioranti.
- Rilevamento idrogeologico per esaminare le condizioni del reticolo idrografico e l'eventuale presenza di falde sospese e confinate, attraverso il rilievo dei pozzi esistenti.
- Indagini sismiche MASW, ReMi e HVSR per individuare la categoria sismica di terreno in base alla velocità delle onde "s".
- Prove penetrometriche pesanti DPSH.
- Modellazione geologica.
- Modellazione sismica.
 - Elaborazione dati e stesura della relazione.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 5 di 47

2. INQUADRAMENTO GEOGRAFICO ED UBICAZIONE DEL PROGETTO

Fig. 2.1: Inquadramento geografico generale

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 6 di 47

Stato/i	ITALIA
Regione/i	LAZIO
Città metropolitana/e	-
Provincia/e	LATINA
Comune/i	APRILIA
Comune/i confinanti	ARDEA – ARICCIA – LANUVIO – VELLETRI – NETTUNO - ANZIO (RM) CISTERNA DI LATINA - LATINA (LT)
Area/e marina/e	-

Fig. 2.2: Inquadramento su foto satellitare scala 1:100000

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 7 di 47

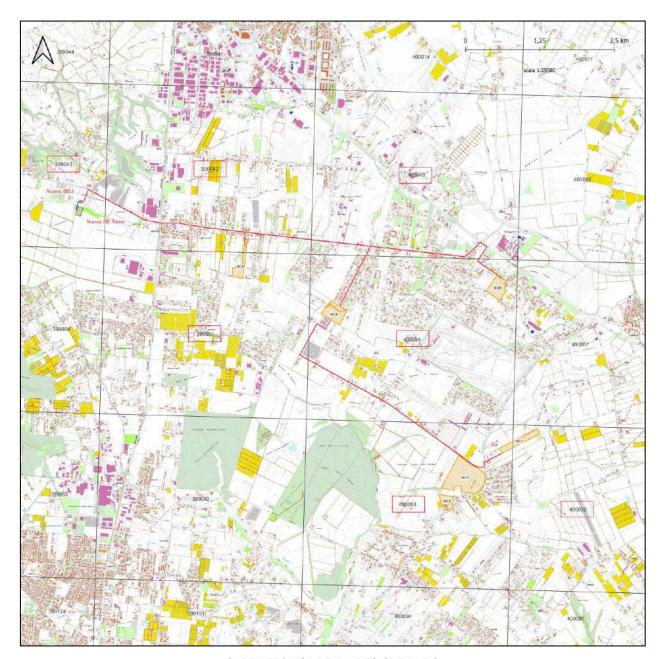
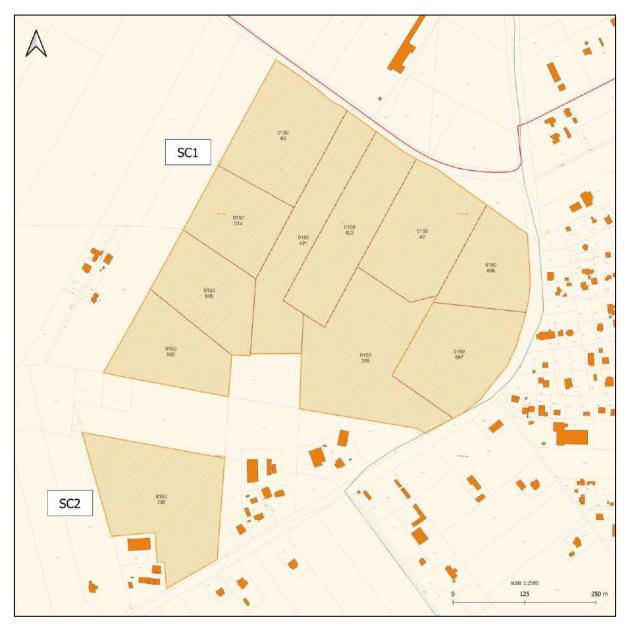



Fig. 2.3: Inquadramento su foto satellitare scala 1:25000

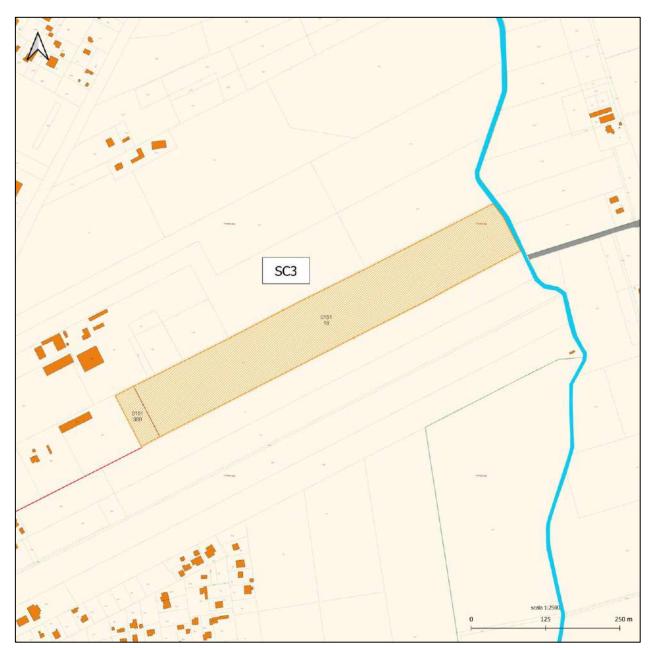
ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 8 di 47



CARTA TECNICA DELLA REGIONE LAZIO Scala 1:5000

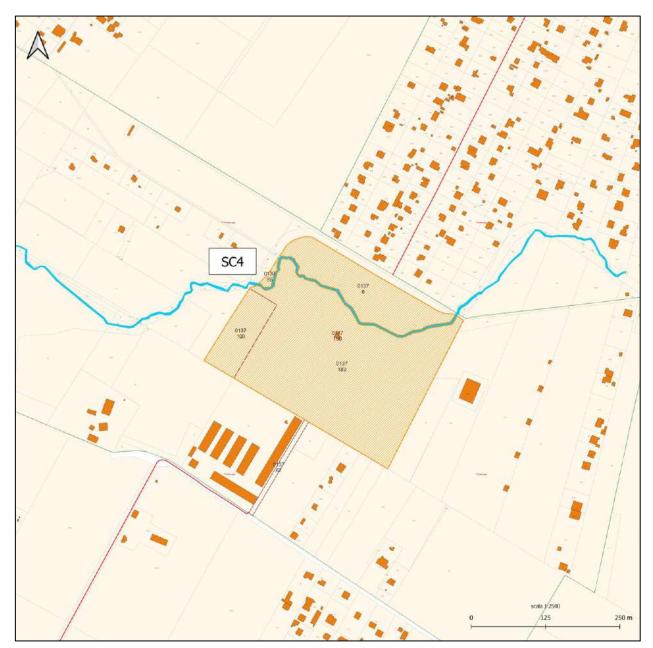
Elemento n.	Denominazione
399043	COGNA
399042	CAMPO DI CARNE
400013	ABBOTT
400054	PRATI DEL SOLE
400053	PISCINA CARDILLO
400052	TORRE DEL GIGLIO
399081	OASI DEI PINI

Fig. 2.4: Inquadramento su CTR 5k scala 1:25000


ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 9 di 47

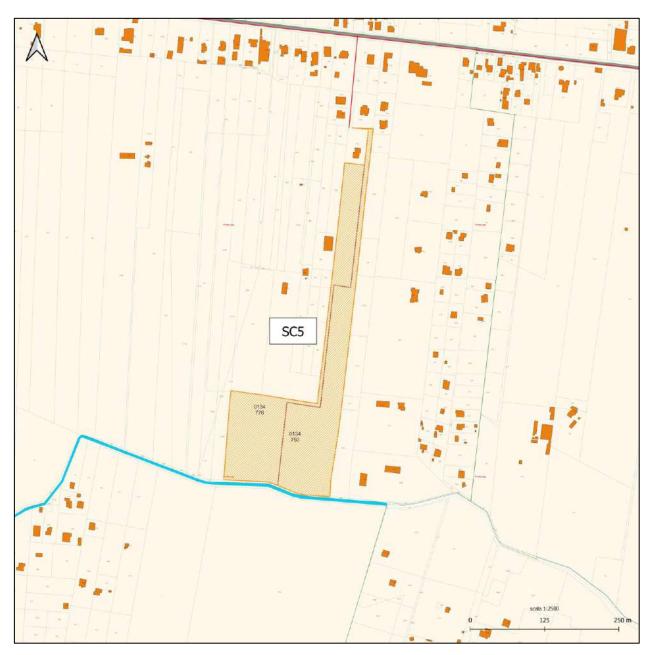
	so	TTOCAMPO	1						
foglio	particella	ha	а	ca	1				
	42	3	13	50	1				
	89	3	5	40	1				
	309	4	44	80	1				
	314	2	7	40	1				
150	421	2	97	87	1				
(130	422	2	76	19]				
	897	2	97	80	<u> </u>				
	898	2	5	0		so.	TTOCAMPO	2	145
	899	2	32	66	foglio	particella	ha	а	ca
	900	2	25	84	150	780	4	9	70
		28	6	46	(A.	C	4	9	70

Fig. 2.5: Inquadramento su stralcio di mappa catastale scala 1:2500 – Sottocampi 1 e 2


ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 10 di 47

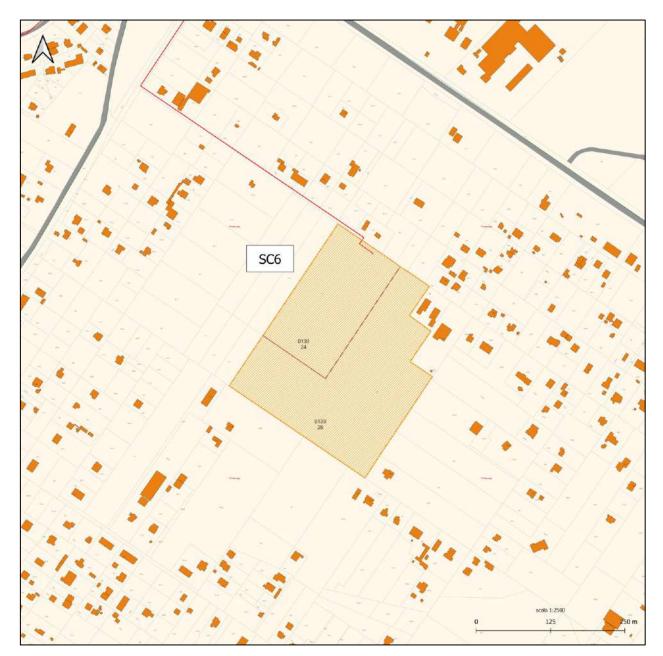
SOTTOCAMPO 3				
foglio	particella	ha	а	ca
137	67	0	14	80
151	18	6	66	20
151	380	0	33	80
		7	14	80

Fig. 2.6: Inquadramento su stralcio di mappa catastale scala 1:2500 – Sottocampo 3


ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 11 di 47

SOTTOCAMPO 4					
foglio	particella	ha	а	ca	
	6	1	78	30	
	95	0	4	95	
137	100	0	80	50	
	189	6	45	31	
	190	0	0	69	
	·	9	9	75	

Fig. 2.7: Inquadramento su stralcio di mappa catastale scala 1:2500 – Sottocampo 4


ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 12 di 47

SOTTOCAMPO 5					
foglio	particella	ha	а	ca	
424	750	2	21	20	
134	776	2	19	40	
		4	40	60	

Fig. 2.8: Inquadramento su stralcio di mappa catastale scala 1:2500 – Sottocampo 5

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 13 di 47

SOTTOCAMPO 6				
foglio	particella	ha	а	ca
420	24	2	84	57
139	28	5	22	5
		8	6	62

Fig. 2.9: Inquadramento su stralcio di mappa catastale scala 1:2500 – Sottocampo 6

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 14 di 47

3	SCHEDY	DI SINTESI DEL	DROGETTO	DEFINITIVO
J	. JUHEDA	DI SINTESI DEL	PROGETTO	DEFINITION

Denominazione Impianto			APRILIA 3					
Comune (Provincia)			Aprilia (LT)					
Sottocampi			SC1	SC2	SC3	SC4	SC5	SC6
o " , wo	204	LON	12.698017	12.694506	12.708259	12.670866	12.651613	12.703559
Coordinate WG	584	LAT	41.515802	41.512147	41.521308	41.540397	41.546827	41.544642
Superficie di pro	ogetto (lorda – cata	stale)	280.646 m ²	40.970 m ²	71.480 m ²	90.975 m ²	44.060 m ²	80.662 m ²
		TOTALE		6	08.793 m ² – 6	0 ha 87 a 93 d	ca	
Superficie di im	pianto (netta – interno	recinzione)	268.117 m ²	37.494 m ²	62.282 m ²	85.872 m ²	37.200 m ²	50.975 m ²
		TOTALE		54	41.940 m ² – 5	4 ha 19 a 40 d	ca	
Potenza di Picc	o (CC)				53.902	,29 kW		
Tensione di sist	tema (CC)		1.500 V					
Codice rintracci	abilità (TICA)		202000641					
			Elettrodotto interrato MT 36 kV – 15.194,18 m					
Opere di conne	ssione		Nuova Stazione di Elevazione di Utenza LON 12.619023 - LAT 41.554030					
			Elettrodotto interrato AT 150 kV – 178,56 m					
Punto di connes	ssione (POD)		Nuov	a Stazione Ele				RTN
Regime di eserc	cizio			LO	N 12.619402 Cession	- LAT 41.5562 ne totale	210	
	issione richiesta [S	TMG1	39.000,00 kW					
	evo richiesta per ι		300 kW					
Strutture di sos			Inseguimento Monoassiale (Trackers)					
			n. 42.692	n. 5.434	n. 10.790	n. 14.560	n. 5.694	n. 8476
Moduli in silicio	monocristallino da	a 615 Wp	n. 87.646					
Inverter tipo "di stringa" per installazione Outdoor 185 kW								
Tilt			-60 / +60°					
Azimuth			-6°	10°	-27°	27°	6°	0°
Pitch					8			
	Cabina di parallelo	n. 6	1	1	1	1	1	1
	ower Station Control Room	n. 20 n. 6	8 1	2	<u>4</u> 1	3 1	2	1

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 15 di 47

3. INQUADRAMENTO GEOLOGICO REGIONALE

L'area oggetto del presente studio è situata ai margini nord occidentali della Pianura Pontina. Questa rappresenta la porzione più meridionale di una più ampia area subsidente che si sviluppò fra i primi rilievi della catena appenninica e l'attuale linea di costa, a partire dal Pliocene inferiore. Tale area dalla Toscana al Fiume Astura si continuava più a Sud con l'attuale Pianura Pontina s.s., dove lo sprofondamento sembra essere più recente e ascrivibile al Pliocene superiore. Nell'area considerata la depressione s'instaura fra i rilievi appenninici emersi (Monti Lepini ed Ausoni), che presentano una successione carbonatica in facies Laziale-Abruzzese e l'attuale margine tirrenico, ove il substrato meso-cenozoico sepolto è costituito da una successione calcareo-silico-marnosa in facies umbro-sabina, di età compresa fra il Cretacico e l'Eocene.

La storia geologica rappresenta solo un dettaglio di un processo geodinamico più ampio che ha interessato larga parte del Mediterraneo, a partire dal Triassico, quando la zolla africana ed europea costituivano un'unica entità entro la quale si sviluppava un bacino aperto verso est chiamato Golfo della Tetide. In questo bacino si formarono complessi di piattaforma, di margine, di scarpata e di bacino, ciascuno di essi caratterizzato da associazioni di litotipi che si alternano e si ripetono in vario modo in funzione dell'evoluzione dell'area che caratterizzavano.

Le profonde trasformazioni nel corso del tempo si traducono in cambiamenti sostanziali nella paleogeografia degli ambienti con conseguente sviluppo di facies diverse.

Quindi, già a partire dal Mesozoico, si determina la formazione del grosso sistema orografico carbonatico, che è la catena dei Monti Lepini-Ausoni-Aurunci con altitudini fino ai 1.536 metri del Monte Semprevisa e la formazione di depressioni che bordano le zone più rilevate, quali la Valle Latina, la Pianura Pontina, la Piana di Fondi e del Garigliano, che vengono ricoperte da sedimenti continentali, fluvio-lacustri e piroclastici.

Il sollevamento della catena fino alle quote attuali sembra essere un evento molto recente avvenuto per gran parte nel corso del quaternario, e dovuto probabilmente ad un fenomeno di natura essenzialmente isostatica, legato ad un riequilibrio di masse tuttora in corso.

L'eustatismo, che nel quaternario ha determinato sensibili variazioni del livello di base del reticolo idrografico, ha favorito l'erosione carsica con conseguente formazioni di cavità ipogee che caratterizzano tutto il sistema carbonatico.

Le successioni stratigrafiche in tutta la Piana risultano quindi fortemente condizionate dai due fenomeni suddetti: il sollevamento della catena con la conseguente subsidenza dell'area pontina, e le continue variazioni eustatiche del livello marino. Questi due fenomeni hanno determinato una deposizione differenziata di sedimenti terrigeni tanto da rendere particolarmente complessa la ricostruzione delle serie stratigrafiche.

Verso la costa i terreni affioranti sono di natura essenzialmente sabbiosa mentre nelle colmate di depressine bonificate, possono trovarsi sedimenti limno-palustri argillosi con abbondante componente torbosa.

La struttura risultante è complicata dalla presenza di elementi secondari legati all'evoluzione generale della depressione, in particolare dalle zone di alto strutturale di Lavinio e Fogliano la depressione fu colmata da sedimenti plio-pleistocenici che,

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 16 di 47

coinvolti durante e dopo la loro deposizione in fasi tettoniche distensive ricalcano, almeno in parte, l'assetto del substrato carbonatico sepolto. Studi recenti indicano che le fasi tettoniche del Pliocene superiore sono le maggiori responsabili dell'attuale assetto strutturale dell'area pontina.

I dati stratigrafici ricavati da sondaggi profondi e da prospezioni geofisiche mostrano che il passaggio dalla depressione all'alto strutturale dei M. Lepini avviene attraverso una serie di faglie che rialzano a gradinata i calcari cretacici.

La subsidenza, che deve essersi esplicata almeno fino ai tempi storici, rende conto del fatto che i sedimenti affioranti sono molto recenti. Sulla base dei sondaggi noti nel sottosuolo della Pianura Pontina sono presenti, oltre ai sedimenti per lo più argillosi del Pliocene che passano a calcareniti verso i rilievi Lepini, anche argille del pleistocene inferiore. Più recenti sembrano essere i depositi litorali che verso l'alto fanno passaggio ad un facies salmastra. I sedimenti del Pleistocene medio sia marini che continentali scarsamente rappresentati in superficie sono ben riconoscibili nei sondaggi in quanto sono caratterizzati dalla presenza di abbondanti prodotti piroclastici rimaneggiati.

Alla stessa data si riferiscono sollevamenti ed abbassamenti del livello marino per cause glacio-eustatiche che determinarono rispettivamente fasi di sedimentazione e di erosione anche nella pianura pontina.

E proprio agli inizi del Pleistocene medio che poco più a Nord ebbe inizio il vulcanismo Albano le vulcaniti che giungono fin nella Pianura Pontina ma sono, tuttavia, soltanto quelle riferibili alla prima fase di attività.

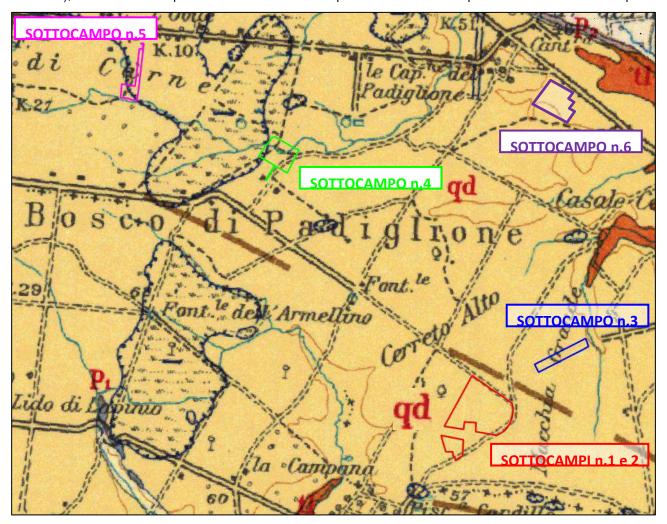
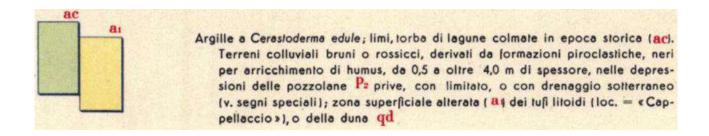
I sedimenti marini del Pleistocene superiore sono depositi di spiaggia spesso associati anche a solchi di battente che si sviluppano a quote di circa 9 m s.l.m. e a fasce di fori di litodomi nei materiali litici, si rinvengono a riempimento delle grotte che si aprono sul Promontorio del Circeo.

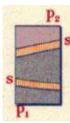
È da ricordare come la maggior parte dei sondaggi effettuati nella Pianura Pontina interessino livelli sabbiosi fortemente arrossati e argillo-sabbiosi, ricchi in minerali vulcanici definiti nel passato come un'unica formazione, denominata Duna Antica formatasi dopo il Tirreniano. Tali depositi occupano una fascia molto ampia parallela alla linea di costa e probabilmente sono legati ad almeno due cicli differenti, il più recente dei quali, di età intra-wurmiana, è il più prossimo alla costa e raggiunge un'elevazione di circa sei metri s.l.m.

ELABORATO COMUNE di APRILIA PROVINCIA di LATINA		Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 17 di 47

4. INQUADRAMENTO GEOLOGICO DELL'AREA

L'area di studio, ubicata nel settore centro-occidentale del Foglio n.158 "Latina" della Carta geologica d'Italia (in scala 1:100.000), ricade nel tratto di pianura Pontina caratterizzato prevalentemente da litotipi sabbiosi del Pleistocene superiore.


Fig 4.1 - Stralcio Carta Geologica d'Italia alla Scala 1:100.000 Foglio n.158 "Latina"

ELABORATO 020800		
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 18 di 47

«Duna antica» (qd); sabbie rosse in genere, eolizzate, ± commiste con argille dal disfacimento di tl, intercalazioni di ghiaino siliceo a ciottoli sfaccettati e lustrati. Depositi illuviali a croste e poupées calcaree, croste e pisoliti ferrifere (loc. = «Ferricciòlo» = Ortstein, Alios). Con industria litica del Paleolitico superiore (Aurignaciano), e mammiferi: Mammonteus primigenius con Vitis etc.; sabbie grige con industria litica Moustieriana, e Paleoloxodon antiquus alla base. Sabbie con abbondante ghiaia silicea [qd].

Paleosuoli (S) intercalati a vari livelli della serie piroclastica: fra le pozzolane superiori (P) e le inferiori (P); nelle pozzolane inferiori P1; rossi per effetto termico alla base delle colate laviche.

Tufo litoide («tufo lionato» Auct.) (tl), generalmente rosso fulvo, talora grigio, nero, verde alla base (Anzio), con leucite e biotite. Facies da compatte e uniformi a brecciate fino a pozzolana tipica; facies vacuolare giallastra. In più orizzonti: alla base delle P2 con rari molluschi terrestri (Helix nemoralis) e mammiferi (Cervus sp.), impronte calcarizzate di legni, e filliti (Vitis, Ruscus, Zelkova, etc.); intercalato nelle pozzolane inferiori P1; con molluschi marini (Pectunculus) a SE di Nettuno.

In particolare, nella cartografia di riferimento, l'area oggetto del presente studio, risulta caratterizzata da **sabbie (in genere rosse) della formazione della "Duna Antica"** (qd). Si tratta di sabbie consolidate che caratterizzano tutta l'area della pianura Pontina compresa tra i laghi costieri e le dune recenti.

All'interno di esse, a varie profondità dal piano campagna, si intercalano *lenti di limoso-argillose* che devono la loro origine al disfacimento della *formazione del Tufo litoide* (tl).

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 19 di 47

5. INQUADRAMENTO IDROGEOLOGICO

I caratteri idrogeologici della Pianura Pontina dipendono dai rapporti di giacitura che si sono venuti a determinare tra i diversi sistemi litologici.

Si possono riconoscere alcune strutture idrogeologiche, sede di attiva circolazione:

- La parte emersa della struttura carbonatica lepino-ausono-aurunca, interessata da un vistoso processo carsico è sede di una imponente falda acquifera che alimenta la parte sedimentaria della Pianura. La permeabilità delle formazioni calcaree è di natura secondaria, dovuta cioè allo stato di fessurazione e carsismo;
- La parte della struttura carbonatica ribassata sotto la piana pontina e coperta da sedimenti plio-quaternari meno permeabili, contiene una ricca falda imprigionata, alimentata dall'acquifero della dorsale emersa;
- I depositi plio-quaternari che colmano la Pianura presentano permeabilità variabile in funzione della granulometria e della natura litologica e sono sede di falde libere o imprigionate.

Non si può escludere una continuità idraulica laterale tra l'acquifero regionale del complesso carbonatico e gli orizzonti più permeabili della piana, ubicati ai margini della dorsale, dove sono presenti numerose sorgenti.

L'acquifero carsico lepino-ausono viene alimentato dal processo di infiltrazione che si sviluppa in modo prevalentemente verticale, tanto da assicurare una ricarica sufficientemente omogenea sull'intera idrostruttura.

I depositi plio-quaternari presentano permeabilità variabili in funzione della granulometria e della natura litologica.

Dall'analisi della Carta Idrogeologica del Territorio della Regione Lazio, le aree di studio risultano comprese nel *Complesso* delle sabbie dunari (5) appartenente all'*Unità Detritico-Alluvionale della Piana Pontina*.

ELABORATO 020800		
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 20 di 47

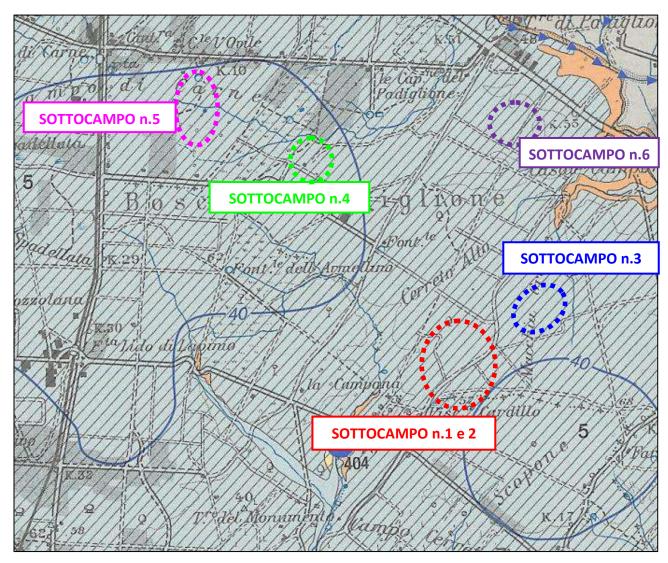


Fig 5.1 -Stralcio della Carta Idrogeologica del Territorio della Regione Lazio, alla scala 1:100.000, Foglio n.3

COMPLESSI IDROGEOLOGICI

COMPLESSO DEI DEPOSITI ALLUVIONALI RECENTI - potenzialità acquifera da bassa a medio alta

Alluvioni ghiaiose, sabbiose, argillose attuali e recenti anche terrazzate e coperture eluviali e colluviali (OLOCENE). Spessore variabile da pochi metri ad oltre un centinaio di metri. Dove il complesso è costituito dai depositi alluvionali dei corsi d'acqua perenni presenta gli spessori maggiori (da una decina ad oltre un centinaio di metri) e contiene falcie multistrato di importanza regionale. I depositi alluvionali dei corsi d'acqua minori, con spessori variabili da pochi metri ad alcune decine di metri, possono essere sede di falde locali di limitata estensione.

COMPLESSO DELLE SABBIE DUNARI - potenzialità acquifera medio alta Sabbie dunari, depositi interdunari, depositi di spiaggia recenti e dune deltizie (PLEISTOCENE - OLOCENE). Spessore di alcune decine di metri. Il complesso è sede di una significativa circolazione idrica sotterranea che dà origine a falde continue ed estese la cui produttività è limitata dalla ridotta permeabilità delle sabbie.

COMPLESSO DELLE POZZOLANE - potenzialità acquifera media
Depositi da colata piroclastica, genericamente massivi e caotici, prevalentemente litoidi. Nel complesso sono comprese le ignimbriti e tufi
(PLEISTOCENE). Spessore da pochi metri ad un migliaio di metri.
Questo complesso è sede di una estesa ed articolata circolazione idrica sotterranea che alimenta la falda di base dei grandi acquiferi vulcanici regionali.

ELABORATO 020800		
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 21 di 47

COMPLESSO DEI DEPOSITI CLASTICI ETEROGENEI - potenzialità acquifera bassa.

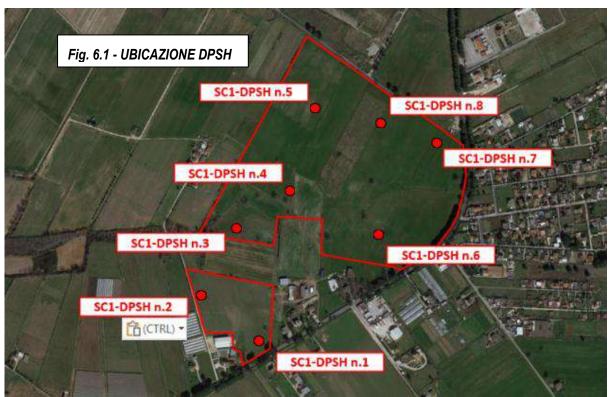
Depositi prevalentemente sabbiosi e sabbioso - argillosi a luoghi cementati in facies marina e di transizione, terrazzati lungo costa, sabbie e conglomerati fluviali di ambiente deltizio (PLIOCENE - OLOCENE). Spessore variabile fino a un centinaio di metri. Il complesso non presenta una circolazione idrica sotterranea significativa. Ove sono prevalenti facies conglomeratiche di elevata estensione e potenza si ha la presenza di falde di interesse locale.

Il Complesso delle sabbie dunari, con potenzialità acquifera medio alta, è costituito da sabbie dunari, depositi interdunari, depositi di spiaggia recenti e dune deltizie (PLEISTOCENE - OLOCENE) in spessori di alcune decine di metri. Il Complesso delle sabbie dunari è sede di una significativa circolazione idrica sotterranea che dà origine a falde continue ed estese la cui produttività è limitata dalla ridotta permeabilità delle sabbie.

I rilievi in sito, uniti ai risultati delle indagini geognostiche, hanno permesso di escludere la presenza di una falda freatica nell'intervallo di profondità analizzato all'interno degli areali di progetto.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 22 di 47

6. CARATTERIZZAZIONE GEOTECNICA


La caratterizzazione geotecnica delle **sabbie della Duna Antica**, affioranti nell'intero areale dei Sottocampi di progetto, è stata effettuata mediante l'esecuzione di prove penetrometriche peasanti DPSH.

Per ognuno dei quattro sottocampi in progetto, vengono riportate di seguito:

- la localizzazione delle *prove penetrometriche DPSH*;
- la sezione geotecnica schematica;
- le tabelle con una sintesi dei parametri geotecnici risultanti dall'elaborazione delle indagini per ogni singola Unità Geotecnica.

SOTTOCAMPI n.1 e 2

La caratterizzazione geotecnica delle *sabbie della Duna Antica*, affioranti nell'area di progetto del Sottocampo n.1, è stata effettuata mediante l'esecuzione di otto prove penetrometriche DPSH. Da queste si individuano e si possono discriminare, al di sotto di uno strato di circa 40 cm di *Terreno agricolo*, tre differenti strati (o Unità Geotecniche) costituiti prevalentemente da sabbie e caratterizzati da un differente grado di addensamento. L'UNITÀ GEOTECNICA n.1, che presenta uno spessore di 1,00 m, è costituita da sabbie sciolte. Tra 1,40 e 2,60 m dal piano campagna, l'UNITÀ GEOTECNICA n.2 è costituita da sabbie poco addensate. Al di sotto dei 2,60 m dal piano campagna, le sabbie risultano essere da poco a mediamente addensate (UNITÀ GEOTECNICA n.3).

ELABORATO 020800		
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 23 di 47

Ubicazione Prove penetrometriche DPSH

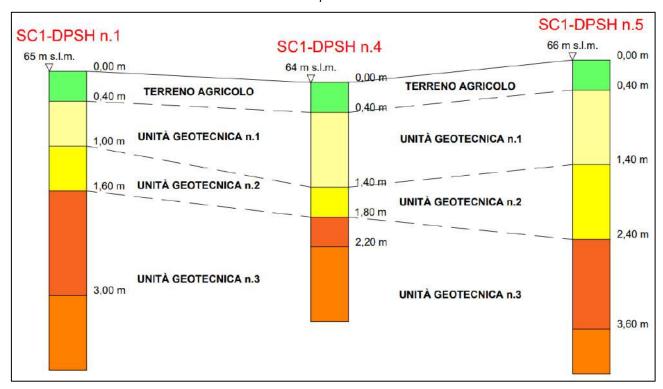


Fig. 6.2 -Modello Geotecnico Schematico Sottocampo n.1

UNITÀ GEOTECNICA n°1 - Profondità: 0,40 - 1,40 m Spessore: 1,00 m					
Granulometria: sabbiosa		Sciolte			
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI				
Angolo d'attrito	Ф (°)		21,0		
Modulo edometrico	Ed (Kg/cm²)		15,5		
Modulo di Young	Ey (Kg/cm²)		17,5		
Peso di Volume saturo	γ _s (KN/mc)		18,6		
Peso di Volume drenato	γ _d (KN/mc)		13,7		

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 24 di 47

UNITÀ GEOTECNICA n°2 - Profondità: 1,40 - 2,60 m Spessore: 1,20 m				
Granulometria: sabbiosa Poco addensate		Poco addensate		
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		23,0	
Modulo edometrico	Ed (Kg/cm²)		36,5	
Modulo di Young	Ey (Kg/cm²)		40,0	
Peso di Volume saturo	γ _s (KN/mc)		18,8	
Peso di Volume drenato	γ _d (KN/mc)		14,1	

UNITÀ GEOTECNICA n°3 - Profondità: Oltre i 2,60 m				
Granulometria: sabbiosa Da poco a media		Da poco a mediamente addensate		
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		24,5	
Modulo edometrico	Ed (Kg/cm²)		61,5	
Modulo di Young	Ey (Kg/cm²)		80,0	
Peso di Volume saturo	γ _s (KN/mc)		19,2	
Peso di Volume drenato	γ _d (KN/mc)		14,8	

La caratterizzazione geotecnica delle **sabbie della Duna Antica**, affioranti nell'area di progetto del Sottocampo n.2, è stata effettuata mediante l'esecuzione di due prove penetrometriche DPSH. Da queste si individuano e si possono discriminare, al di sotto di uno strato di circa 40 cm di Terreno agricolo, due differenti strati (o Unità Geotecniche) costituiti prevalentemente da sabbie e caratterizzati da un differente grado di addensamento. L'**UNITÀ GEOTECNICA n.1**, che presenta uno spessore di 2,00 m, è costituita da sabbie mediamente addensate. Al di sotto dei 2,40 m dal piano campagna, le sabbie risultano essere addensate (**UNITÀ GEOTECNICA n.2**).

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 25 di 47

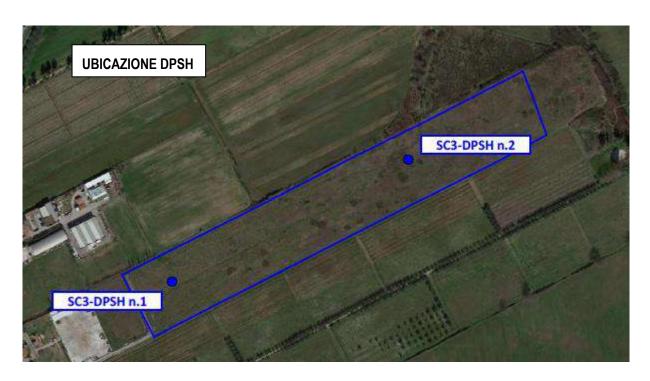


Fig. 6.3 - Ubicazione Prove penetrometriche DPSH

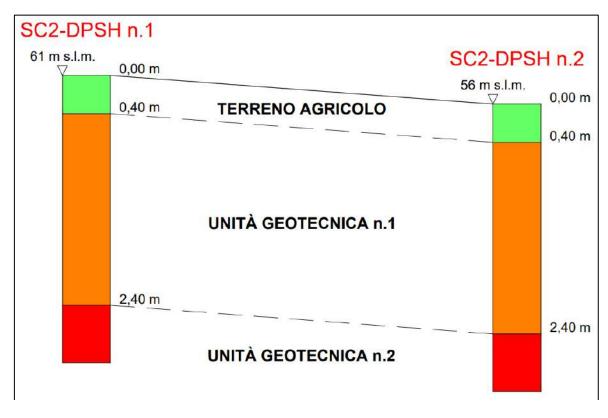


Fig. 6.4 -Modello Geotecnico Schematico Sottocampo n.2

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 26 di 47

UNITÀ GEOTECNICA n°1 - Profondità: 0,40 - 2,20 m Spessore: 2,00 m				
Granulometria: sabbiosa Mediamente addensate				
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		24,5	
Modulo edometrico	Ed (Kg/cm²)		95,0	
Modulo di Young	Ey (Kg/cm²)		125,0	
Peso di Volume saturo	γ _s (KN/mc)		19,6	
Peso di Volume drenato	γ _d (KN/mc)		15,5	

UNITÀ GEOTECNICA n°2 - Profondità: Oltre i 2,40 m			
Granulometria: sabbiosa Addensate			
PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		29,5
Modulo edometrico	Ed (Kg/cm²)		185,0
Modulo di Young	Ey (Kg/cm²)		240,0
Peso di Volume saturo	γ _s (KN/mc)		20,7
Peso di Volume drenato	γ _d (KN/mc)		17,3

La caratterizzazione geotecnica delle *sabbie della Duna Antica*, affioranti nell'area di progetto del Sottocampo n.3, è stata effettuata mediante l'esecuzione di tre prove penetrometriche DPSH. Da queste si individuano e si possono discriminare, al di sotto di uno strato di circa 40 cm di Terreno agricolo, due differenti strati (o Unità Geotecniche) costituiti prevalentemente da sabbie e caratterizzati da un differente grado di addensamento. L'UNITÀ GEOTECNICA n.1, presente in un intervallo di profondità compreso tra 0,40 - 2,40÷3,00 m, è costituita da sabbie da poco a mediamente addensate. Esclusivamente nel settore settentrionale del lotto, al di sotto dei 2,40 m dal piano campagna, le sabbie risultano essere addensate (UNITÀ GEOTECNICA n.2).

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 27 di 47

Fig. 6.5 - Ubicazione Prove penetrometriche DPSH

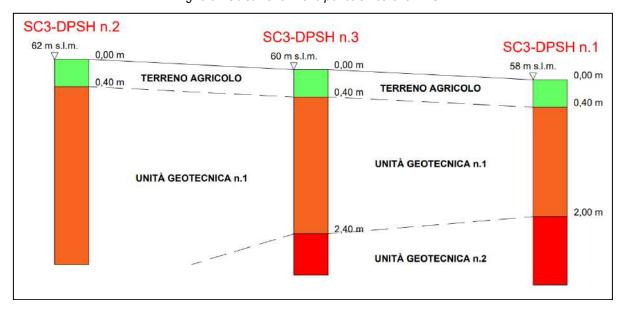


Fig. 6.6 - Modello Geotecnico Schematico Sottocampo n.3

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 28 di 47

UNITÀ GEOTECNICA n°1 - Profondità: 0,40 - 2,40÷3,00 m				
Granulometria: sabbiosa Da ¡		Da poco a mediamente addensate		
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		25,0	
Coesione di picco	c' (kN/m²)		0,00	
Modulo edometrico	Ed (Kg/cm²)		50,0	
Modulo di Young	Ey (Kg/cm²)		57,0	
Peso di Volume saturo	γ _s (KN/mc)		19,0	
Peso di Volume drenato	γ _d (KN/mc)		14,4	

UNITÀ GEOTECNICA n°2 - Profondità: Oltre i 2,40 m (Settore settentrionale lotto)			
Granulometria: sabbiosa		Addensate	
PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		29,0
Coesione di picco	c' (kN/m²)		0,00
Modulo edometrico	Ed (Kg/cm²)		150,0
Modulo di Young	Ey (Kg/cm²)		200,0
Peso di Volume saturo	γ _s (KN/mc)		20,3
Peso di Volume drenato	γ _d (KN/mc)		16,5

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 29 di 47

La caratterizzazione geotecnica delle *sabbie della Duna Antica*, affioranti nell'area di progetto del Sottocampo n.4, è stata effettuata mediante l'esecuzione di tre prove penetrometriche DPSH. Da queste si individuano e si possono discriminare, al di sotto di uno strato di circa 40 cm di Terreno agricolo, due differenti strati (o Unità Geotecniche) costituiti prevalentemente da sabbie e caratterizzati da un differente grado di addensamento. L'UNITÀ GEOTECNICA n.1, che presenta uno spessore di 3,40 m, è costituita da sabbie da poco a mediamente addensate. Al di sotto dei 3,80 m dal piano campagna, le sabbie risultano essere mediamente addensate (UNITÀ GEOTECNICA n.2).

Fig. 6.7 - Ubicazione Prove penetrometriche DPSH

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 30 di 47

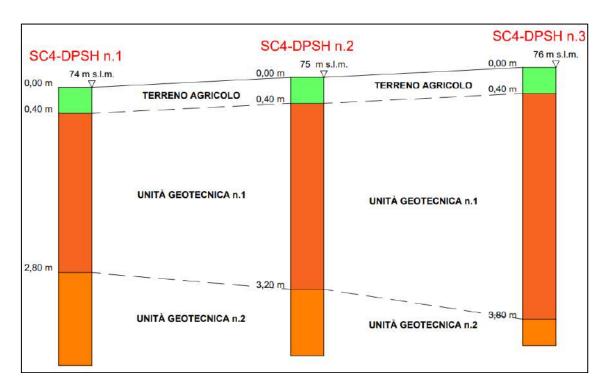


Fig. 6.8 - Modello Geotecnico Schematico Sottocampo n.4

UNITÀ GEOTECNICA n°1 - Profondità: 0,40 - 3,80 m Spessore: 3,40 m				
Granulometria: sabbiosa Da poco a mediamente addensate				
PARAMETRI GEOTEC	PARAMETRI GEOTECNICI			
Angolo d'attrito	Ф (°)		24,0	
Modulo edometrico	Ed (Kg/cm²)		70,0	
Modulo di Young	Ey (Kg/cm²)		60,0	
Peso di Volume saturo	aturo γ _s (KN/mc)		19,0	
Peso di Volume drenato γ _d (KN/mc)			14,5	

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 31 di 47

UNITÀ GEOTECNICA n°2 - Profondità: Oltre i 3,80 m				
Granulometria: sabbiosa Mediamente addensate				
PARAMETRI GEOTECNICI				
Angolo d'attrito	Ф (°)		25,5	
Modulo edometrico	Ed (Kg/cm²)		110,0	
Modulo di Young	Ey (Kg/cm²)		135,0	
Peso di Volume saturo	γ _s (KN/mc)		19,7	
Peso di Volume drenato	γ _d (KN/mc)		15,6	

La caratterizzazione geotecnica delle *sabbie della Duna Antica*, affioranti nell'area di progetto del Sottocampo n.6, è stata effettuata mediante l'esecuzione di n.5 prove penetrometriche DPSH. Da queste si individuano e si possono discriminare, al di sotto di uno strato di circa 40 cm di Terreno agricolo, tre diverse Unità Geotecniche) caratterizzate da sabbie aventi un differente grado di addensamento. L'**UNITÀ GEOTECNICA n.1**, che presenta uno spessore di poco meno di 1,00 m, è costituita da sabbie poco addensate. Quindi è presente diffusamente, a prescindere dalla quota del piano campagna, un livello di circa 1,00/1,50 di sabbie mediamente addensate (**UNITÀ GEOTECNICA n.2**). Al di sotto di queste sussistono sabbie addensate o molto addensate che arrivano al rifiuto strumentale (**UNITÀ GEOTECNICA n.3**), con parametri geotecnici elevati.

Dalle indagini sismiche si evince che, al di sotto di questo livello, è molto probabile che sussistano terreni meno addensati, poiché dall'elaborazione si nota una netta inversione che porta ad una Vs media non elevata (274 m/s)

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 32 di 47

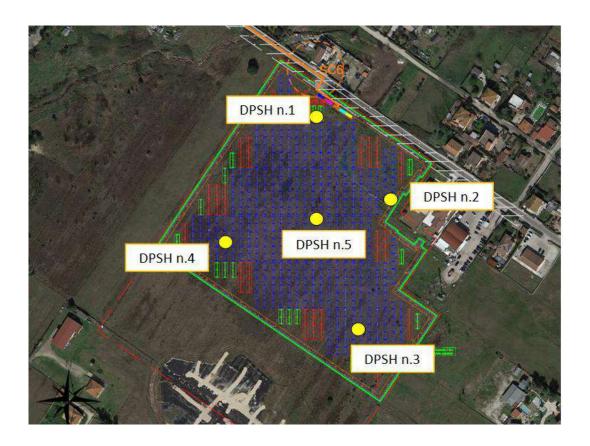
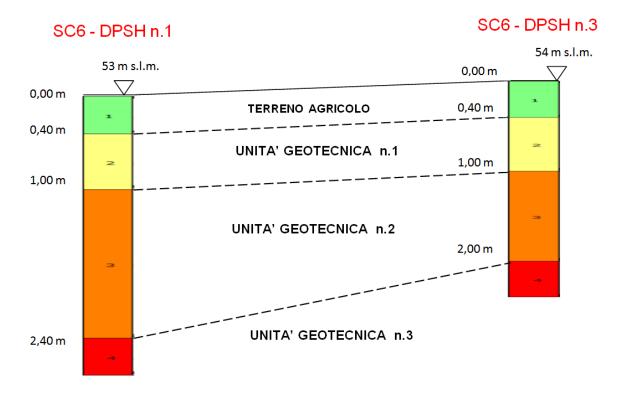



Fig. 6.9 - Ubicazione Prove penetrometriche DPSH

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 33 di 47

UNITÀ GEOTECNICA n°1 -	Profondità: 0,40 - 1,00 m Spessore medio : 0,60 m	
Granulometria: sabbiosa	Sciolte o poco addensate	
PARAMETRI GEOTECNICI		
Angolo d'attrito Φ (°)	21,0	
Modulo edometrico Ed (Kg/c	cm²) 24,0	
Modulo di Young Ey (Kg/cr	m²) 27,0	
Peso di Volume saturo γ _s (KN/me	18,7	1
Peso di Volume drenato γ _d (KN/mo	c) 13,9	
UNITÀ GEOTECNICA n°2 -	Profondità: 1,00 - 2,80 m Spessore: 1,80 m	
Granulometria: sabbiosa	Mediamente addensate	
PARAMETRI GEOTECNICI		
Angolo d'attrito Φ (°)	23,0	
Modulo edometrico Ed (Kg/c	cm²) 77	
Modulo di Young Ey (Kg/cr	m ²) 70	
Peso di Volume saturo γ _s (KN/me	nc) 19,1	
Peso di Volume drenato γ _d (KN/mo	c) 14,6	
4UNITÀ GEOTECNICA n°3 -	- Profondità: 2,80- 3,60 m Spessore minimo: 0,80 m	
Granulometria: sabbiosa	Addensate	
PARAMETRI GEOTECNICI		
Angolo d'attrito Φ (°)	27,5	
Modulo edometrico Ed (Kg/c	cm²) 108	
Modulo di Young Ey (Kg/cr	m²) 271	
Peso di Volume saturo γ _s (KN/me	17,8	
Peso di Volume drenato γ _d (KN/mo	2,00	

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 34 di 47

7. MODELLO SISMICO

1. SISMICITÀ DELL'AREA

Le aree sismogenetiche del Lazio sono distinte in due categorie: l'area "appenninica", con eventi sismici causati dalla tettonica ancora attiva legata alla fase post-collisionale dell'orogenesi appenninica, e l'area "vulcanica" con sismicità tipica delle aree vulcaniche attive (minore profondità degli ipocentri, medie magnitudo, distribuzione degli eventi sismici a "sciame").

