

PROGETTO ESECUTIVO

TITOLO ELABORATO

RELAZIONE SULLA GESTIONE DEI SEDIMENTI

CODICE ELABORATO

21 08 PE R004 00

Rev.	Data	Causale
0	05/05/2023	Emissione finale per verificatore

IL COMMITTENTE

LSCT S.p.a. Viale San Bartolomeo, 20 19126 - La Spezia (SP) C.F.00072960115 - P.IVA 00859620114

IL PROGETTISTA

Modimar Project S.r.l.

Modimar Project S.r.l. Via Asmara, 72 - 00199 Roma (RM) P. IVA 16016151009

GES - Geotechnital Engineering Service S.r.l. Via Sandro Totti, 7/A - 60131 Ancona (AN) P. IVA 02528430420

Leoequipe

GeoEquipe - Studio Tecnico Associato Via Sandro Pertini, 55 - 62029 Tolentino (MC) P. IVA 00817500432

Dimensioni foglio:

A4

Redatto:	Controllato:	Approvato:
Scrimieri	Sanzone	Tartaglini

Note:

SOMMARIO

1	PREMESSA	4
2	STATO DI FATTO	8
3	CARATTERIZZAZIONE PROGETTO DI BONIFICA ICRAM 2005	10
4	PIANO DI CARATTERIZZAZIONE AMBIENTALE 2021	17
4.	.1 DESCRIZIONE DELLA CAMPAGNA DI CARATTERIZZAZIONE	17
4.	.2 ESITI DELLA CAMPAGNA DI CARATTERIZZAZIONE	20
	5 ANALISI DELLA CONTAMINAZIONE DELLA COLMATA PER LA	1
VE	ERIFICA DI ASSENZA DI RISCHI PER L'AMBIENTE	24
6	POSSIBILI SCENARI ALTERNATIVI DI INTERVENTO	27
7	CONCLUSIONI	29

Allegati:

- Allegato I Report Campagna di Indagini
- Allegato II Appendice Report Campagna di Indagini
- Allegato III Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente

EXECUTIVE SUMMARY

L'area d'intervento ricade del sito "Pitelli" (La Spezia) dichiarato Sito di Interesse Nazionale dalla L. 426/98 perimetrato con D.M. del 10/01/2000 e successivamente modificato con D.M. del 27/02/2001.

Nel 2005 l'ICRAM ha redatto il Progetto preliminare di bonifica dell'area marina inclusa nella perimetrazione del Sito di Interesse Nazionale di Pitelli approvato nella conferenza dei servizi del 25 luglio 2005.

Il Decreto Legge 22 giugno 2013, che ha rivisto i principi e i criteri per l'individuazione dei siti di interesse nazionale, ha modificato la competenza del sito "Pitelli" trasferita alla Regione Liguria approvato nella conferenza dei servizi del 26 luglio 2013.

Visto il notevole tempo trascorso dalla redazione del progetto preliminare di bonifica la modifica della competenza del sito Pitelli, da interesse nazionale a interesse regionale, si è proceduto ad un approfondimento di indagine sull'area di incertezza della Marina del Canaletto con la nuova caratterizzazione ambientale dei sedimenti della Marina del Canaletto che è stata eseguita sulla base del Piano di Caratterizzazione approvato dalla Regione Liguria con il Decreto 5656/2021 del 22/09/2021 a seguito della conferenza decisoria del 10/08/2021, indetta ai sensi dell'art. 242 bis del titolo V della Parte Quarta del D.Lgs. 152/06 per dell'ampliamento del Terminal Ravano - Marina del Canaletto compreso nelle aree a mare del SIR Pitelli nel Comune della Spezia (SP).

La campagna di caratterizzazione dei sedimenti presenti sul fondale della Marina del Canaletto (v. allegati 1 e 2) ha messo in evidenza uno stato di contaminazione diffuso su tutta l'area.

Per alcune maglie ed alcuni strati per alcuni analiti (IC>12 e PCB) sono state misurate concentrazioni superiori a quelli alla destinazione d'uso industriale.

Lo studio eseguito per l'Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente ai sensi dell'Allegato B al D.M. 7 novembre 2008, condotto dallo Studio di Ingegneria LUIGI BOERI, INGEGNERE & ASSOCIATI (v. Allegato III), ed approvato in data 27/04 all'interno della relativa Conferenza di Servizi, ha evidenziato che le concentrazioni sorgenti del fondo della colmata verso l'ambiente esterno, anche per i suddetti analiti (IC>12 e PCB), sono inferiori alle Concentrazioni Soglia di Contaminazione per terreni di siti ad uso industriale.

L'analisi del flusso in uscita dalla colmata sulla base dei gradienti idraulici presenti, eseguita nell'ambito del suddetto studio applicando un modello 3D che ha definito le forzanti idrauliche e le portate diffusive in gioco valutando le possibili interazioni con la falda in ingresso da monte, ha fornito valori di flusso in uscita dalla colmata trascurabili, confermando quindi che il mantenimento in sito dei sedimenti di fondale della Marina del Canaletto non presenta rischi per l'ambiente.

Infine gli esiti del modello 3D hanno dimostrato che la presenza delle palancole e della nuova colmata non determina una significativa variazione delle direzioni di flusso e del carico piezometrico della falda a monte.

In sintesi gli esiti dell'Analisi sopracitata, approvata dalla Regione Liguria – Dipartimento Ambiente e Protezione Civile, Settore Ecologia in Conferenza dei Servizi con Verbale del 27/04/2022, hanno consentito di prevedere, **per la gestione dei sedimenti contaminati presenti sul fondale:**

- il mantenimento dei sedimenti in sito;
- il completamento della perimetrazione dell'area di colmata mediante la realizzazione di diaframmi di palancole con gargami impermeabili, in grado di garantire una permeabilità corrispondente ad un strato di un metro di spessore di materiale caratterizzato da un coefficiente di permeabilità k= 1 x 10⁻⁷ cm/s);
- la realizzazione di una colmata con destinazione d'uso industriale (ambiente conterminato e con capping) attraverso il riempimento lungo le sponde interne con materiale di cava e/o riciclato e con i sedimenti di dragaggio dei fondali del porto di La Spezia disidratati e trattati con cemento per la porzione centrale della colmata.

1 PREMESSA

Il sito "Pitelli" (La Spezia) è stato dichiarato Sito di Interesse Nazionale dalla L. 426/98 perimetrato con D.M. del 10/01/2000 e successivamente modificato con D.M. del 27/02/2001.

Detto ambito territoriale risulta costituito da una porzione a terra ricadente nei comuni di La Spezia, Arcola e Lerici, e da una porzione a mare corrispondente all'area portuale di La Spezia sino alla diga foranea, all'interno della quale ricade il sito di intervento.

Il Decreto Legge 22 giugno 2013, n. 83 come integrato dalla legge di conversione 7 agosto 2012, n. 134 ha rivisto i principi e i criteri per l'individuazione dei siti di interesse nazionale di cui all'art. 252 del D.lgs 152/2006.

A seguito di ciò il Ministero dell'Ambiente della Tutela del Territorio e del Mare, a seguito di ricognizione sulla base del nuovo quadro normativo, con decreto in data 11 gennaio 2013, ha approvato l'elenco dei siti che non soddisfano più i requisiti di cui ai commi 2 e 2 bis dell'art. 252 suddetto, tra i quali il sito di Pitelli.

Con il suddetto decreto la competenza per le necessarie operazioni di bonifica è stata trasferita alla Regione Liguria che è subentrata nella titolarità dei relativi procedimenti a partire dalla data di pubblicazione del medesimo sulla Gazzetta Ufficiale avvenuta il 12 marzo 2013.

La Regione ha preso atto dell'avvenuto declassamento del sito con DGR 451 del 19/4/2013 e dettato le prime indicazioni procedurali.

Successivamente con DGR 908 del 26 luglio 2013, sulla base della L.R. 9 aprile 2009, n. 10, ha individuato l'ex Sin di Pitelli quale Sito di Interesse Regionale.

Pertanto la competenza per le operazioni di bonifica dei sedimenti della Marina del Canaletto è della Regione Liguria.

Il presente elaborato costituisce lo Studio sulla Gestione dei Sedimenti del Progetto Esecutivo del Nuovo Terminal Ravano all'interno del Porto di La Spezia e rappresenta un aggiornamento del progetto preliminare di bonifica redatto nel 2005 dall'ICRAM, approvato nella conferenza dei servizi del 25 luglio 2005.

Si precisa che nel presente documento non vengono trattati i sedimenti provenienti dai dragaggi dei fondali del terzo bacino del porto di La Spezia che, previo opportuno trattamento con legante naturale, verranno riutilizzati per la realizzazione della porzione centrale della colmata, in quanto tale trattazione, di competenza della AdSP, è contenuta nel relativo progetto di dragaggio.

21_08_PE_R004_0 Relazione sulla gestione dei sedimenti	Pag. 4 di 32
--	--------------

Il progetto del nuovo terminal Ravano oltre al tombamento dello specchio acqueo della Marina del Canaletto, previa rimozione di tutte le strutture utilizzate per l'ormeggio ed il ricovero delle imbarcazioni da diporto, prevede la realizzazione della banchina di chiusura del varco compreso tra la banchina alla radice est del molo Fornelli e l'attuale banchina Ravano per uno sviluppo pari a circa 165 m così da realizzare un unico fronte di accosto lungo circa 520 m.

Figura 1-1 Vista dell'area di intervento allo stato attuale

Il progetto preliminare degli interventi relativi all'Ambito Omogeneo 6 (v. **Figura 1-2**) è stato sottoposto all'istruttoria di assoggettabilità a VIA presso il Ministero dell'Ambiente e della Tutela del Territorio (oggi Ministero della Transizione Ecologica) il quale con il Provvedimento U.prot. DVADEC-2015-0000474 del 17/12/2015 ne ha determinato l'esclusione dalla procedura di Valutazione di Impatto ambientale.

Il suddetto provvedimento all'art. 1 "Quadro Prescrittivo" prescrive che *i lavori a mare di tutti gli interventi potranno iniziare solo a seguito della conclusione delle attività di bonifica dell'area interessata* che nel caso in esame coincide con il bacino della Marina del Canaletto, del quale è previsto il tombamento, fino al limite della nuova banchina.

Figura 1-2 Ambito Omogeneo 6 "Porto Mercantile" – Planimetria

Nel 2005 l'ICRAM ha redatto il *Progetto preliminare di bonifica dell'area marina inclusa nella perimetrazione del sito di interesse nazionale di Pitelli* che ha riguardato anche l'area di interesse.

Il progetto sulla base di tutti i dati chimico-fisici disponibili sui sedimenti della rada della Spezia ne ha definito lo stato di qualità complessivo individuando i volumi di sedimento da bonificare in funzione delle differenti ipotesi di gestione.

Ai fini della definizione del modello concettuale ICRAM ha fatto riferimento ai risultati del piano di caratterizzazione approvato dalla Conferenza dei Servizi "comma 2" del 24/03/04, integrati con i risultati di indagini pregresse eseguite nella rada, che per l'area di interesse, prevedeva il prelievo di una carota di lunghezza pari a 2.00 m dalle quale sono stati poi estratti i campioni sui quali sono state eseguite le analisi di laboratorio.

Il modello concettuale elaborato da ICRAM per l'area di interesse ha messo in evidenza la presenza nello strato 100-150 cm di uno stato di contaminazione che per alcuni elementi (Rame e Zinco) supera i valori di intervento fissati per la Rada della Spezia mentre per gli idrocarburi pesanti (C>12) supera il limite della colonna B della tabella 1 dell'allegato 1 del D.Lgs. 152/2006. Per gli altri livelli indagati (0-50 cm, 50-100 cm e 150-200 cm) i risultati delle indagini eseguite hanno invece rivelato un discreto stato di qualità ambientale dei sedimenti senza superamenti dei livelli di intervento.

Visto il notevole tempo trascorso dalla redazione del progetto preliminare di bonifica e considerato che nel frattempo per effetto della trasformazione del sito di Pitelli da interesse

Progetto Esecutivo

nazionale a interesse regionale la competenza è passata alla Regione Liguria si è proceduto ad un approfondimento di indagine sull'area di incertezza della Marina del Canaletto con una nuova caratterizzazione ambientale dei sedimenti della Marina del Canaletto.

La caratterizzazione è stata eseguita sulla base del Piano di Caratterizzazione approvato dalla Regione Liguria con il Decreto 5656/2021 del 22/09/2021 in seguito alla conferenza di servizi decisoria del 10/08/2021, indetta ai sensi dell'art. 242 bis del titolo V della Parte Quarta del d.Lgs. 152/06 per dell'ampliamento del Terminal Ravano - Marina del Canaletto compreso nelle aree a mare del SIR Pitelli nel Comune della Spezia (SP).

Nei successivi paragrafi, dopo una sintesi dei risultati della campagna di caratterizzazione eseguita in occasione della redazione del progetto preliminare di bonifica ICRAM (BoI-Pr-LI-P-02.16 del Marzo 2005), vengono descritti i risultati delle analisi di laboratorio svolte per aggiornare il quadro di riferimento dello stato di contaminazione dei sedimenti marini della Marina del Canaletto e gli esiti dell'Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente ai fini dell'individuazione delle modalità di gestione dei sedimenti.

2 STATO DI FATTO

La Marina del Canaletto sorge nella porzione del porto di La Spezia denominata "Porto Mercantile" nello spazio compreso tra il molo Fornelli e il piazzale della Calata Ravano. Lo specchio acqueo (v. **Figura 2-1**), attualmente occupato dalle attrezzature per l'ormeggio ed il ricovero delle imbarcazioni da diporto, ha una superficie complessiva pari a circa 50.000 m².

Tutte le infrastrutture presenti nella porzione occidentale della darsena (v. **Figura 2-2**) sono a giorno su pali mentre le strutture dell'opera più importante posta nella porzione orientale della darsena, costituita da un terrapieno a pianta trapezoidale dalla cui testata parte un molo a forma di uncino, sono a gravità.

I fondali all'interno della darsena hanno quote variabili tra -2.00 e -4.00 m s.l.m.m. con le quote massime nella porzione prossima al suo ingresso.

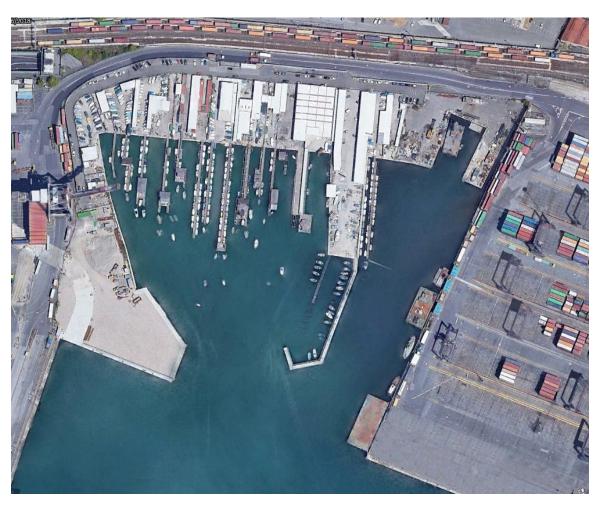


Figura 2-1 Darsena Marina del Canaletto - Stato di fatto

Figura 2-2 Darsena Marina del Canaletto – Strutture esistenti

3 CARATTERIZZAZIONE PROGETTO DI BONIFICA ICRAM 2005

Come evidenziato nelle premesse il progetto preliminare di bonifica redatto da ICRAM nel 2005 si è basato sui risultati analitici del piano di caratterizzazione, redatto dalla stessa ICRAM, approvato dalla Conferenza dei Servizi "comma 2" del 24/03/04, integrati con i risultati di indagini pregresse eseguite nella rada (v. **Figura 3-1**)

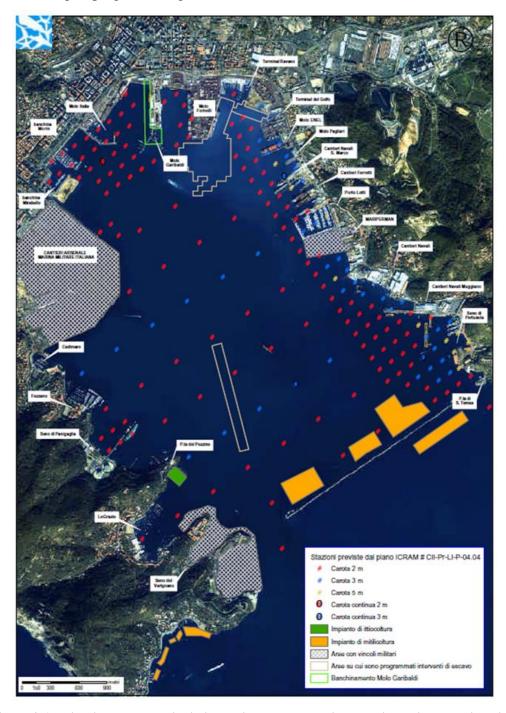


Figura 3-1 Ubicazione delle stazioni di campionamento previste nel piano di caratterizzazione ${\bf ICRAM}$

I campioni prelevati nel corso della campagna di indagini sono stati sottoposti alla determinazione analitica dei seguenti parametri: granulometria, metalli ed elementi in tracce (Al, As, Cd, Cr tot., Fe, Hg, Ni, Pb, V, Cu, Zn), Idrocarburi leggeri (C≤12) ed Idrocarburi pesanti (C>12), Benzene, IPA [Benzo(a)antracene, Benzo(a)pirene, Benzo(b)fluorantene, Benzo(k)fluorantene, Benzo(g,h,i)perilene, Crisene, Dibenzo(a,e)pirene, Dibenzo(a,l)pirene, Dibenzo(a,i)pirene, Dibenzo(a,h)pirene, Dibenzo(a,h)antracene, Indenopirene, Pirene, Naftalene, Acenaftene, Fluorene, Fenantrene, Antracene, Fluorantene], PCB, Azoto e Fosforo, TOC, Cianuri, parametri microbiologici. Mentre su un ristretto numero di campioni sono stati analizzati: Composti Organostannici (TBT), Sn, Co, Clorobenzeni e Clorofenoli, solventi aromatici (BTEX), Diossine e Furani, Amianto e sono state eseguite analisi ecotossicologiche.

Sulla base dei risultati delle analisi eseguite sui campioni prelevati ICRAM ha elaborato un modello concettuale basato su una griglia tridimensionale, estesa sull'intera area di indagine, che lungo il perimetro della rada, dove sorgono le infrastrutture portuali, è caratterizzata da celle della dimensione 50x50x0.5 m mentre nella parte centrale della rada da celle di 200x200x0.5 m (v. **Figura 3-2**).

Sulla base del modello concettuale è stata definito lo stato della qualità dei sedimenti marini presente nell'area.

Nello specifico per l'area di interesse lo studio, che ha analizzato i primi 2 metri di sedimenti marini, ha messo in evidenza la presenza nello strato 100-150 cm di uno stato di contaminazione che per alcuni elementi (Rame e Zinco) superano i valori di intervento fissati per la Rada della Spezia mentre per gli idrocarburi pesanti (C>12) superano il limite della colonna B della tabella 1 dell'allegato 1 del D.Lgs. 152/2006. Per gli altri livelli indagati (0-50 cm, 50-100 cm e 150-200 cm) i risultati delle indagini eseguite hanno invece rivelato un discreto stato di qualità ambientale dei sedimenti senza superamenti dei livelli di intervento.

Nelle figure seguenti (da **Figura 3-3** a **Figura 3-6**) è riportata la sintesi delle elaborazioni svolte da ICRAM con l'indicazione delle aree da bonificare.

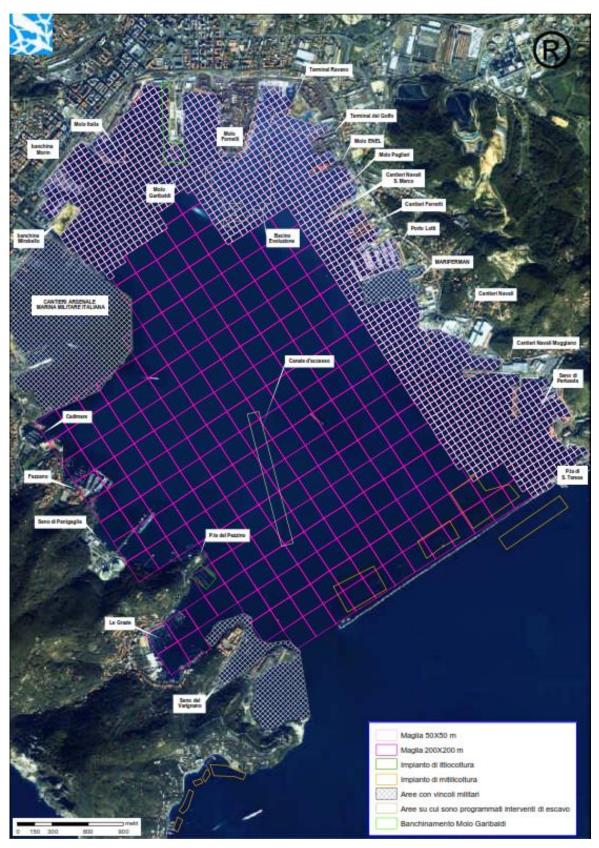


Figura 3-2 Griglia di celle per l'elaborazione delle stime di concentrazione (progetto ICRAM 2005)

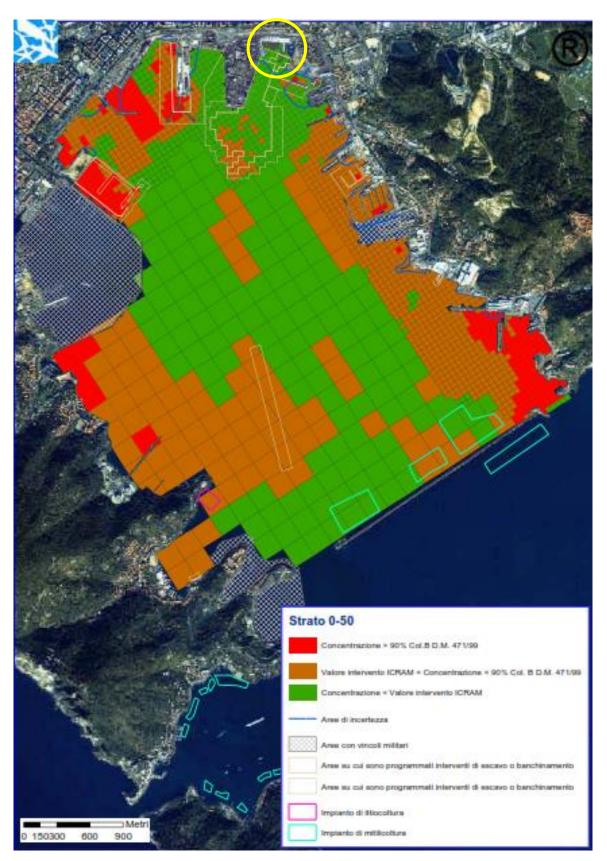


Figura 3-3 Strato di sedimento 0-50 cm – Aree da bonificare (progetto ICRAM 2005)

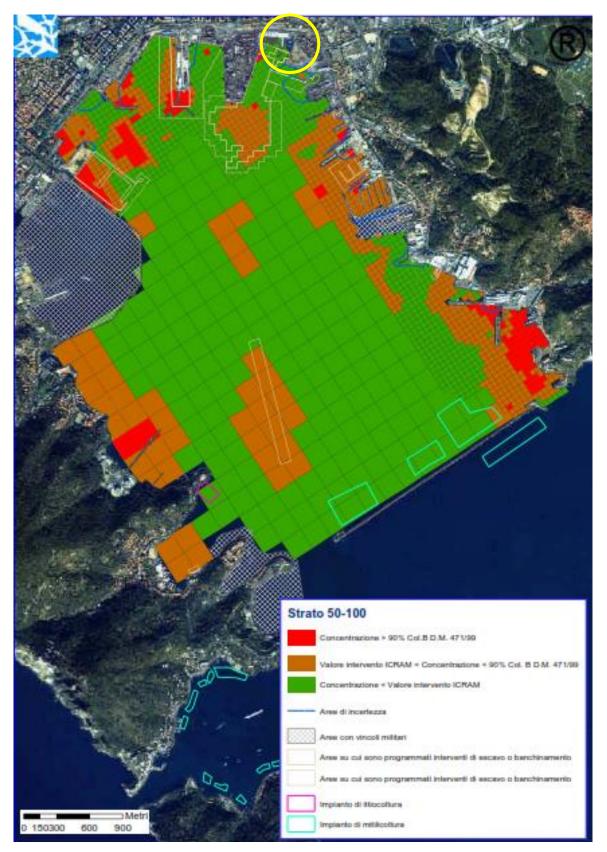


Figura 3-4 Strato di sedimento 50-100 cm – Aree da bonificare (progetto ICRAM 2005)

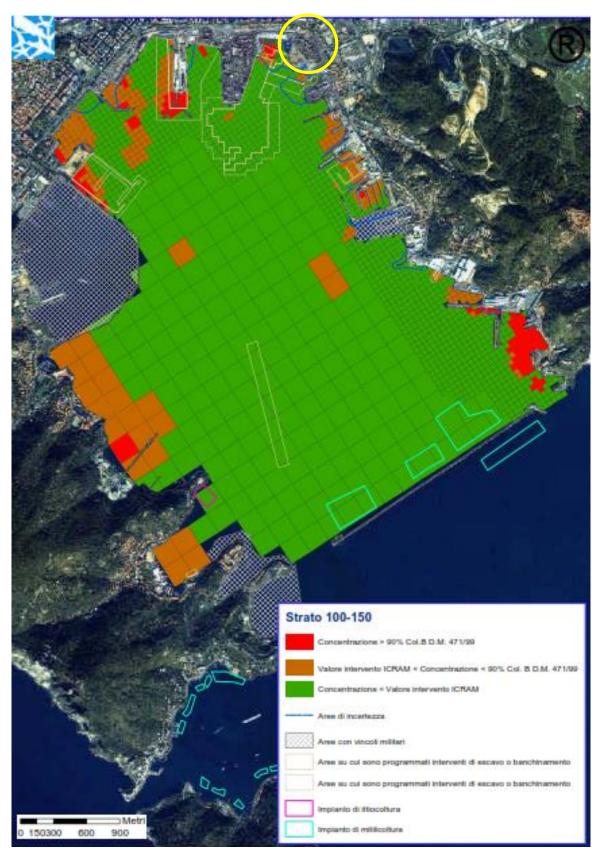


Figura 3-5 Strato di sedimento100-150 cm – Aree da bonificare (progetto ICRAM 2005)

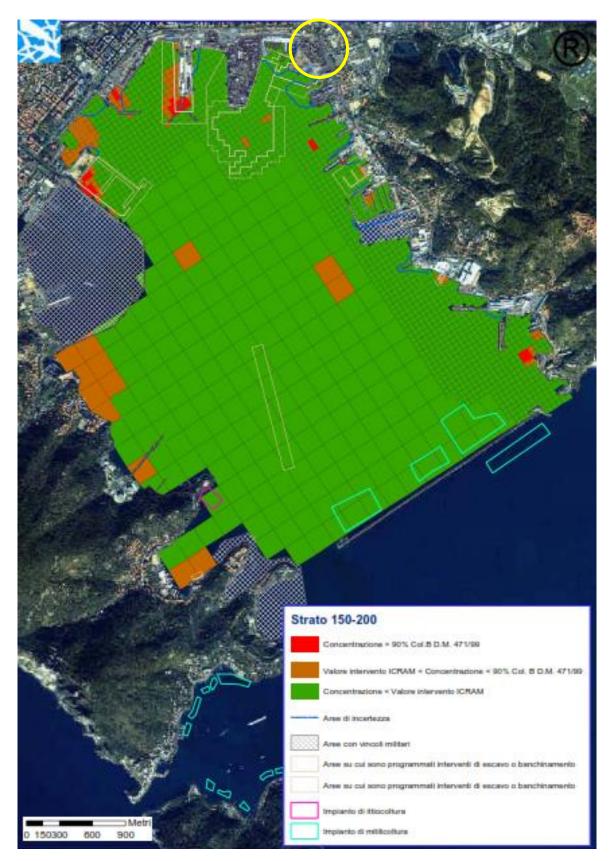


Figura 3-6 Strato di sedimento 150-200 cm – Aree da bonificare (progetto ICRAM 2005)

4 PIANO DI CARATTERIZZAZIONE AMBIENTALE 2021

4.1 DESCRIZIONE DELLA CAMPAGNA DI CARATTERIZZAZIONE

Come evidenziato nelle premesse la caratterizzazione dei sedimenti della Marina del Canaletto è stata eseguita sulla base di un Piano approvato dalla Regione Liguria nel corso della conferenza decisoria del 10/08/2021.

L'area da caratterizzare è stata discretizzata utilizzando una griglia a maglia quadrata di 50 m x 50 m e all'interno di ciascuna maglia è stato individuato un punto di campionamento, rappresentativo dell'area (v. **Figura 4-1**).

La posizione delle maglie e dei punti di campionamento è stata scelta tenendo conto della posizione e della tipologia delle opere esistenti all'interno della darsena. Nel caso delle opere a gravità le maglie ed i punti di campionamento sono stati disposti in modo da raccogliere informazioni per tutti i sottobacini delimitati da tali opere che a causa della presenza delle opere seppure limitrofi potrebbero avere qualità diverse.

Figura 4-1 Campionamento caratterizzazione dei sedimenti marini 2021

Come risulta dalla Figura 4-1 la superficie della Marina del Canaletto è stata suddivisa in 19 maglie. Il prelievo delle carote è stato effettuato nei giorni 23 e 24 settembre 2021 in parte dalla ditta Co.L.Mar. S.r.l. di La Spezia che, tramite un Vibrocorer ha effettuato il prelievo di 13 carote e in parte dalla ditta GEOTER che tramite un carotiere a rotazione ha effettuato il prelievo di 6 carote. Complessivamente sono state prelevate 19 carote di sedimento della lunghezza di 2 m ciascuna.

Ciascuna delle 19 carote è stata suddivisa in tre livelli, un livello superficiale dello spessore di 50 cm (livello 0-50), un livello intermedio da 50 cm ad 1 m di profondità (livello 50-100) e un livello profondo da 1 m fino a 2 m di profondità (livello 100-200). Alle attività di prelievo hanno presieduto anche i tecnici dell'ARPA Liguria a cui è stata consegnata una aliquota per le analisi di verifica e la relativa validazione.

Su ciascun campione sono state effettuate le seguenti analisi:

- Analisi Fisiche: granulometria per via meccanica (scala Wentworth passante ½ phi), colore;
- Analisi Chimiche: mercurio, cadmio, piombo, arsenico, cromo totale, rame, ferro, nichel, zinco, alluminio, vanadio, Carbonio Organico Totale, Idrocarburi C>12, Idrocarburi Policiclici Aromatici (IPA), Policlorobifenili (PBC), Pesticidi organo clorurati, Composti organostannici, Diossine e furani, PCB diossina simili;
- Analisi ecotossicologiche: Saggio biologico su sedimento con Vibrio fischeri, saggio biologico su elutriato con Phaeodactylum tricornutum, saggio biologico su elutriato Paracentrotus lividus (embriotossicità). Per una migliore rappresentatività della classificazione ecotossicologica, su campione di elutriato congelato, è stata condotta anche la determinazione della risposta della specie Vibrio fischeri su fase liquida.

I risultati sono stati raccolti nei fogli di calcolo Excel (organizzati da ISPRA secondo le matrici stazioni x contaminanti e stazioni x saggi ecotossicologici) e sono stati elaborati tramite il software SediQualSoft 109.0® per la definizione del pericolo chimico e del pericolo ecotossicologico associato ai sedimenti caratterizzati ed è stata individuata la Classe di Qualità integrata dei materiali di escavo mediante l'applicazione dei criteri di integrazione ponderata dei pericoli chimici ed ecotossicologici come rappresentato nella tabella 2.7 del D.M. 173/2016.

Inoltre, ai fini del calcolo del rischio chimico per il Cromo, Nichel e Rame sono state effettuate delle prove di simulazione di classificazione del pericolo chimico e classificazione del rischio ecotossicologico integrato utilizzando, per il pericolo chimico, i livelli di fondo locali (Lloc). Infatti, i valori Lloc di questi elementi nella specifica area di indagine sono superiori al valore soglia L2 del DM 173/2016. In particolare in questo caso il criterio adottato è stato il seguente:

- per i campioni che non superavano L2 del DM 173/2016, si è mantenuto invariato il valore misurato;
- per i campioni che superavano L2 del DM 173/2016 ma non superavano Lloc di quello specifico elemento si è associato il valore L1 del DM 173/2016;
- i campioni che presentavano valori misurati maggiori del Lloc sono stati lasciati invariati.

La valutazione integrata prevede cinque Classi di Qualità che vanno dalla A alla E con le rispettive opzioni di gestione dei materiali classificati. La Classe A corrisponde ai sedimenti di qualità ambientale più elevata mentre la E identifica la Classe di qualità peggiore che prevede un'eventuale rimozione in sicurezza del sedimento dall'ambiente marino dopo la valutazione di rischio. Nella Tabella 4-1 sono riportate quelle che secondo il D.M. 173/16 sono le opzioni di gestione compatibili con ognuna delle cinque classi di Qualità del sedimento.

Tabella 4-1 Opzioni di gestione compatibili con la classificazione di qualità dei materiali da dragare

Classe	Opzioni di gestione
	. RIPASCIMENTO della spiaggia emersa con pelite ≤10% o altro valore stabilito su base regionale;
Α	. RIPASCIMENTO della spiaggia sommersa con frazione sabbiosa prevalente;
^	. IMMERSIONE DELIBERATA IN AREE MARINE NON COSTIERE (oltre 3 mn);
	. IMMERSIONE IN AMBIENTE CONTERMINATO MARINO COSTIERO.
	. IMMERSIONE DELIBERATA IN AREE MARINE NON COSTIERE (oltre 3 mn) con monitoraggio
В	ambientale;
	. IMMERSIONE IN AMBIENTE CONTERMINATO in ambito portuale incluso capping, con monitoraggio
	ambientale.
	. IMMERSIONE IN AMBIENTE CONTERMINATO in ambito portuale in grado di trattenere tutte le
С	frazioni granulometriche del sedimento, incluso capping all'internodi aree portuali con idonee
	misure di monitoraggio ambientale.
D	. IMMERSIONE IN AMBIENTE CONTERMINATO IMPERMEABILIZZATO, con idonee misure di
	monitoraggio ambientale.
E	. EVENTUALE RIMOZIONE IN SICUREZZA DELL'AMBIENTE MARINO DOPO VALUTAZIONE DI RISCHIO, secondo quanto previsto dalla normativa vigente.
	1000000

21 08 PE R004 0	Relazione sulla gestione dei sedimenti	Pag. 19 di 32
21_00_1 E_K00+_0	Relazione suna gestione dei sedimenti	1 ag. 17 til 32

4.2 ESITI DELLA CAMPAGNA DI CARATTERIZZAZIONE

Dalle analisi di laboratorio eseguite è risultato che i sedimenti analizzati sono caratterizzati da un'alta percentuale di pelite (i valori misurati oscillano tra un minimo di 52% e un massimo di 97,2%).

La caratterizzazione chimica ha rilevato la presenza di metalli, che nella maggior parte dei campioni supera il limite L2 del D.M. 173/2016. In particolare, si osserva che:

- 59,6% dei campioni supera L2 per Arsenico;
- 8,8% dei campioni supera L2 per Cadmio;
- 1,8% dei campioni supera L2 per Cromo;
- 47,4% dei campioni supera L2 per Rame;
- 22,8% dei campioni supera L2 per Mercurio;
- 12,3% dei campioni supera L2 per Nichel;
- 47,4% dei campioni supera L2 per Zinco.

La sommatoria dei composti organostannici supera nel 73,7% dei sedimenti analizzati il valore L2 e sono stati riscontrate anche elevate concentrazioni di tetrabutilstagno (valore massimo di 408 µg/kg s.s.) e trifenilstagno (valore massimo di 7796 µg/kg s.s.).

In alcuni campioni si riscontra anche la presenza di DDT e dei suoi composti di degradazione in elevate concentrazioni mentre tutti gli altri pesticidi risultano inferiori al limite di quantificazione.

Per quanto riguarda i Policlorobifenili (PCB) e gli Idrocarburi Policiclici Aromatici (IPA) si osservano, in generale, valori molto alti e infatti il 31,58% dei campioni supera L2 per PCB e il 24,56% dei campioni supera L2 per IPA.

Infine, sono stati riscontrati sopra al limite L2 anche i livelli di Diossine e furani nel 12,28% dei campioni.

A fronte di questo scenario, l'elaborazione dei dati tramite il software Sediqualsoft® evidenzia che la maggior parte dei campioni (82,5 % dei campioni) mostra un pericolo chimico per L2, Alto o Molto Alto.

Considerando la batteria di tre specie (*V. fischeri* in fase solida, *P. tricornutum* e *P. lividus* in elutriato), le analisi ecotossicologiche mostrano una situazione più variegata anche se la maggior parte dei campioni presenta un pericolo ecotossicologico alto. Si osserva che il

rischio ecotossicologico è dovuto prevalentemente al saggio di prima tipologia (*Vibrio fischeri* in fase solida) in cui i contaminanti risultano strettamente associati al sedimento; solo nei campioni C2-1/50-100, C3-2/100-200 e C6-1/0-50 l'elutriato contribuisce al rischio con un contributo maggiore al 50%.

Essendo il principale contributo alla ecotossicità legato al saggio di tipologia I su fase solida condotto con la specie *V. fischeri*, si è provveduto ad integrare gli effetti misurati sulla stessa specie su matrice diversa. Le analisi, effettuate su campione di elutriato hanno mostrato una tossicità generalmente assente su questa specie testata in fase liquida supportando come il principale contributo al quadro complessivo sia legato al saggio di tipologia I in fase solida.

L'integrazione del pericolo chimico e del pericolo ecotossicologico considerando le quattro specie indicate, per la definizione delle classi di qualità evidenzia che:

- 17 campioni sono di classe E
- 34 campioni sono di classe D (di cui 31 da considerarsi di classe C poiché il pericolo ecotossicologico è dovuto per 2/3 alla fase solida)
- 5 campione è di classe C
- 1 campione è di classe B

La classificazione condotta mediante l'utilizzo della chimica riferita a Lloc non ha mostrato variazioni nella classificazione del rischio integrato, indicando che la contaminazione di fondo naturale non contribuisce in modo significativo alla classificazione dei materiali.

Nella **Figura 4-2** è riportata una rappresentazione schematica delle classi di qualità di ciascun campione analizzato.

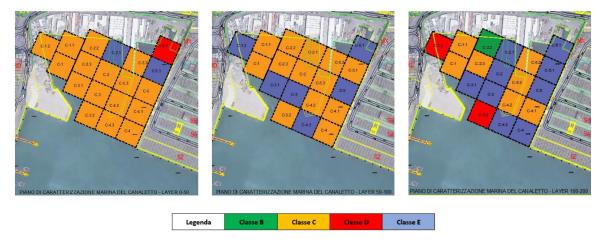


Figura 4-2 Risultati del Piano di Caratterizzazione 2021 con ecotossicologico su quattro specie classificazione ai sensi del d.m. 173/2016

21_08_PE_R004_0 Relazione sulla gestione dei sedimenti	Pag. 21 di 32
--	---------------

In considerazione del possibile tombamento dell'area portuale oggetto di studio, la contaminazione dei sedimenti è stata valutata sulla base delle concentrazioni soglia di contaminazione nel suolo dei siti da bonificare, riportate nella tabella 1 dell'allegato 5 al titolo V della parte quarta del D. Lgs. n. 152 del 2006 ed in particolare alla colonna B (siti ad uso commerciale e industriale) di tale tabella.

Nella *Tabella 4-2* è riportato l'elenco dei campioni per i quali almeno un parametro è risultato superiore alla rispettiva soglia di contaminazione (in giallo sono evidenziati i campioni nei quali viene superata la soglia indicata nella colonna B della tabella 1 dell'allegato 5 al titolo V della parte quarta del D. Lgs. n. 152 del 2006):

Tabella 4-2 Elenco dei campioni dove sono stati misurati superamenti della soglia di contaminazione

	SOMMATORIA PCB	Idrocarburi Pesanti
Campione	DM 173/2016	C>12
	μg/kg s.s.	mg/kg s.s.
C1/100-200	4,175	36,06
C2/100-200	4,04	30,05
C2-3/100-200	4,1	25,27
C3/100-200	52,555	805,10
C3-2/100-200	145,065	1879,68
C4/100-200	18,32	1462,05
C4-3/50-100	167,6	1156,58
C5/0-50	0,446	1087,27
C5-1/0-50	76,691	755,16
C6-1/0-50	349,503	2021,94
C6-1/50-100	7312,133	1232,63
C6-1/100-200	3145,874	5597,68
C2-1/100-200	50,209	18,60
C5-2/100-200	2,852	32,10
C5-3/0-50	473,669	986,52
C5-3/100-200	29,878	42,53

Nella *Tabella 4-3* si riporta una rappresentazione schematica della contaminazione di ciascun campione:

Per maggiori dettagli sulla campagna di caratterizzazione svolta si rimanda ai report allegati alla presente relazione (v. Allegati I e II).

21_08_PE_R004_0 Relazione sulla gestione dei sedimenti	Pag. 22 di 32
--	---------------

Tabella 4-3 Rappresentazione schematica della contaminazione dei sedimenti

					C5-2/0-50	C6-1/0-50	
	C1-2/0-50	C1-1/0-50	C2-2/0-50	C2-1/0-50		C5-1/0-50	Livello
		C1/0-50	C2-3/0-50	C2/0-50	C5-3/0-50	C5/0-50	0-50 cm
			C3-1/0-50	C3/0-50	C4-2/0-50	C4-1/0-50	0 30 0
				C3-2/0-50	C4-3/0-50	C4/0-50	
					C5-2/50-100	C6-1/50-100	
	C1-2/50-100	C1-1/50-100	C2-2/50-100	C2-1/50-100		C5-1/50-100	Livello
-		C1/50-100	C2-3/50-100	C2/50-100	C5-3/50-100	C5/50-100	50-100 cm
			C3-1/50-100	C3/50-100	C4-2/50-100	C4-1/50-100	
				C3-2/50-100	C4-3/50-100	C4/50-100	
C5-2/100-						C6-1/100-200	
	C1-2/100-200	C1-1/100-200	C2-2/100-200	C2-1/100-200		C5-1/100-200	Livello
-		C1/100-200	C2-3/100-200	C2/100-200	C5-3/100-200	C5/100-200	100-200 cm
			C3-1/100-200	C3/100-200	C4-2/100-200	C4-1/100-200	
				C3-2/100-200	C4-3/100-200	C4/100-200	

Legenda

Concentrazioni	Concentrazioni
< colonna B	> colonna B

5 ANALISI DELLA CONTAMINAZIONE DELLA COLMATA PER LA VERIFICA DI ASSENZA DI RISCHI PER L'AMBIENTE

Al fine di valutare il potenziale rischio che i sedimenti presenti sul fondo della colmata del futuro Terminal Ravano possono indurre all'ambiente circostante, sulla base dei risultati della campagna di caratterizzazione descritta in precedenza, è stata quindi eseguita l'*Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente*, ai sensi dell'Allegato B al D.M. 7 novembre 2008, da parte dello Studio di Ingegneria LUIGI BOERI, INGEGNERE & ASSOCIATI.

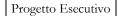
Nel suddetto studio, approvato in data 27/04 all'interno della relativa Conferenza di Servizi, al quale si rimanda per i dettagli (v. Allegato III), per il riempimento della colmata della Marina del Canaletto oltre alla soluzione prevista nel presente progetto che prevede l'impiego di materiale di cava è stata considerata anche l'alternativa che prevede di impiegare, in quota parte, i sedimenti provenienti dai dragaggi dei fondali del terzo bacino del porto di La Spezia. In tal caso, i sedimenti dovranno essere conformi al refluimento così come previsto dal D.M. 173/16.

Ai fini progettuali, per la realizzazione della colmata, non risulta necessario dragare i sedimenti del fondo, pertanto nell'ambito della citata analisi non si sono applicate le classi del DM 173/16 che si riferiscono ai sedimenti provenienti da attività di dragaggio. I limiti ammissibili per i sedimenti sul fondo della colmata sono dunque:

- <u>"Non Pericolosi"</u> nei S.I.N. ai sensi dell'art. 5 bis, comma 2, lettera c), della Legge 28 gennaio 1994, n. 84 e del D.M. 15 luglio 2016, n. 172;
- <u>Limite Colonna B, Tab.1, All. 5, D.Lgs. 152/06</u>, ai sensi del D.M. 173/16, Allegato n. 1 (cap 3.1.3). Per i sedimenti del fondo della colmata il D.M. 173/16 indica come sufficiente una caratterizzazione del fondale sull'impronta della colmata <u>per uno spessore di 50 cm</u>, non considerate le indagini microbiologiche e valutati i risultati secondo la destinazione d'uso industriale.

Dai risultati delle analisi di caratterizzazione svolte è emerso, come evidenziato in precedenza, che alcuni dei sedimenti presentano concentrazioni superiori a quella della destinazione d'uso della cassa di colmata (uso industriale).

Per valutare l'ammissibilità al mantenimento in sito di tali sedimenti è stato quindi necessario eseguire una valutazione del potenziale rischio indotto nell'ambiente circostante.


21_08_PE_R004_0 Relazione sulla gestione dei sedimenti	Pag. 24 di 32
--	---------------

Nell'Analisi di Rischio di livello 1 i punti di esposizione sono ipotizzati coincidenti con le sorgenti di contaminazione, non si tiene quindi conto di fenomeni di attenuazione dovuti alla diffusione dei contaminanti nello spazio e nel tempo. L'applicazione di un livello 2-3 di analisi di rischio tiene invece in considerazione la diffusione dei contaminanti ed è idonea al caso in caso in esame in quanto i contaminanti presenti nei sedimenti della cassa di colmata per raggiungere l'ambiente dovranno migrare verso l'esterno. In particolare l'analisi di rischio a livello 2 richiede l'individuazione di un unico valore di concentrazione rappresentativa in corrispondenza ad ogni sorgente secondaria di contaminazione (suolo superficiale, suolo profondo e falda).

Nel caso in esame la sorgente di contaminazione è rappresentata dai suoli del fondo della colmata per i quali si vuole valutare il mantenimento degli stessi in sito.

Il valore della concentrazione rappresentativa della sorgente raffigura un input primario per l'analisi di rischio, e va determinato sulla base di criteri legati ad assunzioni che variano più o meno sensibilmente a seconda del grado di approssimazione richiesto, del numero e del tipo di rilevamenti disponibili, della loro rappresentatività. Il punto di criticità principale in questo tipo di analisi è dunque la scelta dei campioni e l'utilizzazione di algoritmi tali da arrivare a valori che risultino rappresentativi e scientificamente attendibili. Per valutare la concentrazione rappresentativa del materiale sul fondo e valutarne l'ammissibilità al mantenimento in sito, è stata applicata una analisi statistica dei dati che è stata eseguita considerando gli analiti che presentano concentrazioni, in alcuni campioni, di concentrazioni superiori a quelli alla destinazione d'uso industriale: IC>12 e PCB. Non sono invece stati considerati gli altri analiti perché già conformi alla destinazione d'uso prevista. Prendendo in esame tutti i dati disponibili per gli analiti sopra indicati l'analisi statistica ha evidenziato che le concentrazioni sorgente del fondo della colmata verso l'ambiente esterno sono inferiori alle Concentrazioni Soglia di Contaminazione per terreni di siti ad uso industriale confermando quindi che il mantenimento in sito di tali materiali al fine di costituire una colmata con destinazione d'uso industriale (ambiente conterminato e con capping), anche trascurando la presenza delle palancole lungo il perimetro della colmata, non indice rischi all'ambiente.

Al fine, comunque, di verificare il grado di contenimento della colmata, è stata effettuata anche una analisi del flusso in uscita dalla stessa sulla base dei gradienti idraulici presenti.

A tale scopo è stato applicato un modello 3D per definire le forzanti idrauliche e le portate diffusive in gioco, anche con il fine di valutare possibili interazioni con la falda in ingresso da monte.

I risultati del modello hanno fornito valori di flusso in uscita dalla colmata trascurabili confermando quindi che il mantenimento in sito dei sedimenti di fondale della Marina del Canaletto non presenta rischi per l'ambiente.

Gli esiti del modello 3D permettono inoltre di affermare che la presenza delle palancole e della nuova colmata non determina una significativa variazione delle direzioni di flusso e del carico piezometrico della falda a monte. Inoltre, con il solo riempimento della colmata con materiali aventi una permeabilità tipica dei sedimenti di dragaggio, si ottiene un aumento in termini di quota piezometrica della falda rispetto allo stato di fatto di circa 35 cm, circoscritto alla zona del porto.

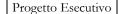
Per quanto riguarda la portata netta in uscita lato mare lungo le palancole di progetto, il range di permeabilità del materiale componente la colmata, ma soprattutto la presenza delle palancole, permettono di ridurre la portata in uscita del 95% rispetto allo stato di fatto.

Peraltro il potenziale innalzamento della falda può essere ridotto introducendo un dreno posto a monte della colmata e posto ad una quota di +0.30 m s.l.m. Tale dreno permette di ridurre l'innalzamento della falda di circa un terzo, ovvero da 35 cm (in assenza di dreno) a 20 cm.

Lo Studio è stato approvato in sede di Conferenza dei Servizi dalla Regione Liguria – Dipartimento Ambiente e Protezione Civile, Settore Ecologia con Verbale del 27/04/2022. Per i dettagli sui risultati delle analisi svolte si rimanda allo studio di riferimento riportato in allegato (v. Allegato III).

6 POSSIBILI SCENARI ALTERNATIVI DI INTERVENTO

Dai risultati della campagna di caratterizzazione descritta emerge una situazione ambientale abbastanza complessa in quanto le aree caratterizzate da sedimenti contaminati sono particolarmente estese e ricoprono la quasi totalità della Marina del Canaletto confermando i risultati del progetto preliminare di bonifica ICRAM. In particolare nel suddetto progetto preliminare di bonifica per i sedimenti in oggetto erano stati individuati i seguenti scenari:


- rimozione e conferimento in discarica;
- rimozione e trattamento (ex situ) per successivo conferimento in vasche di colmata o in strutture di confinamento realizzate in ambito costiero.

Un intervento di risanamento ambientale dovrebbe prevedere teoricamente la bonifica di tutti i sedimenti con concentrazioni superiori al valore di intervento, in quanto corrispondente ad un probabile rischio ecotossicologico per le comunità viventi.

Peraltro, tra gli obiettivi primari degli interventi di bonifica, oltre a quello di minimizzare le volumetrie di sedimento da destinare a discarica, rientra anche quello, già condiviso con la struttura tecnica della Regione Liguria, di minimizzare la movimentazione dei sedimenti in quanto, nonostante l'adozione di misure di mitigazione di sistemi di dragaggio di tipo ambientale, sarebbe alquanto difficile annullare il rischio di una diffusione nell'ambiente circostante della frazione più fina, e maggiormente contaminata dei sedimenti stessi, legato alle varie operazioni (dragaggio, stoccaggio temporaneo a terra, trattamento e conferimento in discarica).

Inoltre la totale carenza di vasche di contenimento in ambiente marino dotate di strutture di confinamento idonee a contenere i sedimenti contaminati in oggetto rende ancora più complessa l'attuazione dei due scenari individuati nel precedente progetto preliminare di bonifica.

Alla luce di tali considerazioni emerge chiaramente l'opportunità di introdurre, in questa sede, uno scenario alternativo che prevede la messa in sicurezza definitiva dei sedimenti della Marina del Canaletto. Tale opzione, già condivisa con la Regione quale ragionevole alternativa e da validare con gli approfondimenti, nel caso in esame risulta essere particolarmente vantaggiosa viste le caratteristiche delle strutture di banchina che delimitano l'area, sia esistenti (tutte con pareti continue di palancole che pervengono a quote molto inferiori di quelle del letto dello strato di sedimenti contaminati caratterizzati

intestandosi all'interno dello strato argilloso) che di nuova realizzazione (diaframmi di palancole con gargami impermeabili in grado di garantire una permeabilità corrispondente ad un strato di un metro di spessore di materiale caratterizzato da un coefficiente di permeabilità $k=1 \times 10^{-7}$ cm/s).

Inoltre la presenza della galleria subalvea che corre alle spalle della Marina del Canaletto costituisce un ulteriore marginamento dei sedimenti in oggetto rispetto alla falda retrostante.

A tale scopo, come meglio approfondito al capitolo precedente, sulla base dei risultati della campagna di caratterizzazione svolta, è stata pertanto eseguita l'*Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente* approvata in data 27/04 all'interno della relativa Conferenza di Servizi (v. Allegato III).

I risultati di tale Analisi hanno dimostrato che <u>il mantenimento in sito dei sedimenti</u> contaminati presenti nella Marina del Canaletto al fine di costituire una colmata con destinazione d'uso industriale (ambiente conterminato e con capping), anche trascurando la presenza delle palancole lungo il perimetro della colmata, non induce rischi all'ambiente confermando quindi la fattibilità della soluzione prevista nel presente progetto.

7 CONCLUSIONI

La campagna di caratterizzazione dei sedimenti presenti sul fondale della Marina del Canaletto ha messo in evidenza uno stato di contaminazione diffuso su tutta l'area.

