COMMITTENTE:

alta Sorveglianza:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01
LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA
Lotto funzionale Verona – Bivio Vicenza
PROGETTO ESECUTIVO
SL-SOTTOVIA
SL09 - PROLUNGAMENTO SOTTOVIA AL km 29+670,45
GENERALE

GENERAL CONTRACTOR

IL PROGETTISTA INTEGRATORE

Consorzio

SCALA

Francia di gidine degli
ing. Paolo CARMONA

Data: Maggio 2021

Data: Maggio 2021

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. FOGLIO

 I N 1 7
 1 2
 E
 I 2
 C L
 S L 0 9 0 0
 0 0 2
 A
 - - - - P - -

				VISTO CONSORZIO IRICAV DUE						
					Firma			Data		
Consorzio IricAV Due					Luc	a RANDOLFI				
Proge	ttazione:									
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA		
Α	EMISSIONE	CODING	30/03/21	S.Checchi	30/03/21	P. Luciani	30/03/21	Giuseppetabrizio Coppa		
, ,	LIVIIOGIOIVE		00/00/21		00/00/21		00/00/21	(S)		
В	REVISIONE PER RECEPIMENTO ISTRUTTORIA ENTE VALIDATORE	CODING	30/04/21	S.Checchi	30/04/21	P. Luciani		P. Luciani 30/04/21		B (A8476)
В				30/04/21					Data: 03/05/21 10 0	

CIG. 8377957CD1

CUP: J41E91000000009

File: IN1712EI2CLSL0900002A.DOCX Cod. origine:

Progetto cofinanziato dalla Unione Europea

Relazione di calcolo opere provvisorie

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

INDICE

1 PF	REMESSA	5
2 NO	ORMATIVA DI RIFERIMENTO	8
3 UN	NITÁ DI MISURA	9
4.1 4.2 4.3 4.4	ARATTERISTICHE DEI MATERIALI Calcestruzzo Acciaio per armature ordinarie Acciaio per armature tubolari dei micropali Acciaio armonico per tiranti	10 10 10 10
4.5 4.6	Copriferri Durabilità e prescrizioni sui materiali	11 11
	ARATTERIZZAZIONE GEOTECNICA RILEVATI E RINTERRI STRATIGRAFIA E PARAMETRI GEOTECNICI LIQUEFACIBILITA' DEI TERRENI	12 12 12 13
6 AN 6.1 6.2 6.3	NALISI DEI CARICHI E CONDIZIONI DI CARICO Carichi Permanenti strutturali (G ₁) Spinta Statica delle terre (G ₂) Sovraccarico Variabile da traffico ferroviario (Q)	14 14 14 17
7 CC	OMBINAZIONI DI CARICO	18
8 MG 8.1 8.2	ODELLAZIONE NUMERICA Programma per l'analisi automatica Modello di calcolo	21 21 21
9 AN 9.1 9.2 9.3	NALISI DEI RISULTATI Sollecitazioni Spostamenti Sforzi nei tiranti	27 27 29 32
10.1 10.2	ERIFICHE DELL'OPERA Verifiche strutturali Verifiche geotecniche Verifiche dei tiranti di ancoraggio	33 33 36 37

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

11 TABULATO DI CALCOLO

43

DESCRIZIONE DELLA STRATIGRAFIA E DEGLI STRATI DI TERRENO ERRORE. IL SEGNALIBRO NON È DEFINITO.

DESCRIZIONE PARETI

ERRORE. IL SEGNALIBRO NON È DEFINITO.

ERRORE. IL SEGNALIBRO NON È DEFINITO.

FASI DI CALCOLO

Geo Errore. Il segnalibro non è definito.

1° scavo
Tirante
2° scavo
2° Tirante
Scavo finale
Tabella Configurazione Stage (Nominal)

Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito.

DESCRIZIONE COEFFICIENTI DESIGN ASSUMPTION **ERRORE**. **IL SEGNALIBRO NON È DEFINITO**.

Risultati SLE (Rara) **Errore**. **Il segnalibro non è definito**.

Tabella Spostamento SLE (Rara) - LEFT Stage: Geo Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: Geo

Tabella Spostamento SLE (Rara) - LEFT Stage: 1° scavo

Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito.

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 1° scavo definito.

Errore. Il segnalibro non è

Tabella Spostamento SLE (Rara) - LEFT Stage: Scavo finale **Errore. II segnalibro non è definito.**Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: Scavo finale **Errore. II segnalibro non è definito.**

Tabella Grafici dei Risultati Risultati Elementi strutturali - SLE (Rara) Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito.