Oltre a queste due aree sismogenetiche, si devono citare i terremoti profondi che interessano sporadicamente la fascia costiera del Lazio meridionale e della Campania dovuti alla subduzione litosferica al di sotto del Tirreno meridionale fino a profondità di circa 500 Km.

La sismicità del territorio comunale di Aprilia, quindi, è condizionata sia da eventi di origine locale relativamente superficiali, associati all'attività vulcanica albana, sia da eventi di provenienza appenninica profondi. La sismicità di origine vulcanica è caratterizzata da magnitudo massime inferiori a 4 con profondità ipocentrali inferiori a 7 Km.

Ai fini della caratterizzazione macrosismica del territorio comunale di Aprilia, è stato consultato il Database Macrosismico Italiano versione DBMI15, versione 4.0. dell'Istituto Nazionale di Geofisica e Vulcanologia, consultabile liberamente all'indirizzo http://emidius.mi.ingv.it/CPTI15-DBMI15 a cura di Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D'Amico S., Conte S., Rocchetti E. (2019). DBMI v4.0 fornisce un set di dati di intensità macrosismica relativo ai terremoti italiani con Magnitudo di intensità massima maggiore o uguale a 5, aggiornato alla finestra temporale 1000-2020. I dati provengono da studi di autori ed enti diversi, sia italiani che di paesi confinanti (Francia, Svizzera, Austria, Slovenia e Croazia). I dati di intensità macrosismica (MDP, Macroseismic Data Point) sono raccolti e organizzati da DBMI per diverse finalità. La principale è fornire una base di dati per la determinazione dei parametri epicentrali dei terremoti (localizzazione e stima della magnitudo) per la compilazione del Catalogo Parametrico dei Terremoti Italiani (CPTI). L'insieme di questi dati consente inoltre di elaborare le "storie sismiche" di migliaia di località, vale a dire l'elenco degli effetti di avvertimento o di danno, espressi in termini di gradi di intensità macrosismica, osservati nel corso del tempo a causa di terremoti.

Di seguito vengono elencati i terremoti più significativi in termini di magnitudo momento. Per ciascun terremoto viene riportata la data, l'area dell'epicentro, l'intensità epicentrale lo, il numero di Macroseismic Data Points (NMDP), la magnitudo momento (Mw), e l'effetto sul territorio di Aprilia in termini di gradi di intensità macrosismica INT.

Aprilia	
PlaceID	IT_54495
Coordinate (lat, lon)	41.594, 12.649
Comune (ISTAT 2015)	Aprilia
Provincia	Latina
Regione	Lazio
Numero di eventi riportati	8

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 35 di 47

DBMI15: Parametri di ricerca per comune - Comune di Aprilia

Effetti		In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi Se	Area epicentrale	NMDP	Io	Mw
NF	₫ 1958 06 24 06 07	Aquilano	222	7	5.04
NF	1980 10 01 00 57 3	Frusinate	41	5	4.26
4	1984 05 07 17 50	Monti della Meta	911	8	5.86
6	1987 04 11 02 26 2	Colli Albani	72	6	4.35
3-4	1988 04 30 06 15 5	Colli Albani	39	5-6	3.55
3	1989 12 19 14 28 2	Colli Albani	39	5-6	3.90
5	2005 08 22 12 02 0 2005 08 22 12 02 0 300 0 4	Costa laziale	57	5-6	4.78
F	2017 01 18 10 14 0	Aquilano	280		5.70

Fig. 7.1 -DBMI15: Eventi sismici registrati - Comune di Aprilia

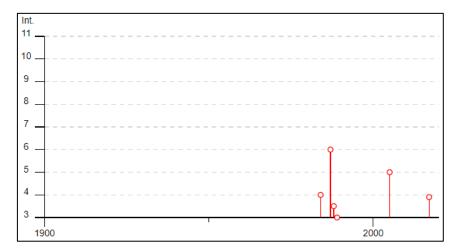


Fig. 7.2 -Diagramma cronologico degli eventi sismici - Comune di Aprilia

L'O.P.C.M. n. 3274 del 20 marzo 2003 ("Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e normative tecniche per le costruzioni in zona sismica") ha segnato il passaggio tra le norme sismiche di vecchia e nuova concezione, cioè tra le normative puramente prescrittive e la nuova impostazione prestazionale. Questa riclassificazione si basa sul principio della Pericolosità Integrata Attesa, identificabile con il valore di accelerazione massima al suolo derivante dall'intera distribuzione degli eventi attesi al sito come l'integrale della loro distribuzione. Con l'O.P.C.M. 3274/03 per la prima volta tutto il territorio nazionale viene classificato come sismico e questo viene suddivido in **4 Zone Sismiche** caratterizzate da pericolosità sismica decrescente.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 36 di 47

L'O.P.C.M. n.3519 del 28 aprile 2006 ("Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle stesse zone") conteneva la nuova *Mappa di pericolosità sismica del territorio nazionale*, espressa in termini di accelerazione massima (ag) al suolo con una probabilità di superamento pari al 10% in 50 anni, con tempi di ritorno quindi di 475 anni, riferita a suoli rigidi (V_S>800 m/s). All'interno delle singole Zone contenute nella Mappa, la pericolosità sismica non viene più espressa con un unico valore di accelerazione massima (ag), come accadeva con la precedente normativa, ma questa è suddivisa in *sottoclassi per intervalli di 0,025g*.

Per aggiornare e riclassificare sismicamente il proprio territorio, la Regione Lazio ha avviato nel 2007 una convenzione con l'ENEA per l'elaborazione della Pericolosità Sismica regionale di base per predisporre una nuova proposta di classificazione sismica, in accordo con quanto previsto nell'O.P.C.M. 3519/06. La nuova riclassificazione sismica è stata approvata in Giunta Regionale il 22 maggio 2009, con la D.G.R. n.387 recante "Nuova Classificazione Sismica della Regione Lazio". Partendo dall'elaborato di riferimento INGV-DPC, il territorio regionale è stato suddiviso in fasce di accelerazione caratterizzate da intervalli di 0,05g. Nella nuova classificazione sismica del territorio laziale, i valori di accelerazione massima al suolo (ag) dell'elaborato all'84° percentile dell'INGV-DPC sono compresi fra 0.278g e 0.065g, ai quali si possono correlare empiricamente soltanto 3 Zone Sismiche, escludendo quindi totalmente la Zona Sismica 4 (ag<0.050).

La Zona Sismica 1, quella più gravosa in termini di pericolosità sismica, non presenta sottozone in quanto il valore di ag max previsto per il Lazio non giustifica ulteriori suddivisioni. La creazione di sottozone, infatti, ha interessato soltanto le Zone Sismiche 2 e 3, con la suddivisione in 4 sottozone sismiche (dalla 2A, ovvero la maggiore sottozona della Zona Sismica 2, fino alla sottozona sismica 3B, corrispondente alla sottozona meno pericolosa della Zona Sismica 3), come si evince dalla Tabella successiva.

Dal consulto della Delibera della Giunta Regionale n.387/2009, il **territorio del Comune di Aprilia è stato classificato in Zona 2B**.

ZONA SISMICA	SOTTOZONA SISMICA	ACCELERAZIONE CON PROBABILITÀ DI SUPERAMENTO PARI AL 10% IN 50 ANNI (a_g) RIFERITA A SUOLI RIGIDI (Vs>800 m/s)
1		0.25 ≤ a _g < 0,278 (val. ag max per il Lazio)
2	А	$0.20 \le a_9 < 0.25$
	В	0.15 ≤ ag < 0.20
3	А	$0.10 \le a_g < 0.15$
	В	(val. min.) 0.062 ≤ ag < 0.10

Suddivisione delle sottozone sismiche in relazione all'accelerazione di picco su terreno rigido utilizzate per lo scenario di riclassificazione sismica della Regione Lazio.

In data 30/03/2013, la Regione Lazio ha validato lo studio di Microzonazione Sismica di Livello 1 dell'Unità Amministrativa Sismica (UAS) di Aprilia, ai sensi della DGR Lazio n. 545 del 26 novembre 2010.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 37 di 47

Nelle cartografie allegate (Stralcio della carta delle MOPS del Livello 1 di Microzonazione Sismica), le aree dei Sottocampi in progetto ricadono tutti in corrispondenza della *MOPS ZAS2*, ovvero *Zona stabile suscettibile di amplificazione locale di tipo 2*, costituita da una coltre di terreni prevalentemente sabbiosi del Pleistocene medio-superiore, con spessori fino a 15 metri, poggianti direttamente, o con l'interposizione di depositi piroclastici di spessore fino a 15 metri, sul substrato sabbioso-argilloso-marnoso del Plio-Pleistocene.

2. CARATTERISTICHE SISMICHE DEL SITO E PARAMETRI SISMICI DI PROGETTO

A. Pericolosità sismica di base (Macrozonazione sismica)

La pericolosità sismica di base è riferita a suolo rigido Tipo A e superficie topografica orizzontale. La pericolosità sismica di base è rappresentata da:

- ag, accelerazione orizzontale di picco attesa;
- **F**₀, valore massimo del fattore di amplificazione dello spettro di risposta in accelerazione orizzontale;
- Tc*, periodo di inizio del tratto a velocità costante dello spettro di risposta in accelerazione orizzontale.

Per il territorio del Comune di Aprilia valgono i seguenti parametri:

- **Zona sismica 2B** (O.P.C.M. n° 3519/2006 D.G.R. Lazio n° 387/2009 e D.G.R. Lazio n° 835/2009);
- Peak ground acceleration (PGA) = (Ag/g) = accelerazione orizzontale di picco del terreno con probabilità di superamento pari al 10% in 50 anni: 0.15 ≤ ag < 0.20.

La vita nominale delle opere è stata posta pari a 50 anni:

Tipo di costruzione Vita Nominale (V_N) (anni)

Costruzioni con livelli di prestazioni 50

ordinari

Tabella 2.4.I /NTC 2018 - Valori minimi della vita nominale VN di progetto per i diversi tipi di costruzioni - Norme Tecniche per le costruzioni 2018 e circolare esplicativa.

Come già detto in precedenza, le opere in progetto ricadono in Classe d'uso II.

<u>CLASSE D'USO II</u>: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali.

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _{II}	0.7	1,0	1,5	2,0

Classi d'uso e Coefficienti d'uso (Cu).

Di conseguenza il Coefficiente d'uso (Cu) è pari 1.00.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 38 di 47

Ne deriva che il **Periodo di riferimento per l'azione sismica (V_R)**, corrispondente alla moltiplicazione della *Vita nominale* (V_N) e del Coefficiente d'uso (C_U) è pari a:

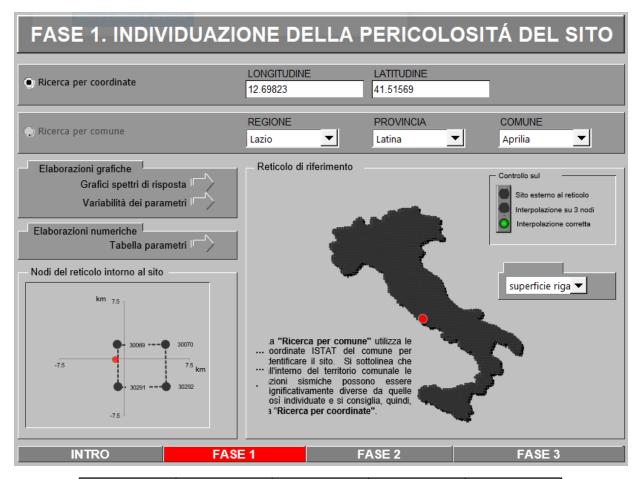
$$V_R = V_N * C_U = 50 * 1.00 = 50$$
anni

Attraverso il programma Excel "*Spettri N.T.C. - versione 1.0.3*", messo a disposizione dal Consiglio Superiore dei Lavori Pubblici, è stato possibile definire i parametri per lo specifico sito interpolando mediante media ponderata i valori dei punti di un reticolo di riferimento (studio di pericolosità sismica di base condotto dall'I.N.G.V.) i cui nodi non distano tra loro più di 10 km per periodi di ritorno ricadenti in un intervallo di riferimento compreso tra 30 e 2475 anni.

Per la definizione di tale parametro sono necessarie al modellista alcune informazioni relative al progetto ed alla sua localizzazione spaziale. In sintesi, i parametri necessari sono i seguenti:

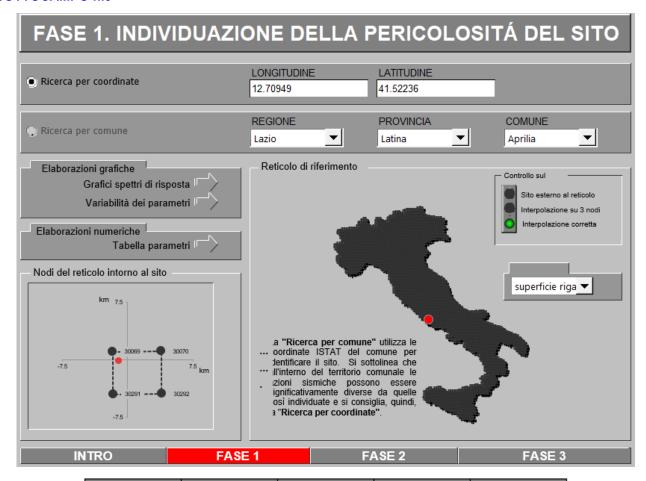
- Coordinate del sito;
- Periodo di riferimento per l'azione sismica (Vr) come moltiplicazione della Vita nominale (Vn) e del Coefficiente d'uso (Cu) derivanti dalla scelta progettuale;
- Stato limite o stati limite del progetto, ad esempio Stato Limite di salvaguardia della Vita (di seguito SLV) e Stato
 Limite di Danno (di seguito SLD), a cui corrisponderanno differenti ag in funzione dei differenti periodi di ritorno Tr.

Le coordinate delle aree di interesse sono:

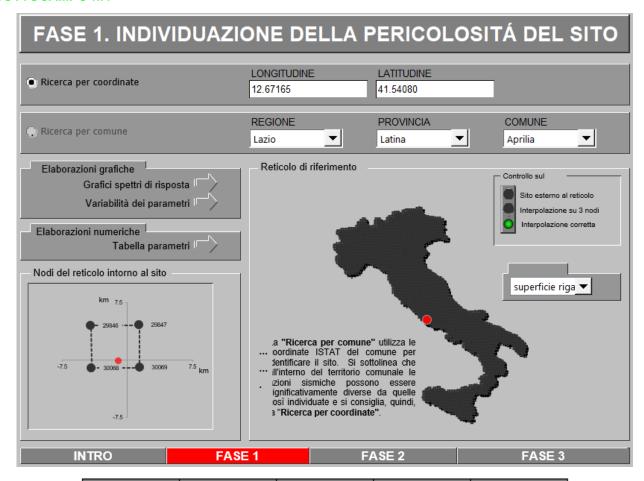

Aroa di progotto	Coordinate ED50		Coordinate WGS84	
Area di progetto	Latitudine	Longitudine	Latitudine	Longitudine
Sottocampo n.1 e 2	41.515688	12.698228	41.514691	12.697312
Sottocampo n.3	41.522355	12.709492	41.521358	12.708576
Sottocampo n.4	41.540802	12.671652	41.539805	12.670735
Sottocampo n.5	41.547932	12.652834	41.546935	12.651916
Sottocampo n.6	41.544857	12.703532	41.543861	12.702616

In funzione dei parametri sopra individuati e dei diversi Stati Limite di Riferimento, si ottengono differenti accelerazioni di base (ag) per le aree di progetto.

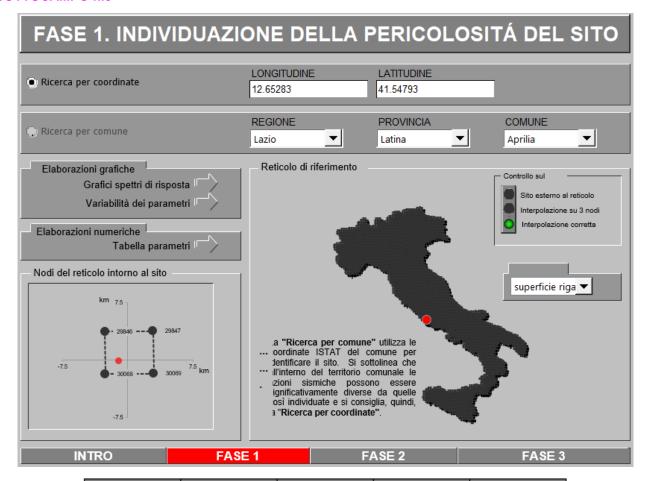
Per le rispettive aree di progetto, i valori dei parametri ag, F_0 e Tc^* per i periodi di ritorno (T_R) associati a ciascuno Stato Limite di Riferimento sono:


ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 39 di 47

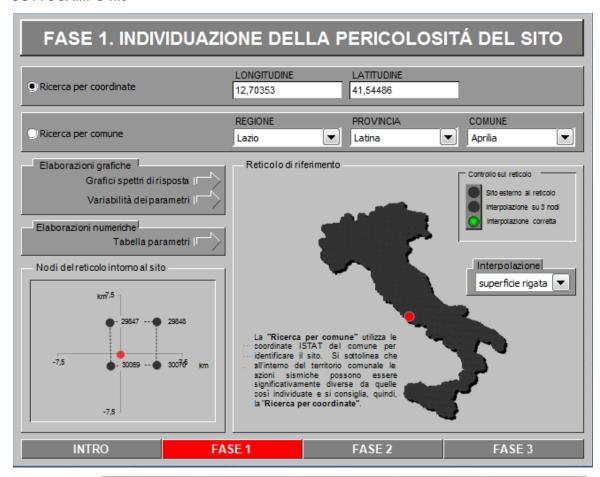
SOTTOCAMPO n.1 e 2


SLAT0	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.038	2.545	0.247
SLD	50	0.048	2.519	0.270
SLV	475	0.117	2.598	0.296
SLC	975	0.148	2.622	0.301

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 40 di 47


SLAT0	T_R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.038	2.550	0.249
SLD	50	0.049	2.516	0.270
SLV	475	0.118	2.599	0.294
SLC	975	0.150	2.619	0.301

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 41 di 47


SLAT0	T_R	a_g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.039	2.572	0.250
SLD	50	0.051	2.514	0.269
SLV	475	0.134	2.562	0.280
SLC	975	0.171	2.578	0.283

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	
ENGINEERING ENERGY TERRA	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
	RELAZIONE GEOLOGICA	Pag. 42 di 47

SLAT0	T_R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	30	0.039	2.576	0.249
SLD	50	0.052	2.509	0.269
SLV	475	0.137	2.562	0.278
SLC	975	0.176	2.571	0.281

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 43 di 47

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO		0,040	2,566	0,252
SLD	50	0,052	2,509	0,270
SLV	475	0,132	2,581	0,283
SLC	975	0,168	2,588	0,288

I dati sopra riportati sono stati elaborati attraverso il programma Excel "Spettri N.T.C - Versione 1.0.3", messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

B. Categoria sismica dei terreni e il Coefficiente di amplificazione topografica

Ai fini della definizione dell'azione sismica di progetto, le N.T.C. 2018 definiscono 5 categorie in cui suddividere i terreni d'imposta in base ai valori della velocità equivalente (VS,eq) di propagazione delle onde di taglio.

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II delle N.T.C. 2018.

ELABORATO 020800	Ver.:		
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023	
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 44 di 47	

Tab. 3.2.II - Categorie di sottosuolo che permetiono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde
A	di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri-
	stiche meccaniche più scadenti con spessore massimo pari a 3 m.
	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi-
В	stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da
	valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi-
C	stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
C	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	180 m/s e 360 m/s.
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi-
D	stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-
D	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra
	100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-
E	rie C o D, con profondità del substrato non superiore a 30 m.

La velocità equivalente di propagazione delle onde di taglio, V_{S,eq} (in m/s), è definita dall'espressione:

$$V_{S,eq} = \frac{H}{\displaystyle\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

h_i: spessore dell'i-esimo strato;

V_{S,i}: velocità delle onde di taglio nell'i-esimo strato;

N: numero di strati;

H: profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

La campagna di indagini geofisiche realizzata negli areali di interesse progettuale ha visto la realizzazione di prospezioni sismiche di tipo MASW e di tipo ReMi e di misura HVSR che hanno permesso di caratterizzare i terreni dei siti indagati in termini di velocità delle onde sismiche trasversali consentendo in questo modo di calcolare i valori di velocità equivalente $(V_{S,eq})$.

La Vs,_{eq} è stata stimata nei 30 m al di sotto del piano fondazione dell'opera in progetto. Utilizzando la formula sopra riportata si ottiene il seguente valore (quota iniziale = profondità fondazione ipotizzata a 0,5 m dal p.c.):

SOTTOCAMPI n.1 e 2 - Media Vs_{eq^-} Vs(0.5-30.5) = 299 m/s SOTTOCAMPO n.3 - Media Vs_{eq^-} Vs(0.5-30.5) = 363 m/s SOTTOCAMPO n.4- Media Vs_{eq^-} Vs(0.5-30.5) = 349 m/s SOTTOCAMPO n.5- Media Vs_{eq^-} Vs(0.5-30.5) = 359 m/s SOTTOCAMPO n.6- Media Vs_{eq^-} Vs(1,0-31,0) = 274 m/s

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 45 di 47

Pertanto, sulla base dei valori sperimentali delle V_{S,eq}, ottenuti dall'elaborazione delle indagini geofisiche, i sottocampi 1, 3 e 6 rientrano della CATEGORIA SISMICA DI SOTTOSUOLO "C", mentre i sottocampi 2 e 4 rientrano della CATEGORIA SISMICA DI SOTTOSUOLO "B".

La norma prevede che, oltre alla definizione della categoria sismica del sottosuolo, debbano essere valutate anche le condizioni topografiche. Per condizioni topografiche complesse devono essere predisposte specifiche analisi di risposta sismica locale mentre per configurazioni superficiali semplici si può adottare la seguente classificazione, contenuta nelle N.T.C. 2018 in Tab. 3.2.III.

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica					
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°					
T2	Pendii con inclinazione media i > 15°					
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°					
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°					

Le aree interessate dal progetto, che ospiteranno i quattro Sottocampi, presentano una morfologia blandamente ondulata ma con inclinazioni medie in tutti i casi inferiori a 15° ; pertanto, alla luce di quanto detto, queste ricadono nella **CATEGORIA TOPOGRAFICA T1** a cui corrisponde un **Coefficiente di amplificazione topografica S**_T pari a 1,0.

Tab. 3.2.V - Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
T1	SE:	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

ELABORATO 020800					
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023			
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 46 di 47			

8. CONSIDERAZIONI CONCLUSIVE

A conclusione del presente studio si traccia il quadro riassuntivo sulla base di quanto è emerso dalle indagini di superficie che hanno permesso di descrivere i caratteri geologici, geomorfologici e idrogeologici dell'area, nonché di definire i parametri geotecnici e la categoria sismica di sottosuolo.

- Dal punto di vista geologico, tutte le aree dei sottocampi sono caratterizzate da sabbie (in genere rosse) relative alla formazione della "Duna Antica".
- Da un punto di vista idrogeologico,le aree di interesse progettuale ricade all'interno del Complesso delle sabbie dunari. Questo Complesso, costituito da sabbie dunari, depositi interdunari, depositi di spiaggia recenti e dune deltizie, è caratterizzato da una potenzialità acquifera medio alta.
- Le prove penetrometriche DPSH effettuate nei siti hanno permesso di determinare il "comportamento" geotecnico dei terreni soggiacenti nei 6 sottocampi indagati. In particolare, è stato possibile osservare come, all'interno di tutti gli areali ed in maniera abbastanza uniforme, al di sotto di uno strato di terreno agricolo, i litotipi a prevalente granulometria sabbiosa mostrano un graduale aumento dell'addensamento con la profondità, mostrando il raggiungimento di parametri geotecnici discreti/buoni (cfr. capitolo "Caratterizzazione geotecnica").
- Dalle indagini realizzate nelle aree dei Sottocampi di progetto, nell'intervallo di profondità indagata, non è stata individuata la presenza di acqua di falda.
- Dalle Le prospezioni sismiche (MASW e ReMi) ed dalle misure HVSR finalizzate alla classificazione sismica dei sottosuoli di fondazione, si evincono valori di Vsmedia ripartiti tra la categoria B e C . In particolare, i sottocampi 1, 3 e 6 rientrano nella categoria sismica di sottosuolo "C", mentre i sottocampi 2 e 4 rientrano nella categoria sismica di sottosuolo "B".
- La Categoria topografica è T1, data la morfologia blandamente ondulata con inclinazioni medie in tutti i casi
 inferiori a 15°, a cui corrisponde un Coefficiente di amplificazione topografica sT=1,0.
- Nell'ambito cartografico del Livello 1 di Microzonazione Sismica validato, le aree in esame ricadono tutte in corrispondenza della Zona stabile suscettibile di amplificazione locale di tipo 2 (MOPS ZAS2) (in Allegato).
- Per quanto riguarda il Piano Stralcio per l'Assetto Idrogeologico (PAI) Bacini Regionali del Lazio di riferimento (Tav. 2.04 Sud Autorità di Bacino Distrettuale dell'Appennino Centrale), nessuna delle aree dei Sottocampi in progetto *ricade* in corrispondenza di Aree sottoposte a tutela o di attenzione per pericolo di frana e/o d'inondazione (in Allegato).
- Si raccomanda un'oculata gestione delle acque superficiali, affinché queste non inneschino fenomeni di erosione lineare e/o concentrata che possano inficiare la tenuta e la stabilità dell'impianto.

ELABORATO 020800	COMUNE di APRILIA PROVINCIA di LATINA	Ver.:
	REALIZZAZIONE DI UN IMPIANTO SOLARE FOTOVOLTAICO CONNESSO ALLA R.T.N. DELLA POTENZA DI PICCO PARI A 53.902,29 kW E POTENZA MASSIMA IN IMMISSIONE PARI A 39.000,00 kW	Data: 15/06/2023
ENGINEERING ENERGY TERRA	RELAZIONE GEOLOGICA	Pag. 47 di 47

In conclusione, si ritiene che i terreni indagati abbiano le caratteristiche necessarie per la realizzazione del progetto, tenendo conto delle indicazioni riportate nella presente relazione.

Aprilia, giugno 2023

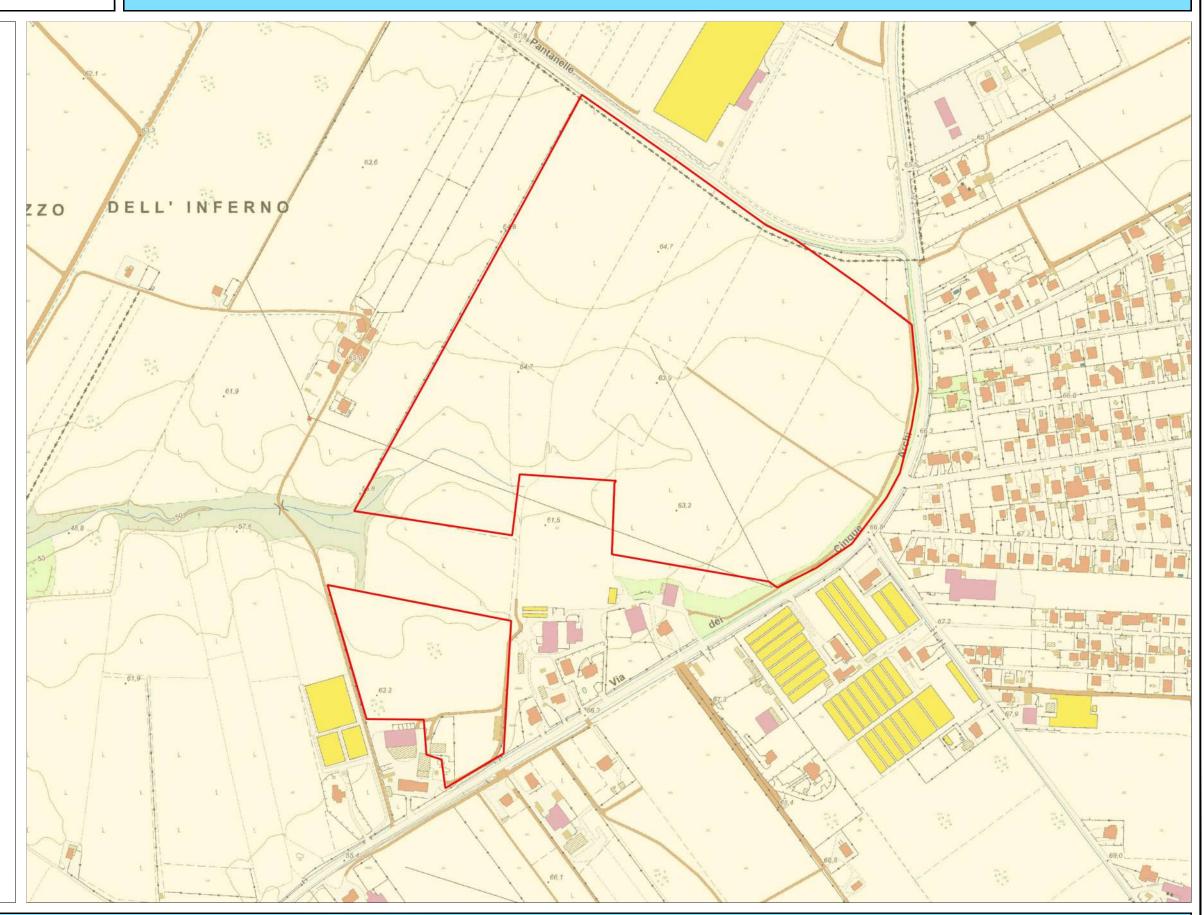
Geol. Davide Marchese

Allegati

Cartografia, Indagini e prove eseguite secondo le disposizioni dell'Allegato C del Regolamento regionale 26 ottobre 2020, n. 26 e successive modifiche

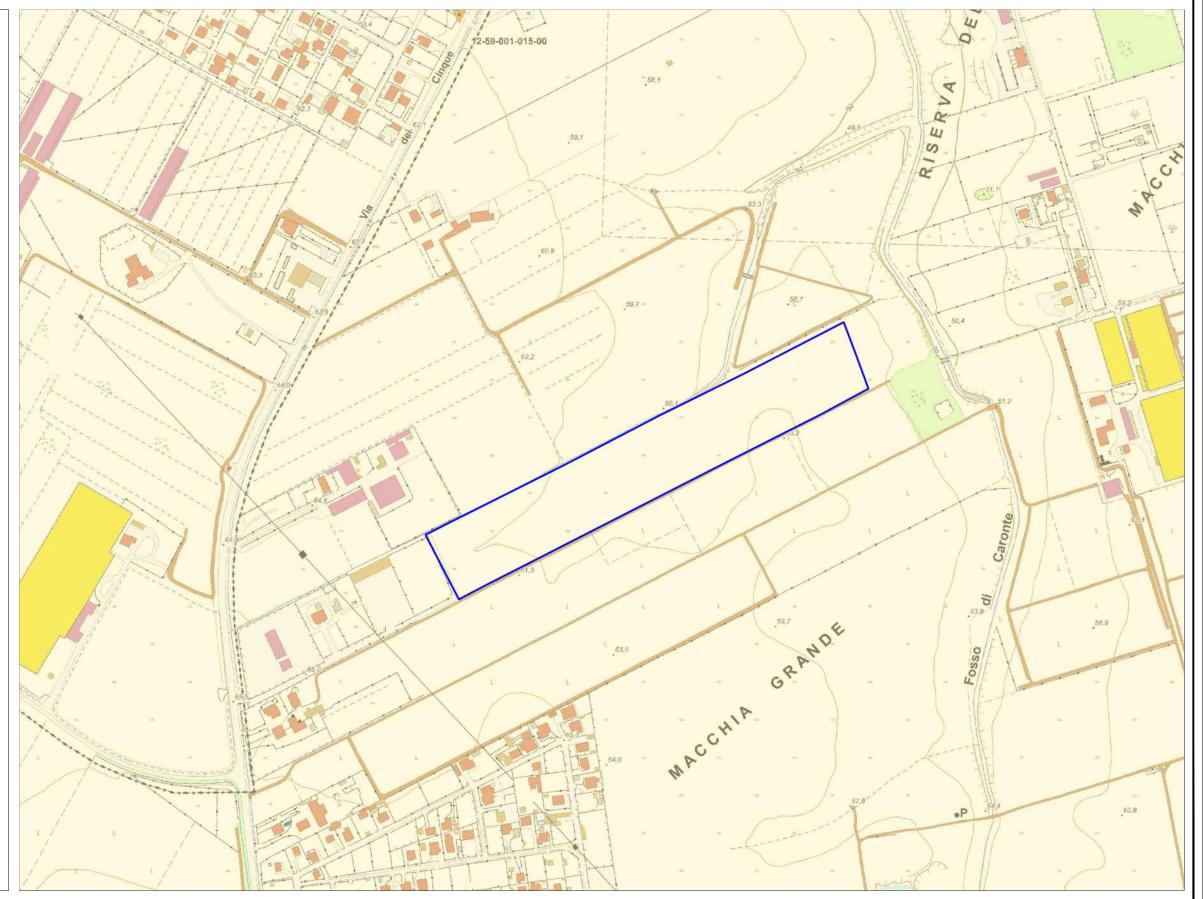
- Carta geologica
- Sezioni geologiche
- o Ubicazione indagini geotecniche e documentazione fotografica
- o Schede delle prove penetrometriche DPSH e relativa elaborazione
- Elaborazione indagini geofisiche Determinazione categoria sismica si sottosuolo
- o Stralcio della cartografia del Piano Stralcio per l'Assetto Idrogeologico
- Stralcio della carta delle MOPS del Livello 1 di Microzonazione Sismica

Geol. Davide Marchese

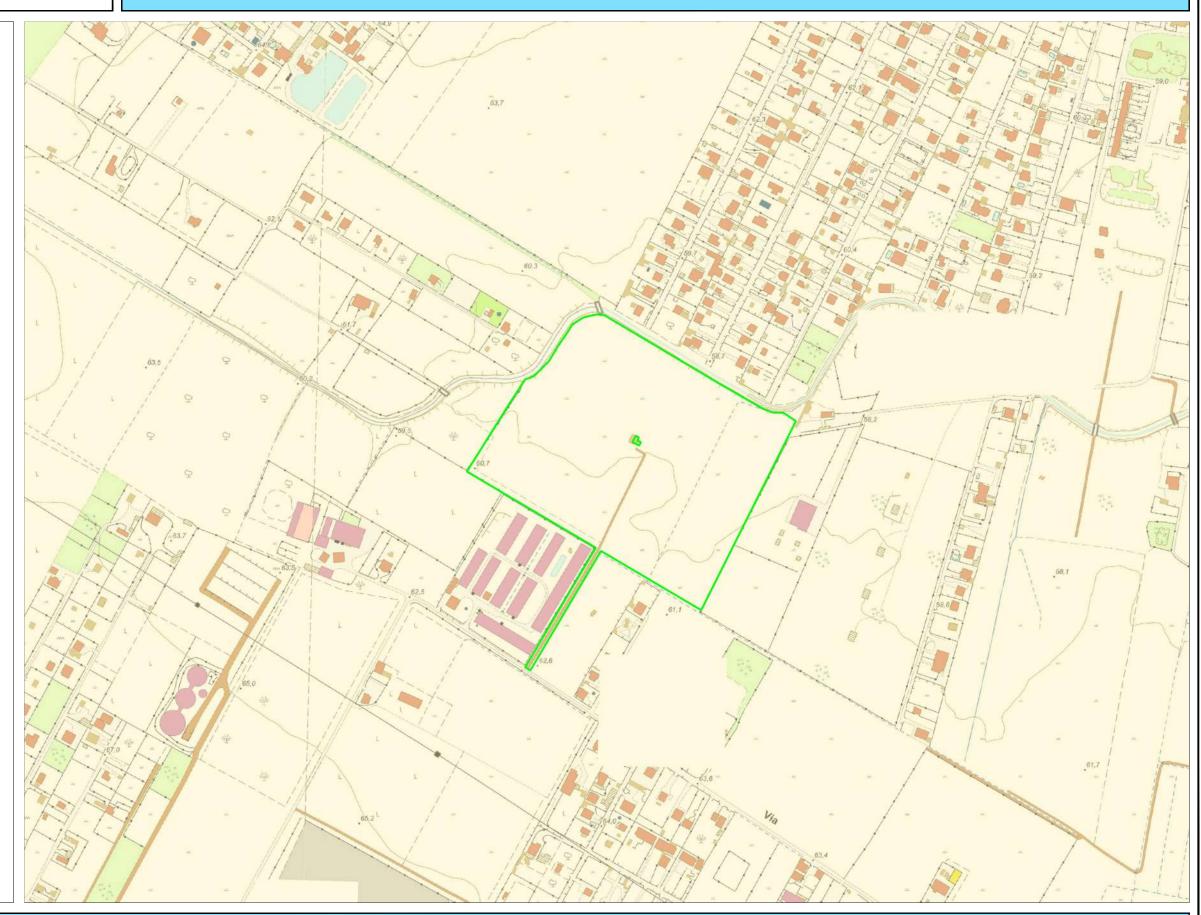


Area di progetto Sottocampo n.1 e 2

Geologia

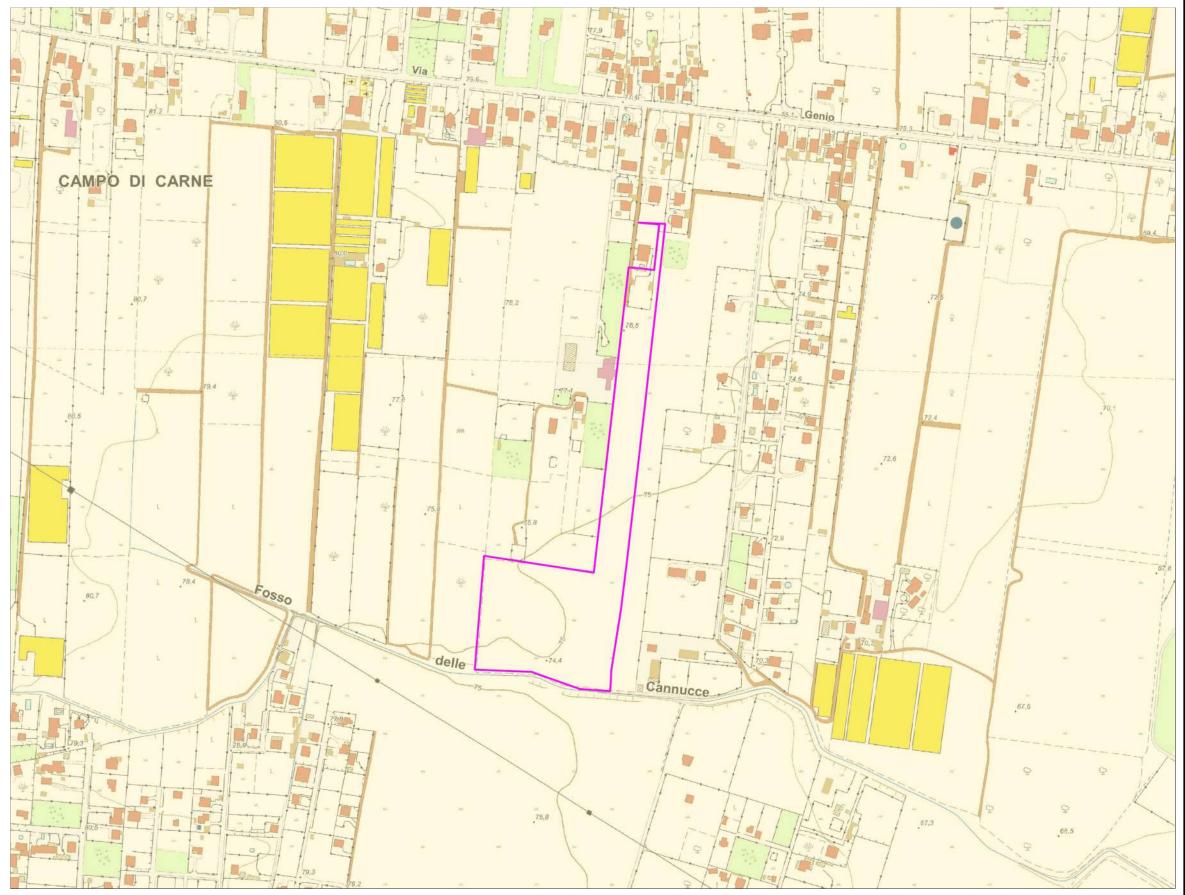

s s

Sabbie rosse della **Formazione della Duna Antica** (PLEISTOCENE SUPERIORE)