Per alcune maglie ed alcuni strati per alcuni analiti (IC>12 e PCB) sono state misurate concentrazioni superiori a quelli alla destinazione d'uso industriale.

Lo studio per eseguita per l'Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente ai sensi dell'Allegato B al D.M. 7 novembre 2008 condotta dallo studio di ingegneria LUIGI BOERI, INGEGNERE & ASSOCIATI ha evidenziato che le concentrazioni sorgenti del fondo della colmata verso l'ambiente esterno, anche per i suddetti analiti (IC>12 e PCB) , sono inferiori alle Concentrazioni Soglia di Contaminazione per terreni di siti ad uso industriale confermando quindi che il mantenimento in sito di tali materiali al fine di costituire una colmata con destinazione d'uso industriale (ambiente conterminato e con capping), anche trascurando la presenza delle palancole lungo il perimetro della colmata, non induce rischi all'ambiente.

Inoltre l'analisi del flusso in uscita dalla colmata sulla base dei gradienti idraulici presenti, eseguita nell'ambito del suddetto studio applicando un modello 3D che ha definito le forzanti idrauliche e le portate diffusive in gioco valutando le possibili interazioni con la falda in ingresso da monte, ha fornito valori di flusso in uscita dalla colmata trascurabili confermando quindi che il mantenimento in sito dei sedimenti di fondale della Marina del Canaletto non presenta rischi per l'ambiente.

Infine gli esiti del modello 3D hanno dimostrato che la presenza delle palancole e della nuova colmata non determina una significativa variazione delle direzioni di flusso e del carico piezometrico della falda a monte.

Sulla base dei risultati delle indagini di caratterizzazione e dell'Analisi del rischio è stata individuata la soluzione di progetto per la gestione dei sedimenti contaminati presenti sul fondale della Marina del Canaletto che prevede:

- il mantenimento dei sedimenti in sito;
- il completamento della perimetrazione dell'area di colmata mediante la realizzazione di diaframmi di palancole con gargami impermeabili in grado di garantire una permeabilità corrispondente ad un strato di un metro di spessore di materiale caratterizzato da un coefficiente di permeabilità k= 1 x 10⁻⁷ cm/s);

• la realizzazione di una colmata con destinazione d'uso industriale (ambiente conterminato e con capping) attraverso il riempimento con materiale proveniente da cava e/o impianto di recupero per la porzione a ridosso delle banchine esistenti e con i sedimenti provenienti dai dragaggi dei fondali del terzo bacino del porto di La Spezia opportunamente disidratati e trattati con cemento, per la porzione centrale della colmata.

Riguardo al riempimento della colmata della Marina del Canaletto con i sedimenti provenienti dai futuri dragaggi previsti nei fondali antistanti il Molo Garibaldi, a carico della AdSP, ed interni al Terzo Bacino Portuale della Spezia le analisi eseguite hanno confermato l'assenza di rischi per l'ambiente. In tal caso, i sedimenti utilizzati saranno conformi al refluimento così come previsto dal D.M. 173/16.

Per tener conto dei possibili impatti ambientali della soluzione di progetto, sulla base dei risultati dell'analisi del rischio allegata, è stato integrato il piano di monitoraggio ambientale estendendo le misure per la matrice acqua marine anche in corrispondenza di n°3 stazioni ARPA presenti nella rada di La Spezia per il rilevamento delle concentrazioni di PCB e idrocarburi totali ed introducendo il monitoraggio della falda a monte dell'area di intervento (rif. Elaborato 21_08_PE_R009 Piano di monitoraggio ambientale).

Si precisa che i sedimenti provenienti dai dragaggi che verranno utilizzati dovranno comunque avere concentrazioni inquinanti inferiori ai limiti della col. B, tab.l, all. 5, Titolo V, parte IV del D.lgs.152/2006 ridotti del 10%.

A tale scopo nel progetto di dragaggio la scelta delle aree dalle quali proverranno i sedimenti da utilizzare per la realizzazione della colmata verrà eseguita sulla base dei risultati della campagna di caratterizzazione dei sedimenti da dragare. Inoltre prima del loro riutilizzo, nell'ambito del cantiere del dragaggio gestito ed a carico della Autorità di Sistema Portuale, sui cumuli di sedimenti di dragaggio disidratati verranno eseguiti, da parte della ditta incaricata da AdSP, dei controlli (analisi di laboratorio) a campione prima della additivazione con il cemento e del successivo impiego per la realizzazione della colmata.

Al fine di contenere, anche in condizioni straordinarie, il carico piezometrico da monte della colmata nel rispetto delle condizioni di flusso modellizzate nello scenario di riferimento alla base dell'analisi di rischio, immediatamente a monte delle banchine interne

della Marina del Canaletto, nella posizione ipotizzata negli scenari dell'analisi del rischio, è stata prevista la posa in opera di un dreno orizzontale.

In particolare, nella posizione indicata negli elaborati "21 08 PE TR03 Colmata Marina del Canaletto – Disposizione pozzi di aggottamento" e "21 08 PE TM02 Rete di smaltimento acque meteoriche – pianta pozzetti e tubazioni", è stata prevista la posa in opera di una tubazione drenante di PEAD DN400 mm con quota di scorrimento posta a quota +0.30 m s.l.m.m.

La tubazione drenante, opportunamente rinfiancata con materiale drenante, è stata divisa in due tronchi dei quali uno convoglia le acque raccolte nel Fosso Vecchio Dorgia e l'altra nel Fosso Melara.

Lungo il dreno è inoltre prevista la posa in opera di pozzetti di ispezione con un interasse di 25 m così da consentire l'esecuzione degli interventi di pulizia/manutenzione del dreno stesso.

Nella Figura 7-1 e Figura 7-2 è rappresentato, evidenziato in blu, il tracciato del dreno previsto in progetto.

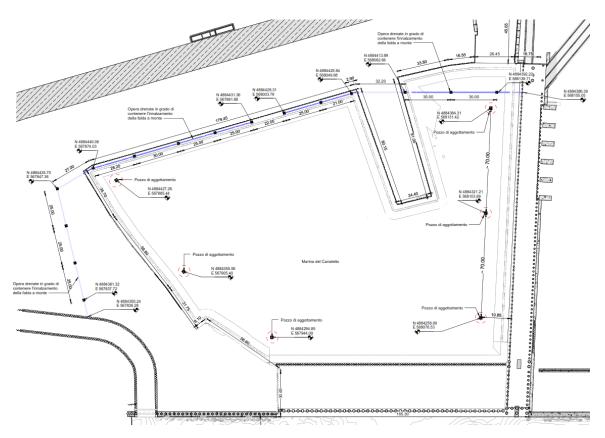


Figura 7-1 Planimetria del dreno (rif. Elaborato 21 08 PE TR03 Colmata Marina del Canaletto –

Disposizione pozzi di aggottamento)

21_08_PE_R004_0 Relazione sulla gestione dei sedimenti	Pag. 31 di 32
--	---------------

Figura 7-2 Planimetria del dreno (rif. Elaborato 21 08 PE TM02 Rete di smaltimento acque meteoriche – pianta pozzetti e tubazioni)

Allegato I

Report Campagna di Indagini

LA SPEZIA CONTAINER TERMINAL S.P.A.

Novembre 2021

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M. 173/2016

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M.173/2016

Cliente: LA SPEZIA CONTAINER TERMINAL S.P.A.

Viale San Bartolomeo 20, 19126 La Spezia

Progetto: CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL

CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M. 173/2016

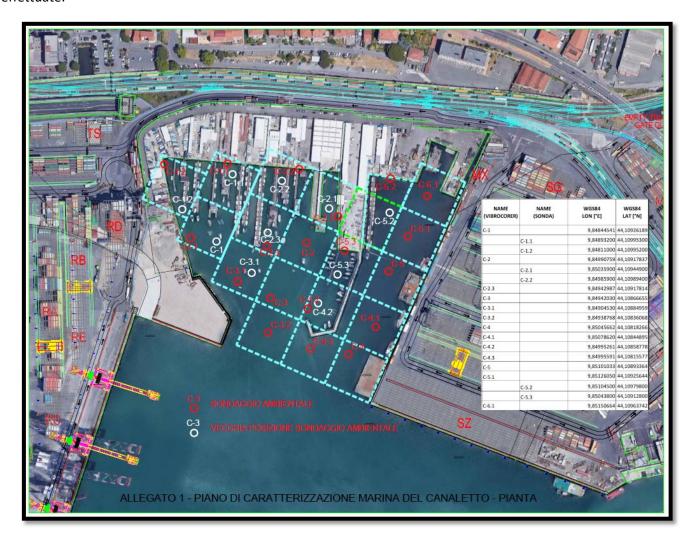
Personale impiegato

Assistenza al campionamento e preparazione aliquote	Marco Pertusati, Silvia Lippi, Sonia Polese		
Analisi granulometriche	Sonia Polese, Ludmilla Kozinkova		
Analisi chimiche	Gianluca Bontà Pittaluga, Ombretta Spinelli, Susanna Dell'Ira,		
	Chiara Manzini, Federica Tardelli, CPG Lab s.r.l. (SV)		
Analisi ecotossicologiche	Serena Anselmi, Andrea Broccoli, Francesca Provenza (BsRC)		

	23137-0	Rev. 00	23/11/2021	Emissione per cliente	MR	NB	СР
1	N° report	Revisione	Data	Descrizione revisione	Preparato	Verificato	Approvato

Sommario

1.	Mater	iali e metodi	3
	1.1.	Campionamento3	
	1.2.	Specifiche sintetiche delle attività di carotaggio con Vibrocorer5	
	1.3.	Metodiche analitiche8	
	1.4.	Analisi dei dati10	
2.	Risulta	ati	13
	2.1.	Analisi fisiche	
	2.2.	Analisi chimiche	
	2.3.	Analisi ecotossicologiche	
3	Elaboi	azione dei dati	38
	3.1.	Classificazione del pericolo ecotossicologico (Output Sediqualsoft)38	
	3.2.	Classificazione del pericolo chimico (Output Sediqualsoft)	
	3.3.	Classe di qualità dei sedimenti (Output Sediqualsoft)47	
4.	Discus	sione e Conclusioni	51
Cor	nsideraz	ioni finali	53



1. Materiali e metodi

1.1. Campionamento

Oggetto della caratterizzazione sono i sedimenti di Marina del Canaletto che, per motivi di operatività portuale è necessario gestire. Al fine della caratterizzazione dei sedimenti in questione, sono stati effettuati diciannove carotaggi. Nella figura sottostante è riportata l'ubicazione delle stazioni di carotaggio e i codici di classificazione delle carote effettuate.

Il prelievo delle carote è stato effettuato nei giorni 23 e 24 settembre 2021 in parte dalla ditta Co.L.Mar. S.r.l. di La Spezia che, tramite un Vibrocorer ha effettuato il prelievo di 13 carote e in parte dalla ditta GEOTER che tramite un carotiere a rotazione ha effettuato il prelievo di 6 carote.

Complessivamente sono state prelevate 19 carote di sedimento della lunghezza di 2 m ciascuna. Nella tabella sottostante sono riportate le coordinate delle 19 stazioni di carotaggio.

NAME (VIBROCORER)	NAME (SONDA)	WGS84 LON [°E]	WGS84 LAT [°N]
C-1		9,84844541	44,10926189
:	C-1.1	9,84893200	44,10995300
	C-1.2	9,84811000	44,10995200
C-2		9,84990759	44,10917837
	C-2.1	9,85035900	44,10944900
	C-2.2	9,84985900	44,10989400
C-2.3		9,84942987	44,10917814
C-3		9,84942030	44,10866655
C-3.1		9,84904530	44,10884959
C-3.2		9,84938768	44,10836068
C-4		9,85045662	44,10818266
C-4.1		9,85078620	44,10844895
C-4.2		9,84995261	44,10858778
C-4.3		9,84995591	44,10815577
C-5		9,85101033	44,10893364
C-5.1		9,85126050	44,10925644
	C-5.2	9,85104500	44,10979800
	C-5.3	9,85043800	44,10912800
C-6.1		9,85150664	44,10963742

Nell'immagine sottostante è visibile il Vibrocarotiere utilizzato.

Una volta portate a terra, le carote sono state poste in apposite cassette catalogatrici per la descrizione macroscopica e la successiva suddivisione in aliquote per le analisi chimiche, fisiche ed ecotossicologiche.

Ciascuna delle 19 carote è stata suddivisa in tre livelli, un livello superficiale dello spessore di 50 cm (livello 0-50), un livello intermedio da 50 cm ad 1 m di profondità (livello 50-100) e un livello profondo da 1 m fino a 2 m di profondità (livello 100-200).

Nella tabella sottostante sono riportate le carote effettuate e le sezioni prelevate per ciascuna carota.

Stazione di campionamento	Metodo	Data	Esecutore	Livelli	Livello 1	Livello 2	Livello 3
C1	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C1-1	Carotiere rotativo	24/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C1-2	Carotiere rotativo	24/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C2	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C2-1	Carotiere rotativo	23/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C2-2	Carotiere rotativo	23/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C2-3	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C3	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C3-1	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C3-2	Carotiere Vibrazione	23/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C4	Carotiere Vibrazione	23/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C4-1	Carotiere Vibrazione	23/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C4-2	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C4-3	Carotiere Vibrazione	23/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C5	Carotiere Vibrazione	23/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C5-1	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm
C5-2	Carotiere rotativo	23/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C5-3	Carotiere rotativo	23/09/2021	Geoter	3	0-50 cm	50-100 cm	100-200 cm
C6-1	Carotiere Vibrazione	24/09/2021	Co.L.Mar. S.r.l.	3	0-50 cm	50-100 cm	100-200 cm

1.2. Specifiche sintetiche delle attività di carotaggio con Vibrocorer

- Giorno 23/09/2021: mobilitazione e carotaggi (C 3.2, C 4.3, C 4, C 4.1, C 5), n.1 replica per stazione;
- Giorno 24/09/2021: carotaggi (C 5, C 5.1, C 6.1, C 3, C 3.1, C 1, C 2.3, C 4.2), n.1 replica per stazione con esclusione della stazione C 2.3 per la quale sono state effettuate n. 2 repliche;
- Imbarcazione utilizzata: Motopontone Ceppe della società ARTSUB srl;
- Vibrocarotiere: Rossfelder P3 con camicia inox AISI 316 da 3500 mm e diametro interno 103 mm, naso con valvola;
- Liner porta campione tubolare in polietilene con spessore 200 micron;
- Posizionamento: RTK Hemisphere S 320 Smart Antenna.

Nella fase di omogeneizzazione del campione, sono state rimosse manualmente le componenti di origine antropica (frammenti di plastica, vetro, metallo ecc.) e di origine naturale (ciottoli, organismi del macrobenthos) qualora presenti. Dopo tali operazioni, i sedimenti sono stati suddivisi in appositi contenitori siglati e conservati refrigerati fino all'inizio delle analisi previste (aliquote di analisi).

Durante il campionamento sono stati compilati i verbali di campionamento riportati in allegato contenenti tutte le informazioni associate al prelievo e alle caratteristiche del sedimento prelevato e ai quali si rimanda per ulteriori

specifiche di dettaglio. Il prelievo, la preparazione, la conservazione e l'analisi dei campioni sono stati eseguiti secondo quanto previsto dal D.M. 173/2016.

Nelle pagine a seguire si riportano le fotografie delle 19 carote di sedimento prelevato.

Carota C4

Carota C4-1

Carota C4-2

Carota C4-3

Carota C5

Carota C5-1

Carota C5-2

Carota C5-3

1.3. Metodiche analitiche

Sulla base del D.M. 173 del 15/07/2016, su ciascun campione sono state effettuate le seguenti analisi:

- Analisi Fisiche: granulometria per via meccanica (scala Wentworth passante ½ phi), colore;
- Analisi Chimiche: mercurio, cadmio, piombo, arsenico, cromo totale, rame, ferro, nichel, zinco, alluminio, vanadio, Carbonio Organico Totale, Idrocarburi C>12, Idrocarburi Policiclici Aromatici (IPA), Policlorobifenili (PBC), Pesticidi organo clorurati, Composti organostannici, Diossine e furani, PCB diossina simili;
- Analisi ecotossicologiche: Saggio biologico su sedimento con Vibrio fischeri, saggio biologico su elutriato con
 Phaeodactylum tricornutum, saggio biologico su elutriato Paracentrotus lividus (embriotossicità). Per una
 migliore rappresentatività della classificazione ecotossicologica, su richiesta del committente e su campione
 di elutriato congelato, è stata condotta anche la determinazione della risposta della specie Vibrio fischeri su
 fase liquida.

Nella tabella seguente sono elencate le metodiche analitiche per ogni prova effettuata. Per ulteriori dettagli si rimanda alla consultazione dei rapporti di prova emessi dal laboratorio che ha effettuato le analisi.

Parametro	Metodica
Distribuzione granulometrica (> 63 micron)	ICRAM Metodologie analitiche di riferimento, 2001, Scheda 3
Colore	Tavole di Munsell
Alluminio	EPA3051A 2007 + EPA6010D 2018
Arsenico	EPA3051A 2007 + EPA6010D 2018
Cromo	EPA3051A 2007 + EPA6010D 2018
Rame	EPA3051A 2007 + EPA6010D 2018
Ferro	EPA3051A 2007 + EPA6010D 2018
Nichel	EPA3051A 2007 + EPA6010D 2018
Piombo	EPA3051A 2007 + EPA6010D 2018
Vanadio	EPA3051A 2007 + EPA6010D 2018
Zinco	EPA3051A 2007 + EPA6010D 2018
Cadmio	EPA3051A 2007 + EPA6010D 2018
Mercurio	EPA3051A 2007 + EPA7010 2007
ldrocarburi C>12	UNI EN ISO 16703:2011
Cromo Esavalente	EPA 3060A + EPA7196A
Monobutilstagno	UNI EN ISO 23161:2019
Dibutilstagno	UNI EN ISO 23161:2019
Tributilstagno	UNI EN ISO 23161:2019
Sommatoria organostannici	UNI EN ISO 23161:2019
Antracene	EPA3545A + EPA8270E
Benza(a) antracene	EPA3545A + EPA8270E
Benzo(a)pirene	EPA3545A + EPA8270E
Benzo(b)fluorantene	EPA3545A + EPA8270E
Benzo(k)fluorantene	EPA3545A + EPA8270E
Benzo(g,h,i)perilene	EPA3545A + EPA8270E
Crisene	EPA3545A + EPA8270E

Parametro	Metodica
Indenopirene	EPA3545A + EPA8270E
Fenantrene	EPA3545A + EPA8270E
Fluorene	EPA3545A + EPA8270E
Fluorantene	EPA3545A + EPA8270E
Naftalene	EPA3545A + EPA8270E
Pirene	EPA3545A + EPA8270E
Sommatoria IPA	EPA3545A + EPA8270E
Aldrin	EPA3545A + EPA8270E
Dieldrin	EPA3545A + EPA8270E
Endrin	EPA3545A + EPA8270E
Alfa-esaclorocicloesano	EPA3545A + EPA8270E
Beta-esaclorocicloesano	EPA3545A + EPA8270E
Gamma-esaclorocicloesano	EPA3545A + EPA8270E
2,4 DDE	EPA3545A + EPA8270E
2,4 DDD	EPA3545A + EPA8270E
2,4 DDT	EPA3545A + EPA8270E
4,4 DDE	EPA3545A + EPA8270E
4,4 DDD	EPA3545A + EPA8270E
4,4 DDT	EPA3545A + EPA8270E
DDE (sommatoria)	EPA3545A + EPA8270E
DDD (sommatoria)	EPA3545A + EPA8270E
DDT (sommatoria)	EPA3545A + EPA8270E
Esaclorobenzene	EPA3545A + EPA8270E
Eptacloro epossido	EPA3545A + EPA8270E
PCB 28	EPA3545A + EPA8270E
PCB 52	EPA3545A + EPA8270E
PCB 77	EPA3545A + EPA8270E
PCB 81	EPA3545A + EPA8270E
PCB 101	EPA3545A + EPA8270E
PCB 118	EPA3545A + EPA8270E
PCB 126	EPA3545A + EPA8270E
PCB 128	EPA3545A + EPA8270E
PCB 138	EPA3545A + EPA8270E
PCB 153	EPA3545A + EPA8270E
PCB 156	EPA3545A + EPA8270E
PCB 169	EPA3545A + EPA8270E
PCB 180	EPA3545A + EPA8270E
Sommatoria PCB	EPA3545A + EPA8270E
Tossicità equivalente PCDD/F+PCB dl	EPA 1613B1994, EPA 1668C 2010

Parametro	Metodica
Saggio di tossicità su specie algale	UNI EN ISO 10253:2016
Inibizione del tasso di crescita a 72 ore di esposizione	OINI EIN 130 10233.2016
Saggio di tossicità su echinoderma	EPA/600/R-95-136/Sezione 15 + ISPRA Quaderni Ricerca Marina
Sviluppo di larve anomale a 72 h di esposizione	11/2017
Saggio di tossicità su batteri in fase solida	UNI EN ISO 11348-1:2019 + ICRAM Metodologie analitiche di
Inibizione della bioluminescenza emessa a 30 minuti	riferimento (2001) Scheda 11, App 2
Saggio di tossicità su batteri in fase liquida	UNI EN ISO 11348-1:2019
Inibizione della bioluminescenza a 15 e 30 minuti	UNI EN 130 11348-1.2019

1.4. Analisi dei dati

I risultati sono stati raccolti nei fogli di calcolo Excel (organizzati da ISPRA secondo le matrici stazioni x contaminanti e stazioni x saggi ecotossicologici) e sono stati elaborati tramite il software SediQualSoft 109.0® per la definizione del pericolo chimico e del pericolo ecotossicologico associato ai sedimenti caratterizzati.

La classificazione chimica si basa sull'indice Hazard Quotient chimico (HQc) che considera la tipologia, il numero e l'entità dei parametri non conformi rispetto ai livelli chimici di riferimento (L1 e L2) tabellati nel D.M. 173/2016 e riportati nella Tabella sottostante.

PARAMETRO	L1	L2			
Elementi in tracce	[mg	kg ⁻¹] p.s.			
Arsenico	12	20			
Cadmio	0,3	0,80			
Cromo	50	150			
Cr VI	2	2			
Rame	40	52			
Mercurio	0,3	0,80			
Nichel	30	75			
Piombo	30	70			
Zinco	100	150			
Contaminanti organici		[μg kg-1] p.s.			
Composti organostannici	5 ⁽¹⁾	72 ⁽²⁾			
Σ PCB ⁽³⁾	8	60			
Σ DDD ⁽⁴⁾	0,8	7,8			
Σ DDE ⁽⁴⁾	1,8	3,7			
Σ DDT ⁽⁴⁾	1,0	4,8			
Clordano	2,3	4,8			
Aldrin	0,2	10 ⁷			
Dieldrin	0,7	4,3			
Endrin	2,7	10			

PARAMETRO	L1	L2
α-HCH	0,2	10 ⁷
β-НСН	0,2	10 ⁷
γ-HCH (Lindano)	0,2	1,0
Eptacloro epossido	0,6	2,7
HCB	0,4	50 ⁷
Idrocarburi C>12	Non disponibile	50000
Σ IPA(16) ⁽⁵⁾	900	4000
Antracene	24	245
Benzo[a]antracene	75	500
Benzo[a]pirene	30	100
Benzo[b]fluorantene	40	500 ⁷
Benzo[k]fluorantene	20	500 ⁷
Benzo[g,h,i]perilene	55	100 ⁷
Crisene	108	846
Indenopirene	70	100 ⁷
Fenantrene	87	544
Fluorene	21	144
Fluorantene	110	1494
Naftalene	35	391
Pirene	153	1398
Σ T.E. PCDD,PCDF ⁽⁶⁾ (Diossine e Furani) e PCB diossina simili	2 x 10 ⁻³	1 X 10 ⁻² *

La classificazione ecotossicologica, invece, si basa su un giudizio di pericolo ecotossicologico (Hazard Quotient batteria) che varia da Assente a Molto Alto, elaborato sull'integrazione ponderata dei risultati ottenuti dai saggi biologici utilizzati. La classificazione deve essere condotta su almeno tre specie appartenenti a tre diversi livelli trofici.

Al pericolo chimico HQc e al pericolo ecotossicologico, calcolati seguendo i criteri sopra esposti, sono assegnate classi qualitative di pericolo che variano da "Assente" a "Molto Alto" come riportato nella seguente tabella (D.M. 173/2016).

Classificazione del pericolo chimico ed ecotossicologico

HQ chimica	HQ ecotossicologia	Classe di pericolo
0 - < 1,3	<1	Assente / Trascurabile
1,3 - < 2,6	≥1 – 1,5	Basso
2,6 - < 6,5	≥1,5 – 3,0	Medio
6,5 - < 13,0	≥3,0 - 6,0	Alto
≥ 13,0	≥6,0 – 10,0	Molto Alto

Successivamente, attraverso il software SediQualsoft® è individuata la Classe di Qualità integrata dei materiali di escavo mediante l'applicazione dei criteri di integrazione ponderata dei pericoli chimici ed ecotossicologici come rappresentato nella tabella 2.7 del D.M. 173/2016 riportata a seguire.

Classi di Qualità del sedimento.

Classe di pericolo ecotossicologico elaborato per l'intera batteria (HQ _{Batteria})	Classificazione chimica	Classe di Qualità del materiale
	HQ _c (L2) ≤ Trascurabile	Α
Accounts	Basso ≤ $HQ_C(L2)$ ≤ Medio	В
Assente	$HQ_{C}(L2) = Alto$	С
	HQ_{c} (L2) > Alto	D
	HQ _C (L1) ≤ Basso	Α
Basso	HQ_c (L1) \geq Medio e HQ_c (L2) \leq Basso	В
	Medio \leq HQ _C (L2) \leq Alto	С
	HQ _c (L2) > Alto	D
Modia	HQ _c (L2) ≤ Basso	С
Medio	HQ _c (L2) ≥ Medio	D
	HQ _c (L2) ≤ Basso	D
≥ Alto	HQ _c (L2) ≥ Medio	E

La valutazione integrata prevede cinque Classi di Qualità che vanno dalla A alla E con le rispettive opzioni di gestione dei materiali classificati. La Classe A corrisponde ai sedimenti di qualità ambientale più elevata mentre la E identifica la Classe di qualità peggiore che prevede un'eventuale rimozione in sicurezza del sedimento dall'ambiente marino dopo la valutazione di rischio. Nella tabella a seguire sono riportate quelle che secondo il D.M. 173/16 sono le opzioni di gestione compatibili con ognuna delle cinque classi di Qualità del sedimento.

Classe	Opzioni di gestione
A	 RIPASCIMENTO della spiaggia emersa con pelite ≤10% o altro valore stabilito su base regionale; RIPASCIMENTO della spiaggia sommersa con frazione sabbiosa prevalente; IMMERSIONE DELIBERATA IN AREE MARINE NON COSTIERE (oltre 3 mn); IMMERSIONE IN AMBIENTE CONTERMINATO MARINO COSTIERO.
В	 IMMERSIONE DELIBERATA IN AREE MARINE NON COSTIERE (oltre 3 mn) con monitoraggio ambientale; IMMERSIONE IN AMBIENTE CONTERMINATO in ambito portuale incluso capping, con monitoraggio ambientale.
С	. IMMERSIONE IN AMBIENTE CONTERMINATO in ambito portuale in grado di trattenere tutte le frazioni granulometriche del sedimento, incluso capping all'internodi aree portuali con idonee misure di monitoraggio ambientale.
D	. IMMERSIONE IN AMBIENTE CONTERMINATO IMPERMEABILIZZATO, con idonee misure di monitoraggio ambientale.
E	. EVENTUALE RIMOZIONE IN SICUREZZA DELL'AMBIENTE MARINO DOPO VALUTAZIONE DI RISCHIO , secondo quanto previsto dalla normativa vigente.

2. Risultati

2.1. Analisi fisiche

Nelle tabelle seguenti sono riportati i risultati ottenuti dall'analisi granulometrica e l'incertezza associata alla misura.

Campione	Ghia	ia ± inco	ertezza	Sabbia	± incer	tezza	Frazione <	-	incertezza
C4 /0 F0	0.5	(%)	0.6	45.4	(%)	4.7	04.4	(%)	F 2
C1/0-50	0,5	±	0,6	15,4	±	1,7	84,1	± .	5,3
C1/50-100	2,8	±	0,7	19,0	±	1,7	78,2	± .	5,0
C1/100-200	1,2	±	0,6	10,0	±	1,4	88,8	±	5,6
C2/0-50	3,0	±	0,7	16,2	±	1,7	80,8	±	5,1
C2/50-100	6,9	±	1,0	12,6	±	1,5	80,5	±	5,1
C2/100-200	0,0	±	0,5	5,6	±	1,3	94,4	±	5,9
C2-3/0-50	0,2	±	0,5	15,6	±	1,7	84,3	±	5,3
C2-3/50-100	4,9	±	0,8	16,3	±	1,6	78,8	±	5,0
C2-3/100-200	0,0	±	0,6	5,4	±	1,3	94,6	±	5,9
C3/0-50	0,0	±	0,5	17,5	±	1,7	82,5	±	5,2
C3/50-100	0,0	±	0,6	6,4	±	1,3	93,6	±	5,9
C3/100-200	0,4	±	0,6	11,5	±	1,5	88,1	±	5,6
C3-1/0-50	0,3	±	0,6	16,8	±	1,7	82,9	±	5,3
C3-1/50-100	0,0	±	0,5	5,6	±	1,3	94,4	±	5,9
C3-1/100-200	1,3	±	0,6	7,0	±	1,3	91,6	±	5,8
C3-2/0-50	0,4	±	0,6	24,9	±	1,9	74,7	±	4,8
C3-2/50-100	0,0	±	0,5	11,4	±	1,5	88,6	±	5,6
C3-2/100-200	2,0	±	0,7	9,9	±	1,5	88,1	±	5,6
C4/0-50	0,3	±	0,5	20,3	±	1,8	79,4	±	5,1
C4/50-100	0,2	±	0,5	11,1	±	1,5	88,7	±	5,6
C4/100-200	5,8	±	0,9	24,0	±	1,9	70,1	±	4,5
C4-1/0-50	0,0	±	0,5	19,4	±	1,8	80,6	±	5,1
C4-1/50-100	0,0	±	0,5	15,1	±	1,7	84,8	±	5,4
C4-1/100-200	0,1	±	0,5	3,5	±	1,1	96,4	±	6,0
C4-2/0-50	0,4	±	0,6	23,7	±	1,9	76,0	±	4,9
C4-2/50-100	11,1	±	1,3	18,6	±	1,7	70,4	±	4,5
C4-2/100-200	0,2	±	0,5	7,8	±	1,3	92,0	±	5,8
C4-3/0-50	0,0	±	0,5	33,4	±	2,2	66,6	±	4,3
C4-3/50-100	2,4	±	0,7	16,6	±	1,7	81,0	±	5,1
C4-3/100-200	0,0	±	0,5	2,8	±	1,1	97,2	±	6,1
C5/0-50	0,0	±	0,6	27,4	±	2,0	72,6	±	4,7
C5/50-100	0,6	±	0,6	16,6	±	1,7	82,8	±	5,3
C5/100-200	0,2	±	0,5	22,1	±	1,9	77,7	±	5,0
C5-1/0-50	1,4	±	0,6	38,3	±	2,2	60,3	±	3,9
C5-1/50-100	0,0	±	0,5	18,9	±	1,8	81,1	±	5,2
C5-1/100-200	0,1	±	0,5	18,4	±	1,8	81,6	±	5,2
C6-1/0-50	2,8	±	0,8	15,8	±	1,7	81,4	±	5,2
C6-1/50-100	0,0	±	0,6	6,8	±	1,3	93,2	±	5,9
C6-1/100-200	1,2	±	0,6	16,4	±	1,7	82,4	±	5,2

Campione	Ghiai	a ± ince (%)	ertezza	Sabbia	± incer (%)	tezza	Frazione < 63 μm ± incertezza (%)			
C1-1/0-50	7,2	±	1,0	33,6	±	2,2	59,2	±	3,9	
C1-1/50-100	4,5	±	0,8	28,0	±	2,1	67,5	±	4,4	
C1-1/100-200	0,0	±	0,5	7,1	±	1,3	92,9	±	5,8	
C1-2/0-50	1,3	±	0,6	20,6	±	1,9	78,1	±	5,0	
C1-2/50-100	0,2	±	0,5	22,8	±	1,9	77,0	±	4,9	
C1-2/100-200	0,0	±	0,5	6,9	±	1,3	93,1	±	5,9	
C2-1/0-50	2,8	±	0,7	22,8	±	1,9	74,3	±	4,8	
C2-1/50-100	4,6	±	0,8	11,1	±	1,5	84,3	±	5,3	
C2-1/100-200	0,0	±	0,5	6,9	±	1,3	93,1	±	5,9	
C2-2/0-50	9,2	±	1,2	32,5	±	2,2	58,3	±	3,8	
C2-2/50-100	0,0	±	0,5	39,8	±	2,3	60,2	±	3,9	
C2-2/100-200	0,0	±	0,5	18,8	±	1,8	81,2	±	5,2	
C5-2/0-50	0,0	±	0,5	26,2	±	2,0	73,8	±	4,7	
C5-2/50-100	0,2	±	0,5	14,3	±	1,6	85,4	±	5,4	
C5-2/100-200	0,0	±	0,5	5,8	±	1,3	94,2	±	5,9	
C5-3/0-50	4,8	±	0,9	16,0	±	1,7	79,2	±	5,0	
C5-3/50-100	1,2	±	0,6	13,9	±	1,6	84,9	±	5,4	
C5-3/100-200	0,0	±	0,5	3,8	±	1,2	96,2	±	6,0	

Si riporta, inoltre, nelle tabelle sottostanti, la suddivisione della frazione sabbiosa (%) in frazioni da ½ phi.

	2000	1400	1000	710	500	355	250	180	125	90	63	< 63
Campione	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
	%	%	%	%	%	%	%	%	%	%	%	%
C1/0-50	0,5	0,5	0,9	0,8	0,7	0,6	0,6	1,5	2,4	3,5	3,9	84,1
C1/50-100	2,8	0,9	1,1	1,1	1,1	0,9	1,1	2,2	2,8	4,0	3,8	78,2
C1/100-200	1,2	0,8	1,2	1,1	1,2	1,0	0,8	0,9	0,8	0,8	1,4	88,8
C2/0-50	3,0	0,6	0,7	0,6	0,5	0,5	0,3	0,6	1,7	5,4	5,3	80,8
C2/50-100	6,9	1,5	1,4	1,0	1,1	0,8	0,6	0,7	0,9	1,8	2,7	80,5
C2/100-200	0,0	0,2	0,5	0,7	1,0	0,7	0,5	0,5	0,4	0,6	0,6	94,4
C2-3/0-50	0,2	0,4	0,5	0,4	0,4	0,3	0,2	0,3	1,4	6,3	5,3	84,3
C2-3/50-100	4,9	2,6	2,2	1,5	1,3	1,0	0,8	1,0	1,2	2,2	2,6	78,8
C2-3/100-200	0,0	0,0	0,4	0,6	0,6	0,6	0,5	0,5	0,5	0,6	1,0	94,6
C3/0-50	0,0	0,0	0,2	0,2	0,2	0,2	0,2	0,8	2,9	7,1	5,7	82,5
C3/50-100	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,5	1,8	3,4	93,6
C3/100-200	0,4	0,8	1,0	0,7	0,7	0,5	0,5	0,6	1,3	2,5	2,9	88,1
C3-1/0-50	0,3	0,3	0,4	0,3	0,3	0,4	0,5	0,8	1,8	5,6	6,4	82,9
C3-1/50-100	0,0	0,1	0,2	0,2	0,2	0,1	0,1	0,1	0,3	1,2	2,9	94,4
C3-1/100-200	1,3	0,7	0,7	0,6	0,5	0,4	0,3	0,5	0,7	1,1	1,7	91,6
C3-2/0-50	0,4	0,7	1,4	0,9	0,8	0,5	0,5	1,4	3,7	8,9	6,2	74,7
C3-2/50-100	0,0	0,2	0,2	0,1	0,1	0,1	0,1	0,4	1,4	3,9	4,7	88,6
C3-2/100-200	2,0	1,0	1,7	1,5	1,1	0,6	0,7	0,7	0,7	0,9	1,0	88,1
C4/0-50	0,3	0,3	0,3	0,4	0,6	0,6	0,6	1,1	2,9	7,3	6,3	79,4
C4/50-100	0,2	0,2	0,2	0,3	0,3	0,2	0,2	0,3	1,3	4,2	4,0	88,7
C4/100-200	5,8	0,7	1,0	1,3	1,4	1,5	1,5	2,3	4,2	5,9	4,1	70,1
C4-1/0-50	0,0	0,1	0,3	0,3	0,4	0,3	0,4	0,7	2,2	7,2	7,5	80,6
C4-1/50-100	0,0	0,3	0,5	0,5	0,5	0,4	0,3	0,4	1,3	5,1	5,8	84,8
C4-1/100-200	0,1	0,3	0,3	0,3	0,3	0,3	0,2	0,3	0,3	0,5	0,8	96,4

	2000	1400	1000	710	500	355	250	180	125	90	63	< 63
Campione	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm	μm
	%	%	%	%	%	%	%	%	%	%	%	%
C4-2/0-50	0,4	0,5	0,6	0,6	0,5	0,3	0,4	0,4	3,4	9,5	7,5	76,0
C4-2/50-100	11,1	1,7	1,5	1,3	1,3	1,1	0,8	1,0	1,8	4,1	3,8	70,4
C4-2/100-200	0,2	0,2	0,6	1,5	1,0	0,7	0,6	0,6	0,6	0,8	1,1	92,0
C4-3/0-50	0,0	0,5	0,5	0,7	0,8	0,7	0,9	2,1	5,3	12,8	9,1	66,6
C4-3/50-100	2,4	0,4	0,6	0,6	0,8	1,0	0,8	1,6	3,1	4,3	3,3	81,0
C4-3/100-200	0,0	0,2	0,2	0,3	0,2	0,2	0,1	0,1	0,2	0,4	0,8	97,2
C5/0-50	0,0	0,5	1,0	0,8	0,8	0,8	1,0	1,8	3,6	8,4	8,6	72,6
C5/50-100	0,6	0,2	0,1	0,1	0,1	0,1	0,2	0,5	2,0	6,5	6,7	82,8
C5/100-200	0,2	0,3	0,4	0,3	0,3	0,3	0,3	0,6	2,2	8,9	8,4	77,7
C5-1/0-50	1,4	0,7	0,6	0,8	0,7	0,7	0,8	1,7	5,6	16,6	10,3	60,3
C5-1/50-100	0,0	0,2	0,2	0,3	0,2	0,2	0,3	0,7	2,3	6,6	7,9	81,1
C5-1/100-200	0,1	0,2	0,1	0,1	0,1	0,1	0,2	0,4	1,7	8,1	7,3	81,6
C6-1/0-50	2,8	1,0	1,2	1,4	1,5	1,2	1,5	2,2	1,4	1,8	2,6	81,4
C6-1/50-100	0,0	0,0	0,3	0,3	0,2	0,2	0,2	0,3	0,7	1,9	2,7	93,2
C6-1/100-200	1,2	0,6	0,5	0,5	0,6	0,7	1,1	1,6	2,4	4,5	4,1	82,4
C1-1/0-50	7,2	1,5	1,5	1,4	1,3	1,1	1,5	2,3	3,2	9,6	10,1	59,2
C1-1/50-100	4,5	0,9	0,9	0,8	0,6	0,5	0,4	0,6	1,5	11,6	10,3	67,5
C1-1/100-200	0,0	0,2	0,4	0,6	0,9	0,7	0,6	0,7	0,7	0,8	1,6	92,9
C1-2/0-50	1,3	0,3	0,5	0,3	0,3	0,3	0,3	0,6	1,5	5,1	11,3	78,1
C1-2/50-100	0,2	0,5	0,9	0,7	0,7	1,0	2,0	3,6	3,7	4,2	5,4	77,0
C1-2/100-200	0,0	0,2	0,4	0,3	0,2	0,1	0,1	0,2	0,5	1,7	3,0	93,1
C2-1/0-50	2,8	1,2	1,3	1,3	1,7	1,6	1,2	1,4	1,7	4,7	6,8	74,3
C2-1/50-100	4,6	1,2	0,7	0,7	0,7	0,5	0,4	0,5	0,6	2,1	3,6	84,3
C2-1/100-200	0,0	0,4	0,8	0,9	1,1	0,8	0,6	0,6	0,5	0,5	0,6	93,1
C2-2/0-50	9,2	1,8	1,4	1,3	1,2	1,3	1,0	1,3	1,6	9,7	12,0	58,3
C2-2/50-100	0,0	0,1	0,2	0,2	0,3	0,2	0,2	0,5	4,2	20,1	13,7	60,2
C2-2/100-200	0,0	0,1	0,7	0,6	0,6	0,5	0,3	0,4	1,5	8,3	5,8	81,2
C5-2/0-50	0,0	0,4	0,7	0,8	0,8	0,7	0,9	3,4	4,7	5,8	8,0	73,8
C5-2/50-100	0,2	0,4	0,6	0,6	0,9	0,8	0,7	1,1	1,4	3,4	4,6	85,4
C5-2/100-200	0,0	0,2	0,3	0,3	0,3	0,4	0,4	0,4	0,6	0,9	1,9	94,2
C5-3/0-50	4,8	1,6	1,3	1,0	0,9	0,7	0,7	0,8	1,4	3,1	4,6	79,2
C5-3/50-100	1,2	1,1	1,2	1,0	0,9	0,7	0,6	0,7	1,2	2,7	3,8	84,9
C5-3/100-200	0,0	0,1	0,3	0,3	0,4	0,4	0,3	0,3	0,3	0,5	0,8	96,2

Infine, nelle tabelle a seguire sono riportate le caratterizzazioni colorimetriche dei campioni di sedimento secondo la classificazione del colore con Munsell Chart.

Campione	Colore (MUNSELL)	Note
C1/0-50	5 Y 6/1	Grigio
C1/50-100	GLEY 1 6/2	Grigio
C1/100-200	GLEY 1 6/2	Grigio
C2/0-50	GLEY 1 6/2	Grigio
C2/50-100	GLEY 1 6/2	Grigio
C2/100-200	5Y 5/1	Grigio
C2-3/0-50	5Y 6/2	Grigio oliva chiaro
C2-3/50-100	5Y 6/2	Grigio oliva chiaro
C2-3/100-200	GLEY 1 6/2	Grigio
C3/0-50	5Y 6/2	Grigio oliva chiaro
C3/50-100	5 Y 6/1	Grigio
C3/100-200	5 Y 6/1	Grigio
C3-1/0-50	5Y 6/2	Grigio oliva chiaro
C3-1/50-100	5Y 6/2	Grigio oliva chiaro
C3-1/100-200	5Y 6/2	Grigio oliva chiaro
C3-2/0-50	5 Y 7/1	Grigio chiaro
C3-2/50-100	5 Y 7/1	Grigio chiaro
C3-2/100-200	GLEY 1 7/2	Grigio verdastro chiaro
C4/0-50	5 Y 6/1	Grigio
C4/50-100	GLEY 1 6/2	Grigio
C4/100-200	5 Y 5/1	Grigio
C4-1/0-50	5Y 6/1	Grigio
C4-1/50-100	5 Y 5/1	Grigio
C4-1/100-200	GLEY 1 7/1	Grigio verdastro chiaro
C4-2/0-50	5Y 6/1	Grigio
C4-2/50-100	GLEY 1 6/2	Grigio
C4-2/100-200	GLEY 1 6/1	Grigio
C4-3/0-50	5Y 5/1	Grigio
C4-3/50-100	5Y 6/1	Grigio
C4-3/100-200	5 Y 7/2	Grigio chiaro
C5/0-50	5Y 6/2	Grigio oliva chiaro
C5/50-100	5Y 6/2	Grigio oliva chiaro
C5/100-200	5Y 6/2	Grigio oliva chiaro
C5-1/0-50	5Y 6/2	Grigio oliva chiaro
C5-1/50-100	5Y 6/2	Grigio oliva chiaro

Campione	Colore (MUNSELL)	Note
C5-1/100-200	5Y 5/2	Grigio oliva
C6-1/0-50	5Y 5/2	Grigio oliva
C6-1/50-100	5Y 6/2	Grigio oliva chiaro
C6-1/100-200	5Y 5/2	Grigio oliva
C1-1/0-50	5Y 5/2	Grigio oliva
C1-1/50-100	5Y 6/2	Grigio oliva chiaro
C1-1/100-200	GLEY 1 7/2	Grigio chiaro
C1-2/0-50	5Y 6/2	Grigio oliva chiaro
C1-2/50-100	5Y 6/2	Grigio oliva chiaro
C1-2/100-200	5Y 6/1	Grigio
C2-1/0-50	GLEY 1 7/2	Grigio chiaro
C2-1/50-100	GLEY 1 7/1	Grigio chiaro
C2-1/100-200	GLEY 1 7/1	Grigio chiaro
C2-2/0-50	5Y 5/2	Grigio oliva
C2-2/50-100	5Y 6/1	Grigio
C2-2/100-200	5Y 6/1	Grigio
C5-2/0-50	5Y 6/2	Grigio oliva chiaro
C5-2/50-100	GLEY 1 7/1	Grigio chiaro
C5-2/100-200	GLEY 1 6/1	Grigio
C5-3/0-50	5Y 5/2	Grigio oliva
C5-3/50-100	GLEY 1 6/2	Grigio
C5-3/100-200	GLEY 1 7/1	Grigio chiaro

2.2. Analisi chimiche

Metalli e metalloidi

Campione	Al	As	Cd	Cr	Cu	Fe	Mn	Ni	Pb	V	Zn	Hg
Campione	% s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.	% s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.	mg/kg s.s.
C1/0-50	3,82	21,29	0,32	88,46	61,10	3,30	422,13	60,25	105,33	75,66	182,09	0,36
C1/50-100	1,94	22,14	0,38	49,35	82,09	2,87	402,07	48,31	132,26	46,88	211,57	0,58
C1/100-200	3,80	29,37	0,14	90,56	44,03	3,50	411,63	74,54	32,85	83,10	102,81	0,13
C2/0-50	1,87	21,35	0,40	62,91	62,57	2,64	363,28	48,72	76,73	47,39	173,72	0,43
C2/50-100	3,06	26,59	0,44	73,15	92,06	3,19	417,19	59,07	177,39	67,70	258,12	1,10
C2/100-200	3,43	34,41	0,16	102,50	45,40	3,68	419,53	88,67	33,28	90,96	111,35	0,14
C2-3/0-50	1,56	18,27	0,29	54,41	55,43	2,44	310,45	41,42	102,46	39,08	150,52	0,33
C2-3/50-100	2,34	24,71	0,49	72,80	92,66	2,93	429,02	57,78	108,91	57,42	213,91	0,59
C2-3/100-200	3,89	35,90	0,17	96,87	40,42	3,37	439,54	77,55	26,10	92,29	95,03	0,12
C3/0-50	1,91	19,09	0,25	59,89	41,25	2,57	352,10	47,36	51,18	43,43	111,92	0,26
C3/50-100	1,82	20,41	0,28	60,43	44,99	2,69	366,14	49,91	66,70	44,35	122,69	0,34
C3/100-200	2,81	28,74	1,22	109,38	128,91	3,23	426,10	65,75	212,39	94,58	402,52	1,31
C3-1/0-50	2,75	20,51	0,27	69,24	47,04	2,77	370,99	51,31	59,85	55,82	131,04	0,33
C3-1/50-100	3,48	25,26	0,33	89,10	51,98	3,15	387,27	59,69	74,05	78,47	147,18	0,46
C3-1/100-200	2,02	22,48	0,63	61,55	108,35	3,12	452,72	51,62	218,70	54,36	255,53	1,39
C3-2/0-50	1,58	16,66	0,23	51,55	39,87	2,38	317,91	42,12	51,70	38,82	110,34	0,28
C3-2/50-100	1,85	22,52	0,36	65,62	56,97	2,84	378,54	53,06	80,36	51,55	144,00	0,52
C3-2/100-200	4,99	24,43	1,05	104,93	183,76	3,59	420,81	63,19	378,93	107,18	467,64	3,75
C4/0-50	2,25	17,50	0,33	60,83	40,85	2,24	339,90	42,48	42,00	50,42	105,34	0,26
C4/50-100	2,79	22,72	0,36	79,93	57,80	2,86	370,85	55,65	78,66	67,46	167,40	0,52
C4/100-200	2,78	26,91	1,21	110,22	134,54	3,01	393,59	68,60	158,78	106,33	369,45	1,04
C4-1/0-50	2,80	20,00	0,34	72,31	55,36	2,52	364,27	44,58	61,58	57,33	145,40	0,30
C4-1/50-100	2,73	20,61	0,32	75,46	45,09	2,76	421,79	51,45	56,11	66,32	131,81	0,32
C4-1/100-200	2,94	21,18	0,088	64,03	42,22	3,55	762,80	56,96	29,57	56,80	93,34	0,089
C4-2/0-50	2,80	18,62	0,30	67,93	43,35	2,49	331,21	46,02	50,41	57,22	119,29	0,28
C4-2/50-100	4,21	22,82	0,44	92,85	67,05	3,28	411,99	57,02	106,88	85,29	190,06	0,71
C4-2/100-200	4,39	37,85	0,14	110,74	41,78	3,72	410,17	87,06	22,89	105,74	99,67	0,080
C4-3/0-50	2,66	18,42	0,25	63,59	41,17	2,26	306,37	40,75	54,61	54,94	118,40	0,31
C4-3/50-100	1,81	26,36	1,80	105,36	138,58	3,07	413,82	63,91	204,73	81,04	432,44	1,39
C4-3/100-200	3,99	19,93	0,38	85,58	61,26	3,62	561,01	61,04	82,24	80,28	162,20	0,39
C5/0-50	1,86	15,00	0,57	78,16	148,55	2,11	259,54	46,70	77,67	41,23	418,69	0,46
C5/50-100	1,57	19,76	0,41	63,88	73,03	2,53	367,11	45,00	77,15	41,53	198,66	0,38
C5/100-200	2,51	17,34	0,34	66,98	44,67	2,36	359,07	43,92	52,09	55,55	133,57	0,27
C5-1/0-50	2,26	15,48	0,36	72,54	98,66	2,09	271,64	40,77	66,00	47,50	254,69	0,38
C5-1/50-100	2,71	16,25	0,29	68,54	51,43	2,41	345,36	46,58	57,01	54,87	158,20	0,27
C5-1/100-200	2,29	18,29	0,33	64,35	45,40	2,42	352,17	47,92	55,19	53,06	165,73	0,31
C6-1/0-50	2,72	21,89	0,79	103,86	181,96	2,77	378,87	59,42	174,74	58,68	594,19	1,09
C6-1/50-100	3,10	21,98	0,63	93,55	110,63	3,16	392,98	58,68	142,44	70,59	317,46	0,65
C6-1/100-200	3,84	32,01	2,09	157,42	307,37	3,99	440,48	77,31	516,58	124,54	1175,00	3,46
C1-1/0-50	2,48	19,23	0,65	78,38	261,39	2,21	266,93	43,86	162,42	59,15	423,04	0,87
C1-1/50-100	1,68	13,91	0,24	40,12	50,48	1,99	258,12	33,17	152,87	34,49	151,16	0,85
C1-1/100-200	3,32	26,46	0,10	81,76	36,23	3,22	469,16	70,67	19,95	73,80	86,08	0,069
C1-2/50-100	1,73	15,62	0,22 0,061	41,81	94,98	1,95	212,42	32,79	142,66	34,81	199,37	0,84 0,19
C1-2/50-100 C1-2/100-200	2,44	10,76		44,79 54,78	26,07	2,36 2,90	313,12 274,28	36,30	50,34 22,99	42,13 59,29	71,74 80,00	0,19
C1-2/100-200 C2-1/0-50	3,28 2,89	11,92 22,36	0,046 0,22	64,20	31,62 458,59	2,90	468,17	42,13 46,58	87,22	59,29	364,13	0,047
C2-1/0-50 C2-1/50-100		24,07			458,59 37,72							0,25
C2-1/50-100 C2-1/100-200	3,10 3,99	32,22	0,093 0,091	60,14 116,53	36,99	2,87 3,52	371,93 430,65	50,36 92,53	26,81 20,19	60,18 102,93	81,41 100,70	0,11
C2-1/100-200 C2-2/0-50												
C2-2/0-50 C2-2/50-100	1,35 0,85	12,97 12,47	0,31 0,043	35,97 24,05	143,99 20,17	1,55 1,54	159,02 177,16	25,28 23,80	155,35 32,28	28,84 20,83	229,33 43,94	1,31 0,12
C2-2/30-100 C2-2/100-200	3,02	24,24	0,043		30,18	2,83	384,42	54,06	32,28 17,40	66,84	74,82	0,12
C5-2/0-50	1,47	11,85	0,072	68,79 35,67	28,48	2,83	298,83	37,07	20,67	32,25	68,88	0,056
C5-2/0-50 C5-2/50-100		21,21	0,065	59,60	30,71	2,17	432,46	47,23	20,57	61,67	74,64	0,059
C5-2/100-200	2,96 3,16	35,49	0,10	89,44	38,94	3,38	432,46	75,99	20,38	81,40	94,15	0,049
C5-2/100-200 C5-3/0-50	1,60	21,75	0,10	72,76	122,03	2,66	340,88	75,99 48,87	194,35	51,80	373,32	0,066
C5-3/50-100	2,85	18,37	0,63	65,35	42,47	2,00	520,66	52,94	43,59	63,64	106,44	0,98
C5-3/30-100 C5-3/100-200	4,07	32,36	0,12	111,61	40,42	3,64	426,10	89,47	21,92	105,48	100,44	0,17
CJ-3/ 100-200	+,∪/	J2,J0	0,033	111,01	70,42	3,04	720,10	03,47	21,32	103,40	101,31	0,004

Carbonio organico totale (TOC) e Idrocarburi pesanti (C>12)

	TOC	IP C>12
Campione	% s.s.	mg/kg s.s.
C1/0-50	1,79	200,29
C1/50-100	1,39	347,92
C1/100-200	1,98	36,06
C2/0-50	1,81	304,56
C2/50-100	1,99	518,18
C2/100-200	3,39	30,05
C2-3/0-50	2,18	217,35
C2-3/50-100	2,11	562,43
C2-3/100-200	2,08	25,27
C3/0-50	1,68	202,91
C3/50-100	1,70	227,64
C3/100-200	2,65	805,10
C3-1/0-50	1,66	131,71
C3-1/50-100	1,75	208,06
C3-1/100-200	1,83	499,47
C3-2/0-50	1,44	158,57
C3-2/50-100	1,79	315,79
C3-2/100-200	2,03	1879,68
C4/0-50	1,55	205,44
C4/50-100	1,73	342,88
C4/100-200	3,16	1462,05
C4-1/0-50	1,96	282,21
C4-1/50-100	1,94	186,08
C4-1/100-200	1,01	53,31
C4-2/0-50	1,48	202,46
C4-2/50-100	1,80	408,56
C4-2/100-200	2,50	43,01
C4-3/0-50	1,61	228,19
C4-3/50-100	2,81	1156,58
C4-3/100-200	0,92	255,15
C5/0-50	2,74	1087,27
C5/50-100	2,18	564,33
C5/100-200	1,95	539,32
C5-1/0-50	2,10	755,16
C5-1/50-100	1,83	291,39
C5-1/100-200	2,06	297,15
C6-1/0-50	2,97	2021,94
C6-1/50-100	2,26	1232,63
C6-1/100-200	3,63	5597,68
C1-1/0-50	1,63	656,80
C1-1/50-100	1,03	408,64
C1-1/100-200	1,93	19,91
C1-2/0-50	1,01	126,34
C1-2/50-100	0,63	40,81
C1-2/100-200	0,68	11,77
C2-1/0-50	0,95	300,57
C2-1/50-100	1,12	16,47
C2-1/100-200	2,55	18,60

Commisses	тос	IP C>12
Campione	% s.s.	mg/kg s.s.
C2-2/0-50	1,11	94,31
C2-2/50-100	0,053	48,09
C2-2/100-200	1,40	13,58
C5-2/0-50	0,69	121,24
C5-2/50-100	1,18	28,02
C5-2/100-200	2,33	32,10
C5-3/0-50	2,43	986,52
C5-3/50-100	1,06	96,94
C5-3/100-200	3,00	42,53

Composti organostannici (µg/kg s.s.)

Campione	MTB	DBT	TBT	ΣΒΤς
C1/0-50	9	216	<lod< td=""><td>226</td></lod<>	226
C1/50-100	5	<lod< td=""><td><lod< td=""><td>5</td></lod<></td></lod<>	<lod< td=""><td>5</td></lod<>	5
C1/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2/0-50	46	640	<lod< td=""><td>716</td></lod<>	716
C2/50-100	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-3/0-50	17	446	<lod< td=""><td>468</td></lod<>	468
C2-3/50-100	13	284	<lod< td=""><td>299</td></lod<>	299
C2-3/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3/0-50	30	523	<lod< td=""><td>558</td></lod<>	558
C3/50-100	15	208	<lod< td=""><td>223</td></lod<>	223
C3/100-200	41	540	<lod< td=""><td>586</td></lod<>	586
C3-1/0-50	60	604	72	886
C3-1/50-100	19	167	<lod< td=""><td>190</td></lod<>	190
C3-1/100-200	21	348	<lod< td=""><td>372</td></lod<>	372
C3-2/0-50	12	234	<lod< td=""><td>249</td></lod<>	249
C3-2/50-100	21	481	<lod< td=""><td>511</td></lod<>	511
C3-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4/0-50	12	218	<lod< td=""><td>230</td></lod<>	230
C4/50-100	22	483	<lod< td=""><td>509</td></lod<>	509
C4/100-200	96	1406	<lod< td=""><td>1511</td></lod<>	1511
C4-1/0-50	47	336	<lod< td=""><td>387</td></lod<>	387
C4-1/50-100	19	327	<lod< td=""><td>348</td></lod<>	348
C4-1/100-200	3	<lod< td=""><td><lod< td=""><td>3</td></lod<></td></lod<>	<lod< td=""><td>3</td></lod<>	3
C4-2/0-50	17	254	<lod< td=""><td>273</td></lod<>	273
C4-2/50-100	40	356	<lod< td=""><td>403</td></lod<>	403
C4-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-3/0-50	45	809	<lod< td=""><td>867</td></lod<>	867
C4-3/50-100	120	712	<lod< td=""><td>842</td></lod<>	842
C4-3/100-200	13	<lod< td=""><td><lod< td=""><td>13</td></lod<></td></lod<>	<lod< td=""><td>13</td></lod<>	13
C5/0-50	103	2862	<lod< td=""><td>2975</td></lod<>	2975
C5/50-100	60	1487	<lod< td=""><td>1556</td></lod<>	1556
C5/100-200	57	1137	<lod< td=""><td>1202</td></lod<>	1202
C5-1/0-50	71	776	<lod< td=""><td>854</td></lod<>	854
C5-1/50-100	41	785	<lod< td=""><td>831</td></lod<>	831
C5-1/100-200	36	701	<lod< td=""><td>740</td></lod<>	740

Campione	MTB	DBT	TBT	ΣBTs
C6-1/0-50	70	3568	<lod< td=""><td>3644</td></lod<>	3644
C6-1/50-100	5	12858	<lod< td=""><td>12869</td></lod<>	12869
C6-1/100-200	482	6568	<lod< td=""><td>7057</td></lod<>	7057
C1-1/0-50	3847	4888	<lod< td=""><td>8850</td></lod<>	8850
C1-1/50-100	19	640	<lod< td=""><td>677</td></lod<>	677
C1-1/100-200	2	30	<lod< td=""><td>32</td></lod<>	32
C1-2/0-50	<lod< td=""><td>4180</td><td><lod< td=""><td>4233</td></lod<></td></lod<>	4180	<lod< td=""><td>4233</td></lod<>	4233
C1-2/50-100	5	78	<lod< td=""><td>83</td></lod<>	83
C1-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-1/0-50	4167	111949	<lod< td=""><td>124320</td></lod<>	124320
C2-1/50-100	6	197	<lod< td=""><td>223</td></lod<>	223
C2-1/100-200	8	171	<lod< td=""><td>229</td></lod<>	229
C2-2/0-50	136	10181	<lod< td=""><td>10470</td></lod<>	10470
C2-2/50-100	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-2/0-50	6	82	<lod< td=""><td>88</td></lod<>	88
C5-2/50-100	4	79	<lod< td=""><td>85</td></lod<>	85
C5-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-3/0-50	93	1199	<lod< td=""><td>1312</td></lod<>	1312
C5-3/50-100	48	633	<lod< td=""><td>696</td></lod<>	696
C5-3/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Policlorobifenili (PCB, μg/kg s.s.)

Campione	PCB 28	PCB 52	PCB 77	PCB 81	PCB 101	PCB 118	PCB 126	PCB 128	PCB 138	PCB 153	PCB 156	PCB 169	PCB 180	Σ ΡСΒ
C1/0-50	1,8	2,4	0,1	0,0	5,9	2,1	<lod< td=""><td>0,9</td><td>8,0</td><td>10,4</td><td>0,3</td><td>0,0</td><td>6,1</td><td>38,0</td></lod<>	0,9	8,0	10,4	0,3	0,0	6,1	38,0
C1/50-100	1,1	2,6	0,1	0,0	7,8	3,5	<lod< td=""><td>1,6</td><td>11,6</td><td>13,8</td><td>0,6</td><td>0,0</td><td>10,8</td><td>53,5</td></lod<>	1,6	11,6	13,8	0,6	0,0	10,8	53,5
C1/100-200	2,1	0,4	<lod< td=""><td><lod< td=""><td>0,4</td><td>0,1</td><td><lod< td=""><td><lod< td=""><td>0,3</td><td>0,5</td><td>0,0</td><td><lod< td=""><td>0,2</td><td>4,2</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,4</td><td>0,1</td><td><lod< td=""><td><lod< td=""><td>0,3</td><td>0,5</td><td>0,0</td><td><lod< td=""><td>0,2</td><td>4,2</td></lod<></td></lod<></td></lod<></td></lod<>	0,4	0,1	<lod< td=""><td><lod< td=""><td>0,3</td><td>0,5</td><td>0,0</td><td><lod< td=""><td>0,2</td><td>4,2</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,3</td><td>0,5</td><td>0,0</td><td><lod< td=""><td>0,2</td><td>4,2</td></lod<></td></lod<>	0,3	0,5	0,0	<lod< td=""><td>0,2</td><td>4,2</td></lod<>	0,2	4,2
C2/0-50	0,5	0,3	0,0	<lod< td=""><td>0,5</td><td>0,2</td><td><lod< td=""><td><lod< td=""><td>0,6</td><td>0,8</td><td>0,0</td><td><lod< td=""><td>0,6</td><td>3,4</td></lod<></td></lod<></td></lod<></td></lod<>	0,5	0,2	<lod< td=""><td><lod< td=""><td>0,6</td><td>0,8</td><td>0,0</td><td><lod< td=""><td>0,6</td><td>3,4</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,6</td><td>0,8</td><td>0,0</td><td><lod< td=""><td>0,6</td><td>3,4</td></lod<></td></lod<>	0,6	0,8	0,0	<lod< td=""><td>0,6</td><td>3,4</td></lod<>	0,6	3,4
C2/50-100	1,4	1,5	0,0	<lod< td=""><td>3,2</td><td>1,7</td><td><lod< td=""><td>0,6</td><td>4,4</td><td>5,2</td><td>0,2</td><td><lod< td=""><td>3,2</td><td>21,6</td></lod<></td></lod<></td></lod<>	3,2	1,7	<lod< td=""><td>0,6</td><td>4,4</td><td>5,2</td><td>0,2</td><td><lod< td=""><td>3,2</td><td>21,6</td></lod<></td></lod<>	0,6	4,4	5,2	0,2	<lod< td=""><td>3,2</td><td>21,6</td></lod<>	3,2	21,6
C2/100-200	1,0	0,5	0,0	<lod< td=""><td>0,6</td><td>0,2</td><td><lod< td=""><td>0,0</td><td>0,5</td><td>0,7</td><td>0,0</td><td><lod< td=""><td>0,4</td><td>4,0</td></lod<></td></lod<></td></lod<>	0,6	0,2	<lod< td=""><td>0,0</td><td>0,5</td><td>0,7</td><td>0,0</td><td><lod< td=""><td>0,4</td><td>4,0</td></lod<></td></lod<>	0,0	0,5	0,7	0,0	<lod< td=""><td>0,4</td><td>4,0</td></lod<>	0,4	4,0
C2-3/0-50	0,9	1,2	0,0	0,0	2,5	1,2	<lod< td=""><td>0,6</td><td>4,8</td><td>6,1</td><td>0,2</td><td>0,0</td><td>4,2</td><td>21,7</td></lod<>	0,6	4,8	6,1	0,2	0,0	4,2	21,7
C2-3/50-100	0,8	2,0	0,1	0,0	6,1	2,9	<lod< td=""><td>1,2</td><td>8,8</td><td>11,0</td><td>0,4</td><td><lod< td=""><td>7,0</td><td>40,3</td></lod<></td></lod<>	1,2	8,8	11,0	0,4	<lod< td=""><td>7,0</td><td>40,3</td></lod<>	7,0	40,3
C2-3/100-200	1,0	0,3	0,0	0,0	0,4	0,2	<lod< td=""><td>0,1</td><td>0,7</td><td>0,8</td><td>0,0</td><td><lod< td=""><td>0,5</td><td>4,1</td></lod<></td></lod<>	0,1	0,7	0,8	0,0	<lod< td=""><td>0,5</td><td>4,1</td></lod<>	0,5	4,1
C3/0-50	1,2	0,8	0,0	0,0	2,1	1,1	<lod< td=""><td>0,5</td><td>4,0</td><td>5,1</td><td>0,2</td><td><lod< td=""><td>3,3</td><td>18,4</td></lod<></td></lod<>	0,5	4,0	5,1	0,2	<lod< td=""><td>3,3</td><td>18,4</td></lod<>	3,3	18,4
C3/50-100	3,3	1,6	0,1	0,0	5,4	3,3	<lod< td=""><td>1,3</td><td>9,7</td><td>11,7</td><td>0,5</td><td><lod< td=""><td>7,5</td><td>44,5</td></lod<></td></lod<>	1,3	9,7	11,7	0,5	<lod< td=""><td>7,5</td><td>44,5</td></lod<>	7,5	44,5
C3/100-200	0,7	2,5	0,1	0,0	6,7	4,3	<lod< td=""><td>1,7</td><td>12,3</td><td>14,3</td><td>0,7</td><td>0,0</td><td>9,2</td><td>52,6</td></lod<>	1,7	12,3	14,3	0,7	0,0	9,2	52,6
C3-1/0-50	2,7	0,8	0,0	0,0	1,9	1,3	<lod< td=""><td>0,6</td><td>5,3</td><td>6,5</td><td>0,3</td><td><lod< td=""><td>5,8</td><td>25,3</td></lod<></td></lod<>	0,6	5,3	6,5	0,3	<lod< td=""><td>5,8</td><td>25,3</td></lod<>	5,8	25,3
C3-1/50-100	0,8	1,4	0,0	0,0	2,8	1,4	<lod< td=""><td>0,6</td><td>5,1</td><td>6,6</td><td>0,2</td><td>0,0</td><td>4,3</td><td>23,3</td></lod<>	0,6	5,1	6,6	0,2	0,0	4,3	23,3
C3-1/100-200	3,2	1,4	0,1	0,0	5,0	3,5	<lod< td=""><td>1,3</td><td>9,4</td><td>10,6</td><td>0,5</td><td><lod< td=""><td>6,6</td><td>41,6</td></lod<></td></lod<>	1,3	9,4	10,6	0,5	<lod< td=""><td>6,6</td><td>41,6</td></lod<>	6,6	41,6
C3-2/0-50	0,6	1,7	0,0	<lod< td=""><td>2,5</td><td>1,1</td><td><lod< td=""><td>0,4</td><td>3,6</td><td>4,8</td><td>0,2</td><td><lod< td=""><td>3,0</td><td>18,1</td></lod<></td></lod<></td></lod<>	2,5	1,1	<lod< td=""><td>0,4</td><td>3,6</td><td>4,8</td><td>0,2</td><td><lod< td=""><td>3,0</td><td>18,1</td></lod<></td></lod<>	0,4	3,6	4,8	0,2	<lod< td=""><td>3,0</td><td>18,1</td></lod<>	3,0	18,1
C3-2/50-100	0,5	1,4	0,0	0,0	2,7	1,3	<lod< td=""><td>0,5</td><td>4,5</td><td>6,0</td><td>0,2</td><td><lod< td=""><td>3,7</td><td>20,9</td></lod<></td></lod<>	0,5	4,5	6,0	0,2	<lod< td=""><td>3,7</td><td>20,9</td></lod<>	3,7	20,9
C3-2/100-200	2,0	7,9	0,2	0,1	18,7	10,3	<lod< td=""><td>4,6</td><td>33,9</td><td>39,8</td><td>1,8</td><td>0,0</td><td>25,8</td><td>145,1</td></lod<>	4,6	33,9	39,8	1,8	0,0	25,8	145,1
C4/0-50	7,4	0,7	0,0	0,0	2,7	1,6	<lod< td=""><td>0,7</td><td>5,1</td><td>6,0</td><td>0,2</td><td><lod< td=""><td>4,4</td><td>28,8</td></lod<></td></lod<>	0,7	5,1	6,0	0,2	<lod< td=""><td>4,4</td><td>28,8</td></lod<>	4,4	28,8
C4/50-100	1,2	0,7	0,0	<lod< td=""><td>1,7</td><td>1,0</td><td><lod< td=""><td>0,4</td><td>3,1</td><td>3,8</td><td>0,2</td><td><lod< td=""><td>2,6</td><td>14,6</td></lod<></td></lod<></td></lod<>	1,7	1,0	<lod< td=""><td>0,4</td><td>3,1</td><td>3,8</td><td>0,2</td><td><lod< td=""><td>2,6</td><td>14,6</td></lod<></td></lod<>	0,4	3,1	3,8	0,2	<lod< td=""><td>2,6</td><td>14,6</td></lod<>	2,6	14,6
C4/100-200	1,2	1,1	0,0	0,0	2,1	1,3	<lod< td=""><td>0,4</td><td>3,7</td><td>4,8</td><td>0,2</td><td>0,0</td><td>3,3</td><td>18,3</td></lod<>	0,4	3,7	4,8	0,2	0,0	3,3	18,3
C4-1/0-50	33,9	14,2	0,4	0,1	21,5	17,2	0,0	6,3	38,8	41,3	2,5	0,0	27,7	204,1
C4-1/50-100	5,1	3,4	0,1	0,0	4,5	2,7	<lod< td=""><td>1,0</td><td>7,5</td><td>8,8</td><td>0,5</td><td>0,0</td><td>6,2</td><td>39,7</td></lod<>	1,0	7,5	8,8	0,5	0,0	6,2	39,7
C4-1/100-200	1,0	0,8	0,0	0,0	0,9	0,5	<lod< td=""><td>0,2</td><td>1,3</td><td>1,7</td><td>0,1</td><td><lod< td=""><td>1,1</td><td>7,5</td></lod<></td></lod<>	0,2	1,3	1,7	0,1	<lod< td=""><td>1,1</td><td>7,5</td></lod<>	1,1	7,5
C4-2/0-50	0,4	1,4	0,1	0,0	2,9	1,8	<lod< td=""><td>0,6</td><td>4,9</td><td>6,3</td><td>0,3</td><td>0,0</td><td>4,1</td><td>22,9</td></lod<>	0,6	4,9	6,3	0,3	0,0	4,1	22,9
C4-2/50-100	5,3	2,7	0,2	0,0	8,4	6,5	0,0	2,0	15,9	21,4	1,0	0,0	14,6	77,9
C4-2/100-200	0,6	0,8	0,0	0,0	1,0	0,8	<lod< td=""><td>0,1</td><td>1,1</td><td>1,3</td><td>0,1</td><td><lod< td=""><td>0,8</td><td>6,6</td></lod<></td></lod<>	0,1	1,1	1,3	0,1	<lod< td=""><td>0,8</td><td>6,6</td></lod<>	0,8	6,6
C4-3/0-50	2,4	1,3	0,0	0,0	3,2	1,5	<lod< td=""><td>0,7</td><td>5,9</td><td>7,6</td><td>0,3</td><td><lod< td=""><td>5,9</td><td>29,0</td></lod<></td></lod<>	0,7	5,9	7,6	0,3	<lod< td=""><td>5,9</td><td>29,0</td></lod<>	5,9	29,0
C4-3/50-100	17,2	6,7	0,3	0,1	20,4	13,2	0,0	4,8	34,9	41,0	2,0	0,0	27,0	167,6
C4-3/100-200	1,9	5,0	0,2	0,0	13,2	7,7	0,0	2,8	20,1	22,9	1,2	0,0	16,3	91,3
C5/0-50	0,0	0,0	<lod< td=""><td><lod< td=""><td>0,0</td><td>0,0</td><td><lod< td=""><td>0,0</td><td>0,1</td><td>0,1</td><td>0,0</td><td><lod< td=""><td>0,1</td><td>0,4</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>0,0</td><td>0,0</td><td><lod< td=""><td>0,0</td><td>0,1</td><td>0,1</td><td>0,0</td><td><lod< td=""><td>0,1</td><td>0,4</td></lod<></td></lod<></td></lod<>	0,0	0,0	<lod< td=""><td>0,0</td><td>0,1</td><td>0,1</td><td>0,0</td><td><lod< td=""><td>0,1</td><td>0,4</td></lod<></td></lod<>	0,0	0,1	0,1	0,0	<lod< td=""><td>0,1</td><td>0,4</td></lod<>	0,1	0,4
C5/50-100	13,7	3,4	0,2	0,1	13,1	7,6	0,0	3,5	26,6	32,5	1,4	0,0	25,4	127,5

Campione	PCB 28	PCB 52	PCB 77	PCB 81	PCB 101	PCB 118	PCB 126	PCB 128	PCB 138	PCB 153	PCB 156	PCB 169	PCB 180	Σ РСВ
C5/100-200	1,8	6,3	0,2	0,1	10,9	9,9	<lod< td=""><td>2,2</td><td>15,5</td><td>16,5</td><td>1,3</td><td><lod< td=""><td>10,5</td><td>75,2</td></lod<></td></lod<>	2,2	15,5	16,5	1,3	<lod< td=""><td>10,5</td><td>75,2</td></lod<>	10,5	75,2
C5-1/0-50	2,7	3,0	0,2	0,0	9,5	5,6	<lod< td=""><td>2,4</td><td>17,6</td><td>20,6</td><td>1,0</td><td>0,0</td><td>14,1</td><td>76,7</td></lod<>	2,4	17,6	20,6	1,0	0,0	14,1	76,7
C5-1/50-100	7,0	3,1	0,2	0,0	9,9	5,4	<lod< td=""><td>2,4</td><td>18,0</td><td>23,4</td><td>1,1</td><td>0,0</td><td>17,1</td><td>87,6</td></lod<>	2,4	18,0	23,4	1,1	0,0	17,1	87,6
C5-1/100-200	3,5	7,2	0,2	0,1	15,1	7,9	<lod< td=""><td>3,1</td><td>23,9</td><td>29,0</td><td>1,2</td><td><lod< td=""><td>19,1</td><td>110,2</td></lod<></td></lod<>	3,1	23,9	29,0	1,2	<lod< td=""><td>19,1</td><td>110,2</td></lod<>	19,1	110,2
C6-1/0-50	6,1	21,4	0,6	0,2	50,0	27,3	<lod< td=""><td>12,3</td><td>78,7</td><td>83,4</td><td>4,4</td><td>0,0</td><td>65,0</td><td>349,5</td></lod<>	12,3	78,7	83,4	4,4	0,0	65,0	349,5
C6-1/50-100	174,0	841,5	11,5	5,3	1315,9	879,3	0,9	268,2	1637,6	1465,2	110,3	0,4	602,1	7312,1
C6-1/100-200	43,8	309,8	4,5	2,0	519,0	278,2	0,4	104,2	675,8	721,3	42,2	0,3	444,4	3145,9
C1-1/0-50	5,0	11,1	0,4	0,1	21,1	21,2	<lod< td=""><td>5,6</td><td>36,4</td><td>37,4</td><td>3,1</td><td>0,0</td><td>31,5</td><td>172,9</td></lod<>	5,6	36,4	37,4	3,1	0,0	31,5	172,9
C1-1/50-100	6,1	11,5	0,1	0,0	9,7	3,8	<lod< td=""><td>0,9</td><td>7,7</td><td>8,9</td><td>0,3</td><td><lod< td=""><td>4,5</td><td>53,5</td></lod<></td></lod<>	0,9	7,7	8,9	0,3	<lod< td=""><td>4,5</td><td>53,5</td></lod<>	4,5	53,5
C1-1/100-200	5,0	2,3	0,0	0,0	2,7	1,4	<lod< td=""><td>0,5</td><td>2,9</td><td>3,3</td><td>0,2</td><td><lod< td=""><td>2,1</td><td>20,4</td></lod<></td></lod<>	0,5	2,9	3,3	0,2	<lod< td=""><td>2,1</td><td>20,4</td></lod<>	2,1	20,4
C1-2/0-50	4,1	11,5	0,2	0,1	20,1	11,0	<lod< td=""><td>4,1</td><td>25,4</td><td>26,6</td><td>1,6</td><td><lod< td=""><td>15,7</td><td>120,4</td></lod<></td></lod<>	4,1	25,4	26,6	1,6	<lod< td=""><td>15,7</td><td>120,4</td></lod<>	15,7	120,4
C1-2/50-100	3,0	3,0	0,1	0,0	5,6	3,2	<lod< td=""><td>1,1</td><td>6,9</td><td>7,4</td><td>0,4</td><td><lod< td=""><td>3,5</td><td>34,0</td></lod<></td></lod<>	1,1	6,9	7,4	0,4	<lod< td=""><td>3,5</td><td>34,0</td></lod<>	3,5	34,0
C1-2/100-200	5,6	0,9	0,0	0,0	1,3	0,7	<lod< td=""><td>0,1</td><td>1,0</td><td>1,1</td><td>0,1</td><td><lod< td=""><td>0,4</td><td>11,3</td></lod<></td></lod<>	0,1	1,0	1,1	0,1	<lod< td=""><td>0,4</td><td>11,3</td></lod<>	0,4	11,3
C2-1/0-50	4,7	12,0	0,5	0,1	33,3	14,6	<lod< td=""><td>6,9</td><td>53,9</td><td>66,4</td><td>2,8</td><td>0,0</td><td>118,7</td><td>314,0</td></lod<>	6,9	53,9	66,4	2,8	0,0	118,7	314,0
C2-1/50-100	0,3	0,5	<lod< td=""><td><lod< td=""><td>1,3</td><td>2,1</td><td><lod< td=""><td>0,2</td><td>1,0</td><td>0,9</td><td>0,1</td><td><lod< td=""><td>0,4</td><td>6,8</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,3</td><td>2,1</td><td><lod< td=""><td>0,2</td><td>1,0</td><td>0,9</td><td>0,1</td><td><lod< td=""><td>0,4</td><td>6,8</td></lod<></td></lod<></td></lod<>	1,3	2,1	<lod< td=""><td>0,2</td><td>1,0</td><td>0,9</td><td>0,1</td><td><lod< td=""><td>0,4</td><td>6,8</td></lod<></td></lod<>	0,2	1,0	0,9	0,1	<lod< td=""><td>0,4</td><td>6,8</td></lod<>	0,4	6,8
C2-1/100-200	1,0	2,2	0,1	0,1	8,0	6,8	<lod< td=""><td>1,5</td><td>9,5</td><td>10,0</td><td>1,0</td><td><lod< td=""><td>10,1</td><td>50,2</td></lod<></td></lod<>	1,5	9,5	10,0	1,0	<lod< td=""><td>10,1</td><td>50,2</td></lod<>	10,1	50,2
C2-2/0-50	0,5	2,0	0,1	0,0	6,1	2,5	<lod< td=""><td>1,1</td><td>9,5</td><td>11,7</td><td>0,5</td><td>0,0</td><td>13,8</td><td>47,8</td></lod<>	1,1	9,5	11,7	0,5	0,0	13,8	47,8
C2-2/50-100	0,5	0,5	0,0	<lod< td=""><td>0,9</td><td>0,4</td><td><lod< td=""><td>0,1</td><td>1,0</td><td>1,1</td><td>0,0</td><td><lod< td=""><td>1,0</td><td>5,5</td></lod<></td></lod<></td></lod<>	0,9	0,4	<lod< td=""><td>0,1</td><td>1,0</td><td>1,1</td><td>0,0</td><td><lod< td=""><td>1,0</td><td>5,5</td></lod<></td></lod<>	0,1	1,0	1,1	0,0	<lod< td=""><td>1,0</td><td>5,5</td></lod<>	1,0	5,5
C2-2/100-200	0,2	0,3	<lod< td=""><td>0,0</td><td>0,8</td><td>0,4</td><td><lod< td=""><td>0,1</td><td>0,8</td><td>0,7</td><td>0,1</td><td><lod< td=""><td>0,6</td><td>3,8</td></lod<></td></lod<></td></lod<>	0,0	0,8	0,4	<lod< td=""><td>0,1</td><td>0,8</td><td>0,7</td><td>0,1</td><td><lod< td=""><td>0,6</td><td>3,8</td></lod<></td></lod<>	0,1	0,8	0,7	0,1	<lod< td=""><td>0,6</td><td>3,8</td></lod<>	0,6	3,8
C5-2/0-50	0,3	3,5	0,1	0,0	9,7	4,8	<lod< td=""><td>1,9</td><td>12,1</td><td>13,1</td><td>0,7</td><td><lod< td=""><td>11,9</td><td>58,1</td></lod<></td></lod<>	1,9	12,1	13,1	0,7	<lod< td=""><td>11,9</td><td>58,1</td></lod<>	11,9	58,1
C5-2/50-100	0,2	0,6	<lod< td=""><td><lod< td=""><td>2,1</td><td>0,8</td><td><lod< td=""><td>0,3</td><td>1,6</td><td>1,7</td><td>0,1</td><td><lod< td=""><td>1,5</td><td>8,8</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,1</td><td>0,8</td><td><lod< td=""><td>0,3</td><td>1,6</td><td>1,7</td><td>0,1</td><td><lod< td=""><td>1,5</td><td>8,8</td></lod<></td></lod<></td></lod<>	2,1	0,8	<lod< td=""><td>0,3</td><td>1,6</td><td>1,7</td><td>0,1</td><td><lod< td=""><td>1,5</td><td>8,8</td></lod<></td></lod<>	0,3	1,6	1,7	0,1	<lod< td=""><td>1,5</td><td>8,8</td></lod<>	1,5	8,8
C5-2/100-200	0,2	0,3	0,0	0,0	0,6	0,2	<lod< td=""><td>0,1</td><td>0,5</td><td>0,5</td><td>0,0</td><td><lod< td=""><td>0,4</td><td>2,9</td></lod<></td></lod<>	0,1	0,5	0,5	0,0	<lod< td=""><td>0,4</td><td>2,9</td></lod<>	0,4	2,9
C5-3/0-50	0,8	30,6	0,6	0,3	105,1	46,8	0,1	18,3	96,2	94,8	6,4	<lod< td=""><td>73,8</td><td>473,7</td></lod<>	73,8	473,7
C5-3/50-100	0,3	5,0	0,2	0,1	11,7	7,2	<lod< td=""><td>1,8</td><td>12,0</td><td>12,2</td><td>0,7</td><td><lod< td=""><td>10,2</td><td>61,4</td></lod<></td></lod<>	1,8	12,0	12,2	0,7	<lod< td=""><td>10,2</td><td>61,4</td></lod<>	10,2	61,4
C5-3/100-200	0,0	1,5	0,0	<lod< td=""><td>7,8</td><td>3,4</td><td><lod< td=""><td>1,0</td><td>6,1</td><td>6,8</td><td>0,3</td><td><lod< td=""><td>3,0</td><td>29,9</td></lod<></td></lod<></td></lod<>	7,8	3,4	<lod< td=""><td>1,0</td><td>6,1</td><td>6,8</td><td>0,3</td><td><lod< td=""><td>3,0</td><td>29,9</td></lod<></td></lod<>	1,0	6,1	6,8	0,3	<lod< td=""><td>3,0</td><td>29,9</td></lod<>	3,0	29,9

Pesticidi organoclorurati (µg/kg s.s.)

Campione	2,4'-DDD	4,4'-DDD	ggg	2,4'-DDE	4,4'-DDE	DDE	2,4'-DDT	4,4'-DDT	ТОО	Clordano	Aldrin	Dieldrin	Endrin	а-ВНС	р-внс	в-внс	Eptacloro epossido	Esaclorobenzene
C1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>48,1</td><td><lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	48,1	<lod< td=""><td>48,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	48,1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>74,8</td><td><lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	74,8	<lod< td=""><td>74,8</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	74,8	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-3/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-3/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-3/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>47,0</td><td><lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	47,0	<lod< td=""><td>47,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	47,0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3-1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3-1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3-1/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3-2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C3-2/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Campione	2,4'-DDD	4,4'-DDD	aaa	2,4'-DDE	4,4'-DDE	DDE	2,4'-DDT	4,4'-DDT	таа	Clordano	Aldrin	Dieldrin	Endrin	а-ВНС	р-внс	g-BHC	Eptacloro epossido	Esaclorobenzene
C3-2/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-1/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-2/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>30,2</td><td><lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30,2	<lod< td=""><td>30,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	30,2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-3/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-3/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C4-3/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-1/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C6-1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C6-1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C6-1/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-1/0-50	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>28,2</td><td>28,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	28,2	28,2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-1/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-1/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-2/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C1-2/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-1/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-1/50-100	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>19,0</td><td><lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19,0	<lod< td=""><td>19,0</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	19,0	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-1/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>42,2</td><td><lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	42,2	<lod< td=""><td>42,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	42,2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-2/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C2-2/100-200	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-2/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-2/50-100	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>16,2</td><td><lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	16,2	<lod< td=""><td>16,2</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	16,2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Campione	2,4'-DDD	4,4'-DDD	ggg	2,4'-DDE	4,4'-DDE	DDE	2,4'-DDT	4,4'-DDT	рот	Clordano	Aldrin	Dieldrin	Endrin	а-ВНС	р-внс	g-BHC	Eptacloro epossido	Esaclorobenzene
C5-2/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>41,1</td><td><lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	41,1	<lod< td=""><td>41,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	41,1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-3/0-50	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-3/50-100	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>
C5-3/100-200	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>95,5</td><td><lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	95,5	<lod< td=""><td>95,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	95,5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""></lod<></td></lod<>	<lod< td=""></lod<>

Fitofarmaci (µg/kg s.s.)

Campione	Alaclor	Eptacloro	Ossiclordano	trans- nonacloro	cis-nonacloro	Clorfenvinfos	Clorpirifos etile	Endosulfan
C1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-3/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-3/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-3/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C3-2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1

Campione	Alaclor	Eptacloro	Ossiclordano	trans- nonacloro	cis-nonacloro	Clorfenvinfos	Clorpirifos etile	Endosulfan
C4-3/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-3/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C4-3/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C6-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C6-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C6-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C1-2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-1/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-1/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-1/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C2-2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-2/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-2/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-2/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-3/0-50	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-3/50-100	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
C5-3/100-200	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1

Idrocarburi Policiclici Aromatici (IPA, $\mu g/kg$ s.s.)

Campione	Naftalene	Antracene	Fenantrene	Acenaftilene	Acenaftene	Fluorene	Fluorantene	Pirene	Benzo(a)antracene	Crisene	Benzo(b)fluorantene	Benzo(a)pirene	Benzo(k)fluorantene	Indeno(1,2,3-c,d)pirene	Benzo(g,h,i)perilene	Dibenzo(a,h)antracene	Sommatoria IPA
C1/0-50	19,0	16,0	40,0	14,0	<lod< td=""><td><lod< td=""><td>98,0</td><td>96,0</td><td>74,0</td><td>67,2</td><td>43,0</td><td>132,0</td><td>39,0</td><td>90,0</td><td>85,0</td><td>37,9</td><td>851,0</td></lod<></td></lod<>	<lod< td=""><td>98,0</td><td>96,0</td><td>74,0</td><td>67,2</td><td>43,0</td><td>132,0</td><td>39,0</td><td>90,0</td><td>85,0</td><td>37,9</td><td>851,0</td></lod<>	98,0	96,0	74,0	67,2	43,0	132,0	39,0	90,0	85,0	37,9	851,0
C1/50-100	33,0	75,0	215,5	50,0	15,0	17,0	672,0	523,0	432,0	413,1	269,0	797,0	272,0	457,0	380,0	177,2	4798,0
C1/100-200	<lod< td=""><td>3,0</td><td>8,9</td><td>2,0</td><td><lod< td=""><td><lod< td=""><td>13,0</td><td>11,0</td><td>10,0</td><td>10,9</td><td>4,0</td><td>14,0</td><td>4,0</td><td>10,0</td><td>11,0</td><td>5,0</td><td>107,0</td></lod<></td></lod<></td></lod<>	3,0	8,9	2,0	<lod< td=""><td><lod< td=""><td>13,0</td><td>11,0</td><td>10,0</td><td>10,9</td><td>4,0</td><td>14,0</td><td>4,0</td><td>10,0</td><td>11,0</td><td>5,0</td><td>107,0</td></lod<></td></lod<>	<lod< td=""><td>13,0</td><td>11,0</td><td>10,0</td><td>10,9</td><td>4,0</td><td>14,0</td><td>4,0</td><td>10,0</td><td>11,0</td><td>5,0</td><td>107,0</td></lod<>	13,0	11,0	10,0	10,9	4,0	14,0	4,0	10,0	11,0	5,0	107,0
C2/0-50	46,0	73,0	150,1	71,0	10,0	22,0	568,0	459,0	371,0	340,4	206,0	539,0	181,0	276,0	214,0	111,6	3638,0
C2/50-100	37,0	91,0	184,2	80,0	8,0	16,0	743,0	606,0	507,0	445,9	249,0	744,0	260,0	386,0	309,0	152,3	4818,0
C2/100-200	<lod< td=""><td>4,0</td><td>10,3</td><td>1,3</td><td><lod< td=""><td><lod< td=""><td>18,0</td><td>15,0</td><td>13,0</td><td>15,2</td><td>6,0</td><td>21,0</td><td>6,0</td><td>12,0</td><td>11,0</td><td>5,6</td><td>138,0</td></lod<></td></lod<></td></lod<>	4,0	10,3	1,3	<lod< td=""><td><lod< td=""><td>18,0</td><td>15,0</td><td>13,0</td><td>15,2</td><td>6,0</td><td>21,0</td><td>6,0</td><td>12,0</td><td>11,0</td><td>5,6</td><td>138,0</td></lod<></td></lod<>	<lod< td=""><td>18,0</td><td>15,0</td><td>13,0</td><td>15,2</td><td>6,0</td><td>21,0</td><td>6,0</td><td>12,0</td><td>11,0</td><td>5,6</td><td>138,0</td></lod<>	18,0	15,0	13,0	15,2	6,0	21,0	6,0	12,0	11,0	5,6	138,0
C2-3/0-50	17,0	20,0	41,1	18,0	3,0	5,0	133,0	126,0	88,0	79,9	50,0	141,0	47,0	72,0	60,0	34,6	936,0
C2-3/50-100	31,0	58,0	132,8	40,0	8,0	11,0	456,0	390,0	262,0	238,4	150,0	442,0	148,0	220,0	176,0	88,5	2852,0
C2-3/100-200	<lod< td=""><td>4,0</td><td>10,6</td><td><lod< td=""><td><lod< td=""><td>2,0</td><td>19,0</td><td>18,0</td><td>22,0</td><td>33,0</td><td>41,0</td><td>25,0</td><td>13,0</td><td>13,0</td><td>12,0</td><td>8,4</td><td>221,0</td></lod<></td></lod<></td></lod<>	4,0	10,6	<lod< td=""><td><lod< td=""><td>2,0</td><td>19,0</td><td>18,0</td><td>22,0</td><td>33,0</td><td>41,0</td><td>25,0</td><td>13,0</td><td>13,0</td><td>12,0</td><td>8,4</td><td>221,0</td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>19,0</td><td>18,0</td><td>22,0</td><td>33,0</td><td>41,0</td><td>25,0</td><td>13,0</td><td>13,0</td><td>12,0</td><td>8,4</td><td>221,0</td></lod<>	2,0	19,0	18,0	22,0	33,0	41,0	25,0	13,0	13,0	12,0	8,4	221,0
C3/0-50	16,0	12,0	32,7	10,0	<lod< td=""><td><lod< td=""><td>69,0</td><td>67,0</td><td>54,0</td><td>48,0</td><td>29,0</td><td>94,0</td><td>34,0</td><td>50,0</td><td>43,0</td><td>20,1</td><td>579,0</td></lod<></td></lod<>	<lod< td=""><td>69,0</td><td>67,0</td><td>54,0</td><td>48,0</td><td>29,0</td><td>94,0</td><td>34,0</td><td>50,0</td><td>43,0</td><td>20,1</td><td>579,0</td></lod<>	69,0	67,0	54,0	48,0	29,0	94,0	34,0	50,0	43,0	20,1	579,0
C3/50-100	23,0	21,0	45,3	19,0	<lod< td=""><td>7,0</td><td>114,0</td><td>109,0</td><td>81,0</td><td>76,7</td><td>51,0</td><td>154,0</td><td>50,0</td><td>71,0</td><td>61,0</td><td>33,2</td><td>916,0</td></lod<>	7,0	114,0	109,0	81,0	76,7	51,0	154,0	50,0	71,0	61,0	33,2	916,0
C3/100-200	57,0	111,0	252,9	96,0	17,0	27,0	970,0	745,0	575,0	526,5	319,0	923,0	324,0	371,0	283,0	152,7	5750,0
C3-1/0-50	13,0	15,0	33,5	12,0	2,0	5,0	81,0	74,0	61,0	56,7	49,0	113,0	48,0	40,0	33,0	17,0	653,0
C3-1/50-100	21,0	21,0	45,2	15,0	3,0	7,0	110,0	110,0	74,0	75,6	59,0	143,0	58,0	52,0	44,0	22,6	860,0
C3-1/100-200	58,0	103,0	271,1	69,0	15,0	26,0	565,0	760,0	519,0	500,7	422,0	896,0	375,0	299,0	247,0	118,1	5244,0
C3-2/0-50	13,0	14,0	30,5	14,0	2,0	4,0	87,0	84,0	64,0	59,8	48,0	119,0	53,0	42,0	34,0	17,2	686,0
C3-2/50-100	26,0	33,0	62,5	28,0	4,0	9,0	112,0	194,0	129,0	122,2	97,0	226,0	95,0	82,0	67,0	31,9	1319,0
C3-2/100-200	68,0	169,0	394,3	68,0	14,0	41,0	870,0	1258,0	621,0	564,4	458,0	995,0	422,0	372,0	317,0	159,5	6791,0
C4/0-50	16,0	13,0	32,6	12,0	3,0	5,0	64,0	64,0	48,0	43,2	37,0	88,0	39,0	33,0	29,0	12,9	540,0
C4/50-100	39,0	32,0	69,1	25,0	5,0	12,0	151,0	159,0	106,0	93,5	80,0	188,0	78,0	67,0	57,0	27,4	1189,0
C4/100-200	551,0	648,0	1234,5	592,0	94,0	191,0	5901,0	8516,0	2752,0	2454,5	1754,0	3950,0	1795,0	1275,0	1033,0	389,9	33131,0
C4-1/0-50	24,0	39,0	69,3	22,0	3,0	9,0	177,0	167,0	124,0	107,5	90,0	179,0	91,0	61,0	52,0	27,0	1242,0
C4-1/50-100	25,0	28,0	87,7	14,0	29,0	41,0	93,0	178,0	72,0	67,2	49,0	122,0	51,0	48,0	39,0	17,5	961,0
C4-1/100-200	2,0	3,0	10,8	<lod< td=""><td>2,0</td><td>4,0</td><td>10,0</td><td>17,0</td><td>7,0</td><td>7,7</td><td>5,0</td><td>10,0</td><td>4,0</td><td>4,0</td><td>4,0</td><td>1,7</td><td>92,0</td></lod<>	2,0	4,0	10,0	17,0	7,0	7,7	5,0	10,0	4,0	4,0	4,0	1,7	92,0
C4-2/0-50	13,0	13,0	30,1	14,0	2,0	5,0	68,0	73,0	52,0	47,9	48,0	102,0	45,0	37,0	32,0	16,1	598,0
C4-2/50-100	45,0	64,0	152,5	58,0	7,0	17,0	439,0	423,0	292,0	252,2	218,0	470,0	219,0	165,0	138,0	69,3	3029,0
C4-2/100-200	2,0	2,0	7,8	2,0	<lod< td=""><td>2,0</td><td>11,0</td><td>12,0</td><td>8,0</td><td>9,4</td><td>5,0</td><td>13,0</td><td>6,0</td><td>5,0</td><td>5,0</td><td>2,2</td><td>92,0</td></lod<>	2,0	11,0	12,0	8,0	9,4	5,0	13,0	6,0	5,0	5,0	2,2	92,0

Campione	Naftalene	Antracene	Fenantrene	Acenaftilene	Acenaftene	Fluorene	Fluorantene	Pirene	Benzo(a)antracene	Crisene	Benzo(b)fluorantene	Benzo(a)pirene	Benzo(k)fluorantene	Indeno(1,2,3-c,d)pirene	Benzo(g,h,i)perilene	Dibenzo(a,h)antracene	Sommatoria IPA
C4-3/0-50	12,0	18,0	36,8	16,0	2,0	5,0	65,0	134,0	85,0	76,0	56,0	135,0	56,0	50,0	42,0	21,6	810,0
C4-3/50-100	109,0	140,0	271,6	123,0	19,0	40,0	514,0	1051,0	591,0	491,6	418,0	886,0	398,0	311,0	256,0	122,2	5741,0
C4-3/100-200	19,0	41,0	85,7	31,0	4,0	11,0	142,0	344,0	192,0	189,2	137,0	312,0	126,0	112,0	99,0	46,3	1891,0
C5/0-50	38,0	40,0	110,4	34,0	8,0	13,0	184,0	370,0	214,0	194,9	149,0	307,0	138,0	118,0	105,0	43,5	2067,0
C5/50-100	37,0	35,0	103,2	23,0	10,0	14,0	205,0	233,0	140,0	120,5	101,0	225,0	101,0	89,0	78,0	39,1	1554,0
C5/100-200	28,0	31,0	67,0	23,0	5,0	12,0	82,0	246,0	110,0	105,0	66,0	171,0	72,0	69,0	59,0	28,0	1174,0
C5-1/0-50	34,0	31,0	125,5	23,0	6,0	10,0	143,0	287,0	138,0	127,9	108,0	206,0	97,0	84,0	68,0	32,7	1521,0
C5-1/50-100	24,0	22,0	44,3	16,0	4,0	7,0	98,0	125,0	73,0	65,0	60,0	128,0	59,0	51,0	47,0	20,5	844,0
C5-1/100-200	26,0	31,0	64,4	30,0	5,0	11,0	215,0	298,0	160,0	136,1	95,0	246,0	114,0	93,0	81,0	38,9	1644,0
C6-1/0-50	55,0	43,0	121,9	31,0	10,0	19,0	157,0	501,0	190,0	181,5	158,0	338,0	152,0	160,0	139,0	56,7	2313,0
C6-1/50-100	57,0	48,0	120,4	29,0	12,0	20,0	<lod< td=""><td><lod< td=""><td>183,0</td><td>162,7</td><td>364,0</td><td>322,0</td><td>334,0</td><td>145,0</td><td>125,0</td><td>65,3</td><td>1987,0</td></lod<></td></lod<>	<lod< td=""><td>183,0</td><td>162,7</td><td>364,0</td><td>322,0</td><td>334,0</td><td>145,0</td><td>125,0</td><td>65,3</td><td>1987,0</td></lod<>	183,0	162,7	364,0	322,0	334,0	145,0	125,0	65,3	1987,0
C6-1/100-200	207,0	244,0	495,2	99,0	41,0	85,0	<lod< td=""><td>2155,0</td><td>746,0</td><td>890,7</td><td>1219,0</td><td>1454,0</td><td>1210,0</td><td>660,0</td><td>572,0</td><td>228,2</td><td>10306,0</td></lod<>	2155,0	746,0	890,7	1219,0	1454,0	1210,0	660,0	572,0	228,2	10306,0
C1-1/0-50	68,0	249,0	663,0	142,0	31,0	51,0	2062,0	2660,0	1262,0	1163,3	1663,0	1826,0	1436,0	691,0	550,0	217,5	14735,0
C1-1/50-100	48,0	118,0	355,4	56,0	22,0	31,0	1138,0	1541,0	639,0	568,3	898,0	959,0	756,0	373,0	267,0	105,5	7875,0
C1-1/100-200	4,0	2,0	7,2	<lod< td=""><td><lod< td=""><td>2,0</td><td>5,0</td><td>8,0</td><td>3,0</td><td>5,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>5,0</td><td>8,0</td><td>3,0</td><td>5,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	5,0	8,0	3,0	5,6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>37,0</td></lod<></td></lod<>	<lod< td=""><td>37,0</td></lod<>	37,0
C1-2/0-50	58,0	170,0	579,0	34,0	64,0	64,0	1218,0	1573,0	638,0	558,6	782,0	983,0	738,0	426,0	325,0	102,7	8313,0
C1-2/50-100	8,0	11,0	40,3	3,0	4,0	4,0	108,0	161,0	69,0	58,7	84,0	101,0	77,0	47,0	35,0	19,2	830,0
C1-2/100-200	2,0	<lod< td=""><td>6,1</td><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	6,1	<lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td>2,0</td><td>3,3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	3,0	4,0	2,0	3,3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>22,0</td></lod<></td></lod<>	<lod< td=""><td>22,0</td></lod<>	22,0
C2-1/0-50	23,0	68,0	158,6	55,0	11,0	14,0	515,0	747,0	411,0	380,4	275,0	645,0	284,0	213,0	176,0	91,2	4067,0
C2-1/50-100	<lod< td=""><td>1,0</td><td>6,3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>6,0</td><td>10,0</td><td>4,0</td><td>5,5</td><td>3,0</td><td>6,0</td><td>3,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>52,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1,0	6,3	<lod< td=""><td><lod< td=""><td><lod< td=""><td>6,0</td><td>10,0</td><td>4,0</td><td>5,5</td><td>3,0</td><td>6,0</td><td>3,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>52,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>6,0</td><td>10,0</td><td>4,0</td><td>5,5</td><td>3,0</td><td>6,0</td><td>3,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>52,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>6,0</td><td>10,0</td><td>4,0</td><td>5,5</td><td>3,0</td><td>6,0</td><td>3,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>52,0</td></lod<></td></lod<>	6,0	10,0	4,0	5,5	3,0	6,0	3,0	3,0	4,0	<lod< td=""><td>52,0</td></lod<>	52,0
C2-1/100-200	<lod< td=""><td>2,0</td><td>6,5</td><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>5,0</td><td>1,0</td><td>4,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	6,5	<lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>5,0</td><td>1,0</td><td>4,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>3,0</td><td>5,0</td><td>1,0</td><td>4,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	3,0	5,0	1,0	4,5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>24,0</td></lod<></td></lod<>	<lod< td=""><td>24,0</td></lod<>	24,0
C2-2/0-50	72,0	248,0	577,5	197,0	30,0	53,0	1937,0	2592,0	1357,0	1266,5	811,0	1951,0	802,0	703,0	551,0	268,7	13417,0
C2-2/50-100	4,0	6,0	19,9	2,0	2,0	2,0	57,0	81,0	36,0	29,7	23,0	55,0	24,0	24,0	19,0	5,8	390,0
C2-2/100-200	<lod< td=""><td><lod< td=""><td>4,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td><lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td><lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4,1	<lod< td=""><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td><lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td><lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>3,0</td><td><lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	3,0	<lod< td=""><td>2,1</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11,0</td></lod<></td></lod<>	<lod< td=""><td>11,0</td></lod<>	11,0
C5-2/0-50	<lod< td=""><td>4,0</td><td>11,6</td><td>4,0</td><td><lod< td=""><td>2,0</td><td>32,0</td><td>49,0</td><td>28,0</td><td>24,3</td><td>23,0</td><td>48,0</td><td>21,0</td><td>18,0</td><td>17,0</td><td>6,0</td><td>288,0</td></lod<></td></lod<>	4,0	11,6	4,0	<lod< td=""><td>2,0</td><td>32,0</td><td>49,0</td><td>28,0</td><td>24,3</td><td>23,0</td><td>48,0</td><td>21,0</td><td>18,0</td><td>17,0</td><td>6,0</td><td>288,0</td></lod<>	2,0	32,0	49,0	28,0	24,3	23,0	48,0	21,0	18,0	17,0	6,0	288,0
C5-2/50-100	<lod< td=""><td><lod< td=""><td>4,7</td><td><lod< td=""><td><lod< td=""><td>1,0</td><td>3,0</td><td>6,0</td><td>2,0</td><td>3,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,7</td><td><lod< td=""><td><lod< td=""><td>1,0</td><td>3,0</td><td>6,0</td><td>2,0</td><td>3,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4,7	<lod< td=""><td><lod< td=""><td>1,0</td><td>3,0</td><td>6,0</td><td>2,0</td><td>3,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>1,0</td><td>3,0</td><td>6,0</td><td>2,0</td><td>3,5</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	1,0	3,0	6,0	2,0	3,5	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>20,0</td></lod<></td></lod<>	<lod< td=""><td>20,0</td></lod<>	20,0
C5-2/100-200	<lod< td=""><td>2,0</td><td>6,5</td><td><lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>3,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	6,5	<lod< td=""><td><lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>3,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>2,0</td><td>3,0</td><td>4,0</td><td><lod< td=""><td>3,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	2,0	3,0	4,0	<lod< td=""><td>3,6</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3,6	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>21,0</td></lod<></td></lod<>	<lod< td=""><td>21,0</td></lod<>	21,0
C5-3/0-50	48,0	87,0	182,5	81,0	13,0	18,0	438,0	894,0	482,0	410,9	399,0	841,0	415,0	324,0	243,0	132,4	5009,0

Campione	Naftalene	Antracene	Fenantrene	Acenaftilene	Acenaftene	Fluorene	Fluorantene	Pirene	Benzo(a)antracene	Crisene	Benzo(b)fluorantene	Benzo(a)pirene	Benzo(k)fluorantene	Indeno(1,2,3-c,d)pirene	Benzo(g,h,i)perilene	Dibenzo(a,h)antracene	Sommatoria IPA
C5-3/50-100	8,0	12,0	31,8	10,0	3,0	4,0	79,0	124,0	61,0	55,9	45,0	97,0	43,0	39,0	35,0	14,6	662,0
C5-3/100-200	<lod< td=""><td>4,0</td><td>16,6</td><td><lod< td=""><td><lod< td=""><td>4,0</td><td>11,0</td><td>14,0</td><td>7,0</td><td>12,7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4,0	16,6	<lod< td=""><td><lod< td=""><td>4,0</td><td>11,0</td><td>14,0</td><td>7,0</td><td>12,7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>4,0</td><td>11,0</td><td>14,0</td><td>7,0</td><td>12,7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	4,0	11,0	14,0	7,0	12,7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>69,0</td></lod<></td></lod<>	<lod< td=""><td>69,0</td></lod<>	69,0

PCB Diossina simili (µg/kg s.s.) e calcolo del WHO-TEQ (ng/kg s.s.)