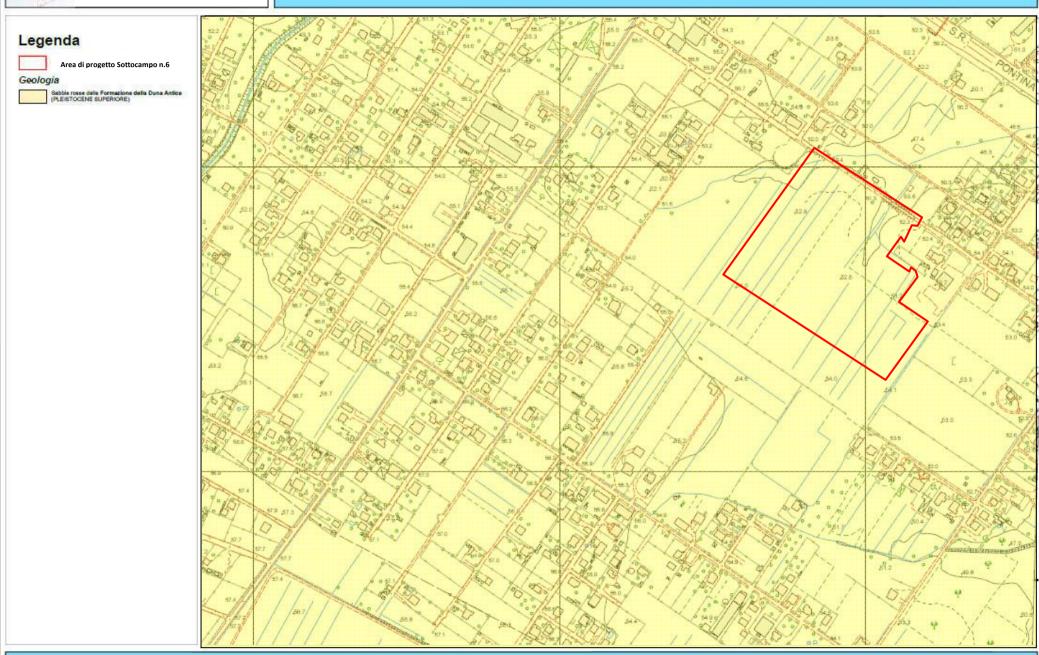


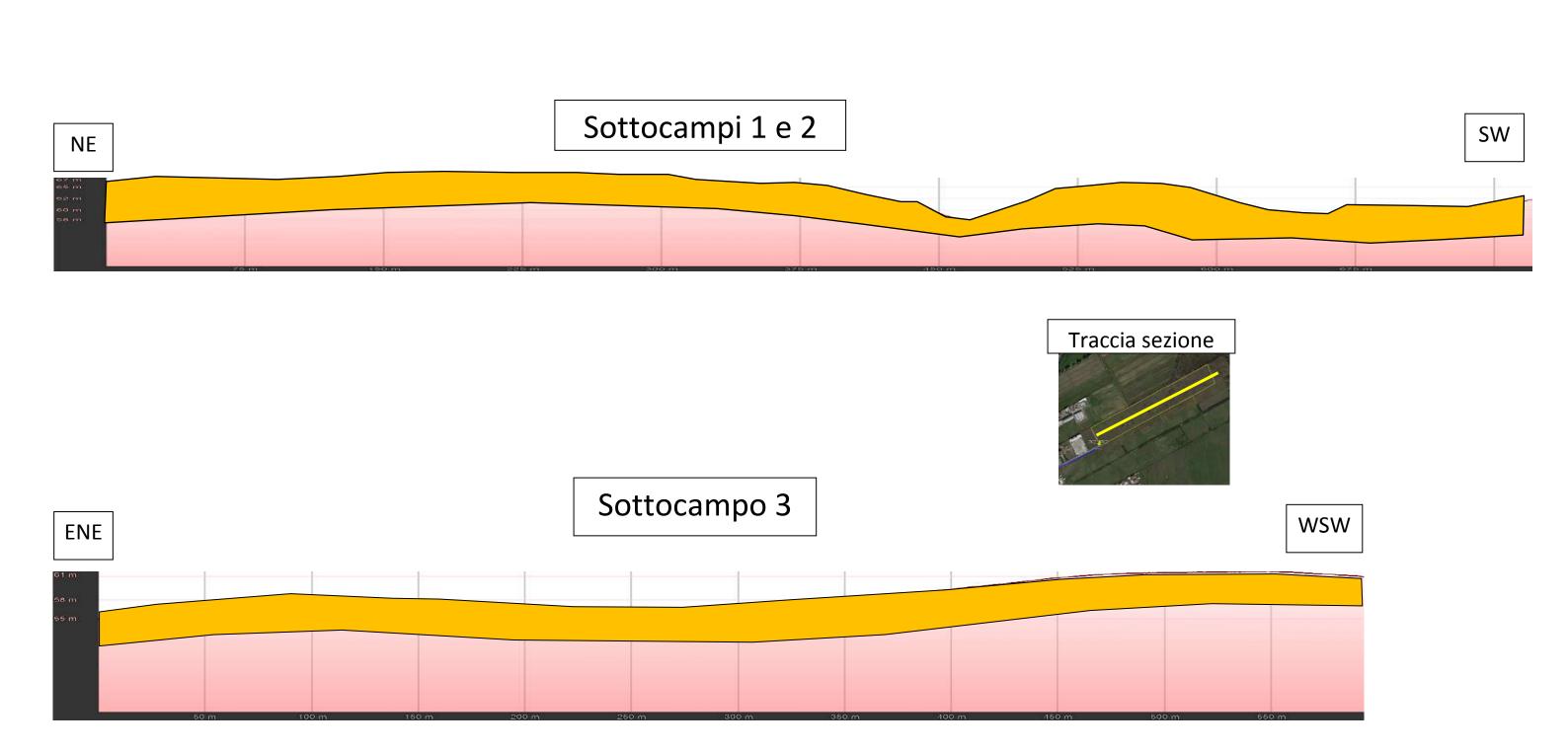
Legenda Area di proge

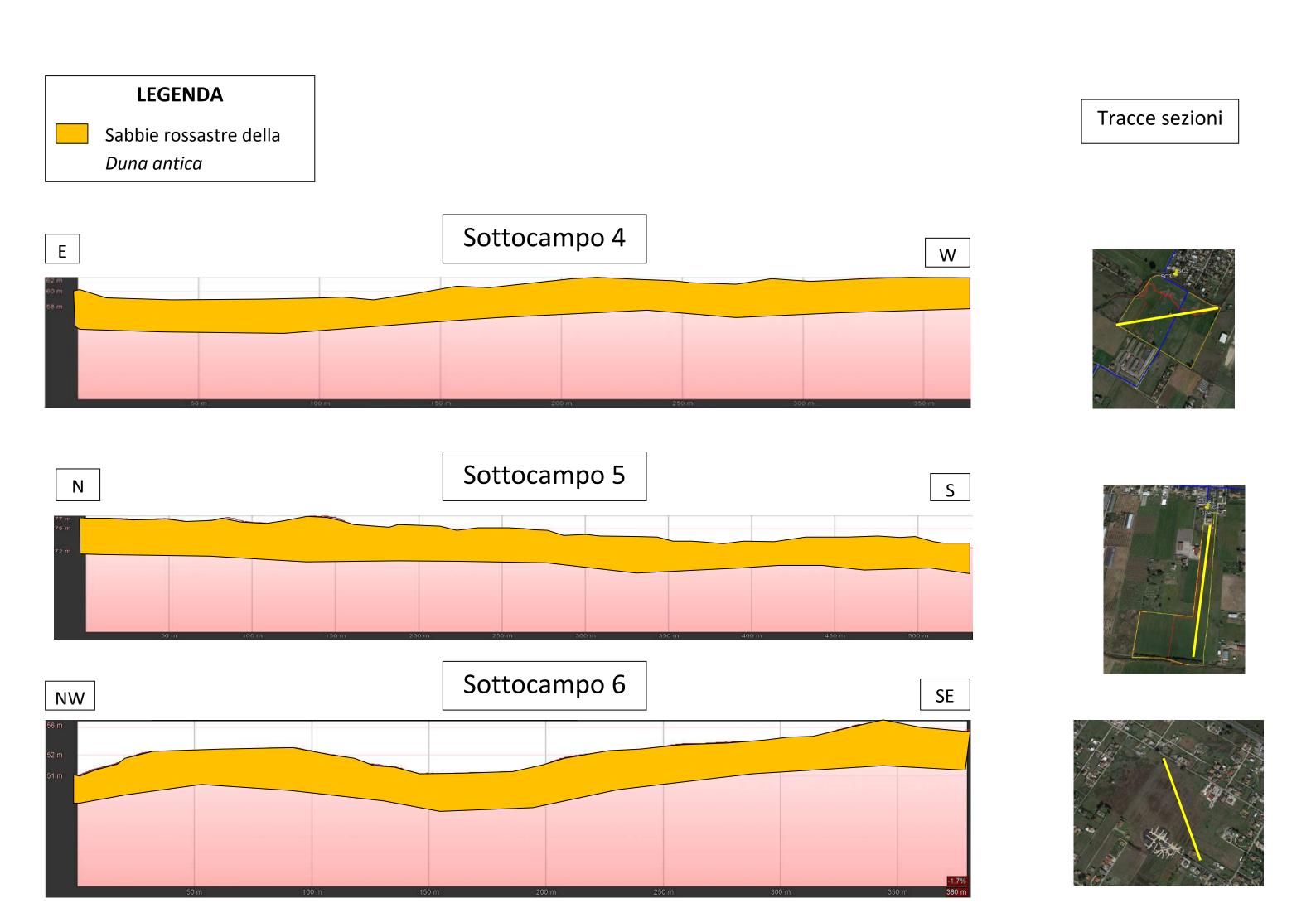
Area di progetto Sottocampo n.4


Geologia

Sabbie rosse della Formazione della Duna Antica
(PLEISTOCENE SUPERIORE)







SEZIONI GEOLOGICHE -FTV APRILIA 3-

Traccia sezione

LEGENDA Sabbie rossastre della Duna antica

Localizzazione indagini DPSH e Documentazione fotografica

SOTTOCAMPI n.1 e n.2

Foto n.1 Svolgimento SC1.2-DPSH n.1

Foto n.2 Svolgimento SC1.2-DPSH n.2

Foto n.3 Svolgimento SC1.2-DPSH n.3

Foto n.4 Svolgimento SC1.2-DPSH n.4

Foto n.5 Svolgimento SC1.2-DPSH n.5

Foto n.6 Svolgimento SC1.2-DPSH n.6

Foto n.7 Svolgimento SC1.2-DPSH n.7

Foto n.8 Svolgimento SC1.2-DPSH n.8

Foto n.1 Svolgimento SC3-DPSH n.1

Foto n.2 Svolgimento SC3-DPSH n.2

Foto n.1 Svolgimento **SC4-DPSH n.1**

Foto n.2 Svolgimento SC4-DPSH n.2

Foto n.3 Svolgimento **SC4-DPSH n.3**

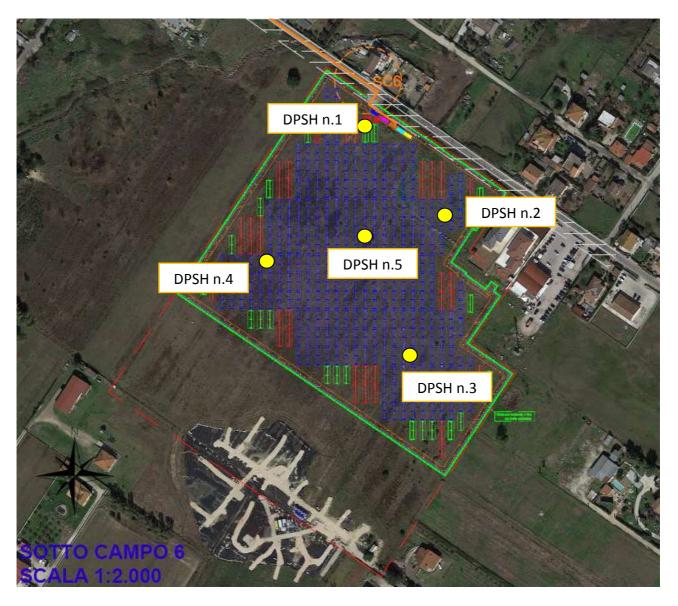

Foto n.1 Svolgimento SC5-DPSH n.1

Foto n.2 Svolgimento SC5-DPSH n.2

Foto n.3 Svolgimento SC5-DPSH n.3

Ubicazione Prove penetrometriche DPSH

Foto 1 - Esecuzione DPSH n.1

Foto 2- Esecuzione DPSH n.2

Foto 3- Esecuzione DPSH n.3

Foto 4- Esecuzione DPSH n.4

Foto 5- Esecuzione DPSH n.5

PROVE PENETROMETRICHE DINAMICHE

SOTTOCAMPI 1 e 2

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

Rif. Norme	DIN 4094
Peso Massa battente	63.5 Kg
Altezza di caduta libera	0.75 m
Peso sistema di battuta	0.63 Kg
Diametro punta conica	51.00 mm
Area di base punta	20.43 cm ²
Lunghezza delle aste	1 m
Peso aste a metro	6.31 Kg/m
Profondita' giunzione prim	a asta 0.40 m
Avanzamento punta	0.20 m
Numero colpi per punta	N(20)
Coeff. Correlazione	1.47
Rivestimento/fanghi	No
Angolo di apertura punta	90 °

PROVA ...DPSH n.1

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data
Profondita' prova
Falda non rilevata 09-03-2023 4.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	2	0.840	16.20	19.29	0.81	0.96
1.20	3	0.836	24.19	28.93	1.21	1.45
1.40	4	0.833	32.13	38.57	1.61	1.93
1.60	3	0.830	22.18	26.73	1.11	1.34
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	5	0.823	36.68	44.55	1.83	2.23
2.20	6	0.820	43.85	53.47	2.19	2.67
2.40	6	0.817	43.69	53.47	2.18	2.67
2.60	7	0.814	47.20	57.97	2.36	2.90
2.80	9	0.811	60.48	74.54	3.02	3.73
3.00	9	0.809	60.27	74.54	3.01	3.73
3.20	13	0.756	81.39	107.66	4.07	5.38
3.40	14	0.753	87.35	115.94	4.37	5.80
3.60	11	0.801	68.15	85.09	3.41	4.25
3.80		0.798	74.11	92.83	3.71	4.64
4.00	12	0.796	73.89	92.83	3.69	4.64

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	1	10.51	Incoere	0	1.52	1.85	0.03	1.47	1.47	Terreno
			nte -							agricolo
			coesivo							
1	1.67	16.07	Incoere	0	1.6	1.86	0.11	1.47	2.45	Terreno
			nte -							sciolto

			coesivo							
1.6	3.33	31.41	Incoere	0	1.75	1.88	0.21	1.47	4.9	Terreno
			nte -							poco
			coesivo							addensa
										to
3	6.71	57.58	Incoere	0	1.96	2.16	0.4	1.47	9.86	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to
4	12.4	98.87	Incoere	0	2.09	2.3	0.64	1.47	18.23	
			nte -							mediam
			coesivo							ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

COCSIO	ne non e					~ -	~ 1	~ T T -			~1	_	
	NSPT	Prof.	Terza	Sangl			Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	1.47	0.40	0.09	0.18	0.00 -	0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
Terre					0.15								
no													
agrico													
lo													
[2] -	2.45	1.00	0.15	0.31	0.15 -	0.10	0.24	0.48	0.22	0.62	0.12	0.32	0.31
Terre					0.25								
no													
sciolt													
o													
[3] -	4.9	1.60	0.31	0.61	0.25 -	0.20	0.48	0.94	0.44	0.80	0.25	0.68	0.61
Terre					0.50								
no													
poco													
adden													
sato													
[4] -		3.00	0.67	1.23	0.50 -	0.40	0.97	1.73	0.87	1.19	0.49	1.34	1.23

Terre					1.00								
no da													
poco a													
media													
mente													
adden													
sato													
[5] -	18.23	4.00	1.23	2.28	1.00 -	0.71	1.80	2.97	1.56	1.92	0.91	2.66	2.28
Terre					2.00								
no													
media													
mente													
adden													
sato													

Wiodulo Edolli	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)	,	(1974),	Sanglerat
					Mitchell e	C
					Gardner	
[1] - Terreno	1.47	0.40	6.74	22.05	16.79	18.38
agricolo						
[2] - Terreno	2.45	1.00	11.24	36.75	26.78	30.63
sciolto						
[3] - Terreno	4.9	1.60	22.48	73.50	51.77	61.25
poco						
addensato						
[4] - Terreno	9.86	3.00	45.24		102.36	123.25
da poco a						
mediamente						
addensato						
[5] - Terreno		4.00	83.64		187.73	182.30
mediamente						
addensato						

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	1.47	0.40	-3.50	14.70
agricolo				
[2] - Terreno	2.45	1.00	7.78	24.50
sciolto				
[3] - Terreno poco	4.9	1.60	35.95	49.00
addensato				
[4] - Terreno da	9.86	3.00	92.99	98.60
poco a mediamente				
addensato				
[5] - Terreno	18.23	4.00	189.25	182.30
mediamente				

addensato	

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.52
[2] - Terreno sciolto	2.45	1.00	Meyerhof	1.60
[3] - Terreno poco addensato	4.9	1.60	Meyerhof	1.75
[4] - Terreno da poco a mediamente addensato		3.00	Meyerhof	1.96
[5] - Terreno mediamente addensato		4.00	Meyerhof	2.09

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.85
[2] - Terreno sciolto		1.00	Meyerhof	1.86
[3] - Terreno poco addensato	4.9	1.60	Meyerhof	1.88
[4] - Terreno da poco a mediamente addensato		3.00	Meyerhof	2.16
[5] - Terreno mediamente addensato		4.00	Meyerhof	2.30

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	1.47	0.40	5.82	29.79	51.39	10.79
agricolo						
[2] - Terreno	2.45	1.00	12.31	36.55	46.97	13.71
sciolto						
[3] - Terreno	4.9	1.60	22.44	48.75	55.11	20.57
poco						

addensato						
[4] - Terreno	9.86	3.00	32.7	62.9	65.02	32.68
da poco a						
mediamente						
addensato						
[5] - Terreno	18.23	4.00	41.98	77.44	77.04	48.51
mediamente						
addensato						

Angolo di resistenza al taglio

Aligoid	NSP	Prof.			Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
	T	Strato	corret		rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC ATIO			
											N)			
[1] -	1.47	0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	<30		27.44	20.35	20.42
Terreno														
agricolo														
[2] -	2.45	1.00	2.45	27.7	20.7	28.69	31.27	30.57	0	< 30	21.06	27.74	21.98	22
Terreno														
sciolto														
[3] -	4.9	1.60	4.9	28.4	21.4	29.37	30.97	31.63	0	< 30	23.57	28.47	24.23	24.9
Terreno														
poco														
addensato	0.06	2.00	0.06	20.02	22.02	20.76	20.7	22.62	0	<20	27.16	20.06	26.16	20.04
[4] - Terreno da	9.86	3.00	9.80	29.82	22.82	30.76	30.7	33.62	0	<30	27.16	29.90	20.10	29.04
poco a														
mediamente														
addensato														
	18.23	4.00	18.23	32.21	25.21	33.1	30.67	36.53	38.84	30-32	31.54	32.47	27.57	34.09
Terreno														
mediamente														
addensato														

THOUGHTO GI	1 0 411 5	, 0111						
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia

			presenza falda		(Sabbie)	ghiaiosa)	(Sabbia)	Media
[1] -	1.47	0.40	1.47	-	11.76			
Terreno								
agricolo								
[2] -	2.45	1.00	2.45		19.60			
Terreno								
sciolto								
[3] -	4.9	1.60	4.9		39.20			
Terreno								
poco								
addensato								
[4] -	9.86	3.00	9.86		78.88	117.05		
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	18.23	4.00	18.23	304.76	145.84	215.81	316.73	166.15
Terreno								
mediamen								
te								
addensato								

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
		` ,	presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda	, ,	sabbia)		media)
[1] -	1.47	0.40	1.47		30.48	10.44	44.56
Terreno							
agricolo							
[2] -	2.45	1.00	2.45		32.50	17.40	48.93
Terreno							
sciolto							
[3] -	4.9	1.60	4.9		37.53	34.79	59.85
Terreno							
poco							
addensato							
[4] -	9.86	3.00	9.86		47.72	70.01	81.98
Terreno da							
poco a							
mediament							
e addensato							
[5] -	18.23	4.00	18.23	109.38	64.91	129.43	119.31
Terreno							
mediament							
e addensato							

Classificazione AGI

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Classificazione
		(m)	per presenza		AGI
			falda		
[1] - Terreno	1.47	0.40	1.47	Classificazione	SCIOLTO
agricolo				A.G.I	
[2] - Terreno	2.45	1.00	2.45	Classificazione	SCIOLTO
sciolto				A.G.I	
[3] - Terreno	4.9	1.60	4.9	Classificazione	POCO
poco addensato				A.G.I	ADDENSATO
[4] - Terreno da	9.86	3.00	9.86	Classificazione	POCO
poco a				A.G.I	ADDENSATO
mediamente					
addensato					
[5] - Terreno	18.23	4.00	18.23	Classificazione	MODERATAM
mediamente				A.G.I	ENTE
addensato					ADDENSATO

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	2.45	1.00	2.45	Terzaghi-Peck	1.38
sciolto				1948	
[3] - Terreno	4.9	1.60	4.9	Terzaghi-Peck	1.41
poco addensato				1948	
[4] - Terreno da	9.86	3.00	9.86	Terzaghi-Peck	1.48
poco a				1948	
mediamente					
addensato					
[5] - Terreno	18.23	4.00	18.23	Terzaghi-Peck	1.58
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	2.45	1.00	2.45	Terzaghi-Peck	1.86
sciolto				1948	
[3] - Terreno	4.9	1.60	4.9	Terzaghi-Peck	1.88
poco addensato				1948	
[4] - Terreno da	9.86	3.00	9.86	Terzaghi-Peck	1.92
poco a				1948	
mediamente					

addensato					
[5] - Terreno	18.23	4.00	18.23	Terzaghi-Peck	1.98
mediamente				1948	
addensato					

PROVA ...DPSH n.2

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 09-03-2023 4.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	-	coeff.	dinamica	dinamica	ammissibile	ammissibile
ì		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	3	0.840	24.29	28.93	1.21	1.45
1.20	4	0.836	32.26	38.57	1.61	1.93
1.40	4	0.833	32.13	38.57	1.61	1.93
1.60	4	0.830	29.57	35.64	1.48	1.78
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	6	0.823	44.01	53.47	2.20	2.67
2.20	8	0.820	58.46	71.29	2.92	3.56
2.40	8	0.817	58.25	71.29	2.91	3.56
2.60	8	0.814	53.95	66.25	2.70	3.31
2.80	8	0.811	53.76		2.69	
3.00	9	0.809	60.27	74.54	3.01	3.73
3.20	15	0.756	93.91	124.23	4.70	6.21
3.40	14	0.753	87.35	115.94	4.37	5.80
3.60	14	0.751	81.32	108.30	4.07	5.41
3.80	15	0.748	86.84	116.03	4.34	5.80
4.00	14	0.746	80.79	108.30	4.04	5.41

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	1	10.51	Incoere	0	1.52	1.85	0.03	1.47	1.47	Terreno

			nte - coesivo							agricolo
0.8	1.5	14.47	Incoere	0	1.58	1.85	0.09	1.47	2.2	Terreno
			nte -							sciolto
			coesivo							
1.6	3.75	35.43	Incoere	0	1.79	1.88	0.2	1.47	5.51	Terreno
			nte -							poco
			coesivo							addensa
										to
3	7.43	63.95	Incoere	0	1.99	2.19	0.41	1.47	10.92	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to
4	14.4	114.56	Incoere	0	2.1	2.12	0.65	1.47	21.17	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesioi			\ <u>U</u>		т	HOD	C 1	CLINI	T1 4 1	TT 4	C1 · ·	D	D
	NSPT	Prof.	Terza	Sangl	Terza			SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	1.47	0.40	0.09	0.18	0.00 -	0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
Terreno					0.15								
agricolo													
[2] -	2.2	0.80	0.14	0.28	0.15 -	0.09	0.21	0.43	0.20	0.60	0.11	0.30	0.28
Terreno					0.25								
sciolto													
[3] -	5.51	1.60	0.34	0.69	0.25 -	0.22	0.54	1.06	0.50	0.85	0.28	0.78	0.69
Terreno					0.50								
poco													
addensato													
[4] -	10.92	3.00	0.74	1.37	0.50 -	0.44	1.07	1.92	0.96	1.28	0.55	1.52	1.37
Terreno da					1.00								
poco a													

mediamente													
addensato													
[5] -	21.17	4.00	1.43	2.65	1.00 -	0.82	2.10	3.44	1.79	2.19	1.06	3.18	2.65
Terreno					2.00								
mediamente													
addensato													

Wiodulo Edollic	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
	1,011	(m)	Butler (1975)	(1370)	(1974), Mitchell e	Sanglerat
					Gardner	
[1] - Terreno		0.40	6.74	22.05	16.79	18.38
agricolo						
[2] - Terreno		0.80	10.09	33.00	24.23	27.50
sciolto						
[3] - Terreno	5.51	1.60	25.28	82.65	57.99	68.88
poco						
addensato						
[4] - Terreno		3.00	50.10		113.17	109.20
da poco a						
mediamente						
addensato						
[5] - Terreno		4.00	97.13		217.71	211.70
mediamente						
addensato						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - Terreno agricolo	1.47	0.40	-3.50	14.70
[2] - Terreno sciolto	2.2	0.80	4.90	22.00
[3] - Terreno poco addensato	5.51	1.60	42.97	55.10
[4] - Terreno da poco a mediamente addensato		3.00	105.18	109.20
[5] - Terreno mediamente addensato	21.17	4.00	223.06	211.70

Peso unita' di volume

ess annu an voiann				
	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(t/m^3)
[1] - Terreno	1.47	0.40	Meyerhof	1.52

agricolo				
[2] - Terreno	2.2	0.80	Meyerhof	1.58
sciolto				
[3] - Terreno poco	5.51	1.60	Meyerhof	1.79
addensato				
[4] - Terreno da	10.92	3.00	Meyerhof	1.99
poco a mediamente				
addensato				
[5] - Terreno	21.17	4.00	Meyerhof	2.10
mediamente				
addensato				

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo
				(t/m^3)
[1] - Terreno		0.40	Meyerhof	1.85
agricolo				
[2] - Terreno	2.2	0.80	Meyerhof	1.85
sciolto			,	
[3] - Terreno poco	5.51	1.60	Meyerhof	1.88
addensato			-	
[4] - Terreno da	10.92	3.00	Meyerhof	2.19
poco a mediamente				
addensato				
[5] - Terreno	21.17	4.00	Meyerhof	2.12
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach	Skempton 1986
[1] m	1 47	0.40	5.00	20.70	(1961)	10.70
[1] - Terreno agricolo		0.40	5.82	29.79	51.39	10.79
[2] - Terreno sciolto		0.80	10.88	34.99	46.57	12.98
[3] - Terreno poco addensato		1.60	24.86	52.09	59.34	22.18
[4] - Terreno da poco a mediamente addensato		3.00	34.7	65.97	67.93	34.99
[5] - Terreno mediamente addensato		4.00	45.26	83.14	82.41	52.93

Angolo di resistenza al taglio

7111501		SISTCIIZA												
	NSPT	Prof.	Nspt	Peck-		Sowe	Malc		Schm		Shioi-		De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	1.47	0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	< 30	19.7	27.44	20.35	20.42
Terreno														
agricolo														
[2] -	2.2	0.80	2.2	27.63	20.63	28.62	31.45	30.46	0	< 30	20.74	27.66	21.64	21.63
Terreno														
sciolto														
[3] -	5.51	1.60	5.51	28.57	21.57	29.54	31.31	31.88	0	< 30	24.09	28.65	24.73	25.5
Terreno														
poco														
addensato														
[4] -	10.92	3.00	10.92	30.12	23.12	31.06	30.83	34.02	37.24	< 30	27.8	30.28	26.52	29.78
Terreno da														
poco a														
mediament														
e addensato														
[5] -	21.17	4.00	21.17	33.05	26.05	33.93	30.88	37.42	39.64	30-32	32.82	33.35	28.1	35.58
Terreno														
mediament														
e addensato														

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	1.47	0.40	1.47		11.76			
Terreno								
agricolo								
[2] -	2.2	0.80	2.2		17.60			
Terreno								
sciolto								
[3] -	5.51	1.60	5.51		44.08			
Terreno								
poco								

addensato								
[4] -	10.92	3.00	10.92	235.87	87.36	129.56	261.90	129.60
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	21.17	4.00	21.17	328.42	169.36	250.51	338.77	180.85
Terreno								
mediamen								
te								
addensato								

Modulo Edo	Modulo Edometrico (Kg/cm²)										
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac				
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev				
			presenza	(sabbie)	(Ghiaia con		(Sabbia				
			falda		sabbia)		media)				
[1] -	1.47	0.40	1.47		30.48	10.44	44.56				
Terreno											
agricolo											
[2] -	2.2	0.80	2.2		31.98	15.62	47.81				
Terreno											
sciolto											
[3] -	5.51	1.60	5.51		38.78	39.12	62.57				
Terreno											
poco											
addensato											
[4] -	10.92	3.00	10.92	65.52	49.89	77.53	86.70				
Terreno da											
poco a											
mediament											
e addensato											
[5] -	21.17	4.00	21.17	127.02	70.95	150.31	132.42				
Terreno											
mediament											
e addensato											

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	2.2	0.80	2.2	Terzaghi-Peck	1.37
sciolto				1948	
[3] - Terreno	5.51	1.60	5.51	Terzaghi-Peck	1.42
poco addensato				1948	
[4] - Terreno da	10.92	3.00	10.92	Terzaghi-Peck	1.49

poco a mediamente				1948	
addensato					
[5] - Terreno	21.17	4.00	21.17	-	
mediamente				1948	
addensato					

Peso unita' di volume saturo

1 CSO dilita di voi		D C C44.	NI	C1 :	D I I :4-!
	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	2.2	0.80	2.2	Terzaghi-Peck	1.86
sciolto				1948	
[3] - Terreno	5.51	1.60	5.51	Terzaghi-Peck	1.88
poco addensato				1948	
[4] - Terreno da	10.92	3.00	10.92	Terzaghi-Peck	1.93
poco a				1948	
mediamente					
addensato					
[5] - Terreno	21.17	4.00	21.17	Terzaghi-Peck	2.00
mediamente				1948	
addensato					

PROVA ...DPSH n.3

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 09-03-2023 Profondita' prova 3.80 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile

		riduzione sonda Chi	ridotta (Kg/cm²)	(Kg/cm²)	con riduzione Herminier - Olandesi (Kg/cm²)	Herminier - Olandesi (Kg/cm²)
0.20	2	0.855	17.96	21.01	0.90	1.05
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	1	0.840	8.10	9.64	0.40	0.48
1.20	2	0.836	16.13	19.29	0.81	0.96
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60		0.830	51.74	62.38	2.59	3.12
1.80	8	0.826	58.91	71.29	2.95	3.56
2.00	5	0.823	36.68	44.55	1.83	2.23
2.20	7	0.820	51.16	62.38	2.56	3.12
2.40	9	0.817	65.53	80.20	3.28	4.01
2.60	9	0.814	60.69	74.54	3.03	3.73
2.80	8	0.811	53.76	66.25	2.69	3.31
3.00	10	0.809	66.97	82.82	3.35	4.14
3.20	10	0.806	66.75	82.82	3.34	4.14
3.40	10	0.803	66.54	82.82	3.33	4.14
3.60	12	0.801	74.34	92.83	3.72	4.64
3.80	14	0.748	81.05	108.30	4.05	5.41

	Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
	Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
	(m))		(%)	volume	volume	efficace	correlaz		
						(t/m^3)	saturo	(Kg/cm ²	. con		
							(t/m^3))	Nspt		
	0.4	2	21.02	Incoere	0	1.63	1.86	0.03	1.47	2.94	Terreno
				nte -							agricolo
				coesivo							
Ī	1.2	1.5	14.46	Incoere	0	1.58	1.85	0.13	1.47	2.2	Terreno
				nte -							sciolto
				coesivo							
ŀ	2.8	7.25	63.73	Incoere	0	1.99	2.19	0.35	1.47	10.66	Terreno
		,0	05.75	nte -	Ů	1.,,,	,	0.20	1,	10.00	da poco
				coesivo							a
				COCSIVO							mediam
											ente
											addensa
ļ	2.0	11.0	00.02	T	0	2.00	2.20	0.61	1 45	16.46	to
	3.8	11.2	89.92	Incoere	0	2.08	2.29	0.61	1.47	16.46	
				nte -							mediam
				coesivo							ente
											addensa
											to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] - Terreno	2.94	0.40	0.18	0.37	0.15 -	0.12	0.28	0.63	0.27	0.65	0.15	0.48	0.37
agricolo					0.25								
[2] - Terreno	2.2	1.20	0.14	0.28		0.09	0.21	0.43	0.20	0.60	0.11	0.26	0.28
sciolto					0.25								
[3] - Terreno	10.66	2.80	0.72	1.33			1.05	1.91	0.94	1.25	0.53	1.51	1.33
da poco a					1.00								
mediamente													
addensato													
[4] - Terreno		3.80	1.11	2.06		0.65	1.63	2.70	1.42	1.76	0.82	2.38	2.06
mediamente					2.00								
addensato													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	2.94	0.40	13.49	44.10	31.78	36.75
agricolo						
[2] - Terreno	2.2	1.20	10.09	33.00	24.23	27.50
sciolto						
[3] - Terreno	10.66	2.80	48.91		110.52	106.60
da poco a						
mediamente						
addensato						
[4] - Terreno	16.46	3.80	75.52		169.67	164.60
mediamente						
addensato						

modulo di Todiig (ii	-0//			
	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - Terreno agricolo		0.40	13.41	29.40
[2] - Terreno sciolto		1.20	4.90	22.00

[3] - Terreno da	10.66	2.80	102.19	106.60
poco a mediamente				
addensato				
[4] - Terreno	16.46	3.80	168.89	164.60
mediamente				
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.63
[2] - Terreno sciolto		1.20	Meyerhof	1.58
[3] - Terreno da poco a mediamente addensato		2.80	Meyerhof	1.99
[4] - Terreno mediamente addensato		3.80	Meyerhof	2.08

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo
				(t/m^3)
[1] - Terreno	2.94	0.40	Meyerhof	1.86
agricolo				
[2] - Terreno	2.2	1.20	Meyerhof	1.85
sciolto				
[3] - Terreno da	10.66	2.80	Meyerhof	2.19
poco a mediamente				
addensato				
[4] - Terreno	16.46	3.80	Meyerhof	2.29
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	2.94	0.40	16.72	42.07	70.28	15.13
agricolo						
[2] - Terreno	2.2	1.20	10.27	34.22	42.72	12.98
sciolto						
[3] - Terreno	10.66	2.80	35.18	66.89	69.8	34.43
da poco a						

mediamente addensato						
[4] - Terreno	16.46	3.80	40.12	74.33	74.19	45.59
mediamente						
addensato						

Angolo di resistenza al taglio

	NSPT	Prof.			Mayıa	Corre	Mole	Maya	Sohm	Mitch	Shioi-	Ionon	De	Owas
	NSP I		corret		rhof		ev	rhof	ertma		Fuku	-	Mello	
						rs (1061				Katti		ese Natio	Meno	
		(m)	to per	on-	(1930	(1961	(1904	(1903	nn (1077		ni 1092			Iwasa ki
			prese	Thorn))))	(1977	` `	1982	nal		KI
			nza falda	burn-					Sabbi)	(ROA D			
			Tatua	Meye rhof							BRID	ay		
				1956					e		GE			
				1930							SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	2.94	0.40	2.94	27.84	20.84	28.82	3/1 18	30.70	0	<30	/	27.88	22.96	22.67
Terreno	2.94	0.40	2.94	27.04	20.04	20.02	34.10	30.19	U	\30	21.04	27.00	22.90	22.07
agricolo														
[2] -	2.2	1.20	2.2	27.63	20.63	28.62	30.73	30.46	0	<30	20.74	27.66	21.5	21.63
Terreno	2.2	1.20	2.2	27.03	20.03	20.02	30.73	30.40	U	\50	20.74	27.00	21.5	21.03
sciolto														
[3] -	10.66	2.80	10.66	30.05	23.05	30.98	31 11	33 92	37.36	<30	27.65	30.2	26.64	29.6
Terreno da	10.00	2.00	10.00	30.03	25.05	30.70	31.11	33.72	37.30	130	27.03	30.2	20.04	27.0
poco a														
mediament														
e addensato														
[4] -	16.46	3.80	16.46	31.7	24.7	32.61	30.6	35 96	38 41	30-32	30.71	31 94	27.29	33.14
Terreno	10.70	3.00	10.70	31.7	۷٦./	32.01	50.0	33.70	50.71	30-32	50.71	31.74	21.29	33.14
mediament														
e addensato														
e addensato														

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	2.94	0.40	2.94		23.52			
Terreno								
agricolo								
[2] -	2.2	1.20	2.2		17.60			
Terreno								
sciolto								
[3] -	10.66	2.80	10.66	233.05	85.28	126.49	259.95	128.30
Terreno								

da poco a mediamen								
te								
addensato								
[4] -	16.46	3.80	16.46	289.59	131.68	194.93	303.45	157.30
Terreno								
mediamen								
te								
addensato								

Modulo Ede	meureo (Kg/	ciii)					
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	2.94	0.40	2.94		33.50	20.87	51.11
Terreno							
agricolo							
[2] -	2.2	1.20	2.2		31.98	15.62	47.81
Terreno							
sciolto							
[3] -	10.66	2.80	10.66	63.96	49.36	75.69	85.54
Terreno da							
poco a							
mediament							
e addensato							
[4] -	16.46	3.80	16.46	98.76	61.27	116.87	111.41
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	2.94	0.40	2.94	Terzaghi-Peck	1.38
agricolo				1948	
[2] - Terreno	2.2	1.20	2.2	Terzaghi-Peck	1.37
sciolto				1948	
[3] - Terreno da	10.66	2.80	10.66	Terzaghi-Peck	1.49
poco a				1948	
mediamente					
addensato					
[4] - Terreno	16.46	3.80	16.46	Terzaghi-Peck	1.56
mediamente				1948	
addensato					

Peso unita' di volume saturo

1 000 0111100 011 10	TOTAL DOLLAR				
	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'

		(m)	per presenza falda		Volume Saturo (t/m³)
[1] - Terreno	2.94	0.40	2.94	Terzaghi-Peck	(/
agricolo				1948	
[2] - Terreno	2.2	1.20	2.2	Terzaghi-Peck	1.86
sciolto				1948	
[3] - Terreno da	10.66	2.80	10.66	Terzaghi-Peck	1.93
poco a				1948	
mediamente					
addensato					
[4] - Terreno	16.46	3.80	16.46	Terzaghi-Peck	1.97
mediamente				1948	
addensato					

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Poisson
		(m)	per presenza		
			falda		
[1] - Terreno		0.40	2.94	(A.G.I.)	0.35
agricolo					
[2] - Terreno	2.2	1.20	2.2	(A.G.I.)	0.35
sciolto					
[3] - Terreno da	10.66	2.80	10.66	(A.G.I.)	0.33
poco a					
mediamente					
addensato					
[4] - Terreno	16.46	3.80	16.46	(A.G.I.)	0.32
mediamente					
addensato					

PROVA ...DPSH n.8

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data Profondita' prova Falda non rilevata 09-03-2023 4.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profo	ndita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(n	n)		coeff.	dinamica	dinamica	ammissibile	ammissibile
			riduzione	ridotta	(Kg/cm^2)	con riduzione	Herminier -
			sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
						Olandesi	(Kg/cm ²)
						(Kg/cm ²)	
	0.20	1	0.855	8.98	10.51	0.45	0.53
	0.40	1	0.851	8.94	10.51	0.45	0.53
	0.60	2	0.847	16.34	19.29	0.82	0.96

0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	2	0.840	16.20	19.29	0.81	0.96
1.20	2	0.836	16.13	19.29	0.81	0.96
1.40	3	0.833	24.10	28.93	1.20	1.45
1.60	3	0.830	22.18	26.73	1.11	1.34
1.80	2	0.826	14.73	17.82	0.74	0.89
2.00	5	0.823	36.68	44.55	1.83	2.23
2.20	8	0.820	58.46	71.29	2.92	3.56
2.40	7	0.817	50.97	62.38	2.55	3.12
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	5	0.811	33.60	41.41	1.68	2.07
3.00	7	0.809	46.88	57.97	2.34	2.90
3.20	9	0.806	60.08	74.54	3.00	3.73
3.40	10	0.803	66.54	82.82	3.33	4.14
3.60	12	0.801	74.34	92.83	3.72	4.64
3.80	14	0.748	81.05	108.30	4.05	5.41
4.00	15	0.746	86.56	116.03	4.33	5.80

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	1	10.51	Incoere	0	1.52	1.85	0.03	1.47	1.47	Terreno
			nte -							agricolo
			coesivo							
1.2	2	19.29	Incoere	0	1.63	1.86	0.13	1.47	2.94	Terreno
			nte -							sciolto
			coesivo							
1.8	2.67	24.49	Incoere	0	1.69	1.87	0.24	1.47	3.92	Terreno
			nte -							poco
			coesivo							addensa
										to
3.2	6.71	57.4	Incoere	0	1.96	2.16	0.43	1.47	9.86	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to
4	12.75	100	Incoere	0	2.09	2.3	0.65	1.47	18.74	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.8

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

		· •		_								
NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
	Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
	(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
				(1948		1975)	·)	`)	1982		
				`)			Benas	Argill				
							si e	a di				
							Vanne	Chica				
							lli	go				
1.47	0.40	0.09	0.18	0.00 -	0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
				0.15								
2.94	1.20	0.18	0.37	0.15 -	0.12	0.28	0.58	0.27	0.65	0.15	0.39	0.37
				0.25								
3.92	1.80	0.25	0.49	0.15 -	0.16	0.38	0.74	0.36	0.73	0.20	0.48	0.49
				0.25								
9.86	3.20	0.67	1.23	0.50 -	0.40	0.97	1.72	0.87	1.19	0.49	1.31	1.23
				1.00								
18.74	4.00	1.27	2.34	1.00 -	0.73	1.85	3.00	1.60	1.96	0.94	2.75	2.34
				2.00								
	1.47 2.94 3.92 9.86	NSPT Prof. Strato (m) 1.47 0.40 2.94 1.20 3.92 1.80 9.86 3.20	NSPT Prof. Terza Strato (m) Peck 1.47 0.40 0.09 2.94 1.20 0.18 3.92 1.80 0.25 9.86 3.20 0.67	NSPT Prof. Terza Sangl erat Peck	NSPT Prof. Terza Sangl Ghi-Peck Strato Strato Peck Peck (1948 1948	Strato (m) Peck erat ghi-Peck (1948) M M 1.47 0.40 0.09 0.18 0.00 0.15 2.94 1.20 0.18 0.37 0.15 0.12 0.25 3.92 1.80 0.25 0.49 0.15 0.25 9.86 3.20 0.67 1.23 0.50 0.40 1.00	NSPT Strato (m) Peck Strato (m) Peck Peck (1948) 1.47 0.40 0.09 0.18 0.00 - 0.06 0.14 0.15	NSPT Prof. Terza Sangl erat ghi- ghi- heck (1948 1975) Benas si e Vanne lli	NSPT Prof. Strato Strato (m) Peck Peck (1948 1975 19	NSPT Prof. Strato Strato Ghi- Peck (1948)	NSPT Prof. Strato Strato (m) Peck Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck (1948) Peck Peck (1948) Peck (1948) Peck Peck	NSPT Prof. Terza Sangl ghi- ghi- (m) Peck (1948)

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e Gardner	Buisman- Sanglerat
[1] - Terreno agricolo	1.47	0.40	6.74	22.05	16.79	18.38
[2] - Terreno sciolto	2.94	1.20	13.49	44.10	31.78	36.75
[3] - Terreno poco addensato	3.92	1.80	17.99	58.80	41.77	49.00
[4] - Terreno da poco a mediamente addensato	9.86	3.20	45.24		102.36	123.25
[5] - Terreno mediamente addensato	18.74	4.00	85.98		192.93	187.40

 -8)			
NSPT	Prof. Strato	Schultze	Apollonia
	(m)		

[1] - Terreno	1.47	0.40	-3.50	14.70
agricolo				
[2] - Terreno	2.94	1.20	13.41	29.40
sciolto				
[3] - Terreno poco	3.92	1.80	24.68	39.20
addensato				
[4] - Terreno da	9.86	3.20	92.99	98.60
poco a mediamente				
addensato				
[5] - Terreno	18.74	4.00	195.11	187.40
mediamente				
addensato				

Peso unita' di volume

			~	
	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
		()		(t/m^3)
513 m	1.45	0.40	3.5 1.0	\ /
[1] - Terreno		0.40	Meyerhof	1.52
agricolo				
[2] - Terreno	2.94	1.20	Meyerhof	1.63
sciolto				
[3] - Terreno poco	3.92	1.80	Meyerhof	1.69
addensato				
[4] - Terreno da		3.20	Meyerhof	1.96
poco a mediamente				
addensato				
[5] - Terreno	18.74	4.00	Meyerhof	2.09
mediamente				
addensato				

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[1] - Terreno		0.40	Meyerhof	1.85
agricolo				
[2] - Terreno	2.94	1.20	Meyerhof	1.86
sciolto				
[3] - Terreno poco	3.92	1.80	Meyerhof	1.87
addensato				
[4] - Terreno da	9.86	3.20	Meyerhof	2.16
poco a mediamente				
addensato				
[5] - Terreno	18.74	4.00	Meyerhof	2.30
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	1.47	0.40	5.82	29.79	51.39	10.79
agricolo						
[2] - Terreno	2.94	1.20	14.99	39.62	49.31	15.13
sciolto						
[3] - Terreno	3.92	1.80	17.91	42.84	47.7	17.9
poco						
addensato						
[4] - Terreno	9.86	3.20	32.18	62.04	63.76	32.68
da poco a						
mediamente						
addensato						
[5] - Terreno	18.74	4.00	42.45	78.22	77.75	49.32
mediamente						
addensato						

Angolo di resistenza al taglio

	NSPT		-		Meye			_			Shioi-	-		Owas
		Strato (m)	corret to per		rhof (1956	rs (1961	ev (1964	rhof (1965	ertma nn	ell & Katti	Fuku ni	ese Natio	Mello	aki & Iwasa
		(111)	prese	Thorn	`)))	(1977		1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof 1956					e		BRID GE			
				1930							SPEC			
											IFIC			
											ATIO			
											N)			
[1] - Terreno agricolo		0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	<30	19.7	27.44	20.35	20.42
[2] - Terreno		1.20	2.94	27.84	20.84	28.82	31.25	30.79	0	<30	21.64	27.88	22.61	22.67
sciolto		1 00	2.02	20.12	21 12	20.1	20.20	21 21	0	-20	22.67	20.10	22.26	22.05
[3] - Terreno poco		1.80	3.92	28.12	21.12	29.1	30.29	31.21	0	<30	22.67	28.18	23.20	23.83
addensato														
[4] - Terreno		3.20	9.86	29.82	22.82	30.76	30.54	33.62	0	<30	27.16	29.96	26.04	29.04
da poco a														

mediamente														
addensato														
[5] - Terreno	18.74	4.00	18.74	32.35	25.35	33.25	30.68	36.69	38.95	30-32	31.77	32.62	27.64	34.36
mediamente														
addensato														

Modulo di Young (Kg/cm²)

Modulo di	Young (Kg							
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	1.47	0.40	1.47		11.76			
Terreno								
agricolo								
[2] -	2.94	1.20	2.94		23.52			
Terreno								
sciolto								
[3] -	3.92	1.80	3.92		31.36			
Terreno								
poco								
addensato								
[4] -	9.86	3.20	9.86		78.88	117.05		
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	18.74	4.00	18.74	309.00	149.92	221.83	320.55	168.70
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	1.47	0.40	1.47		30.48	10.44	44.56
Terreno							
agricolo							
[2] -	2.94	1.20	2.94		33.50	20.87	51.11
Terreno							
sciolto							
[3] -	3.92	1.80	3.92		35.52	27.83	55.48
Terreno							
poco							
addensato							

[4] -	9.86	3.20	9.86		47.72	70.01	81.98
Terreno da							
poco a							
mediament							
e addensato							
[5] -	18.74	4.00	18.74	112.44	65.96	133.05	121.58
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	2.94	1.20	2.94	Terzaghi-Peck	1.38
sciolto				1948	
[3] - Terreno	3.92	1.80	3.92	Terzaghi-Peck	1.40
poco addensato				1948	
[4] - Terreno da	9.86	3.20	9.86	Terzaghi-Peck	1.48
poco a				1948	
mediamente					
addensato					
[5] - Terreno	18.74	4.00	18.74	Terzaghi-Peck	1.58
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	2.94	1.20	2.94	Terzaghi-Peck	1.86
sciolto				1948	
[3] - Terreno	3.92	1.80	3.92	Terzaghi-Peck	1.87
poco addensato				1948	
[4] - Terreno da	9.86	3.20	9.86	Terzaghi-Peck	1.92
poco a				1948	
mediamente					
addensato					
[5] - Terreno	18.74	4.00	18.74	Terzaghi-Peck	1.98
mediamente				1948	
addensato					

Modulo di Poisson

110 4410 41 1 0100011											
	NSPT	Prof. Strato	Nspt corretto	Correlazione	Poisson						

		(m)	per presenza falda		
[1] - Terreno agricolo		0.40	1.47	(A.G.I.)	0.35
[2] - Terreno sciolto	2.94	1.20	2.94	(A.G.I.)	0.35
[3] - Terreno poco addensato		1.80	3.92	(A.G.I.)	0.35
[4] - Terreno da poco a mediamente	9.86	3.20	9.86	(A.G.I.)	0.33
addensato					
[5] - Terreno mediamente addensato	18.74	4.00	18.74	(A.G.I.)	0.32

PROVA ...DPSH n.4

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data
Profondita' prova
Falda non rilevata

09-03-2023
3.20 3.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	2	0.855	17.96	21.01	0.90	1.05
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	3	0.840	24.29	28.93	1.21	1.45
1.20	2	0.836	16.13	19.29	0.81	0.96
1.40	1	0.833	8.03	9.64	0.40	0.48
1.60	3	0.830	22.18	26.73	1.11	1.34
1.80	4	0.826	29.45	35.64	1.47	1.78

2.00	6	0.823	44.01	53.47	2.20	2.67
2.20	8	0.820	58.46	71.29	2.92	3.56
2.40	13	0.767	88.87	115.84	4.44	5.79
2.60	15	0.764	94.94	124.23	4.75	6.21
2.80	15	0.761	94.59	124.23	4.73	6.21
3.00	11	0.809	73.67	91.10	3.68	4.55
3.20	10	0.806	66.75	82.82	3.34	4.14