Campione	PCB 123	PCB 105	PCB 114	PCB 157	PCB 167	PCB 189	Tossicità equivalente PCB WHO-TEQ
	μg/kg s.s.	ng/kg s.s.					
C1/0-50	0,173	0,659	0,021	0,06	0,156	0,05	<1
C1/50-100	0,261	1,171	< 0,001	0,106	0,281	0,08	<1
C1/100-200	0,007	0,047	0,0024	0,0024	0,006	0,003	<1
C2/0-50	0,011	0,063	< 0,001	< 0,001	< 0,001	< 0,001	<1
C2/50-100	0,131	0,534	0,021	0,055	0,118	0,03	<1
C2/100-200	0,011	0,074	< 0,001	< 0,001	0,011	0,0024	<1
C2-3/0-50	0,109	0,387	< 0,001	0,039	0,112	0,041	<1
C2-3/50-100	0,248	0,877	0,029	0,093	0,224	0,059	<1
C2-3/100-200	0,017	0,069	< 0,001	0,004	0,012	0,005	<1
C3/0-50	0,098	0,351	< 0,001	0,036	0,092	0,031	<1
C3/50-100	0,275	1,048	0,032	0,107	0,255	0,073	<1
C3/100-200	0,368	1,539	0,06	0,149	0,347	0,089	1,4
C3-1/0-50	0,101	0,377	0,016	0,059	0,163	0,056	<1
C3-1/50-100	0,123	0,422	0,016	0,042	0,128	0,042	<1
C3-1/100-200	0,252	1,176	0,051	0,106	0,235	0,062	<1
C3-2/0-50	0,093	0,354	< 0,001	< 0,001	0,086	0,026	<1
C3-2/50-100	0,118	0,392	< 0,001	0,04	0,107	0,035	<1
C3-2/100-200	0,884	3,525	0,124	0,34	0,881	0,253	3
C4/0-50	0,133	0,539	0,016	0,045	0,125	0,035	<1
C4/50-100	0,085	0,344	0,011	0,029	0,076	0,024	<1
C4/100-200	0,104	0,398	0,015	0,045	0,108	0,032	<1
C4-1/0-50	1,385	6,113	0,263	0,559	1,355	0,295	5
C4-1/50-100	0,222	0,887	0,038	0,091	0,296	0,08	<1
C4-1/100-200	0,038	0,151	0,005	0,013	0,04	0,01	<1
C4-2/0-50	0,158	0,615	0,026	0,072	0,242	0,054	<1
C4-2/50-100	0,575	2,029	0,185	0,234	0,746	0,222	3
C4-2/100-200	0,064	0,264	< 0,001	0,015	0,043	0,009	<1
C4-3/0-50	0,134	0,509	0,016	0,064	0,153	0,051	<1
C4-3/50-100	1,16	4,529	0,161	0,458	1,224	0,28	5
C4-3/100-200	0,672	2,686	0,107	0,251	0,712	0,173	3
C5/0-50	< 0,001	0,018	< 0,001	< 0,001	0,003	0,001	<1

Campione	PCB 123	PCB 105	PCB 114	PCB 157	PCB 167	PCB 189	Tossicità equivalente PCB WHO-TEQ
·	μg/kg s.s.	ng/kg s.s.					
C5/50-100	0,668	2,512	0,115	0,306	0,875	0,216	3
C5/100-200	0,913	3,084	0,146	0,311	0,801	0,166	<1
C5-1/0-50	0,528	2,037	0,078	0,225	0,595	0,143	<1
C5-1/50-100	0,493	1,772	0,076	0,223	0,692	0,145	<1
C5-1/100-200	0,686	2,541	0,112	0,271	0,624	0,163	<1
C6-1/0-50	2,284	10,204	0,478	1,049	2,453	0,468	3
C6-1/50-100	53,374	330,853	14,887	25,331	46,464	9,234	145
C6-1/100-200	23,791	98,269	5,056	9,008	18,78	4,089	67
C1-1/0-50	2,012	6,104	0,291	0,771	1,66	0,307	2
C1-1/50-100	0,348	0,987	0,05	0,07	0,187	0,032	<1
C1-1/100-200	0,104	0,479	0,019	0,036	0,067	0,021	<1
C1-2/0-50	0,821	3,89	0,178	0,339	0,77	0,144	<1
C1-2/50-100	0,244	1,106	0,055	0,085	0,196	0,036	<1
C1-2/100-200	0,052	0,241	< 0,001	0,01	0,022	0,004	<1
C2-1/0-50	1,178	5,53	0,291	0,612	1,386	0,441	2
C2-1/50-100	0,143	0,686	< 0,001	0,033	0,067	0,011	<1
C2-1/100-200	0,552	2,425	0,086	0,223	0,465	0,109	<1
C2-2/0-50	0,191	0,77	0,03	0,085	0,239	0,067	<1
C2-2/50-100	< 0,001	0,115	< 0,001	< 0,001	0,018	0,003	<1
C2-2/100-200	0,018	0,134	0,004	0,01	0,017	< 0,001	<1
C5-2/0-50	0,395	1,527	0,071	0,141	0,316	0,07	<1
C5-2/50-100	0,064	0,247	< 0,001	0,014	0,035	0,007	< 1
C5-2/100-200	0,012	0,07	< 0,001	0,003	0,008	< 0,001	< 1
C5-3/0-50	3,36	18,232	0,834	1,482	2,68	0,473	9
C5-3/50-100	0,555	2,742	0,103	0,162	0,339	0,058	<1
C5-3/100-200	0,238	1,227	< 0,001	< 0,001	0,099	0,016	<1

Diossine e Furani (ng/kg s.s.)

Campione	2,3,7,8- tetraclorodib enzo-p- diossina	1,2,3,7,8- pentaclorodi benzo-p- diossina	1,2,3,4,7,8- esaclorodibe nzo-p- diossina	1,2,3,6,7,8- esaclorodibe nzo-p- diossina	1,2,3,4,6,7,8- eptaclorodib enzo-p- diossina	1,2,3,7,8,9- esaclorodibe nzo-p- diossina	Octaclorodib enzo-p- diossina	2,3,7,8- tetraclorodib enzofurano	1,2,3,7,8- pentaclorodi benzofurano
C1/0-50	< 2	< 10	< 10	< 10	< 10	< 10	47	< 2	< 10
C1/50-100	< 2	< 10	< 10	< 10	< 10	< 10	20	3	< 10
C1/100-200	< 2	< 10	< 10	< 10	12	< 10	76	< 2	< 10
C2/0-50	< 2	< 10	< 10	< 10	13	< 10	64	4	< 10
C2/50-100	< 2	< 10	< 10	< 10	24	< 10	71	< 2	< 10
C2/100-200	< 2	< 10	< 10	< 10	< 10	< 10	16	< 2	< 10
C2-3/0-50	< 2	< 10	< 10	< 10	13	< 10	109	< 2	< 10
C2-3/50-100	< 2	< 10	< 10	< 10	21	< 10	99	5	< 10
C2-3/100-200	< 2	< 10	< 10	< 10	< 10	< 10	13	< 2	< 10
C3/0-50	< 2	< 10	< 10	< 10	18	< 10	80	2,6	< 10
C3/50-100	< 2	< 10	12	< 10	34	< 10	169	7	< 10
C3/100-200	< 2	< 10	< 10	< 10	28	< 10	154	9	< 10
C3-1/0-50	< 2	< 10	< 10	< 10	< 10	< 10	49	4	< 10
C3-1/50-100	< 2	< 10	< 10	< 10	< 10	< 10	49	< 2	< 10
C3-1/100-200	< 2	< 10	< 10	< 10	21	< 10	100	< 2	< 10
C3-2/0-50	< 2	< 10	< 10	< 10	< 10	< 10	19	< 2	< 10
C3-2/50-100	< 2	< 10	< 10	< 10	< 10	< 10	29	< 2	< 10
C3-2/100-200	< 2	< 10	< 10	< 10	32	< 10	188	11	< 10
C4/0-50	< 2	< 10	< 10	< 10	< 10	< 10	43	2,4	< 10
C4/50-100	< 2	< 10	< 10	< 10	12	< 10	60	2,7	< 10
C4/100-200	< 2	< 10	< 10	< 10	12	< 10	60	< 2	< 10
C4-1/0-50	< 2	< 10	< 10	< 10	96	< 10	622	20	< 10
C4-1/50-100	< 2	< 10	< 10	< 10	19	< 10	120	< 2	< 10
C4-1/100-200	< 2	< 10	< 10	< 10	< 10	< 10	33	< 2	< 10
C4-2/0-50	< 2	< 10	< 10	< 10	14	< 10	88	< 2	< 10
C4-2/50-100	< 2	< 10	< 10	< 10	40	< 10	231	< 2	< 10
C4-2/100-200	< 2	< 10	< 10	< 10	< 10	< 10	34	< 2	< 10
C4-3/0-50	< 2	< 10	< 10	< 10	16	< 10	83	< 2	< 10
C4-3/50-100	< 2	< 10	< 10	< 10	114	< 10	748	< 2	< 10
C4-3/100-200	< 2	< 10	< 10	< 10	38	< 10	218	< 2	< 10
C5/0-50	< 2	< 10	< 10	< 10	< 10	< 10	13	< 2	< 10
C5/50-100	< 2	< 10	< 10	< 10	51	< 10	373	< 2	< 10
C5/100-200	< 2	< 10	< 10	< 10	51	< 10	243	< 2	< 10
C5-1/0-50	< 2	< 10	< 10	< 10	28	< 10	219	< 2	< 10
C5-1/50-100	< 2	< 10	< 10	< 10	29	< 10	189	< 2	< 10
C5-1/100-200	< 2	< 10	< 10	< 10	35	< 10	236	< 2	< 10
C6-1/0-50	< 2	< 10	< 10	< 10	118	< 10	887	< 2	< 10
C6-1/50-100	< 2	< 10	< 10	< 10	40	< 10	260	< 2	< 10

Campione	2,3,7,8- tetraclorodib enzo-p- diossina	1,2,3,7,8- pentaclorodi benzo-p- diossina	1,2,3,4,7,8- esaclorodibe nzo-p- diossina	1,2,3,6,7,8- esaclorodibe nzo-p- diossina	1,2,3,4,6,7,8- eptaclorodib enzo-p- diossina	1,2,3,7,8,9- esaclorodibe nzo-p- diossina	Octaclorodib enzo-p- diossina	2,3,7,8- tetraclorodib enzofurano	1,2,3,7,8- pentaclorodi benzofurano
C6-1/100-200	< 2	< 10	< 10	< 10	524	< 10	3065	78	36
C1-1/0-50	< 2	< 10	< 10	< 10	58	< 10	695	< 2	< 10
C1-1/50-100	< 2	< 10	< 10	< 10	63	< 10	107	< 2	< 10
C1-1/100-200	< 2	< 10	< 10	< 10	< 10	< 10	45	< 2	< 10
C1-2/0-50	< 2	< 10	< 10	< 10	< 10	< 10	125	< 2	< 10
C1-2/50-100	< 2	< 10	< 10	< 10	< 10	< 10	38	< 2	< 10
C1-2/100-200	< 2	< 10	< 10	< 10	< 10	< 10	13	< 2	< 10
C2-1/0-50	< 2	< 10	< 10	< 10	30	< 10	254	< 2	< 10
C2-1/50-100	< 2	< 10	< 10	< 10	< 10	< 10	< 10	< 2	< 10
C2-1/100-200	< 2	< 10	< 10	< 10	< 10	< 10	86	< 2	< 10
C2-2/0-50	< 2	< 10	< 10	< 10	< 10	< 10	45	< 2	< 10
C2-2/50-100	< 2	< 10	< 10	< 10	< 10	< 10	< 10	< 2	< 10
C2-2/100-200	< 2	< 10	< 10	< 10	< 10	< 10	18	< 2	< 10
C5-2/0-50	< 2	< 10	< 10	< 10	< 10	< 10	66	< 2	< 10
C5-2/50-100	< 2	< 10	< 10	< 10	< 10	< 10	15	< 2	< 10
C5-2/100-200	< 2	< 10	< 10	< 10	< 10	< 10	19	< 2	< 10
C5-3/0-50	< 2	< 10	< 10	< 10	43	< 10	264	< 2	< 10
C5-3/50-100	< 2	< 10	< 10	< 10	< 10	< 10	76	< 2	< 10
C5-3/100-200	< 2	< 10	< 10	< 10	< 10	< 10	20	< 2	< 10
C1/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C1/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2/50-100	< 10	< 10	< 10	< 10	< 10	20	< 10	19	6
C2/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2-3/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	17	< 2
C2-3/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	11	< 2
C2-3/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	13	2,5
C3/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	19	< 2
C3-1/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3-1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3-1/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	15	< 2
C3-2/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3-2/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C3-2/100-200	< 10	< 10	< 10	< 10	< 10	17	< 10	23	< 2
C4/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C4/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C4/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2

Campione	2,3,7,8- tetraclorodib enzo-p- diossina	1,2,3,7,8- pentaclorodi benzo-p- diossina	1,2,3,4,7,8- esaclorodibe nzo-p- diossina	1,2,3,6,7,8- esaclorodibe nzo-p- diossina	1,2,3,4,6,7,8- eptaclorodib enzo-p- diossina	1,2,3,7,8,9- esaclorodibe nzo-p- diossina	Octaclorodib enzo-p- diossina	2,3,7,8- tetraclorodib enzofurano	1,2,3,7,8- pentaclorodi benzofurano
C4-1/0-50	< 10	< 10	< 10	< 10	< 10	21	< 10	57	7
C4-1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	16	< 2
C4-1/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C4-2/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	10	< 2
C4-2/50-100	< 10	< 10	< 10	< 10	< 10	18	< 10	27	< 2
C4-2/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	12	< 2
C4-3/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	13	< 2
C4-3/50-100	< 10	< 10	< 10	< 10	< 10	30	< 10	75	2
C4-3/100-200	< 10	< 10	< 10	< 10	< 10	16	< 10	32	< 2
C5/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5/50-100	< 10	< 10	< 10	< 10	< 10	14	< 10	28	< 2
C5/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	25	< 2
C5-1/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	16	< 2
C5-1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	15	< 2
C5-1/100-200	< 10	< 10	< 10	< 10	< 10	11	< 10	24	< 2
C6-1/0-50	< 10	< 10	< 10	< 10	< 10	33	< 10	53	3
C6-1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	17	< 2
C6-1/100-200	63	68	< 10	< 10	< 10	156	< 10	255	58
C1-1/0-50	< 10	< 10	< 10	< 10	< 10	25	< 10	57	< 2
C1-1/50-100	< 10	< 10	< 10	14	< 10	50	10	39	3
C1-1/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C1-2/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	14	< 2
C1-2/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C1-2/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2-1/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	20	< 2
C2-1/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2-1/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2-2/0-50	< 10	< 10	< 10	< 10	< 10	10	< 10	< 10	< 2
C2-2/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C2-2/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5-2/0-50	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5-2/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5-2/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5-3/0-50	< 10	< 10	< 10	< 10	< 10	12	< 10	26	< 2
C5-3/50-100	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2
C5-3/100-200	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 2

2.3. Analisi ecotossicologiche

Si riportano nelle tabelle a seguire i controlli qualità eseguiti sui saggi ecotossicologici effettuati dal laboratorio. Per ciascuna specie-test i valori di EC₅₀ misurati sui controlli positivi e i relativi limiti fiduciali rientrano all'interno del range di variabilità del laboratorio. I controlli negativi sono sempre rientrati nei limiti di accettabilità previsti dal metodo. Per ulteriori dettagli si rimanda alla consultazione dei rapporti di prova del laboratorio di analisi.

Controllo qualità saggi biologici

Specie-Test	Specie-Test End-point		N° repliche	Tempo esposizione	Tossico di riferimento
V. fischeri	Inibizione della bioluminescenza	Solida	1	30′	3,5 DF (mg/L)
P. tricornutum	Inibizione della crescita	Elutriato	3	72 h	Cr ²⁺ (mg/L)
P. lividus	Sviluppo larvale	Elutriato	3	72 h	Cu ²⁺ (μg/L)

Saggio biologico con Vibrio fischeri fase solida (Saggio di tipologia I ai sensi del D.M. 173/2016)

Campione	Tox max conc	Tossicità misurata	Dev. st.	R ²	STI	3,5-DF	Dev.st
C1 0-50	99,82	7392,37	(3058,4-17861,3)	0,95	25,50	45,35	0,81
C1 50-100	99,97	1976,23	(1662-2350)	0,99	7,13	42,23	1,03
C1 100-200	99,92	1483,86	(1181,1-1864,4)	0,99	4,84	41,84	0,63
C1-1 0-50	99,72	26895,07	(1651,3-438032,3)	0,85	119,52	45,35	0,81
C1-1 50-100	99,98	2091,76	(1494-2929,7)	0,96	8,48	42,23	1,03
C1-1 100-200	99,77	2775,33	(1129,5-6816,3)	0,89	8,78	39,93	6,79
C1-2 0-50	99,64	6973,68	(904,7-53753,1)	0,85	25,54	45,35	0,81
C1-2 50-100	99,61	1955,32	(1697,4-2254,2)	0,99	7,33	45,35	0,81
C1-2 100-200	99,76	2164,34	(2047,1-2289,4)	1,00	6,83	45,35	0,81
C2 0-50	99,67	1702,00	(1376,5-2103,8)	0,98	5,95	45,35	0,81
C2 50-100	99,98	1193,05	(994,7-1431)	0,98	4,03	42,23	1,03
C2 100-200	99,26	1122,56	(1060,1-1188,9)	1,00	3,50	41,84	0,63
C2-1 0-50	99,31	2847,32	(2582,1-3138,9)	1,00	10,75	41,84	0,63
C2-1 50-100	99,88	472,46	(278,2-802,6)	0,94	1,56	45,35	0,81
C2-1 100-200	99,95	9612,11	(4927,7-18747)	0,96	30,34	45,35	0,81
C2-2 0-50	99,83	3777,69	(816,7-17471,4)	0,87	16,69	45,35	0,81
C2-2 50-100	99,90	1779,65	(868,3-3645,1)	0,86	8,32	42,23	1,03
C2-2 100-200	99,79	444,47	(363,4-543,5)	0,92	1,59	45,35	0,81
C2-3 0-50	99,71	1389,94	(976,9-1976,7)	0,98	4,80	41,84	0,63
C2-3 50-100	99,97	2206,84	(1747,4-2788,1)	0,98	7,75	42,23	1,03
C2-3 100-200	99,92	2349,24	(1781-3095,9)	0,98	7,31	42,23	1,03
C3 0-50	99,77	1751,75	(1238-2479,8)	0,98	6,18	39,93	6,79
C3 50-100	99,84	3311,28	(2536-4323,2)	0,99	10,40	39,15	5,14

Campione	Tox max conc	Tossicità misurata	Dev. st.	R ²	STI	3,5-DF	Dev.st
C3 100-200	99,88	7101,76	(4635,3-10878,1)	0,99	23,50	39,93	6,79
C3-1 0-50	99,90	613,76	(558,3-674,5)	0,99	2,15	39,93	6,79
C3-1 50-100	99,87	3182,49	(3015,2-3357)	1,00	9,92	42,23	1,03
C3-1 100-200	99,90	3651,91	(1524,9-8749,9)	0,88	11,55	42,23	1,03
C3-2 0-50	99,99	2375,70	(2042,7-2762,2)	0,99	9,13	42,23	1,03
C3-2 50-100	99,87	2866,02	(2354,2-3488,2)	0,99	9,47	39,93	6,79
C3-2 100-200	98,21	5292,98	(1520,9-18419,7)	0,86	17,26	39,93	6,79
C4 0-50	99,87	10823,67	(3217,3-36422,1)	0,91	39,41	45,35	0,81
C4 50-100	99,79	1738,36	(1554-1945,7)	0,99	5,73	42,23	1,03
C4 100-200	99,71	967,32	(674-1388,1)	0,82	3,74	45,35	0,81
C4-1 0-50	99,74	1606,23	(1126,1-2291,4)	0,98	5,79	42,23	1,03
C4-1 50-100	99,98	1775,05	(1456,1-2162,5)	0,99	6,10	42,23	1,03
C4-1 100-200	99,52	4454,20	(4148,1-4782,6)	1,00	13,61	39,93	6,79
C4-2 0-50	99,32	604,04	(550,9-662,3)	1,00	2,29	41,84	0,63
C4-2 50-100	99,60	2267,77	(1570,5-3272,2)	0,95	8,31	42,23	1,03
C4-2 100-200	99,72	2356,13	(1765,2-3143,4)	0,97	7,51	39,93	6,79
C4-3 0-50	99,55	2883,81	(1274,8-6521,2)	0,89	12,33	41,84	0,63
C4-3 50-100	99,86	3685,12	(3075,3-4412,8)	0,99	12,92	39,93	6,79
C4-3 100-200	99,51	2100,96	(1676,7-2632,8)	0,98	6,37	41,84	0,63
C5 0-50	99,61	5215,46	(4746,1-5731,6)	1,00	20,65	39,15	5,14
C5 50-100	99,76	4361,86	(2371,2-8027,7)	0,94	15,25	42,23	1,03
C5 100-200	99,76	7203,95	(4926-10539)	0,99	26,78	41,84	0,63
C5-1 0-50	99,59	6337,15	(3638,9-11034,4)	0,97	29,23	41,84	0,63
C5-1 50-100	99,90	1467,33	(1313,3-1639,3)	0,99	5,26	42,23	1,03
C5-1 100-200	99,97	1263,80	(1008,5-1583,5)	0,98	4,50	39,15	5,14
C5-2 0-50	99,96	1686,38	(1091,6-2602,7)	0,94	6,58	39,93	6,79
C5-2 50-100	99,58	1203,69	(739,8-1958,2)	0,82	4,10	39,93	6,79
C5-2 100-200	98,27	14126,18	(4882,3-40868,9)	0,92	44,12	39,93	6,79
C5-3 0-50	99,70	4378,14	(2866,3-6686,9)	0,98	15,32	39,15	5,14
C5-3 50-100	99,81	13430,05	(2599,3-69403,1)	0,88	45,63	39,93	6,79
C5-3 100-200	99,94	93794,39	(31755,9-277031,7)	0,99	287,30	39,93	6,79
C6-1 0-50	99,76	27164,88	(6817,7-108231,7)	0,92	94,49	39,15	5,14
C6-1 50-100	99,87	2252,89	(1596-3178,5)	0,95	7,11	39,15	5,14
C6-1 100-200	99,96	8603,99	(3314,2-22327,4)	0,96	30,04	39,93	6,79

Saggio biologico con Phaeodactylum tricornutum (Saggio di tipologia II ai sensi del D.M. 173/2016)

C	Inibizione		Tasso crescita		K ₂ Cr ₂ O ₇	Int. Conf.	CNTR-	D
Campione	Media (%)	Dev.st	Media (μ)	Dev.st	EC ₅₀	95%	Media	Dev.st.
C1 0-50	-0,99	4,01	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C1 50-100	12,36	5,19	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C1 100-200	15,57	1,16	0,15	0,00	21,7	(13,7-29,7)	0,00	3,18
C1-1 0-50	20,37	6,31	0,14	0,01	21,7	(13,7-29,7)	0,00	3,18
C1-1 50-100	6,00	2,37	0,17	0,00	21,7	(13,7-29,7)	0,00	3,18
C1-1 100-200	-6,28	2,34	0,19	0,00	21,7	(13,7-29,7)	0,00	3,18
C1-2 0-50	23,37	2,45	0,14	0,00	21,7	(13,7-29,7)	0,00	3,18
C1-2 50-100	24,63	4,17	0,14	0,01	21,7	(13,7-29,7)	0,00	3,18
C1-2 100-200	14,54	2,84	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C2 0-50	15,68	2,98	0,15	0,01	21,7	(13,7-29,7)	0,00	3,18
C2 50-100	14,00	4,70	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C2 100-200	5,79	4,98	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-1 0-50	11,12	2,85	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-1 50-100	5,47	4,58	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-1 100-200	-11,06	4,94	0,20	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-2 0-50	22,80	6,38	0,14	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-2 50-100	13,19	3,63	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-2 100-200	-17,43	2,77	0,21	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-3 0-50	4,16	5,47	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-3 50-100	-9,07	3,72	0,20	0,01	21,7	(13,7-29,7)	0,00	3,18
C2-3 100-200	5,99	10,47	0,17	0,02	21,7	(13,7-29,7)	0,00	3,18
C3 0-50	6,61	3,57	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C3 50-100	-2,12	3,67	0,19	0,01	21,7	(13,7-29,7)	0,00	3,18
C3 100-200	-2,80	1,53	0,19	0,00	21,7	(13,7-29,7)	0,00	3,18
C3-1 0-50	3,92	3,48	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C3-1 50-100	-9,12	1,52	0,20	0,00	21,7	(13,7-29,7)	0,00	3,18
C3-1 100-200	7,24	1,24	0,17	0,00	21,7	(13,7-29,7)	0,00	3,18
C3-2 0-50	15,90	4,82	0,15	0,01	21,7	(13,7-29,7)	0,00	3,18
C3-2 50-100	13,45	2,71	0,16	0,00	21,7	(13,7-29,7)	0,00	3,18
C3-2 100-200	8,92	1,34	0,17	0,00	21,7	(13,7-29,7)	0,00	3,18
C4 0-50	5,67	0,44	0,17	0,00	21,7	(13,7-29,7)	0,00	3,18
C4 50-100	15,96	1,34	0,15	0,00	21,7	(13,7-29,7)	0,00	3,18
C4 100-200	-11,79	2,45	0,20	0,00	21,7	(13,7-29,7)	0,00	3,18
C4-1 0-50	4,69	4,16	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-1 50-100	10,92	4,01	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-1 100-200	2,25	5,94	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-2 0-50	12,01	1,50	0,16	0,00	21,7	(13,7-29,7)	0,00	3,18
C4-2 50-100	8,43	2,65	0,17	0,00	21,7	(13,7-29,7)	0,00	3,18

Compions	Inibizione		Tasso crescita		K ₂ Cr ₂ O ₇	Int. Conf.	CNTR-	Dovet
Campione	Media (%)	Dev.st	Media (μ)	Dev.st	EC ₅₀	95%	Media	Dev.st.
C4-2 100-200	2,19	5,40	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-3 0-50	9,63	3,31	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-3 50-100	-5,35	4,20	0,19	0,01	21,7	(13,7-29,7)	0,00	3,18
C4-3 100-200	-0,44	5,37	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C5 0-50	-0,03	4,08	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C5 50-100	6,04	2,99	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18
C5 100-200	9,93	3,22	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-1 0-50	-1,69	4,31	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-1 50-100	9,77	4,51	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-1 100-200	9,45	4,37	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-2 0-50	29,04	4,52	0,13	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-2 50-100	-14,56	2,13	0,21	0,00	21,7	(13,7-29,7)	0,00	3,18
C5-2 100-200	-8,34	0,62	0,20	0,00	21,7	(13,7-29,7)	0,00	3,18
C5-3 0-50	11,33	0,00	0,16	0,00	21,7	(13,7-29,7)	0,00	3,18
C5-3 50-100	3,27	3,72	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C5-3 100-200	10,20	2,86	0,16	0,01	21,7	(13,7-29,7)	0,00	3,18
C6-1 0-50	3,54	1,41	0,18	0,00	21,7	(13,7-29,7)	0,00	3,18
C6-1 50-100	3,46	3,48	0,18	0,01	21,7	(13,7-29,7)	0,00	3,18
C6-1 100-200	4,96	4,39	0,17	0,01	21,7	(13,7-29,7)	0,00	3,18

Saggio biologico con Paracentrotus lividus (Saggio di tipologia III ai sensi del D.M. 173/2016)

	"						_
Campione	Media	Dev. St.	Media corretta	% Inibizione Cu ⁺⁺	Int. Conf 95%	CNTR-	Dev. st.
C1 0-50	10,33	1,53	2,54	32,60	(32,0-33,9)	8,00	1,00
C1 50-100	8,33	2,31	0,36	32,60	(32,0-33,9)	8,00	1,00
C1 100-200	15,00	2,65	7,61	32,60	(32,0-33,9)	8,00	1,00
C1-1 0-50	6,00	2,00	0,0	32,60	(32,0-33,9)	8,00	1,00
C1-1 50-100	6,33	4,04	0,0	32,60	(32,0-33,9)	8,00	1,00
C1-1 100-200	15,67	2,52	8,33	32,60	(32,0-33,9)	8,00	1,00
C1-2 0-50	10,33	0,58	2,54	32,60	(32,0-33,9)	8,00	1,00
C1-2 50-100	21,67	0,58	14,86	32,60	(32,0-33,9)	8,00	1,00
C1-2 100-200	98,33	1,53	98,19	32,60	(32,0-33,9)	8,00	1,00
C2 0-50	7,33	1,15	0,0	32,60	(32,0-33,9)	8,00	1,00
C2 50-100	30,33	3,79	24,28	32,60	(32,0-33,9)	8,00	1,00
C2 100-200	92,00	4,36	91,30	32,60	(32,0-33,9)	8,00	1,00
C2-1 0-50	68,67	3,79	65,94	32,60	(32,0-33,9)	8,00	1,00
C2-1 50-100	38,33	0,58	32,97	32,60	(32,0-33,9)	8,00	1,00
C2-1 100-200	91,33	4,16	90,58	32,60	(32,0-33,9)	8,00	1,00
C2-2 0-50	8,67	1,15	0,72	32,60	(32,0-33,9)	8,00	1,00
C2-2 50-100	9,00	2,65	1,09	32,60	(32,0-33,9)	8,00	1,00
C2-2 100-200	11,00	3,46	3,26	32,60	(32,0-33,9)	8,00	1,00
C2-3 0-50	8,67	1,53	0,72	32,60	(32,0-33,9)	8,00	1,00

Campione	Media	Dev. St.	Media corretta	% Inibizione Cu ⁺⁺	Int. Conf 95%	CNTR-	Dev. st.
C2-3 50-100	9,33	2,08	1,45	32,60	(32,0-33,9)	8,00	1,00
C2-3 100-200	10,00	3,00	2,17	32,60	(32,0-33,9)	8,00	1,00
C3 0-50	7,67	1,15	0,0	32,60	(32,0-33,9)	8,00	1,00
C3 50-100	52,33	4,04	48,19	32,60	(32,0-33,9)	8,00	1,00
C3 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C3-1 0-50	9,00	1,73	1,09	32,60	(32,0-33,9)	8,00	1,00
C3-1 50-100	56,67	1,53	52,90	32,60	(32,0-33,9)	8,00	1,00
C3-1 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C3-2 0-50	6,67	1,15	0,0	32,60	(32,0-33,9)	8,00	1,00
C3-2 50-100	28,33	3,06	22,10	32,60	(32,0-33,9)	8,00	1,00
C3-2 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C4 0-50	8,33	1,53	0,36	32,60	(32,0-33,9)	8,00	1,00
C4 50-100	6,33	2,52	0,0	32,60	(32,0-33,9)	8,00	1,00
C4 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C4-1 0-50	8,67	1,53	0,72	32,60	(32,0-33,9)	8,00	1,00
C4-1 50-100	42,33	4,16	37,32	32,60	(32,0-33,9)	8,00	1,00
C4-1 100-200	86,67	3,79	85,51	32,60	(32,0-33,9)	8,00	1,00
C4-2 0-50	10,00	2,00	2,17	32,60	(32,0-33,9)	8,00	1,00
C4-2 50-100	7,33	0,58	0,0	32,60	(32,0-33,9)	8,00	1,00
C4-2 100-200	39,33	3,06	34,06	32,60	(32,0-33,9)	8,00	1,00
C4-3 0-50	13,00	3,00	5,43	32,60	(32,0-33,9)	8,00	1,00
C4-3 50-100	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C4-3 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C5 0-50	8,33	0,58	0,36	32,60	(32,0-33,9)	8,00	1,00
C5 50-100	43,00	2,00	38,04	32,60	(32,0-33,9)	8,00	1,00
C5 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C5-1 0-50	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C5-1 50-100	39,67	3,79	34,42	32,60	(32,0-33,9)	8,00	1,00
C5-1 100-200	87,00	3,61	85,87	32,60	(32,0-33,9)	8,00	1,00
C5-2 0-50	10,33	2,08	2,54	32,60	(32,0-33,9)	8,00	1,00
C5-2 50-100	9,67	0,58	1,81	32,60	(32,0-33,9)	8,00	1,00
C5-2 100-200	46,33	1,53	41,67	32,60	(32,0-33,9)	8,00	1,00
C5-3 0-50	7,33	0,58	0,0	32,60	(32,0-33,9)	8,00	1,00
C5-3 50-100	16,33	2,52	9,06	32,60	(32,0-33,9)	8,00	1,00
C5-3 100-200	15,67	0,58	8,33	32,60	(32,0-33,9)	8,00	1,00
C6-1 0-50	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C6-1 50-100	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00
C6-1 100-200	100,00	0,00	100,00	32,60	(32,0-33,9)	8,00	1,00

3 Elaborazione dei dati

In questa sezione sono riportati i risultati dell'analisi effettuata con il software SediQualSoft 109.0® che permette di determinare sia la classe di pericolo per ciascuna caratterizzazione effettuata (chimica ed ecotossicologia) sia la loro valutazione integrata con l'attribuzione di una classe univoca di qualità del sedimento.

La classificazione del pericolo ecotossicologico è stata effettuata sulla base degli effetti riscontrati sulle tre tipologie di saggio eseguite. Anche la classificazione integrata del rischio deriva dalla classificazione del pericolo ecotossicologico calcolato sulla base dei risultati delle tre tipologie di saggio testate.

3.1. Classificazione del pericolo ecotossicologico (Output Sediqualsoft)

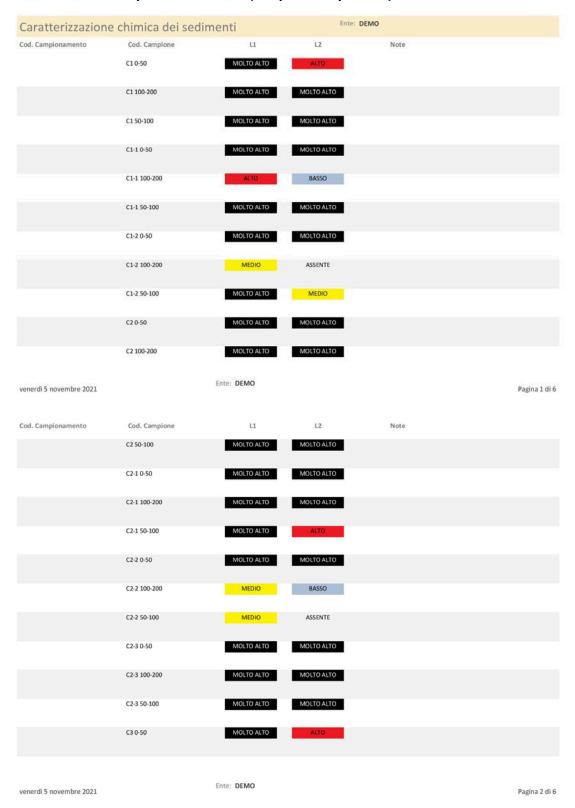
aratterizz	azione (ecotossicolo	gica dei sec	limenti	EIIL	e: DEMO	
Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologio
		C1 0-50				3,7	ALTO
				Vibrio_fischeri	11,52		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	0,07		
		C1 100-200				3,7	ALTO
				Vibrio_fischeri	9,53		
				Phaeodactylum_tricornutum	1,61		
		C1 50-100		Paracentrotus_lividus	0,47	3,7	ALTO
				Vibrio_fischeri	10,32		
				Phaeodactylum_tricornutum	1,28		
				Paracentrotus_lividus	0,01		
		C1-1 0-50				1,17	BASSO
				Vibrio_fischeri	2,71		
				Phaeodactylum_tricornutum	2,1		
				Paracentrotus_lividus	0		
		C1-1 100-200				3,53	ALTO
				Vibrio_fischeri	10,63		
				Phaeodactylum_tricornutum	0		
edì 8 novembre 20	021		Ente: DEMO				Pagina 1 di
Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologi
				Paracentrotus_lividus	0,52		
		C1-1 50-100				3,55	ALTO
				Vibrio_fischeri	10,58		
				Phaeodactylum_tricornutum	0,62		
		C1-2 0-50		Paracentrotus_lividus	0	1,48	BASSO
				Vibrio fischeri	3,07		
				Phaeodactylum_tricornutum	2,41		
				Paracentrotus_lividus	0,16		
		C1-2 100-200				6,03	MOLTO ALTO
				Vibrio_fischeri	10,25		
				Phaeodactylum_tricornutum	1,49		
				Paracentrotus_lividus	6,1		
		C1-2 50-100				4,53	ALTO
				Vibrio_fischeri	10,37		
				Phaeodactylum_tricornutum	2,53		
				- nacodactylani_tricomatani			
				Paracentrotus_lividus	0,92		
		C2 0-50			0,92	3,7	ALTO
		C2 0-50			0,92 9,98	3,7	ALTO

	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologico
				Paracentrotus_lividus	0		
		C2 100-200				4,8	ALTO
				Vibrio_fischeri	8,57		
				Phaeodactylum_tricornutum	0,3		
				Paracentrotus_lividus	5,67		
		C2 50-100				3,84	ALTO
				Vibrio_fischeri	9,02		
				Phaeodactylum_tricornutum	1,44		
		C2-1 0-50		Paracentrotus_lividus	1,51	5,38	ALTO
				Vibrio_fischeri	10,87		
				Phaeodactylum_tricornutum	1,14		
				Paracentrotus_lividus	4,1		
		C2-1 100-200				5,8	ALTO
				Vibrio_fischeri	11,62		
				Phaeodactylum_tricornutum	0		
		C2-1 50-100		Paracentrotus_lividus	5,62	0,97	ASSENTE
				Vibrio_fischeri	1,92		
				Phaeodactylum_tricornutum	0,28		
			Ente: DEMO				
unedi 8 novembre	2021		Ente. DEMO				Pagina 3 di 1
Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologic
Area	Sito	Cod. campione	Campionamento	Specie Paracentrotus_lividus	HQ (specifico)	HQ Batteria	
Area	Sito	Cod. campione	Campionamento			HQ Batteria	
Area	Sito		Campionamento	Paracentrotus_lividus	2,05		pericolo ecotossicologi
Area	Sito		Campionamento	Paracentrotus_lividus Vibrio_fischeri	2,05		pericolo ecotossicologi
Area	Sito		Campionamento	Paracentrotus_lividus	2,05		pericolo ecotossicologi
Area	Sito		Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	2,05 3,74 2,35		pericolo ecotossicologio
Area	Sito	C2-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	2,05 3,74 2,35	1,65	pericolo ecotossicologío
Area	Sito	C2-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01	1,65	pericolo ecotossicologio
Area	Sito	C2-2 0-50 C2-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri	2,05 3,74 2,35 0,01 4,46	1,65	pericolo ecotossicologio MEDIO BASSO
Area	Sito	C2-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	2,05 3,74 2,35 0,01 4,46 0	1,65	pericola ecotossicologic MEDIO
Area	Sito	C2-2 0-50 C2-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	2,05 3,74 2,35 0,01 4,46 0	1,65	pericolo ecotossicologio MEDIO BASSO
Area	Sito	C2-2 0-50 C2-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0	1,65	pericolo ecotossicologio MEDIO BASSO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07	1,65 1,06 3,83	medio BASSO ALTO
Area	Sito	C2-2 0-50 C2-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02	1,65	pericolo ecotossicologio MEDIO BASSO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02	1,65 1,06 3,83	MEDIO BASSO ALTO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02 9,5 0,14	1,65 1,06 3,83	MEDIO BASSO ALTO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02	1,65 1,06 3,83	MEDIO BASSO ALTO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100 C2-3 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02 9,5 0,14 0,01	1,65 1,06 3,83	MEDIO BASSO MEDIO
Area	Sito	C2-2 0-50 C2-2 100-200 C2-2 50-100 C2-3 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	2,05 3,74 2,35 0,01 4,46 0 0,07 10,56 1,36 0,02 9,5 0,14	1,65 1,06 3,83	MEDIO BASSO MEDIO

Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologic
				Paracentrotus_lividus	0,04		
		C2-3 50-100				3,28	ALTO
				Vibrio_fischeri	10,44		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	0,03		
		C3 0-50				3,38	ALTO
				Vibrio_fischeri	10,06		
				Phaeodactylum_tricornutum	0,68		
		C3 100-200		Paracentrotus_lividus	0	5,98	ALTO
				Vibrio_fischeri	11,5		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	6,21		
		C3 50-100			0,22	4,53	ALTO
				Vibrio_fischeri	10,85		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	2,99		
		C3-1 0-50		Paracentrolos_iividus	2,33	1,83	MEDIO
				Vibrio_fischeri	6,41		
				Phaeodactylum_tricornutum	0,15		
lunedi 8 novembre 2021 Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Pagina 5 di : Classe di gravità del
				1053000	10-51-10-10-10-10-10-10-10-10-10-10-10-10-10		pericolo ecotossicologic
				Paracentrotus_lividus	0,02		
		C3-1 100-200				6,06	MOLTO ALTO
				Vibrio_fischeri	10,97		
				Phaeodactylum_tricornutum	0,74		
				Paracentrotus_lividus	6,21		
		C3-1 50-100		ruiocentiotas_iividas	0,21	4,63	ALTO
				Vibrio_fischeri	10,8		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	3,29		
		C3-2 0-50			::::::::::::::::::::::::::::::::::::::	3,97	ALTO
				Vibrio_fischeri	10,68		
				Phaeodactylum_tricornutum	1,64		
				Paracentrotus_lividus	0		
		C3-2 100-200				3,75	ALTO
				Vibrio_fischeri	4,61		
				Phaeodactylum_tricornutum	0,92		
		C3-2 50-100		Paracentrotus_lividus	6,21	4,4	ALTO
				Vibrio_fischeri	10,73		
				Phaeodactylum_tricornutum	1,39		
lunedì 8 novembre 2021			Ente: DEMO				Pagina 6 di 1

	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicolog
				Paracentrotus_lividus	1,37		
		C4 0-50				1,52	MEDIO
				Vibrio_fischeri	5,16		
				Phaeodactylum_tricornutum	0,59		
				Paracentrotus_lividus	0,01		
		C4 100-200				4,96	ALTO
				Vibrio_fischeri	8,78		
				Phaeodactylum_tricornutum	0		
		C4 50-100		Paracentrotus_lividus	6,21	3,68	ALTO
		C4 30 100				3,00	Walter .
				Vibrio_fischeri	9,91		
				Phaeodactylum_tricornutum	1,65		
		C4-1 0-50		Paracentrotus_lividus	0	3,17	ALTO
							10.000
				Vibrio_fischeri	9,94		
				Phaeodactylum_tricornutum	0,22		
		C4-1 100-200		Paracentrotus_lividus	0,01	5,52	ALTO
				Vibrio_fischeri	11,11		
				Phaeodactylum_tricornutum	0,06		
Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	
Area	Sito	Cod. campione	Campionamento	Specie Paracentrotus_lividus	HQ (specifico)	HQ Batteria	
Area	Sito	Cod. campione C4-1 50-100	Campionamento			HQ Batteria	
Area	Sito		Campionamento	Paracentrotus_lividus	5,31		pericolo ecotossicolo
Area	Sito		Campionamento	Paracentrotus_lividus Vibrio_fischeri	5,31		pericolo ecotossicolo
Area	Sito		Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12		pericolo ecotossicolo
Area	Sito		Campionamento	Paracentrotus_lividus Vibrio_fischeri	5,31		pericolo ecotossicolo
Area	Sito	C4-1 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12	4,4	pericolo ecotossicolo ALTO
Area	Sito	C4-1 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32	4,4	pericolo ecotossicolo ALTO
Area	Sito	C4-1 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri	5,31 10,03 1,12 2,32	4,4	pericolo ecotossicolo ALTO
Area	Sito	C4-1 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12 2,32 6,77 1,23	4,4	pericolo ecotossicolo ALTO
Area	Sito	C4-1 50-100 C4-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12 2,32 6,77 1,23	2,38	pericolo ecotossicolo ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05	2,38	pericolo ecotossicolo ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05	2,38	pericolo ecotossicolo ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12 2,32 6,77 1,23 0,05	2,38	pericolo ecotossicolo ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50 C4-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Vibrio_fischeri Phaeodactylum_tricornutum	5,31 10,03 1,12 2,32 6,77 1,23 0,05	2,38 4,06	ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50 C4-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05 10,39 0,06 2,11	2,38 4,06	ALTO MEDIO ALTO
Area	Sito	C4-1 50-100 C4-2 0-50 C4-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05 10,39 0,06 2,11 10,56	2,38 4,06	ALTO MEDIO
Area	Sito	C4-1 50-100 C4-2 0-50 C4-2 100-200	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05 10,39 0,06 2,11 10,56 0,86	2,38 4,06	ALTO MEDIO
Area	Site	C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05 10,39 0,06 2,11 10,56 0,86	4,4 2,38 4,06	ALTO ALTO
Area	Sito	C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	Campionamento	Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus Vibrio_fischeri Phaeodactylum_tricornutum Paracentrotus_lividus	5,31 10,03 1,12 2,32 6,77 1,23 0,05 10,39 0,06 2,11 10,56 0,86 0	4,4 2,38 4,06	ALTO ALTO ALTO ALTO

Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologico
				Paracentrotus_lividus	0,17		
		C4-3 100-200				5,47	ALTO
				Vibrio_fischeri	10,13		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	6,21		
		C4-3 50-100				5,81	ALTO
				Vibrio_fischeri	11,06		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	6,21		
		C5 0-50				3,64	ALTO
				Vibrio_fischeri	11,42		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	0,01		
		C5 100-200				6,37	MOLTO ALTO
				Vibrio_fischeri	11,54		
				Phaeodactylum_tricornutum	1,02		
				Paracentrotus_lividus	6,21		
		C5 50-100				4,66	ALTO
				Vibrio_fischeri	11,21		
				Phaeodactylum_tricornutum	0,62		
lunedi 8 novembre 2021 Area	Sito	Cod. campione	Ente: DEMO Campionamento	Specie	HQ (specifico)	HQ Batteria	Pagina 9 di : Classe di gravità del
				2000	112 (0)12111129		pericolo ecotossicologic
				Paracentrotus_lividus	2,36		
		C5-1 0-50				6,01	MOLTO ALTO
				Vibrio_fischeri	11,59		
				Phaeodactylum_tricornutum	0		
				Paracentrotus_lividus	6,21		
		C5-1 100-200				5,21	ALTO
				Vibrio_fischeri	9,34		
				Phaeodactylum_tricornutum	0,98		
				Paracentrotus_lividus	5,33		
		C5-1 50-100				4,17	ALTO
				Vibrio_fischeri	9,72		
				Phaeodactylum_tricornutum	1,01		
				Paracentrotus_lividus	2,13		
		C5-2 0-50			051	4,3	ALTO
				Vibrio_fischeri	10,18		
					2,98		
				Phaeodactylum_tricornutum	2,50		
				Paracentrotus_lividus	0,06		
		C5-2 100-200				2,5	MEDIO
		C5-2 100-200		Paracentrotus_lividus	0,06	2,5	MEDIO
		C5-2 100-200				2,5	MEDIO
		C5-2 100-200	Ente: DEMO	Paracentrotus_lividus Vibrio_fischeri	0,06 5,78	2,5	MEDIO


	lasse di gravità del colo ecotossicologico	HQ Batteria	HQ (specifico)	Specie	Campionamento	Cod. campione	Sito	Area
Vibrio_fischeri 9.07			2 59	Paracentrotus lividus				
Phaeodactylum_tricornutum	MEDIO	2,78				C5-2 50-100		
Paracentrous_lividus			9,07	Vibrio_fischeri				
Paracentrous_lividus			0	Phaeodactylum_tricornutum				
Vibrio_fischeri 11.21			0,06					
Phaeodactylum_tricornutum 1,16	ALTO	3,99				C5-3 0-50		
Paracentrotus_lividus 0 2,16			11,21	Vibrio_fischeri				
C5-3 100-200 Vibrio_fischeri 5,9			1,16	Phaeodactylum_tricornutum				
Vibrio_fischeri 5,9			0	Paracentrotus_lividus				
Phaeodactylum_tricornutum 1,05	MEDIO	2,16				C5-3 100-200		
Paracentrotus_lividus 0,52 1,02			5,9	Vibrio_fischeri				
C5-3 50-100 1,02			1,05	Phaeodactylum_tricornutum				
Vibrio_fischeri			0,52	Paracentrotus_lividus				
Phaeodactylum_tricornutum 0,11	BASSO	1,02				C5-3 50-100		
Paracentrotus_lividus 0,56 C6-10-50 Vibrio_fischeri 4,54 Phaeodactylum_tricornutum 0,14 Ente: DEMO Ente: DEMO Ente: DEMO Vibrio_fischeri HQ (specifico) HQ Batteria CC perio Paracentrotus_lividus 6,21 C6-1100-200 Vibrio_fischeri 11,59 Phaeodactylum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-150-100 C6-150-100 C6-150-100 Paracentrotus_lividus 6,21 C6-150-100 Specie HQ (specifico) HQ Batteria CC perio Paracentrotus_lividus 6,21 C6-150-100 Specie HQ (specifico) HQ Batteria CC perio Paracentrotus_lividus 6,21 C6-150-100 Specie HQ (specifico) HQ Batteria CC perio Paracentrotus_lividus 6,21 C6-150-100 Specie HQ (specifico) HQ Batteria CC perio Paracentrotus_lividus 6,21 Specie HQ (specifico) HQ Batteria CC perio Specie HQ (specifico) HQ (specifico) HQ Specie HQ (specifico)			3,74	Vibrio_fischeri				
C6-1 0-50 Vibrio_fischeri 4,54 Phaeodactylum_tricornutum 0,14 Ente: DEMO Ente: DEMO Ente: DEMO Faracentrotus_lividus 6,21 C6-1 100-200 Vibrio_fischeri 11,59 Phaeodactylum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 C6-1 50-100 C6-1 50-100 Faracentrotus_lividus 6,21 C6-1 50-100 C6-1 50-100 C6-1 50-100 C6-1 50-100 Vibrio_fischeri 11,59 Phaeodactylum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 Specie HQ (specifico) HQ Batteria Cliperia C6-1 50-100 Faracentrotus_lividus 6,21 C6-1 50-100 Specie HQ (specifico) HQ Batteria Cliperia C6-1 50-100 Faracentrotus_lividus 6,21 C6-1 50-100 Specie HQ (specifico) HQ Batteria Cliperia C6-1 50-100 Specie HQ (specifico) HQ Batteria Specie HQ (specifico) HQ Specie HQ (specifico) HQ Batteria Specie HQ (specifico) HQ Specie HQ (specific			0,11	Phaeodactylum_tricornutum				
Phaeodactylum_tricornutum 0,14 Ente: DEMO Area Sito Cod. campione Campionamento Specie HQ (specifico) HQ Batteria Cl peris Paracentrotus_lividus 6,21 C6-1 100-200 Vibrio_fischeri 11,59 Phaeodactylum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 Paracentrotus_lividus 6,21 C6-1 50-100 Specie HQ (specifico) HQ Batteria Cl peris	ALTO	3,43	0,56	Paracentrotus_lividus		C6-1 0-50		
Area Sito Cod. campione Campionamento Specie HQ (specifico) HQ Batteria CI peris Paracentrotus_lividus 6,21 C6-1 100-200 Vibrio_fischeri 11,59 Phaeodacty/lum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 Paracentrotus_lividus 6,21 C6-1 50-100 Specie HQ (specifico) HQ Batteria CI peris			4,54	Vibrio_fischeri				
Area Sito Cod. campione Campionamento Specie HQ (specifico) HQ Batteria CI peris Paracentrotus_lividus 6,21 C6-1 100-200 Vibrio_fischeri 11,59 Phaeodacty/um_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 C6-1 50-100 Total Campionamento Specie HQ (specifico) HQ Batteria CI peris Paracentrotus_lividus 6,21 C6-1 50-100 Total Campionamento Specie HQ (specifico) HQ Batteria CI peris Paracentrotus_lividus 6,21			0,14	Phaeodactylum_tricornutum				
Paracentrotus_lividus 6,21 C6-1 100-200	Pagina 11 di 1				Ente: DEMO			nedì 8 novembre 202
C6-1 100-200 6,1 Vibrio_fischeri 11,59 Phaeodacty/um_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 5,58	lasse di gravità del colo ecotossicologico	HQ Batteria	HQ (specifico)	Specie	Campionamento	Cod. campione	Sito	Area
C6-1 100-200 6,1 Vibrio_fischeri 11,59 Phaeodacty/lum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 5,58			6,21	Paracentrotus lividus				
Phaeodactylum_tricornutum 0,23 Paracentrotus_lividus 6,21 C6-1 50-100 5,58	MOLTO ALTO	6,1		-		C6-1 100-200		
Paracentrotus_lividus 6,21 C6-1 50-100 5,58			11,59	Vibrio_fischeri				
C6-1 50-100 5,58			0,23	Phaeodactylum_tricornutum				
			6,21	Paracentrotus_lividus				
Vibrio_fischeri 10,32	ALTO	5,58				C6-1 50-100		
			10,32	Vibrio_fischeri				
Phaeodactylum_tricornutum 0,12			0,12	Phaeodactylum_tricornutum				
Paracentrotus_lividus 6,21			6,21	Paracentrotus_lividus				

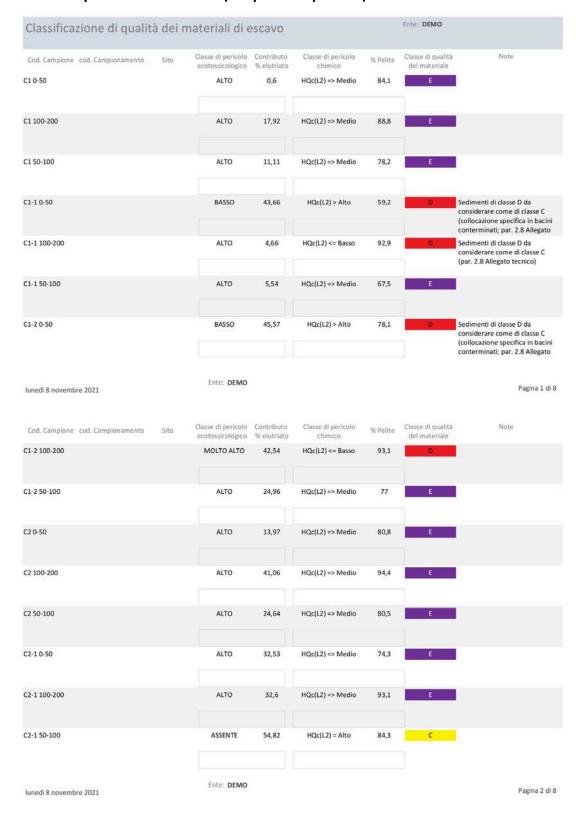
lunedi 8 novembre 2021 Ente: DEMO Pagina 12 di 12

3.2. Classificazione del pericolo chimico (Output Sediqualsoft)

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M.173/2016

Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C3 100-200	MOLTO ALTO	MOLTO ALTO		
	C3 50-100	MOLTO ALTO	MOLTO ALTO		
	C3-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C3-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-1 50-100	MOLTO ALTO	ALTO		
	C3-2 0-50	MOLTO ALTO	MEDIO		
	C3-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-2 50-100	MOLTO ALTO	MOLTO ALTO		
	C4 0-50	MOLTO ALTO	MEDIO		
	C4 100-200	MOLTO ALTO	MOLTO ALTO		
	C4 50-100	MOLTO ALTO	MOLTO ALTO		
venerdi 5 novembre 2021		Ente: DEMO			Pagina 3 di 6
Cod. Campionamento	Cod. Campione	L1	L2	Note	
Cod. Campionamento	Cod. Campione	L1 MOLTO ALTO	L2 MOLTO ALTO	Note	
Cod. Campionamento				Note	
Cod. Campionamento	C4-1 0-50	MOLTO ALTO	MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200	MOLTO ALTO	MOLTO ALTO TRASCURABILE	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100	MEDIO MOLTO ALTO	TRASCURABILE:	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50	MEDIO MOLTO ALTO MOLTO ALTO	IRASCURABILE ALTO MEDIO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200	MEDIO MOLTO ALTO MOLTO ALTO MOLTO ALTO	TRASCURABILE ALTO MEDIO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	MEDIO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO ALTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100	MOLTO ALTO	MOLTO ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100 C5 0-50	MOLTO ALTO MOLTO ALTO	MOLTO ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	

45


Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C5 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-1 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-2 0-50	MOLTO ALTO	BASSO		
	C5-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-2 50-100	MOLTO ALTO	ALTO		
	C5-3 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-3 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-3 50-100	MOLTO ALTO	MOLTO ALTO		
	C6-1 0-50	MOLTO ALTO	MOLTO ALTO		
venerdî 5 novembre 2021		Ente: DEMO			Pagina 5 di 6
Cod. Campionamento	Cod. Campione	Ц	L2	Note	
	C6-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C6-1 50-100	MOLTO ALTO	MOLTO ALTO		
N. campioni	57				

venerdi 5 novembre 2021 Ente: **DEMO** Pagina 6 di 6

3.3. Classe di qualità dei sedimenti (Output Sediqualsoft)

Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C2-2 0-50		MEDIO	38,69	HQc(L2) => Medio	58,3	D	I
C2-2 100-200		BASSO	1,55	HQc(L1) >= Medio e HQc(L2) <= Basso	81,2	В	ı
C2-2 50-100		ALTO	11,56	HQc(L2) <= Basso	60,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C2-3 0-50		MEDIO	1,55	HQc(L2) => Medio	84,3	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C2-3 100-200		ALTO	2,35	HQc(L2) => Medio	94,6	E	
C2-3 50-100		ALTO	0,29	HQc(L2) => Medio	78,8	E	ı
C3 0-50		ALTO	6,33	HQc(L2) => Medio	82,5	E	i e
C3 100-200		ALTO	35,06	HQc(L2) => Medio	88,1	E	
lunedi 8 novembre 2021		Ente: DEMO					Pagina 3 di i
Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C3 50-100		ALTO	21,6	HQc(L2) => Medio	93,6	E	
C3-1 0-50		MEDIO	2,58	HQc(L2) => Medio	82,9	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C3-1 100-200		MOLTO ALTO	38,78	HQc(L2) => Medio	91,6	E	ľ
C3-1 50-100		ALTO	23,35	HQc(L2) => Medio	94,4	E	
C3-2 0-50		ALTO	13,31	HQc(L2) => Medio	74,7	E	l)
C3-2 100-200		ALTO	60,73	HQc(L2) => Medio	88,1	Ε	
C3-2 50-100		ALTO	20,46	HQc(L2) => Medio	88,6	Ε	<u> </u>
C4 0-50		MEDIO	10,42	HQc(L2) => Medio	79,4	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
lunedi 8 novembre 2021		Ente: DEMO					Pagina 4 di 8

C410-200 ALTO A	Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C4-1 0-50 ALTO 2,26 HQc(12) ⇒ Medio 80,6 € C4-1 100-200 ALTO 32,58 HQc(12) ← Basso 96,4 □ C4-1 100-200 ALTO 25,54 HQc(12) ⇒ Medio 84,8 € C4-2 0-50 MEDIO 15,9 HQc(12) ⇒ Medio 76 C4-2 100-200 ALTO 17,28 HQc(12) ⇒ Medio 76 C4-2 100-200 ALTO 17,28 HQc(12) ⇒ Medio 70,4 Ente: DEMO Ente: DEMO C4-2 50-100 ALTO 9,52 HQc(12) ⇒ Medio 70,4 Ente: DEMO C4-3 100-200 ALTO 9,52 HQc(12) ⇒ Medio 70,4 Ente: DEMO C4-3 100-200 ALTO 9,52 HQc(12) ⇒ Medio 72,6 C4-3 100-200 ALTO 38 HQc(12) ⇒ Medio 72,6 C4-3 100-200 ALTO 38,96 HQc(12) ⇒ Medio 72,6 C4-3 50-100 ALTO 0,09 HQc(12) ⇒ Medio 72,6 Ente: DEMO C5-50-100 ALTO 0,09 HQc(12) ⇒ Medio 77,7 E C5-50-100 ALTO 21 HQc(12) ⇒ Medio 60,3 E C5-10-30 ALTO 22 HQc(12) ⇒ Medio 60,3 E C5-10-30 ALTO 21 HQc(12) ⇒ Medio 60,3 E C5-10-30 ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-30 ALTO 21 HQc(12) ⇒ Medio 60,3 E C5-10-30 ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-30 C5-10	C4 100-200		ALTO	41,43	HQc(L2) => Medio	70,1	Е	
C4-1 100-200 ALTO 32,58 HOc(L2) ≈ Blasso 96,4 D Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico) C4-1 50-100 ALTO 25,54 HOc(L2) ⇒ Medio 84,8 E C4-2 0-50 MEDIO 15,9 HOc(L2) ⇒ Medio 76 C4-2 100-200 ALTO 17,28 HOc(L2) ⇒ Medio 70,4 E C4-2 50-100 ALTO 7,53 HOc(L2) ⇒ Medio 70,4 E C4-3 50-100 ALTO 9,52 Hoc(L2) ⇒ Medio 70,4 E C4-3 100-200 ALTO 9,52 Hoc(L2) ⇒ Medio 66,6 E C4-3 100-200 ALTO 38 HOc(L2) ⇒ Medio 97,2 E C4-3 50-100 ALTO 35,96 HOc(L2) ⇒ Medio 72,6 E C5-10-50 MOLTO ALTO 38,52 MOC(L2) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 38,52 MOC(L2) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HOc(L2) ⇒ Medio 60,3 E C5-10-50	C4 50-100		ALTO	14,27	HQc(L2) => Medio	88,7	Ε	ı
C4-1 50-100 ALTO 25.54 HQc(L2) ⇒ Medio 84.8 E C4-2 0-50 MEDIO 15.9 HQc(L2) ⇒ Medio 76 C4-2 100-200 ALTO 17.28 HQc(L2) ⇒ Medio 76 C4-2 50-100 ALTO 7.53 HQc(L2) ⇒ Medio 70.4 Ente: DEMO Ente: DEMO Ente: DEMO C4-3 0-50 ALTO 9,52 HQc(L2) ⇒ Medio 70.4 E C4-3 100-200 ALTO 38.9 HQc(L2) ⇒ Medio 70.4 E C4-3 50-100 ALTO 38.9 HQc(L2) ⇒ Medio 77.2 E C4-3 50-100 ALTO 38.9 HQc(L2) ⇒ Medio 77.7 E C5-10-50 MOLTO ALTO 38,52 HQc(L2) ⇒ Medio 77.7 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 77.7 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60.3 E C5-10-50	C4-1 0-50		ALTO	2,26	HQc(L2) => Medio	80,6	Ε	ľ
C4-2-0-50 MEDIO 15,9 HQc(12) ⇒ Medio 76 D Sedimenti di classe D da considerare come di classe C (gar. 2.8 Allegato tecnico) C4-2-100-200 ALTO 17,28 HQc(12) ⇒ Medio 70,4 C C4-2-50-100 ALTO 7,53 HQc(12) ⇒ Medio 70,4 C Lasse di pericolo ecotosicologico 8, Pelite Classe di qualità del materiale C4-3-0-50 ALTO 9,52 HQc(12) ⇒ Medio 97,2 C C4-3-100-200 ALTO 38,92 HQc(12) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 38,92 HQc(12) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(12) ⇒ Medio 60,3 E	C4-1 100-200		ALTO	32,58	HQc(L2) <= Basso	96,4	D	considerare come di classe C
C4-2 100-200 ALTO 17.28 HQc(L2) ⇒ Medio 92 Ente: DEMO Lunedi 8 novembre 2021 Ente: DEMO C4-3 50-100 ALTO 9,52 HQc(L2) ⇒ Medio 92 Ente: DEMO Pagina 5 d C4-3 50-100 ALTO 9,52 HQc(L2) ⇒ Medio 97,2 E C4-3 50-100 ALTO 38,96 HQc(L2) ⇒ Medio 97,2 E C5-10-50 MOLTO ALTO 38,52 HQc(L2) ⇒ Medio 72,6 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60,3 E Considerare come di classe C (par. 2.8 Allegato tecnico) Cpar. 2.8 Allegato tecnico) Cpar. 2.8 Allegato tecnico) Casse di paricolo Classe di paricolo Chimico Si Pelite Classe di qualità del materiale Note C4-3 50-100 ALTO 9,52 HQc(L2) ⇒ Medio 97,2 E C5-10-50 ALTO 0,09 HQc(L2) ⇒ Medio 72,6 E C5-10-50 MOLTO ALTO 38,52 HQc(L2) ⇒ Medio 77,7 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60,3 E C5-10-50 MOLTO ALTO 34,89 HQc(L2) ⇒ Medio 60,3 E	C4-1 50-100		ALTO	25,54	HQc(L2) => Medio	84,8	E	l,
C4-2 50-100 ALTO 7,53 HQc(L2) ⇒ Medio 70,4 E Inned 8 novembre 2021 Ente: DEMO Fagina 5 d Casse di pericolo Contributo chimico ch	C4-2 0-50		MEDIO	15,9	HQc(L2) => Medio	76	D	considerare come di classe C
Luned 8 novembre 2021 Ente: DEMO Pagina 5 d	C4-2 100-200		ALTO	17,28	HQc(L2) => Medio	92	E	
Lunedi 8 novembre 2021	C4-2 50-100		ALTO	7,53	HQc(L2) => Medio	70,4	E	ı
C4-3 0-50	lunedi 8 novembre 2021		Ente: DEMO					Pagina 5 di 8
C4-3 100-200 ALTO 38 HQc(L2) => Medio 97,2 E C4-3 50-100 ALTO 35,96 HQc(L2) => Medio 81 E C5 0-50 ALTO 0,09 HQc(L2) => Medio 72,6 E C5 100-200 MOLTO ALTO 38,52 HQc(L2) => Medio 77,7 E C5 50-100 ALTO 21 HQc(L2) => Medio 82,8 E C5-1 0-50 MOLTO ALTO 34,89 HQc(L2) => Medio 60,3 E	Cod. Campione cod. Campionamento	Sito				% Pelite		Note
C4-3 50-100 ALTO 35,96 HQc(L2) => Medio 81 E C5 0-50 ALTO 0,09 HQc(L2) => Medio 72,6 E C5 100-200 MOLTO ALTO 38,52 HQc(L2) => Medio 77,7 E C5-1 0-50 MOLTO ALTO 34,89 HQc(L2) => Medio 60,3 E	C4-3 0-50		ALTO	9,52	HQc(L2) => Medio	66,6	E	
C5 0-50 ALTO 0,09 HQc(L2) => Medio 72,6 E C5 100-200 MOLTO ALTO 38,52 HQc(L2) => Medio 77,7 E C5 50-100 ALTO 21 HQc(L2) => Medio 82,8 E C5-1 0-50 MOLTO ALTO 34,89 HQc(L2) => Medio 60,3 E	C4-3 100-200		ALTO	38	HQc(L2) => Medio	97,2	Ε	ı
C5 100-200	C4-3 50-100		ALTO	35,96	HQc(L2) => Medio	81	E	ľ
C5 50-100 ALTO 21 HQc(L2) => Medio 82,8 E C5-1 0-50 MOLTO ALTO 34,89 HQc(L2) => Medio 60,3 E	C5 0-50		ALTO	0,09	HQc(L2) => Medio	72,6	E	ı
C5-1 0-50 MOLTO ALTO 34,89 HQc(L2) => Medio 60,3	C5 100-200		MOLTO ALTO	38,52	HQc(L2) => Medio	77,7	E	I;
	C5 50-100		ALTO	21	HQc(L2) => Medio	82,8	E	ı
C5-1 100-200 ALTO 40,32 HQc(L2) => Medio 81,6	C5-1 0-50		MOLTO ALTO	34,89	HQc(L2) => Medio	60,3	Ε	
	C5-1 100-200		ALTO	40,32	HQc(L2) => Medio	81,6	E	
luned 8 novembre 2021 Ente: DEMO Pagina 6 d			Ente: DEMO					Pagina 6 di 8

Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C5-1 50-100		ALTO	24,42	HQc(L2) => Medio	81,1	E	
C5-2 0-50		ALTO	23	HQc(L2) <= Basso	73,8	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-2 100-200		MEDIO	30,94	HQc(L2) => Medio	94,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-2 50-100		MEDIO	0,66	HQc(L2) => Medio	85,4	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-3 0-50		ALTO	9,38	HQc(L2) => Medio	79,2	E	
C5-3 100-200		MEDIO	21,02	HQc(L2) => Medio	96,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-3 50-100		BASSO	15,19	HQc(L2) > Alto	84,9	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C6-1 0-50		ALTO	58,31	HQc(L2) => Medio	81,4	E	
lunedi 8 novembre 2021		Ente: DEMO					Pagina 7 di 8
Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C6-1 100-200		MOLTO ALTO	35,72	HQc(L2) => Medio	82,4	E	
C6-1 50-100		ALTO	38,02	HQc(L2) => Medio	93,2	Е	
N. classificazione ecotossicologica: N. classificazione chimica:		57 57					
N. classe di qualità dei materiali:		57					

Ente: DEMO

lunedi 8 novembre 2021

Pagina 8 di 8

4. Discussione e Conclusioni

I sedimenti analizzati sono caratterizzati da un'alta percentuale di pelite (i valori misurati oscillano tra un minimo di 52,0% e un massimo di 97,2%).

La caratterizzazione chimica ha rilevato la presenza di metalli, che nella maggior parte dei campioni supera il limite L2 del D.M. 173/2016. In particolare, si osserva che:

- 59,6% dei campioni supera L2 per Arsenico;
- 8,8% dei campioni supera L2 per Cadmio;
- 1,8% dei campioni supera L2 per Cromo;
- 47,4% dei campioni supera L2 per Rame;
- 22,8% dei campioni supera L2 per Mercurio;
- 12,3% dei campioni supera L2 per Nichel;
- 47,4% dei campioni supera L2 per Zinco.

La sommatoria dei composti organostannici supera nel 73,7% dei sedimenti analizzati il valore L2 e sono stati riscontrate anche elevate concentrazioni di tetrabutilstagno (valore massimo di 408 μ g/kg s.s.) e trifenilstagno (valore massimo di 7796 μ g/kg s.s.).

In alcuni campioni si riscontra anche la presenza di DDT e dei suoi composti di degradazione in elevate concentrazioni mentre tutti gli altri pesticidi risultano inferiori al limite di quantificazione.

Per quanto riguarda i Policlorobifenili (PCB) e gli Idrocarburi Policiclici Aromatici (IPA) si osservano, in generale, valori molto alti e infatti il 31,58% dei campioni supera L2 per PCB e il 24,56% dei campioni supera L2 per IPA.

Infine, sono stati riscontrati sopra al limite L2 anche i livelli di Diossine e furani nel 12,28% dei campioni.

A fronte di questo scenario, l'elaborazione dei dati tramite il software Sediqualsoft® evidenzia che la maggior parte dei campioni (82,5 % dei campioni) mostra un pericolo chimico per L2, Alto o Molto Alto.

Considerando la batteria di tre specie (*V. fischeri* in fase solida, *P. tricornutum* e *P. lividus* in elutriato), le analisi ecotossicologiche mostrano una situazione più variegata anche se la maggior parte dei campioni presenta un pericolo ecotossicologico alto. Si osserva che il rischio ecotossicologico è dovuto prevalentemente al saggio di prima tipologia (*Vibrio fischeri* in fase solida) in cui i contaminanti risultano strettamente associati al sedimento; solo nei campioni C2-1/50-100, C3-2/100-200 e C6-1/0-50 l'elutriato contribuisce al rischio con un contributo maggiore al 50%.

L'integrazione del pericolo chimico e del pericolo ecotossicologico considerando le sole tre specie indicate, per la definizione delle classi di qualità evidenzia che:

- 39 campioni sono di classe E
- 16 campioni sono di classe D (di cui 14 da considerarsi di classe C poiché il pericolo ecotossicologico è dovuto per 2/3 alla fase solida)
- 1 campione è di classe C
- 1 campione è di classe B

Per i sedimenti in classe E, è necessario provvedere al calcolo dei "LEG" (Livello di Effetto Grave) cioè dei Livelli Chimici di riferimento sito specifici, prima di poter definire un eventuale collocazione del materiale in ambiente conterminato.

Si riporta a pagina seguente una rappresentazione schematica delle classi di qualità di ciascun campione:

				C5-2/0-50	C6-1/0-50	
C1-2/0-50	C1-1/0-50	C2-2/0-50	C2-1/0-50		C5-1/0-50	
	C1/0-50	C2-3/0-50	C2/0-50	C5-3/0-50	C5/0-50	Livello 0-50 cm
		C3-1/0-50	C3/0-50	C4-2/0-50	C4-1/0-50	
			C3-2/0-50	C4-3/0-50	C4/0-50	
						•
				C5-2/50-100	C6-1/50-100	
C1-2/50-100	C1-1/50-100	C2-2/50-100	C2-1/50-100		C5-1/50-100	
	C1/50-100	C2-3/50-100	C2/50-100	C5-3/50-100	C5/50-100	Livello 50-100 cm
		C3-1/50-100	C3/50-100	C4-2/50-100	C4-1/50-100	
			C3-2/50-100	C4-3/50-100	C4/50-100	
				C5-2/100-200	C6-1/100-200	
C1-2/100-200	C1-1/100-200	C2-2/100-200	C2-1/100-200		C5-1/100-200	
	C1/100-200	C2-3/100-200	C2/100-200	C5-3/100-200	C5/100-200	Livello 100-200 cm
		C3-1/100-200	C3/100-200	C4-2/100-200	C4-1/100-200	
			C3-2/100-200	C4-3/100-200	C4/100-200	
						_
	Legenda	Classe B	Classe C	Classe D	Classe E	
	I					ľ

Rappresentazione schematica delle classi di qualità di ciascun campione

Considerazioni finali

Le analisi condotte sulle batterie di specie previste e costituite da *V. fischeri* in fase solida (Tipologia I), *Phaeodactylum tricornutum* elutriato (Tipologia II) e *Paracentrotus lividus* su elutriato (Tipologia III), hanno evidenziato che il principale contributo alla ecotossicità risulta essere legato al saggio di Tipologia I su fase solida condotto con la specie *V. fischeri*.

Dato che il DM 173/2016 nella sezione 2.3.1. "Batteria di saggi biologici" riporta che "... la batteria di minima deve essere composta da almeno 3 organismi appartenenti a gruppi tassonomici ben distinti", non escludendo la possibilità di effettuare un approfondimento di tipo ecotossicologico; su richiesta del Cliente, per valutare le risposte ottenute testando la stessa specie (Vibrio fischeri), si è provveduto ad integrare gli effetti misurati con saggio di Tipologia II (fase liquida, elutriato).

I risultati della classificazione di qualità del sedimento, ottenuta mediante l'integrazione del pericolo chimico con il pericolo ecotossicologico calcolato su quattro specie sono riportati in appendice a questo documento.

Inoltre, ai fini del calcolo del rischio chimico, su richiesta della Regione Liguria, per il Cromo, Nichel e Rame sono state effettuate delle prove di simulazione di classificazione del pericolo chimico e classificazione del rischio ecotossicologico integrato considerando, per il pericolo chimico, i livelli di fondo locali (Lloc). Infatti, i valori Lloc di questi elementi nella specifica area di indagine sono superiori al valore soglia L2 del DM 173/2016.

Il criterio adottato è stato il seguente:

- per i campioni che non superavano L2 del DM 173/2016, si è mantenuto invariato il valore misurato;
- per i campioni che superavano L2 del DM 173/2016 ma non superavano Lloc di quello specifico elemento si è associato il valore L1 del DM 173/2016;
- i campioni che presentavano valori misurati maggiori del Lloc sono stati lasciati invariati.

Si è provveduto quindi alla nuova classificazione del pericolo chimico, calcolata secondo quanto descritto sopra e, successivamente, ad effettuare una nuova classificazione della qualità integrata dei sedimenti utilizzando la classificazione del pericolo ecotossicologico ottenuto dalle quattro specie testate.

I risultati mostrano che le analisi, effettuate su campione di elutriato su *V. fischeri* hanno una tossicità generalmente assente in fase liquida supportando come il principale contributo al quadro ecotossicologico complessivo sia legato al saggio di tipologia I in fase solida.

Come conseguenza, la classificazione ponderata del rischio calcolata sulla base dell'inserimento del quarto saggio nella batteria di test ecotossicologici, mostra un quadro generalmente meno grave con:

- 17 campioni di classe E
- 34 campioni di classe D (di cui 31 da considerarsi di classe C poiché il pericolo ecotossicologico è dovuto per 2/3 alla fase solida)
- 5 campione di classe C
- 1 campione di classe B

Al contrario la classificazione condotta mediante l'utilizzo della chimica riferita a Lloc non mostra variazioni nella classificazione del rischio integrato, indicando che la contaminazione di fondo naturale non contribuisce in modo significativo alla classificazione dei materiali.

Allegato II

Appendice Report Campagna di Indagini

LA SPEZIA CONTAINER TERMINAL S.P.A.

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M. 173/2016

APPENDICE

al report n° 23137-0

Appendice al Report n° 23137-0

Cliente: LA SPEZIA CONTAINER TERMINAL S.P.A.

Viale San Bartolomeo 20, 19126 La Spezia

Progetto: CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL

CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M. 173/2016

Personale impiegato

Assistenza al campionamento e preparazione aliquote	Marco Pertusati, Silvia Lippi, Sonia Polese				
Analisi granulometriche	Sonia Polese, Ludmilla Kozinkova				
Analisi chimiche	Gianluca Bontà Pittaluga, Ombretta Spinelli, Susanna Dell'Ira,				
Analisi Chimiche	Chiara Manzini, Federica Tardelli, CPG Lab s.r.l. (SV)				
Analisi ecotossicologiche	Serena Anselmi, Andrea Broccoli, Francesca Provenza (BsRC)				

23137-0 APPENDICE	Rev. 01	12/01/2022	Correzione tabella a pag. 42	NB	NB	СР
23137-0 APPENDICE	Rev. 00	23/11/2021	Emissione per cliente	MR	NB	СР
N° report	Revisione	Data	Descrizione revisione	Preparato	Verificato	Approvato

Sommario

1.	Preme	2SSA	3
2.	Mater	iali e metodi	4
	Analisi	i ecotossicologiche4	+
	Valori	di fondo (Lloc)4	+
3.	Risulta	ati	6
	Rischio	o chimico con valori di fondo9	•
	Campi	ioni che hanno subito cambiamenti relativi agli adattamenti riferiti ai livelli Lloc (valori in mg/kg) .	9
4.	Elabor	razione dei dati	10
	4.1.	Chimica DM 173/2016 integrata con ecotossicologia su quattro specie11	•
	4.1.1.	Classificazione del pericolo ecotossicologico (Output Sediqualsoft)11	
	4.1.2.	Classificazione del pericolo chimico DM 173/16 (Output Sediqualsoft)19	,
	4.1.3.	Classe di qualità dei sedimenti (Output Sediqualsoft)22	
	4.2.	Chimica Lloc integrata con rischio ecotossicologico calcolato su quattro specie26))
	4.2.1.	Classificazione del pericolo ecotossicologico (Output Sediqualsoft)26	•
	4.2.2.	Classificazione del pericolo chimico integrato con Lloc (Output Sediqualsoft)34	ŀ
	4.2.3. chimic	Classe di qualità dei sedimenti (Output Sediqualsoft, ecotossicologico integrato su quattro sp ca integrata con Lloc)	
Disc	cussione	e e Conclusioni	41

1. Premessa

Le analisi condotte sulle batterie di specie previste e costituite da *V. fischeri* in fase solida (Tipologia I), *Phaeodactylum tricornutum* elutriato (Tipologia II) e *Paracentrotus lividus* su elutriato (Tipologia III), hanno evidenziato che il principale contributo alla ecotossicità risulta essere legato al saggio di Tipologia I su fase solida condotto con la specie *V. fischeri*.

Dato che il DM 173/2016 nella sezione 2.3.1. "Batteria di saggi biologici" riporta che "... la batteria di minima deve essere composta da almeno 3 organismi appartenenti a gruppi tassonomici ben distinti", non escludendo la possibilità di effettuare un approfondimento di tipo ecotossicologico; su richiesta del Cliente, per valutare le risposte ottenute testando la stessa specie (Vibrio fischeri), si è provveduto ad integrare gli effetti misurati con saggio di Tipologia II (fase liquida, elutriato).

I risultati della classificazione di qualità del sedimento, ottenuta mediante l'integrazione del pericolo chimico con il pericolo ecotossicologico calcolato su quattro specie sono riportati in questo documento.

Inoltre, ai fini del calcolo del rischio chimico, su richiesta della Regione Liguria, per il Cromo, Nichel e Rame sono state effettuate delle prove di simulazione di classificazione del pericolo chimico e classificazione del rischio ecotossicologico integrato utilizzando, per il pericolo chimico, i livelli di fondo locali (Lloc). Infatti, i valori Lloc di questi elementi nella specifica area di indagine sono superiori al valore soglia L2 del DM 173/2016.

Il criterio adottato è stato il seguente:

- per i campioni che non superavano L2 del DM 173/2016, si è mantenuto invariato il valore misurato;
- per i campioni che superavano L2 del DM 173/2016 ma non superavano Lloc di quello specifico elemento si è associato il valore L1 del DM 173/2016;
- i campioni che presentavano valori misurati maggiori del Lloc sono stati lasciati invariati.

Si è provveduto quindi alla nuova classificazione del pericolo chimico, calcolata secondo quanto descritto sopra e, successivamente, ad effettuare una nuova classificazione della qualità integrata dei sedimenti utilizzando la classificazione del pericolo ecotossicologico ottenuto dalle quattro specie testate.

Questa Appendice documentale include i risultati relativi al saggio aggiuntivo condotto su fase liquida e riporta le integrazioni Sediqualsoft[®] di pericolo ecotossicologico calcolate su quattro specie test, le integrazioni ponderate per la valutazione del rischio associato alla gestione dei sedimenti.

Per i risultati dei saggi condotti sulle tre specie originariamente previste e per le analisi chimiche originali si rimanda al documento di restituzione principale.

Inoltre, l'Appendice riporta la classificazione del pericolo chimico calcolata secondo i criteri sopra descritti del Lloc, la nuova classificazione dei sedimenti derivante dal pericolo ecotossicologico calcolato su quattro specie e la nuova valutazione del pericolo chimico calcolata con Lloc.

2. Materiali e metodi

Analisi ecotossicologiche

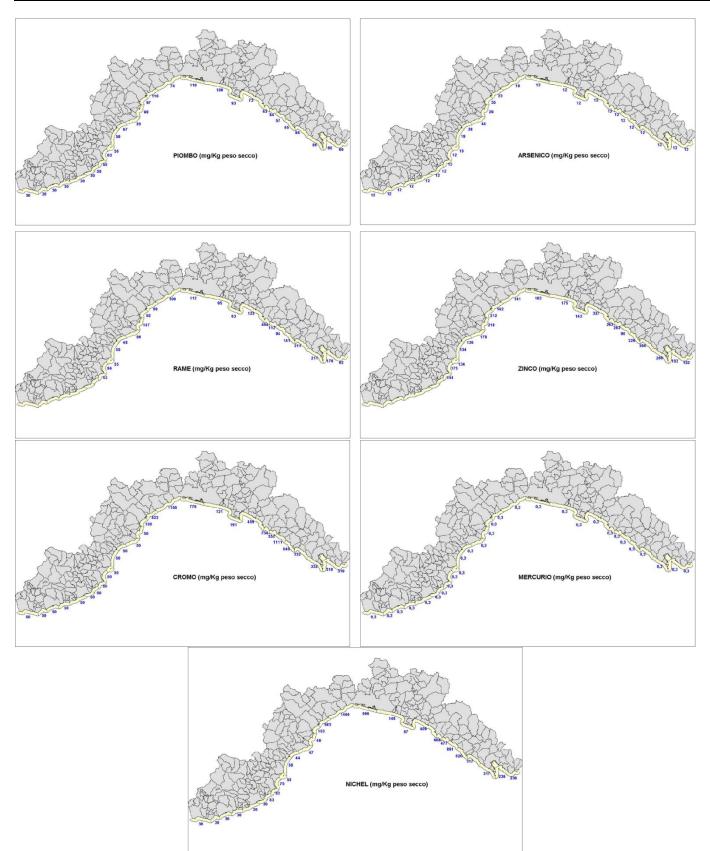
Si riportano nelle tabelle a seguire i controlli qualità eseguiti sul saggio ecotossicologico su *V. fischeri* in fase liquida includendo i dati relativi ai controlli positivi; i relativi limiti fiduciali rientrano all'interno del *range* minimo-massimo di variabilità del laboratorio.

I controlli negativi sono sempre rientrati nei limiti di accettabilità previsti dal metodo. Per ulteriori dettagli si rimanda alla consultazione dei rapporti di prova del laboratorio di analisi.

Controllo qualità saggi biologici

Specie-Test	End-point	Matrice	N° repliche	Tempo esposizione	Tossico di riferimento
V. fischeri	Inibizione della bioluminescenza	Elutriato	2	15' e 30'	3,5 DF (mg/L)

Valori di fondo (Lloc)


Nella tabella a seguire sono riportati i valori Lloc per il sito di La Spezia e il riferimento specifico della soglia L2 prevista dal DM 173/2016 per tutti i metalli e metalloidi.

Elemento (mg/kg)	Lloc La Spezia	L2
Arsenico	12	20
Cadmio	0,6	0,8
Cromo	319	150
Mercurio	0,3	0,8
Nichel	236	75
Piombo	60	70
Rame	176	52
Zinco	152	150

Nella pagina seguente sono riportate le cartografie originali dalle quali sono stati estratti i valori riassunti nella tabella sopra riportata.

3. Risultati

Saggio biologico con Vibrio fischeri fase liquida (Saggio di tipologia II ai sensi del D.M. 173/2016)

Commisses	% inibiz	ione a 15'	% inibiz	zione a 30'	% inibizione	e Tossico a 30'
Campione	Media	Dev.st.	Media	Dev.st.	Media	Dev.st.
C1 0-50	-12,5	9,1	-8,3	8,8	50,6	1,4
C1 50-100	-11,4	0,8	-5,9	1,0	50,6	1,4
C1 100-200	-13,0	0,5	-5,4	2,0	50,6	1,4
C1-1 0-50	3,7	0,6	-3,8	0,8	46,6	0,7
C1-1 50-100	-10,1	1,9	-2,0	1,0	50,6	1,4
C1-1 100-200	-14,4	0,8	-7,1	0,5	50,6	1,4
C1-2 0-50	-7,7	1,3	-0,4	1,3	50,6	1,4
C1-2 50-100	-5,2	0,7	1,0	1,1	50,6	1,4
C1-2 100-200	-16,0	2,4	-10,3	3,3	50,6	1,4
C2 0-50	-10,1	0,0	-6,6	1,0	42,4	0,7
C2 50-100	-8,0	0,0	-3,1	0,3	42,4	0,7
C2 100-200	-4,0	1,9	0,9	3,8	42,4	0,7
C2-1 0-50	-5,9	0,1	-5,6	1,9	42,4	0,7
C2-1 50-100	-18,7	2,7	-12,9	2,8	42,4	0,7
C2-1 100-200	-10,5	3,1	-6,8	4,1	42,4	0,7
C2-2 0-50	-11,9	0,5	-8,8	0,3	42,4	0,7
C2-2 50-100	-13,3	0,8	-10,3	1,6	42,4	0,7
C2-2 100-200	-3,7	2,4	-2,6	0,6	41,6	1,0
C2-3 0-50	-19,9	6,2	-16,8	4,8	41,6	1,0
C2-3 50-100	-12,4	1,0	-13,0	2,3	41,6	1,0
C2-3 100-200	-20,2	4,8	-21,5	7,2	41,6	1,0
C3 0-50	-21,6	2,7	-22,9	2,1	41,6	1,0
C3 50-100	-15,4	3,9	-14,9	3,2	41,6	1,0
C3 100-200	-15,9	3,1	-11,9	1,5	41,6	1,0
C3-1 0-50	-10,8	0,2	-10,6	1,5	41,6	1,0
C3-1 50-100	-12,8	0,4	-10,9	1,1	41,6	1,0
C3-1 100-200	-9,4	1,2	-11,7	2,1	41,6	1,0
C3-2 0-50	-20,5	1,8	-18,3	0,0	41,6	1,0
C3-2 50-100	-16,4	1,6	-13,5	2,2	41,6	1,0
C3-2 100-200	-13,7	2,0	-10,9	0,8	41,6	1,0
C4 0-50	1,6	4,6	8,3	2,6	46,6	0,7
C4 50-100	-14,3	3,9	-12,5	3,1	41,6	1,0
C4 100-200	-9,8	1,2	-11,0	0,9	41,6	1,0
C4-1 0-50	-16,3	0,7	-14,5	1,1	41,6	1,0
C4-1 50-100	-8,6	2,0	-8,9	2,6	41,6	1,0
C4-1 100-200	-18,1	5,1	-20,3	6,3	46,6	0,7
C4-2 0-50	-11,3	3,9	-1,1	3,2	47,2	1,7
C4-2 50-100	-14,2	1,6	-4,5	1,3	47,2	1,7
C4-2 100-200	-16,3	3,3	-4,0	1,0	47,2	1,7

Campiona	% inibiz	ione a 15'	% inibiz	ione a 30'	% inibizione	Tossico a 30'
Campione	Media	Dev.st.	Media	Dev.st.	Media	Dev.st.
C4-3 0-50	-4,0	0,7	-0,8	0,1	47,2	1,7
C4-3 50-100	-5,4	3,1	4,1	2,7	47,2	1,7
C4-3 100-200	-6,0	0,8	0,7	0,1	47,2	1,7
C5 0-50	-8,3	0,6	-0,5	0,6	47,2	1,7
C5 50-100	-11,9	0,7	-4,2	0,8	47,2	1,7
C5 100-200	-0,1	3,5	-1,3	2,6	46,6	0,7
C5-1 0-50	-16,6	1,3	-16,0	0,5	37,0	1,7
C5-1 50-100	-26,3	2,2	-25,5	4,0	37,0	1,7
C5-1 100-200	-18,5	2,1	-14,6	0,2	37,0	1,7
C5-2 0-50	-12,4	3,3	-12,4	4,9	37,0	1,7
C5-2 50-100	-14,9	0,5	-15,2	1,8	37,0	1,7
C5-2 100-200	-14,6	1,1	-13,5	2,4	37,0	1,7
C5-3 0-50	-11,6	3,4	-9,7	2,3	37,0	1,7
C5-3 50-100	-1,6	2,4	-1,4	3,1	46,6	0,7
C5-3 100-200	3,0	2,3	2,2	0,9	46,6	0,7
C6-1 0-50	-9,7	0,9	-15,5	1,1	46,6	0,7
C6-1 50-100	-8,4	2,4	-9,3	0,8	37,0	1,7
C6-1 100-200	13,6	3,9	8,8	6,6	46,6	0,7

Rischio chimico con valori di fondo

Campioni che hanno subito cambiamenti relativi agli adattamenti riferiti ai livelli Lloc (valori in mg/kg)

Codice_campione	Cromo	Rame	Nichel
C1 0-50	88,46	61,10	60,25
C1 50-100	49,35	82,09	48,31
C1 100-200	90,56	44,03	74,54
C1-1 0-50	78,38	261,39	43,86
C1-1 50-100	40,12	50,48	33,17
C1-1 100-200	81,76	36,23	70,67
C1-2 0-50	41,81	94,98	32,79
C1-2 50-100	44,79	26,07	36,30
C1-2 100-200	54,78	31,62	42,13
C2 0-50	62,91	62,57	48,72
C2 50-100	73,15	92,06	59,07
C2 100-200	102,50	45,40	88,67
C2-1 0-50	64,20	458,59	46,58
C2-1 50-100	60,14	37,72	50,36
C2-1 100-200	116,53	36,99	92,53
C2-2 0-50	35,97	143,99	25,28
C2-2 50-100	24,05	20,17	23,80
C2-2 100-200	68,79	30,18	54,06
C2-3 0-50	54,41	55,43	41,42
C2-3 50-100	72,80	92,66	57,78
C2-3 100-200	96,87	40,42	77,55
C3 0-50	59,89	41,25	47,36
C3 50-100	60,43	44,99	49,91
C3 100-200	109,38	128,91	65,75
C3-1 0-50	69,24	47,04	51,31
C3-1 50-100	89,10	51,98	59,69
C3-1 100-200	61,55	108,35	51,62
C3-2 0-50	51,55	39,87	42,12
C3-2 50-100	65,62	56,97	53,06
C3-2 100-200	104,93	183,76	63,19
C4 0-50	60,83	40,85	42,48
C4 50-100	79,93	57,80	55,65
C4 100-200	110,22	134,54	68,60
C4-1 0-50	72,31	55,36	44,58
C4-1 50-100	75,46	45,09	51,45
C4-1 100-200	64,03	42,22	56,96
C4-2 0-50	67,93	43,35	46,02
C4-2 50-100	92,85	67,05	57,02
C4-2 100-200	110,74	41,78	87,06
C4-3 0-50	63,59	41,17	40,75
C4-3 50-100	105,36	138,58	63,91
C4-3 100-200	85,58	61,26	61,04
C5 0-50	78,16	148,55	46,70
C5 50-100	63,88	73,03	45,00
C5 100-200	66,98	44,67	43,92
	<u>'</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>

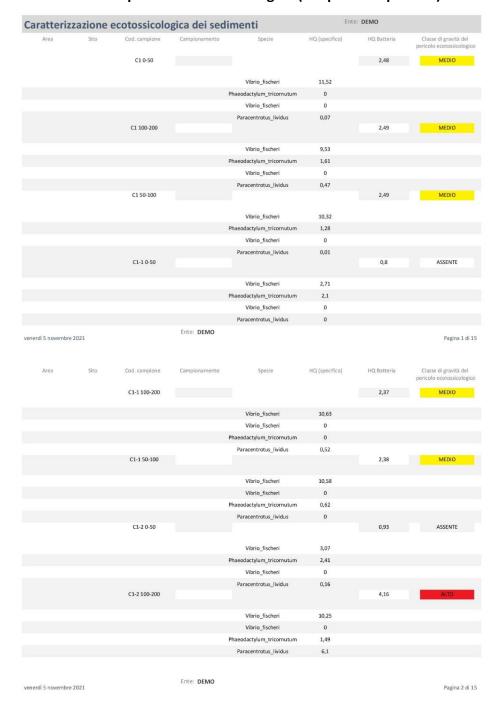
Report n° 23137-0 APPENDICE

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M.173/2016

Codice_campione	Cromo	Rame	Nichel
C5-1 0-50	72,54	98,66	40,77
C5-1 50-100	68,54	51,43	46,58
C5-1 100-200	64,35	45,40	47,92
C5-2 0-50	35,67	28,48	37,07
C5-2 50-100	59,60	30,71	47,23
C5-2 100-200	89,44	38,94	75,99
C5-3 0-50	72,76	122,03	48,87
C5-3 50-100	65,35	42,47	52,94
C5-3 100-200	111,61	40,42	89,47
C6-1 0-50	103,86	181,96	59,42
C6-1 50-100	93,55	110,63	58,68
C6-1 100-200	157,42	307,37	77,31

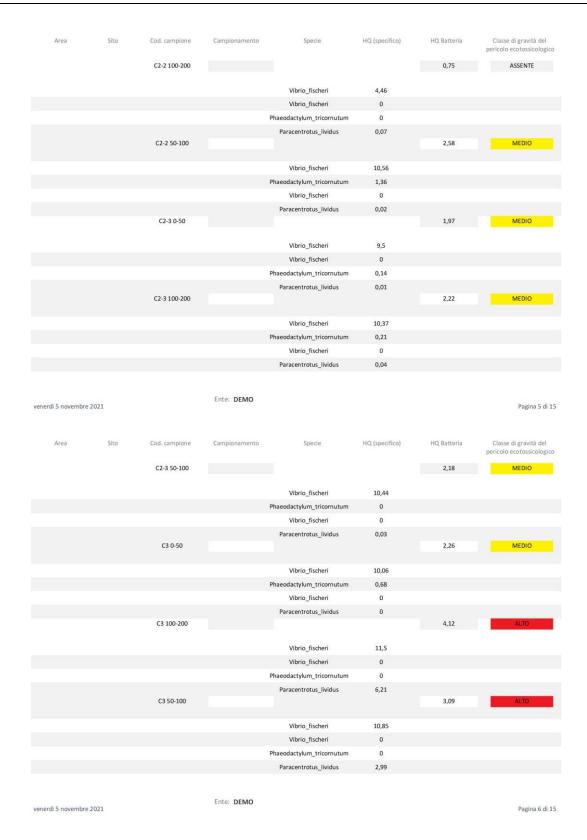
4. Elaborazione dei dati

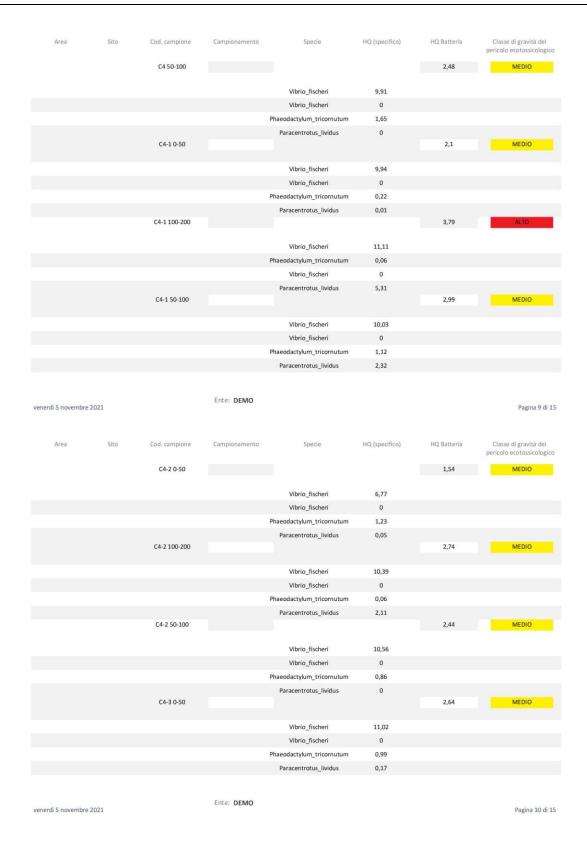
In questa sezione sono riportati i risultati dell'analisi effettuata con il software SediQualSoft 109.0® che permette di determinare sia la classe di pericolo per ciascuna caratterizzazione effettuata (chimica ed ecotossicologia) sia la loro valutazione integrata con l'attribuzione di una classe univoca di qualità del sedimento.


La classificazione del pericolo ecotossicologico è stata effettuata sulla base degli effetti riscontrati sulle quattro tipologie di saggio eseguite. Anche la classificazione integrata del rischio deriva dalla classificazione del pericolo ecotossicologico calcolato sulla base dei risultati delle quattro tipologie di saggio testate.