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	2	21.02	Incoere	0	1.63	1.86	0.03	1.47	2.94	Terreno
			nte -							agricolo
			coesivo							
1.4	2	19.29	Incoere	0	1.63	1.86	0.15	1.47	2.94	Terreno
			nte -							sciolto
			coesivo							
1.8	3.5	31.18	Incoere	0	1.77	1.88	0.26	1.47	5.14	Terreno
			nte -							poco
			coesivo							addensa
										to
2.2	7	62.38	Incoere	0	1.98	2.18	0.34	1.47	10.29	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to
3.2	12.8	107.64	Incoere	0	2.1	2.31	0.48	1.47	18.82	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.4

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
	Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
	(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
				(1948		1975)))	1982		
)			Benas	Argill				
							si e	a di				
							Vanne	Chica				

								lli	go				
[1] - Terreno	2.94	0.40	0.18	0.37	0.15 -	0.12	0.28	0.63	0.27	0.65	0.15	0.48	0.37
agricolo					0.25								
[2] - Terreno	2.94	1.40	0.18	0.37	0.15 -	0.12	0.28	0.58	0.27	0.65	0.15	0.36	0.37
sciolto					0.25								
[3] - Terreno	5.14	1.80	0.32	0.64	0.25 -	0.21	0.50	0.94	0.46	0.82	0.26	0.69	0.64
poco					0.50								
addensato													
[4] - Terreno	10.29	2.20	0.70	1.29	0.50 -	0.41	1.01	1.87	0.91	1.22	0.52	1.53	1.29
da poco a					1.00								
mediamente													
addensato													
[5] - Terreno	18.82	3.20	1.27	2.35	1.00 -	0.73	1.86	3.23	1.60	1.97	0.94	2.88	2.35
mediamente					2.00								
addensato													

Wiodulo Edollik	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	2.94	0.40	13.49	44.10	31.78	36.75
agricolo						
[2] - Terreno	2.94	1.40	13.49	44.10	31.78	36.75
sciolto						
[3] - Terreno	5.14	1.80	23.58	77.10	54.22	64.25
poco						
addensato						
[4] - Terreno	10.29	2.20	47.21		106.74	102.90
da poco a						
mediamente						
addensato						
[5] - Terreno	18.82	3.20	86.35		193.74	188.20
mediamente						
addensato						

- 2	Trouble at Touris (1)	- 8 , • · · · ·)			
		NSPT	Prof. Strato (m)	Schultze	Apollonia
ļ					
	[1] - Terreno		0.40	13.41	29.40
	agricolo				
	[2] - Terreno	2.94	1.40	13.41	29.40
	sciolto				

[3] - Terreno poco	5.14	1.80	38.71	51.40
addensato		1.00	20171	21.10
[4] - Terreno da	10.29	2.20	97.94	102.90
poco a mediamente				
addensato				
[5] - Terreno	18.82	3.20	196.03	188.20
mediamente				
addensato				

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
	.	(m)		
[1] - Terreno	2.94	0.40	A.G.I. (1977)	POCO
agricolo				CONSISTENTE
[2] - Terreno	2.94	1.40	A.G.I. (1977)	POCO
sciolto			, ,	CONSISTENTE
[3] - Terreno poco	5.14	1.80	A.G.I. (1977)	MODERAT.
addensato				CONSISTENTE
[4] - Terreno da	10.29	2.20	A.G.I. (1977)	CONSISTENTE
poco a mediamente				
addensato				
[5] - Terreno	18.82	3.20	A.G.I. (1977)	MOLTO
mediamente			, ,	CONSISTENTE
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume
				(t/m^3)
[1] - Terreno agricolo	2.94	0.40	Meyerhof	1.63
[2] - Terreno sciolto	2.94	1.40	Meyerhof	1.63
[3] - Terreno poco addensato	5.14	1.80	Meyerhof	1.77
[4] - Terreno da poco a mediamente addensato		2.20	Meyerhof	1.98
[5] - Terreno mediamente addensato	18.82	3.20	Meyerhof	2.10

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	2.94	0.40	Meyerhof	1.86
agricolo				
[2] - Terreno	2.94	1.40	Meyerhof	1.86

sciolto				
[3] - Terreno poco	5.14	1.80	Meyerhof	1.88
addensato				
[4] - Terreno da	10.29	2.20	Meyerhof	2.18
poco a mediamente				
addensato				
[5] - Terreno	18.82	3.20	Meyerhof	2.31
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - Terreno agricolo		0.40	16.72	42.07	70.28	15.13
[2] - Terreno sciolto		1.40	14.63	39.13	47.39	15.13
[3] - Terreno poco addensato		1.80	22.37	48.5	53.08	21.21
[4] - Terreno da poco a mediamente addensato		2.20	34.66	66.1	69.27	33.63
[5] - Terreno mediamente addensato		3.20	45.41	83.75	84.22	49.44

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	2.94	0.40	2.94	27.84	20.84	28.82	34.18	30.79	0	< 30	21.64	27.88	22.96	22.67
Terreno														
agricolo														
[2] -	2.94	1.40	2.94	27.84	20.84	28.82	30.91	30.79	0	< 30	21.64	27.88	22.53	22.67

Terreno														
sciolto														
[3] -	5.14	1.80	5.14	28.47	21.47	29.44	30.55	31.73	0	< 30	23.78	28.54	24.21	25.14
Terreno														
poco														
addensato														
[4] -	10.29	2.20	10.29	29.94	22.94	30.88	31.13	33.78	37.25	< 30	27.42	30.09	26.55	29.35
Terreno da														
poco a														
mediament														
e addensato														
[5] -	18.82	3.20	18.82	32.38	25.38	33.27	31.33	36.71	39.72	30-32	31.8	32.65	28.29	34.4
Terreno														
mediament														
e addensato														

Modulo di Young (Kg/cm²)

Modulo di	Young (Kg	/cm ²)						
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	2.94	0.40	2.94		23.52			
Terreno								
agricolo								
[2] -	2.94	1.40	2.94		23.52			
Terreno								
sciolto								
[3] -	5.14	1.80	5.14		41.12			
Terreno								
poco								
addensato								
[4] -	10.29	2.20	10.29	228.97	82.32	122.12	257.17	126.45
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	18.82	3.20	18.82	309.66	150.56	222.78	321.15	169.10
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

THOUGHTO Edo	metrico (118/	U					
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)

[1] -	2.94	0.40	2.94		33.50	20.87	51.11
Terreno							
agricolo							
[2] -	2.94	1.40	2.94		33.50	20.87	51.11
Terreno							
sciolto							
[3] -	5.14	1.80	5.14		38.02	36.49	60.92
Terreno							
poco							
addensato							
[4] -	10.29	2.20	10.29	61.74	48.60	73.06	83.89
Terreno da							
poco a							
mediament							
e addensato							
[5] -	18.82	3.20	18.82	112.92	66.12	133.62	121.94
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	2.94	0.40	2.94	Terzaghi-Peck	1.38
agricolo				1948	
[2] - Terreno	2.94	1.40	2.94	Terzaghi-Peck	1.38
sciolto				1948	
[3] - Terreno	5.14	1.80	5.14	Terzaghi-Peck	1.41
poco addensato				1948	
[4] - Terreno da	10.29	2.20	10.29	Terzaghi-Peck	1.48
poco a				1948	
mediamente					
addensato					
[5] - Terreno	18.82	3.20	18.82	Terzaghi-Peck	1.58
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	2.94	0.40	2.94	Terzaghi-Peck	1.86
agricolo				1948	
[2] - Terreno	2.94	1.40	2.94	Terzaghi-Peck	1.86
sciolto				1948	
[3] - Terreno	5.14	1.80	5.14	Terzaghi-Peck	1.88
poco addensato				1948	
[4] - Terreno da	10.29	2.20	10.29	Terzaghi-Peck	1.92

poco a				1948	
mediamente					
addensato					
[5] - Terreno	18.82	3.20	18.82	Terzaghi-Peck	1.98
mediamente				1948	
addensato					

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - Terreno agricolo		0.40	2.94	(A.G.I.)	0.35
[2] - Terreno sciolto		1.40	2.94	(A.G.I.)	0.35
[3] - Terreno poco addensato		1.80	5.14	(A.G.I.)	0.34
[4] - Terreno da poco a mediamente addensato		2.20	10.29	(A.G.I.)	
[5] - Terreno mediamente addensato		3.20	18.82	(A.G.I.)	0.32

Modulo di deformazione a taglio dinamico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Ohsaki (Sabbie	Robertson e
		(m)	per presenza	pulite)	Campanella
			falda		(1983) e Imai &
					Tonouchi
					(1982)
[1] - Terreno	2.94	0.40	2.94	179.13	241.59
agricolo					
[2] - Terreno		1.40	2.94	179.13	241.59
sciolto					
[3] - Terreno	5.14	1.80	5.14	302.84	339.87
poco addensato					
[4] - Terreno da	10.29	2.20	10.29	581.55	519.39
poco a					
mediamente					
addensato					
[5] - Terreno	18.82	3.20	18.82	1025.78	751.11
mediamente					
addensato					

PROVA ...DPSH n.5

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 09-03-2023 Profondita' prova 4.20 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	1	0.843	8.13	9.64	0.41	0.48
1.00	1	0.840	8.10	9.64	0.40	0.48
1.20	1	0.836	8.06	9.64	0.40	0.48
1.40	1	0.833	8.03	9.64	0.40	0.48
1.60	3	0.830	22.18	26.73	1.11	1.34
1.80	4	0.826	29.45	35.64	1.47	1.78
2.00	4	0.823	29.34	35.64	1.47	1.78
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	4	0.817	29.13	35.64	1.46	1.78
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	9	0.811	60.48	74.54	3.02	3.73
3.00	9	0.809	60.27	74.54	3.01	3.73
3.20	8	0.806	53.40	66.25	2.67	3.31
3.40	7	0.803	46.57	57.97	2.33	2.90

3.60	8	0.801	49.56	61.88	2.48	3.09
3.80	10	0.798	61.76	77.36	3.09	3.87
4.00	14	0.746	80.79	108.30	4.04	5.41
4.20	16	0.744	92.05	123.77	4.60	6.19

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizione
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
					, , ,	(t/m^3))	Nspt		
0.4	1	10.51	Incoere	0	1.52	1.85	0.03	_	1.47	Terreno
			nte -							agricolo
			coesivo							
1.4	1	9.64	Incoere	0	1.52	1.85	0.14	1.47	1.47	Terreno sciolto
			nte -							
			coesivo							
2.4	3.8	33.86	Incoere	0	1.79	1.88	0.3	1.47	5.59	Terreno poco
			nte -							addensato
			coesivo							
3.6	7.83	64.14	Incoere	0	2.01	2.21	0.51	1.47	11.51	Terreno da
			nte -							poco a
			coesivo							mediamente
										addensato
4.2	13.33	103.14	Incoere	0	2.1	2.31	0.7	1.47	19.6	
			nte -							mediamente
			coesivo							addensato

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.5

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	ic non c	arcmana	(128/011	')									
	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] - Terreno	1.47	0.40	0.09	0.18	0.00 -	0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
agricolo					0.15								
[2] - Terreno	1.47	1.40	0.09	0.18	0.00 -	0.06	0.14	0.29	0.14	0.55	0.07	0.11	0.18
sciolto					0.15								
[3] - Terreno	5.59	2.40	0.35	0.70	0.25 -	0.23	0.55	1.02	0.50	0.85	0.28	0.69	0.70
poco					0.50								
addensato													
[4] - Terreno	11.51	3.60	0.78	1.44	0.50 -	0.46	1.13	1.92	1.01	1.33	0.58	1.54	1.44

da poco a					1.00								
mediamente													
addensato													
[5] - Terreno	19.6	4.20	1.32	2.45	1.00 -	0.76	1.94	3.09	1.67	2.04	0.98	2.87	2.45
mediamente					2.00								
addensato													

Modulo Edolli	etrico (Kg/cm²)					
	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	1.47	0.40	6.74	22.05	16.79	18.38
agricolo						
[2] - Terreno	1.47	1.40	6.74	22.05	16.79	18.38
sciolto						
[3] - Terreno	5.59	2.40	25.65	83.85	58.81	69.88
poco						
addensato						
[4] - Terreno	11.51	3.60	52.81		119.19	115.10
da poco a						
mediamente						
addensato						
[5] - Terreno	19.6	4.20	89.93		201.70	196.00
mediamente						
addensato						

Triodato di Toding (1	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	1.47	0.40	-3.50	14.70
agricolo				
[2] - Terreno	1.47	1.40	-3.50	14.70
sciolto				
[3] - Terreno poco	5.59	2.40	43.89	55.90
addensato				
[4] - Terreno da	11.51	3.60	111.97	115.10
poco a mediamente				
addensato				
[5] - Terreno	19.6	4.20	205.00	196.00
mediamente				
addensato				

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.52
[2] - Terreno sciolto	1.47	1.40	Meyerhof	1.52
[3] - Terreno poco addensato	5.59	2.40	Meyerhof	1.79
[4] - Terreno da poco a mediamente addensato		3.60	Meyerhof	2.01
[5] - Terreno mediamente addensato		4.20	Meyerhof	2.10

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	1.47	0.40	Meyerhof	1.85
agricolo				
[2] - Terreno	1.47	1.40	Meyerhof	1.85
sciolto				
[3] - Terreno poco	5.59	2.40	Meyerhof	1.88
addensato				
[4] - Terreno da	11.51	3.60	Meyerhof	2.21
poco a mediamente				
addensato				
[5] - Terreno	19.6	4.20	Meyerhof	2.31
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	1.47	0.40	5.82	29.79	51.39	10.79
agricolo						
[2] - Terreno	1.47	1.40	4.13	27.83	34.65	10.79
sciolto						
[3] - Terreno	5.59	2.40	23.26	49.59	53.31	22.39
poco						
addensato						
[4] - Terreno	11.51	3.60	34.03	64.7	65.57	36.23

da poco a mediamente addensato						
[5] - Terreno	19.6	4.20	42.76	78.69	78.04	50.63
mediamente						
addensato						

Angolo di resistenza al taglio

Aligoi		SISTELLE				~			~ 1	2 51 5	Q1 : :	_		
	NSPT		-	Peck-	_			-				-	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma		Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	1.47	0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	< 30	19.7	27.44	20.35	20.42
Terreno														
agricolo														
[2] -	1.47	1.40	1.47	27.42	20.42	28.41	29.94	30.14	0	< 30	19.7	27.44	19.94	20.42
Terreno														
sciolto														
[3] -	5.59	2.40	5.59	28.6	21.6	29.57	30.39	31.92	0	< 30	24.16	28.68	24.38	25.57
Terreno														
poco														
addensato														
[4] -	11.51	3.60	11.51	30.29	23.29	31.22	30.41	34.23	37.06	< 30	28.14	30.45	26.32	30.17
Terreno da														
poco a														
mediament														
e addensato														
[5] -	19.6	4.20	19.6	32.6	25.6	33.49	30.61	36.95	39.02	30-32	32.15	32.88	27.64	34.8
Terreno														
mediament														
e addensato														

Modulo di Young (Kg/cm²)

modulo di	Wodalo di Toding (Tigjotii)											
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles				
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)				
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia				

			presenza falda		(Sabbie)	ghiaiosa)	(Sabbia)	Media
[1] -	1.47	0.40	1.47		11.76			
Terreno								
agricolo								
[2] -	1.47	1.40	1.47		11.76			
Terreno								
sciolto								
[3] -	5.59	2.40	5.59		44.72			
Terreno								
poco								
addensato								
[4] -	11.51	3.60	11.51	242.16	92.08	136.52	266.33	132.55
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	19.6	4.20	19.6	316.01	156.80	231.98	327.00	173.00
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	1.47	0.40	1.47		30.48	10.44	44.56
Terreno							
agricolo							
[2] -	1.47	1.40	1.47		30.48	10.44	44.56
Terreno							
sciolto							
[3] -	5.59	2.40	5.59		38.95	39.69	62.93
Terreno							
poco							
addensato							
[4] -	11.51	3.60	11.51	69.06	51.11	81.72	89.33
Terreno da							
poco a							
mediament							
e addensato							
[5] -	19.6	4.20	19.6	117.60	67.72	139.16	125.42
Terreno							
mediament							
e addensato							

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	1.47	1.40	1.47	Terzaghi-Peck	1.36
sciolto				1948	
[3] - Terreno	5.59	2.40	5.59	Terzaghi-Peck	1.42
poco addensato				1948	
[4] - Terreno da	11.51	3.60	11.51	Terzaghi-Peck	1.50
poco a				1948	
mediamente					
addensato					
[5] - Terreno	19.6	4.20	19.6	Terzaghi-Peck	1.59
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	1.47	1.40	1.47	Terzaghi-Peck	1.85
sciolto				1948	
[3] - Terreno	5.59	2.40	5.59	Terzaghi-Peck	1.88
poco addensato				1948	
[4] - Terreno da	11.51	3.60	11.51	Terzaghi-Peck	1.93
poco a				1948	
mediamente					
addensato					
[5] - Terreno	19.6	4.20	19.6	Terzaghi-Peck	1.99
mediamente				1948	
addensato					

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Poisson
		(m)	per presenza		
			falda		
[1] - Terreno	1.47	0.40	1.47	(A.G.I.)	0.35
agricolo					
[2] - Terreno	1.47	1.40	1.47	(A.G.I.)	0.35
sciolto					
[3] - Terreno	5.59	2.40	5.59	(A.G.I.)	0.34
poco addensato					
[4] - Terreno da	11.51	3.60	11.51	(A.G.I.)	0.33
poco a					
mediamente					

addensato			

PROVA ...DPSH n.6

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 09-03-2023 Profondita' prova 2.80 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	2	0.840	16.20	19.29	0.81	0.96
1.20	2	0.836	16.13	19.29	0.81	0.96
1.40	3	0.833	24.10	28.93	1.20	1.45
1.60	2	0.830	14.78	17.82	0.74	0.89
1.80	4	0.826	29.45	35.64	1.47	1.78
2.00	4	0.823	29.34	35.64	1.47	1.78
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	4	0.817	29.13	35.64	1.46	1.78
2.60	5	0.814	33.72	41.41	1.69	2.07
2.80	26	0.711	153.19	215.32	7.66	10.77

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	1	10.51	Incoere	0	1.52	1.85	0.03	1.47	1.47	Terreno
			nte -							agricolo
			coesivo							
1.2	2	19.29	Incoere	0	1.63	1.86	0.13	1.47	2.94	Terreno
			nte -							sciolto
			coesivo							

2.6	3.71	32.96	Incoere	0	1.78	1.88	0.32	1.47	5.45	Terreno
			nte -							poco
			coesivo							addensa
										to
2.8	26	215.32	Incoere	0	2.42	2.5	0.46	1.47	38.22	Terreno
			nte -							addensa
			coesivo							to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.6

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	_	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
		()			(1948		1975)))	1982		
					`)			Benas	Argill				
					,			si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	1.47	0.40	0.09	0.18	0.00 -	0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
Terreno					0.15								
agricolo													
[2] -	2.94	1.20	0.18	0.37	0.15 -	0.12	0.28	0.58	0.27	0.65	0.15	0.39	0.37
Terreno					0.25								
sciolto													
[3] -	5.45	2.60	0.34	0.68		0.22	0.53	0.99	0.49	0.84	0.27	0.64	0.68
Terreno					0.50								
poco													
addensat													
0													
[4] -	38.22	2.80	2.58	4.78	0.00	1.39	3.81	6.46	2.98	4.01	1.91	6.34	4.78
Terreno													
addensat													
0													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	1.47	0.40	6.74	22.05	16.79	18.38
agricolo						
[2] - Terreno	2.94	1.20	13.49	44.10	31.78	36.75
sciolto						
[3] - Terreno	5.45	2.60	25.01	81.75	57.38	68.13
poco						
addensato						

[4] - Terreno	38.22	2.80	175.35	 391.61	382.20
addensato					

Modulo di Young (Kg/cm²)

modulo di Toding (ii				
	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	1.47	0.40	-3.50	14.70
agricolo				
[2] - Terreno	2.94	1.20	13.41	29.40
sciolto				
[3] - Terreno poco	5.45	2.60	42.28	54.50
addensato				
[4] - Terreno	38.22	2.80	419.13	382.20
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.52
[2] - Terreno sciolto		1.20	Meyerhof	1.63
[3] - Terreno poco addensato		2.60	Meyerhof	1.78
[4] - Terreno addensato		2.80	Meyerhof	2.42

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno		0.40	Meyerhof	1.85
agricolo				
[2] - Terreno	2.94	1.20	Meyerhof	1.86
sciolto				
[3] - Terreno poco	5.45	2.60	Meyerhof	1.88
addensato				
[4] - Terreno	38.22	2.80	Meyerhof	2.50
addensato				

TERRENI INCOERENTI

Densita' relativa

2 4110100 141001	. ••						
	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton	Ī

		(m)	Holtz 1957	1957	Menzenbach (1961)	1986
[1] - Terreno	1.47	0.40	5.82	29.79	51.39	10.79
agricolo						
[2] - Terreno	2.94	1.20	14.99	39.62	49.31	15.13
sciolto						
[3] - Terreno	5.45	2.60	22.57	48.64	52.07	22.02
poco						
addensato						
[4] - Terreno	38.22	2.80	63.76	100	100	70.93
addensato						

Angolo di resistenza al taglio

7 111501	o ai res					_						_	_	
	NSPT		-			Sowe	Malc	_	Schm			-	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof		ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	1.47	0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	< 30	19.7	27.44	20.35	20.42
Terreno														
agricolo														
[2] -	2.94	1.20	2.94	27.84	20.84	28.82	31.25	30.79	0	< 30	21.64	27.88	22.61	22.67
Terreno														
sciolto														
[3] -	5.45	2.60	5.45	28.56	21.56	29.53	30.25	31.86	0	< 30	24.04	28.64	24.23	25.44
Terreno														
poco														
addensato														
[4] -	38.22	2.80	38.22	37.92	30.92	38.7	32.57	41.21	42	35-38	38.94	38.47	31.05	42.65
Terreno														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	1.47	0.40	1.47		11.76			
Terreno								
agricolo								
[2] -	2.94	1.20	2.94		23.52			

Terreno sciolto								
[3] -	5.45	2.60	5.45		43.60			
Terreno								
poco								
addensato								
[4] -	38.22	2.80	38.22	441.28	305.76	451.70	466.65	266.10
Terreno								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	1.47	0.40	1.47		30.48	10.44	44.56
Terreno							
agricolo							
[2] -	2.94	1.20	2.94		33.50	20.87	51.11
Terreno							
sciolto							
[3] -	5.45	2.60	5.45		38.66	38.69	62.31
Terreno							
poco							
addensato							
[4] -	38.22	2.80	38.22	229.32	105.97	271.36	208.46
Terreno							
addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	2.94	1.20	2.94	Terzaghi-Peck	1.38
sciolto				1948	
[3] - Terreno	5.45	2.60	5.45	Terzaghi-Peck	1.42
poco addensato				1948	
[4] - Terreno	38.22	2.80	38.22	Terzaghi-Peck	1.77
addensato				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza	Correlazione	Peso Unita' Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	2.94	1.20	2.94	Terzaghi-Peck	1.86

sciolto				1948	
[3] - Terreno	5.45	2.60	5.45	Terzaghi-Peck	1.88
poco addensato				1948	
[4] - Terreno	38.22	2.80	38.22	Terzaghi-Peck	2.10
addensato				1948	

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Poisson
		(m)	per presenza		
			falda		
[1] - Terreno	1.47	0.40	1.47	(A.G.I.)	0.35
agricolo					
[2] - Terreno		1.20	2.94	(A.G.I.)	0.35
sciolto					
[3] - Terreno	5.45	2.60	5.45	(A.G.I.)	0.34
poco addensato					
[4] - Terreno	38.22	2.80	38.22	(A.G.I.)	0.28
addensato					

PROVA ...DPSH n.7

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 09-03-2023 Profondita' prova 4.00 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	_	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm^2)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	1	0.843	8.13	9.64	0.41	0.48
1.00	1	0.840	8.10	9.64	0.40	0.48
1.20	1	0.836	8.06	9.64	0.40	0.48
1.40	2	0.833	16.06	19.29	0.80	0.96
1.60	3	0.830	22.18	26.73	1.11	1.34
1.80	4	0.826	29.45	35.64	1.47	1.78
2.00	4	0.823	29.34	35.64	1.47	1.78
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	6	0.817	43.69	53.47	2.18	2.67

2.60	5	0.814	33.72	41.41	1.69	2.07
2.80	7	0.811	47.04	57.97	2.35	2.90
3.00	9	0.809	60.27	74.54	3.01	3.73
3.20	9	0.806	60.08	74.54	3.00	3.73
3.40	8	0.803	53.23	66.25	2.66	3.31
3.60	9	0.801	55.76	69.62	2.79	3.48
3.80	10	0.798	61.76	77.36	3.09	3.87
4.00	11	0.796	67.73	85.09	3.39	4.25

Prof.	•	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strate	0		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
						(t/m^3)	saturo	(Kg/cm ²	. con		
							(t/m^3))	Nspt		
0).4	1	10.51	Incoere	0	1.52	1.85	0.03	1.47	1.47	Terreno
				nte -							agricolo
				coesivo							
1	.4	1.4	13.5	Incoere	0	1.57	1.85	0.14	1.47	2.06	
				nte -							sciolto
				coesivo							
2	2.6	4.33	38.09	Incoere	0	1.83	1.89	0.33	1.47	6.37	Terreno
				nte -							poco
				coesivo							addensa
		0.4	60.50	-	^	2.02	2.22	0.74		10.05	to
3	8.6	8.4	68.58		0	2.02	2.22	0.54	1.47	12.35	
				nte -							da poco
				coesivo							a
											mediam
											ente
											addensa
		10.5	01.00	т		2.05	2.20	0.60	1 45	15.44	to
	4	10.5	81.22	Incoere	0	2.07	2.28	0.68	1.47	15.44	
				nte -							mediam
				coesivo							ente
											addensa
											to

STIMA PARAMETRI GEOTECNICI PROVA DPSH n.7

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesioi	NSPT		Terza		Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960			
					(1948		1975)))	1982		
)			Benas					
								si e	a di				
								Vanne					
F17	1 47	0.40	0.00	0.10	0.00	0.06	0.14	lli	go	0.55	0.07	0.22	0.10
[1] -	1.47	0.40	0.09	0.18		0.06	0.14	0.32	0.14	0.55	0.07	0.22	0.18
Terreno					0.15								
agricolo [2] -	2.06	1.40	0.13	0.26	0.15 -	0.08	0.20	0.41	0.19	0.59	0.10	0.21	0.26
Terreno		1.40	0.13	0.20	0.13	0.00	0.20	0.41	0.19	0.57	0.10	0.21	0.20
sciolto					0.23								
[3] -		2.60	0.40	0.80	0.25 -	0.26	0.62	1.14	0.57	0.91	0.32	0.80	0.80
Terreno	0.07	2.00	00	0.00	0.50	0.20	0.02	1.1.	0.07	0.51	0.02	0.00	0.00
poco													
addensato													
[4] -	12.35	3.60	0.83	1.54	0.50 -	0.49	1.22	2.06	1.08	1.40	0.62	1.69	1.54
Terreno da					1.00								
poco a													
mediamen													
te													
addensato	15.44	4.00	1.04	1.02	1.00	0.61	1.50	2.44	1.24	1.66	0.55	0.15	1.02
[5] -	15.44	4.00	1.04	1.93		0.61	1.52	2.44	1.34	1.66	0.77	2.17	1.93
Terreno					2.00								
mediamen													
te													
addensato													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	1.47	0.40	6.74	22.05	16.79	18.38
agricolo						
[2] - Terreno	2.06	1.40	9.45	30.90	22.80	25.75
sciolto						
[3] - Terreno	6.37	2.60	29.23		66.76	79.63
poco						
addensato						

[4] - Terreno	12.35	3.60	56.66	 127.75	123.50
da poco a					
mediamente					
addensato					
[5] - Terreno	15.44	4.00	70.84	 159.27	154.40
mediamente					
addensato					

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - Terreno agricolo		0.40	-3.50	14.70
[2] - Terreno sciolto		1.40	3.29	20.60
[3] - Terreno poco addensato	6.37	2.60	52.86	63.70
[4] - Terreno da poco a mediamente addensato	12.35	3.60	121.63	123.50
[5] - Terreno mediamente addensato		4.00	157.16	154.40

Peso unita' di volume

eso unita di voluni	NSPT	Prof. Strato	Correlazione	Peso unita' di
	NSP I		Correlazione	
		(m)		volume
				(t/m^3)
[1] - Terreno	1.47	0.40	Meyerhof	1.52
agricolo				
[2] - Terreno	2.06	1.40	Meyerhof	1.57
sciolto				
[3] - Terreno poco	6.37	2.60	Meyerhof	1.83
addensato				
[4] - Terreno da	12.35	3.60	Meyerhof	2.02
poco a mediamente				
addensato				
[5] - Terreno	15.44	4.00	Meyerhof	2.07
mediamente				
addensato				

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	1.47	0.40	Meyerhof	1.85
agricolo				
[2] - Terreno	2.06	1.40	Meyerhof	1.85
sciolto				

[3] - Terreno poco	6.37	2.60	Meyerhof	1.89
addensato				
[4] - Terreno da	12.35	3.60	Meyerhof	2.22
poco a mediamente				
addensato				
[5] - Terreno	15.44	4.00	Meyerhof	2.28
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

Delisita Telati						
	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
		` ,			(1961)	
[1] - Terreno	1.47	0.40	5.82	29.79	51.39	10.79
agricolo						
[2] - Terreno	2.06	1.40	9.08	32.9	40.52	12.56
sciolto						
[3] - Terreno	6.37	2.60	25.28	52.28	55.56	24.39
poco						
addensato						
[4] - Terreno	12.35	3.60	35.1	66.32	66.94	37.95
da poco a						
mediamente						
addensato						
[5] - Terreno	15.44	4.00	37.68	70.22	70.04	43.81
mediamente						
addensato						

Angolo di resistenza al taglio

	NSPT		Nspt		Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	1.47	0.40	1.47	27.42	20.42	28.41	33.21	30.14	0	< 30	19.7	27.44	20.35	20.42
Terreno														
agricolo														
[2] -	2.06	1.40	2.06	27.59	20.59	28.58	30.45	30.4	0	< 30	20.56	27.62	21.21	21.42
Terreno														
sciolto														

[3] -	6.37	2.60	6.37	28.82	21.82	29.78	30.42	32.24	0	< 30	24.77	28.91	24.78	26.29
Terreno														
poco														
addensato														
[4] -	12.35	3.60	12.35	30.53	23.53	31.46	30.42	34.54	37.28	30-32	28.61	30.7	26.48	30.72
Terreno														
da poco a														
mediamen														
te														
addensato														
[5] -	15.44	4.00	15.44	31.41	24.41	32.32	30.27	35.62	37.83	30-32	30.22	31.63	26.79	32.57
Terreno														
mediamen														
te														
addensato														

Modulo di Young (Kg/cm²)

Modulo al	Young (Kg	(cm²)						
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	1.47	0.40	1.47		11.76			
Terreno								
agricolo								
[2] -	2.06	1.40	2.06		16.48			
Terreno								
sciolto								
[3] -	6.37	2.60	6.37		50.96			
Terreno								
poco								
addensato								
[4] -	12.35	3.60	12.35	250.84	98.80	146.43	272.62	136.75
Terreno								
da poco a								
mediamen								
te								
addensato								
[5] -	15.44	4.00	15.44	280.47	123.52	182.89	295.80	152.20
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

	()					
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev

			presenza falda	(sabbie)	(Ghiaia con sabbia)		(Sabbia media)
[1] -	1.47	0.40	1.47		30.48	10.44	
Terreno agricolo							
[2] -	2.06	1.40	2.06		31.70	14.63	47.19
Terreno sciolto							
[3] -	6.37	2.60	6.37		40.55	45.23	66.41
Terreno							
addensato							
[4] - Terreno da	12.35	3.60	12.35	74.10	52.83	87.69	93.08
poco a							
mediament							
e addensato [5] -	15.44	4.00	15.44	92.64	59.18	109.62	106.86
Terreno	13.44	4.00	13.44	92.04	39.10	109.02	100.00
mediament							
e addensato							

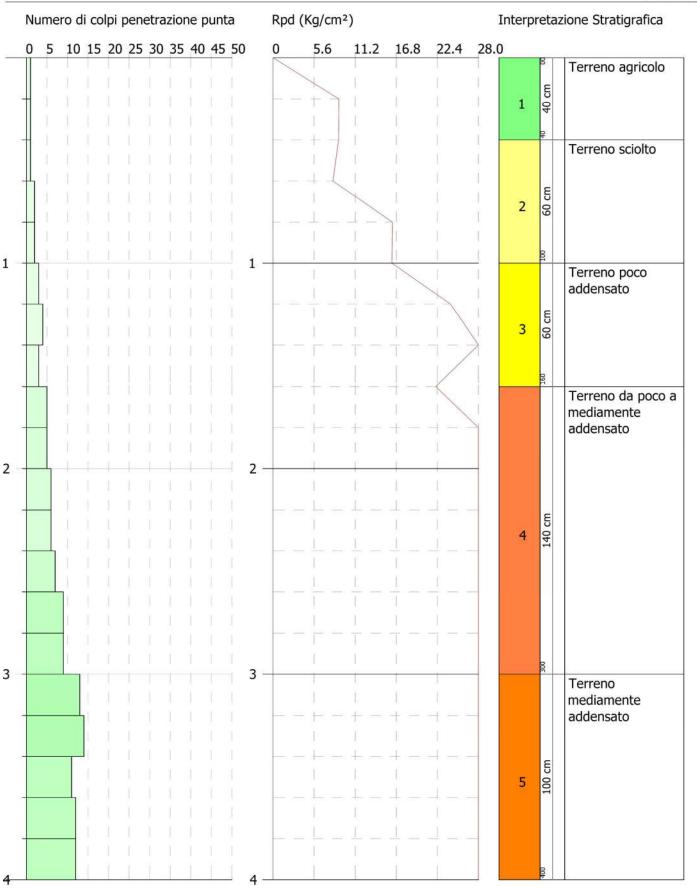
	NSPT	Prof. Strato (m)	Nspt corretto per presenza	Correlazione	Peso Unita' di Volume
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.36
agricolo				1948	
[2] - Terreno	2.06	1.40	2.06	Terzaghi-Peck	1.37
sciolto				1948	
[3] - Terreno	6.37	2.60	6.37	Terzaghi-Peck	1.43
poco addensato				1948	
[4] - Terreno da	12.35	3.60	12.35	Terzaghi-Peck	1.51
poco a				1948	
mediamente					
addensato					
[5] - Terreno	15.44	4.00	15.44	Terzaghi-Peck	1.54
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	1.47	0.40	1.47	Terzaghi-Peck	1.85
agricolo				1948	
[2] - Terreno	2.06	1.40	2.06	Terzaghi-Peck	1.85
sciolto				1948	
[3] - Terreno	6.37	2.60	6.37	Terzaghi-Peck	1.89

poco addensato				1948	
[4] - Terreno da	12.35	3.60	12.35	Terzaghi-Peck	1.94
poco a				1948	
mediamente					
addensato					
[5] - Terreno	15.44	4.00	15.44	Terzaghi-Peck	1.96
mediamente				1948	
addensato					

Modulo di Poisson

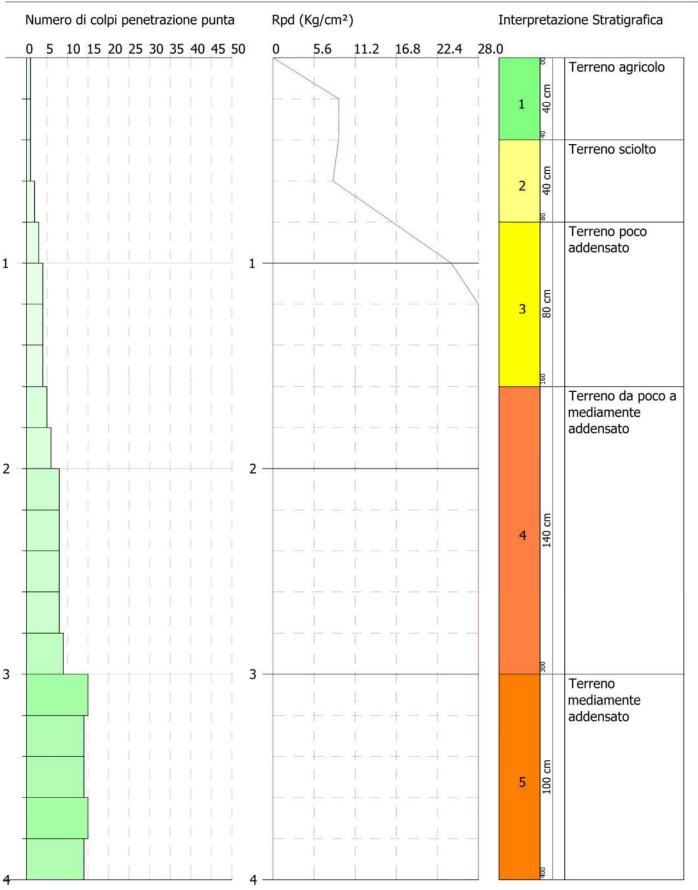

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - Terreno agricolo		0.40	1.47	(A.G.I.)	0.35
[2] - Terreno sciolto		1.40	2.06	(A.G.I.)	0.35
[3] - Terreno poco addensato		2.60	6.37	(A.G.I.)	0.34
[4] - Terreno da poco a mediamente addensato		3.60	12.35	(A.G.I.)	0.33
[5] - Terreno mediamente addensato		4.00	15.44	(A.G.I.)	0.32

PROVA PENETROMETRICA DINAMICA DPSH n.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:20

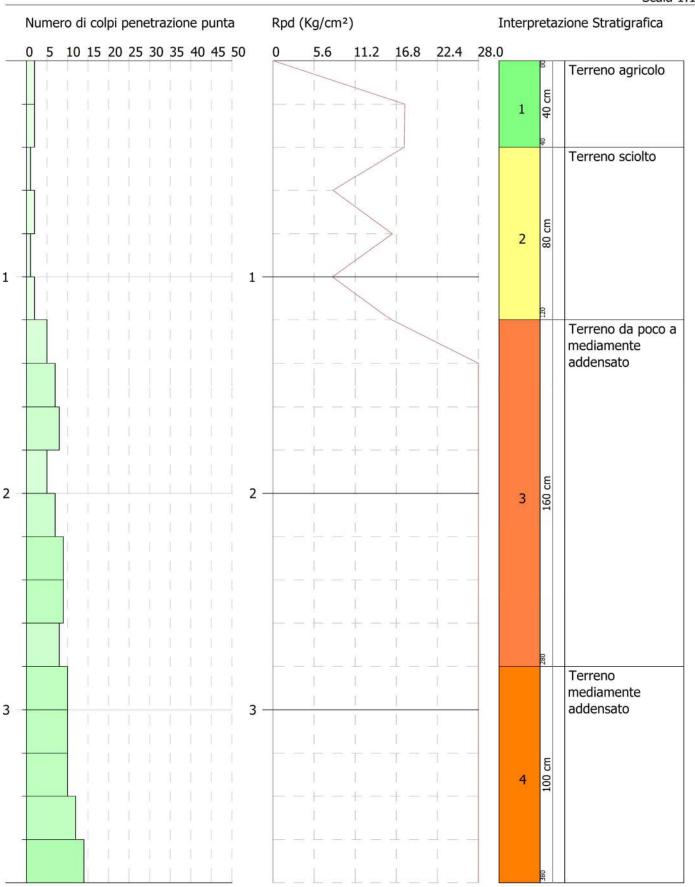


PROVA PENETROMETRICA DINAMICA DPSH n.2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:20

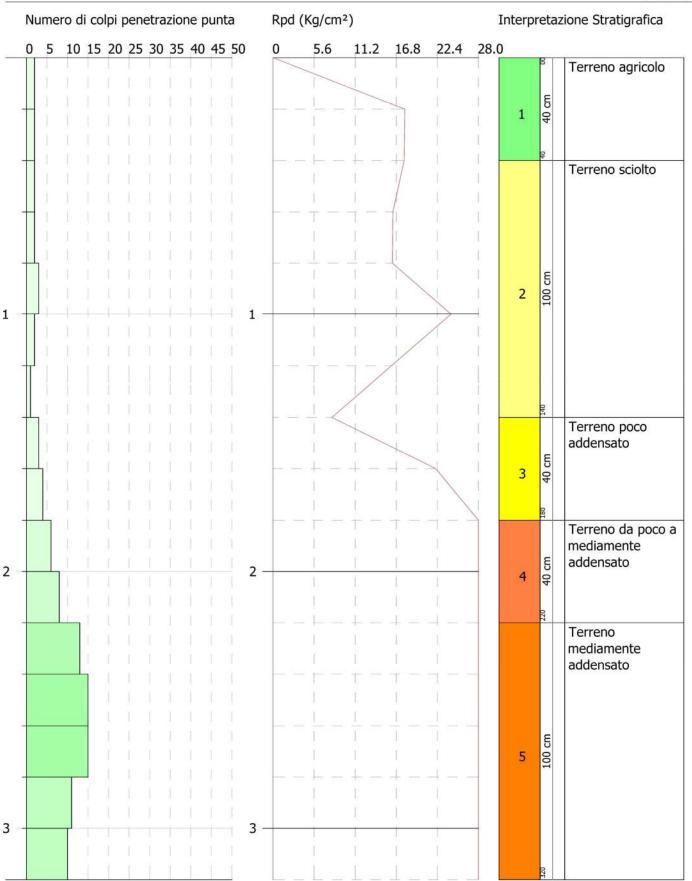


PROVA PENETROMETRICA DINAMICA DPSH n.3 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:19

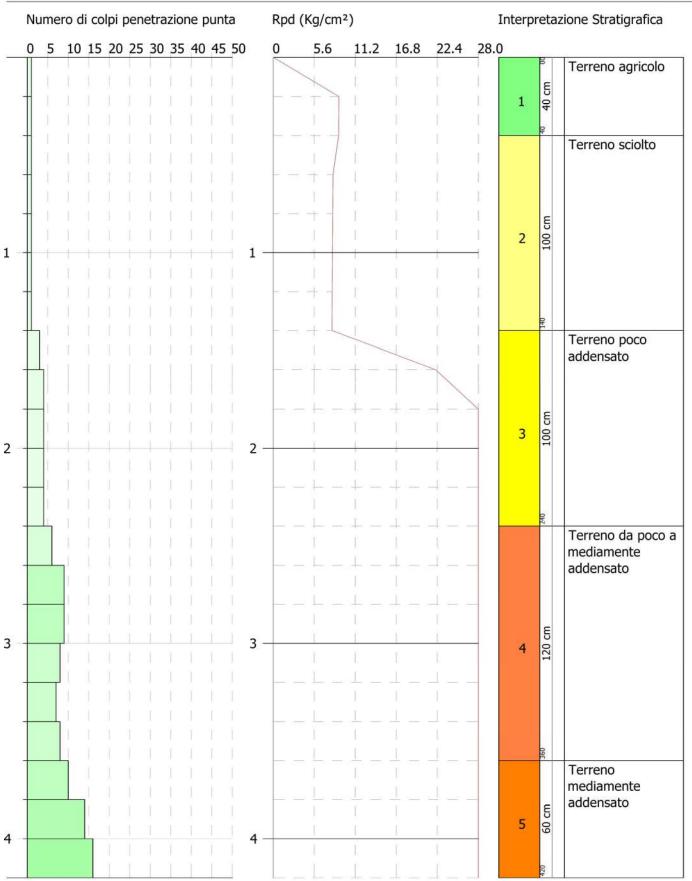


PROVA PENETROMETRICA DINAMICA DPSH n.4 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:16

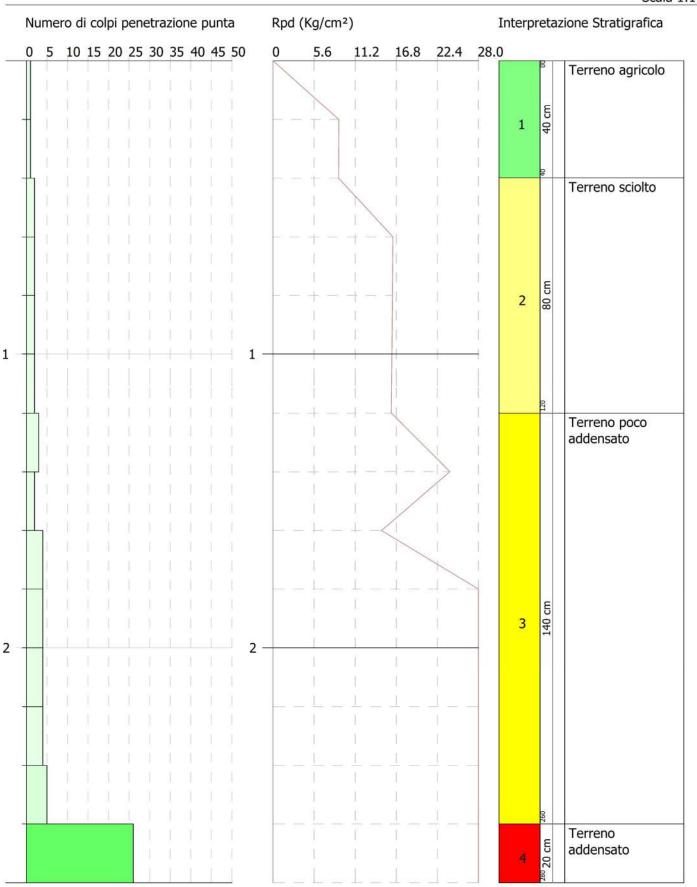


PROVA PENETROMETRICA DINAMICA DPSH n.5 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:21