4.1. Chimica DM 173/2016 integrata con ecotossicologia su quattro specie

4.1.1. Classificazione del pericolo ecotossicologico (Output Sediqualsoft)



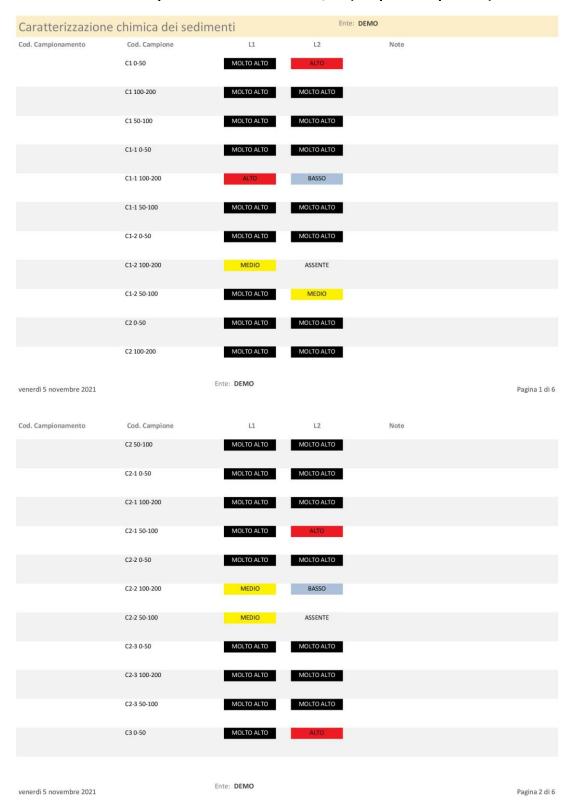




Pagina 15 di 15

CARATTERIZZAZIONE AMBIENTALE DEI SEDIMENTI DELLA MARINA DEL CANALETTO DEL PORTO DELLA SPEZIA AI SENSI DEL D.M.173/2016

Progetto


Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologico
		C6-1 50-100				3,84	ALTO
				Vibrio_fischeri	10,32		
				Phaeodactylum_tricornutum	0,12		
				Vibrio_fischeri	0		
				Paracentrotus_lividus	6,21		

venerdi 5 novembre 2021

4.1.2. Classificazione del pericolo chimico DM 173/16 (Output Sediqualsoft)

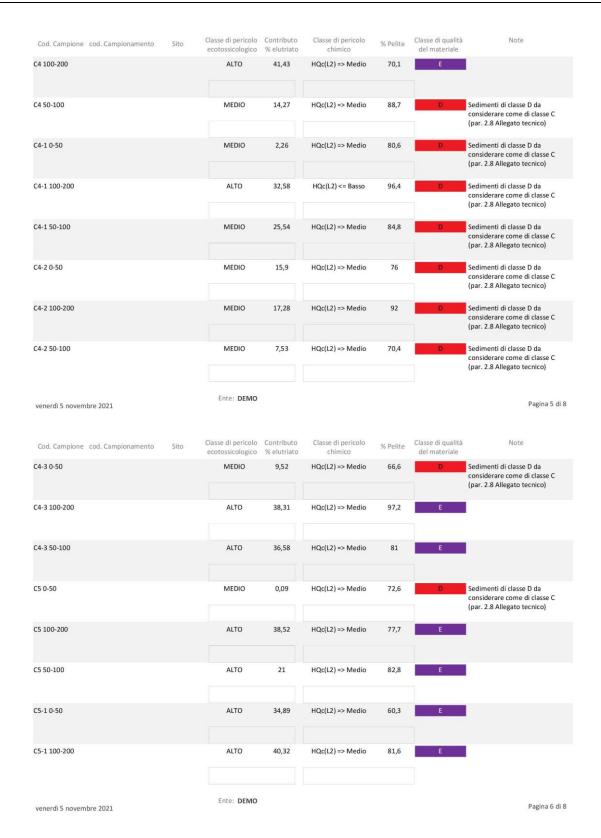
Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C3 100-200	MOLTO ALTO	MOLTO ALTO		
	C3 50-100	MOLTO ALTO	MOLTO ALTO		
	C3-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C3-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-1 50-100	MOLTO ALTO	ALTO		
	C3-2 0-50	MOLTO ALTO	MEDIO		
	C3-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-2 50-100	MOLTO ALTO	MOLTO ALTO		
	C4 0-50	MOLTO ALTO	MEDIO		
	C4 100-200	MOLTO ALTO	MOLTO ALTO		
	C4 50-100	MOLTO ALTO	MOLTO ALTO		
venerdì 5 novembre 2021		Ente: DEMO			Pagina 3 di 6
Cod Campionamento	Fod Campione	11	12	Note	
Cod. Campionamento	Cod. Campione	L1 MOLTO ALTO	L2 MOLTO ALTO	Note	
Cod. Campionamento				Note	
Cod. Campionamento	C4-1 0-50	MOLTO ALTO	MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200	MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50	MEDIO MOLTO ALTO MOLTO ALTO	TRASCURABILE ALTO MEDIO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	TRASCURABILE ALTO MEDIO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO MOLTO ALTO MOLTO ALTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100 C5 0-50	MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	

Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C5 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-1 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-2 0-50	MOLTO ALTO	BASSO		
	C5-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-2 50-100	MOLTO ALTO	ALTO		
	C5-3 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-3 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-3 50-100	MOLTO ALTO	MOLTO ALTO		
	C6-1 0-50	MOLTO ALTO	MOLTO ALTO		
venerdì 5 novembre 2021		Ente: DEMO			Pagina 5 di 6
Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C6-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C6-1 50-100	MOLTO ALTO	MOLTO ALTO		
N. campioni	57				

venerdi 5 novembre 2021 Ente: **DEMO** Pagina 6 di 6



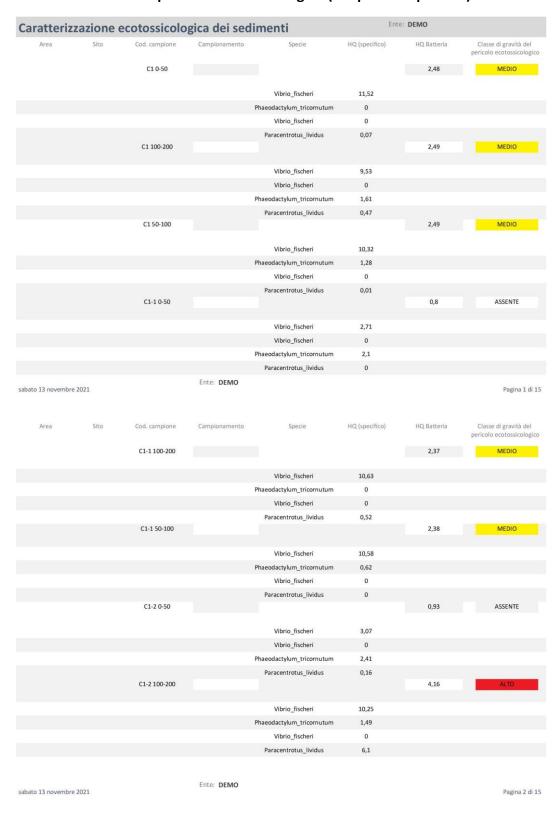
4.1.3. Classe di qualità dei sedimenti (Output Sediqualsoft)



Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C5-1 50-100		MEDIO	24,42	HQc(L2) => Medio	81,1	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-2 0-50		MEDIO	23	HQc(L2) <= Basso	73,8	С	
C5-2 100-200		MEDIO	30,94	HQc(L2) => Medio	94,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-2 50-100		MEDIO	0,66	HQc(L2) => Medio	85,4	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-3 0-50		MEDIO	9,38	HQc(L2) => Medio	79,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-3 100-200		BASSO	22,27	HQc(L2) > Alto	96,2	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C5-3 50-100		ASSENTE	15,19	HQc(L2) > Alto	84,9	D	Sedimenti di classe D da considerare come di classe C (par. 2.8 Allegato tecnico)
C6-1 0-50		MEDIO	58,31	HQc(L2) => Medio	81,4	D	
venerdì 5 novembre 2021		Ente: DEMO					Pagina 7 di 8
Cod. Campione cod. Campionamento	Sito	Classe di pericolo ecotossicologico	Contributo % elutriato	Classe di pericolo chimico	% Pelite	Classe di qualità del materiale	Note
C6-1 100-200		ALTO	36,91	HQc(L2) => Medio	82,4	E	
C6-1 50-100		ALTO	38,02	HQc(L2) => Medio	93,2	E	ı
N. classificazione ecotossicologica: N. classificazione chimica:		57 57					
N. classe di qualità dei materiali:		57					

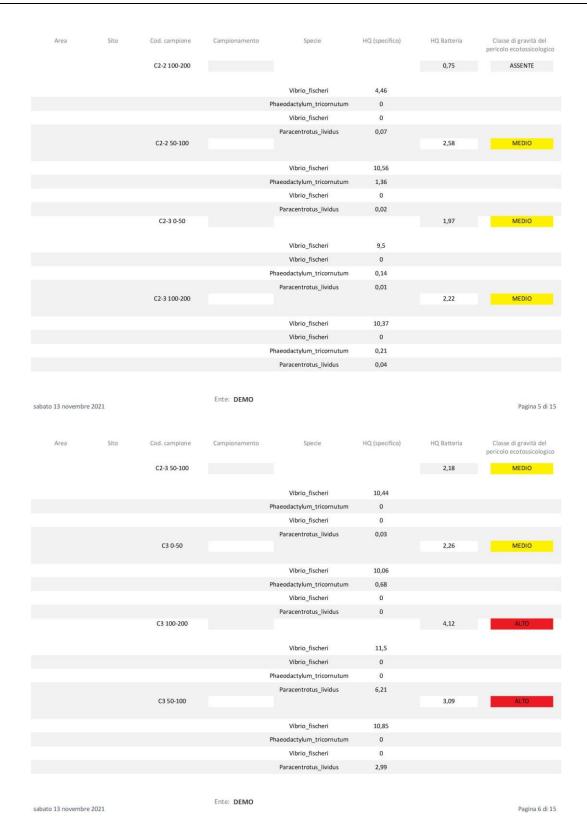
Ente: DEMO

Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata - Livorno

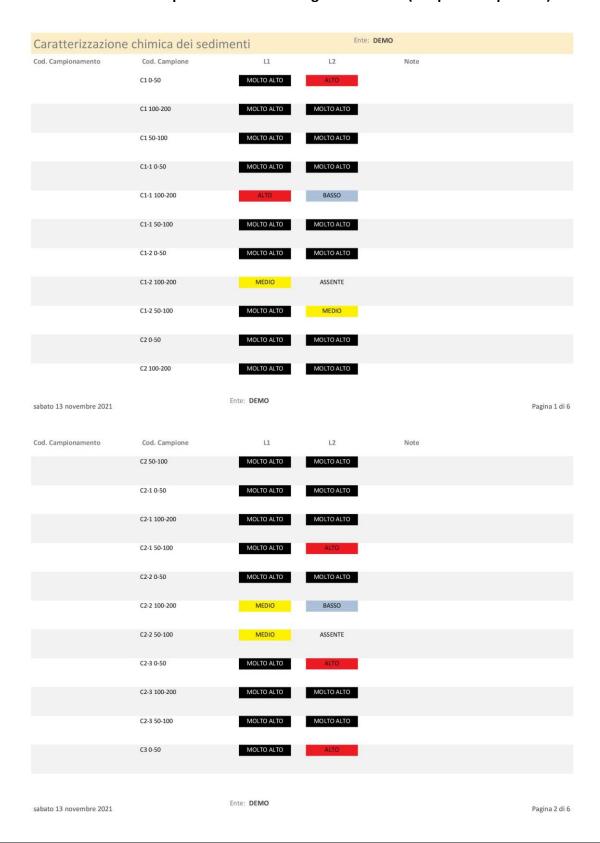

Pagina 8 di 8

4.2. Chimica Lloc integrata con rischio ecotossicologico calcolato su quattro specie

4.2.1. Classificazione del pericolo ecotossicologico (Output Sediqualsoft)



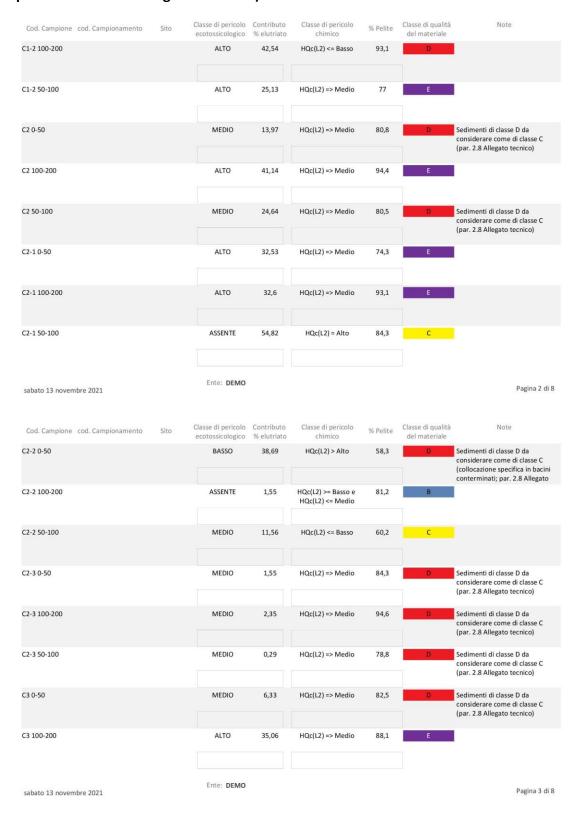



Area	Sito	Cod. campione	Campionamento	Specie	HQ (specifico)	HQ Batteria	Classe di gravità del pericolo ecotossicologico
		C6-1 50-100				3,84	ALTO
				Vibrio_fischeri	10,32		
				Phaeodactylum_tricornutum	0,12		
				Vibrio_fischeri	0		
				Paracentrotus_lividus	6,21		

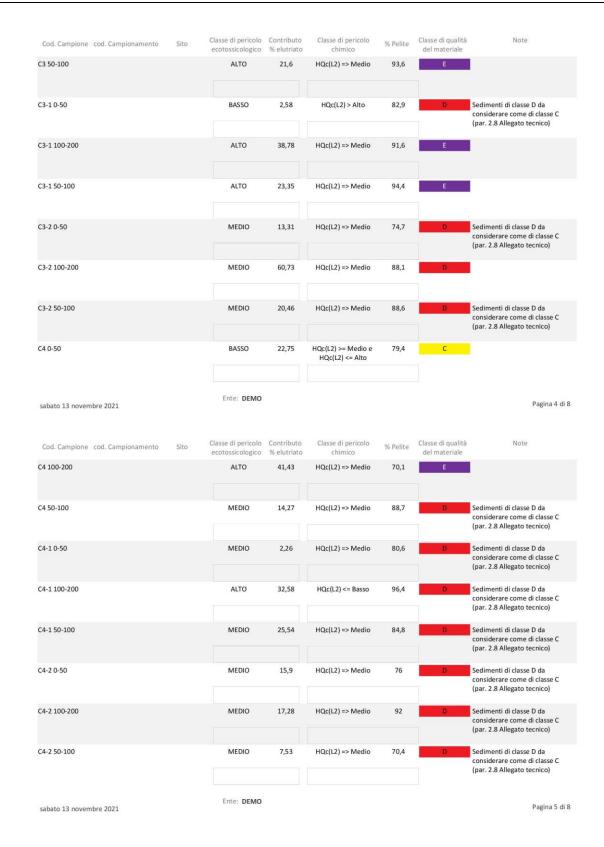
sabato 13 novembre 2021 Ente: **DEMO**Pagina 15 di 15

4.2.2. Classificazione del pericolo chimico integrato con Lloc (Output Sediqualsoft)

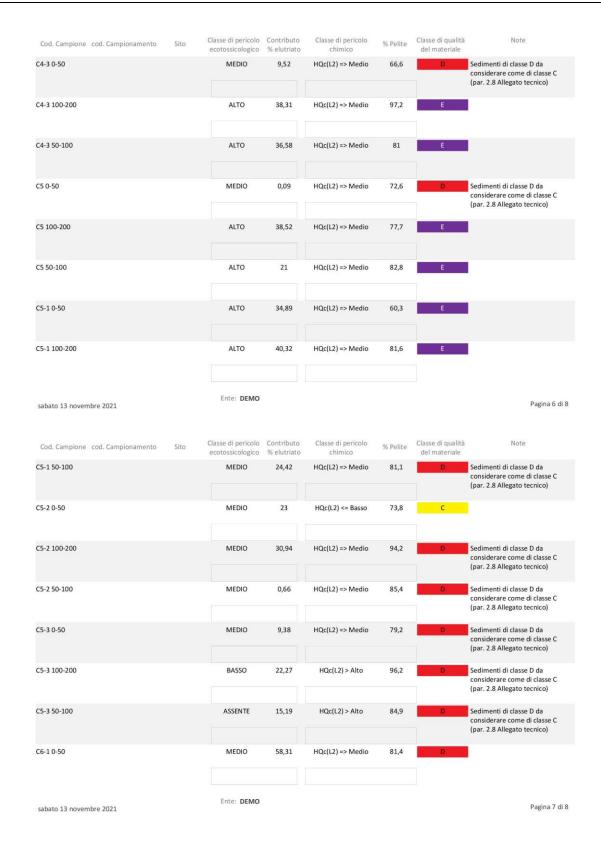
Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C3 100-200	MOLTO ALTO	MOLTO ALTO		
	C3 50-100	MOLTO ALTO	MOLTO ALTO		
	C3-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C3-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-1 50-100	MOLTO ALTO	ALTO		
	C3-2 0-50	MOLTO ALTO	MEDIO		
	C3-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C3-2 50-100	MOLTO ALTO	MOLTO ALTO		
	C4 0-50	MOLTO ALTO	MEDIO		
	C4 100-200	MOLTO ALTO	MOLTO ALTO		
	C4 50-100	MOLTO ALTO	MOLTO ALTO		
sabato 13 novembre 2021		Ente: DEMO			Pagina 3 di 6
Cod. Campionamento	Cod. Campione	L1	L2	Note	
Cod. Campionamento	Cod. Campione C4-1 0-50	L1 MOLTO ALTO	L2 MOLTO ALTO	Note	
Cod. Campionamento				Note	
Cod. Campionamento	C4-1 0-50	MOLTO ALTO	MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200	MOLTO ALTO	MOLTO ALTO TRASCURABILE	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100	MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50	MEDIO MOLTO ALTO MOLTO ALTO	TRASCURABILE ALTO MEDIO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100	MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100 C5 0-50	MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100	MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	
Cod. Campionamento	C4-1 0-50 C4-1 100-200 C4-1 50-100 C4-2 0-50 C4-2 100-200 C4-2 50-100 C4-3 0-50 C4-3 100-200 C4-3 50-100 C5 0-50	MOLTO ALTO MOLTO ALTO	MOLTO ALTO TRASCURABILE ALTO MEDIO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO MOLTO ALTO	Note	


Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C5 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-1 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-1 50-100	MOLTO ALTO	MOLTO ALTO		
	C5-2 0-50	MOLTO ALTO	BASSO		
	C5-2 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-2 50-100	MOLTO ALTO	ALTO		
	C5-3 0-50	MOLTO ALTO	MOLTO ALTO		
	C5-3 100-200	MOLTO ALTO	MOLTO ALTO		
	C5-3 50-100	MOLTO ALTO	MOLTO ALTO		
	C6-1 0-50	MOLTO ALTO	MOLTO ALTO		
sabato 13 novembre 2021		Ente: DEMO			Pagina 5 di 6
Cod. Campionamento	Cod. Campione	L1	L2	Note	
	C6-1 100-200	MOLTO ALTO	MOLTO ALTO		
	C6-1 50-100	MOLTO ALTO	MOLTO ALTO		
N. campioni	57				

sabato 13 novembre 2021 Ente: **DEMO** Pagina 6 di 6



4.2.3. Classe di qualità dei sedimenti (Output Sediqualsoft, ecotossicologico integrato su quattro specie con chimica integrata con Lloc)



sabato 13 novembre 2021 Ente: **DEMO** Pagina 8 di 8

Discussione e Conclusioni

Le analisi, effettuate su campione di elutriato hanno mostrato una tossicità generalmente assente su *V. fischeri* in fase liquida supportando come il principale contributo al quadro complessivo sia legato al saggio di tipologia I in fase solida. La classificazione condotta sulla base dell'inserimento del quarto saggio nella batteria di test ecotossicologici, mostra un quadro generalmente meno grave con:

- 17 campioni di classe E
- 34 campioni di classe D (di cui 31 da considerarsi di classe C poiché il pericolo ecotossicologico è dovuto per 2/3 alla fase solida)
- 5 campione di classe C
- 1 campione di classe B

Al contrario la classificazione condotta mediante l'utilizzo della chimica riferita a Lloc non mostra variazioni nella classificazione del rischio integrato, indicando che la contaminazione di fondo naturale non contribuisce in modo significativo alla classificazione dei materiali.

Si riporta di seguito una rappresentazione schematica delle classi di qualità di ciascun campione sulla base di questi esiti:

				C5-2/0-50	C6-1/0-50	
C1-2/0-50	C1-1/0-50	C2-2/0-50	C2-1/0-50		C5-1/0-50	
	C1/0-50	C2-3/0-50	C2/0-50	C5-3/0-50	C5/0-50	Livello 0-50 cm
		C3-1/0-50	C3/0-50	C4-2/0-50	C4-1/0-50	
			C3-2/0-50	C4-3/0-50	C4/0-50	
				C5-2/50-100	C6-1/50-100	
C1-2/50-100	C1-1/50-100	C2-2/50-100	C2-1/50-100		C5-1/50-100	
	C1/50-100	C2-3/50-100	C2/50-100	C5-3/50-100	C5/50-100	Livello 50-100 cm
		C3-1/50-100	C3/50-100	C4-2/50-100	C4-1/50-100	
			C3-2/50-100	C4-3/50-100	C4/50-100	
						_
				C5-2/100-200	C6-1/100-200	
C1-2/100-200	C1-1/100-200	C2-2/100-200	C2-1/100-200		C5-1/100-200	
	C1/100-200	C2-3/100-200	C2/100-200	C5-3/100-200	C5/100-200	Livello 100-200 cm
		C3-1/100-200	C3/100-200	C4-2/100-200	C4-1/100-200	
			C3-2/100-200	C4-3/100-200	C4/100-200	

Classe B

Legenda

Classe D

Classe E

Classe C

In considerazione del possibile tombamento dell'area portuale oggetto di studio, la contaminazione dei sedimenti potrebbe essere valutata anche sulla base delle concentrazioni soglia di contaminazione nel suolo dei siti da bonificare, riportate nella tabella 1 dell'allegato 5 al titolo V della parte quarta del D. Lgs. n. 152 del 2006 ed in particolare alla colonna B (siti ad uso commerciale e industriale) di tale tabella. Di seguito si riporta, a titolo puramente indicativo, l'elenco dei campioni per i quali almeno un parametro è risultato superiore alla rispettiva soglia e una rappresentazione schematica della contaminazione:

Campione	SOMMATORIA PCB DM 173/2016 (µg/kg s.s.)	Idrocarburi Pesanti C>12 (mg/kg s.s.)		
C1/100-200	4,175	36,06		
C2/100-200	4,04	30,05		
C2-3/100-200	4,1	25,27		
C3/100-200	52,555	805,10		
C3-2/100-200	145,065	1879,68		
C4/100-200	18,32	1462,05		
C4-3/50-100	167,6	1156,58		
C5/0-50	0,446	1087,27		
C5-1/0-50	76,691	755,16		
C6-1/0-50	349,503	2021,94		
C6-1/50-100	7312,133	1232,63		
C6-1/100-200	3145,874	5597,68		
C2-1/100-200	50,209	18,60		
C5-2/100-200	2,852	32,10		
C5-3/0-50	473,669	986,52		
C5-3/100-200	29,878	42,53		

_					C5-2/0-50	C6-1/0-50	
	C1-2/0-50	C1-1/0-50	C2-2/0-50	C2-1/0-50		C5-1/0-50	
		C1/0-50	C2-3/0-50	C2/0-50	C5-3/0-50	C5/0-50	Livello 0-50 cm
Concentrazioni			C3-1/0-50	C3/0-50	C4-2/0-50	C4-1/0-50	0 30 6111
< colonna B				C3-2/0-50	C4-3/0-50	C4/0-50	
					C5-2/50-100	C6-1/50-100	
	C1-2/50-100	C1-1/50-100	C2-2/50-100	C2-1/50-100		C5-1/50-100	
		C1/50-100	C2-3/50-100	C2/50-100	C5-3/50-100	C5/50-100	Livello 50-100 cm
Concentrazioni			C3-1/50-100	C3/50-100	C4-2/50-100	C4-1/50-100	30 100 cm
> colonna B				C3-2/50-100	C4-3/50-100	C4/50-100	
					C5-2/100-200	C6-1/100-200	
	C1-2/100-200	C1-1/100-200	C2-2/100-200	C2-1/100-200		C5-1/100-200	
		C1/100-200	C2-3/100-200	C2/100-200	C5-3/100-200	C5/100-200	Livello 100-200 cm
			C3-1/100-200	C3/100-200	C4-2/100-200	C4-1/100-200	100 200 0111
				C3-2/100-200	C4-3/100-200	C4/100-200	

Allegato III

Analisi della contaminazione della colmata per la verifica di assenza di rischi per l'ambiente

LSCT - La Spezia Container Terminal S.p.A.

Nuovo Terminal Ravano del Porto della Spezia

Analisi della conterminazione della colmata della Marina del Canaletto nel Porto della Spezia per la verifica di assenza di rischi per l'ambiente

Environment, Health and Safety

EH&S Report 028-21

Studio di Ingegneria

Sede Legale:

Via di Marmiceto 6/C

56121 Ospedaletto Pisa

≅: + 39 050 6204260 **曇**: + 39 050 6204259

D: info@studioboeri.it http://www.studioboeri.it

LSCT – La Spezia Container Terminal S.p.A.

Nuovo Terminal Ravano del Porto della Spezia

Analisi della conterminazione della colmata della Marina del Canaletto nel Porto della Spezia per la verifica di assenza di rischi per l'ambiente

INDICE

1.	LA	COLMATA DELL'AMPLIAMENTO DEL TERMINAL RAVANO	4
2.	IN	QUADRAMENTO NORMATIVO	6
<i>3</i> .		QUADRAMENTO TERRITORIALE	
<i>4</i> .		ATI E DOCUMENTAZIONE DI BASE	
•			
		Aspetti Geologici e Stratigrafici	ð
		Caratterizzazione Ambientale dei Sedimenti della Marina del	
		Canaletto del Porto della Spezia ai sensi del D.M. 173/2016 (ottobre	
		2021)	
		Caratterizzazione Ambientale della Falda	
	4.3.1.	Aspetti quantitativi: livelli piezometrici	
	4.3.2.	Aspetti qualitativi	22
		Caratterizzazione dei fondali antistanti il Molo Garibaldi e interni al	
		secondo e terzo bacino portuale della Spezia (agosto 2020)	
		Caratterizzazioni delle acque marine antistanti la colmata	
5.	CC	ONCENTRAZIONE RAPPRESENTATIVA DEI SEDIMENTI DEL	,
	FC	ONDO DELLA COLMATA (CONCENTRAZIONE SORGENTE)	.28
	5.1.	Stima delle concentrazioni nelle acque interstiziali della colmata	31
6.		ETODOLOGIA SEGUITA PER LA PREDISPOZIONE DEL	
•		ODELLO NUMERICO DI FLUSSO E DEFINIZIONE DEGLI	
		BIETTIVI	
7.	M	ODELLO CONCETTUALE DI RIFERIMENTO	37
<i>8</i> .		ODELLO MATEMATICO DI FLUSSO	
0.			
		Stato di fatto	
	8.1.1. 8.1.2.	Il dominio di calcolo e il modello 3D	
	8.1.3.	Condizioni al contorno	
	8.1.4.	Permeabilità utilizzate	
	8.1.5.	Calibrazione	
	8.1.6.	Risultati	45
	8.2.	Stato di Progetto	50
	8.2.1.	Il dominio di calcolo e il modello 3D	50
	8.2.2.	Stratigrafia di riferimento	
	8.2.3.	Condizioni al contorno	
	8.2.4.	Opzione 1: riempimento della colmata con materiale da cava	
	8.2.5.	Opzione 2: riempimento con sedimenti provenienti dai dragaggi	
	8.2.6. 8.2.7.	Opzione 3: realizzazione di un dreno a monte della colmata	00
	0.2.7.	faldafalda	70
	8.3.	Considerazioni finali sui risultati del modello	
9.		ONSIDERAZIONI SUL MONITORAGGIO	
). 10			

1. LA COLMATA DELL'AMPLIAMENTO DEL TERMINAL RAVANO

Il terminal della *Banchina Ravano* sarà dotato di una banchina operativa di lunghezza pari a *520 m* circa (di cui *156 m* circa del lato di colmata fronte mare). La quota dei fondali di progetto fronte banchina sarà pari a *15 m s.l.m.m.* così come previsto dal *PRP* vigente. La configurazione del *Nuovo Terminal Ravano* è conforme alle previsioni del vigente *PRP* del *Porto della Spezia*.

La quota del piano banchina è stata posta a +2.50 m s.l.m.m., coincidente con quella delle due banchine esistenti che verranno inglobate nella nuova struttura.

Lo specchio acqueo su cui viene realizzata la colmata è caratterizzato in maggioranza da modeste profondità (inferiori a 5 m) e con terreni di base di scarsissime capacità portanti e potenzialmente contaminati. In riferimento alle caratteristiche geotecniche dei terreni di base i sedimenti del fondo dovranno pertanto essere consolidati. L'intervento previsto per il consolidamento dello strato di depositi fangosi che si estende dalla quota fondale (-3.00 m s.m.) fino a quota -12.00 m s.m. circa, è costituito dalla realizzazione di colonne di ghiaia (vibrosostituzione con metodo "bottom-feed") collocate ai vertici di una maglia quadrata di 2.00 m di lato.

La colmata ingloberà le attuali banchine interne della *Marina del Canaletto* e i terrapieni a tergo.

Per quanto riguarda la *gestione dei sedimenti sul fondo della realizzanda colmata* tra gli obiettivi primari indicati in *PTFE*, oltre a quello di minimizzare le volumetrie di sedimento da destinare a discarica, rientra anche quello, già condiviso con la struttura tecnica della *Regione Liguria*, di minimizzare la movimentazione dei sedimenti permettendo di annullare il potenziale rischio di diffusione nell'ambiente circostante della frazione più fina, e maggiormente contaminata, dei sedimenti stessi, legato alle varie operazioni, che non si potrebbe escludere anche adottando sistemi di dragaggio di tipo ambientale. Il previsto refluimento, sopra i sedimenti del fondo della colmata, di materiale da cava, o di sedimenti idonei, fungerà inoltre da *capping* minimizzando ulteriormente la potenziale diffusione dei contaminanti verso l'ambiente.

Alla luce di tali considerazioni, nel *PTFE* si propone la *messa in sicurezza dei sedimenti* della *Marina del Canaletto*. La messa in sicurezza verrà attuata mediante la *conterminazione* delle strutture di banchina che delimitano l'area, sia esistenti (tutte con pareti continue di palancole che pervengono a quote molto inferiori di quelle del letto dello strato di sedimenti contaminati caratterizzati intestandosi all'interno dello strato argilloso) che di nuova realizzazione (diaframmi di palancole con gargami impermeabili in grado di garantire una permeabilità corrispondente ad un strato di un metro di spessore di materiale caratterizzato da un coefficiente di permeabilità $k=1 \times 10^{-7}$ cm/s). Verrà inoltre posto sopra i sedimenti uno strato di materiali inerti da cava o di sedimenti idonei da punto di vista qualitativo, che ridurranno ancor più la diffusione di eventuali contaminanti verso l'ambiente.

Deve quindi essere effettuata una valutazione del potenziale rischio ambientale dei sedimenti costituenti i fondali della colmata come indicato in Allegato B al D.M. 7 novembre 2008.

Per il riempimento della colmata della *Marina del Canaletto* il *PFTE* prevede l'impiego di *materiale di cava*; nell'ambito del presente studio sarà inoltre presa in considerazione la possibilità di impiegare in quota parte, nel riempimento, sedimenti provenienti dai futuri dragaggi previsti nei fondali antistanti il *Molo Garibaldi* e interni al *Secondo* e *Terzo Bacino Portuale della Spezia*. In tal caso, i sedimenti dovranno essere *conformi al refluimento così come previsto dal D.M. 173/16*.

Per quanto riguarda la pavimentazione del piazzale operativo del nuovo terminal, che riguarderà sia la superficie della nuova colmata che quella del piazzale esistente, è stata prevista l'adozione di soluzioni tecniche differenti a seconda delle differenti diverse subaree previste da progetto (edifici, aree carrabili, etc). Su tutto il piazzale operativo del nuovo terminal contenitori verrà realizzata una rete di drenaggio delle acque meteoriche con annessi dispositivi di trattamento delle acque di prima pioggia (AMPP). Le acque raccolte verranno fatte transitare attraverso degli impianti di trattamento prima del loro scarico a mare.

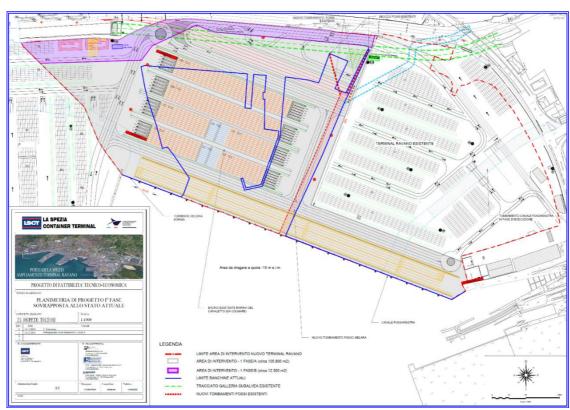


Figura 1 - Planimetria della cassa di colmata sovrapposta allo stato di fatto

2. INQUADRAMENTO NORMATIVO

Per la realizzazione della colmata non è necessario, ai fini progettuali, dragare i sedimenti del fondo. Pertanto non si applicano le classi del DM 173/06 che si riferiscono ai sedimenti provenienti da attività di dragaggio. L'eventuale dragaggio (rimozione) deve essere preso in considerazione solo nel caso in cui il mantenimento in sito dei sedimenti del fondo della colmata induca un rischio per l'ambiente. I limiti ammissibili per i sedimenti sul fondo della colmata sono:

- * "Non Pericolosi" nei S.I.N. ai sensi dell'art. 5 bis, comma 2, lettera c), della Legge 28 gennaio 1994, n. 84 e del D.M. 15 luglio 2016, n. 172;
- Limite Colonna B, Tab.1, All. 5, D.Lgs. 152/06, ai sensi del D.M. 173/16, Allegato n. 1 (cap 3.1.3). Per i sedimenti del fondo della colmata il D.M. 173/16 indica come sufficiente una caratterizzazione del fondale sull'impronta della colmata per uno spessore di 50 cm, non considerate le indagini microbiologiche e valutati i risultati secondo la destinazione d'uso industriale.

I sedimenti oggetto dello studio, come meglio riferito nel prosieguo, sono risultati tutti *non pericolosi*, quindi *ammissibili a rimanere in cassa di colmata secondo quanto stabilito per i SIN*.

In assenza di una chiara indicazione per il SIR, è stata valutata anche l'opzione più cautelativa di applicazione del D.M. 173/16 e, quindi, del limite di Colonna B, Tab. 1, All. 5 del D.Lgs. 152/06 per il fondale dell'impronta della cassa di colmata. In caso di superamento del limite di Colonna B, secondo il D.Lgs. 152/06, deve essere applicata una valutazione del rischio atta a verificare che non si pregiudichino gli obiettivi di qualità delle matrici ambientali.

Sul punto occorre evidenziare che la metodologia usata a progetto per la verifica della conterminazione della struttura di confinamento e la valutazione del rilascio dei contaminanti dalla cassa di colmata è stata recentemente adottata dal MiTE nel S.I.N. "Napoli-Orientale". Essa consta di una valutazione della concentrazione sorgente come potenziale fonte di contaminazione e della valutazione dei possibili processi di filtrazione dalla colmata che associati potrebbero comportare una variazione delle attuali condizioni ambientali.

3. INQUADRAMENTO TERRITORIALE

Nell'immagine fotografica successiva è individuata l'area di intervento all'interno del *Porto della Spezia*; in particolare, la colmata sarà realizzata in corrispondenza di uno specchio acqueo, denominato *Marina del Canaletto*, situato tra la *Banchina Fornelli* e la *Calata Ravano*, destinato ad accogliere imbarcazioni di piccole dimensioni facenti parte della cosiddetta nautica sociale, in parte in pieno ambito cittadino, in una zona confinante con il fascio binari delle *FF.SS*. asservito alle necessità portuali.

4. DATI E DOCUMENTAZIONE DI BASE

Ai fini della valutazione del rischio associato al potenziale rilascio di inquinanti dalla colmata del *Nuovo Terminal Ravano* sono stati analizzati i seguenti documenti:

- ♣ Progetto di fattibilità tecnico-economica ampliamento Terminal Tavano, rev 1 (Dicembre 2021)
- Caratterizzazione ambientale dei sedimenti della marina del canaletto del porto della spezia ai sensi del D.M. 173/2016 (Ottobre 2021), rev.03
- Caratterizzazione falda: Area ex-MALCO (anno 2010), Area Tamoil (anni 2004-2009), area ex-SIO (ano 2018), piezometro in vicinanza del sondaggio Sb9, Centrale Enel
- ↓ Varianti al piano urbanistico comunale per il sistema delle aree ENEL della Spezia Rapporto Ambientale, gennaio 2021.
- **♣** Dati di piezometri presenti nel Geoportale della regione Liguria.
- Caratterizzazione acque di mare: dati di varie campagne di monitoraggio effettuate da ARPAL dal 2003 al 2017.

Di seguito vengono descritti i dati di caratterizzazione geologica ed ambientale desunti dai documenti sopra indicati ed utilizzati ai fini dell'impostazione del modello per la valutazione dei rilascio dei contaminanti dalla colmata.

4.1. Aspetti Geologici e Stratigrafici

Ad ampia scala, nella zona a *nord* dell'area di intervento, sono disponibili la carta geologica e la carta geotecnica della *Regione Liguria* scaricate dal *Geoportale* della *Regione*. Dalla carta geologica emerge come la zona a *nord* veda prevalentemente depositi alluvionali terrazzati con ghiaie, sabbie e limi di origine fluviali.

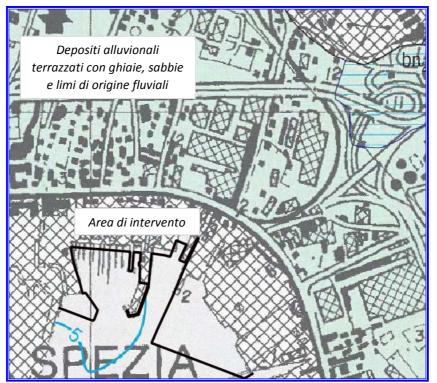


Figura 2 – Stralcio della carta geologica nell'area di intervento

Dalla carta geotecnica della *Regione* si ottengono invece delle informazioni più di dettaglio, utili in particolare in fase di realizzazione del modello di flusso, ovvero:

- la zona nord è caratterizzata dalla presenza di materiale grossolano quale ghiaie limose, miscela di ghiaia, sabbia e limo (Figura 3, area in verde)
- la zona centrale è invece caratterizzata dalla presenza di materiale più fino e coesivo quale limi organici, argille limose organiche di bassa plasticità (Figura 3, area in marrone)
- la zona più a sud-est vede la presenza di sabbie limose, miscela di sabbia e limo (Figura 3, area in giallo).

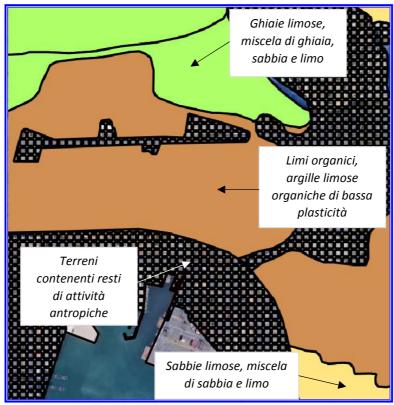


Figura 3 – Stralcio della carta geotecnica nell'area di intervento

In corrispondenza dell'area di intervento le unità stratigrafiche sono state definite in fase di *PFTE ¹* sulla base di una serie di sondaggi riportati in *Tabella 1*. Le unità stratigrafiche ricostruite in corrispondenza dell'area di intervento sono le seguenti:

- (A) depositi marini attuali e recenti, che rappresentano i sedimenti del fondale attuale e quelli posti al disotto delle colmate antropiche già in opera. Sono principalmente costituiti da argille, argille limose, limi argilloso-sabbiosi e subordinatamente da sabbie limose e limoso-argillose e sabbie ghiaiose, di colore grigio-nerastro localmente tendente al bruno, con abbondante materia organica indecomposta (resti algali localmente prevalenti), frammenti di gusci di bivalvi e ghiaie eterometriche sparse o concentrate in lenti. Lo spessore di tali depositi varia notevolmente da zona a zona, con minimi dell'ordine di 1,0 m e massimi di circa 9,6 m. Gli spessori maggiori si rilevano in corrispondenza del fondale attuale di Marina del Canaletto (6,0-9,6 m).
- (B) depositi continentali (alluvionali fluvio-lacustri) di natura prevalentemente limosoargillosa con intercalazioni di depositi marini, principalmente costituiti da argille, argille

Relazione geologica del PFTE Porto di La Spezia - Ampliamento terminal Ravano, Dicembre 2021.

limose, limi argilloso-sabbiosi e sabbie con limi, di colore variabile dal marrone chiaroavana al grigio, con frequenti varvature, a luoghi con frammenti di gusci di bivalvi e ghiaie eterometriche sparse o concentrate in lenti. Costituiscono presumibilmente depositi fluvio-lacustri e/o di laguna salmastra in cui si intercalano sedimenti francamente marini di fondale poco profondo, legate ad oscillazioni del livello marino. Lo spessore massimo di tale unità è stato rilevato nell'ordine dei 6-7 m.

- (C) depositi continentali (alluvionali fluvio-lacustri) di natura prevalentemente limoso-argillosa, principalmente costituiti da argille limose o limoso-sabbiose, limi argillosi e sabbie limose argillose di colore variabile dal marrone-avana al grigio chiaro, con frequenti varvature, a luoghi con ghiaie eterometriche sparse o concentrate in lenti e orizzonti torbosi nerastri. Costituiscono anch'essi depositi fluvio-lacustri e/o di laguna salmastra caratterizzati da spessori variabili con massimi anche superiori ai 20 m.
- (D) depositi continentali (alluvionali fluvio-lacustri e di spiaggia emersa) di natura prevalentemente sabbioso-ghiaiosa principalmente costituiti da limi con sabbie e ghiaie, sabbie limoso-argillose, sabbie e/o limi con ghiaie di colore variabile dal marrone chiaro al grigio-rossastro, a luoghi con resti vegetali nerastri. La frazione ghiaiosa, localmente molto abbondante, è costituita da elementi prevalentemente arenacei e subordinatamente calcarei o silicei, eterometrici fino alla dimensione dei ciottoli e blocchi, generalmente scarsamente evoluti e sub-angolosi. A luoghi possono essere presenti intercalazioni di argille limose, limi argillosi e argilloso-sabbiose di colore marrone chiaro, grigio-rosato fino al nerastro, con ghiaie sparse e resti carboniosi. A struttura generalmente caotica, costituiscono presumibilmente depositi continentali alluvionali e/o di spiaggia emersa, provenienti in gran parte dall'erosione e rielaborazione dei flysch costituenti i rilievi collinari molto prossimi alla linea di costa. Nel corso dei sondaggi eseguiti non è stata raggiunta la base di tali deposti, almeno fino alle profondità investigate (~ -58 m slm). Lo spessore di tale unità risulta pertanto superiore ai 30 m.

Superficialmente, in corrispondenza delle banchine esistenti, sono presenti terreni di riporto eterogenei (r) caratterizzati da una estrema variabilità granulometrica, sia in senso laterale che verticale, in funzione della natura dei terreni di provenienza messi in opera per la formazione delle colmate. Sono essenzialmente costituiti da aggregati disomogenei di ghiaie e ciottoli in matrice sabbiosa, sabbioso limosa e/o limoso-argillosa a luoghi molto abbondante o prevalente di colore variabile dal marrone al grigio nerastro. Gli elementi grossolani sono eterometrici anche fino alla dimensione dei blocchi, poligenici (arenacei, calcarei, ecc...) con presenza anche di frammenti di laterizi e materiali antropici vari. Lo spessore di tali terreni può raggiungere localmente anche i 15,0 m.

Figura 4 – Unità stratigrafiche individuate nell'ambito del PFTE

Nella tabella seguente si riportano i sondaggi considerati per ricostruire la stratigrafia in corrispondenza dell'area di intervento.

Tabella 1 – Sondaggi eseguiti in fase di PFTE in corrispondenza dell'area di intervento (le coordinate sono espresse nel sistema di riferimento Monte Mario 3003)

Sondaggio	Coord. X	Coord. Y	A top (m slm)	B top (m slm)	C top (m slm)	D top (m slm)
<i>Sb1</i>	1567903.94	4884307.71	-7.0	-11.6	-21.1	-48.6
SB1	1568127.52	4884185.07	-11.0	-13.0	-18.0	-30.0
Sb2	1567939.76	4884295.47	-6.6	-11.1	-24.1	-46.4
SB2	1568132.87	4884199.98	-12.7	-10.0	-17.7	-29.6
Sb3	1568120.41	4884223.22	-9.8	-13.6	-18.0	-31.0
SB3	1568260.7	4884134.66	-8.8	-11.8	-20.3	-28.8
Sb5	1568329.05	4884154.21	-4.7	-7.7	-15.2	-26.1
Sb6	1568165.89	4884297.92	-6.5	-10.5	-10.5	-25.5
Sb8	1568199.22	4884358.67	-7.1	-13.3	-13.3	-20.0
Sb9	1568423.03	4884255.53	-2.0	-6.7	-18.5	-13.4
Sb11	1568232.21	4884409.74	-6.5	-13.0	-13.0	-22.5
Sb13	1567984.95	4884477.39	-3.4	-10.0	-10.0	-21.0
Sb14	1567865.9	4884276.67	-7.2	-11.9	-21.7	-50.0
Sb16	1568199.86	4884152.14	-10.3	-12.0	-17.2	-24.8
Sb17	1568333.28	4884103.16	-3.5	-7.5	-13.7	-25.3
Sb19	1567899.52	4884395.84	-3.1	-10.0	-12.2	-34.9
Sb21	1567997.03	4884457.15	-2.0	-9.3	-9.3	-22.0
Sb23	1568142.42	4884340.83	-3.0	-11.1	-17.7	-23.0
Sb25	1568089.58	4884226.4	-9.2	-12.7	-18.1	-31.5
Sb26	1567983.81	4884237.91	-6.0	-12.9	-22.0	-36.7
Sb27	1568038.28	4884221.39	-5.0	-14.0	-22.0	-37.5
Sb29	1567984.05	4884302.34	-3.3	-10.9	-19.6	-32.4
Sb30	1568031.45	4884375.27	-3.0	-12.5	-10.4	-27.2
Sb31	1568110.84	4884332.94	-3.2	-12.1	-14.0	-27.2

Figura 5 – Ubicazione dei sondaggi realizzati nell'ambito del PFTE

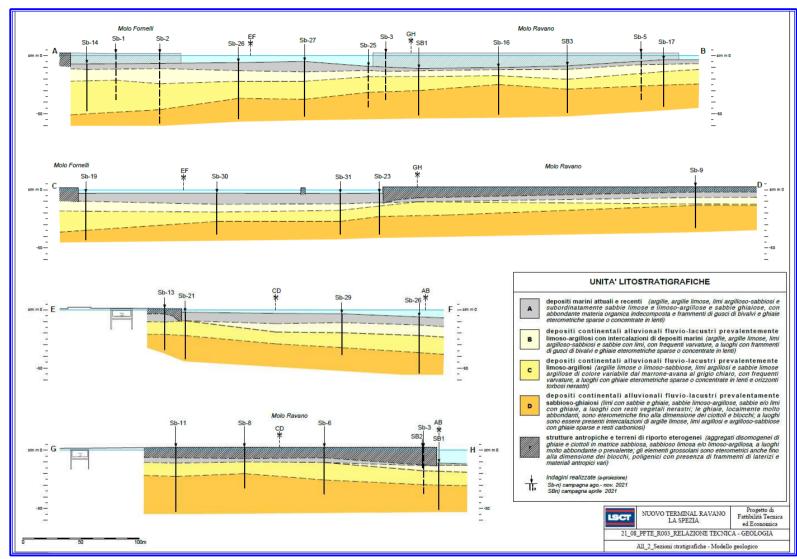


Figura 6 – Sezioni stratigrafiche di riferimento realizzate nell'ambito del PFTE

4.2. Caratterizzazione Ambientale dei Sedimenti della Marina del Canaletto del Porto della Spezia ai sensi del D.M. 173/2016 (ottobre 2021)

Al fine della caratterizzazione dei sedimenti sono stati effettuati 19 carotaggi della lunghezza di 2 m ciascuno. Il prelievo delle carote è stato effettuato nei giorni 23 e 24 settembre 2021 in parte dalla ditta Co.L.Mar. S.r.l. di La Spezia che, tramite un Vibrocorer ha effettuato il prelievo di 13 carote e in parte dalla ditta GEOTER che tramite un carotiere a rotazione ha effettuato il prelievo di 6 carote.

La caratterizzazione è stata eseguita sulla base del *D.M. 15 luglio 2016*, *n. 173* e sulla base del *D.Lgs. 152/06*, con riferimenti ai limiti (*CSC*) fissati per il suolo con destinazione d'uso industriale (*colonna B*, *Tab 1*, *All.5* alla *Parte Quarta* del *D.Lgs. 152/06*).

I sedimenti analizzati sono caratterizzati da un'alta percentuale di *pelite* (i valori misurati oscillano tra un minimo di 52,0% e un massimo di 97,2%). La caratterizzazione chimica ha evidenziato superamenti del *limite L2* del *D.M. 173/2016* per molti analiti (*metalli* e *composti organici*) da cui un *indice di pericolo chimico* (*HQc*) corrispondente a classi di pericolo da *Alto* a *Molto Alto*.

Da un punto di vista *tossicologico* i sedimenti sono risultati per la maggior parte in *classe E*. Nel *Report* viene indicato che qualora questi sedimenti dovessero essere dragati per essere conferiti in cassa di colmata dovrebbe essere valutato il "*LEG*" (*Livello di Effetto Grave*) cioè dei *Livelli Chimici* di riferimento sito specifici, prima di poter definire un eventuale collocazione del materiale in ambiente conterminato.

Gli scriventi evidenziano tuttavia che non è interesse un dragaggio di tali sedimenti ma un mantenimento degli stessi in sito sul fondo della colmata con copertura di materiali idonei.

La destinazione d'uso della futura colmata è *industriale*; pertanto, il limite dei materiali in esso contenuta è quella della *Colonna B* della *Tabella 1*, *Allegato 5* alla *Parte Quarta* del *DLgs 152/06*. *I risultati della caratterizzazione indicano superamenti di tale limite per Idrocarburi C>12 e PCB*.

Tabella 2 – Concentrazioni di Idrocarburi pesanti (IC>12) e PCB nei sedimenti della futura colmata. Nell'immagine è indicata la posizione dei sondaggi e in giallo o rosso i superamenti del limite di colonna B (uso industriale)

sondaggio	Profondità	Idrocarburi C>12	Somma PCB
C3	100-200	805,1	52,555
C3-2	100-200	1879,68	145,065
C4	100-200	1462,05	18,32
C4-3	50-100	1156,58	167,6
C5	0-50	1087,27	0,446
C5-1	0-50	755,16	76,691
C5-3	0-50	986,52	473,669
C6-1	0-50	2021,94	349,503
C6-1	50-100	1232,63	7312,133
C6-1	100-200	5597,68	3145,874

4.3. Caratterizzazione Ambientale della Falda

Nella zona di intervento non sono disponibili *carte idrogeologiche* (*mappe delle isofreatiche*) redatte dalla *Regione*. Per ottenere l'andamento della falda locale e avere quindi un riferimento per la taratura del modello numerico di flusso si rende necessario ricostruire l'andamento delle *isofreatiche* a partire da dati puntuali di livello piezometrico, registrati in piezometri o pozzi presenti sul territorio.

Tali dati sono stati ottenuti dal *Geoportale* della *Regione*, nella sezione delle indagini geognostiche e da alcuni documenti progettuali reperiti tramite *LSCT*. Non tutti i dati sono completi e per pochi di essi sono presenti le coordinate dei punti di analisi. Inoltre, i dati sono riferiti ad anni e mesi differenti e soprattutto sono ottenuti da misure puntuali e non in continuo. Di conseguenza non è stato possibile analizzare i dati né da un punto di vista statistico (essendo disponibile, di fatto, un'unica misura per ogni piezometro) né da un punto di vista di *regime freatimetrico*, definendo cioè i livelli medi di piena e di magra della falda. Si assume quindi che tutti i dati disponibili siano anche validi e che essi descrivano il comportamento medio della falda.

Sono quindi stati analizzati i dati di falda disponibili in corrispondenza di:

- **♣** Sito Ex Malco (anno 2010)
- Sito Ex SIO (anno 2018)
- **♣** Sito Tamoil (anni 2004-2009)
- **↓** Centrale Enel (anno 2021)
- ₽ Piezometro al porto in corrispondenza del sondaggio Sb-9 (anno 2021)
- **♦** Vari punti di indagine accessibili dal Geoportale della Regione (vari anni)

Figura 7 – Ubicazione dei punti di misura della falda

4.3.1. Aspetti quantitativi: livelli piezometrici

Si riportano di seguito, per ciascun sito, le informazioni reperite sul livello freatico misurato.

Sito Ex SIO²: la falda è stata riscontrata compresa fra 2.7-2.8 m slm e 0.7-1.2 m slm con un andamento prevalente nord-sud

Figura 8 – Andamento delle linee di falda in corrispondenza del sito Ex Sio

Sito Ex Malco³: (ad ovest del torrente Dorgia): si riporta la mappa delle isofreatiche elaborata, in cui si nota che la direzione prevalente del flusso è da est verso ovest, e in cui emerge l'azione drenante del Dorgia rispetto la falda superficiale. In corrispondenza del sito è stata misurata la conducibilità: circa tra 1E-07 e 1E-8 cm/s.

Caratterizzazione Ambientale Area Ex MALCO, Comune di La Spezia, 2010

Studio Geologico Ambientale – Rapporto Finale nell'ambito del progetto "Sub Distretto di trasformazione ADI/C Loc. La Pianta - Ex SIO Comune della Spezia, TALEA spa

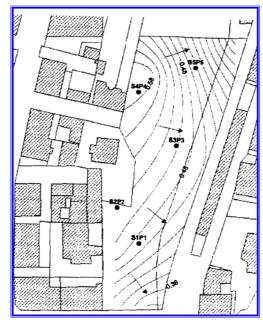


Figura 9 – Andamento delle linee di falda in corrispondenza del sito Ex Malco

Sito Tamoil⁴: la direzione prevalente della falda è verso Nord-ovest, ovvero in direzione del torrente Dorgia

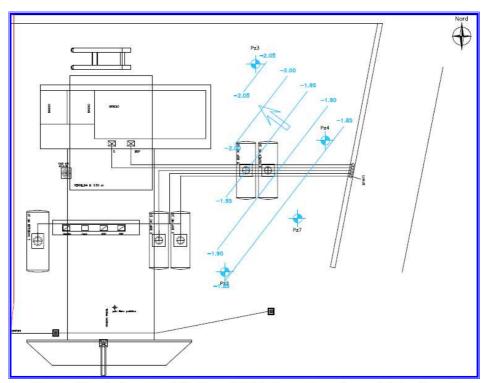


Figura 10 - Andamento delle linee di falda in corrispondenza del sito Tamoil

⁴ Report di Monitoraggio, Campionamenti del 6 marzo 2009, Tamoil Italia S.p.A.

Piezometro in vicinanza del sondaggio Sb9: è disponibile una misura della falda misurata durante il sopralluogo svolto in data 04/11/2021 presso il piezometro esistente utilizzato per i campionamenti. La falda è stata trovata ad una profondità di 1.9m dal PC, ovvero ad una quota di 0.1 m slm

Figura 11 – Ubicazione del piezometro vicino a sondaggio Sb-09

← Centrale Enel⁵: la figura sottostante mostra come il flusso sotterraneo sia diretto da Est verso Ovest fino a raccordarsi con la superfice marina in prossimità dell'area degli Stagnoni. L'andamento della piezometrica consente di individuare un asse di drenaggio principale proveniente dall'area delle Pianazze oltre e da due assi meno marcati provenienti rispettivamente da Nord (alimentazione dal bacino del Torrente Melara) e da Sud-Ovest (alimentazione dai modesti impluvi dei rilievi quarzitici posti a sud dell'area ENEL).

Variante al Piano Urbanistico Comunale per il sistema delle aree ENEL della Spezia - Rapporto Ambientale, gennaio 2021.

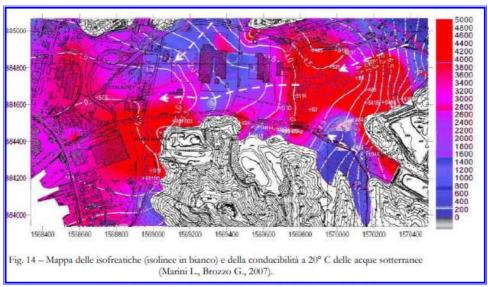


Figura 12 – Carta isofreatiche dell'area Enel

Nella tabella seguente sono riportati i valori di livello piezometrico assoluto (*m slm*) presi a riferimento per la ricostruzione delle *linee isofreatiche* e per la successiva fase di calibrazione del modello numerico.

Tabella 3 – Valori di livello piezometrico di riferimento

<i>ID</i>	Coord. X	Coord. Y	Quota falda (m slm)
1	1568340	4884993	2.8
2	1568399	4884198	0.1
3	1567684	4884761	0.8
4	1569190	4884632	2.3
5	1568978	4884927	4.6
6	1568223	4884554	0.1
7	1568331	4884547	0.2
8	1568009	4884919	2.9
9	1568007	4884938	3.0
11	1568050	4885040	3.3
12	1567961	4884920	2.5
14	1568241	4884564	0.3
15	1568100	4884513	0.1
16	1570612	4884756	8.5
<i>17</i>	1568931	4884518	0.5
18	1567716	4884604	0.5
19	1568064	4884721	1.8

Tali punti sono così disposti nel territorio:

Figura 13 – Disposizione dei piezometri presi a riferimento per la ricostruzione delle isofreatiche

Si fa notare che per la ricostruzione delle *isofreatiche*:

- Si sono presi anche piezometri ricadenti fuori dall'area del dominio di calcolo del modello numerico di flusso
- Non sono disponibili dati nella zona ad ovest del porto, per cui in tale area le isofreatiche saranno poco rappresentative

Per la ricostruzione delle *isofreatiche* si è utilizzato come metodo di interpolazione il $Kriging^6$.

Environment, Health and Safety

I processi di interpolazione spaziale nella ricostruzione della superficie piezometrica, C. Cencetti et al., 2007

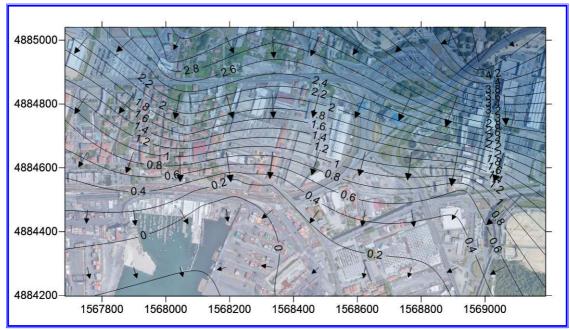


Figura 14 – Linee isofreatiche ricostruite con interpolazione Kriging

Dall'andamento qualitativo delle isofreatiche deriva quanto segue:

- Nella zona a nord del porto, ed in particolare a nord della futura cassa di colmata, la falda si attesta intorno a +0.1-+0.2m slm
- Tra i piezometri posti più a nord e la zona di intervento si verifica una forte perdita di carico, di circa 3 m (da 3.2m slm a 0.1-0.2m slm)
- **↓** La direzione prevalente della falda è da nord a sud
- Lateralmente la falda tende a drenare verso il mare e di conseguenza la direzione è da nord-est a sud-ovest al lato est del dominio e da nord-ovest a sud est al lato ovest

Nel modello numerico di flusso si cercherà di rappresentare sia l'andamento qualitativo (direzioni di flusso) che quello quantitativo (carichi piezometrici).

4.3.2. Aspetti qualitativi

Le caratterizzazioni sono state eseguite, come già evidenziato, in anni differenti. Nell'area *ex-Malco* la falda è risultata drenata dal torrente *Dorgia* ed *esente da contaminazione*. Nel sito della stazione *Tamoil* la falda è risultata contaminata da *Pb*, *IC>12*, *BTEX*, *p-Xilene*. Nel sito *ex-SIO* la falda, con soggiacenza prossima allo strato di riporto superficiale (-1 m dal p.c.), non è risultata con particolari criticità. Gli scriventi pertanto rilevano una sostanziale non criticità della falda nell'area ad eccezione della contaminazione localizzata in corrispondenza della stazione della *TAMOIL*. La contaminazione risulta per il periodo 2004-2009, non è noto pertanto se a valle di tale caratterizzazione sono state intraprese azioni di bonifica.

4.4. Caratterizzazione dei fondali antistanti il Molo Garibaldi e interni al secondo e terzo bacino portuale della Spezia (agosto 2020)

La AdSP ha fatto eseguire nel 2020 nell'ambito della progettazione dei dragaggi una caratterizzazione dei fondali del Porto. I risultati di tale caratterizzazione sono riportati nel documento "Servizio di caratterizzazione dei fondali antistanti il Molo Garibaldi e interni al Secondo e Terzo Bacino Portuale della Spezia – Relazione Tecnica" dell'agosto 2020, redatto da Ambiente S.p.A. per conto dell'AdSP. I dati di interesse per il progetto della colmata sono i risultati retativi al Terzo bacino, i cui sedimenti di dragaggio potrebbero essere confluiti in quota parte nella costruenda cassa di colmata.

Risulta che in questo momento *AdSP* sta ripetendo tale caratterizzazione a causa di alcuni problemi con il laboratorio in relazione ai *test ecotossicologici* (i dati per la parte chimica risultano invece essere affidabili). Pare pure che la caratterizzazione sia stata estesa anche alla fascia antistante il *Nuovo Terminal Ravano*.

I dati attualmente disponibili indicano che in una piccola area immediatamente adiacente il futuro profilo di banchina (almeno così si desume dalle *tavole* dalla *2a* alla *2h* allegate alla citata *Relazione Tecnica*) i sedimenti risultano in *classe A-B-C* fino a *4 m* dal fondale e successivamente *D*) quindi ammissibili al refluimento in cassa di colmata. I rimanenti sedimenti più al largo risulterebbero in *classe E* (confermato anche con *LEG* sito specifico) e non ammissibili in cassa di colmata.

Ovviamente la classificazione dipende dai risultati tossicologici che sono in corso di accertamento. Pertanto, gli scriventi sospendono al momento qualunque giudizio.

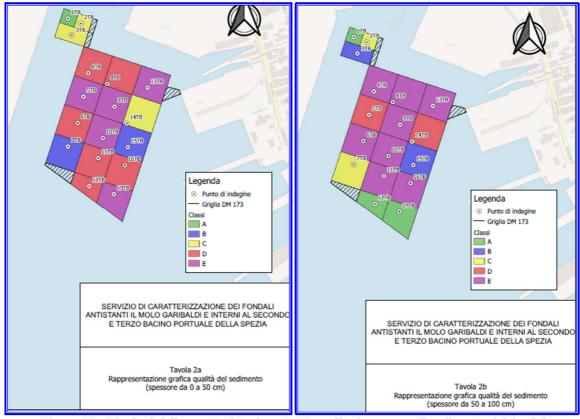


Figura 15 - Risultati della caratterizzazione 2020 per il primo metro di sedimento dal fondale.

4.5. Caratterizzazioni delle acque marine antistanti la colmata

Sono stati valutati i dati di caratterizzazione ARPAL delle acque marine portuali dal 2003 al 2017. In nessun campione sono stati analizzati gli IC totali ma sono noti i dati di concentrazione di PCB. Da tutto il data set sono stati valutati i risultati dell'ultimo decennio (periodo dati 2011-2017) riportati nella Tabella che segue. Le concentrazioni di PCB nelle acque di mare indicano per tutti i campioni concentrazioni di PCB al di sotto del limite di rilevabilità, con limiti di rilevabilità a seconda delle campagne riportati variabili da 0,001 $\mu g/l$, a 0,005 $\mu g/l$, a 0,01 $\mu g/l$, fino a 0,05 $\mu g/l$.

Per analogia con quanto già monitorato da *ARPAL* negli anni passati si suggerisce per il *Piano di Monitoraggio Ambientale* di progetto di eseguire campionamenti nelle stazioni più prossime all'area di intervento: *PP020*, *PP030*, *PP048*.

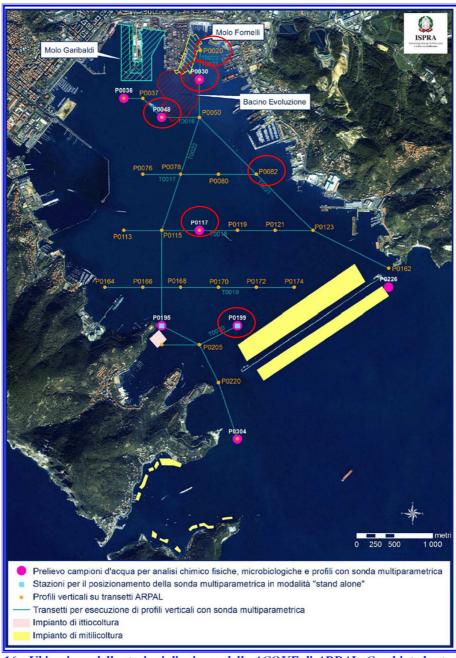


Figura 16 - Ubicazione delle stazioni di misura delle ACQUE di ARPAL. Cerchiate le stazioni ove sono stati monitorati i PCB.

Tabella 4 - Concentrazioni di PCB rilevate nelle acque di mare del Porto di La Spezia

	Tabella 4 - Concentrazioni di PCB rilevate nelle acque di mare del Porto di La Spezia LdR STAZIONI													
Anno	data	μg/l	P0	P0020 P0030 P0048					117	P0199		P0082		
	Campagna 09/03/2011	0,01			<0.01	<0.01								
	Campagna 27/07/2011	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
2011	Campagna 27/09/2011	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
	Campagna 06/12/2011	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
	Campagna 13/03/2012	0,01	<0.0 1	<0.0 1	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
	Campagna 19/06/2012	0,01	<0.0	<0.0	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
2012	Campagna 03/10/2012	0,01	1	1	<0.01	<0.01			<0.01	<0.01	<0.01	<0.01		
	Campagna 20/08/2012	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	<0.0 1	<0.0 1
	Campagna 14/11/2012	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	<0.0 1	<0.0 1
	Campagna 16/01/2013	0,01			<0.01	<0.01			<0.01	<0.01	<0.01	<0.01	-	
	Campagna 05/03/2013	0,00			<0.00	<0.00 1	<0.00	<0.00	<0.00 1	<0.00 1	<0.00	<0.00		
2013	Campagna 18/06/2013	0,00			<0.00	<0.00	<0.00	<0.00 1	<0.00 1	<0.00	<0.00	<0.00 1		
	Campagna 29/10/2013	0,00			<0.00 5									
	Campagna 03/12/2013	0,05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Campagna 13/01/2014	0,05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Campagna 12/02/2014	0,05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Campagna 17/03/2014	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2014	Campagna 08/04/2014	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2014	Campagna 12/05/2014	0,01			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
	Campagna 18/06/2014	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 22/07/2014	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 17/12/2014	0,05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Campagna 03/03/2015	0,05			<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
	Campagna 11/02/2015	0,1			<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1		
	Campagna 30/03/2015	0,1			<0,1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 21/02/2015	0,1			<0,1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2015	Campagna 30/03/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
2013	Campagna 18/05/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 30/06/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 24/08/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		
	Campagna 07/09/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		
	Campagna 28/09/2015	0,1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		

		LdR		STAZIONI								
Anno	data	μg/l	P0020	P00	030	P0048		P0117		P0199		P0082
	Campagna 12/10/2015	0,1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Campagna 27/10/2015	0,1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Campagna 09/11/2015	0,1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Campagna 23/11/2015	0,1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Campagna 16/12/2015	0,1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Campagna 28/12/2015	0,1		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	
	Campagna 19/01/2016	0,1		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	
	Campagna 18/04/2016	0,1		<0,1	<0,1	<0,1	<0,1	<0,1	<0.1	<0,1	<0.1	
2016	Campagna 29/08/2016	0,1		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	
	Campagna 28/11/2016	0,1		<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	
	Campagna 13/03/2017	0,1		ND	ND	ND	ND	ND	ND	ND	ND	

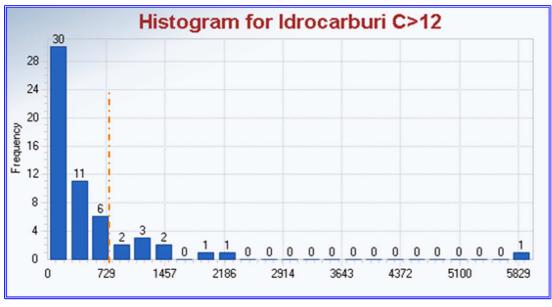
5. CONCENTRAZIONE RAPPRESENTATIVA DEI SEDIMENTI DEL FONDO DELLA COLMATA (CONCENTRAZIONE SORGENTE)

La presente analisi si basa sulla valutazione delle concentrazioni dei principali contaminanti rilevanti nei sedimenti del fondo della futura colmata del *Terminal Ravano* nel *Porto della Spezia*. Alcuni dei sedimenti presentano, come visto, concentrazioni superiori a quella della destinazione d'uso della cassa di colmata (uso industriale). Per valutare l'ammissibilità al mantenimento in sito di tali sedimenti *deve quindi essere eseguita una valutazione del potenziale rischio indotto nell'ambiente circostante*.

Nell'Analisi di Rischio di livello 1 i punti di esposizione sono ipotizzati coincidenti con le sorgenti di contaminazione, non si tiene quindi conto di fenomeni di attenuazione dovuti alla diffusione dei contaminanti nello spazio e nel tempo. L'applicazione di un livello 2-3 di analisi di rischio tiene invece in considerazione la diffusione dei contaminanti ed è idonea al caso in caso in esame n quanto i contaminanti presenti nei sedimenti della cassa di colmata per raggiungere l'ambiente dovranno migrare verso l'esterno. L'analisi di rischio a livello 2 richiede l'individuazione di un unico valore di concentrazione rappresentativa in corrispondenza ad ogni sorgente secondaria di contaminazione (suolo superficiale, suolo profondo e falda). Nel caso in esame la sorgente di contaminazione sono i suoli del fondo della colmata per i quali si vuole valutare il mantenimento degli stessi in sito.

Il valore della <u>concentrazione rappresentativa della sorgente</u> raffigura un input primario per l'analisi di rischio, e va determinato sulla base di criteri legati ad assunzioni che variano più o meno sensibilmente a seconda del grado di approssimazione richiesto, del numero e del tipo di rilevamenti disponibili, della loro rappresentatività. Il punto di criticità principale in questo tipo di analisi è dunque la scelta dei campioni e l'utilizzazione di algoritmi tali da arrivare a valori che risultino rappresentativi e scientificamente attendibili. Per valutare la concentrazione rappresentativa del materiale sul fondo e valutarne l'ammissibilità al mantenimento in sito, è stata applicata una analisi statistica dei dati con il *Software ProUCL v.5.1* dell'*EPA*, previsto dalle *linee Guida APAT* del 2006 e *Criteri metodologici APAT 2008*, *All. H*, per il calcolo della concentrazione alla sorgente.

Per la valutazione del rischio sono stati considerati gli analiti che presentano concentrazioni, in alcuni campioni, di concentrazioni superiori a quelli alla destinazione d'uso industriale: *IC>12* e *PCB*. Non sono invece stati considerati gli altri analiti perché già conformi alla destinazione d'uso prevista. Come indicato nelle *linee guida APAT*, sono stati presi in considerazione tutti i dati di concentrazione disponibili per gli analiti sopra indicati; quindi, anche quelli che non superano le *CSC* per sito industriale. Come previsto dalle linee guida il *data set* è stato valutato per i seguenti aspetti:


- omogeneità del campione: tutti i campioni appartengono ad una classe di sedimenti considerata omogenea essendo tutti appartenenti allo stesso litotipo (sedimenti fini);
- ampiezza del data set: il data set è composti da 57 quindi idoneo all'analisi (numero minimo di campioni richiesto =10);

- campionamento uniformemente distribuito: il campionamento è uniformemente distribuito in quanto a maglia 50 x 50m regolare sull'intera superficie del fondo della cassa di colmata;
- identificazione degli outlier e distinzione dei veri outlier dai falsi outlier come di seguito indicato. I "veri outlier" possono derivare da errori di trascrizione, di codifica dei dati o da una qualsiasi inefficienza degli strumenti del sistema di rilevazione dei dati. I "falsi outlier" sono quei valori estremi reali, che, in campo ambientale di inquinamento dei suoli, in genere corrispondono ai picchi (hot spot) locali di contaminazione. Si suppone che il data-set a disposizione sia stato già validato dagli Enti preposti; quindi, si dovrebbe escludere automaticamente la presenza di veri outlier. In ogni caso a seguire è stata fatta una verifica statistica degli andamenti di concentrazione;
- identificazione dei Non-Detec:. Non presenti.

Il *Test degli outlier*, per *IC>12* e *PCB*, che presentano concentrazioni di analiti superiori a quelli della destinazione d'uso industriale, ha evidenziato:

- per gli idrocarburi pesanti (IC>12) la presenza di 1 potenziale outlier per 1% e 5% di significatività ossia 5.598 mg/Kg;
- ↓ per la sommatoria di PCB la presenza di 1 potenziale outlier per 1% e 5% di significatività ossia 7.312 mg/Kg;

Dall'analisi della distribuzione delle concentrazioni (*Figura 15*), tali due valori sono ritenuti *dei "falsi outlier*" e piuttosto riconducili a campioni con più elevate concentrazioni di inquinante (*hot spot*). Vengono quindi cautelativamente considerati per il calcolo dei valori della sorgente considerati come *Upper Confidence Level (UCL)* tutti i valori disponibili.

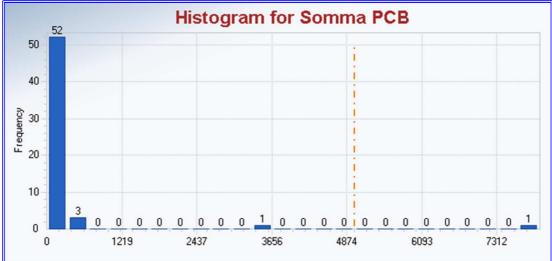


Figura 17 – Distribuzione di frequenza delle concentrazioni in mg/Kg di idrocarburi pesanti, µg/Kg di PCB (in arancione il limite ammissibile per uso industriale)

Al fine di individuare la distribuzione di probabilità che approssimi meglio l'insieme dei dati disponibili e che fornisca il valore di sorgente più rappresentativo è stato utilizzato il software *PROUCL 5.1* (in modalità "*all*") consentendo di comparare le diverse distribuzioni di probabilità che per i dati ambientali possono essere:

- distribuzione gaussiana o normale
- **distribuzione lognormale**
- **↓** distribuzione gamma
- distribuzione non parametrica.

I risultati completi dell'elaborazione statistica sono riportati in *Allegato 1*. I risultati ottenuti indicano un *UCL* al 95%:

- per Idrocarburi Pesanti (IC>12) una concentrazione di 632,4 mg/Kg (con una distribuzione gamma);
- per sommatoria di PCB una concentrazione di 289,7 μg/Kg (con una distribuzione lognormale basata sulla statistica H). Tuttavia, ProUCL segnala che il calcolo è emesso solo per ragioni storiche e che la statistica H spesso risulta in valori instabili (sia alti che bassi) di UCL95, e pertanto è se possibile da evitare. I dati non seguono una distribuzione non parametrica o gamma (come risulta dall'Allegato 1) quindi per identificare l'UCL95 può essere scelto Chebyshev che per la distribuzione lognormale fornisce una concentrazione di 308,8 μg/Kg al 95%.

Tali concentrazioni, che a questo punto rappresentano la concentrazione sorgente del fondo della colmata verso l'ambiente esterno, sono inferiori alle Concentrazioni Soglia di Contaminazione per terreni di siti ad uso industriale. Si può quindi affermare che il mantenimento in sito di tali materiali al fine di costituire una colmata con destinazione d'uso industriale (ambiente conterminato e con capping) quasi certamente non indurrà rischi all'ambiente. Al fine, comunque, di verificare il grado di contenimento della colmata, è stata effettuata, come di seguito riportato, una analisi del flusso in uscita dalla stessa sulla base dei gradienti idraulici presenti.

5.1. Stima delle concentrazioni nelle acque interstiziali della colmata

Il *modello concettuale* adottato assume diverse condizioni cautelative, ovvero:

- 1. Che la concentrazione nelle acque interstiziali sia rappresentativa della massa di sedimento (considerando la stessa interamente in contatto con il sedimento contaminato),
- 2. Che il tempo di contatto sia sufficientemente lungo e tale da consentire l'instaurarsi di condizioni di equilibrio,
- 3. Che il sedimento costituisca un serbatoio inesauribile di contaminante (cioè che la concentrazione iniziale dei contaminanti non diminuisca nel tempo per azione di fenomeni naturali di degradazione chimico-fisica).

La stima delle concentrazioni nelle acque interstiziali si basa sulla teoria degli equilibri di ripartizione (*Di Toro et al 1991*⁷, *Burgess et al. 2013*⁸), in base alla quale nel suolo (o nel sedimento) vi è un equilibrio tra la concentrazione di una sostanza adsorbita nella frazione solida e quella disciolta nelle acque interstiziali. La stima delle concentrazioni di *idrocarburi* e *PCB* nelle *acque interstiziali* della colmata viene quindi calcolata mediante il modello dell'equilibrio di ripartizione (*EqP*).

Per i composti organici il coefficiente di partizione Kp può essere espresso come il prodotto fra il coefficiente di ripartizione sul carbonio organico (Koc) e la frazione di carbonio organico (foc) espressa in g di carbonio organico/g di sedimento secco:

Environment, Health and Safety

Di Toro D., . Zarba C., Hansen D.j., Berry W.j., Swartz R. Pavlou S., Cowan C., Allen H, Thomas N., Paquin P. (1991) Technical basis for establishing sediment Quality criteria for nonionic organic Chemicals using equilibrium partitioning. Environmental Toxicology and Chernistry, Vol. 10, pp. 1541-1583, 1991

Burgess, R.M., Berry W, Mount, R., Di Toro D.(2013) Mechanistic sediment quality guidelines based on contaminant bioavailability: equilibrium partitioning sediment benchmarks. Environmental Toxicology and Chemistry, Vol. 32, No. 1, pp. 102–114, 2013

$$Kp = K_{OC} * f_{OC}$$

Il *Koc [ml/g]* riflette la tendenza di un inquinante di ripartirsi fra il carbonio organico presente nel *suolo/sedimento* e l'acqua ed è il rapporto tra la concentrazione del contaminante adsorbito al carbonio organico del suolo [mg/g(carbonio organico)] e la concentrazione del contaminante presente in fase liquida [mg/ml]. Pertanto, più piccolo è il *Koc* maggiore è la tendenza dell'inquinante a trasferirsi in soluzione.

Questo metodo è applicabile solo quando f_{OC} è maggiore dello 0,2 % (*EPA* 1993^9). In caso contrario, infatti altri parametri (dimensione delle particelle, adsorbimento sulle frazioni minerali non organiche) diventano importanti. Nel caso in esame il valor medio di TOC dei sedimenti è 1,83% quindi il metodo è applicabile.

Per la valutazione del *Koc* per gli *idrocarburi* e *PCB* viene utilizzata la banca dati creata *ISS-INAIL* nel *2018* per la predisposizione dell'*Analisi di Rischio* prevista dal *D.Lgs. 152/06* (*Tabella 5*). Sebbene i *Koc* proposti nel database *ISS-INAL* derivino da un valore calcolato da una estesa banca dati mondiale ottenuta da analisi di sedimenti di varia natura ¹⁰ ¹¹, i valori di *Koc* vengono utilizzati principalmente per l'analisi di rischio con applicazione in acque di falda.

Il progetto in esame riguarda ovviamente sedimenti marini. *PCB* e *Idrocarburi* sono *composti organici* (*non ionici*) i quali è noto subiscano il fenomeno del *saltingout* ovvero all'aumentare della concentrazione degli ioni nelle acque (*acque di mare*) diminuisce la solubilità in acqua¹². Pertanto, utilizzare i valori di *Koc* normalmente utilizzati per le acque di falda, *equivale*, *per i sedimenti marini*, *a massimizzare la solubilità degli stessi nelle acque interstiziali* (si stima di un fattore 1,36 medio¹³).

U.S. Environmental Protection Agency (1993) – Technical basis for deriving sediment quality criteria for non ionic organic contaminant for the protection of benthic organism by using equilibrium partitioning, EPA-822-R-93-011, Washington D.C.

https://semspub.epa.gov/work/HQ/175223.pdf

https://semspub.epa.gov/work/HQ/175235.pdf

Evaluating the Salting-Out Effect on the Organic Carbon/Water Partition Ratios (KOC and KDOC) of Linear and Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships. https://pubs.acs.org/doi/10.1021/acs.jced.6b00196.

A Review of the Effect of Salts on the Solubility of Organic Compounds in Seawater, Marine Environmental Research, Vol. 44, NO. 4, pp. 429-444 1997.

Tabella $5 - K_{oc}$, $log K_{ow}$ e coeff. di diffusione in acqua per IC>12 e PCB presentati nella banca dati ISS-INAL del 2018. In verde chiaro vengono indicate per ciascuna classe idrocarburica le frazioni più conservative. Fra queste, con bordo rosso, viene indicato il valore più cautelativo scelto per il calcolo. Anche per i PCB con bordo rosso è indicato il valore preso a riferimento.

Specie Chimica	Koc o Kd [ml/g]	log Kow [adim.]	Coeff. Diff. Acqua [cm²/sec]						
Idrocarbui	Idrocarburi (Classificazione TPHCWG)								
Alifatici C >12-16	5,01E+05	7,31	4,61E-06						
Alifatici >C16-21	3,98E+08	9,85	3,85E-06						
Alifatici >C21- C35	3,98E+08	9,85	3,85E-06						
Aromatici C >12- 16	6,31E+03	4,87	7,41E-06						
Aromatici C > 16- 21	1,58E+04	5,83	6,54E-06						
<i>Aromatici C >21- 35</i>	1,26E+05	6,77	5,07E-06						
Idrocarbu	ri (Classifica	zione MADE	(P)						
Alifatici C13-C18	6,80E+05		5,00E-06						
Alifatici C19-C36	3,98E+08		3,85E-06						
Aromatici C11- C12	5,00E+03		1,00E-05						
Aromatici C13- C22	5,00E+03		1,00E-05						
	PCB								
PCB Tot.	7,81E+04	7,20E+00	5,04E-06						

Le analisi di caratterizzazione disponibili forniscono *valori di IC>12*. Nella banca dati vengono riportate per le classi *Idrocarburi C>12* i valori delle proprietà chimico fisiche e tossicologiche corrispondenti a due possibili sistemi di classificazione, *[TPHCWG, 1997]* e *[MADEP, 2002]* (*Tabella 1*). Gli idrocarburi pesanti comprendono un insieme di molecole differenti sia alifatiche a catena più o meno lunga che aromatiche e quindi non essendo note tutte le frazioni presenti, è stato adottato *cautelativamente* la categoria di molecole a maggiore solubilità teorica (*Documento di supporto alla Banca dati ISS-INAIL*, *Marzo 2018*, *pag. 18*¹⁴). Fra i due possibili sistemi di classificazione si è scelto dalla *1*, *anche in questo caso cautelativamente*, quello che porta ad una solubilità maggiore (*Koc minore*): gli *IC>12* vengono considerati con la classificazione *MADEP* tutti nella classe degli aromatici *C13-22* con *K_{OC} =5,00E+03*. Di conseguenza nella trattazione che segue si considera il caso estremamente cautelativo per:

¹⁴ ISS (2018) Banca dati ISS-INAIL, Documento di Supporto, Marzo 2018.

- considerare tutto assimilabile alla classe idrocarburica a maggiore diffusione;
- **♦** considerare il sistema di classificazione più conservativo.

$$Koc\ [ml/g] = 5,00E+3$$

e

$$Kp [ml/g] = 5E + 3 \times 0.0183 = 91.50 [ml/g o L/Kg]$$

Ponendo una concentrazione nel solido IC>12 (concentrazione sorgente) = 632,4 mg/Kg, si ottiene (conc/Kp):

632,4/91,50= 6,9 mg/L nelle acque interstiziali all'interno della colmata

Nel caso dei *Policlorobifenili*, si ottengono analogamente i seguenti risultati:

$$Koc [ml/g] = 7.81E+4$$

e

$$Kp \ [ml/g] = 7.81E + 4 \times 0.0183 = 1.43E + 3 \ [ml/g \ o \ L/Kg]$$

Ponendo una concentrazione nel solido *PCB* (concentrazione sorgente) = 308 $\mu g/Kg$, si ottiene (conc/Kp):

```
308/1,43E+3 = 2,16E-4 \text{ mg/L} nelle acque interstiziali all'interno della colmata
```

Queste sono quindi le concentrazioni nelle acque interstiziali del sedimento della colmata che possono diffondere nelle acque soprastanti e, mescolandosi alle stesse, contribuiscono a definire la concentrazione finale in tali acque.

E' difficile valutare la concentrazione delle acque soprastanti a partire dalle concentrazioni nelle acque interstiziali in quanto il valore finale dipende da molti fattori: le concentrazioni delle acque soprastanti, le correnti locali, i fenomeni redox che avvengono all'interfaccia acqua/sedimento e che ostacolano i flussi diffusivi, i fenomeni di adesione degli inquinanti alle particelle organiche presenti all'interfaccia che spesso si accumulano sul fondo, processi diagenetici, bioturbazione e rimescolamento del sedimento. Il complesso dei fenomeni sopraindicati fa sì che le acque interstiziali e le acque soprastanti non siano in equilibrio e che le concentrazioni di inquinanti nelle

acque interstiziali siano *1-3 ordini di grandezza* superiori a quelle delle acque soprastanti¹⁵ 16 17 18.

Inoltre, qualora venga refluito sopra i sedimenti uno strato di materiale inerte che funga da *capping* (come, ad esempio, nel caso dello stato di progetto in cui è previsto ricoprimento con materiali inerti da cava o sedimenti idonei), è stato valutato per *PCB* e *IPA* che basterebbe uno strato di *10 cm* per ridurre del *99%* il flusso diffusivo, creando uno strato di stagnazione. Considerando le concentrazioni di *PCB* calcolate nelle acque interstiziali e considerando i fenomeni sopra indicati, che portano ad una riduzione delle concentrazioni dei contaminanti da *1* a *3* ordini di grandezza nelle acque interstiziali, *risulta quindi comprensibile capire il perché nelle acque attuali i PCB risultano sempre al di sotto del limite di rilevabilità*.

Per *Idrocarburi* e *PCB* non esiste un riferimento normativo che imponga dei limiti per le acque di mare. Si è quindi fatto riferimento a quanto indicato dalla *Regione Liguria* in occasione della valutazione del potenziale rilascio di contaminanti dalla colmata del *Rio Molinassi* a *Genova*, in cui si indicavano come possibili limiti di riferimento le concentrazioni medie annue (*SQA-MA*) individuate per le sostanze di priorità (*Tabelle 1/A* e *1/B* dell'*Allegato1* alla *Parte Terza* del *D.Lgs. 152/06*) e i limiti per le acque sotterranee (*Tabella 2* dell'*Allegato 5* alla *Parte Quarta*, *Titolo V*, del *D.Lgs. 152/06*). In tutti i casi, come prescritto dalla *Regione Liguria*, si considera *la metà della concentrazione tabulata*, ovvero: per gli *IC>12*, *175 μg/l* espresso come *Idrocarburi totali*, e per i *PCB*, 0,005μg/l.

Si osserva che il limite per i *PCB* è pure nel range dei limiti di rilevabilità delle tecniche analitiche indicate da *ARPAL* dal 2003 al 2017, quindi di difficile rilevazione. I risultati del monitoraggio *ARPAL* indicano infatti, come già indicato, per tutti i campioni concentrazioni di *PCB* al di sotto del limite di rilevabilità, con limiti di rilevabilità a seconda delle campagne variabili da $0,001 \, \mu g/l$, a $0,005 \, \mu g/l$, a $0,01 \, \mu g/l$, fino a $0,05 \, \mu g/l$.

Sulla base di questi risultati si potrebbe concludere lo studio di potenziale rischio indotto dai sedimenti del fondo della colmata per le acque soprastanti. Si sottolinea che nell'analisi finora condotta non sono presenti le palancole che ancor più limitano la diffusione verso l'ambiente esterno, ed uno strato di *capping* con materiali non contaminati (siano essi inerti da cava o sedimenti idonei) che come sopra indicato diminuiscono fortemente la diffusione verso la colonna d'acqua soprastante. Ciò nonostante, si procede con l'analisi del modello per definire le forzanti in gioco e i potenziali effetti della colmata anche sulla falda in ingresso da monte.

Fluxes of trace elements and nutrients from porewater to overlying water in the La Spezia harbour (Ligurian Sea). Environmental Contamination, Barcellona, 1990, 561-563

Eek, E.; Cornelissen, G.; Kibsgaard, A.; Breedveld, G. D. Diffusion of PAH and PCB from contaminated sediments with and without mineral capping; measurement and modelling. Chemosphere 2008, 71 (9), 1629–1638.

Granberg, M. E.; Gunnarsson, J. S.; Hedman, J. E.; Rosenberg, R.; Jonsson, P. Bioturbation-driven release of organic contaminants from Baltic sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ. Sci. Technol. 2008, 42 (4), 1058–1065.

Booij, K.; Hoedemaker, J. R.; Bakker, J. F. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ. Sci. Technol. 2003, 37 (18), 4213–4220

6. METODOLOGIA SEGUITA PER LA PREDISPOZIONE DEL MODELLO NUMERICO DI FLUSSO E DEFINIZIONE DEGLI OBIETTIVI

La metodologia seguita per la predisposizione del modello numerico di flusso ha previsto le seguenti fasi di lavoro individuate e illustrate nei capitoli seguenti:

- 1. Fase 1. Definizione degli obiettivi (Capitolo 6)
- 2. Fase 2. Analisi dei dati disponibili (Capitolo 4)
- 3. Fase 3. Elaborazione del modello concettuale di riferimento (Capitolo 7)
- 4. Fase 4. Implementazione del modello numerico di flusso (Capitolo 8)

Stanti le informazioni disponibili di carattere puntuale, sia in termini spaziali che temporali, l'obiettivo generale che ci si pone è quello di ricostruire, avvalendosi della modellazione numerica, uno schema sufficientemente rappresentativo della falda locale. Verranno dunque studiate due configurazioni, corrispondenti rispettivamente allo *Stato di Fatto* (*SDF*) e allo *Stato di Progetto* (*SDP*). Il modello dello *Stato di Fatto*, opportunamente tarato, permetterà di ottenere una condizione di riferimento rispetto a cui sarà possibile determinare gli effetti delle opere previste da progetto. Nello specifico, per ciascuna configurazione, gli obiettivi sono i seguenti

- Stato di Fatto (SDF)
 - **♣** Schematizzazione del comportamento medio della falda
 - Rappresentazione della direzione prevalente del moto in condizioni stazionarie
 - Ottenere una condizione di riferimento rispetto a cui determinare gli effetti delle opere di progetto
- > Stato di Progetto (SDP)
 - determinare le eventuali variazioni in termini di carichi piezometrici e direzioni di flusso indotte dalla presenza della colmata e delle nuove palancole;
 - definire la portata in uscita dalle nuove palancole;
 - studiare l'effetto della diversa permeabilità del materiale di riempimento della colmata in termini di piezometria e flussi in uscita;
 - studiare l'effetto di un eventuale dreno a monte della colmata;
 - studiare in termini qualitativi l'effetto dell'intervento nel contenimento dell'intrusione salina;

4

7. MODELLO CONCETTUALE DI RIFERIMENTO

Per modello concettuale di riferimento si intende lo schema interpretativo delle caratteristiche significative e dei principali processi attivi nell'acquifero in esame in relazione all'obiettivo dello studio che sintetizza in modo coerente i dati osservati¹⁹. Sulla base delle informazioni disponibili, dal punto di vista qualitativo si può concludere che la direzione della falda è principalmente da nord a sud, a meno di deviazioni locali dovuto alla presenza di canali drenanti (nella zona a nord, più lontana dal porto) o pozzi di emungimento. In corrispondenza del porto i canali non sembrano drenanti la falda, essendo questi impermeabilizzati sia sul fondo che lateralmente tramite muri di sponda o palancole. Qualitativamente si nota inoltre che nella zona centrale dell'area di interesse si verifica una forte perdita di carico, rappresentata dalla breve distanza tra una isofreatica e l'altra, sinonimo di una bassa permeabilità, ovvero di un mezzo poroso che rallenta molto il fluire della falda. Al contrario, nella zona di valle in corrispondenza del porto, le isofreatiche si distanziano tra loro, sinonimo di una minor perdita di carico e quindi di una maggior permeabilità.

Dal punto di vista quantitativo invece:

- ▶ Nella zona più a monte (sito ex Sio) la falda è a circa 2.7-2.8 m slm
- Nella zona più a valle (piezometro al porto) la falda è a circa 0.1-0.2 m slm

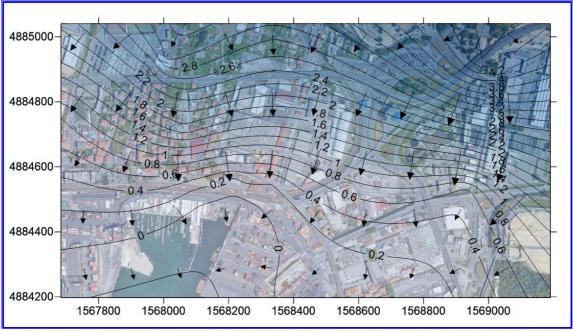


Figura 18 – Andamento delle linee isofreatiche ottenuto dalla interpolazione tramite Kriging

Sviluppo e valutazione di modelli di flusso in acquiferi porosi, ISPRA, 2021.

8. MODELLO MATEMATICO DI FLUSSO

Il *modello numerico* traspone in termini quantitativi il modello concettuale utilizzando tutti i dati a disposizione (compresi quelli descrittivi) e mettendoli tra loro in relazione mediante, in questo caso, l'utilizzo del software di calcolo, sviluppato dalla *WASY GmbH*. Si tratta di un modello matematico tridimensionale agli elementi finiti in grado di modellare sia il flusso sotterraneo, in termini di carico piezometrico, pressione e direzioni di flusso, sia il trasporto di massa di specie chimiche reattive e no.

Le simulazioni sono state condotte in *regime saturo*. Il flusso sotterraneo, in condizioni di completa saturazione, è descritto dalla legge di *Darcy*:

$$v_e = -\frac{Ki}{n_e}$$

dove v è la velocità apparente, n_e è la porosità efficace ed i = -(dh/dL) è il gradiente idraulico. Il segno negativo presente nell'equazione ha significato fisico in quanto la direzione del moto dell'acqua sotterranea è diretto verso carichi piezometrici decrescenti.

Si sono costruiti due modelli differenti: uno per lo *Stato di Fatto (SDF)*, calibrato in modo da rappresentare le direzioni di flusso e i carichi piezometrici attuali, e uno per lo *Stato di Progetto (SDP)* con la presenza della colmata. Lo stato di fatto ha visto la modellazione anche di parte dell'attuale fondale marino, su cui in fase di progetto verrà realizzata la colmata.

8.1. Stato di fatto

La modellazione dello *Stato di Fatto (SDF)* permette di ottenere una *condizione di riferimento schematica* rispetto a cui sarà possibile determinare gli effetti delle opere previste da progetto. Di seguito si riportano i principali risultati della modellazione.

8.1.1. Il dominio di calcolo e il modello 3D

Il dominio di calcolo è stato definito considerando gli obiettivi, i dati disponibili e le caratteristiche del territorio circostante all'area di intervento. Nel caso in esame l'unico limite fisico presente è rappresentato dal mare, che è stato quindi scelto come confine sud del modello; il confine ovest passa in mezzo ai due canali esistenti in modo da comprendere il *Torrente Vecchia Dorgia* con sbocco a mare (lato area di intervento), i confini nord ed est sono invece definiti arbitrariamente in modo da coinvolgere un'area rappresentativa in termini di flusso ma non troppo ampia da determinare un eccessivo costo computazionale. Il dominio di calcolo viene quindi definito come in figura seguente.

Figura 19 – Dominio per le simulazioni dello stato di fatto

La *mesh* di calcolo è composta da *11.000 nodi*, *23.000 elementi triangolari*, raffittiti in corrispondenza dei canali, della galleria subalvea e dell'area di intervento.

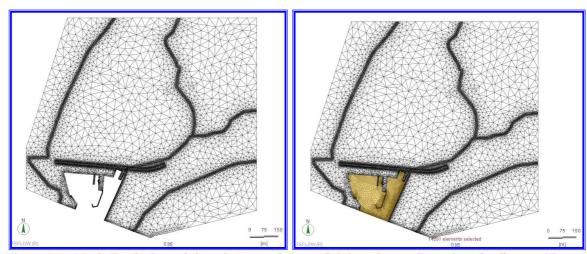


Figura 20 – Mesh di calcolo: a sinistra lo strato più superficiale, a destra gli strati profondi con evidenza del fondale marino in corrispondenza della futura colmata

Il modello 3D è costituito da 8 slice principali: slice 1 coincidente con il PC, slice 2 a quota 0 m slm, slice 3 coincidente con la sommità dell'unità A, slice 4 coincidente con la sommità dell'unità B, slice 5 coincidente con la sommità dell'unità C, slice 6 a quota -28.80 m slm (quota di posa delle palancole), slice 7 coincidente con la sommità dell'unità D, slice 8 a quota -60 m slm. Tra le slice principali sono state inserite delle slice intermedie ad una distanza di 2-5 m a seconda della distanza tra una slice principale e l'altra.

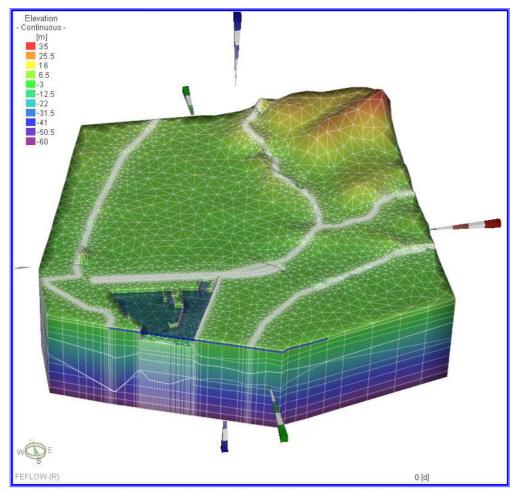


Figura 21 – Modello tridimensionale con evidenza della superficie del mare in corrispondenza del porto

8.1.2. Stratigrafia di riferimento

A partire quindi dai sondaggi riportati in Tabella 1, nella zona del porto nel modello è stata ricostruita la stratigrafia utilizzando una interpolazione lineare. Nelle zone a monte invece, più lontane dall'area di intervento e di cui non si disponevano informazioni di dettaglio, si è considerato un unico strato omogeneo.

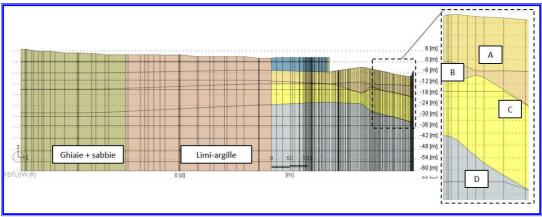


Figura 22 -Stratigrafia di riferimento per lo SDF

8.1.3. Condizioni al contorno

Le condizioni al contorno sono state mantenute costanti nel tempo (regime stazionario): non si è quindi tenuto in conto delle oscillazioni del mare in quanto la loro entità risulta essere modesta e quindi trascurabile (±10cm). Inoltre, la scala temporale del fenomeno di oscillazione delle onde del mare è molto inferiore rispetto alla scala temporale del moto di filtrazione, rendendo i due fenomeni praticamente indipendenti l'uno dall'altro e per tale ragione si è scelto di mantenere la condizione di valle stazionaria. Le condizioni imposte sono quindi:

- Condizione di monte (in corrispondenza del limite nord del modello): si impone una condizione di carico costante (carico idrostatico) ricostruito a partire dalle piezometriche misurate nei piezometri posti più a monte. Si è quindi imposto una valore di h=3.4 m slm.
- Condizione di valle (in corrispondenza del limite sud del modello). Come suggerito dalla Regione durante la riunione con gli Enti, la condizione di valle è stata imposta considerando la diversa densità dell'acqua di mare rispetto a quella della falda.

Nella modellazione di problemi dipendenti dalla densità, come l'*intrusione di acqua salata*, la condizione al contorno (carico piezometrico) deve essere correlata alla densità del fluido effettiva dell'acqua salata ρs . Facendo riferimento al problema dell'intrusione di acqua salata schematizzato nella *Figura 23*, lo scopo è trovare una corrispondente condizione di carico idraulico da imporre sul lato mare del dominio del modello, dal momento che la variabile richiesta per le equazioni di flusso sotterraneo in *Feflow* è il *carico idraulico h*²⁰.

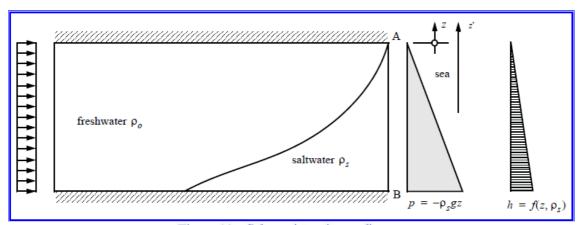


Figura 23 – Schema intrusione salina

Risulta quindi necessario tener conto della definizione specifica di potenziale:

$$h = z + \frac{p}{\rho_0 g}$$

About the formulation of hydraulic head boundary potential conditions for fluid densitydependent groundwater problems, H.-J. G. Diersch, WASY Institute for Water Resources Planning and Systems Research, Berlin, Germany, FeFlow White Papers Vol.1

dove g accelerazione di gravità, ρ_0 densità del fluido di riferimento. Nei problemi di intrusione salina la densità di riferimento è quella dell'acqua dolce. Il carico misurato in un piezometro, infatti, si riferisce al fluido presente nel piezometro stesso e quindi il potenziale misurato sarà relativo al fluido di salinità nota C:

$$h_s = z + \frac{p}{\rho_s g}$$

Con ρ_S funzione della salinità C. Moltiplicando e dividendo il primo termine dell'equazione precedente per ρ_0 si ottiene:

$$h_s = z + \frac{p}{\rho_s g} = h_s = z + \frac{p}{\rho_0 g} \frac{\rho_0}{\rho_s}$$

Attraverso vari passaggi si arriva a riscrivere il carico piezometrico relativo al fluido di salinità *C* nella seguente forma più semplice:

$$h_{\rm S} = -\alpha z \tag{1}$$

con

$$\alpha = \frac{\rho_s - \rho_0}{\rho_0}$$

Considerando $\rho_S = 1.029 kg/l$ e $\rho_0 = 1 kg/l$, si ottiene $\alpha = 0.029$.

In sintesi, si cerca di convertire il carico piezometrico dell'acqua marina in termini di acqua dolce equivalente. Ne deriva quindi che la condizione al contorno imposta al *lato mare* è:

- \Rightarrow per z=0 m slm, h =0 m slm
- **♦** i punti intermedi sono stati interpolati linearmente secondo la relazione (1)

Le condizioni imposte sono cautelative in quanto si ipotizza che tutto ciò che proviene da monte scarichi in mare; in realtà i due bordi sud (lateralmente ai pallini blu delle figure sottostanti) non sarebbero impermeabili, ma permetterebbero alla falda di proseguire il suo percorso verso sud.

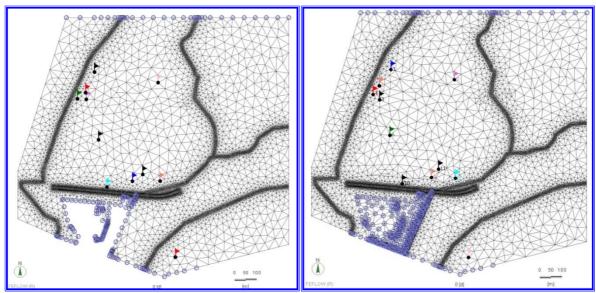


Figura 24 – Condizioni al contorno imposte: a sinistra lo strato più superficiale, a destra lo strato corrispondente al fondale marino

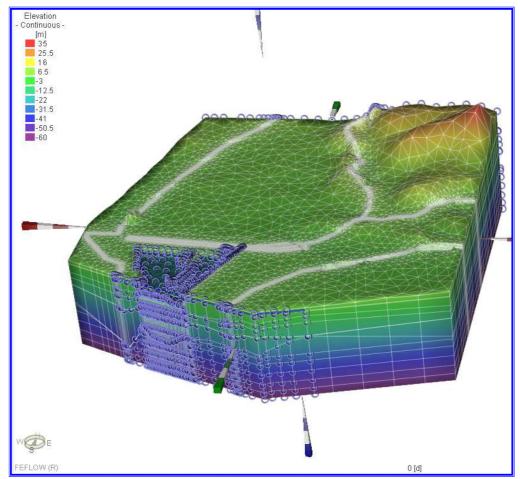


Figura 25 – Condizioni al contorno imposte: modello 3D

8.1.4. Permeabilità utilizzate

Nella zona del porto, in corrispondenza dei sondaggi realizzati nell'ambito del *PFTE*, sono state definite le permeabilità verticali delle unità stratigrafiche principali: tali valori si assumono quindi come noti e fissi. Si assume inoltre che la permeabilità verticale misurata sia anche pari a quella orizzontale (mezzo isotropo). Si assume invece come incognita, e quindi come parametro di calibrazione, la permeabilità della zona intermedia del dominio, la quale influenza l'andamento qualitativo delle linee di carico subito a monte della zona del porto e determina la forte perdita di carico visibile nella ricostruzione delle isofreatiche. Alle palancole esistenti è stata associata una permeabilità di *IE-7 m/s*, ovvero due ordini di grandezza inferiori rispetto a quella tipica di palancole di nuova realizzazione. L'implementazione è stata fatta per evitare, in fase di progetto, di andare a sottostimare l'innalzamento di falda determinato dalla futura colmata. Si riassumono quindi nella tabella seguente le permeabilità utilizzate con evidenza del parametro di calibrazione.

7		•		-	•	
~	a	h	1	п	10	•
•		,	ĸ.	u	\boldsymbol{u}	•

Unità litostratigrafiche	K verticale e K orizzontale (m/s)
DA - R	1.00E-05
DF – A	2.30E-09
DAMC -B	3.40E-09
DAC – C	9.80E-10
DAS – D	1.00E-06
Ghiaie limose (zona nord del dominio)	1.00E-07
Palancole esistenti	1.00E-07
Zona intermedia del dominio	Parametro di calibrazione

8.1.5. Calibrazione

La fase di calibrazione del modello vede la ricerca, mediante opportune metodologie, dei valori ottimali dei parametri e/o delle variabili di input tali che la condizione di flusso modellata sia il più vicina possibile alla condizione di flusso osservata. Il parametro oggetto di calibrazione è il valore di permeabilità della zona intermedia del dominio.

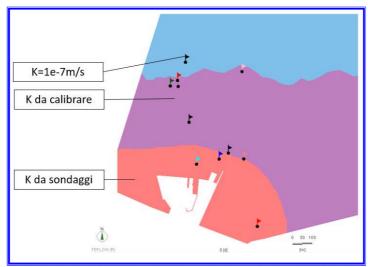
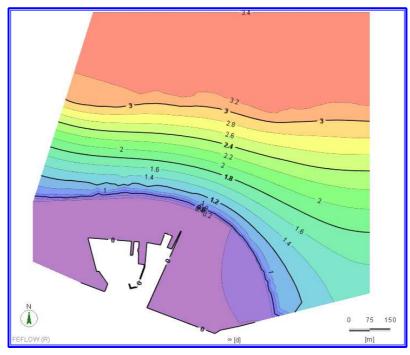


Figura 26- A sinistra ricostruzione della permeabilità nel modello

Seguendo una metodologia di tipo "trial and error" (Hill, 1998; Hill et al. 2000) la fase di calibrazione può essere così schematizzata:

- 1. Scelta dei dati osservati da utilizzare come target: in questo caso sono stati scelti i valori di carico piezometrico nei punti di monitoraggio noti e le direzioni di flusso;
- 2. Scelta di parametri rispetto al quale effettuare la calibrazione: in questo caso è stato scelto la permeabilità dello strato intermedio;
- 3. Assegnazione dei valori numerici dei parametri non soggetti a calibrazione, ovvero le condizioni al contorno (Par. 8.1.3);
- 4. Assegnazione dei valori numerici del parametro soggetto a calibrazione;
- 5. Confronto tra altezze piezometriche osservate e altezze piezometriche simulate;
- 6. Valutazione della bontà della calibrazione;
- 7. Se la calibrazione ottenuta è considerata non soddisfacente occorre effettuare una nuova calibrazione partendo dal passo 4.


Gli strumenti, grafici e statistici, più adatti per considerare il modello soddisfacente sono stati i seguenti:

- grafico di dispersione "valori osservati vs. valori simulati". Una buona calibrazione si ha se i punti si dispongono approssimativamente lungo la retta con pendenza di 45° che identifica l'uguaglianza tra valori osservati e simulati;
- l'errore medio assoluto (inteso come la differenza tra valore misurato e calcolato) è vicino allo 0;
- 4 le direzioni di flusso osservate sono riprodotte correttamente.

8.1.6. Risultati

Un valore di K = 1E-8 m/s per lo strato intermedio del dominio permette una buona rappresentazione sia del comportamento qualitativo in termini di direzioni di flusso che in termini di carico piezometrico. Nelle figure sottostanti si riportano le linee di carico e i vettori velocità ottenuti. Si nota in particolare come il modello rappresenti:

- **↓** Il valore di carico medio registrato al porto di 0.2m slm
- La perdita di carico in corrispondenza della zona centrale del dominio pari a circa 3 m
- La direzione di flusso principale da nord a sud

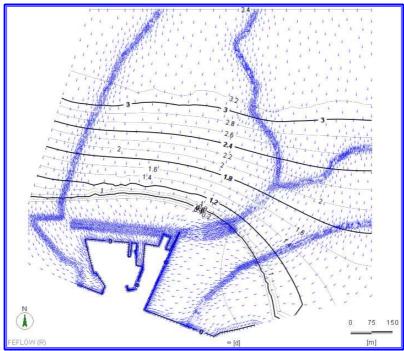


Figura 27- SDF: mappa di carico piezometrico sopra e mappa dei vettori velocità sotto (quota 0m slm)

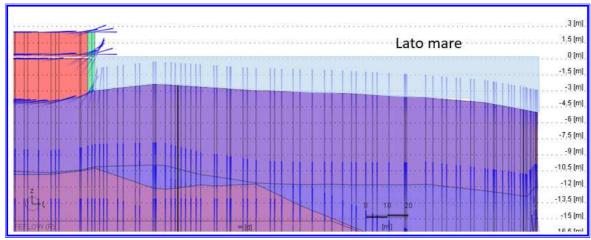
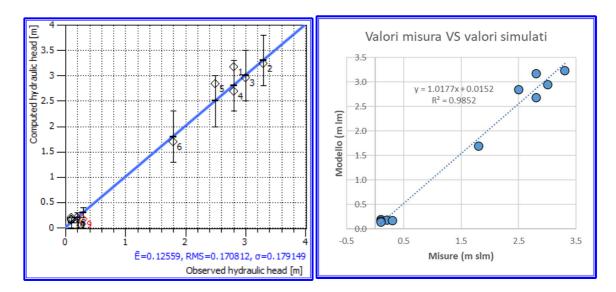



Figura 28-SDF: vettori velocità in sezione

In termini numerici si ottiene una buona correlazione tra i dati osservati e misurati: i punti si allineano su una retta avente pendenza 1.01 e il coefficiente di correlazione è pari a 0.985. L'errore medio assoluto è pari a 0.13 m, la radice dell'errore quadratico medio è prossimo a 0 (0.17) e il coefficiente di asimmetria σ è positivo e pari a 0.18 (ciò significa che il modello tende a sovrastimare leggermente i valori di carico rispetto alle misure). Nel complesso il modello numerico rappresenta bene il sistema così come schematizzato nel modello concettuale.