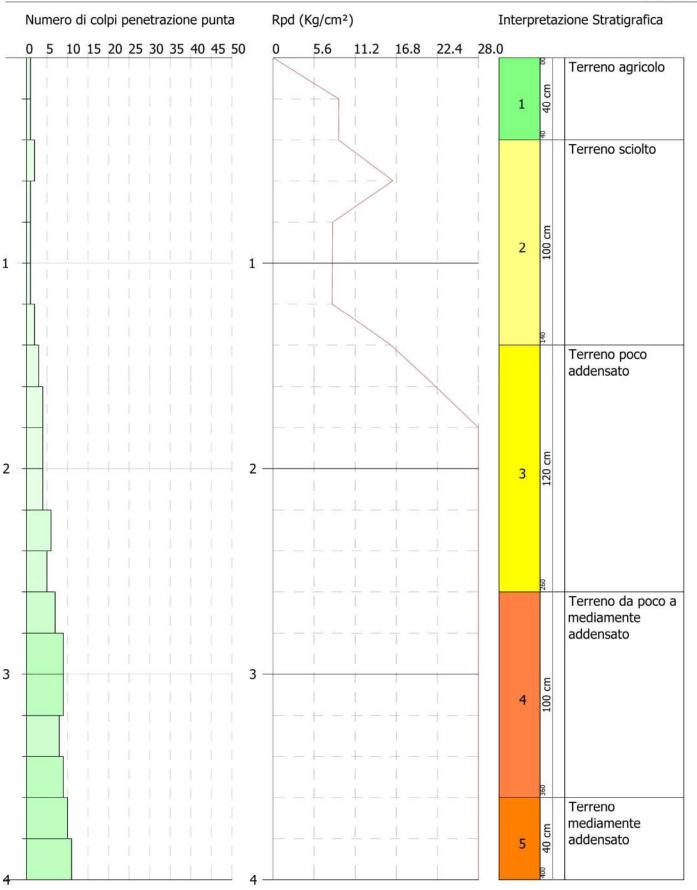


PROVA PENETROMETRICA DINAMICA DPSH n.6 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:14

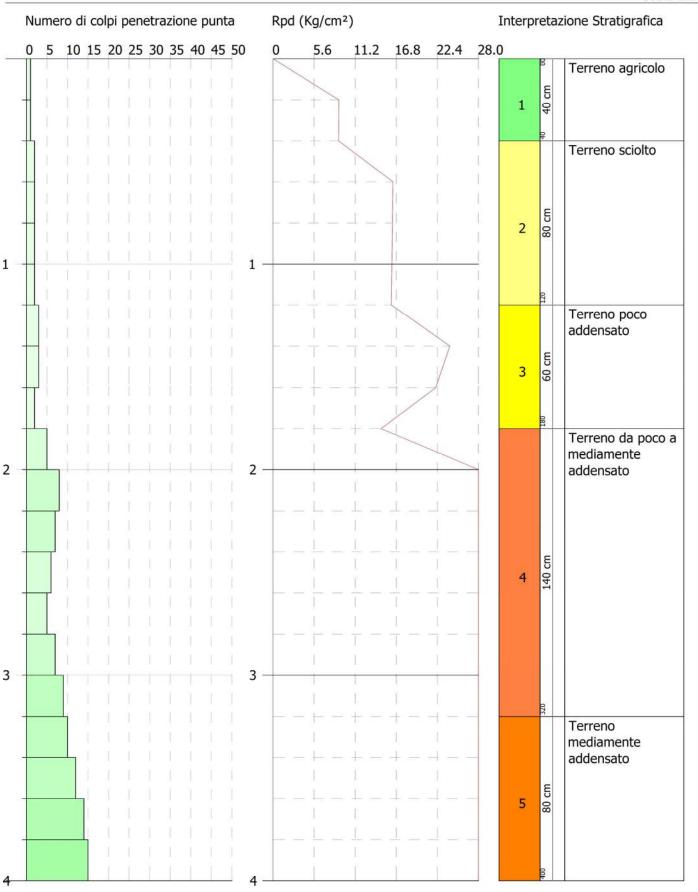


PROVA PENETROMETRICA DINAMICA DPSH n.7 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:20


SIGNATURE 1

PROVA PENETROMETRICA DINAMICA DPSH n.8 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente:

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:20

PROVE PENETROMETRICHE DINAMICHE

SOTTOCAMPO 3

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

D'0 N	DD 1 400 4	
Rif. Norme	DIN 4094	
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	0.63 Kg	
Diametro punta conica	51.00 mm	
Area di base punta	20.43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6.31 Kg/m	
Profondita' giunzione prim	a asta 0.40 m	
Avanzamento punta	0.20 m	
Numero colpi per punta	N(20)	
Coeff. Correlazione	1.47	
Rivestimento/fanghi	No	
Angolo di apertura punta	90°	

PROVA ...SC3-DPSH n.1

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data
Profondita' prova
Falda non rilevata

13-07-2022
3.00 profondita' prova 3.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	8	0.855	71.84	84.06	3.59	4.20
0.40	8	0.851	71.51	84.06	3.58	4.20
0.60	9	0.847	73.51	86.79	3.68	4.34
0.80	13	0.793	99.46	125.36	4.97	6.27
1.00	14	0.790	106.62	135.01	5.33	6.75
1.20	15	0.786	113.73	144.65	5.69	7.23
1.40	12	0.833	96.38	115.72	4.82	5.79
1.60	8	0.830	59.14	71.29	2.96	3.56
1.80	9	0.826	66.27	80.20	3.31	4.01
2.00	11	0.823	80.69	98.02	4.03	4.90
2.20	11	0.820	80.39	98.02	4.02	4.90
2.40	13	0.767	88.87	115.84	4.44	5.79
2.60	17	0.764	107.60	140.79	5.38	7.04
2.80	23	0.711	135.51	190.48	6.78	9.52
3.00	30	0.709	176.07	248.45	8.80	12.42

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	8	84.06	Incoere	0	2.01	2.21	0.04	1.47	11.76	Terreno
			nte -							agricolo
			coesivo							
2.4	11.5	107.09	Incoere	0	2.08	2.29	0.29	1.47	16.91	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to
3	23.33	193.24	Incoere	0	2.26	2.5	0.56	1.47	34.3	Terreno
			nte -							addensa
			coesivo							to

STIMA PARAMETRI GEOTECNICI PROVA SC3-DPSH n.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsion	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	11.76	0.40	0.79	1.47	0.50 -	0.47	1.16	2.52	1.03	1.35	0.59	2.04	1.47
Terreno					1.00								
agricolo													
[2] -	16.91	2.40	1.14	2.11	1.00 -	0.66	1.67	3.21	1.45	1.80	0.85	2.66	2.11
Terreno					2.00								
mediame													
nte													
addensat													
0													
[3] -	34.3	3.00	2.32	4.29	0.00	1.27	3.42	5.80	2.73	3.56	1.72	5.64	4.29
Terreno													
addensat													
0													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	11.76	0.40	53.96	-	121.74	117.60
agricolo						
[2] - Terreno	16.91	2.40	77.58		174.26	169.10
mediamente						
addensato						
[3] - Terreno	34.3	3.00	157.37		351.63	343.00
addensato						

Modulo di Young (Kg/cm²)

 roduio di Toding (11	-8)			
	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - Terreno agricolo		0.40	114.84	117.60
[2] - Terreno mediamente		2.40	174.07	169.10

addensato				
[3] - Terreno	34.3	3.00	374.05	343.00
addensato				

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo	11.76	0.40	Meyerhof	2.01
[2] - Terreno mediamente addensato	16.91	2.40	Meyerhof	2.08
[3] - Terreno addensato	34.3	3.00	Meyerhof	2.26

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	2.21
[2] - Terreno mediamente addensato		2.40	Meyerhof	2.29
[3] - Terreno addensato		3.00	Meyerhof	2.50

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	11.76	0.40	44.17	83.7	100	36.75
agricolo						
[2] - Terreno	16.91	2.40	46.75	86.86	91.61	46.35
mediamente						
addensato						
[3] - Terreno	34.3	3.00	58.79	100	100	67.59
addensato						

Angolo di resistenza al taglio

Tingoto di redistenza di tagno													
NSP'	Γ Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
	Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
	(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
		prese	Thorn))))	(1977	(1981	1982	nal		ki
		nza	burn-))	(ROA	Railw		
		falda	Meye					Sabbi		D	ay		

				rhof 1956					e		BRID GE SPEC IFIC			
											ATIO			
[1] -	11.76	0.40	11 76	30.36	22.36	31.29	35 07	2/1 22	30.72	<30	N)	30.53	28.19	30.34
Terreno		0.40	11.70	30.30	23.30	31.29	33.91	34.33	39.12	\30	20.20	30.33	20.19	30.34
agricolo														
[2] -		2 40	16 91	31 83	24 83	32.73	32 28	36.1	40 16	30-32	30 93	32 07	28 63	33.39
Terreno			10.51	21.02		02.70	22.20	20.1	.0.10	0002	20.52	02.07	20.02	22.25
mediamen														
te														
addensato														
[3] -	34.3	3.00	34.3	36.8	29.8	37.6	31.97	40.54	42	32-35	37.68	37.29	30.26	41.19
Terreno														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza	Terzaghi	Schmertm ann (1978) (Sabbie)		D'Appollo nia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] -	11.76	0.40	falda 11.76	244.78	94.08	139.47	268.20	133.80
Terreno	11.70	0.40	11.70	244.70	94.00	137.47	200.20	133.60
agricolo								
[2] -	16.91	2.40	16.91	293.52	135.28	200.24	306.83	159.55
Terreno								
mediamen								
te								
addensato								
[3] -	34.3	3.00	34.3	418.04	274.40	405.44	437.25	246.50
Terreno								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	11.76	0.40	11.76	70.56	51.62	83.50	90.45
Terreno							
agricolo							
[2] -	16.91	2.40	16.91	101.46	62.20	120.06	113.42
Terreno							
mediament							
e addensato							
[3] -	34.3	3.00	34.3	205.80	97.92	243.53	190.98

Terreno				
addensato				

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume (t/m³)
[1] - Terreno		0.40	11.76		
agricolo				1948	
[2] - Terreno	16.91	2.40	16.91	Terzaghi-Peck	1.56
mediamente				1948	
addensato					
[3] - Terreno	34.3	3.00	34.3	Terzaghi-Peck	1.74
addensato				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (t/m³)
[1] - Terreno		0.40	11.76		
agricolo				1948	
[2] - Terreno	16.91	2.40	16.91	Terzaghi-Peck	1.97
mediamente				1948	
addensato					
[3] - Terreno	34.3	3.00	34.3	Terzaghi-Peck	2.08
addensato				1948	

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - Terreno agricolo		0.40	11.76	(A.G.I.)	0.33
[2] - Terreno mediamente addensato		2.40	16.91	(A.G.I.)	0.32
[3] - Terreno addensato		3.00	34.3	(A.G.I.)	0.29

PROVA ...SC3-DPSH n.2

Strumento utilizzato...DPSH TG 63-200 PAGANI Prova eseguita in data 13-07-2022 Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20		0.855	62.86	73.55	3.14	3.68
0.40	6	0.851	53.64	63.04	2.68	3.15
0.60	7	0.847	57.18	67.50	2.86	3.38
0.80	11	0.843	89.46	106.08	4.47	5.30
1.00	13	0.790	99.01	125.36	4.95	6.27
1.20	10	0.836	80.64	96.43	4.03	4.82
1.40	11	0.833	88.35	106.08	4.42	5.30
1.60	12	0.830	88.70	106.93	4.44	5.35
1.80	10	0.826	73.63	89.11	3.68	4.46
2.00	10	0.823	73.35	89.11	3.67	4.46
2.20	12	0.820	87.70	106.93	4.38	5.35
2.40	12	0.817	87.38	106.93	4.37	5.35
2.60	21	0.714	124.22	173.92	6.21	8.70
2.80	22	0.711	129.62	182.20	6.48	9.11
3.00	25	0.709	146.73	207.04	7.34	10.35

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	6.5	68.3	Incoere	0	1.95	2.14	0.04	1.47	9.56	Terreno
			nte -							agricolo
			coesivo							
2.4	10.8	100.05	Incoere	0	2.08	2.29	0.29	1.47	15.88	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to
3	22.67	187.72	Incoere	0	2.23	2.48	0.56	1.47	33.32	Terreno
			nte -							addensa
			coesivo							to

STIMA PARAMETRI GEOTECNICI PROVA SC3-DPSH n.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof. Strato (m)	Terza ghi- Peck	Sangl erat	Terza ghi- Peck (1948	U.S.D .M.S. M	Schm ertma nn 1975	SUN DA (1983) Benas si e Vanne	a di	Houst on (1960)	Shioi - Fukui 1982	Bege mann	De Beer
								lli	go				
[1] - Terre	9.56	0.40	0.65	1.20	0.50 - 1.00	0.38	0.94	2.05	0.85	1.16	0.48	1.65	1.20
no agrico lo													
[2] - Terre	15.88	2.40	1.07	1.99	1.00 - 2.00	0.62	1.57	3.00	1.37	1.70	0.79	2.48	1.99
no					2.00								
media mente													
adden													
sato													
[3] - Terre		3.00	2.25	4.17	0.00	1.24	3.32	5.63	2.66	3.45	1.67	5.47	4.17
no													
adden													
sato													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	9.56	0.40	43.86	-	99.30	119.50
agricolo						
[2] - Terreno	15.88	2.40	72.86		163.76	158.80
mediamente						
addensato						
[3] - Terreno	33.32	3.00	152.87		341.64	333.20
addensato						

Modulo di Young (Kg/cm²)

modulo di Todiig (ii	-5//			
	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - Terreno agricolo		0.40	89.54	95.60
[2] - Terreno mediamente		2.40	162.22	158.80

addensato				
[3] - Terreno	33.32	3.00	362.78	333.20
addensato				

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.95
[2] - Terreno mediamente addensato	15.88	2.40	Meyerhof	2.08
[3] - Terreno addensato	33.32	3.00	Meyerhof	2.23

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	2.14
[2] - Terreno mediamente addensato		2.40	Meyerhof	2.29
[3] - Terreno addensato		3.00	Meyerhof	2.48

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	9.56	0.40	39.52	75.53	100	32.01
agricolo						
[2] - Terreno	15.88	2.40	45.32	84.28	89.09	44.59
mediamente						
addensato						
[3] - Terreno	33.32	3.00	58.1	100	100	66.7
addensato						

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		

				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	9.56	0.40	9.56	29.73	22.73	30.68	35.7	33.5	0	< 30	26.97	29.87	27.41	28.83
Terreno														
agricolo														
[2] -	15.88	2.40	15.88	31.54	24.54	32.45	32.2	35.77	39.8	30-32	30.43	31.76	28.4	32.82
Terreno														
mediament														
e addensato														
[3] -	33.32	3.00	33.32	36.52	29.52	37.33	31.94	40.36	42	32-35	37.36	37	30.16	40.81
Terreno														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
	1,011	Strato	corretto	141248111	ann		nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia		Sabbia
		(111)	presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda		(Sabble)	ginarosa)	(Sabbia)	TVICAIA
[1] -	9.56	0.40	9.56		76.48	113.51		
Terreno								
agricolo								
[2] -	15.88	2.40	15.88	284.44	127.04	188.08	299.10	154.40
Terreno								
mediamen								
te								
addensato								
[3] -	33.32	3.00	33.32	412.02	266.56	393.88	429.90	241.60
Terreno								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	9.56	0.40	9.56		47.10	67.88	80.64
Terreno							
agricolo							
[2] -	15.88	2.40	15.88	95.28	60.08	112.75	108.82
Terreno							
mediament							
e addensato							
[3] -	33.32	3.00	33.32	199.92	95.90	236.57	186.61
Terreno							

addensato		

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume (t/m³)
[1] - Terreno		0.40	9.56		
agricolo				1948	
[2] - Terreno	15.88	2.40	15.88	Terzaghi-Peck	1.55
mediamente				1948	
addensato					
[3] - Terreno	33.32	3.00	33.32	Terzaghi-Peck	1.73
addensato				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (t/m³)
[1] - Terreno		0.40	9.56	0	1.92
agricolo				1948	
[2] - Terreno	15.88	2.40	15.88	Terzaghi-Peck	1.96
mediamente				1948	
addensato					
[3] - Terreno	33.32	3.00	33.32	Terzaghi-Peck	2.07
addensato				1948	

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

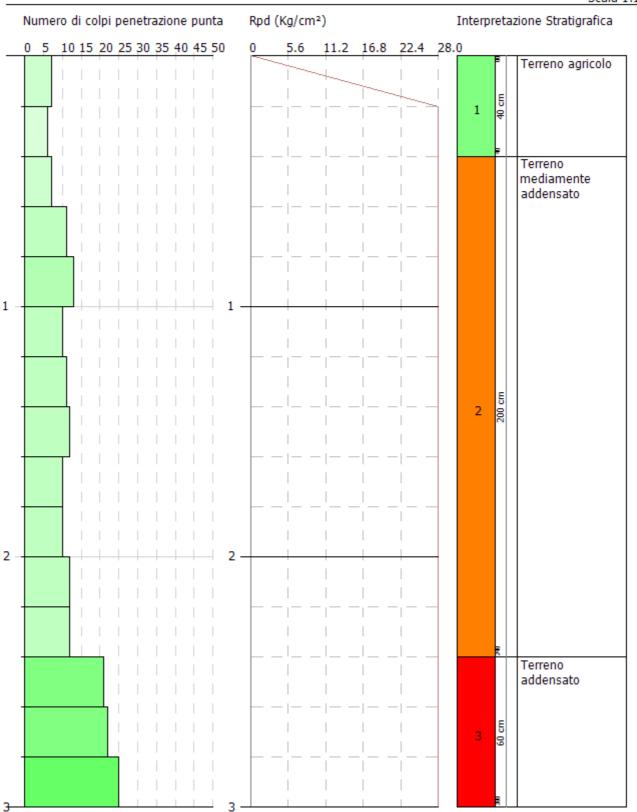
.....

PROVA PENETROMETRICA DINAMICA SC3-DPSH n.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT) 13-07-2022

Scala 1:15

SIGNATURE 1 SIGNATURE 2 GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY


.....

PROVA PENETROMETRICA DINAMICA SC3-DPSH n.2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: 13-07-2022

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:15

SIGNATURE 1 SIGNATURE 2

PROVE PENETROMETRICHE DINAMICHE

SOTTOCAMPO 4

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

Rif. Norme	DIN 4094	
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	0.63 Kg	
Diametro punta conica	51.00 mm	
Area di base punta	20.43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6.31 Kg/m	
Profondita' giunzione prim	a asta 0.40 m	
Avanzamento punta	0.20 m	
Numero colpi per punta	N(20)	
Coeff. Correlazione	1.47	
Rivestimento/fanghi	No	
Angolo di apertura punta	90 °	

PROVA ...SC4-DPSH n.1

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data
Profondita' prova
Falda non rilevata

13-07-2022
3.00 3.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	7	0.855	62.86	73.55	3.14	3.68
0.40	7	0.851	62.58	73.55	3.13	3.68
0.60	4	0.847	32.67	38.57	1.63	1.93
0.80	4	0.843	32.53	38.57	1.63	1.93
1.00	6	0.840	48.59	57.86	2.43	2.89
1.20	5	0.836	40.32	48.22	2.02	2.41
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60	4	0.830	29.57	35.64	1.48	1.78
1.80	4	0.826	29.45	35.64	1.47	1.78
2.00		0.823	51.35	62.38	2.57	3.12
2.20	11	0.820	80.39	98.02	4.02	4.90
2.40	18	0.767	123.05	160.40	6.15	8.02
2.60	23	0.714	136.05	190.48	6.80	9.52
2.80		0.711	164.97	231.89	8.25	11.59
3.00	30	0.709	176.07	248.45	8.80	12.42

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	7	73.55	Incoere	0	1.98	2.18	0.04	1.47	10.29	Terreno
			nte -							agricolo
			coesivo							
2	4.88	45.64	Incoere	0	1.87	1.9	0.23	1.47	7.17	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to

3	22	185.85	Incoere	0	2.21	2.45	0.49	1.47	32.34	Terreno
			nte -							addensa
			coesivo							to

STIMA PARAMETRI GEOTECNICI PROVA SC4-DPSH n.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
	1101 1	Strato	ghi-	_	ghi-	.M.S.		DA	er		Silloi	_	Beer
			_	erat	_		ertma		-	on (1000	E.d.	mann	Deel
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	10.29	0.40	0.70	1.29	0.50 -	0.41	1.01	2.21	0.91	1.22	0.52	1.78	1.29
Terreno					1.00								
agricolo													
[2] -	7.17	2.00	0.45	0.90	0.25 -	0.29	0.70	1.37	0.64	0.97	0.36	1.01	0.90
Terreno da					0.50								
poco a													
mediamen													
te													
addensato													
[3] -	32.34	3.00	2.18	4.04	0.00	1.20	3.22	5.58	2.60	3.34	1.62	5.30	4.04
Terreno													
addensato													

Modulo Edometrico (Kg/cm²)

	(118, 6111)					
	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
		, ,			Mitchell e	· ·
					Gardner	
[1] - Terreno	10.29	0.40	47.21		106.74	102.90
agricolo						
[2] - Terreno	7.17	2.00	32.90		74.92	89.63
da poco a						
mediamente						
addensato						
[3] - Terreno	32.34	3.00	148.38		331.64	323.40
addensato						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	10.29	0.40	97.94	102.90
agricolo				
[2] - Terreno da	7.17	2.00	62.06	71.70
poco a mediamente				
addensato				
[3] - Terreno	32.34	3.00	351.51	323.40
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.98
[2] - Terreno da poco a mediamente addensato		2.00	Meyerhof	1.87
[3] - Terreno addensato	32.34	3.00	Meyerhof	2.21

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno		0.40	Meyerhof	2.18
agricolo				
[2] - Terreno da	7.17	2.00	Meyerhof	1.90
poco a mediamente				
addensato				
[3] - Terreno	32.34	3.00	Meyerhof	2.45
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	10.29	0.40	41.14	78.33	100	33.63
agricolo						
[2] - Terreno	7.17	2.00	29.33	58.35	64.59	26.39
da poco a						
mediamente						
addensato						
[3] - Terreno	32.34	3.00	58.75	100	100	65.79
addensato						

Angolo di resistenza al taglio

	NSPT	Prof.		Peck-	Meve	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
			corret		-	rs	ev	rhof	ertma		Fuku	-	Mello	
		(m)	to per	on-		(1961			nn	Katti	ni	Natio		Iwasa
		, ,	prese	Thorn	`)	`)	`)	`)	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	10.29	0.40	10.29	29.94	22.94	30.88	35.79	33.78	38.97	<30	27.42	30.09	27.69	29.35
Terreno														
agricolo														
[2] -	7.17	2.00	7.17	29.05	22.05	30.01	31.39	32.56	0	<30	25.37	29.15	25.6	26.97
Terreno da														
poco a														
mediament														
e addensato														
_ [3] -	32.34	3.00	32.34	36.24	29.24	37.06	32.19	40.16	42	32-35	37.02	36.7	30.32	40.43
Terreno														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	10.29	0.40	10.29	228.97	82.32	122.12	257.17	126.45
Terreno								
agricolo								
[2] -	7.17	2.00	7.17		57.36			
Terreno								
da poco a								
mediamen								
te								
addensato								
[3] -	32.34	3.00	32.34	405.92	258.72	382.31	422.55	236.70
Terreno								
addensato								

Modulo Edometrico (Kg/cm²)

	111111111111111111111111111111111111111	,					
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev

			presenza falda	(sabbie)	(Ghiaia con sabbia)		(Sabbia media)
[1] -	10.29	0.40	10.29	61.74	48.60	73.06	83.89
Terreno							
agricolo							
[2] -	7.17	2.00	7.17		42.19	50.91	69.98
Terreno da							
poco a							
mediament							
e addensato							
[3] -	32.34	3.00	32.34	194.04	93.89	229.61	182.24
Terreno							
addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	10.29	0.40	10.29	Terzaghi-Peck	1.48
agricolo				1948	
[2] - Terreno da	7.17	2.00	7.17	Terzaghi-Peck	1.44
poco a				1948	
mediamente					
addensato					
[3] - Terreno	32.34	3.00	32.34	Terzaghi-Peck	1.72
addensato				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	10.29	0.40	10.29	Terzaghi-Peck	1.92
agricolo				1948	
[2] - Terreno da	7.17	2.00	7.17	Terzaghi-Peck	1.90
poco a				1948	
mediamente					
addensato					
[3] - Terreno	32.34	3.00	32.34	Terzaghi-Peck	2.07
addensato				1948	

PROVA ...SCE4-DPSH n.2

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 13-07-2022 Profondita' prova 3.00 Falda non rilevata

3.00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	8	0.855	71.84	84.06	3.59	4.20
0.40	7	0.851	62.58	73.55	3.13	3.68
0.60	7	0.847	57.18	67.50	2.86	3.38
0.80	8	0.843	65.06	77.15	3.25	3.86
1.00	7	0.840	56.69	67.50	2.83	3.38
1.20	5	0.836	40.32	48.22	2.02	2.41
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60	4	0.830	29.57	35.64	1.48	1.78
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	4	0.823	29.34	35.64	1.47	1.78
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	5	0.817	36.41	44.55	1.82	2.23
2.60	4	0.814	26.97	33.13	1.35	1.66
2.80	3	0.811	20.16	24.85	1.01	1.24
3.00	5	0.809	33.49	41.41	1.67	2.07

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	7.5	78.8	Incoere	0	2.0	2.2	0.04	1.47	11.03	Terreno
			nte -							agricolo
			coesivo							
3	5.08	46.46	Incoere	0	1.88	1.9	0.32	1.47	7.47	Terreno
			nte -							da poco
			coesivo							a
										mediam
										ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA SCE4-DPSH n.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	11.03	0.40	0.75	1.38	0.50 -	0.44	1.08	2.36	0.97	1.29	0.55	1.91	1.38
Terre					1.00								
no													
agrico													
lo													
[2] -	7.47	3.00	0.47	0.93		0.30	0.73	1.39	0.67	1.00	0.37	0.93	0.93
Terre					0.50								
no da													
poco a													
media													
mente													
adden													
sato													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	11.03	0.40	50.61	-	114.29	110.30
agricolo						
[2] - Terreno	7.47	3.00	34.27		77.98	93.38
da poco a						
mediamente						
addensato						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	11.03	0.40	106.45	110.30
agricolo				
[2] - Terreno da	7.47	3.00	65.51	74.70
poco a mediamente				
addensato				

Peso unita' di volume

1 050 dilita di voidili	•			
	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(t/m^3)
[1] - Terreno	11.03	0.40	Meyerhof	2.00
agricolo				

[2] - Terreno da	7.47	3.00	Meyerhof	1.88
poco a mediamente				
addensato				

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	11.03	0.40	Meyerhof	2.20
agricolo				
[2] - Terreno da	7.47	3.00	Meyerhof	1.90
poco a mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	11.03	0.40	42.7	81.08	100	35.22
agricolo						
[2] - Terreno	7.47	3.00	28.41	56.71	60.11	27.13
da poco a						
mediamente						
addensato						

Angolo di resistenza al taglio

Aligor	o ui ies	SISTELLE	i ai tagi	110										
	NSPT	Prof.	Nspt	Peck-	Meyer	Sowers	Malce	-	Schme	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	hof	(1961)	V (1064)	hof	rtmann	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956)		(1964)	(1965)		Katti	ni	Natio		Iwasa
			prese	Thorn						(1981	1982)	nal		ki
			nza	burn-						`)	,	Railw		
			falda									ay		
				rhof								5		
				1956										
[1]-	11.03	0.40	11.03	30.15	23.15	31.09	35.88	34.06	39.35	< 30	27.86	30.31	27.95	29.85
Terreno														
agricolo														
[2] -	7.47	3.00	7.47	29.13	22.13	30.09	30.7	32.68	0	<30	25.59	29 24	25 39	27.22
Terreno		2.00	, ,	_>.10		20.05	20.7	22.00			_0.0>	_,	_0.0>	_,,
da poco a														
mediamen														
te														
addensato														
addensato														

Modulo di Young (Kg/cm²)

1.10 0.010 0.1	1 0 01118 (1128	, •111						
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)

		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	11.03	0.40	11.03	237.06	88.24	130.85	262.73	130.15
Terreno								
agricolo								
[2] -	7.47	3.00	7.47		59.76			
Terreno								
da poco a								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	11.03	0.40	11.03	66.18	50.12	78.31	87.19
Terreno							
agricolo							
[2] -	7.47	3.00	7.47		42.81	53.04	71.32
Terreno da							
poco a							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	11.03	0.40	11.03	Terzaghi-Peck	1.49
agricolo				1948	
[2] - Terreno da	7.47	3.00	7.47	Terzaghi-Peck	1.45
poco a				1948	
mediamente					
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	11.03	0.40	11.03	Terzaghi-Peck	1.93
agricolo				1948	
[2] - Terreno da	7.47	3.00	7.47	Terzaghi-Peck	1.90
poco a				1948	
mediamente					
addensato					

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - Terreno agricolo		0.40	11.03	(A.G.I.)	0.33
[2] - Terreno da	7.47	3.00	7.47	(A.G.I.)	0.34
poco a					
mediamente					
addensato					

PROVA ...SC4-DPSH n.3

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 13-07-2022 Profondita' prova 3.00 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	6	0.855	53.88	63.04	2.69	3.15
0.40	7	0.851	62.58	73.55	3.13	3.68
0.60	7	0.847	57.18	67.50	2.86	3.38
0.80	5	0.843	40.66	48.22	2.03	2.41
1.00	6	0.840	48.59	57.86	2.43	2.89
1.20	5	0.836	40.32	48.22	2.02	2.41
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60	5	0.830	36.96	44.55	1.85	2.23
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	8	0.823	58.68	71.29	2.93	3.56
2.20	8	0.820	58.46	71.29	2.92	3.56
2.40	7	0.817	50.97	62.38	2.55	3.12
2.60	12	0.814	80.92	99.38	4.05	4.97
2.80	18	0.761	113.51	149.07	5.68	7.45
3.00	21	0.709	123.25	173.92	6.16	8.70

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizion
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		e
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		

						(t/m^3))	Nspt		
0.4	6.5	68.3	Incoere	0	1.95	2.14	0.04	1.47	9.56	Terreno
			nte -							agricolo
			coesivo							
2.4	6.1	56.41	Incoere	0	1.94	2.13	0.27	1.47	8.97	Terreno da
			nte -							poco a
			coesivo							mediament
										e
										addensato
3	17	140.79	Incoere	0	2.12	2.22	0.53	1.47	24.99	Terreno
			nte -							addensato
			coesivo							

STIMA PARAMETRI GEOTECNICI PROVA SC4-DPSH n.3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	9.56	0.40	0.65	1.20	0.50 -	0.38	0.94	2.05	0.85	1.16	0.48	1.65	1.20
Terreno					1.00								
agricolo													
[2] -	8.97	2.40	0.61	1.12	0.50 -	0.36	0.88	1.69	0.80	1.12	0.45	1.27	1.12
Terreno da					1.00								
poco a													
mediamen													
te													
addensato													
[3] -	24.99	3.00	1.69	3.12	1.00 -	0.95	2.48	4.22	2.07	2.57	1.25	4.01	3.12
Terreno					2.00								
addensato													

Modulo Edometrico (Kg/cm²)

Modulo Edolli						
	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	9.56	0.40	43.86		99.30	119.50
agricolo						
[2] - Terreno	8.97	2.40	41.15		93.28	112.13
da poco a						

mediamente					
addensato					
[3] - Terreno	24.99	3.00	114.65	 256.68	249.90
addensato					

Modulo di Young (Kg/cm²)

	NSPT		Schultze	Apollonia
		(m)		
[1] - Terreno	9.56	0.40	89.54	95.60
agricolo				
[2] - Terreno da	8.97	2.40	82.76	89.70
poco a mediamente				
addensato				
[3] - Terreno	24.99	3.00	266.99	249.90
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo	9.56	0.40	Meyerhof	1.95
[2] - Terreno da	8.97	2.40	Meyerhof	1.94
poco a mediamente addensato				
[3] - Terreno addensato	24.99	3.00	Meyerhof	2.12

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	2.14
[2] - Terreno da poco a mediamente addensato		2.40	Meyerhof	2.13
[3] - Terreno addensato		3.00	Meyerhof	2.22

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno agricolo		0.40	39.52	75.53	100	32.01
[2] - Terreno	8.97	2.40	33.04	63.79	68.7	30.67
da poco a						
mediamente						

	addensato						
[3	3] - Terreno	24.99	3.00	51.37	94.67	94.16	57.94
	addensato						

Angolo di resistenza al taglio

Aligor		Sistenza												
	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	9.56	0.40	9.56	29.73	22.73	30.68	35.7	33.5	0	< 30	26.97	29.87	27.41	28.83
Terreno														
agricolo														
[2] -	8.97	2.40	8.97	29.56	22.56	30.51	31.38	33.27	0	< 30	26.6	29.69	26.28	28.39
Terreno da														
poco a														
mediament														
e addensato														
[3] -	24.99	3.00	24.99	34.14	27.14	35	31.59	38.47	41.25	30-32	34.36	34.5	29.19	37.36
Terreno														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
	1,011	Strato	corretto	141248111	ann		nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia		Sabbia
		` '	presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda				,	
[1] -	9.56	0.40	9.56		76.48	113.51		
Terreno								
agricolo								
[2] -	8.97	2.40	8.97		71.76	106.55		
Terreno								
da poco a								
mediamen								
te								
addensato								
[3] -	24.99	3.00	24.99	356.82	199.92	295.58	367.42	199.95
Terreno								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	9.56	0.40	9.56		47.10	67.88	80.64
Terreno							
agricolo							
[2] -	8.97	2.40	8.97		45.89	63.69	78.01
Terreno da							
poco a							
mediament							
e addensato							
[3] -	24.99	3.00	24.99	149.94	78.79	177.43	149.46
Terreno							
addensato							

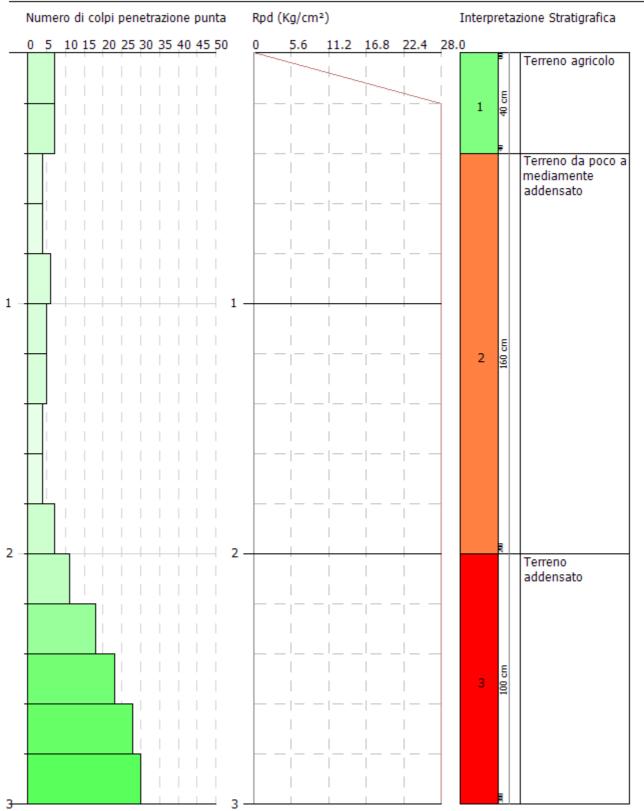
Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	9.56	0.40	9.56	Terzaghi-Peck	1.47
agricolo				1948	
[2] - Terreno da	8.97	2.40	8.97	Terzaghi-Peck	1.46
poco a				1948	
mediamente					
addensato					
[3] - Terreno	24.99	3.00	24.99	Terzaghi-Peck	1.65
addensato				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	9.56	0.40	9.56	Terzaghi-Peck	1.92
agricolo				1948	
[2] - Terreno da	8.97	2.40	8.97	Terzaghi-Peck	1.91
poco a				1948	
mediamente					
addensato					
[3] - Terreno	24.99	3.00	24.99	Terzaghi-Peck	2.03
addensato				1948	

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY


.....

PROVA PENETROMETRICA DINAMICA SC4-DPSH n.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

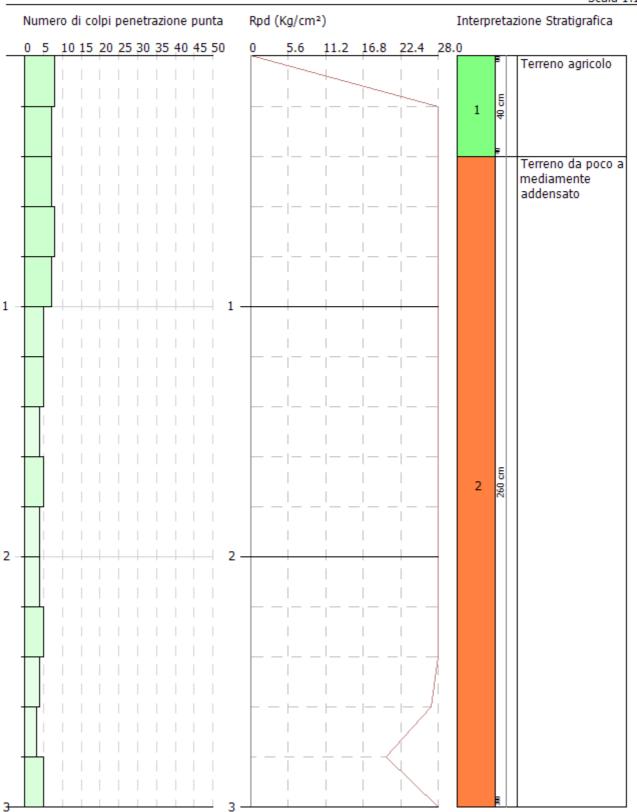
Committente: 13-07-2022

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:15

SIGNATURE 1 SIGNATURE 2

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY


.....

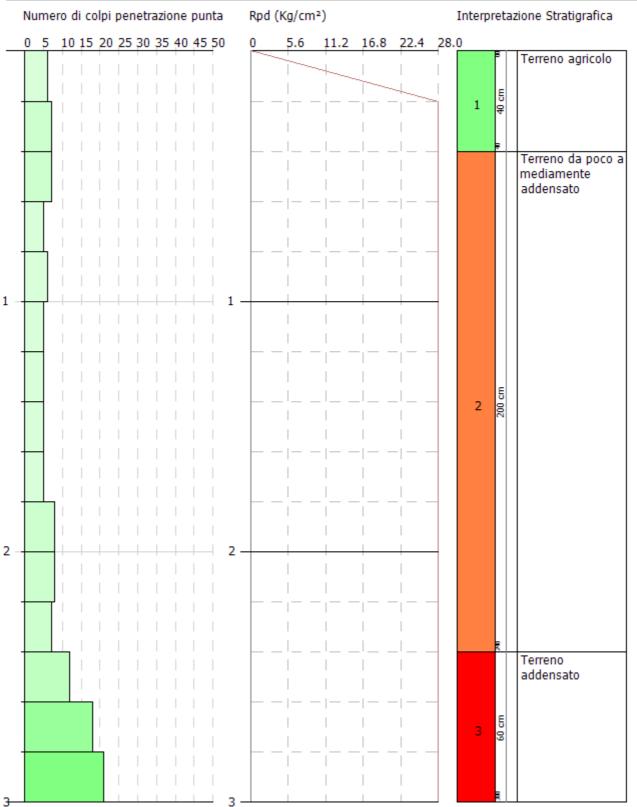
PROVA PENETROMETRICA DINAMICA SC4-DPSH n.2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: 13-07-2022

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:15

SIGNATURE 1 SIGNATURE 2


GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

.....

PROVA PENETROMETRICA DINAMICA SC4-DPSH n.3 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT) 13-07-2022

Scala 1:15

SIGNATURE 1 SIGNATURE 2

PROVE PENETROMETRICHE DINAMICHE

SOTTOCAMPO 5

Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

	Rif. Norme	DIN 4094
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	0.63 Kg	
Diametro punta conica	51.00 mm	
Area di base punta	20.43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6.31 Kg/m	
Profondita' giunzione prima	asta 0.40 m	
Avanzamento punta	0.20 m	
Numero colpi per punta	N(20)	
Coeff. Correlazione	1.47	
Rivestimento/fanghi	No	
Angolo di apertura punta	90°	

PROVA ...SC5-DPSH n.1

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 13-07-2022 Profondita' prova Falda non rilevata 4.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	6	0.855	53.88	63.04	2.69	3.15
0.40	6	0.851	53.64	63.04	2.68	3.15
0.60	5	0.847	40.84	48.22	2.04	2.41
0.80	4	0.843	32.53	38.57	1.63	1.93
1.00	3	0.840	24.29	28.93	1.21	1.45
1.20	3	0.836	24.19	28.93	1.21	1.45
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60	6	0.830	44.35	53.47	2.22	2.67
1.80	6	0.826	44.18	53.47	2.21	2.67
2.00	7	0.823	51.35	62.38	2.57	3.12
2.20	7	0.820	51.16	62.38	2.56	3.12
2.40	7	0.817	50.97	62.38	2.55	3.12
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	7	0.811	47.04	57.97	2.35	2.90
3.00	10	0.809	66.97	82.82	3.35	4.14
3.20	13	0.756	81.39	107.66	4.07	5.38
3.40	15	0.753	93.59	124.23	4.68	6.21
3.60	19	0.751	110.36	146.97	5.52	7.35
3.80	17	0.748	98.42	131.50	4.92	6.58
4.00	14	0.746	80.79	108.30	4.04	5.41
4.20	15	0.744	86.29	116.03	4.31	5.80

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		one
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	6	63.04	Incoere	0	1.93	2.12	0.04	1.47	8.82	Terreno
			nte -							agricolo
			coesivo							
2.8	5.5	49.55	Incoere	0	1.9	1.91	0.31	1.47	8.09	Terreno

			nte -							da poco
			coesivo							a
										medima
										ente
										addensa
										to
4.2	14.71	116.79	Incoere	0	2.11	2.13	0.68	1.47	21.62	Terreno
			nte -							mediam
			coesivo							ente
										addensa
										to

STIMA PARAMETRI GEOTECNICI PROVA SC5-DPSH n.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	8.82	0.40	0.60	1.10		0.35	0.86	1.89	0.79	1.10	0.44	1.52	1.10
Terreno					1.00								
agricolo													
[2] -	8.09	2.80	0.55	1.01		0.33	0.79	1.49	0.72	1.05	0.41	1.07	1.01
Terreno da					1.00								
poco a													
medimaen													
te													
addensato													
[3] -	21.62	4.20	1.46	2.70		0.83	2.14	3.50	1.82	2.24	1.08	3.23	2.70
Terreno					2.00								
mediamen													
te													
addensato													

Modulo Edometrico (Kg/cm²)

THE COURSE CONTRACTOR	(8,)					
	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	_
					Gardner	
[1] - Terreno	8.82	0.40	40.47		91.75	110.25
agricolo						

Dynamic

[2] - Terreno	8.09	2.80	37.12	 84.31	101.13
da poco a					
medimaente					
addensato					
[3] - Terreno	21.62	4.20	99.19	 222.30	216.20
mediamente					
addensato					

Modulo di Young (Kg/cm²)

into dura di Toding (1	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno		0.40	81.03	88.20
agricolo				
[2] - Terreno da	8.09	2.80	72.64	80.90
poco a medimaente				
addensato				
[3] - Terreno	21.62	4.20	228.23	216.20
mediamente				
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.93
[2] - Terreno da poco a medimaente addensato		2.80	Meyerhof	1.90
[3] - Terreno mediamente addensato		4.20	Meyerhof	2.11

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo
		(111)		(t/m^3)
[1] - Terreno		0.40	Meyerhof	2.12
agricolo				
[2] - Terreno da		2.80	Meyerhof	1.91
poco a medimaente				
addensato				
[3] - Terreno	21.62	4.20	Meyerhof	2.13
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - Terreno agricolo		0.40	37.76	72.57	/	30.33
[2] - Terreno da poco a medimaente addensato		2.80	30.33	59.58	63.45	28.62
[3] - Terreno mediamente addensato		4.20	45.26	83.09	82.26	53.56

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meve	Sowe	Malc	Meve	Schm	Mitch	Shioi-	Japan	De	Owas
			corret		rhof	rs	ev	-	ertma			-	Mello	
		(m)	to per			(1961				Katti	ni	Natio		Iwasa
		()	prese	Thorn)))	(1977		1982	nal		ki
			nza	burn-	,	,	,	,))	(ROA			
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID)		
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	8.82	0.40	8.82	29.52	22.52	30.47	35.59	33.22	0	< 30		29.65	27.11	28.28
Terreno														
agricolo														
[2] -		2.80	8.09	29.31	22.31	30.27	30.96	32.93	0	< 30	26.02	29.43	25.77	27.72
Terreno														
da poco a														
medimaen														
te														
addensato														
[3] -	21.62	4.20	21.62	33.18	26.18	34.05	30.81	37.55	39.63	30-32	33.01	33.49	28.07	35.79
Terreno														
mediamen														
te														
addensato														

Modulo di Young (Kg/cm²)

	$\mathcal{C} \setminus \mathcal{C}$	/						
	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia

			presenza falda		(Sabbie)	ghiaiosa)	(Sabbia)	Media
[1] -	8.82	0.40	8.82		70.56	104.78		
Terreno								
agricolo								
[2] -	8.09	2.80	8.09		64.72	96.16		
Terreno								
da poco a								
medimaen								
te								
addensato								
[3] -	21.62	4.20	21.62	331.89	172.96	255.82	342.15	183.10
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

Modulo Edo	menteo (128/	C 111 <i>)</i>					
	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	8.82	0.40	8.82		45.58	62.62	77.34
Terreno							
agricolo							
[2] -	8.09	2.80	8.09		44.08	57.44	74.08
Terreno da							
poco a							
medimaent							
e addensato							
[3] -	21.62	4.20	21.62	129.72	71.87	153.50	134.43
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	8.82	0.40	8.82	Terzaghi-Peck	1.46
agricolo				1948	
[2] - Terreno da	8.09	2.80	8.09	Terzaghi-Peck	1.45
poco a				1948	
medimaente					
addensato					
[3] - Terreno	21.62	4.20	21.62	Terzaghi-Peck	1.61
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	8.82	0.40	8.82	Terzaghi-Peck	1.91
agricolo				1948	
[2] - Terreno da	8.09	2.80	8.09	Terzaghi-Peck	1.90
poco a				1948	
medimaente					
addensato					
[3] - Terreno	21.62	4.20	21.62	Terzaghi-Peck	2.00
mediamente				1948	
addensato					

PROVA ...SC5-DPSH n.2

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 13-07-2022 Profondita' prova 4.20 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm^2)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	4	0.855	35.92	42.03	1.80	2.10
0.40	5	0.851	44.70	52.54	2.23	2.63
0.60	6	0.847	49.01	57.86	2.45	2.89
0.80	6	0.843	48.80	57.86	2.44	2.89
1.00	5	0.840	40.49	48.22	2.02	2.41
1.20	5	0.836	40.32	48.22	2.02	2.41
1.40	4	0.833	32.13	38.57	1.61	1.93
1.60	5	0.830	36.96	44.55	1.85	2.23
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	5	0.823	36.68	44.55	1.83	2.23
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	6	0.817	43.69	53.47	2.18	2.67
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	5	0.811	33.60	41.41	1.68	2.07
3.00	6	0.809	40.18	49.69	2.01	2.48
3.20	7	0.806	46.73	57.97	2.34	2.90

3.40	10	0.803	66.54	82.82	3.33	4.14
3.60	13	0.751	75.51	100.56	3.78	5.03
3.80	15	0.748	86.84	116.03	4.34	5.80
4.00	14	0.746	80.79	108.30	4.04	5.41
4.20	17	0.744	97.80	131.50	4.89	6.58

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizione
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	4.5	47.28	Incoere	0	1.84	1.89	0.04	1.47	6.62	Terreno
			nte -							agricolo
			coesivo							
3.2	5.36	48.02	Incoere	0	1.9	1.9	0.34	1.47	7.88	Terreno da
			nte -							poco a
			coesivo							mediamente
										addensato
4.2	13.8	107.84	Incoere	0	2.1	2.1	0.71	1.47	20.29	Terreno
			nte -							mediamente
			coesivo							addensato

STIMA PARAMETRI GEOTECNICI PROVA SC5-DPSH n.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl			Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	6.62	0.40	0.41	0.83	0.25 -	0.27	0.65	1.42	0.59	0.93	0.33	1.13	0.83
Terre					0.50								
no													
agrico													
lo													
[2] -	7.88	3.20	0.49	0.99	0.25 -	0.32	0.77	1.44	0.70	1.03	0.39	0.97	0.99
Terre					0.50								
no da													
poco a													
media													
mente													
adden													

sato													
[3] -	20.29	4.20	1.37	2.54	1.00 -	0.79	2.01	3.24	1.72	2.11	1.02	2.99	2.54
Terre					2.00								
no													
media													
mente													
adden													
sato													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e Gardner	
[1] - Terreno	6.62	0.40	30.37		69.31	82.75
agricolo						
[2] - Terreno	7.88	3.20	36.15		82.16	98.50
da poco a						
mediamente						
addensato						
[3] - Terreno		4.20	93.09		208.74	202.90
mediamente						
addensato						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno		0.40	55.73	66.20
agricolo				
[2] - Terreno da	7.88	3.20	70.22	78.80
poco a mediamente				
addensato				
[3] - Terreno	20.29	4.20	212.94	202.90
mediamente				
addensato				

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (t/m³)
[1] - Terreno agricolo		0.40	Meyerhof	1.84
[2] - Terreno da poco a mediamente addensato	7.88	3.20	Meyerhof	1.90
[3] - Terreno mediamente addensato	20.29	4.20	Meyerhof	2.10

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	6.62	0.40	Meyerhof	1.89
agricolo				
[2] - Terreno da	7.88	3.20	Meyerhof	1.90
poco a mediamente				
addensato				
[3] - Terreno	20.29	4.20	Meyerhof	2.10
mediamente				
addensato				

Velocita' onde di taglio

, creating and ar mg	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio
				(m/s)
[1] - Terreno	6.62	0.40		0
agricolo				
[2] - Terreno da	7.88	3.20		0
poco a mediamente				
addensato				
[3] - Terreno	20.29	4.20		0
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] - Terreno	6.62	0.40	31.77	62.95	100	25.03
agricolo						
[2] - Terreno	7.88	3.20	29.2	57.82	60.93	28.11
da poco a						
mediamente						
addensato						
[3] - Terreno	20.29	4.20	43.32	79.64	78.91	51.66
mediamente						
addensato						

Angolo di resistenza al taglio

	NSPT		Nent		Meye	Sowe	Male	Meye	Schm	Mitch	Shioi-	Ianan	De	Owas
	1101 1		-		rhof			rhof				-		
			corret			rs	ev		ertma				Mello	aki &
		(m)	to per	on-		(1961	(1964	(1965		Katti	ni	Natio		Iwasa
			prese))))	(1977	(1981	1982	nal		ki
			nza	burn-))		Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	6.62	0.40	6.62	28.89	21.89	29.85	35.23	32.34	0	< 30	24.96	28.99	26.03	26.51
Terreno														
agricolo														
[2] -		3.20	7.88	29.25	22.25	30.21	30.69	32.85	0	< 30	25.87	29.36	25.54	27.55
Terreno da														
poco a														
mediament														
e addensato														
[3] -		4.20	20.29	32.8	25.8	33.68	30.62	37.16	39.15	30-32	32.45	33.09	27.71	35.14
Terreno								0	3,7,120		3 = 1 10			
mediament														
e addensato														
c addensate														

Modulo di Young (Kg/cm²)

Modulo di	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
	NOI I		-	TCIZagili				
		Strato	corretto		ann		nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	6.62	0.40	6.62		52.96			
Terreno								
agricolo								
[2] -	7.88	3.20	7.88		63.04			
Terreno								
da poco a								
mediamen								
te								
addensato								
[3] -	20.29	4.20	20.29	321.52	162.32	240.12	332.18	176.45
Terreno								
mediamen								
te								
addensato								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	6.62	0.40	6.62		41.06	47.00	67.53
Terreno							
agricolo							
[2] -	7.88	3.20	7.88		43.65	55.95	73.14
Terreno da							
poco a							
mediament							
e addensato							
[3] -	20.29	4.20	20.29	121.74	69.14	144.06	128.49
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	6.62	0.40	6.62	Terzaghi-Peck	1.43
agricolo				1948	
[2] - Terreno da	7.88	3.20	7.88	Terzaghi-Peck	1.45
poco a				1948	
mediamente					
addensato					
[3] - Terreno	20.29	4.20	20.29	Terzaghi-Peck	1.60
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	6.62	0.40	6.62	Terzaghi-Peck	1.89
agricolo				1948	
[2] - Terreno da	7.88	3.20	7.88	Terzaghi-Peck	1.90
poco a				1948	
mediamente					
addensato					
[3] - Terreno	20.29	4.20	20.29	Terzaghi-Peck	2.00
mediamente				1948	
addensato					

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Poisson
		(m)	per presenza		
			falda		
[1] - Terreno	6.62	0.40	6.62	(A.G.I.)	0.34
agricolo					
[2] - Terreno da	7.88	3.20	7.88	(A.G.I.)	0.34
poco a					
mediamente					
addensato					
[3] - Terreno	20.29	4.20	20.29	(A.G.I.)	0.31
mediamente					
addensato					

PROVA ...SC5-DPSH n.3

Strumento utilizzato...DPSH TG 63-200 PAGANI

Prova eseguita in data 13-07-2022 Profondita' prova 4.20 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)		coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Kg/cm ²)	con riduzione	Herminier -
		sonda Chi	(Kg/cm ²)		Herminier -	Olandesi
					Olandesi	(Kg/cm ²)
					(Kg/cm ²)	
0.20	4	0.855	35.92	42.03	1.80	2.10
0.40	8	0.851	71.51	84.06	3.58	4.20
0.60	6	0.847	49.01	57.86	2.45	2.89
0.80	5	0.843	40.66	48.22	2.03	2.41
1.00	8	0.840	64.78	77.15	3.24	3.86
1.20	8	0.836	64.52	77.15	3.23	3.86
1.40	8	0.833	64.25	77.15	3.21	3.86
1.60	7	0.830	51.74	62.38	2.59	3.12
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	4	0.823	29.34	35.64	1.47	1.78
2.20	4	0.820	29.23	35.64	1.46	1.78
2.40	4	0.817	29.13	35.64	1.46	1.78
2.60	4	0.814	26.97	33.13	1.35	1.66
2.80	5	0.811	33.60	41.41	1.68	2.07
3.00	4	0.809	26.79	33.13	1.34	1.66
3.20	3	0.806	20.03	24.85	1.00	1.24
3.40	3	0.803	19.96	24.85	1.00	1.24

3.60	4	0.801	24.78	30.94	1.24	1.55
3.80	7	0.798	43.23	54.15	2.16	2.71
4.00	10	0.796	61.58	77.36	3.08	3.87
4.20	13	0.744	74.79	100.56	3.74	5.03

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizione
Strato		(Kg/cm ²		Fraction	unita' di	unita' di	e	di		
(m))		(%)	volume	volume	efficace	correlaz		
					(t/m^3)	saturo	(Kg/cm ²	. con		
						(t/m^3))	Nspt		
0.4	6	63.04	Incoere	0	1.93	2.12	0.04	1.47	8.82	Terreno
			nte -							agricolo
			coesivo							
3.8	5.24	46.7	Incoere	0	1.89	1.9	0.4	1.47	7.7	Terreno da
			nte -							poco a
			coesivo							mediamente
										addensato
4.2	11.5	88.96	Incoere	0	2.08	2.29	0.76	1.47	16.91	Terreno
			nte -							mediamente
			coesivo							addensato

STIMA PARAMETRI GEOTECNICI PROVA SC5-DPSH n.3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-	erat	ghi-	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	Peck		Peck	M	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	8.82	0.40	0.60	1.10	0.50 -	0.35	0.86	1.89	0.79	1.10	0.44	1.52	1.10
Terreno					1.00								
agricolo													
[2] -	7.7	3.80	0.48	0.96	0.25 -	0.31	0.75	1.40	0.69	1.02	0.39	0.86	0.96
Terreno da					0.50								
poco a													
mediamen													
te													
addensato													
[3] -	16.91	4.20	1.14	2.11	1.00 -	0.66	1.67	2.67	1.45	1.80	0.85	2.40	2.11
Terreno					2.00								
mediamen													
te													

addensato			

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-
		(m)	Butler (1975)		(1974),	Sanglerat
					Mitchell e	
					Gardner	
[1] - Terreno	8.82	0.40	40.47		91.75	110.25
agricolo						
[2] - Terreno	7.7	3.80	35.33		80.33	96.25
da poco a						
mediamente						
addensato						
[3] - Terreno	16.91	4.20	77.58		174.26	169.10
mediamente						
addensato						

Modulo di Young (Kg/cm²)

into dura di Toding (1	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Terreno	8.82	0.40	81.03	88.20
agricolo				
[2] - Terreno da	7.7	3.80	68.15	77.00
poco a mediamente				
addensato				
[3] - Terreno	16.91	4.20	174.07	169.10
mediamente				
addensato				

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(t/m^3)
[1] - Terreno		0.40	Meyerhof	1.93
agricolo				
[2] - Terreno da	7.7	3.80	Meyerhof	1.89
poco a mediamente				
addensato				
[3] - Terreno	16.91	4.20	Meyerhof	2.08
mediamente				
addensato				

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(t/m^3)
[1] - Terreno	8.82	0.40	Meyerhof	2.12

agricolo				
[2] - Terreno da	7.7	3.80	Meyerhof	1.90
poco a mediamente				
addensato				
[3] - Terreno	16.91	4.20	Meyerhof	2.29
mediamente				
addensato				

TERRENI INCOERENTI

Densita' relativa

	NSPT	NSPT Prof. Strato (m)		Meyerhof 1957	Schultze & Menzenbach	Skempton 1986
					(1961)	
[1] - Terreno agricolo		0.40	37.76	72.57	100	30.33
[2] - Terreno da poco a mediamente addensato		3.80	27.76	55.6	57.79	27.68
[3] - Terreno mediamente addensato		4.20	38.49	71.43	71.03	46.35

Angolo di resistenza al taglio

Aligolo di l'esisteliza di taglio														
	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	Thorn))))	(1977	(1981	1982	nal		ki
			nza	burn-))	(ROA	Railw		
			falda	Meye					Sabbi		D	ay		
				rhof					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] - Terreno	8.82	0.40	8.82	29.52	22.52	30.47	35.59	33.22	0	< 30	26.5	29.65	27.11	28.28
agricolo														
[2] - Terreno	7.7	3.80	7.7	29.2	22.2	30.16	30.3	32.77	0	< 30	25.75	29.31	25.22	27.41
da poco a														
mediamente														
addensato														
[3] - Terreno	16.91	4.20	16.91	31.83	24.83	32.73	30.17	36.1	38	30-32	30.93	32.07	26.83	33.39
mediamente														
addensato														

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertm ann (1978) (Sabbie)		nia ed altri	Bowles (1982) Sabbia Media
[1] - Terreno agricolo		0.40	8.82		70.56	104.78		
[2] - Terreno da poco a mediamen te addensato		3.80	7.7		61.60		-	
[3] - Terreno mediamen te addensato		4.20	16.91	293.52	135.28	200.24	306.83	159.55

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt	Buisman-	Begemann	Farrent	Menzenbac
		(m)	corretto per	Sanglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	8.82	0.40	8.82		45.58	62.62	77.34
Terreno							
agricolo							
[2] -	7.7	3.80	7.7		43.28	54.67	72.34
Terreno da							
poco a							
mediament							
e addensato							
[3] -	16.91	4.20	16.91	101.46	62.20	120.06	113.42
Terreno							
mediament							
e addensato							

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(t/m^3)
[1] - Terreno	8.82	0.40	8.82	Terzaghi-Peck	1.46
agricolo				1948	
[2] - Terreno da	7.7	3.80	7.7	Terzaghi-Peck	1.45
poco a				1948	
mediamente					
addensato					

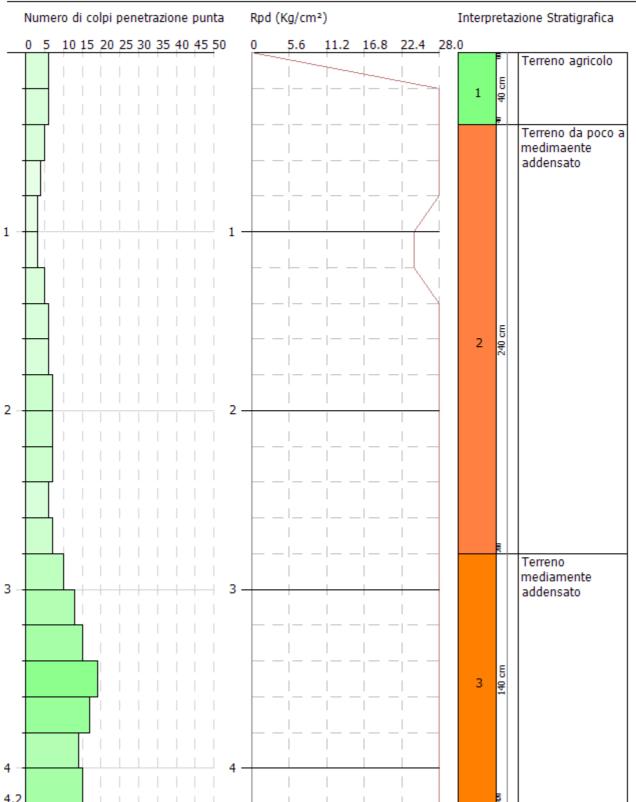
[3] - Terreno	16.91	4.20	16.91	Terzaghi-Peck	1.56
mediamente				1948	
addensato					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(t/m^3)
[1] - Terreno	8.82	0.40	8.82	Terzaghi-Peck	1.91
agricolo				1948	
[2] - Terreno da	7.7	3.80	7.7	Terzaghi-Peck	1.90
poco a				1948	
mediamente					
addensato					
[3] - Terreno	16.91	4.20	16.91	Terzaghi-Peck	1.97
mediamente				1948	
addensato					

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - Terreno agricolo		0.40	8.82	(A.G.I.)	0.34
[2] - Terreno da poco a mediamente addensato		3.80	7.7	(A.G.I.)	0.34
[3] - Terreno mediamente addensato		4.20	16.91	(A.G.I.)	0.32


GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

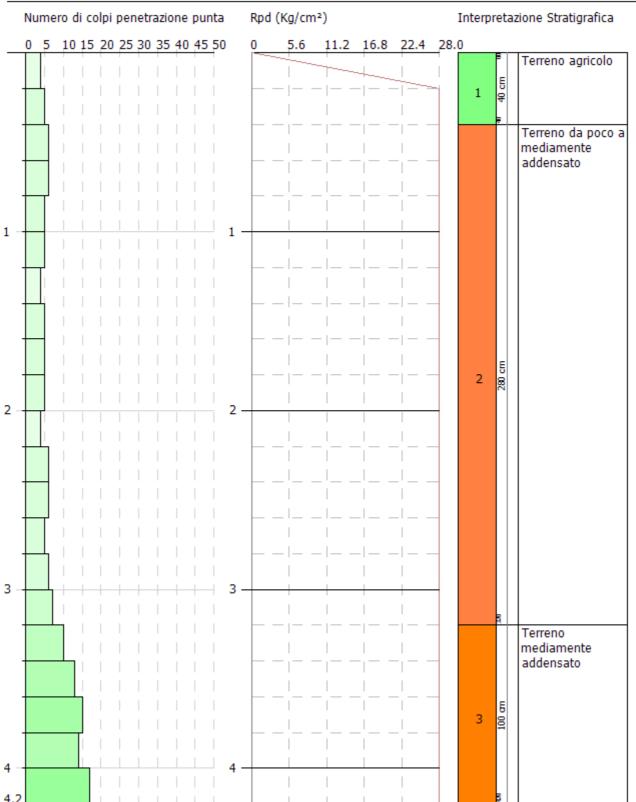
.....

PROVA PENETROMETRICA DINAMICA SC5-DPSH n.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT) 13-07-2022

Scala 1:21

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

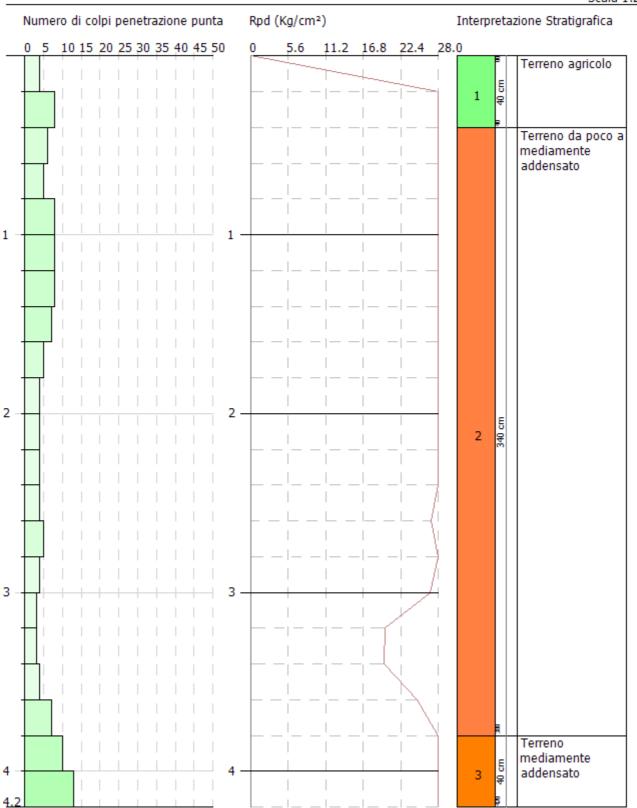

.....

PROVA PENETROMETRICA DINAMICA SC5-DPSH n.2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: 13-07-2022

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT)

Scala 1:21


GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

.....

PROVA PENETROMETRICA DINAMICA SC5-DPSH n.3 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Indagini geognostiche Localita': Aprilia (LT) 13-07-2022

Scala 1:21

PROVE PENETROMETRICHE DINAMICHE DPSH

SOTTOCAMPO n.6

Committente: GEO SOLAR GROUP srl

Descrizione: FTV APRILIA 3

Localita': APRILIA

Caratteristiche Tecniche-Strumentali Sonda: DPSH TG 63-200 PAGANI

Rif. Norme	DIN 4094	
Peso Massa battente	63.5 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	0.63 Kg	
Diametro punta conica	51.00 mm	
Area di base punta	20.43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6.31 Kg/m	
Profondita' giunzione prim	a asta 0.40 m	
Avanzamento punta	0.20 m	
Numero colpi per punta	N(20)	
Rivestimento/fanghi	No	
Angolo di apertura punta	90 °	

PROVA ... Nr.1

Strumento utilizzato... DPSH TG 63-200 PAGANI
Prova eseguita in data 01/06/2023
Profondita' prova 3.00 mt
Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda	ridotta	(Kg/cm²)	con riduzione	Herminier -
		Chi	(Kg/cm²)		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	3	0.847	24.50	28.93	1.23	1.45
0.80	3	0.843	24.40	28.93	1.22	1.45
1.00	2	0.840	16.20	19.29	0.81	0.96
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	6	0.833	48.19	57.86	2.41	2.89
1.60	7	0.830	51.74	62.38	2.59	3.12
1.80	8	0.826	58.91	71.29	2.95	3.56
2.00	8	0.823	58.68	71.29	2.93	3.56
2.20	6	0.820	43.85	53.47	2.19	2.67
2.40	7	0.817	50.97	62.38	2.55	3.12
2.60	8	0.814	53.95	66.25	2.70	3.31
2.80	16	0.761	100.89	132.51	5.04	6.63
3.00	23	0.709	134.99	190.48	6.75	9.52

Prof.	NPDM	Rd	Tipo	Clay	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizion
Strato		(Kg/cm²)		Fraction	di volume	di volume	efficace	correlaz.		e
(m)				(%)	(t/m³)	saturo	(Kg/cm²)	con Nspt		
						(t/m³)				
0.4	1	10.51	Incoerente	0	1.37	1.86	0.03	1.46	1.46	TERRENI
										AGRICOLI
1	2.67	25.72	Incoerente	0	1.69	1.87	0.11	1.46	3.9	TERRENI
			- coesivo							POCO
										ADDENS.
2.6	7	62.85	Incoerente	0	1.98	2.18	0.31	1.47	10.3	TERRENI
			- coesivo							MEDIAM.
										ADDENS.
3	19.5	161.49	Incoerente	0	2.15	2.34	0.52	1.48	28.9	TERRENI
			- coesivo							MOLTO
										ADDENS.

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terzaghi	Sanglera	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begema	De Beer
		Strato	-Peck	t	-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	nn	
		(m)			(1948)		1975	Benassi			1982		
								е					
								Vannelli					
[2] -	3.9	1.00	0.24	0.49	0.15 -	0.16	0.38	0.77	0.35	0.72	0.20	0.58	0.49
TERRENI					0.25								
POCO													
ADDENSATI													
[3] -	10.3	2.60	0.70	1.29	0.50 -	0.41	1.01	1.89	0.91	1.22	0.52	1.47	1.29
TERRENI					1.00								
MEDIAM.													
ADDENSATI													
[4] -	28.9	3.00	1.95	3.61	1.00 -	1.09	2.87	4.85	2.36	2.97	1.45	4.70	3.61
TERRENI					2.00								
MOLTO													
ADDENSATI													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-
		(m)	(1975)		(1974), Mitchell e	Sanglerat
					Gardner	
[2] - TERRENI	3.9	1.00	17.89	58.50	41.57	48.75
POCO ADDENSATI						
[3] - TERRENI	10.3	2.60	47.26		106.85	103.00
MEDIAMENTE						
ADDENSATI						
[4] - TERRENI	28.9	3.00	132.59		296.55	289.00
MOLTO						
ADDENSATI						

Modulo di Young (Kg/cm²)

Wiodalo di Toding (Ng/citi /				
	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[2] - TERRENI POCO	3.9	1.00	24.45	39.00
ADDENSATI				
[3] - TERRENI	10.3	2.60	98.05	103.00
MEDIAMENTE				
ADDENSATI				
[4] - TERRENI MOLTO	28.9	3.00	311.95	289.00
ADDENSATI				

Peso unita' di volume

1 COO dilita di Voldille				
	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m³)
[2] - TERRENI POCO	3.9	1.00	Meyerhof	1.69
ADDENSATI				
[3] - TERRENI	10.3	2.60	Meyerhof	1.98
MEDIAMENRTE				
ADDENSATI				
[4] - TERRENI MOLTO	28.9	3.00	Meyerhof	2.15
ADDENSATI				

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[2] - TERRENI POCO	3.9	1.00	Meyerhof	1.87
ADDENSATI				
[3] - TERRENI	10.3	2.60	Meyerhof	2.18
MEDIAMENTE				
ADDENSATI				
[4] - TERRENI MOLTO	28.9	3.00	Meyerhof	2.34
ADDENSATI				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach	
					(1961)	
[1] - TERRENI	1.46	0.40	5.77	29.75	52.63	10.76
AGRICOLI						
[2] - TERRENI	3.9	1.00	20.23	46.21	59.13	17.84
POCO ADDENSATI						
[3] - TERRENI	10.3	2.60	35.13	66.91	70.65	33.65
MEDIAMENRTE						
ADDENSATI						
[4] - TERRENI	28.9	3.00	55.29	100	100	62.37
MOLTO						
ADDENSATI						

Angolo di resistenza al taglio

Aligolo ul li						_								
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	•	Schmer	Mitchel	Shioi-	Japanese	De	Owasak
		Strato	corrett	Hanson	of	(1961)	(1964)	of	tmann	I & Katti	Fukuni	National	Mello	i &
		(m)	o per	Thornb	(1956)			(1965)	(1977)	(1981)	1982	Railway		Iwasaki
			presenz	urn-					Sabbie					
			a falda	Meyerh										
				of 1956										
[1] -	1.46	0.40	1.46	27.42	20.42	28.41	33.42	30.13	0	<30	19.68	27.44	20.33	20.4
TERRENI														
AGRICOLI														
[2] -	3.9	1.00	3.9	28.11	21.11	29.09	32.09	31.2	0	<30	22.65	28.17	23.76	23.83
TERRENI														
POCO														
ADDENS.														
[3] -	10.3	2.60	10.3	29.94	22.94	30.88	31.29	33.78	37.37	<30	27.43	30.09	26.65	29.35
TERRENI														
MEDIAM.														
ADDENS.														
[4] -	28.9	3.00	28.9	35.26	28.26	36.09	31.89	39.42	42	32-35	35.82	35.67	29.79	39.04
TERRENI														
MOLTO														
ADDENSA														
TI														

Modulo di Young (Kg/cm²)

Wiodalo di Tod								
	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	(1982) Sabbia
			falda		(Sabbie)	(Sabbia	(Sabbia)	Media
						ghiaiosa)		
[1] - TERRENI	1.46	0.40	1.46		11.68			
AGRICOLI								
[2] - TERRENI	3.9	1.00	3.9		31.20			
POCO								
ADDENSATI								
[3] - TERRENI	10.3	2.60	10.3	229.08	82.40	122.24	257.25	126.50
MEDIAMENR								
TE								
ADDENSATI								
[4] - TERRENI	28.9	3.00	28.9	383.72	231.20	341.72	396.75	219.50
MOLTO								
ADDENSATI								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Buisman-	Begemann	Farrent 1963	Menzenbach e
		(m)	per presenza	Sanglerat	1974 (Ghiaia		Malcev (Sabbia
			falda	(sabbie)	con sabbia)		media)
[1] - TERRENI	1.46	0.40	1.46		30.46	10.37	44.51
AGRICOLI							
[2] - TERRENI	3.9	1.00	3.9		35.48	27.69	55.39
POCO							
ADDENSATI							
[3] - TERRENI	10.3	2.60	10.3	61.80	48.62	73.13	83.94
MEDIAMENRTE							
ADDENSATI							
[4] - TERRENI	28.9	3.00	28.9	173.40	86.83	205.19	166.89
MOLTO							
ADDENSATI							

Peso unita' di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume (t/m³)
[1] - TERRENI AGRICOLI		0.40	1.46	Terzaghi-Peck 1948	1.36
[2] - TERRENI POCO ADDENSATI		1.00	3.9	Terzaghi-Peck 1948	1.40
[3] - TERRENI MEDIAMENRTE ADDENSATI		2.60	10.3	Terzaghi-Peck 1948	1.48
[4] - TERRENI MOLTO ADDENSATI		3.00	28.9	Terzaghi-Peck 1948	1.69

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (t/m³)
[1] - TERRENI		0.40	1.46	Terzaghi-Peck 1948	1.85
AGRICOLI					
[2] - TERRENI POCO	3.9	1.00	3.9	Terzaghi-Peck 1948	1.87
ADDENSATI					
[3] - TERRENI	10.3	2.60	10.3	Terzaghi-Peck 1948	1.92
MEDIAMENRTE					
ADDENSATI					
[4] - TERRENI MOLTO	28.9	3.00	28.9	Terzaghi-Peck 1948	2.05

ADDENSATI					
Modulo di Poisson					
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] - TERRENI AGRICOLI		0.40	1.46	(A.G.I.)	0.35
[2] - TERRENI POCO ADDENSATI		1.00	3.9	(A.G.I.)	0.35
[3] - TERRENI MEDIAMENRTE ADDENSATI		2.60	10.3	(A.G.I.)	0.33
[4] - TERRENI MOLTO ADDENSATI		3.00	28.9	(A.G.I.)	0.3

PROVA ... Nr.2

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 01/06/2023 2.40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda	ridotta	(Kg/cm²)	con riduzione	Herminier -
		Chi	(Kg/cm²)		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	2	0.851	17.88	21.01	0.89	1.05
0.60	3	0.847	24.50	28.93	1.23	1.45
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	6	0.840	48.59	57.86	2.43	2.89
1.20	7	0.836	56.45	67.50	2.82	3.38
1.40	8	0.833	64.25	77.15	3.21	3.86
1.60	7	0.830	51.74	62.38	2.59	3.12
1.80	8	0.826	58.91	71.29	2.95	3.56
2.00	14	0.773	96.46	124.75	4.82	6.24
2.20	18	0.770	123.52	160.40	6.18	8.02
2.40	28	0.717	178.93	249.50	8.95	12.48

Prof.	NPDM	Rd	Tipo	Clay	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizion
Strato	5141	(Kg/cm²)	,00	Fraction	di volume	di volume	efficace	correlaz.	1,51	e
		(Kg/CIII)								E
(m)				(%)	(t/m³)	saturo	(Kg/cm²)	con Nspt		
						(t/m³)				
0.4	1.5	15.76	Incoerente	0	1.41	1.87	0.03	1.46	2.19	TERRENI
										AGRICOLI
0.8	2.5	24.11	Incoerente	0	1.68	1.87	0.09	1.46	3.65	TERRENI
			- coesivo							POCO
										ADDENS.
1.8	7.2	67.24	Incoerente	0	1.98	2.18	0.22	1.47	10.6	TERRENI
			- coesivo							MEDIAM.
										ADDENS.
2.4	20	178.22	Incoerente	0	2.16	2.36	0.39	1.48	29.64	TERRENI
			- coesivo							MOLTO
										ADDENS.

STIMA PARAMETRI GEOTECNICI PROVA Nr.2

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terzaghi	Sanglera	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begema	De Beer
		Strato	-Peck	t	-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	nn	
		(m)			(1948)		1975	Benassi	Argilla		1982		
								е	di				
								Vannelli	Chicago				
[2] -	3.65	0.80	0.23	0.46	0.15 -	0.15	0.35	0.72	0.33	0.71	0.18	0.56	0.46
TERRENI					0.25								
POCO													
ADDENS.													
[3] -	10.6	1.80	0.72	1.33	0.50 -	0.42	1.04	2.02	0.94	1.25	0.53	1.64	1.33
TERRENI					1.00								
MEDIAM.													
ADDENS.													
[4] -	29.64	2.40	2.00	3.71	1.00 -	1.11	2.95	5.35	2.41	3.05	1.48	4.92	3.71
TERRENI					2.00								
MOLTO													
ADDENS.													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-
		(m)	(1975)		(1974), Mitchell e	Sanglerat
					Gardner	
[2] - TERRENI	3.65	0.80	16.75	54.75	39.02	45.63
POCO ADDENS.						
[3] - TERRENI	10.6	1.80	48.63	-	109.91	106.00
MEDIAM.						
ADDENS.						
[4] - TERRENI	29.64	2.40	135.99		304.10	296.40
MOLTO ADDENS.						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[2] - TERRENI POCO	3.65	0.80	21.58	36.50
ADDENS.				
[3] - TERRENI MEDIAM.	10.6	1.80	101.50	106.00
ADDENS.				
[4] - TERRENI MOLTO	29.64	2.40	320.46	296.40
ADDENS.				

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m³)
[2] - TERRENI POCO	3.65	0.80	Meyerhof	1.68
ADDENS.				
[3] - TERRENI MEDIAM.	10.6	1.80	Meyerhof	1.98
ADDENS.				
[4] - TERRENI MOLTO	29.64	2.40	Meyerhof	2.16
ADDENS.				

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		saturo
				(t/m³)
[2] - TERRENI POCO	3.65	0.80	Meyerhof	1.87
ADDENS.				
[3] - TERRENI MEDIAM.	10.6	1.80	Meyerhof	2.18
ADDENS.				
[4] - TERRENI MOLTO	29.64	2.40	Meyerhof	2.36
ADDENS.				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - TERRENI AGRICOLI		0.40	11.95	36.42	63.41	12.95
[2] - TERRENI POCO ADDENS.		0.80	19.35	45.14	59.73	17.14
[3] - TERRENI MEDIAM. ADDENS.		1.80	37.56	71.18	78.42	34.3
[4] - TERRENI MOLTO ADDENS.		2.40	58.64	100	100	63.14

Angolo di resistenza al taglio

l l	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmer	Mitchel	Shioi-	Japanes	De	Owasak
		Strato	corrett	Hanson	of	(1961)	(1964)	of	tmann	I & Katti	Fukuni	е	Mello	i &
		(m)	o per	Thornb	(1956)			(1965)	(1977)	(1981)	1982	Nationa		Iwasaki
			presenz	urn-					Sabbie			1		
			a falda	Meyerh								Railway		
				of 1956								,		
[1] -	2.19	0.40	2.19	27.63	20.63	28.61	34.02	30.46	0	<30	20.73	27.66	21.86	21.62
TERRENI														
AGRICOLI														
[2] -	3.65	0.80	3.65	28.04	21.04	29.02	32.33	31.1	0	<30	22.4	28.09	23.57	23.54
TERRENI														
POCO														
ADDENS.														
[3] -	10.6	1.80	10.6	30.03	23.03	30.97	32.09	33.9	37.97	<30	27.61	30.18	27.11	29.56
TERRENI														
MEDIAM.														
ADDENS.														
[4] -	29.6	2.40	29.64	35.47	28.47	36.3	32.55	39.59	42	32-35	36.09	35.89	30.38	39.35
TERRENI	4													
MOLTO														
ADDENS.														

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles
	1431 1	(m)	per presenza	TCTZUGIII	(1978)	Menzenbach	ed altri 1970	(1982) Sabbia
		(111)	•		` ,			` '
			falda		(Sabbie)	(Sabbia	(Sabbia)	Media
						ghiaiosa)		
[1] - TERRENI	2.19	0.40	2.19		17.52			
AGRICOLI								
[2] - TERRENI	3.65	0.80	3.65		29.20			
POCO								
ADDENS.								
[3] - TERRENI	10.6	1.80	10.6	232.39	84.80	125.78	259.50	128.00
MEDIAM.								
ADDENS.								
[4] - TERRENI	29.64	2.40	29.64	388.61	237.12	350.45	402.30	223.20
MOLTO								
ADDENS.								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Buisman-	Begemann	Farrent 1963	Menzenbach e
		(m)	per presenza	Sanglerat	1974 (Ghiaia		Malcev (Sabbia
			falda	(sabbie)	con sabbia)		media)
[1] - TERRENI	2.19	0.40	2.19		31.96	15.55	47.77
AGRICOLI							
[2] - TERRENI	3.65	0.80	3.65		34.96	25.92	54.28
POCO ADDENS.							
[3] - TERRENI	10.6	1.80	10.6	63.60	49.24	75.26	85.28
MEDIAM.							
ADDENS.							
[4] - TERRENI	29.64	2.40	29.64	177.84	88.35	210.44	170.19
MOLTO							
ADDENS.							

Peso unita' di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume (t/m³)
[1] - TERRENI AGRICOLI		0.40	2.19	Terzaghi-Peck 1948	1.37
[2] - TERRENI POCO ADDENS.	3.65	0.80	3.65	Terzaghi-Peck 1948	1.39
[3] - TERRENI MEDIAM. ADDENS.		1.80	10.6	Terzaghi-Peck 1948	1.49
[4] - TERRENI MOLTO ADDENS.	29.64	2.40	29.64	Terzaghi-Peck 1948	1.69

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (t/m³)
[1] - TERRENI AGRICOLI		0.40	2.19	Terzaghi-Peck 1948	
[2] - TERRENI POCO ADDENS.	3.65	0.80	3.65	Terzaghi-Peck 1948	1.87
[3] - TERRENI MEDIAM. ADDENS.		1.80	10.6	Terzaghi-Peck 1948	1.92
[4] - TERRENI MOLTO ADDENS.	29.64	2.40	29.64	Terzaghi-Peck 1948	2.05

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
[1] - TERRENI	2.19	0.40	2.19	(A.G.I.)	0.35
AGRICOLI					
[2] - TERRENI POCO	3.65	0.80	3.65	(A.G.I.)	0.35
ADDENS.					
[3] - TERRENI	10.6	1.80	10.6	(A.G.I.)	0.33
MEDIAM. ADDENS.					
[4] - TERRENI MOLTO	29.64	2.40	29.64	(A.G.I.)	0.3
ADDENS.					

PROVA ... Nr.3

Strumento utilizzato... DPSH T Prova eseguita in data Profondita' prova Falda non rilevata

DPSH TG 63-200 PAGANI 01/06/2023 2.40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda	ridotta	(Kg/cm²)	con riduzione	Herminier -
		Chi	(Kg/cm²)		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	4	0.840	32.39	38.57	1.62	1.93
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	6	0.833	48.19	57.86	2.41	2.89
1.60	6	0.830	44.35	53.47	2.22	2.67
1.80	6	0.826	44.18	53.47	2.21	2.67
2.00	6	0.823	44.01	53.47	2.20	2.67
2.20	16	0.770	109.80	142.57	5.49	7.13
2.40	37	0.667	219.96	329.70	11.00	16.49

Prof.	NPDM	Rd	Tipo	Clay	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizion
Strato		(Kg/cm²)		Fraction	di volume	di volume	efficace	correlaz.		e
(m)				(%)	(t/m³)	saturo	(Kg/cm²)	con Nspt		
						(t/m³)				
0.4	1	10.51	Incoerente	0	1.37	1.86	0.03	1.46	1.46	TERRENI
										AGRICOLI
1	2.33	22.5	Incoerente	0	1.66	1.86	0.1	1.46	3.4	TERRENI
			- coesivo							POCCO
										ADDENS.
2	6	55.23	Incoerente	0	1.93	2.12	0.25	1.47	8.83	TERRENI
			- coesivo							MEDIM.
										ADDENS.
2.4	26.5	236.14	Incoerente	0	2.48	2.5	0.4	1.48	39.27	TERRENI
			- coesivo							ADDENS.

STIMA PARAMETRI GEOTECNICI PROVA Nr.3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione no	NSPT	Prof.		Sanglera	Terzaghi	USDM	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begema	De Beer
	1131 1	Strato	-Peck	t	-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	nn	De Deel
		(m)	1 CCK	·	(1948)	.5.141	1975	Benassi	Argilla	(1300)	1982		
		(''')			(1540)		1373	e	di		1302		
								Vannelli	-				
[2] -	3.4	1.00	0.21	0.43	0.15 -	0.14	0.33			0.69	0.17	0.49	0.43
TERRENI	3.4	1.00	0.21	0.43	0.13	-	0.33	0.08	0.31	0.03	0.17	0.43	0.43
POCCO					0.23								
ADDENS.	0.00	2.00	0.60	4.40	0.50	0.05	0.07	4.66	0.70	4.44	0.44	4.00	1.10
[3] -	8.83	2.00	0.60	1.10		0.35	0.87	1.66	0.79	1.11	0.44	1.30	1.10
TERRENI					1.00								
MEDIM.													
ADDENS.													
[4] -	39.27	2.40	2.65	4.91	0.00	1.43	3.92	7.08	3.05	4.14	1.96	6.59	4.91
TERRENI													
ADDENS.													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-
		(m)	(1975)		(1974), Mitchell e	Sanglerat
					Gardner	
[2] - TERRENI	3.4	1.00	15.60	51.00	36.47	42.50
POCCO ADDENS.						
[3] - TERRENI	8.83	2.00	40.51		91.85	110.38
MEDIM. ADDENS.						
[4] - TERRENI	39.27	2.40	180.17		402.32	392.70
ADDENS.						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[2] - TERRENI POCCO	3.4	1.00	18.70	34.00
ADDENS.				
[3] - TERRENI MEDIM.	8.83	2.00	81.15	88.30
ADDENS.				
[4] - TERRENI ADDENS.	39.27	2.40	431.21	392.70

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m³)
[2] - TERRENI POCCO	3.4	1.00	Meyerhof	1.66
ADDENS.				
[3] - TERRENI MEDIM.	8.83	2.00	Meyerhof	1.93
ADDENS.				
[4] - TERRENI ADDENS.	39.27	2.40	Meyerhof	2.48

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[2] - TERRENI POCCO	3.4	1.00	Meyerhof	1.86
ADDENS.				
[3] - TERRENI MEDIM.	8.83	2.00	Meyerhof	2.12
ADDENS.				

[4] - TERRENI ADDENS.	39.27	2.40	Meverhof	2.50

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach	Skempton 1986
					(1961)	
[1] - TERRENI	1.46	0.40	5.77	29.75	52.63	10.76
AGRICOLI						
[2] - TERRENI	3.4	1.00	17.84	43.17	55.5	16.44
POCCO ADDENS.						
[3] - TERRENI	8.83	2.00	33.12	63.99	69.65	30.35
MEDIM. ADDENS.						
[4] - TERRENI	39.27	2.40	66.04	100	100	71.78
ADDENS.						

Angolo di resistenza al taglio

Angolo di r	Angolo di resistenza al taglio													
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmer	Mitchel	Shioi-	Japanes	De	Owasak
		Strato	corrett	Hanson	of	(1961)	(1964)	of	tmann	I & Katti	Fukuni	е	Mello	i &
		(m)	o per	-	(1956)			(1965)	(1977)	(1981)	1982	Nationa		Iwasaki
			presenz	Thornb					Sabbie		(ROAD	1		
			a falda	urn-							BRIDGE	Railway		
				Meyerh							SPECIFI			
				of 1956							CATION			
)			
[1] -	1.46	0.40	1.46	27.42	20.42	28.41	33.42	30.13	0	<30	19.68	27.44	20.33	20.4
TERRENI														
AGRICOLI														
[2] -	3.4	1.00	3.4	27.97	20.97	28.95	31.88	30.99	0	<30	22.14	28.02	23.24	23.25
TERRENI														
POCCO														
ADDENS.														
[3] -	8.83	2.00	8.83	29.52	22.52	30.47	31.53	33.22	0	<30	26.51	29.65	26.3	28.29
TERRENI														
MEDIM.														
ADDENS.														
[4] -	39.2	2.40	39.27	38.22	31.22	39	32.95	41.37	42	35-38	39.27	38.78	31.41	43.02
TERRENI	7													
ADDENS.														

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	(1982) Sabbia
			falda		(Sabbie)	(Sabbia	(Sabbia)	Media
						ghiaiosa)		
[1] - TERRENI	1.46	0.40	1.46		11.68			
AGRICOLI								
[2] - TERRENI	3.4	1.00	3.4		27.20			
POCCO								
ADDENS.								
[3] - TERRENI	8.83	2.00	8.83		70.64	104.89		
MEDIM.								
ADDENS.								
[4] - TERRENI	39.27	2.40	39.27	447.30	314.16	464.09	474.52	271.35
ADDENS.								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Buisman-	Begemann	Farrent 1963	Menzenbach e
		(m)	per presenza	Sanglerat	1974 (Ghiaia		Malcev (Sabbia
			falda	(sabbie)	con sabbia)		media)
[1] - TERRENI	1.46	0.40	1.46		30.46	10.37	44.51
AGRICOLI							
[2] - TERRENI	3.4	1.00	3.4		34.45	24.14	53.16
POCCO							
ADDENS.							
[3] - TERRENI	8.83	2.00	8.83		45.60	62.69	77.38
MEDIM.							
ADDENS.							
[4] - TERRENI	39.27	2.40	39.27	235.62	108.13	278.82	213.14
ADDENS.							

Classificazione AGI

Classificazione Adi					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		
[1] - TERRENI	1.46	0.40	1.46	Classificazione A.G.I	SCIOLTO
AGRICOLI					
[2] - TERRENI POCCO	3.4	1.00	3.4	Classificazione A.G.I	SCIOLTO
ADDENS.					
[3] - TERRENI	8.83	2.00	8.83	Classificazione A.G.I	POCO ADDENSATO
MEDIM. ADDENS.					
[4] - TERRENI	39.27	2.40	39.27	Classificazione A.G.I	ADDENSATO
ADDENS.					

Peso unita' di volume

reso unita ui voiume	C30 dilità di volune									
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unita' di					
		(m)	presenza falda		Volume					
					(t/m³)					
[1] - TERRENI	1.46	0.40	1.46	Terzaghi-Peck 1948	1.36					
AGRICOLI										
[2] - TERRENI POCCO	3.4	1.00	3.4	Terzaghi-Peck 1948	1.39					
ADDENS.										
[3] - TERRENI	8.83	2.00	8.83	Terzaghi-Peck 1948	1.46					
MEDIM. ADDENS.										
[4] - TERRENI	39.27	2.40	39.27	Terzaghi-Peck 1948	1.78					
ADDENS.										

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (t/m³)
[1] - TERRENI	1.46	0.40	1.46	Terzaghi-Peck 1948	1.85
AGRICOLI					
[2] - TERRENI POCCO	3.4	1.00	3.4	Terzaghi-Peck 1948	1.87
ADDENS.					
[3] - TERRENI	8.83	2.00	8.83	Terzaghi-Peck 1948	1.91
MEDIM. ADDENS.					
[4] - TERRENI	39.27	2.40	39.27	Terzaghi-Peck 1948	2.11
ADDENS.					

Modulo di Poisson

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
[1] - TERRENI	1.46	0.40	1.46	(A.G.I.)	0.35
AGRICOLI					
[2] - TERRENI POCCO	3.4	1.00	3.4	(A.G.I.)	0.35
ADDENS.					
[3] - TERRENI	8.83	2.00	8.83	(A.G.I.)	0.34
MEDIM. ADDENS.					
[4] - TERRENI	39.27	2.40	39.27	(A.G.I.)	0.28
ADDENS.					