Calcolo del flusso netto lato mare

Sulla base quindi della *Figura 26*, il sistema può essere schematizzato come nella figura seguente. Il modello permette di estrapolare la portata attraverso il contorno sud del dominio definendo delle superfici di controllo. Sono stati quindi calcolati i flussi per i tratti:

- **♣** AB: ovvero ciò che esce dall'attuale superficie del porto a contatto con il mare;
- **BC:** ovvero ciò che esce dall'attuale fondale in corrispondenza della futura colmata.

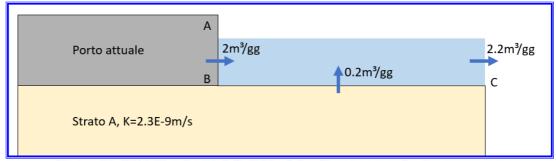


Figura 29-SDF: Flussi netti dalla falda, dal sedimento e complessivo verso mare

Nella figura sottostante si riporta il flusso totale in uscita sia dal perimetro delle future palancole di progetto (somma del tratto *AB* e *BC* della *Figura 29*) sia lateralmente ad esse, in corrispondenza delle palancole esistenti. Il flusso sulla verticale è stato calcolato fino alla quota dell'attuale fondale (circa -5 m slm).

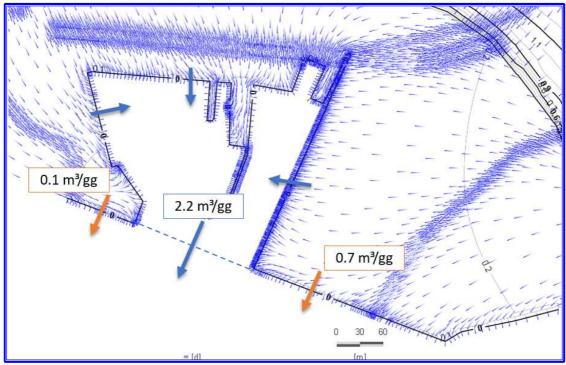


Figura 30-SDF: Flussi netti in uscita verso il mare fino alla quota del fondale attuale

Intrusione salina

Il modello permette anche di studiare il fenomeno dell'intrusione salina, dando come output le curve di *isoconcentrazione* in termini planimetrici e lungo delle sezioni trasversali. *Si è imposta una concentrazione di sali pari a 33 g/l al bordo sud del dominio (lato mare) costante sulla verticale*. I risultati sono da interpretare in termini qualitativi e non quantitativi dal momento che non è stato possibile tarare il modello anche su questo aspetto non essendo disponibili dati di qualità nel piezometro al porto. L'analisi è però utile per poter fare un confronto tra lo stato di fatto e quello di progetto ed in particolare studiare il ruolo delle palancole nella riduzione del fenomeno dell'intrusione salina.

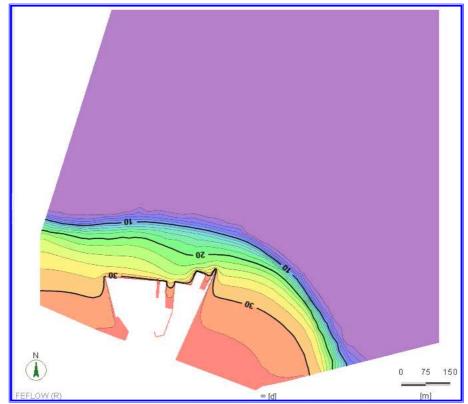


Figura 31-SDF: mappa di isoconcentrazione (g/l)

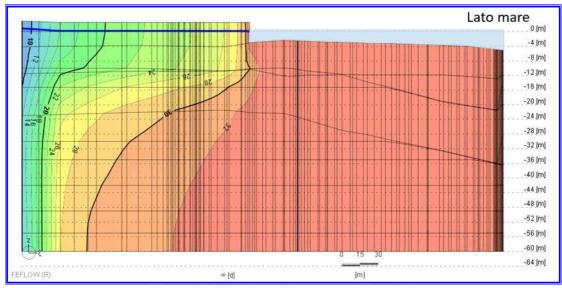


Figura 32-SDF: linee di isoconcentrazione (g/l)

8.2. Stato di Progetto

Per lo *Stato di Progetto (SDP)* sono state studiate e modellate tre possibili opzioni progettuali:

- **♦ Opzione 1:** riempimento della colmata con materiale da cava (Par. 8.2.4);
- Opzione 2: riempimento della colmata con sedimenti provenienti da dragaggi (Par. 8.2.5);
- **◆** Opzione 3: realizzazione di un dreno a monte della colmata per limitare l'innalzamento della falda nell'area di intervento (Par. 8.2.6).

Nello specifico, la modellazione dello *Stato di Progetto* permette di:

- determinare le eventuali variazioni in termini di carichi piezometrici e direzioni di flusso indotte dalla presenza della colmata e delle palancole;
- definire la portata in uscita dalle palancole;
- studiare l'effetto della diversa permeabilità del materiale di riempimento della colmata in termini di piezometria e portate
- studiare in termini qualitativi l'effetto dell'intervento nel contenimento dell'intrusione salina;
- **studiare** l'effetto di un eventuale dreno a monte della colmata

8.2.1. Il dominio di calcolo e il modello 3D

Il dominio dello *SDP* è analogo a quello dello *SDF*, ma si è proceduto a riempire la colmata e ad inserire le nuove palancole lato mare.

Figura 33 – Dominio per le simulazioni dello stato di progetto

La *mesh di calcolo* e il *modello 3D* sono stati costruiti analogamente allo *SDF* e si mantengono le stesse permeabilità individuate in fase di calibrazione. Il *modello 3D* è costituito da 8 *slice* principali: *slice 1* coincidente con il *PC*, *slice 2* a quota 0 *m slm*, *slice 3* coincidente con la sommità dell'*unità A*, *slice 4* coincidente con la sommità dell'*unità B*, *slice 5* coincidente con la sommità dell'*unità C*, *slice 6* a *quota -28.80m slm* (quota di posa delle palancole), *slice 7* coincidente con la sommità dell'*unità D*, *slice 8* a quota *-60m slm*. Tra le *slice principali* sono state inserite delle *slice intermedie* ad una distanza di 2-5 *m* a seconda della distanza tra una slice principale e l'altra.

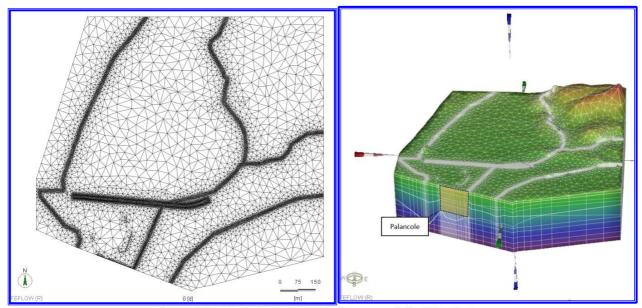


Figura 34 – Mesh di calcolo a sinistra e modello 3D a destra

8.2.2. Stratigrafia di riferimento

Rispetto allo *SDF*, *nello stato di progetto*, in corrispondenza della colmata, si è considerato:

- ♣ Nuovo piano campagna alla quota +2.5 m slm
- Da +2.5 m slm fino alla quota del fondale esistente: riempimento con materiale di cava e/o, in parte, con altri sedimenti di dragaggio;
- ♣ A partire dalla quota del fondo è stata ricostruita la stratigrafia analoga allo SDF

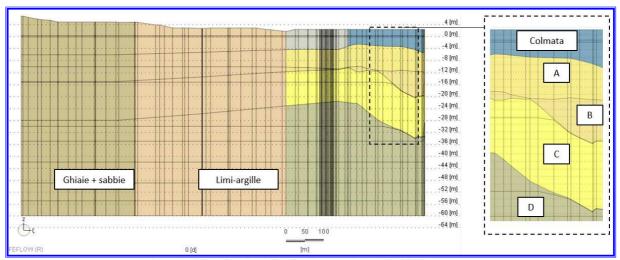


Figura 35 – Stratigrafia di riferimento per lo SDP

8.2.3. Condizioni al contorno

Le condizioni al contorno sono analoghe allo *SDF*, ovvero:

- Condizione di monte (in corrispondenza del limite nord del modello):
 h=3.4 m slm.
- Condizione di valle: per z = 0 m slm, h = 0 m slm; per z = -60 m slm (fondo del dominio lungo la verticale), h = 1.74 m slm; i punti intermedi sono stati interpolati linearmente secondo la relazione (1).

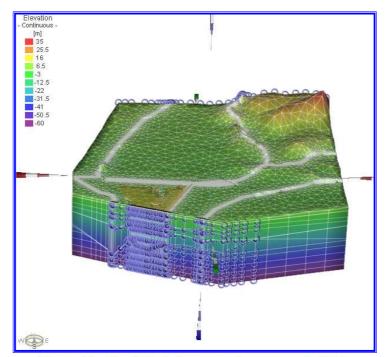


Figura 36 – Condizioni al contorno imposte per lo SDP

8.2.4. Opzione 1: riempimento della colmata con materiale da cava

Lo *stato di progetto*, nell'opzione 1, è stato studiato facendo variare la permeabilità del materiale di riempimento della colmata e analizzando le differenze in termini di carico piezometrico rispetto allo *SDF*. È stato analizzato un intervallo di permeabilità del *materiale di riempimento della colmata, tipico di materiali grossolani e non coesivi*: in questo modo, anche dal punto di vista applicativo, per la scelta del tipo di materiale (cava) sarà possibile fornire un *range di permeabilità* adatte piuttosto che un singolo valore. I valori analizzati in particolare sono: *1E-3 m/s* e *1E-4 m/s*: si riportano, di seguito, i risultati a confronto.

Risultati

Si riporta nella *Figura 37* e nella *Figura 38* l'andamento delle isofreatiche ottenute dal modello per le diverse permeabilità studiate. La falda freatica risente della presenza delle palancole e del nuovo riempimento: per poter infatti vincere, oltre che l'effetto della diversa densità dell'acqua di mare, sia l'effetto di contenimento delle palancole esistenti e di quelle di progetto che il nuovo riempimento con materiale di cava, la falda deve necessariamente guadagnare carico. In particolare, nella zona del porto, si alza di circa *30 cm* rispetto allo *SDF*. Nella zona più lontana dalle palancole invece, la falda si *"riallinea"* a quella dello *SDF*.

All'interno della colmata, la falda si assesta intorno ad un valore di $0.4 \, m \, slm$, ovvero ad una profondità di $2.1 \, m$ dal nuovo PC, posto a quota $+2.5 \, m \, slm$. In corrispondenza del restante dominio, le linee di carico sono analoghe a quelle dello SDF.

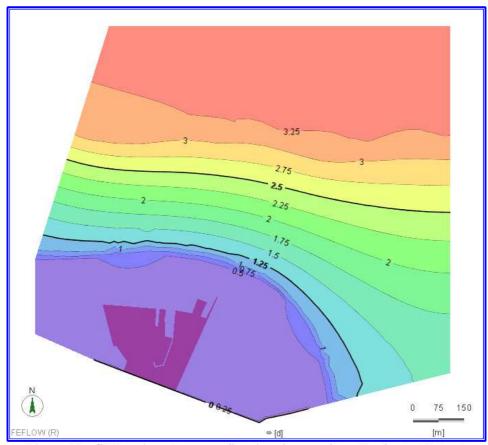


Figura 37 – SDP opzione 1: mappa di carico piezometrico – K colmata 1E-3 m/s

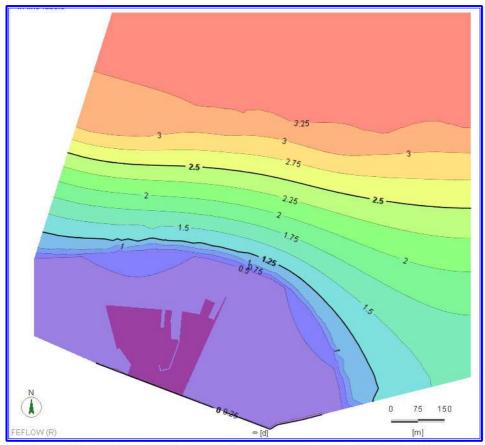


Figura 38 – SDP opzione 1: mappa di carico piezometrico –K colmata 1E-4 m/s

La colmata quindi, in termini di carico piezometrico, influenza solo la zona circostante l'intervento. Questo si nota confrontando l'andamento della falda nello *SDP* rispetto allo *SDF*, lungo la *sezione 1 nord-sud* riportate in *Figura 33*. Si riporta quindi nelle due figure sottostanti il carico piezometrico e la differenza di carico tra lo *SDF* e lo *SDP* lungo la sezione. Si nota come nella zona di valle del dominio, ovvero in corrispondenza del porto, la falda nello *SDP* si alza di massimo *30 cm*, mentre allontanandosi dalla zona di intervento le differenze tra *SDP* e *SDF* si riducono gradualmente, fino a diventare praticamente impercettibili (inferiori a *5 cm*) già a *600 m* di distanza dal mare, ovvero dalle palancole di progetto. L'andamento della superficie libera della falda non risulta quindi essere particolarmente influenzato dalla tipologia di materiale presente nella colmata, ma piuttosto dalla presenza delle palancole di nuova realizzazione e dalla loro bassissima permeabilità.

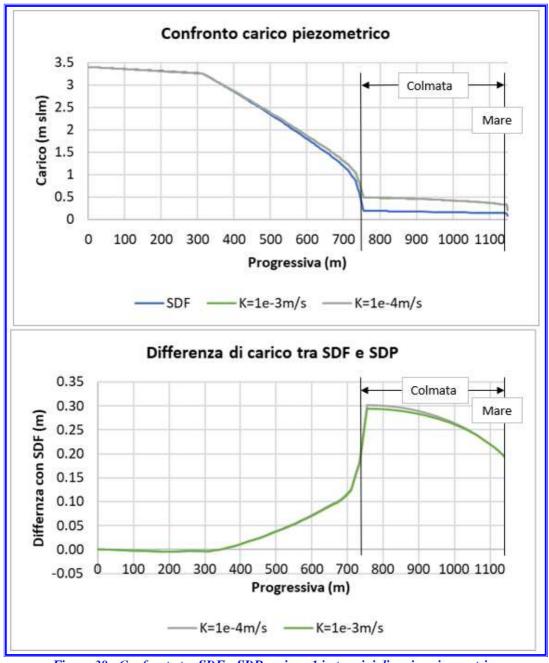


Figura 39 - Confronto tra SDF e SDP opzione 1 in termini di carico piezometrico

Dal punto di vista planimetrico, a scala di dominio non si rilevano particolari modifiche in termini di direzioni di flusso rispetto allo *SDF*. Il flusso tende in modo analogo allo *SDF* a dirigersi *da nord verso il mare*, nonostante la presenza delle palancole e della nuova colmata. Localmente, invece, nell'intorno dell'area di intervento, il flusso proveniente da *nord-ovest* e da *nord-est*, tende a non attraversare la colmata, ma piuttosto a scorrere parallelamente ad essa.

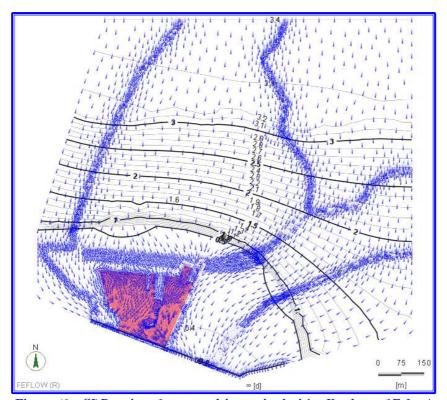


Figura 40 – SDP opzione 1: mappa dei vettori velocità – K colmata 1E-3 m/s

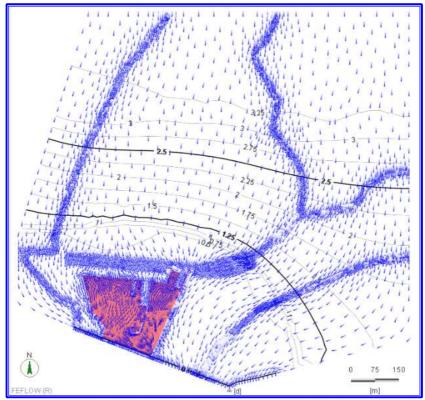


Figura 41-SDP opzione 1: mappa dei vettori velocità – K colmata 1E-4 m/s

Le maggiori differenze in termini di direzioni di flusso si notano in sezione: come mostra la *Figura 32*, a differenza dello *SDF*, ora il flusso non tende più ad uscire dal fondale, ma tende a mantenersi parallelo ad esso, uscendo dalle palancole poste all'estremità.

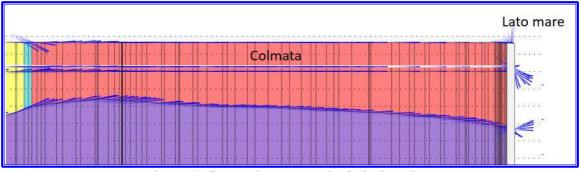


Figura 42-SDP opzione 1: vettori velocità in sezione

Calcolo del flusso netto lato mare

Analogamente a quanto fatto per lo *SDF*, sulla base della *Figura 32*, il sistema può essere schematizzato come nella figura seguente.

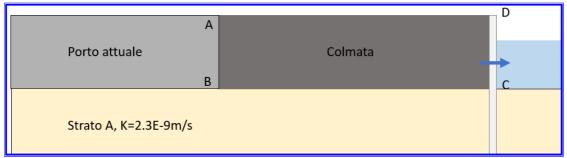


Figura 43 – Schematizzazione dei flussi in uscita per lo SDP

Sono stati quindi calcolati i flussi netti per il tratto *DC* ovvero *ciò che esce dalle palancole a partire dalla quota di sommità fino alla quota di dragaggio di progetto (-15m slm)*. Si riportano, nella tabella seguente, i valori di *portata netta* in uscita dalle palancole di progetto a confronto con quelli dello *SDF*.

Tabella 7 – SDP opzione 1: portate nette attraverso i	i tratti	analizzati
---	----------	------------

Tratto	SDF	K colmata 1E-3 m/s	K colmata 1E-4 m/s		
	Portate nette in m³/g				
DC	-2.2 (somma del tratto AB e BC)	-0.1	-0.1		

Analizzando i numeri di *Tabella 7*, si possono fare le seguenti considerazioni:

- La presenza della colmata e delle palancole di progetto riduce effettivamente il flusso in uscita verso il mare: in particolare per il tratto DC, per tutta la superficie della colmata lato mare, il flusso passa da circa 2 m³/g per lo SDF a 0.1 m³/g per lo stato di progetto. Si ha quindi una riduzione di quasi 10 volte rispetto a ciò che esce attualmente.
- La presenza delle palancole invece in corrispondenza degli strati componenti il fondale non determina variazioni rispetto allo SDF: ciò dovuto al fatto che le palancole hanno di fatto la stessa permeabilità degli strati in cui sono infisse e per tale ragione esse, in regime stazionario, non rappresentano una vera e propria discontinuità idraulica.

Il resto della portata proveniente da monte viene deviato dalla presenza della colmata e delle palancole di progetto. Infatti, il flusso che prima tendeva a dirigersi verso il mare (cfr. *Figura 30*) ora tende ad uscire lateralmente alla colmata (*frecce arancioni in Figura 44*Figura 59). I flussi in uscita sono stati calcolati fino alla quota di dragaggio prevista dal *PTFE* (-15 m slm).

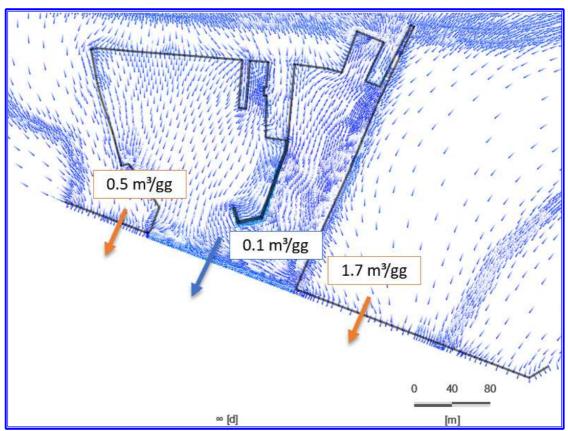


Figura 44 – SDP opzione 1: flussi netti in uscita verso il mare

Intrusione salina

Le palancole e la futura colmata rappresentano un ostacolo anche dal lato mare: esse, infatti, permettono di ridurre l'intrusione di acqua marina. Si riporta, in planimetria, l'andamento delle *linee di isoconcentrazione di sale in g/l*.

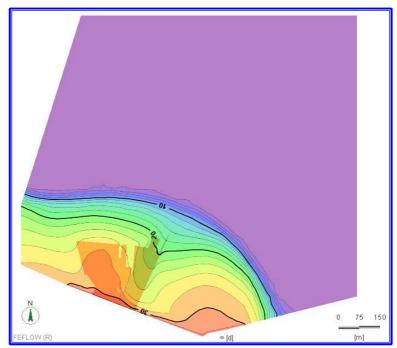


Figura 45 - SDP opzione 1: mappa di isoconcentrazione (g/l) – K colmata 1E-3 m/s

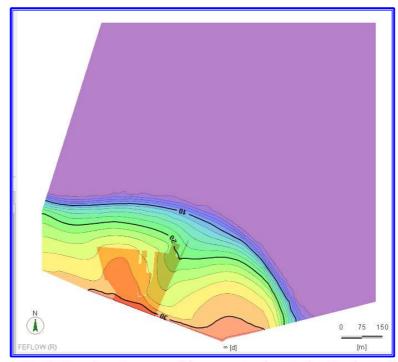


Figura 46 - SDP opzione 1: mappa di isoconcentrazione (g/l) - K colmata 1E-4 m/s

Si riporta, nelle figure seguenti, l'andamento della concentrazione lungo la *sezione 1* (cfr. *Figura 25*) alla quota *0 m slm*.

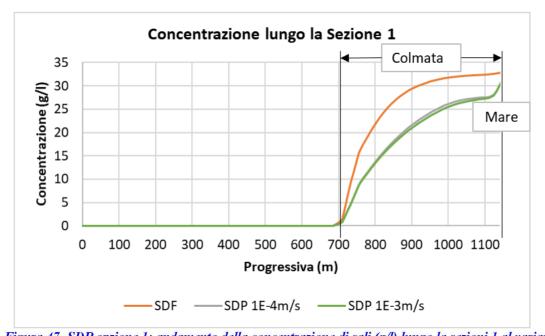


Figura 47- SDP opzione 1: andamento della concentrazione di sali (g/l) lungo la sezioni 1 al variare della K della colmata

8.2.5. Opzione 2: riempimento con sedimenti provenienti dai dragaggi

Lo *Stato di Progetto*, nell'*Opzione* 2, è stato studiato considerando una permeabilità del materiale di riempimento tipico dei *sedimenti di dragaggio*, pari a *1E-5 m/s*, e analizzando le differenze in termini di carico piezometrico rispetto allo *SDF*.

Come indicato in premessa, i sedimenti di dragaggio che potranno essere refluiti in colmata dovranno essere *conformi al refluimento così come previsto dal D.M. 173/16*.

Anche in questo caso la falda deve necessariamente guadagnare del carico piezometrico affinché riesca ad attraversare tutti gli ostacoli a bassa permeabilità, ovvero sia le palancole esistenti che la colmata riempita con sedimenti che le nuove palancole di progetto. In questo caso quindi l'isofreatica a 0.5 m slm, che nel caso dell'opzione 1 di progetto si disponeva subito a monte della zona del porto, in questo caso si pone subito a monte della colmata.

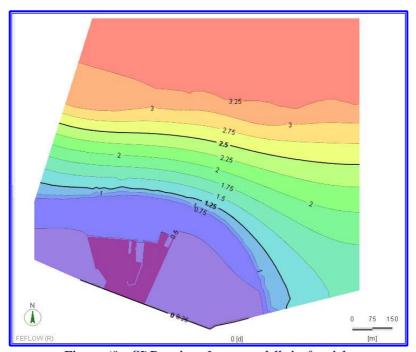


Figura 48 – SDP opzione 2: mappa delle isofreatiche

Anche dal punto di vista dei vettori velocità, ovvero delle direzioni di flusso, a scala di dominio la falda si dirige sempre in direzione del mare. Localmente invece, nell'intorno dell'area di intervento, il flusso proveniente da *nord-ovest* e da *nord-est* tende a non attraversare la colmata, ma piuttosto a scorrere parallelamente ad essa.

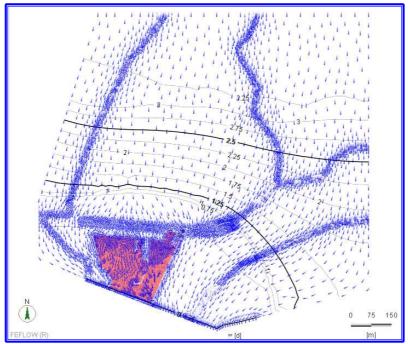


Figura 49 – SDP opzione 2: mappe dei vettori velocità

In questo caso l'innalzamento della falda, dovuto principalmente alla presenza delle *palancole di progetto*, è pari a circa *35 cm* rispetto allo *SDF*. Analogamente ai casi precedenti, l'influenza delle opere di progetto è percettibile, ma comunque contenuta, e limitata alla zona del porto.

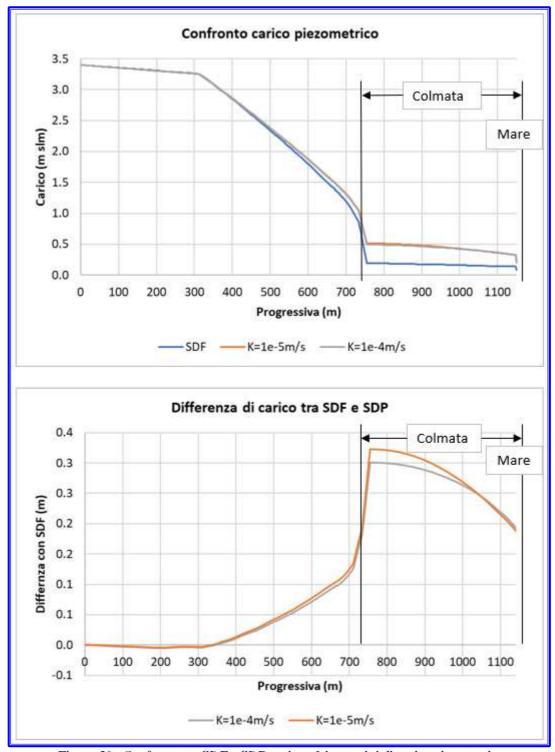


Figura 50 -Confronto tra SDF e SDP opzione 2 in termini di carico piezometrico

Calcolo del flusso netto lato mare

Analogamente a quanto fatto per lo *SDF* e per l'*opzione 1* dello *SDP*, sulla base della *Figura 43* si è calcolato il flusso netto in uscita *dalle palancole a partire dalla quota di sommità fino alla quota di dragaggio di progetto (-15 m slm)*. Anche in questo caso, il flusso uscente è dell'ordine del 0.1 m³/g, ovvero più di dieci volte inferiore rispetto allo *SDF*.

Il flusso di falda rimanente proveniente da monte, analogamente allo *SDP* opzione 1, viene deviato dalla presenza delle palancole di progetto e fuoriesce lateralmente ad esse (*frecce arancioni in Figura 51*).

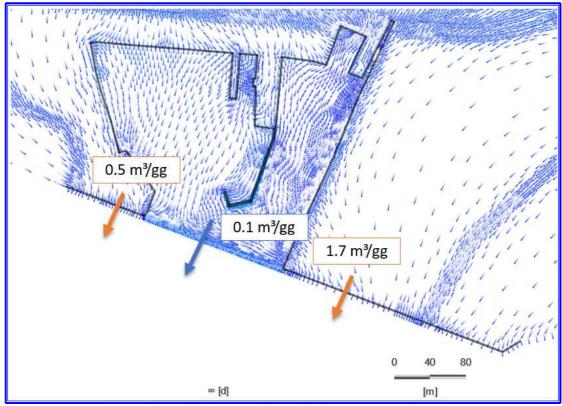


Figura 51-SDP opzione 2: flussi netti in uscita verso il mare

Intrusione salina

Si ha, anche in questo caso, una riduzione dell'ingresso di acqua marina verso la terraferma, lievemente più marcata rispetto al caso di riempimento della colmata con materiale di cava.

Figura 52 – SDP opzione 2: mappa delle linee di isoconcentrazione (g/l)



Figura 53 – SDP opzione 2: andamento della concentrazione di sali (g/l) lungo la sezioni 1

8.2.6. Opzione 3: realizzazione di un dreno a monte della colmata

Lo *Stato di Progetto*, nell'*opzione 3*, è stato studiato considerando una permeabilità del materiale di riempimento pari a *1E-5 m/s* (quindi un riempimento totale con *sedimenti marini*) e al fine di ridurre per quanto possibile l'innalzamento della falda dovuta al solo riempimento della colmata e delle nuove palancole di progetto, si è inserito un dreno orizzontale, disposto a monte della nuova colmata, ma a valle delle palancole esistenti. Tale ubicazione risulta l'unica possibile considerando tutte le interferenze presenti nell'area di intervento.

Figura 54- - Ubicazione del dreno di progetto

A livello di modello, il dreno viene schematizzato imponendo ai nodi interessati una condizione al contorno detta di *seepage face*, che prevede di imporre il carico piezometrico *uguale alla quota geodetica*, imponendo di fatto cha la pressione sia uguale a *0 kPa*. A tale condizione è associata una "constrain condition", ossia un vincolo che consente l'instaurarsi di una portata uscente dal modello, ma non entrante. Il dreno è stato quindi posto alla quota di *0.3 m slm*. Nella figura seguente si riportano le linee equipotenziali e i vettori velocità.

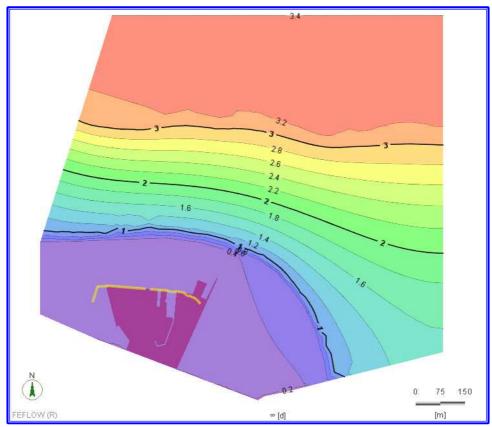


Figura 55 – SDP opzione 3: linee a carico costante

Nella successiva figura si nota, in particolare, come le linee di flusso vengano in parte intercettate dal dreno (linea gialla), in parte mentre altre, più distanti, non ne risentano della presenza.

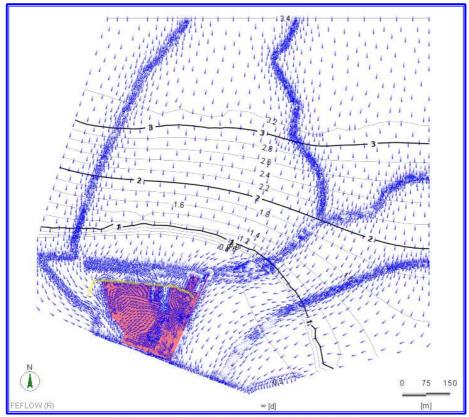


Figura 56 – SDP opzione 3:vettori velocità

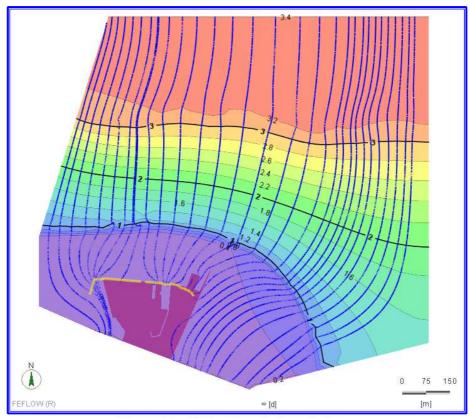


Figura 57 – SDP opzione 3: linee di flusso

Il dreno determina quindi una riduzione dell'innalzamento di falda, la quale è richiamata per quanto possibile dal dreno stesso. L'innalzamento netto di carico piezometrico in corrispondenza del porto passa quindi dai precedenti 30-35 cm (da 0.2 m slm a 0.5 m slm per le configurazioni di progetto opzione 1 e opzione 2) a 20 cm (da 0.2 m slm a 0.4m slm). Ciò è ben visibile nell'immagine seguente.

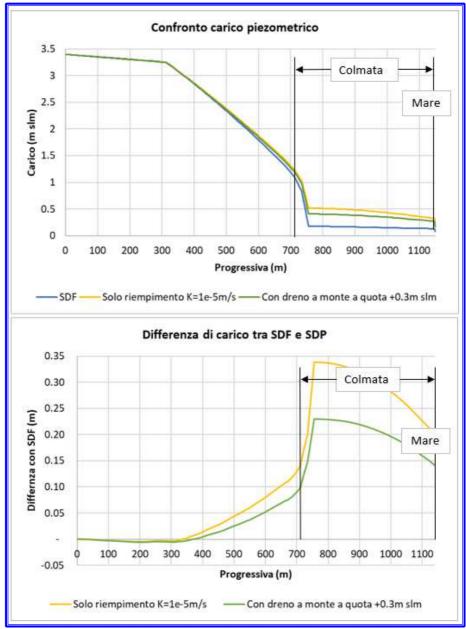


Figura 58 – Confronto tra SDF e SDP opzione 3 in termini di carico piezometrico

Per permettere l'abbassamento della falda, il dreno deve essere in grado di consentire l'asportazione di una portata di 0.9 m³/g. L'abbassamento della falda e la variazione delle linee di flusso, determina anche una riduzione del flusso in uscita dalle palancole di progetto, che passa dai circa 2.2 m³/g dello SDF a 0.05 m³/g nello SDP con il dreno, ovvero praticamente trascurabile. Analogamente alle opzioni 1 e 2, il restante flusso di falda proveniente da monte fuoriesce lateralmente alla colmata (frecce arancioni in Figura 59Figura 59).

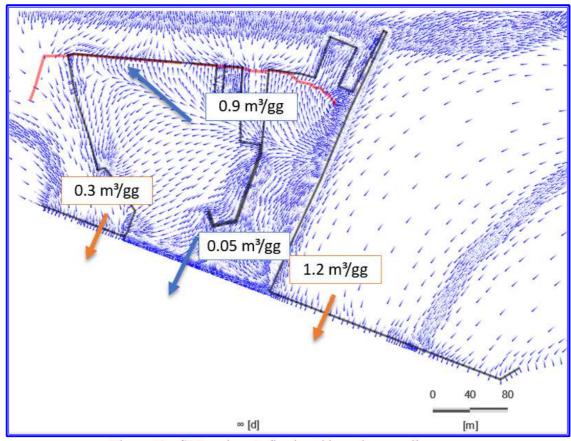


Figura 59 – SDP opzione 3: flussi netti in uscita verso il mare

8.2.7. Verifica dei flussi in uscita dalla colmata nel caso di aumento del gradiente della falda

Sulla base dei dati disponibili il *gradiente medio* della falda ottenuto è pari a 0.003, calcolato dal rapporto tra la differenza di carico piezometrico tra monte (+3.4 m slm) e valle (0 m slm) e la distanza tra monte e valle pari a circa 1 km. Tuttavia, data la limitatezza dei dati che hanno portato alla definizione delle condizioni al contorno del modello, si è analizzata una situazione "ideale" più estrema in termini di gradiente piezometrico, ipotizzando che esso sia pari a 0.004, ovvero ipotizzando che la condizione al contorno di monte sia pari a +4 m slm. Si ritiene che tale incremento sia sufficiente per simulare una situazione "estrema": un carico piezometrico di monte maggiore porterebbe infatti ad una fuoriuscita della falda dal piano campagna in alcuni punti del dominio essendo il piano campagna nella zona intermedia pari a circa 3-4 m slm. Lo scopo dell'analisi è verificare quale sia l'effetto indotto da un aumento del gradiente sui flussi in uscita dal limite di valle del modello e sul carico piezometrico nella zona di intervento. La simulazione è stata condotta nella configurazione di cui all'Opzione 3 di cui al paragrafo precedente, ovvero in presenza del dreno a monte della colmata.

La *Figura 60* mostra l'andamento del carico piezometrico in planimetria mentre la *Figura 61* mostra l'andamento della falda lungo la *Sezione 1* da *nord* a *sud* del dominio. *Si può notare che l'aumento della condizione al contorno di monte abbia influenza solamente nella parte nord e intermedia del dominio*: l'incremento di carico viene quindi dissipato prima di arrivare nella zona del porto. È infatti la condizione di

valle, sia in termini di carico imposto che in termini di permeabilità utilizzate (dei terreni limoso argillosi presenti nell'area del porto), ad influenzare maggiormente l'andamento della falda, e conseguentemente i flussi in uscita, nella zona dell'intervento.

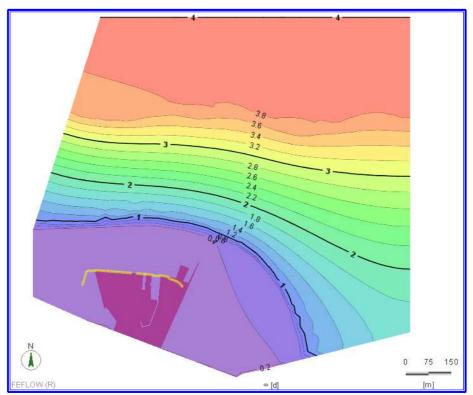


Figura 60 - Andamento delle isofreatiche con aumento del gradiente della falda

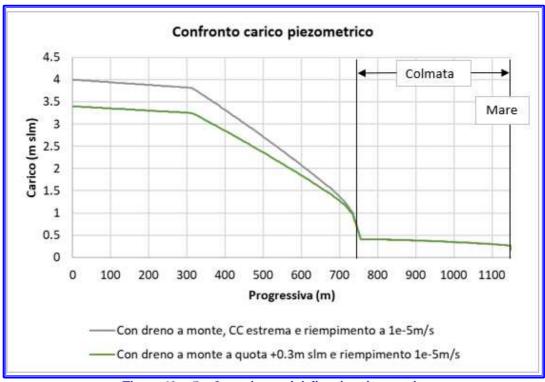


Figura 61 – Confronto in termini di carico piezometrico

Anche in termini di flusso non si rilevano particolari differenze rispetto agli scenari analizzati precedentemente; in particolare:

- ↓ in ingresso al dreno la portata passa dai precedenti 0.93 m³/g a 0.95 m³/g;
- in uscita lateralmente alla colmata il flusso è pari a 0.3 m³/g a sinistra e 1.22 m³/g a destra.

I valori ottenuti sono quindi sostanzialmente identici con quanto emerso nelle condizioni di progetto analizzate nei paragrafi precedenti. Quindi, *un aumento del gradiente idraulico e in particolare della condizione al contorno di monte* (ipotizzando fisso il livello del mare in condizioni stazionarie) *non determina significative variazioni rispetto a quanto ottenuto negli scenari di progetto precedentemente analizzati*. I flussi in uscita e l'andamento del carico piezometrico nell'intorno dell'area di intervento risultano quindi influenzati dal livello del mare, che comunque è mantenuto fisso in condizioni stazionarie, e prevalentemente dalla conducibilità idraulica del materiale di riempimento della colmata e delle palancole di progetto. La condizione di monte, quindi, influenza principalmente la parte intermedia del dominio piuttosto che la zona dell'intervento.

8.3. Considerazioni finali sui risultati del modello

- La presenza delle palancole e della nuova colmata non determina una significativa variazione delle direzioni di flusso e del carico piezometrico: nel caso di riempimento della colmata con materiale di cava le maggiori variazioni (30 cm rispetto allo stato attuale) si verificano nell'intorno dell'area di intervento;
- Lon il solo riempimento della colmata con materiali aventi una permeabilità tipica dei sedimenti di dragaggio, si ottiene un aumento in termini di quota piezometrica della falda rispetto allo SDF di circa 35 cm, circoscritto alla zona del porto;
- In termini di <u>portata netta in uscita lato mare lungo le palancole di progetto</u>: il range di permeabilità del materiale componente la colmata, ma soprattutto la presenza delle palancole, permettono di ridurre la portata in uscita del 95% rispetto allo stato di fatto;
- L'innalzamento della falda può essere ridotto introducendo un dreno posto a monte della colmata e posto ad una quota di 0.3 m slm: tale dreno permette di ridurre l'innalzamento della falda di circa un terzo, ovvero da 35 cm (in assenza di dreno) a 20 cm.
- Il flusso in uscita dalla colmata è pari nello SDF a 2,2 m³/g, nello SDP pari a 0,1 m³/g (opzione 1 e 2), e nello SDP con dreno il flusso si dimezza ed è pari a 0,05 m³/g;
- Nello SDF si è stimato il contributo del flusso della falda in uscita dal fondale verso le acque soprastanti pari a 0,2 m³/g, 1/10 del flusso complessivo derivante dalla falda.
- ♣ Per lo SDP si può ritenere quindi che si possa cautelativamente mantenere lo stesso rapporto, anche se il comportamento dei flussi della falda nello SDP farebbe supporre un rapporto anche inferiore (per la presenza della palancole e del materiale di riempimento).

9. CONSIDERAZIONI SUL MONITORAGGIO

Per analogia con quanto già monitorato da *ARPAL* negli anni passati si suggerisce, per il *Piano di Monitoraggio Ambientale* di progetto, di eseguire *campionamenti delle acque marine* nelle stazioni più prossime all'area di intervento: *PP020*, *PP030*, *PP048*. In tali stazioni dovranno essere monitorate le concentrazioni di *IC>12* e *PCB*, avendo cura di avviare tale monitoraggio prima dell'inizio della realizzazione delle opere.

Per quanto riguarda il *monitoraggio della falda* a monte della colmata si suggerisce di monitorare esclusivamente i livelli di soggiacenza in corrispondenza di uno o più piezometri tra quelli più vicini alla colmata, per valutare l'efficienza del dreno.

10. CONCLUSIONI

L'analisi dei dati di caratterizzazione ambientale

- Le <u>concentrazioni puntuali</u> dei sedimenti sul fondo della colmata presentano <u>alcuni superamenti delle CSC²¹ per IC>12 e PCB</u> (superamento per destinazione d'uso industriale).
- Le concentrazioni sorgente, calcolate con UCL al 95%, sull'intero spessore di 2 m di sedimenti caratterizzati, sono inferiori a quelle per suolo ad uso industriale (IC>12 = 632,4 mg/Kg; PCB = 308,8 μg/Kg).
- Le concentrazioni di IC e PCB nelle <u>acque interstiziali della colmata</u>, calcolate dalla concentrazione sorgente, sono risultate pari a: IC>12 = 6,911 mg/L; PCB = 2,16 E-4 mg/L. Le concentrazioni nelle acque soprastanti sono note essere 1-2 ordini di grandezza inferiori rispetto alle acque interstiziali.

Sulla base di questi risultati si potrebbe già concludere con impatto nullo lo studio di potenziale rischio indotto dai sedimenti del fondo della colmata per le acque soprastanti. Si sottolinea che impatto nullo è valutato in assenza di palancole che ancor più limitano la diffusione verso l'ambiente esterno. Ciò nonostante, è stato applicato un modello 3D per definire le forzanti idrauliche e portate diffusive in gioco, anche con il fine di valutare possibili interazioni con la falda in ingresso da monte.

- La presenza delle palancole e della nuova colmata non determina una significativa variazione delle direzioni di flusso e del carico piezometrico: le maggiori variazioni (35 cm rispetto allo stato attuale, si verificano nell'area di intervento e le variazioni sono imputabili alla permeabilità dei materiali di riempimento che verranno utilizzati;
- In termini di portata netta in uscita lato mare lungo le palancole di progetto: il range di permeabilità del materiale componente la colmata, ma soprattutto la presenza delle palancole, permettono di ridurre la portata in uscita del 95% rispetto allo stato di fatto. In particolare, per il tratto DC²² il flusso passa da circa 2 m³/g per lo stato di fatto a 0.1 m³/g per lo stato di progetto senza dreno e pari a 0,05 m³/g con il dreno.

Dal momento che l'obiettivo del presente studio è quello di valutare il potenziale rischio che i sedimenti presenti sul fondo della colmata inducono all'ambiente circostante, viene di seguito effettuata la stima del possibile contributo della matrice sedimento. Per far ciò, si tralasciano fenomeni di diluizione che inevitabilmente avvengono con le acque soprastanti, fenomeni di degradazione/adsorbimento/diagenetici all'interfaccia acqua sedimento e si ipotizza che i sedimenti rilascino le concentrazioni di *IC>12* e *PCB* presenti nelle acque interstiziali all'infinito (anche se, come visto, le *concentrazioni sorgente* sono già entro i limiti e i superamenti puntuali sono di per sé limitati). Si tralascia anche l'effetto di *capping* che

Environment, Health and Safety

Concentrazioni Soglia di Contaminazione per terreni ad uso industriale, Colonna B, tabella 1 dell'Allegato 5 alla Parte Quarta, Titolo V, del D.Lgs. 152/06.

Ovvero ciò che esce dalle palancole a partire dalla quota di sommità fino al fondale attuale.

i materiali che verranno refluiti sopra i sedimenti andranno a determinare (da dati di letteratura si stima possano di fatto quasi annullare il flusso in uscita dalle acque interstiziali). Nella valutazione che segue si estremizza quindi il flusso in uscita dalle acque interstiziali considerando che fluiscano direttamente nelle acque di colmata e da queste al mare. E' di fatto un'estremizzazione della realtà fatta per fornire una stima molto cautelativa.

Occorre quindi valutare il flusso in uscita dalla colmata dato dal solo flusso dal fondale, che è quello che determina il potenziale rischio. Come indicato nel capitolo precedente per lo SDF (Figura 29), si può cautelativamente ritenere come invariato il contributo relativo derivante dal fondale e quindi ponendo in SDP il flusso dal fondale e in uscita dalla colmata pari a $0,01 \ m^3/g$ (ovvero 1/10 del complessivo) lungo tutte le palancole di progetto fino alla quota di dragaggio di $-15m \ slm$.

Con le premesse sopra indicate, con una concentrazione di IC>12 nelle acque interstiziali pari a 6,9 mg/L ed un flusso di 0.01 m³/g lungo tutta la superficie della colmata lato mare (166 m x 15 m = 2.490 m²), in un giorno verrebbero rilasciati 69 mg/g di IC>12, corrispondenti a circa 28 μ g m² g², un flusso trascurabile considerato che si diluisce a mare e che il reale contributo derivante dal sedimento è molto inferiore. Con lo stesso principio, si ottiene per i PCB un flusso di 2 μ g/g, corrispondenti a 0,8 ng m² g², un flusso trascurabile considerato che si diluisce a mare.

In presenza di dreno tali flussi, già trascurabili seppur massimizzati per tutte le considerazioni sopra esposte, si dimezzano ulteriormente diventando pari a circa 35 mg/gg, corrispondenti a 14 μ g m⁻² gg⁻¹ per gli Idrocarburi C>12, e 1 μ g/gg, corrispondenti a 0,4 ng m⁻² gg⁻¹, per i PCB.

Importante infine sottolineare che i flussi sopra indicati, oltre che essere estremizzati in modo cautelativo, si riferiscono a contaminanti che sono soggetti a degradazione e che nel tempo sono destinati a diminuire.

ALLEGATO 1

Elaborazione statistica con Software ProuCL 5.1 per la valutazione dell'UCL utilizzando diverse curve di distribuzione

IDROCARBURI >12

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.112/01/2022 11:19:15

From File per UCLS.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Idrocarburi C>12

General Statistics

Total Number of Observations	57,00	Number of Distinct Observations	57,00
		Number of Missing Observations	0
Minimum	11,77	Mean	472,8
Maximum	5598	Median	227,6
SD	825,2	Std. Error of Mean	109,3
Coefficient of Variation	1,746	Skewness	4.660

Normal GOF Test

Shapiro Wilk Test Statistic	0,534	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0,288	Lilliefors GOF Test	
5% Lilliefors Critical Value	0,117	Data Not Normal at 5% Significance Level	
	ŕ	nal at 5% Significance Level	
		<u> </u>	
	Assumin	g Normal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	655,6	95% Adjusted-CLT UCL (Chen-1995)	724,6
		95% Modified-t UCL (Johnson-1978)	666,8
	C	COET-4	
A. D. Tarak Charlinkin		amma GOF Test	
A-D Test Statistic	0,864	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0,799	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0,115	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value 0,123 Detected data appear Gamma Distributed at 5% Significance Lo		Level	
Detected data follow Appr. Gamma Distribution at 5% Significance Level			
	G	amma Statistics	
k hat (MLE)	0,683	k star (bias corrected MLE)	0,659
Theta hat (MLE)	692,1	Theta star (bias corrected MLE)	717,6
nu hat (MLE)	77,87	nu star (bias corrected)	75,10
MLE Mean (bias corrected)	472,8	MLE Sd (bias corrected)	582,4
		Approximate Chi Square Value (0,0500)	56,14
Adjusted Level of Significance	0,0458	Adjusted Chi Square Value	55,72
	Assumin	g Gamma Distribution	
95% Approximate Gamma UCL (use when n>=50)	632,4	95% Adjusted Gamma UCL (use when n<50)	637,2

Logna	ormal	COF	Test
1702110)I IIIai	くてくノバ	1681

Shapiro Wilk Test Statistic	0,965	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0,203	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0,122	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0,117	Data Not Lognormal at 5% Significance Level

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2,466	Mean of logged Data	5,271
Maximum of Logged Data	8,630	SD of logged Data	1,422

Assuming Lognormal Distribution

95% H-UCL	944,5	90% Chebyshev (MVUE) UCL	900,8
95% Chebyshev (MVUE) UCL	1075	97,5% Chebyshev (MVUE) UCL	1316
99% Chebyshey (MVIJE) UCL	1791		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	652,5	95% Jackknife UCL	655,6
95% Standard Bootstrap UCL	653,2	95% Bootstrap-t UCL	811,1
95% Hall's Bootstrap UCL	1399	95% Percentile Bootstrap UCL	650,4
95% BCA Bootstrap UCL	781,1		
90% Chebyshev(Mean, Sd) UCL	800,7	95% Chebyshev(Mean, Sd) UCL	949,2
97,5% Chebyshev(Mean, Sd) UCL	1155	99% Chebyshev(Mean, Sd) UCL	1560

Suggested UCL to Use

95% Approximate Gamma UCL 632,4

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

SOMMATORIA PCB

UCL Statistics for Uncensored Full Data Sets

User Selected Options
Date/Time of Computation ProUCL 5.112/01/2022 11:41:43
From File per UCLS.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Somma PCB

General Statistics

Total Number of Observations	57,00	Number of Distinct Observations	57,00
		Number of Missing Observations	0
Minimum	0,446	Mean	246,5
Maximum	7312	Median	37,97

SD	1040	Std. Error of Mean	137,8
Coefficient of Variation	4,220	Skewness	6,195
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0,244	Shapiro Wilk GOF Test	
5% Shapiro Wilk P Value	0	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0,429	Lilliefors GOF Test	
5% Lilliefors Critical Value	0,117	Data Not Normal at 5% Significance Level	
Data	Not Normal at	5% Significance Level	
	Assuming Nor	mal Distribution	
95% Normal UCL	J	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	476,9	95% Adjusted-CLT UCL (Chen-1995)	593,9
		95% Modified-t UCL (Johnson-1978)	495,7
	Gamma	GOF Test	
A-D Test Statistic	6,321	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0,851	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0,258	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0,127	Data Not Gamma Distributed at 5% Significance Level	
Data Not (Samma Distribu	ated at 5% Significance Level	
	Gamma	a Statistics	
k hat (MLE)	0,349	k star (bias corrected MLE)	0,342
Theta hat (MLE)	706,5	Theta star (bias corrected MLE)	720,3
nu hat (MLE)	39,77	nu star (bias corrected)	39,01
MLE Mean (bias corrected)	246,5	MLE Sd (bias corrected)	421,3
	•	Approximate Chi Square Value (0,0500)	25,70
Adjusted Level of Significance	0,0458	Adjusted Chi Square Value	25,42

Assuming Gamma	Distribution
-----------------------	--------------

95% Approximate Gamma UCL (use when n>=50)) 374,1

95% Adjusted Gamma UCL (use when n<50) 378,2

Lognormal GOF Test

Shapiro Wilk Test Statistic	0,968	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk P Value	0,277	Data appear Lognormal at 5% Significance Level
Lilliafore Test Statistic	0.0038	Lilliofors Lognormal COF Tost

Lilliefors Test Statistic 0,0938 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0,117 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0,807	Mean of logged Data	3,579
Maximum of Logged Data	8,897	SD of logged Data	1,652

Assuming Lognormal Distribution

95% H-UCL	289,7	90% Chebyshev (MVUE) UCL	254,0
95% Chebyshev (MVUE) UCL	308,8	97,5% Chebyshev (MVUE) UCL	385,0
99% Chebyshev (MVUE) UCL	534,5		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	473,1	95% Jackknife UCL	476,9	
95% Standard Bootstrap UCL	478,4	95% Bootstrap-t UCL	2510	
95% Hall's Bootstrap UCL	1538	95% Percentile Bootstrap UCL	498,3	
95% BCA Bootstrap UCL	672,2			
90% Chebyshev(Mean, Sd) UCL	659,8	95% Chebyshev(Mean, Sd) UCL	847,0	

97,5% Chebyshev(Mean, Sd) UCL 1107

99% Chebyshev(Mean, Sd) UCL 1617

Suggested UCL to Use

95% H-UCL 289,7

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.