PROVA ... Nr.4

Strumento utilizzato... Prova eseguita in data Profondita' prova Falda non rilevata DPSH TG 63-200 PAGANI 01/06/2023 3.60 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica	Res. dinamica	Pres. ammissibile	Pres. ammissibile
		riduzione sonda	ridotta	(Kg/cm²)	con riduzione	Herminier -
		Chi	(Kg/cm²)		Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm²)	
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	1	0.847	8.17	9.64	0.41	0.48
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	4	0.840	32.39	38.57	1.62	1.93
1.20	6	0.836	48.39	57.86	2.42	2.89
1.40	7	0.833	56.22	67.50	2.81	3.38
1.60	6	0.830	44.35	53.47	2.22	2.67
1.80	7	0.826	51.54	62.38	2.58	3.12
2.00	6	0.823	44.01	53.47	2.20	2.67
2.20	6	0.820	43.85	53.47	2.19	2.67
2.40	6	0.817	43.69	53.47	2.18	2.67
2.60	6	0.814	40.46	49.69	2.02	2.48
2.80	6	0.811	40.32	49.69	2.02	2.48
3.00	12	0.809	80.37	99.38	4.02	4.97
3.20	11	0.806	73.43	91.10	3.67	4.55
3.40	12	0.803	79.84	99.38	3.99	4.97
3.60	25	0.701	135.54	193.39	6.78	9.67

Prof.	NPDM	Rd	Tipo	Clay	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizione
Strato		(Kg/cm²)		Fraction	di volume	di volume	efficace	correlaz.		
(m)				(%)	(t/m³)	saturo	(Kg/cm²)	con Nspt		
						(t/m³)				
0.4	1	10.51	Incoerente	0	1.37	1.86	0.03	1.46	1.46	TERRENI
										AGRICOLI
1	2.33	22.5	Incoerente	0	1.66	1.86	0.1	1.46	3.4	TERRENI POCO
			- coesivo							ADDENSATI
2.8	6.22	55.66	Incoerente	0	1.94	2.13	0.33	1.47	9.16	TERRENI
			- coesivo							MEDIAM.
										ADDENS.
3.4	11.67	96.62	Incoerente	0	2.09	2.3	0.57	1.49	17.39	TERRENI

		- coesivo				ADDENS.

STIMA PARAMETRI GEOTECNICI PROVA Nr.4

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione non drenata (kg/cm²)													
	NSP	Prof.	Terzaghi	Sanglera	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begema	De Beer
	Т	Strato	-Peck	t	-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	nn	
		(m)			(1948)		1975	Benassi	Argilla		1982		
								е	di				
								Vannelli	Chicago				
[2] -	3.4	1.00	0.21	0.43	0.15 -	0.14	0.33	0.68	0.31	0.69	0.17	0.49	0.43
TERRENI					0.25								
POCO													
ADDENSATI													
[3] -	9.16	2.80	0.62	1.15	0.50 -	0.37	0.90	1.67	0.81	1.13	0.46	1.25	1.15
TERRENI					1.00								
MEDIAM.													
ADDENS.													
[4] -	17.3	3.40	1.17	2.17	1.00 -	0.68	1.72	2.90	1.49	1.84	0.87	2.60	2.17
TERRENI	9				2.00								
ADDENS.													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-
		(m)	(1975)		(1974), Mitchell e	Sanglerat
					Gardner	
[2] - TERRENI	3.4	1.00	15.60	51.00	36.47	42.50
POCO ADDENSATI						
[3] - TERRENI	9.16	2.80	42.03		95.22	114.50
MEDIAM.						
ADDENS.						
[4] - TERRENI	17.39	3.40	79.79		179.16	173.90
ADDENS.						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[2] - TERRENI POCO	3.4	1.00	18.70	34.00
ADDENSATI				
[3] - TERRENI MEDIAM.	9.16	2.80	84.94	91.60
ADDENS.				
[4] - TERRENI ADDENS.	17.39	3.40	179.59	173.90

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		(t/m³)
[2] - TERRENI POCO	3.4	1.00	Meyerhof	1.66
ADDENSATI				
[3] - TERRENI MEDIAM.	9.16	2.80	Meyerhof	1.94
ADDENS.				
[4] - TERRENI ADDENS.	17.39	3.40	Meyerhof	2.09

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (t/m³)
[2] - TERRENI POCO		1.00	Meyerhof	1.86
ADDENSATI				
[3] - TERRENI MEDIAM.	9.16	2.80	Meyerhof	2.13
ADDENS.				

[4] - TERRENI ADDENS.	17.39	3.40	Meverhof	2.30

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - TERRENI AGRICOLI		0.40	5.77	29.75	52.63	10.76
[2] - TERRENI POCO ADDENSATI		1.00	17.84	43.17	55.5	16.44
[3] - TERRENI MEDIAM. ADDENS.		2.80	32.42	62.66	66.02	31.11
[4] - TERRENI ADDENS.		3.40	42.13	77.82	77.8	47.15

Angolo di resistenza al taglio

Aligolo ul II	COIOCCII	za ar tagi												
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmer	Mitchel	Shioi-	Japanese	De	Owasak
		Strato	corrett	Hanson	of	(1961)	(1964)	of	tmann	I & Katti	Fukuni	National	Mello	i &
		(m)	o per	Thornb	(1956)			(1965)	(1977)	(1981)	1982	Railway		Iwasaki
			presenz	urn-					Sabbie					
			a falda	Meyerh										
				of 1956										
[1] -	1.46	0.40	1.46	27.42	20.42	28.41	33.42	30.13	0	<30	19.68	27.44	20.33	20.4
TERRENI														
AGRICOLI														
[2] -	3.4	1.00	3.4	27.97	20.97	28.95	31.88	30.99	0	<30	22.14	28.02	23.24	23.25
TERRENI														
POCO														
ADDENSA														
TI														
[3] -	9.16	2.80	9.16	29.62	22.62	30.56	31	33.35	0	<30	26.72	29.75	26.15	28.54
TERRENI														
MEDIAM.														
ADDENS.														
[4] -	17.3	3.40	17.39	31.97	24.97	32.87	30.86	36.26	38.89	30-32	31.15	32.22	27.68	33.65
TERRENI	9													
ADDENS.														

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	(1982) Sabbia
			falda		(Sabbie)	(Sabbia	(Sabbia)	Media
						ghiaiosa)		
[1] - TERRENI	1.46	0.40	1.46		11.68			
AGRICOLI								
[2] - TERRENI	3.4	1.00	3.4		27.20			
POCO								
ADDENSATI								
[3] - TERRENI	9.16	2.80	9.16		73.28	108.79		
MEDIAM.								
ADDENS.								
[4] - TERRENI	17.39	3.40	17.39	297.66	139.12	205.90	310.42	161.95
ADDENS.								

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Buisman-	Begemann	Farrent 1963	Menzenbach e
		(m)	per presenza	Sanglerat	1974 (Ghiaia		Malcev (Sabbia
			falda	(sabbie)	con sabbia)		media)
[1] - TERRENI	1.46	0.40	1.46		30.46	10.37	44.51
AGRICOLI							
[2] - TERRENI	3.4	1.00	3.4		34.45	24.14	53.16
POCO							
ADDENSATI							
[3] - TERRENI	9.16	2.80	9.16		46.28	65.04	78.85
MEDIAM.							
ADDENS.							
[4] - TERRENI	17.39	3.40	17.39	104.34	63.18	123.47	115.56
ADDENS.							

Peso unita' di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume (t/m³)
[1] - TERRENI AGRICOLI		0.40	1.46	Terzaghi-Peck 1948	1.36
[2] - TERRENI POCO ADDENSATI		1.00	3.4	Terzaghi-Peck 1948	1.39
[3] - TERRENI MEDIAM. ADDENS.		2.80	9.16	Terzaghi-Peck 1948	1.47
[4] - TERRENI ADDENS.		3.40	17.39	Terzaghi-Peck 1948	1.57

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unita' Volume
		(m)	presenza falda		Saturo
					(t/m³)
[1] - TERRENI	1.46	0.40	1.46	Terzaghi-Peck 1948	1.85
AGRICOLI					
[2] - TERRENI POCO	3.4	1.00	3.4	Terzaghi-Peck 1948	1.87
ADDENSATI					
[3] - TERRENI	9.16	2.80	9.16	Terzaghi-Peck 1948	1.91
MEDIAM. ADDENS.					
[4] - TERRENI	17.39	3.40	17.39	Terzaghi-Peck 1948	1.97
ADDENS.					

Modulo di Poisson

		NSPT	Prof. Strato	Nspt corretto per	Correlazione	Poisson
			(m)	presenza falda		
Ī	[1] - TERRENI	1.46	0.40	1.46	(A.G.I.)	0.35
	AGRICOLI					
Ī	[2] - TERRENI POCO	3.4	1.00	3.4	(A.G.I.)	0.35
	ADDENSATI					
Ī	[3] - TERRENI	9.16	2.80	9.16	(A.G.I.)	0.34
	MEDIAM. ADDENS.					
Ī	[4] - TERRENI	17.39	3.40	17.39	(A.G.I.)	0.32
	ADDENS.					

PROVA ... Nr.5

Strumento utilizzato...
Prova eseguita in data
Profondita' prova

DPSH TG 63-200 PAGANI 01/06/2023 3.00 mt

Falda non rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0.20	1	0.855	8.98	10.51	0.45	0.53
0.40	1	0.851	8.94	10.51	0.45	0.53
0.60	2	0.847	16.34	19.29	0.82	0.96
0.80	2	0.843	16.27	19.29	0.81	0.96
1.00	2	0.840	16.20	19.29	0.81	0.96
1.20	4	0.836	32.26	38.57	1.61	1.93
1.40	5	0.833	40.16	48.22	2.01	2.41
1.60	5	0.830	36.96	44.55	1.85	2.23
1.80	5	0.826	36.82	44.55	1.84	2.23
2.00	6	0.823	44.01	53.47	2.20	2.67
2.20	5	0.820	36.54	44.55	1.83	2.23
2.40	7	0.817	50.97	62.38	2.55	3.12
2.60	7	0.814	47.20	57.97	2.36	2.90
2.80	15	0.761	94.59	124.23	4.73	6.21
3.00	26	0.709	152.59	215.32	7.63	10.77

Prof.	NPDM	Rd	Tipo	Clay	Peso unita'	Peso unita'	Tensione	Coeff. di	NSPT	Descrizion
Strato		(Kg/cm²)		Fraction	di volume	di volume	efficace	correlaz.		e
(m)				(%)	(t/m³)	saturo	(Kg/cm²)	con Nspt		
						(t/m³)				
0.4	1	10.51	Incoerente	0	1.37	1.86	0.03	1.46	1.46	TERRENI
										AGRICOLI
1	2	19.29	Incoerente	0	1.63	1.86	0.1	1.46	2.92	TERRENI
			- coesivo							POCO
										ADDENSAT
										1
2.6	5.5	49.28	Incoerente	0	1.9	1.91	0.3	1.47	8.1	TERRENI
			- coesivo							MEDIAM.A
										DDENS
3	20.5	169.77	Incoerente	0	2.17	2.38	0.5	1.48	30.38	TERRENI
			- coesivo							MOLTO
										ADDENS.

STIMA PARAMETRI GEOTECNICI PROVA Nr.5

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSP	Prof.		Sanglera	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begema	De Beer
	Т	Strato	-Peck	t	-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	nn	
		(m)			(1948)		1975	Benassi	Argilla		1982		
								е	di				
								Vannelli	Chicago				
[2] -	2.92	1.00	0.18	0.37	0.15 -	0.12	0.28	0.58	0.27	0.65	0.15	0.41	0.37
TERRENI					0.25								
POCO													
ADDENSATI													
[3] -	8.1	2.60	0.55	1.01	0.50 -	0.33	0.79	1.48	0.72	1.05	0.41	1.09	1.01
TERRENI					1.00								
MEDIAM.AD													
DENS													
[4] -	30.3	3.00	2.05	3.80	0.00	1.14	3.02	5.09	2.46	3.13	1.52	4.96	3.80
TERRENI	8												
MOLTO													
ADDENS.													

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Stroud e Butler	Vesic (1970)	Trofimenkov	Buisman-
		(m)	(1975)		(1974), Mitchell e	Sanglerat
					Gardner	
[2] - TERRENI	2.92	1.00	13.40	43.80	31.57	36.50
POCO ADDENSATI						
[3] - TERRENI	8.1	2.60	37.16		84.41	101.25
MEDIAM.ADDENS						
[4] - TERRENI	30.38	3.00	139.38		311.65	303.80
MOLTO ADDENS.						

Modulo di Young (Kg/cm²)

(ingression of the state of the	NSPT	Prof. Strato (m)	Schultze	Apollonia
[2] - TERRENI POCO	2.92		13.18	29.20
ADDENSATI				
[3] - TERRENI	8.1	2.60	72.75	81.00
MEDIAM.ADDENS				
[4] - TERRENI MOLTO	30.38	3.00	328.97	303.80
ADDENS.				

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume	
		(m)		(t/m³)	
[2] - TERRENI POCO	2.92	1.00	Meyerhof	1.63	
ADDENSATI					
[3] - TERRENI	8.1	2.60	Meyerhof	1.90	
MEDIAM.ADDENS					
[4] - TERRENI MOLTO	30.38	3.00	Meyerhof	2.17	
ADDENS.					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di volume
		(m)		saturo
				(t/m³)
[2] - TERRENI POCO	2.92	1.00	Meyerhof	1.86
ADDENSATI				
[3] - TERRENI	8.1	2.60	Meyerhof	1.91
MEDIAM.ADDENS				
[4] - TERRENI MOLTO	30.38	3.00	Meyerhof	2.38
ADDENS.				

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - TERRENI AGRICOLI		0.40	5.77	29.75	52.63	10.76
[2] - TERRENI POCO ADDENSATI		1.00	15.27	40.03	51.73	15.07
[3] - TERRENI MEDIAM.ADDENS		2.60	30.36	59.63	63.52	28.64
[4] - TERRENI MOLTO ADDENS.		3.00	56.89	100	100	63.89

Angolo di resistenza al taglio

	NSPT	Prof. Strato (m)	Nspt corrett o per presenz a falda	Peck- Hanson - Thornb urn- Meyerh of 1956	(1956)	Sowers (1961)	Malcev (1964)	Meyerh of (1965)	Schmer tmann (1977) Sabbie	Mitchel I & Katti (1981)	Fukuni 1982 (ROAD	Japanes e Nationa I Railway	De Mello	Owasak i & Iwasaki
[1] - TERRENI AGRICOLI	1.46	0.40	1.46	27.42	20.42	28.41	33.42	30.13	0	<30	19.68	27.44	20.33	20.4
[2] - TERRENI POCO ADDENS.	2.92	1.00	2.92	27.83	20.83	28.82	31.66	30.78	0	<30	21.62	27.88	22.67	22.64
[3] - TERRENI MEDIAM. ADDENS	8.1	2.60	8.1	29.31	22.31	30.27	30.97	32.93	0	<30	26.02	29.43	25.77	27.73
[4] - TERRENI MOLTO ADDENS.	30.3 8	3.00	30.38	35.68	28.68	36.51	32.04	39.75	42	32-35	36.35	36.11	30.04	39.65

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto	Terzaghi	Schmertmann	Schultze-	D'Appollonia	Bowles
		(m)	per presenza		(1978)	Menzenbach	ed altri 1970	(1982) Sabbia
			falda		(Sabbie)	(Sabbia	(Sabbia)	Media
						ghiaiosa)		
[1] - TERRENI	1.46	0.40	1.46		11.68			
AGRICOLI								
[2] - TERRENI	2.92	1.00	2.92		23.36			
POCO								
ADDENSATI								
[3] - TERRENI	8.1	2.60	8.1		64.80	96.28		
MEDIAM.ADD								
ENS								
[4] - TERRENI	30.38	3.00	30.38	393.43	243.04	359.18	407.85	226.90
MOLTO								
ADDENS.								

Modulo Edometrico (Kg/cm²)

, 5,	NSPT	Prof. Strato	Nspt corretto	Buisman-	Begemann	Farrent 1963	Menzenbach e
		(m)	per presenza	Sanglerat	1974 (Ghiaia		Malcev (Sabbia
			falda	(sabbie)	con sabbia)		media)
[1] - TERRENI AGRICOLI	1.46	0.40	1.46		30.46	10.37	44.51
[2] - TERRENI POCO	2.92	1.00	2.92		33.46	20.73	51.02
ADDENSATI							
[3] - TERRENI	8.1	2.60	8.1		44.10	57.51	74.13
MEDIAM.ADDENS							
[4] - TERRENI MOLTO	30.38	3.00	30.38	182.28	89.87	215.70	173.49
ADDENS.							

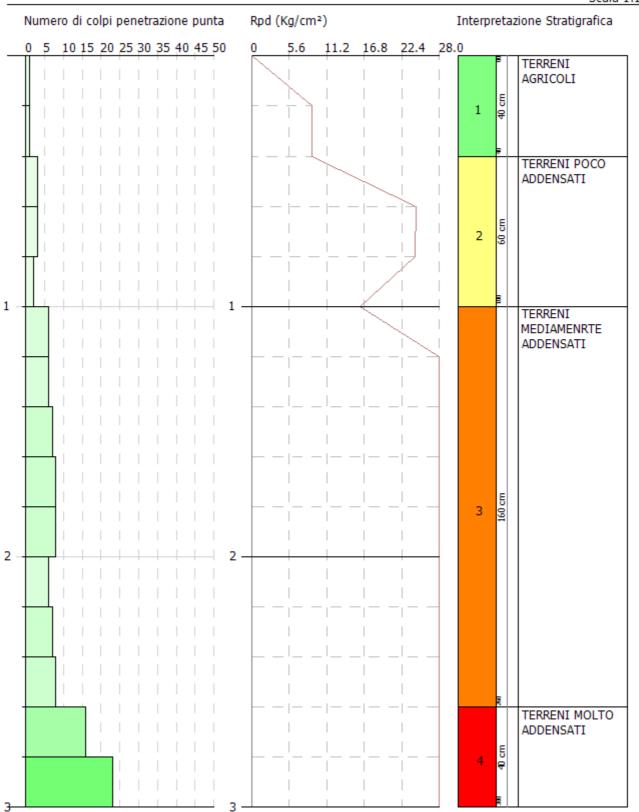
Peso unita' di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' di Volume
		` ,	·		(t/m³)
[1] - TERRENI	1.46	0.40	1.46	Terzaghi-Peck 1948	1.36
AGRICOLI					
[2] - TERRENI POCO	2.92	1.00	2.92	Terzaghi-Peck 1948	1.38
ADDENSATI					
[3] - TERRENI	8.1	2.60	8.1	Terzaghi-Peck 1948	1.45
MEDIAM.ADDENS					
[4] - TERRENI MOLTO	30.38	3.00	30.38	Terzaghi-Peck 1948	1.70
ADDENS.					

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unita' Volume
		(m)	presenza falda		Saturo
					(t/m³)
[1] - TERRENI	1.46	0.40	1.46	Terzaghi-Peck 1948	1.85
AGRICOLI					
[2] - TERRENI POCO	2.92	1.00	2.92	Terzaghi-Peck 1948	1.86
ADDENSATI					
[3] - TERRENI	8.1	2.60	8.1	Terzaghi-Peck 1948	1.90
MEDIAM.ADDENS					
[4] - TERRENI MOLTO	30.38	3.00	30.38	Terzaghi-Peck 1948	2.06
ADDENS.					

Modulo di Poisson


	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
[1] - TERRENI	1.46	0.40	1.46	(A.G.I.)	0.35
AGRICOLI					
[2] - TERRENI POCO	2.92	1.00	2.92	(A.G.I.)	0.35
ADDENSATI					
[3] - TERRENI	8.1	2.60	8.1	(A.G.I.)	0.34
MEDIAM.ADDENS					
[4] - TERRENI MOLTO	30.38	3.00	30.38	(A.G.I.)	0.29
ADDENS.					

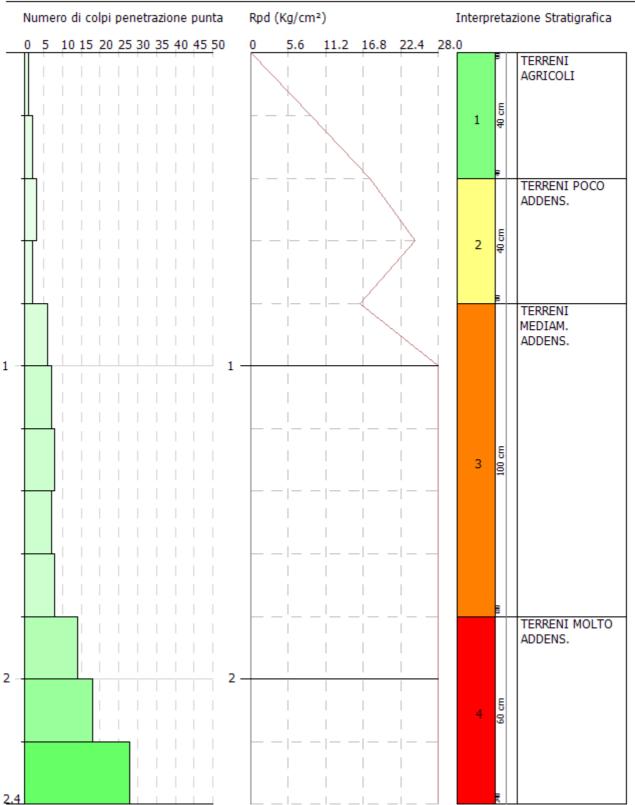
PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: GEO SOLAR GROUP srl Descrizione: FTV APRILIA 3 Localita': APRILIA

01/06/2023

Scala 1:15

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

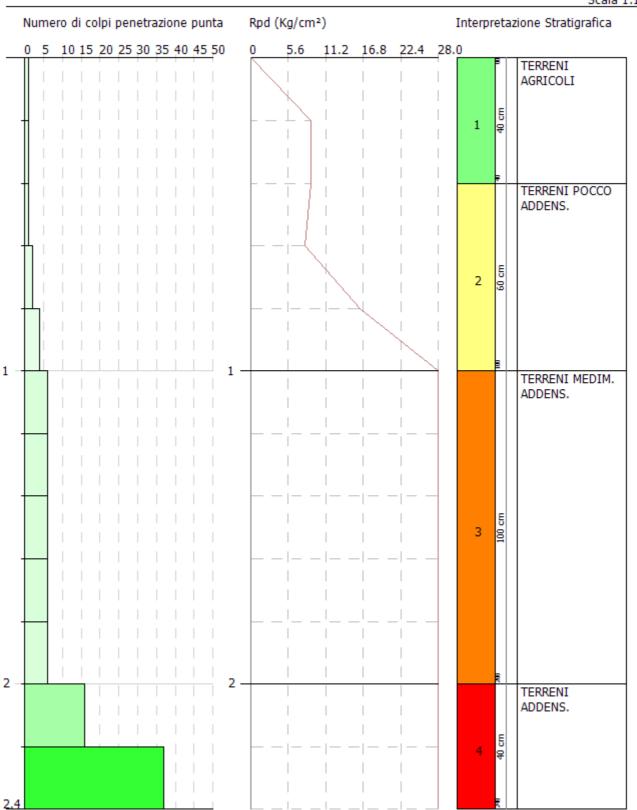

.....

PROVA PENETROMETRICA DINAMICA Nr.2 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: GEO SOLAR GROUP srl Descrizione: FTV APRILIA 3 Localita': APRILIA

01/06/2023

Scala 1:12

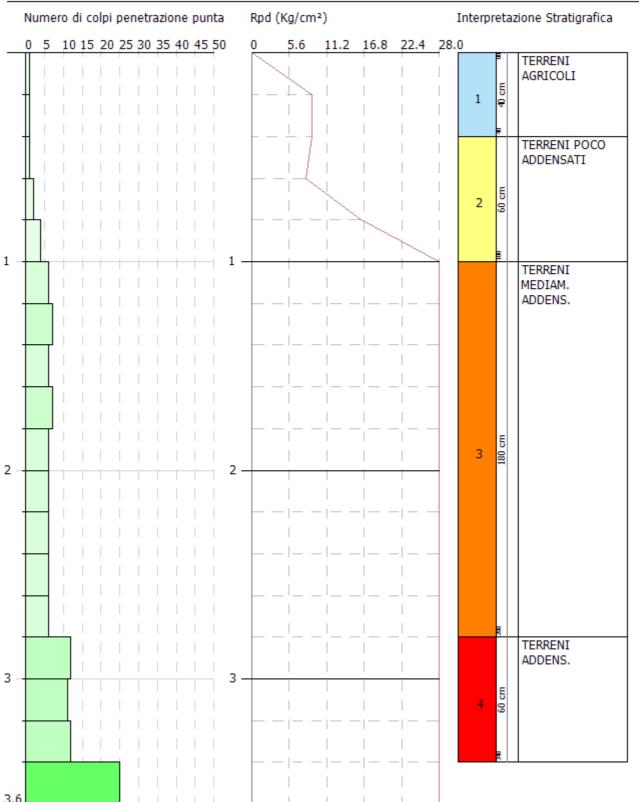


PROVA PENETROMETRICA DINAMICA Nr.3 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: GEO SOLAR GROUP srl Descrizione: FTV APRILIA 3 Localita': APRILIA

01/06/2023

Scala 1:12

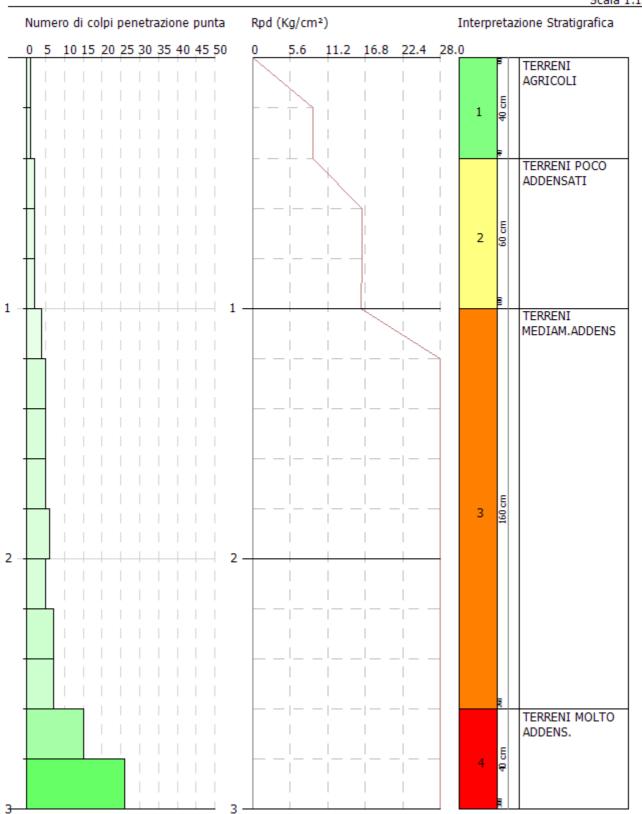


PROVA PENETROMETRICA DINAMICA Nr.4 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: GEO SOLAR GROUP srl Descrizione: FTV APRILIA 3 Localita': APRILIA

01/06/2023

Scala 1:18



PROVA PENETROMETRICA DINAMICA Nr.5 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: GEO SOLAR GROUP srl Descrizione: FTV APRILIA 3 Localita': APRILIA

01/06/2023

Scala 1:15

DETERMINAZIONE CATEGORIA SISMICA DI SOTTOSUOLO PROSPEZIONI SISMICHE MASW – MISURA HVSR

Nell'ambito del territorio interessato dal progetto dell'impianto FTV *Aprilia 3,* nel comune di Aprilia (LT) , sono state effettuate quattro stazioni sismiche complete per ciascuno dei sottocampi, in modo da ottenere un dato diffuso e significativo.

In ogni stazione, come prevede la normativa vigente, sono state effettuate indagini geofisiche indirette (MASW), ortogonali la registrazione di rumore sismico ambientale (misura HVSR). L'obiettivo era quello di classificare sismicamente il sottosuolo, ossia di definirne la categoria, secondo quanto indica il D.M. 17 gennaio 2018.

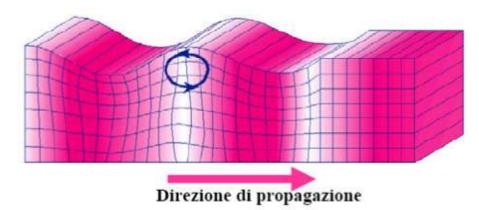
CENNI TEORICI SUL METODO MASW

Lo scopo della prova MAS W consiste nel determinare il profilo di rigidezza del sito tramite la misura della velocità di propagazione delle onde di superficie di Rayleigh (V_R) e un successivo processo di inversione, attraverso il quale viene fornita una stima indiretta della distribuzione delle Vs (velocità di propagazione delle onde di taglio).

La prova si applica quando la profondità delle coperture da esplorare è compresa tra i 10 e i 50 m, presentando una maggiore attendibilità per profondità indagate inferiori ai 20 m. Si rende necessaria soprattutto quando interessano dati medi relativi ad ampi volumi di terreno e quando i risultati da ottenere devono essere di qualità e precisione buone.

Per l'esecuzione della prova è necessaria una superficie pianeggiante più o meno ampia in relazione alla profondità di indagine.

Si suppone che il volume di terreno interessato dalle indagini sia stratificato orizzontalmente e che all'interno di ogni strato il comportamento del terreno si possa considerare elastico, omogeneo e isotropo.


La prova consiste nel produrre sulla superficie del terreno, in corrispondenza del sito da investigare, una sollecitazione dinamica verticale in un determinato campo di frequenze, opportunamente regolabile, e nel registrare le vibrazioni prodotte, sempre in corrispondenza della superficie, a distanze note e prefissate.

L'interpretazione dei segnali rilevati e la conseguente stima del profilo di rigidezza può scomporsi in due fasi fondamentali:

- ✓ deduzione della curva di dispersione (velocità di fase delle onde di Rayleigh in funzione della frequenza) caratteristica del sito in esame;
- ✓ processo di inversione, finalizzato a ottenere partendo dalla curva suddetta una stima del profilo di rigidezza a essa associato.

Ai fini di questa prova, di tutte le componenti di moto prodotte nel terreno dalla sorgente, interessano quelle che si trasmettono lungo la superficie (onde superficiali) e di queste quelle di Rayleigh, polarizzate sul piano verticale e caratterizzate da componenti sia longitudinali sia trasversali.

Tali onde si propagano lungo fronti d'onda cilindrici, coassiali rispetto alla sorgente, con attenuazione proporzionale all'inverso della radice di r (dove r è la distanza dalla sorgente) inferiore all'attenuazione delle onde di volume (proporzionale invece a 1/r) e perciò già a distanze non molto grandi le onde di superficie tendono a prevalere nettamente su quelle di volume.

Fig. 1 - Rappresentazione grafica della propagazione delle onde superficiali di Rayleigh caratterizzata dall'oscillazione polarizzata in un piano verticale e con movimento delle particelle retrogrado rispetto alla direzione di propagazione dell'onda.

La componente verticale del moto indotta dalle onde di Rayleigh è predominante su quella orizzontale e si attenua con la profondità rapidamente fino a diventare insignificante a una quota di poco superiore alla lunghezza d'onda λ della sollecitazione indotta. Perciò per indagare profondità sempre maggiori e ricavare la velocità caratteristica delle onde di Rayleigh è opportuno aumentare progressivamente la lunghezza d'onda della sollecitazione prodotta dalla sorgente, costruendo così una curva in cui sia riportata al variare della lunghezza d'onda λ , e quindi della profondità investigata, la velocità delle onde di Rayleigh calcolata (curva di dispersione).

La velocità V_R risulta sperimentalmente assai prossima a quella delle onde di taglio Vs (variando in funzione del coefficiente di Poisson tra 0.86 e 0.95), tramite la quale si possono ricavare le caratteristiche meccaniche del terreno per mezzo delle relazioni precedentemente citate.

L'apparecchiatura utilizzata per questo tipo di prove si compone di un sistema sorgente - sistema di ricezione - sistema di acquisizione dati.

CENNI TEORICI SULLE MISURE HVSR PER LA STIMA DELLE VSea

Le basi teoriche di questa tecnica si basano sul rumore sismico ambientale (CASTELLARO *et alii*, 2005), presente ovunque sulla superficie terreste, è generato dai fenomeni atmosferici (onde oceaniche, vento) e dall'attività antropica oltre che, ovviamente, dall'attività dinamica terrestre.

Si chiama anche *microtremore* in quanto riguarda oscillazioni molto piccole (10–15 [m/s²]2 in termini di accelerazione), molto più piccole di quelle indotte dai terremoti nel campo vicino.

I metodi che si basano sulla sua acquisizione si dicono passivi in quanto il rumore non è generato *ad hoc,* come ad esempio le esplosioni della sismica attiva.

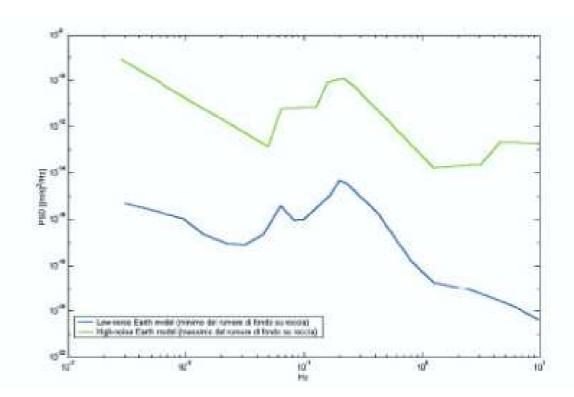
Lo spettro in frequenza del rumore di fondo in un terreno roccioso e pianeggiante presenta l'andamento illustrato in fig. 2, dove i picchi a 0.14 e 0.07 Hz sono comunemente interpretati come originati dalle onde oceaniche. Tali componenti spettrali vengono attenuate molto poco anche dopo tragitti di migliaia di chilometri per effetto di guida d'onda.

A tale andamento generale, che è sempre presente, si sovrappongono le sorgenti locali, antropiche (traffico, industrie ma anche il semplice passeggiare di una persona) e naturali che però si attenuano fortemente a frequenze superiori a 20 Hz, a causa dell'assorbimento anelastico originato dall'attrito interno delle rocce.

Il metodo in questione fu reso popolare principalmente da NAKAMURA (1989) come strumento per la determinazione dell'amplificazione sismica locale ed è ampiamente riconosciuto che l'HVSR è in grado di fornire stime affidabili delle frequenze principali di risonanza dei sottosuoli, informazione che è comunque di notevole importanza nell'ingegneria sismica.

Riconosciuta questa capacità e dato che, se è disponibile una stima delle velocità delle onde elastiche, le frequenze di risonanza possono essere convertite in stratigrafia, ne risulta che il metodo HVSR può essere in linea di principio usato come strumento stratigrafico.

In altre parole la frequenza fondamentale di risonanza (*fr*) dello strato di terreno *N* relativa alle relativa alle onde S è:


$$fr = Vs/4 h$$
 (1)

in cui **Vs** è la velocità media delle onde S nello strato *N* ed **h** è lo spessore.

Teoricamente questo effetto è sommabile cosicché la curva HVSR mostra come massimi relativi le frequenze di risonanza dei vari strati. Questo, insieme ad una stima delle velocità che è solitamente disponibile almeno a livello di massima, è in grado di fornire previsioni sullo spessore h degli strati. Questa informazione è per lo più contenuta nella componente verticale del moto, ma la prassi di usare il rapporto tra gli spettri orizzontali e quello verticale, piuttosto che il solo spettro verticale, deriva dal fatto che il rapporto fornisce un'importante normalizzazione del segnale per

- a) il contenuto in frequenza,
- b) la risposta strumentale
- c) l'ampiezza del segnale

quando le registrazioni vengono effettuate in momenti con rumore di fondo più o meno alto (MULARGIA *et alii*, 2007).

Fig. 2 - Spettro del rumore sismico (in termini di velocità, componente verticale del moto) minimo e massimo secondo i modelli standard del servizio geologico USA (USGS) (J. Peterson, Observations and modelling of background seismic noise, Open-file report 93-322, USGS, 1993).

La situazione, nel caso di un suolo reale, è spesso più complessa. Innanzitutto il modello di strato piano al di sopra del bedrock si applica molto raramente. Poi, la velocità aumenta con la profondità, possono esserci eterogeneità laterali importanti ed infine la topografia può non essere piana. L'inversione delle misure di tremore a fini stratigrafici, nei casi reali, sfrutta quindi la tecnica del confronto degli spettri singoli e dei rapporti H/V misurati con quelli 'sintetici', cioè con quelli calcolati relativamente al campo d'onde completo di un modello 3D. L'interpretazione è tanto più soddisfacente, e il modello tanto più vicino alla realtà, quanto più i dati misurati e quelli sintetici sono vicini.

Quindi, l'equazione [1] permette di calcolare le Vs_{30} conoscendo la frequenza fondamentale di risonanza dei deposti (misurata dal tromino) e la profondità dei depositi stessi.

Questa tecnica è basata sulla inversione dei rapporti spettrali del tremore sismico (Horizontal to Vertical Spectral Ratio, HVSR) registrato in una stazione singola. La curva sperimentale HVSR viene fittata con una curva teorica usando come vincolo lo spessore dello strato più superficiale (o altro orizzonte) di sottosuolo oppure i risultati della prova Masw (come in questo lavoro), generando in tal modo un *fit congiunto* sia sul *Phase velocity spectra* delle Masw che sulla curva H/V sperimentale.

La procedura di inversione consiste di 3 passi:

- 1. Nel caso in cui non si abbia un *Phase velocity spectra* (derivante da una misura Masw, Remi, ecc..) si procede all'identificazione di un orizzonte stratigrafico superficiale (di solito ad alcuni metri di profondità)
- 2. identificazione del marker HVSR corrispondente,
- 3. fit della curva HVSR teorica utilizzando 1) e 2) come vincoli.

In questo lavoro, avendo effettuato delle Masw, si è proceduto ad un *fit congiunto* sia sul *Phase velocity spectra* di una delle Masw che sulla curva H/V sperimentale (CASTELLARO & MULARGIA, 2007).

La curva HVSR teorica è calcolata assumendo un campo di tremore con sorgenti puntuali distanti posizionate casualmente sulla superficie, ed un campo d'onde che si propagano in un mezzo stratificato 1-D, con i coefficienti di accoppiamento di Ben-Menahem e Singh (1981), correzione di stabilità di Dunkin per i propagatori e con valori di Q=10 indipendente dalla frequenza.

CARATTERISTICHE TECNICHE DELL'INDAGINE MASW E DELLA MISURA HVSR (RUMORE SISMICO AMBIENTALE)

Come sopramenzionato, per la determinazione delle Vs_{eq} , nell'ambito di questo lavoro sono state effettuate due tipologie di indagine: Masw, misura HVSR (Horizontal to Vertical Spectral Ratio, HVSR). Di seguito vengono riportate le caratteristiche tecniche delle indagini Masw e della misura HVSR.

CARATTERISTICHE TECNICHE DELL'INDAGINE MASW

L'analisi delle onde superficiali è stata effettuata utilizzando un sistema sismico digitale multicanale (**SoilSpy Rosina**) di concezione totalmente nuova progettato e realizzato appositamente per eseguire indagini di prospezione sismica convenzionali (rifrazione, riflessione) e non convenzionali (Re.Mi. - M.A.S.W. - S.A.S.W. – SPAC - ESAC).

Il **SoilSpy Rosina** (fig. 3) è composto da un cavo di trasmissione digitale dati lungo il quale sono disposti i moduli di amplificazione/digitalizzazione collegati ai sensori (comunemente geofoni). Il sistema si connette ad un PC portatile per l'impostazione dei parametri di acquisizione, per il salvataggio dei dati e la loro preanalisi (fig. 4).

Fig. 3 - Sistema sismico digitale multicanale SoilSpy Rosina

Per ottenere una buona risoluzione in termini di frequenza sono stati utilizzati geofoni da 4.5 Hz (tipo Geospace),

Nell'esecuzione delle prove MASW attive è stato utilizzato come sistema di energizzazione una mazza di 8 Kg battente su piattello metallico (fig. 7); quando la battuta sulla superficie della piastra non risultava netta o veniva colpita due volte erroneamente, la prova veniva ripetuta.

Per aumentare il rapporto segnale/rumore si è proceduto alla somma di più energizzazioni (processo di *stacking*).

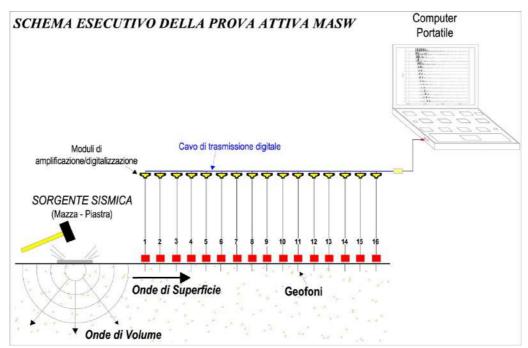
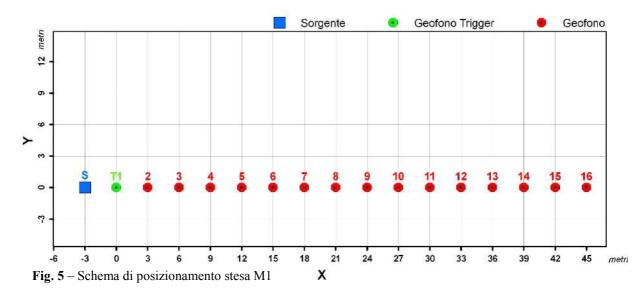



Fig. 4 – Schema esecutivo delle prove attive Masw eseguite

SCHEMA ARRAY SISMICO

Le prospezioni sismiche masw sono state eseguite con due stendimenti geofonici di geometria seguente: Masw M – Lunghezza 45m, 16 geofoni con interasse pari a 3m

CARATTERISTICHE TECNICHE DELLA MISURA HVSR

La misura del rumore sismico ambientale è stata effettuata mediante il tromografo digitale Tromino (fig. 6), mediante due acquisizioni di 16 minuti ad una frequenza di 256 Hz.

Si tratta di un apparecchio portatile compatto di circa 10 x 7 x 14 cm e 1 kg di peso dotato di tre sensori elettrodinamici (velocimetri) orientati N-S, E-W e verticalmente, alimentato da 2 batterie AA da 1.5 V, fornito di GPS interno e senza alcun cavo esterno.

Fig. 6 - Sistema per l'Acquisizione del Rumore Sismico Tromino

ACQUISIZIONE, ELABORAZIONE DATI E RISULTATI

L'utilizzo di entrambe le indagini permette una stima delle Vs_{eq} nettamente più precisa poichè permette un elaborazione o *fit congiunto* creando una taratura contemporanea tra i risultati delle due misurazioni, ossia della *curva H/V* e *dello spettro di velocità di fase delle onde di superficie* (*curve di dispersione*) proveniente dall'indagine in array attiva (Masw).

Inoltre, questa metodologia permette una buona ricostruzione della sismostratigrafia dell'area; ossia dà la possibilità di ricostruire, dal p.c. in profondità, le variazioni di densità ossia le variazioni litologiche principali.

ACQUISIZIONE DEI DATI MASW

<u>L'acquisizione dei dati Masw</u> è stata effettuata mediante il software SoilSpy 3.16 della Micromed S.p.A. che è lo strumento che permette di impostare i parametri di acquisizione, di visualizzare i tracciati e di effettuarne una prima analisi

Le impostazioni dei parametri di acquisizione delle stese in oggetto sono:

Settaggio *Trigger:*

Trigger = Geofono 1

Durata del Pre-trigger = 1/16 sec

Durata totale di acquisizione del segnale = 3 sec

Settaggio Gain = $1\mu V/digit$ (corrisponde a un input massimo di segnale ± 32.7 mV) per tutti i moduli di digitalizzazione

Frequenza di campionamento = 1024 Hz

Successivamente è stato creato un'Average di tutte le energizzazioni effettuate scegliendo le migliori.

I dati sperimentali, acquisiti e pre-elaborati sono stati importati nel programma Grilla (Micromed S.p.A), il quale permette l'archiviazione dei tracciati acquisiti con SoilSpy Rosina e contiene un modulo per il calcolo degli spettri di velocità di fase delle onde di superficie e la modellazione di curve di dispersione teoriche nel modo fondamentale e superiori.

L'analisi consiste nella trasformazione dei segnali registrati in uno spettro bidimensionale "phase velocity-frequency" che analizza l'energia di propagazione delle onde superficiali lungo la linea sismica.

In questo grafico è possibile distinguere il "modo fondamentale" delle onde di superficie, in quanto le onde di Rayleigh presentano un carattere marcatamente dispersivo che le differenzia da altri tipi di onde (onde riflesse, onde rifratte, onde multiple).

Il calcolo dei **phase velocity spectra** è stato svolto con i seguenti parametri:

- Min. Freq. [Hz] = 1 Hz
- Max. Freq. [Hz] = 70 Hz
- Step V [m/s] = 1 m/s
- Win. Length [s]= 3 sec

ELABORAZIONE DELLA CURVA H/V

<u>L'elaborazione della curva H/V</u> è stata effettuata mediante il software Grilla in dotazione a Tromino.

In sintesi, il segnale dei velocimetri è stato acquisito per un tempo t (16 min), e digitalizzato a 24 bit.

Il software Grilla, per ciascuna delle 3 componenti del moto:

- 1. divide il tracciato acquisito in finestre di lunghezza L (in questo lavoro generalmente 30 s),
- 2. elimina il trend da ciascuna finestra,
- 3. ne fa il "taper" con una finestra Bartlett,
- 4. fa il "pad" di ciascuna finestra con degli zero,
- 5. calcola la trasformata di Fourier (FFT) per ciascuna finestra,
- 6. calcola lo spettro di ampiezza per ciascuna finestra,
- 7. liscia lo spettro di ogni finestra secondo la funzione di lisciamento f,

e calcola il rapporto spettrale HVSR ad ogni frequenza, per ciascuna finestra.

La funzione HVSR finale è data dalle media degli HVSR di ciascuna finestra. Per produrre l'HVSR finale le componenti orizzontali sono mediate tra loro con la media quadratica e vengono poi divise per la componente verticale.

Le curve H/V presenti in questo lavoro sono state ottenute secondo i seguenti parametri e processi:

Lunghezza Traccia: 0h16'00". Analizzato 83% della traccia

Frequenza di campionamento: 256 Hz

Window size: 20 s

Lisciamento finestra: Triangular window

Lisciamento: 10%

RISULTATI DELLE PROSPEZIONI SISMICHE MASW E MISURE HVSR

STAZIONE SOTTOCAMPI 1 e 2 - FTV APRILIA 3

MASW -MISURA HVSR --ELABORAZIONE CONGIUNTA

Fig. 7 - Preparazione Masw

Fig. 8 - Misura HVSR

 $\label{eq:Fig.9-Ubicazione} \textbf{Fig. 9} - \textbf{Ubicazione delle indagini geofisiche su ortofoto} \\ \textbf{Masw in rosso} - \textbf{HVSR in verde}$

THEORETICAL RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

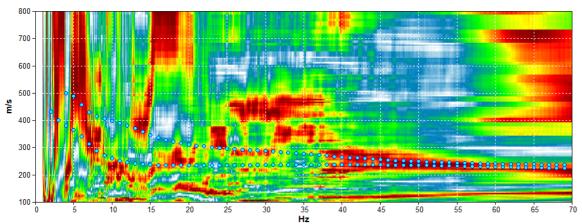


Fig. 10 - Phase velocity spectra con picking ottenuto dalla prospezione masw M1

THEORETICAL RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

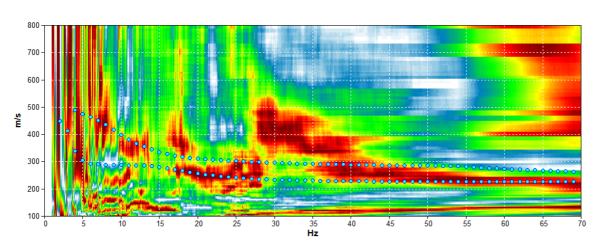


Fig. 11 - Phase velocity spectra con picking ottenuto dalla prospezione masw M2

H/V SPERIMENTALE vs. H/V SINTETICO

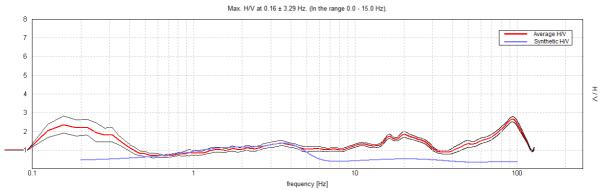
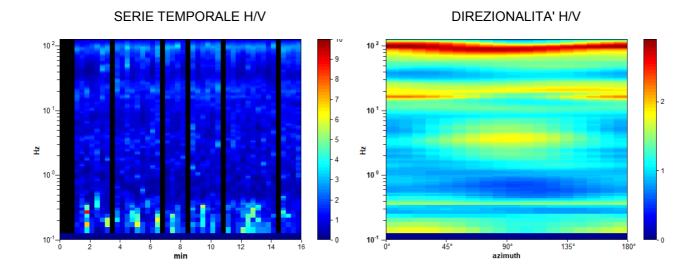



Fig. 12 - Fit della curva HVSR sintetica (linea rossa) e sperimentale (linea blu)

SPETTRI DELLE SINGOLE COMPONENTI

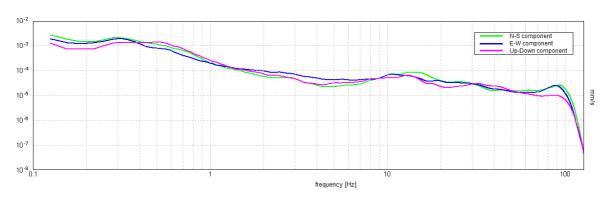


Fig. 13 - SERIE TEMPORALE H/V - SPETTRI DELLE SINGOLE COMPONENTI- HVSR

Tab.1 -	Tab.1 - MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO (Masw M1 – Misura HVSR)			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	1.9	1.9	225	
2	4.2	2.3	279	
3	9.3	5.1	225	
4	20.1	10.8	303	
5	76	55.9	420	
6	inf.	inf.	500	

Tab.2 - M	Tab.2 - MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO (Masw M2)			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	4.7	4.7	237	
2	6.3	1.6	259	
3	15.8	9.5	335	
4	28.9	13.1	279	
5	43.6	14.7	366	
6	inf.	inf.	500	

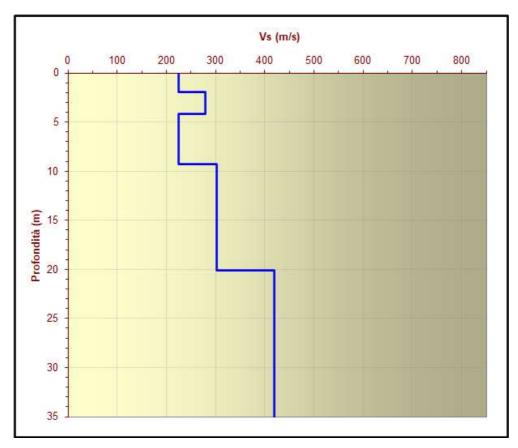


Fig. 14 Andamento delle Vs con la profondità fino a 35 m dal p.c. (Misura HVSR -Masw M1)

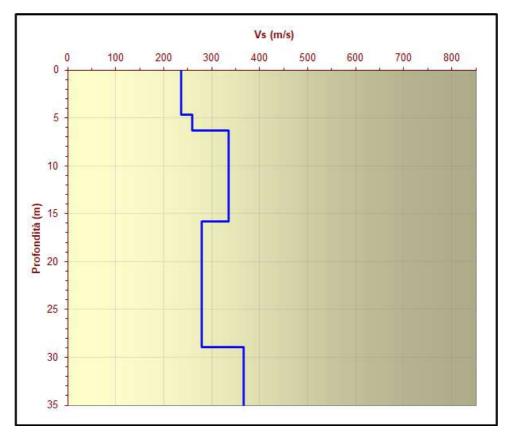


Fig. 15- Andamento delle Vs con la profondità fino a 35 m dal p.c. (Masw M2)

Media Vs_{eq} - Vs(1.0-31.0)=299m/s

A cui corrisponde la categoria sismica di sottosuolo di tipo "C".

CATEGORIE DI SOTTOSUOLO			
Categoria Descrizione			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.		

STAZIONE SOTTOCAMPO 3 - FTV APRILIA 3

Fig. 16 - Foto della preparazione prospezione sismica Masw

Fig. 17 - Foto della misura HVSR

 $\label{eq:Fig. 18} \textbf{Fig. 18} - \textbf{Ubicazione delle indagini geofisiche su ortofoto} \\ \textbf{Masw in rosso} - \textbf{HVSR in verde}$

Scala 1:1.000

MASW *M1* - MISURA *HVSR* ELABORAZIONE CONGIUNTA

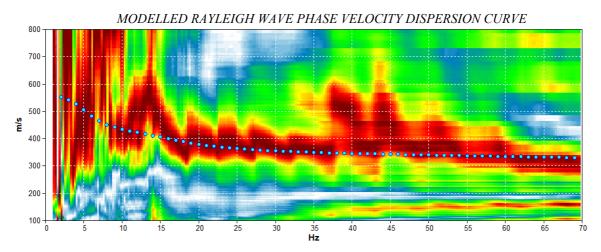
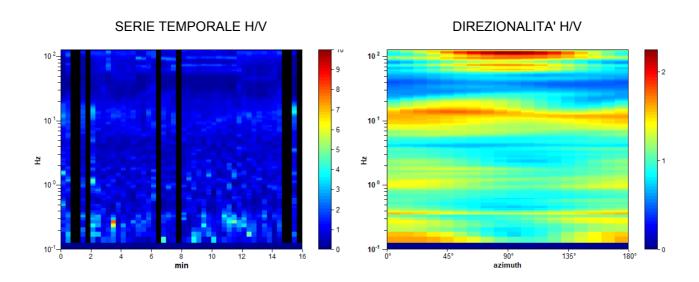



Fig. 19 - Phase velocity spectra con picking ottenuto dalla prospezione masw

H/V SPERIMENTALE vs. H/V SINTETICO Picco H/V a 0.25 ± 0.32 Hz (nell'intervallo 0.0 - 15.0 Hz). Average H/V Synthetic H/V

Fig. 20 - Fit della curva HVSR sintetica (linea rossa) e sperimentale (linea blu)

SINGLE COMPONENT SPECTRA

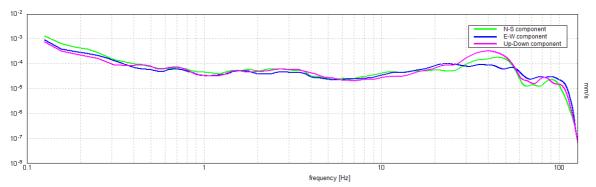


Fig. 21 - SERIE TEMPORALE H/V - SPETTRI DELLE SINGOLE COMPONENTI- HVSR

M	MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	2.5	2.5	335	
2	7.3	4.8	377	
3	9.3	2	350	
4	14	4.7	495	
5	17.4	3.4	413	
6	23.4	6	540	
7	28.8	5.4	420	
8	38.8	10	500	
9	inf.	inf.	600	

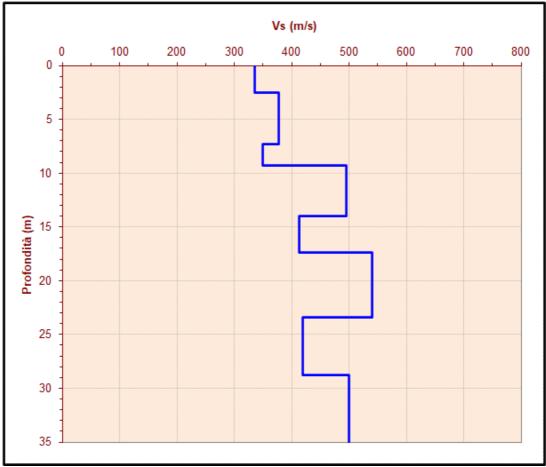


Fig. 22- Andamento delle Vs con la profondità fino a 35 m dal p.c.

	CATEGORIE DI SOTTOSUOLO		
Categoria Descrizione			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.		

Elaborazione ReMi R1

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

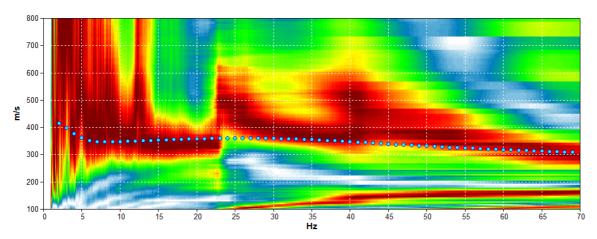


Fig. 23 - Phase velocity spectra con picking ottenuto dalla prospezione ReMi

M	MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO		
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]
1	1.5	1.5	115
2	4	2.5	197
3	9.2	5.2	261
4	20.8	11.6	343
5	30.5	9.7	383
6	36.2	5.7	312
7	inf.	inf.	350

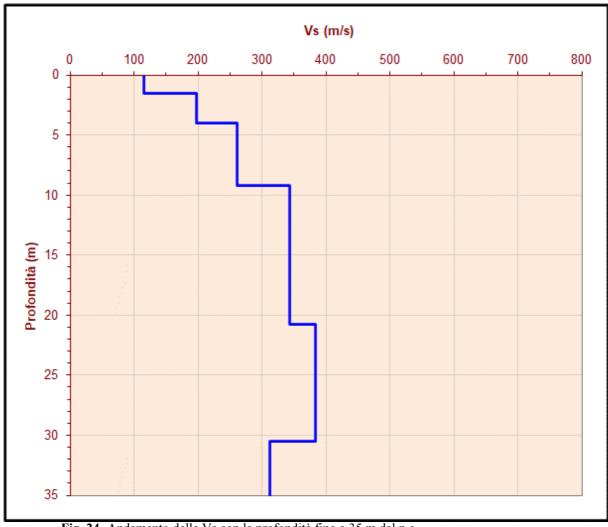


Fig. 24- Andamento delle Vs con la profondità fino a 35 m dal p.c.

$$Vs_eq (0.5-30.5) = 363 \text{ m/s}$$

CATEGORIE DI SOTTOSUOLO		
Categoria Descrizione		
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.	

STAZIONE SOTTOCAMPO 4 - FTV APRILIA 3

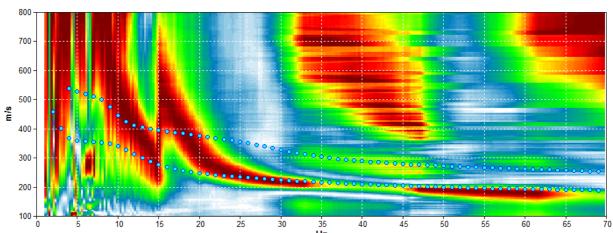
Fig. 25 - Foto della misura HVSR

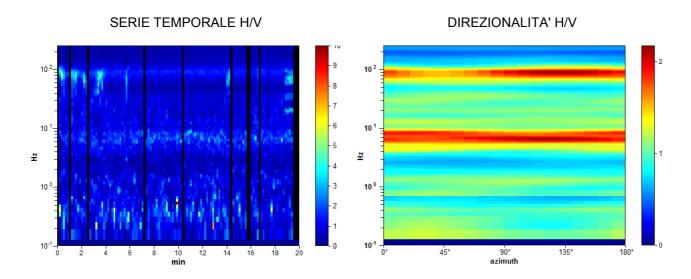
Fig. 26 - Foto della preparazione della prospezione sismica Masw

Fig. 27 – Ubicazione delle indagini geofisiche su ortofoto SOTTOCAMPO 4 *Scala 1:1.000* Masw in rosso – HVSR in verde

MASW - MISURA HVSR ELABORAZIONE CONGIUNTA

THEORETICAL RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE




Fig. 28 - Phase velocity spectra con picking ottenuto dalla prospezione masw effettuata

H/V SPERIMENTALE vs. H/V SINTETICO

Picco H/V a 6.5 ± 4.89 Hz (nell'intervallo 0.0 - 15.0 Hz).

Average H/V Synthetic H/V

Fig. 29 - Fit della curva HVSR sintetica (linea rossa) e sperimentale (linea blu)

SPETTRI DELLE SINGOLE COMPONENTI

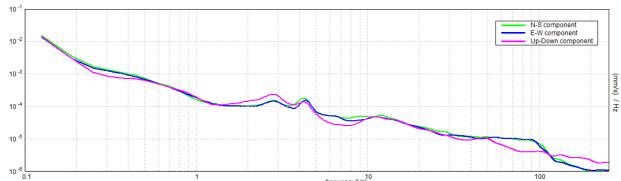


Fig. 30 - SERIE TEMPORALE H/V - DIREZIONALITA' H/V - SPETTRI DELLE SINGOLE COMPONENTI

Tab.1 - M	Tab.1 - MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	1.6	1.6	191	
2	3.7	2.1	233	
3	9.3	5.6	273	
4	21	11.7	393	
5	33	12	455	
6	51	18	330	
7	inf.	inf.	540	

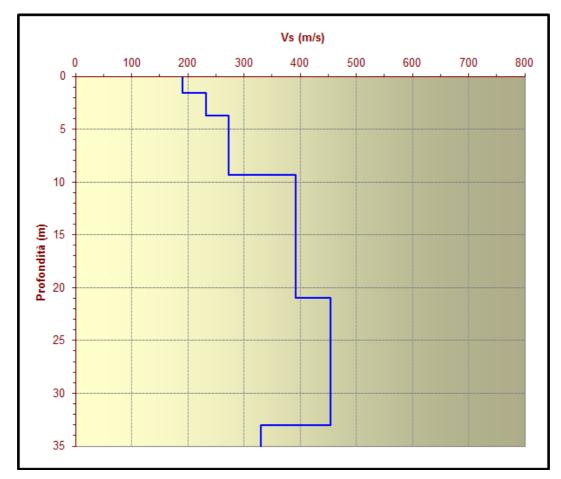


Fig. 31- Andamento delle Vs con la profondità fino a 35 m dal p.c.

Vs(0.5-30.5)=349m/s

a cui corrisponde la categoria sismica di sottosuolo di tipo "C"

C

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

STAZIONE SOTTOCAMPO 5 - FTV APRILIA 3

Fig. 32 - Foto della preparazione della prospezione sismica Masw

Fig.33 - Foto della misura HVSR

Fig. 34 – Ubicazione delle indagini geofisiche su ortofoto *Scala 1:1.000* Masw in rosso – HVSR in verde

MASW - MISURA *HVSR* ELABORAZIONE CONGIUNTA

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

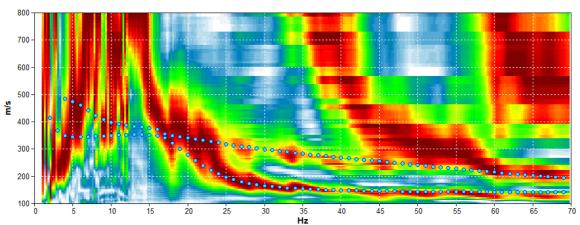


Fig. 35 - Phase velocity spectra con picking ottenuto dalla prospezione masw effettuata

H/V SPERIMENTALE vs. H/V SINTETICO

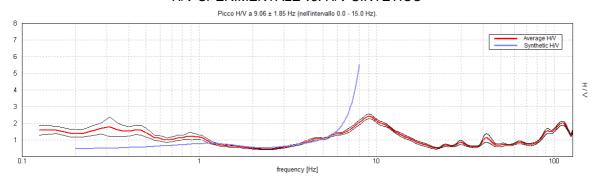
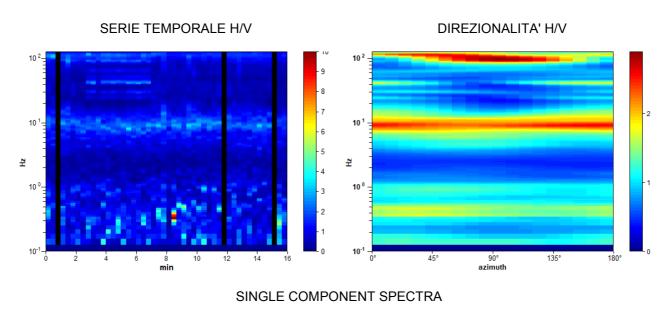



Fig. 36 - Fit della curva HVSR sintetica (linea rossa) e sperimentale (linea blu)

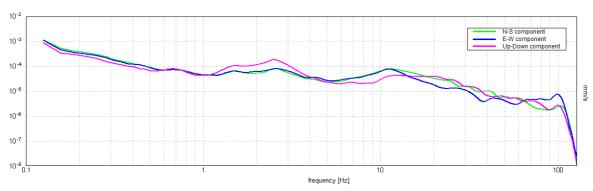


Fig. 37 - SERIE TEMPORALE H/V - DIREZIONALITA' H/V - SPETTRI DELLE SINGOLE COMPONENTI

MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]
1	2.6	2.6	149
2	4.2	1.6	239
3	7.8	3.6	331
4	15.6	7.8	441
5	66.8	51.2	366
6	inf.	inf.	490

Profilo verticale 1D delle Vs ottenuto dall'elaborazione congiunta Masw - HVSR

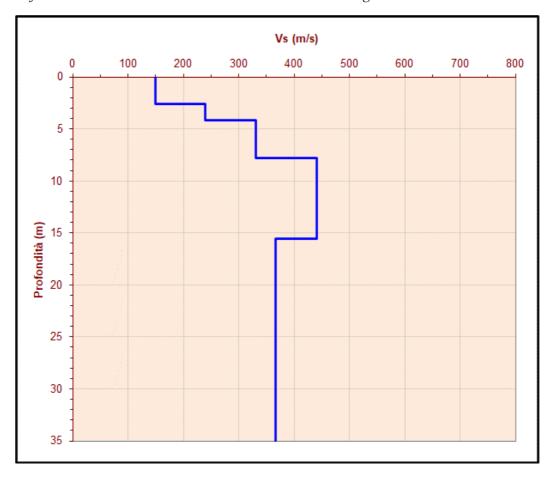


Fig. 38- Andamento delle Vs con la profondità fino a 35 m dal p.c.

$$Vs_eq(1.0-31.0) = 341 \text{ m/s}$$

CATEGORIE DI SOTTOSUOLO		
Categoria	Descrizione	
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	

Elaborazione ReMi

MODELLED RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

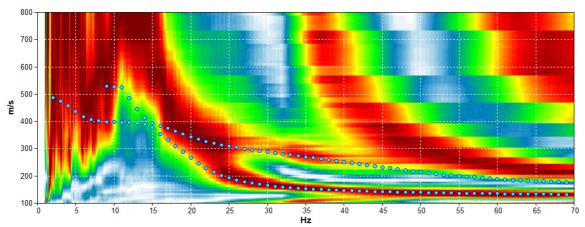


Fig. 39 - Phase velocity spectra con picking ottenuto dalla prospezione ReMi

МО	MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO			
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	1.2	1.2	134	
2	2.7	1.5	159	
3	3.8	1.1	199	
4	7	3.2	322	
5	9.4	2.4	373	
6	22	12.6	495	
7	30.5	8.5	350	
8	inf.	inf.	530	

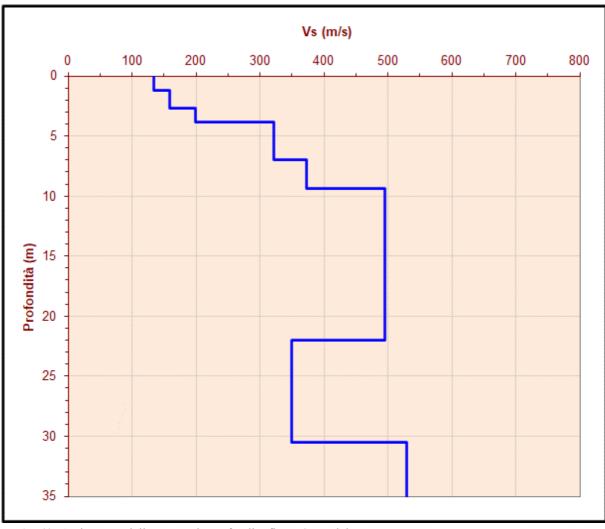


Fig. 40- Andamento delle Vs con la profondità fino a 35 m dal p.c.

$$Vs_eq(0.5 - 30.5) = 359 \text{ m/s}$$

CATEGORIE DI SOTTOSUOLO		
Categoria Descrizione		
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.	

STAZIONE SOTTOCAMPO 6 - FTV APRILIA 3

Fig. 41 - Foto della misura HVSR

Fig. 42 - Foto della preparazione della prospezioni sismiche Masw

Fig. 43 – Ubicazione delle indagini geofisiche su ortofoto Masw in rosso – HVSR in verde

Scala 1:1.000

MASW - MISURA *HVSR* ELABORAZIONE CONGIUNTA

THEORETICAL RAYLEIGH WAVE PHASE VELOCITY DISPERSION CURVE

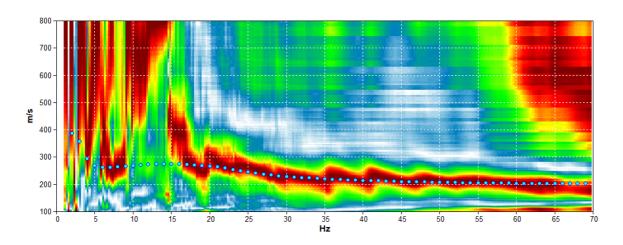


Fig. 44 - Phase velocity spectra con picking ottenuto dalla prospezione masw M1

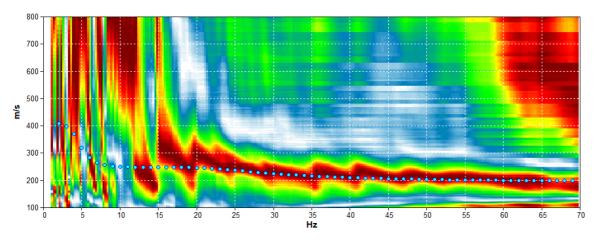


Fig. 45 - Phase velocity spectra con picking ottenuto dalla prospezione masw M2

H/V SPERIMENTALE vs. H/V SINTETICO Picco H/V a 0.16 ± 0.03 Hz (nell'intervallo 0.0 - 64.0 Hz).

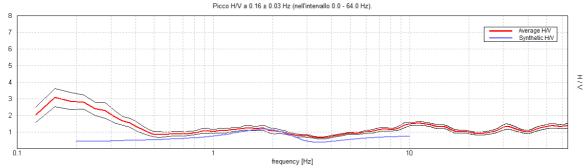
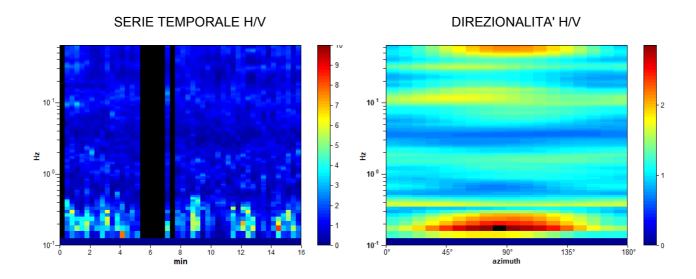



Fig. 46 - Fit della curva HVSR sintetica (linea rossa) e sperimentale (linea blu)

SPETTRI DELLE SINGOLE COMPONENTI

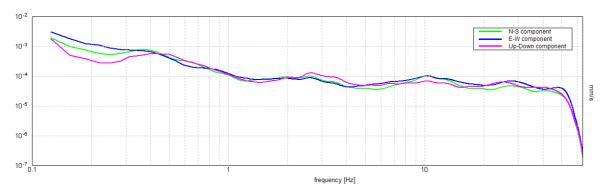


Fig. 47 - SERIE TEMPORALE H/V - SPETTRI DELLE SINGOLE COMPONENTI- HVSR

L'analisi dei **phase velocity spectra** e della **curva HVSR** consente in questo modo di ricostruire n.2 modelli sismici monodimensionali del sottosuolo, i quali risultano costituiti dall'andamento della velocità delle onde di taglio Vs in funzione della profondità. Dall'inversione delle curve di dispersione e della curva HVSR si ottengono i seguenti modelli medi di velocità delle onde sismiche di taglio con la profondità (tab. 1-2; figg.15-16), rappresentativi dell'area investigata (stendimenti complessivi di 30m cad.):

Tab.1 - MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO (Masw M1 – Misura HVSR)				
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	2.5	2.5	210	
2	6	3.5	252	
3	10.9	4.9	390	
4	31.5	20.6	252	
5	inf.	inf.	430	

Tab.2 - MODELLO MEDIO DI VELOCITA' DELLE ONDE SISMICHE DI TAGLIO (Masw M2)				
Strato	Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	
1	2.5	2.5	206	
2	5.2	2.7	248	
3	8.7	3.5	314	
4	17.1	8.4	237	
5	30.2	13.1	331	
6	inf.	inf.	450	

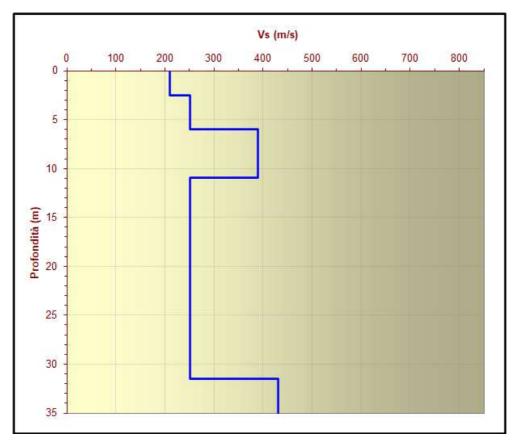


Fig. 48 Andamento delle Vs con la profondità fino a 35 m dal p.c. (Misura HVSR -Masw M1)

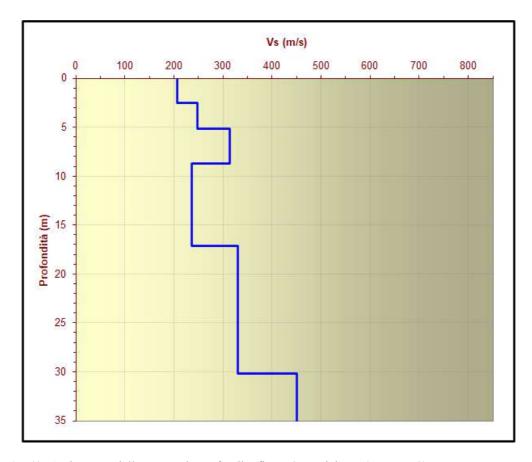


Fig. 49- Andamento delle Vs con la profondità fino a 35 m dal p.c. (Masw M2)

A partire dai modelli sismici monodimensionali, è possibile calcolare il valore delle Vs,eq, che rappresenta la "velocità equivalente" di propagazione delle onde di taglio entro 30 m di profondità dal piano di posa della fondazione. Per il calcolo delle Vs,eq si fa riferimento alla seguente espressione, riportata nel D.M. 17.01.2018 ("Aggiornamento Norme tecniche per le costruzioni"):

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

con:

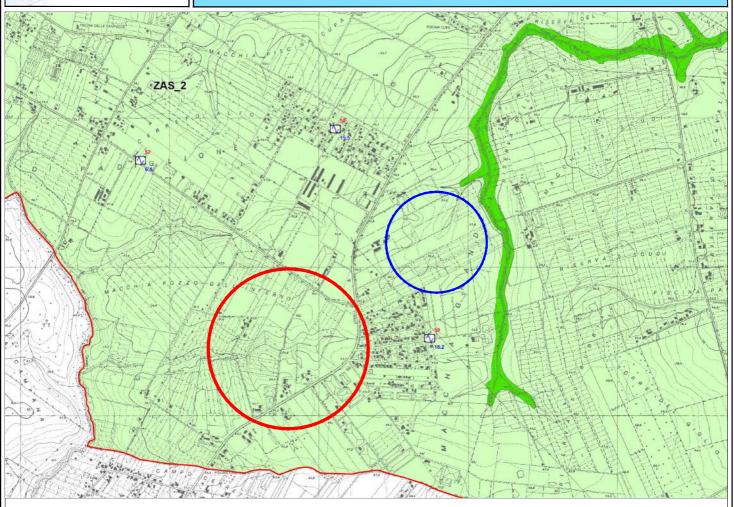
h_i spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da VS non inferiore a 800 m/s.

Non essendo stato intercettato il bedrock sismico (Vs>800m/s) nei primi 30m al di sotto del piano fondazione, ipotizzato a 1m dal piano di misura, la Vs,eq = Vs30


Utilizzando la formula sopra riportata si ottiene il seguente valore dalla base piano fondazione ipotizzato a 1m dal p.c.:

cui corrisponde la categoria di sottosuolo di tipo C.

CATEGORIE DI SOTTOSUOLO				
Categoria	Descrizione			
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.			

STUDIO GEOLOGICO Dr. Davide Marchese

STRALCIO DELLA CARTA DELLE M.O.P.S. DEL LIVELLO 1

Legenda Microzone Omogenee in Prospettiva Sismica

ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI I OCALI

ZAS 1 Comprende le valli dei principali fossi caratterizzate da una copertura di terreno alluvionale recente, di spessore fino a 20 m, in sovrapposizione ad atternanze di princiastiti da incoerenti fino a litoldi dell'apparato vulcanico Albano (Pleistocene medio).

ZAS 2
Comprende la Issoia meridionale caralterizzala dalla presenza uniforme di una colte di tereni prevalentemente sabbiosi del Piestocene medio-superiore, con spessori fino a 15 m, poggianti diretamento, o con l'interposizione di depositi piroclastici di spessore fino a 15 metir, sul sub-strato sabbioso-argilitoso-mamoso del Pilo-Piestocene.

ZNS 3

Zona collinare formata depositi sabbiosi dunari e di terrazzamento marino, con spessori fino a 10 m, sovrapposti ad alternanzo di piroclastiti da incoerenti (unità delle pozzolane nere) a liboli (unità del luto fionato) con spessori fino a 40 m dell'apparatio vocazino Albano (Pelestocene medio). La serie staligifatica continua con i depositi marini dei intratificati, del Pilicoene-Piestiscone inferiore, che da prevalentemente sabbiosi, con spessori fina a 20 m, passonal diangi le avgilie limose grigio-azzurre da mollo consistenti fino a marmose, con spessori di certinia di metri.

ZAS 4

Zona collinare formata da depositi vulcanici riferibili all'apparato Albano, con spessori fino a

80 m, formati da alternanze di pinoclastifi da inconsenti (unità delle pozzolane) le e delle
pozzolane nene e rosse) a litoli (unità del tub lionado e tufi antichi) con intercatado un Neroli
n oncia lavica di spessore lino a 15 m. (Pelisocone mello). La serie statiguita continua

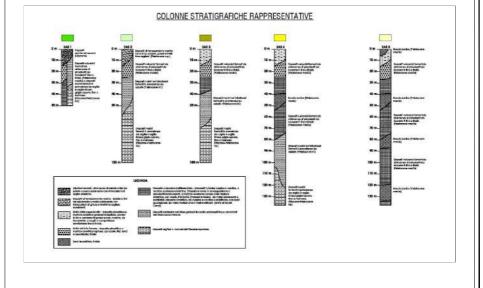
con i depositi marini et intrafficiati, del Pinocen-Piestocone inferiore, che de

prevenimemente subbioti e ophisico; con ospessori fino a 50 m, passano al ragille e argille

limose grigio-azzure da molto consistenti fino a marnose, con spessori di continaia di metri.

ZAS 5
Zora collinare formata da depositi piroclastici dell'apparato vulcanico Albano, (Pielstocene medio) formati da alternance di piroclastiti da incoerenti (unità delle pozzolanelle e delle pozzolane nere e nosse) a ilibidi (unità del tuto lionato e tuti artichi) con spessori superiori ai 100 m, in cui sono intercalati a varie altezze strafignaliche livelti di roccia tavica con spessori fino a 20 m.

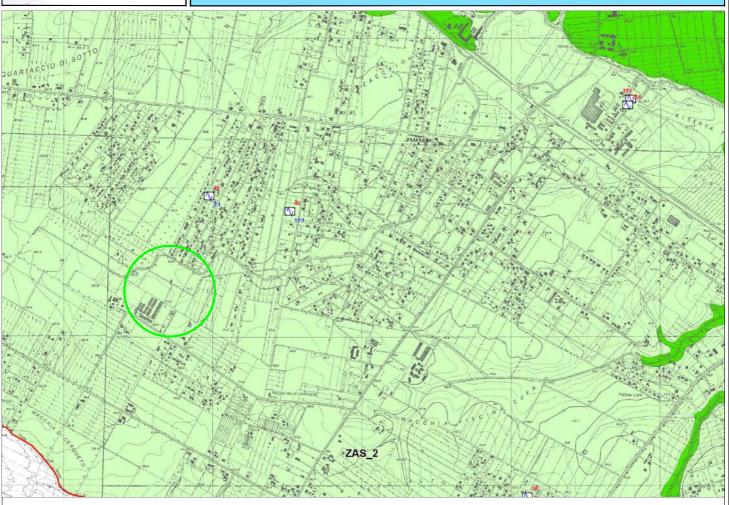
ZONE SUSCETTIBILI DI INSTABILITA


Zl 1 Zona con evidenze potenziali di instabilità di versante

PUNTI DI MISURA DI RUMORE AMBIENTALE

11 num

Punto di misura di rumore ambientale con indicazioni del valore di f0


4.5 valore f0

AREA DI PROGETTO SOTTOCAMPO n.1 e 2 AREA DI PROGETTO SOTTOCAMPO n.3

STUDIO GEOLOGICO Dr. Davide Marchese

STRALCIO DELLA CARTA DELLE M.O.P.S. DEL LIVELLO 1

Legenda

Microzone Omogenee in Prospettiva Sismica

ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI LOCALI

ZAS 1 Comprende le valli dei principali fossi caratterizzate da una copertura di terreno altuvionale recente, di spessore lino a 20 m, in sovrapposizione ad alternarce di piroclastiti da incoerenti fino a litoidi dell'apparato vulcanico Albano (Pleistocene medio).

ZAS 2
Comprende la Issoia meridionale caralterizzala dalla presenza uniforme di una colte di tereni prevalentemente sabbiosi del Piestocene medio-superiore, con spessori fino a 15 m, poggianti diretamento, o con l'interposizione di depositi piroclastici di spessore fino a 15 metir, sul sub-strato sabbioso-argilitoso-mamoso del Pilo-Piestocene.

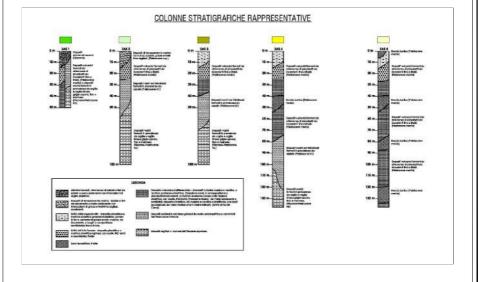
ZNS 3

Zona collinare formata depositi sabbiosi dunari e di terrazzamento marino, con spessori fino a 10 m, sovrapposti ad alternanzo di piroclastiti da incoerenti (unità delle pozzolane nere) a liboli (unità del luto fionato) con spessori fino a 40 m dell'apparatio vocazino Albano (Pelestocene medio). La serie staligifatica continua con i depositi marini dei intratificati, del Pilicoene-Piestiscone inferiore, che da prevalentemente sabbiosi, con spessori fina a 20 m, passonal diangi le avgilie limose grigio-azzurre da mollo consistenti fino a marmose, con spessori di certinia di metri.

ZAS 4

Zons collinare formata da depositi vulcanici riferibili all'apparato Albano, con spessori fino a
90 m, formati da alternazve di pinoclastifi da incorenti (unità delle pozzalenelle e delle
pozzalen enere cresso) a litoli (unità del lub lionato e fulfi antichi) con intercatado un fivello
in rocia lavici ad spessore lino a 15 m. (Pelsocone mello). La serie staliquità continua
con i depositi marini et intratitorati, del Pitocone-Piesbocone inferiore, che de
prevalentemente subbolis e ghiánois, con spessori fino a 50 m. passano ad argilite e argille
limose grigio-azzuire da molto consistenti fino a narunose, con spessori di confinisa di metri.

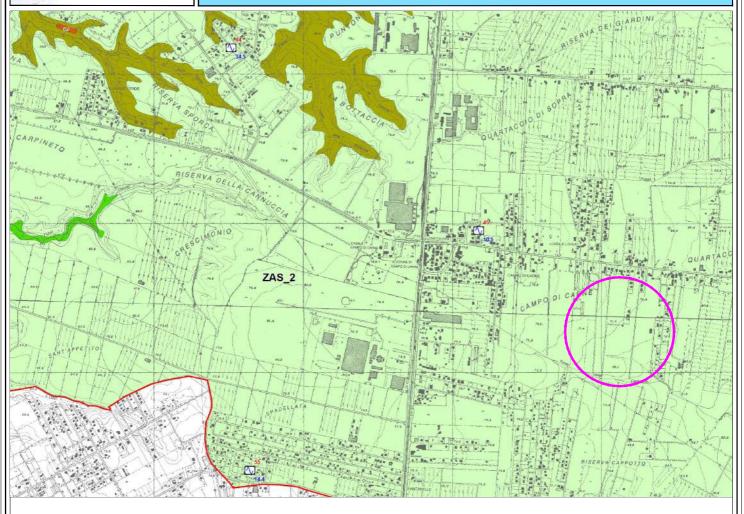
ZAS 5
Zora collinare formata da depositi piroclastici dell'apparato vulcanico Albano, (Pielstocene medio) formati da alternance di piroclastiti da incoerenti (unità delle pozzolanelle e delle pozzolane nere e nosse) a ilibidi (unità del tuto lionato e tuti artichi) con spessori superiori ai 100 m, in cui sono intercalati a varie altezze strafignaliche livelti di roccia tavica con spessori fino a 20 m.


ZONE SUSCETTIBILI DI INSTABILITA

Zl 1 Zona con evidenze potenziali di instabilità di versante

PUNTI DI MISURA DI RUMORE AMBIENTALE

Punto di misura di rumore ambientale con indicazioni del valore di f0


4.5 valore f0

AREA DI PROGETTO SOTTOCAMPO n.4

STUDIO GEOLOGICO Dr. Davide Marchese

STRALCIO DELLA CARTA DELLE M.O.P.S. DEL LIVELLO 1

Legenda

Microzone Omogenee in Prospettiva Sismica

ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI I OCALI

ZAS 1 Comprende le valil dei principali fossi caratterizzate da una copertura di terreno alluvionale recente, di spessore lino a 20 m, in sovrapposizione ad atternanze di piroclastiti da incoerenti fino a litoidi dell'apparato vulcanico Albano (Pleistocene medio).

ZAS 2
Comprende la Issoia meridionale caralterizzala dalla presenza uniforme di una colte di tereni prevalentemente sabbiosi del Piestocene medio-superiore, con spessori fino a 15 m, poggianti diretamento, o con l'interposizione di depositi piroclastici di spessore fino a 15 metir, sul sub-strato sabbioso-argilitoso-mamoso del Pilo-Piestocene.

ZNS 3

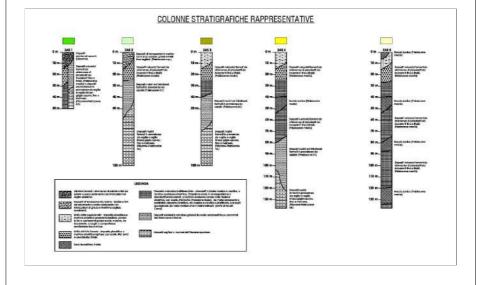
Zona collinare formata depositi sabbiosi dunari e di terrazzamento marino, con spessori fino a 10 m, sovrapposti ad alternanzo di piroclastiti da incoerenti (unità delle pozzolane nere) a liboli (unità del luto fionato) con spessori fino a 40 m dell'apparatio vocazino Albano (Pelestocene medio). La serie staligifatica continua con i depositi marini dei intratificati, del Pilicoene-Piestiscone inferiore, che da prevalentemente sabbiosi, con spessori fina a 20 m, passonal diangi le avgilie limose grigio-azzurre da mollo consistenti fino a marmose, con spessori di certinia di metri.

ZAS 4

Zons collinare formata da depositi vulcanici riferibili all'apparato Albano, con spessori fino a
90 m, formati da alternazve di pinoclastifi da incorenti (unità delle pozzalenelle e delle
pozzalen enere cresso) a litoli (unità del lub lionato e fulfi antichi) con intercatado un fivello
in rocia lavici ad spessore lino a 15 m. (Pelsocone mello). La serie staliquità continua
con i depositi marini et intratitorati, del Pitocone-Piesbocone inferiore, che de
prevalentemente subbolis e ghiánois, con spessori fino a 50 m. passano ad argilite e argille
limose grigio-azzuire da molto consistenti fino a narunose, con spessori di confinisa di metri.

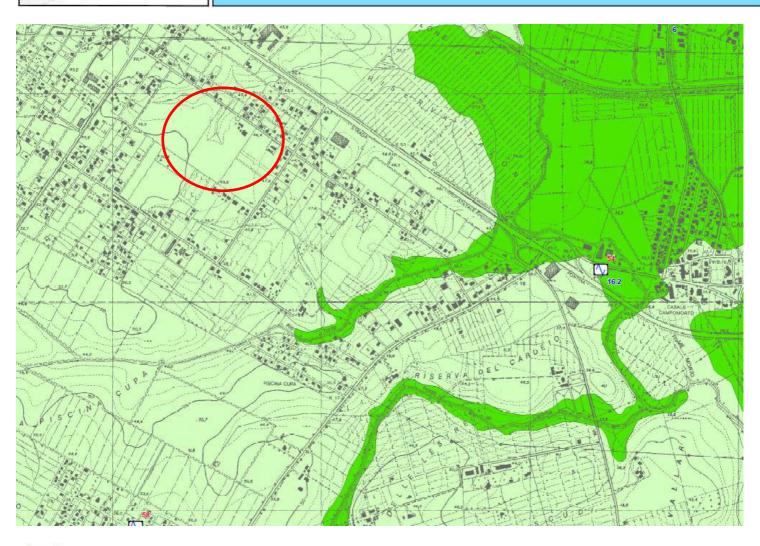
ZAS 5
Zora collinare formata da depositi piroclastici dell'apparato vulcanico Albano, (Pielstocene medio) formati da alternance di piroclastiti da incoerenti (unità delle pozzolanelle e delle pozzolane nere e nosse) a ilibidi (unità del tuto lionato e tuti artichi) con spessori superiori ai 100 m, in cui sono intercalati a varie altezze strafignaliche livelti di roccia tavica con spessori fino a 20 m.

ZONE SUSCETTIBILI DI INSTABILITA


Zl 1 Zona con evidenze potenziali di instabilità di versante

PUNTI DI MISURA DI RUMORE AMBIENTALE

11 num


Punto di misura di rumore ambientale con indicazioni del valore di f0

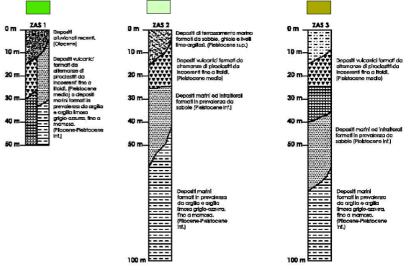
4.5 valore f0

AREA DI PROGETTO SOTTOCAMPO n.5

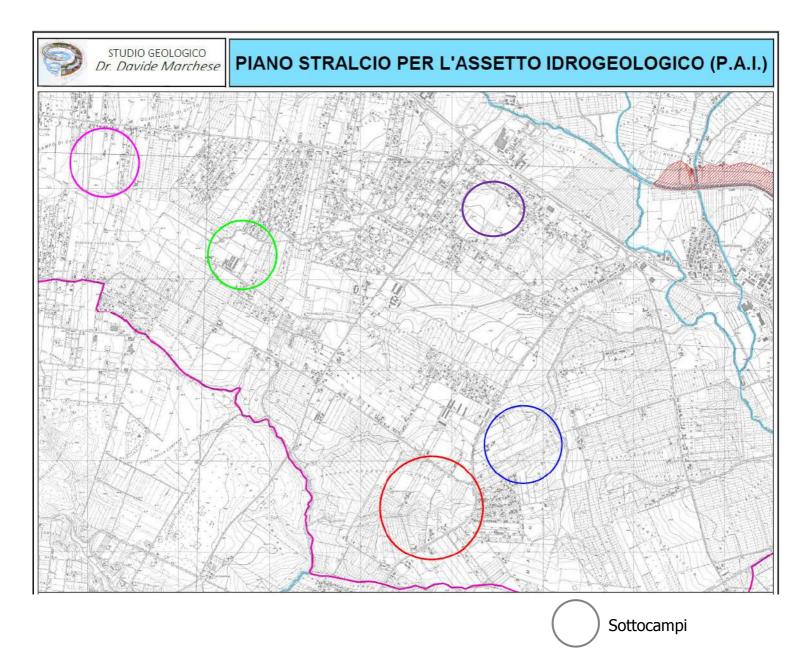
STRALCIO DELLA CARTA DELLE M.O.P.S. DEL LIVELLO 1

Legenda

Microzone Omogenee in Prospettiva Sismica


ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI LOCALI

ZAS 1 Comprende le valli dei principali fossi caratterizzate da una copertura di terreno alluvionale recente, di spessore fino a 20 m, in sovrapposizione ad alternanze di piroclastiti da incoerenti fino a litoici dell'apparato vulcanico Albano (Fleistocene medio).


ZAS 2
Comprende la fascia meridionale caratterizzata dalla presenza uniforme di una coltre di terreri prevalentemente sabbiosi del Pleistocene medio-superiore, con spessori fino a 15 m, poggianti direttamente, o con l'interposizione di deposti pi podastici di spessore fino a 15 metri, sul sub-strato sabbioso-argiiloso-marnoso del Plio-Pleistocene.

Sottocampo n.6

LEGENDA