Risultati A1+M1+R1 (R3 per tiranti)

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Geo **Errore. II segnalibro non è definito.**

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 1° scavo **Errore. Il** segnalibro non è definito.

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Tirante **Errore. Il segnalibro non è definito.**

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 2° scavo **Errore. Il segnalibro non è definito.**

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 2° Tirante **Errore. II segnalibro non è definito.**

GENERAL CONTRACTOR Consorzio IricAv Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Scavo finale **Errore. II segnalibro non è definito.**

Tabella Grafici dei Risultati
Risultati Elementi strutturali - A1+M1+R1 (R3 per tiranti)

Risultati A2+M2+R1

Errore. Il segnalibro non è definito.

Errore. Il segnalibro non è definito.

Errore. Il segnalibro non è definito.

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 1° scavo Errore. Il segnalibro non è definito.

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: Tirante **Errore. Il segnalibro non è definito.**

definito.

definito.

definito.

Tabella Grafici dei Risultati Errore. Il segnalibro non è definito.
Risultati Elementi strutturali - A2+M2+R1 Errore. Il segnalibro non è definito.

Risultati A2+M2+R2 Errore. Il segnalibro non è definito.

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Geo Errore. Il segnalibro non è definito.

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Tirante **Errore. Il segnalibro non è definito.**

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Scavo finale **Errore. Il segnalibro non è definito.**

Tabella Grafici dei Risultati Errore. Il segnalibro non è definito.

Risultati Elementi strutturali - A2+M2+R2 Errore. Il segnalibro non è definito.

NORMATIVE ADOTTATE PER LE VERIFICHE DEGLI ELEMENTI STRUTTURALI **ERRORE. IL SEGNALIBRO NON È DEFINITO.**

Riepilogo Stage / Design Assumption per Inviluppo

Risultati SteelWorld

Errore. Il segnalibro non è definito.

Errore. Il segnalibro non è definito.

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT **Errore. Il segnalibro non è definito.**

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld Errore. Il segnalibro non è definito.

definito.

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld
Verifiche Tiranti SLE (Rara)

Errore. Il segnalibro non è definito.

Errore. Il segnalibro non è definito.

Verifiche Tiranti A1+M1+R1 (R3 per tiranti)

Verifiche Tiranti A2+M2+R1

Errore. Il segnalibro non è definito.

Errore. Il segnalibro non è definito.

Verifiche Tiranti A2+M2+R2 Errore. Il segnalibro non è definito.

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

Verifiche Travi di Ripartizione Nominal

Verifiche Travi di Ripartizione SLE (Rara)

Verifiche Travi di Ripartizione A1+M1+R1 (R3 per tiranti)

Verifiche Travi di Ripartizione A2+M2+R1

Verifiche Travi di Ripartizione A2+M2+R2

Errore. Il segnalibro non è definito. Errore. Il segnalibro non è definito.

ALLEGATI ERRORE. IL SEGNALIBRO NON È DEFINITO.

Design Assumption : Nominal - File di Paratie - File di input (.d) Errore. Il segnalibro non è definito.

Design Assumption : SLE (Rara) - File di Paratie - File di input (.d) Errore. Il segnalibro non è

definito.

Design Assumption : A1+M1+R1 (R3 per tiranti) - File di Paratie - File di input (.d) Errore. Il segnalibro

non è definito.

Design Assumption : A2+M2+R1 - File di Paratie - File di input (.d) Errore. Il segnalibro non è

definito.

Design Assumption: A2+M2+R2 - File di Paratie - File di input (.d) Errore. Il segnalibro non è

definito.

Design Assumption : A1+M1+R1 (R3 per tiranti) - File di Paratie - File di input (.d) Errore. Il segnalibro

non è definito.

Design Assumption : A2+M2+R1 - File di Paratie - File di input (.d) Errore. Il segnalibro non è

definito.

Design Assumption : A2+M2+R2 - File di Paratie - File di input (.d) Errore. Il segnalibro non è

definito.

12 DICHIARAZIONE SECONDO NTC2008 (§ 10.2)

204

GENERAL CONTRACTOR Consorzio Iric/IV Due		17 17	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

1 PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali delle opere di sostegno provvisionali del rilevato ferroviario durante le fasi di varo del sottovia nominato 'SL09', ubicato al km 29+670,45 nell'ambito della redazione dei documenti tecnici relativi alla progettazione esecutiva della Linea AV/AC Verona-Padova, Sub tratta Verona-Vicenza, 1° Sub Lotto Verona-Montebello Vicentino.

Si riporta a seguire la sezione trasversale della paratia di micropali in esame.

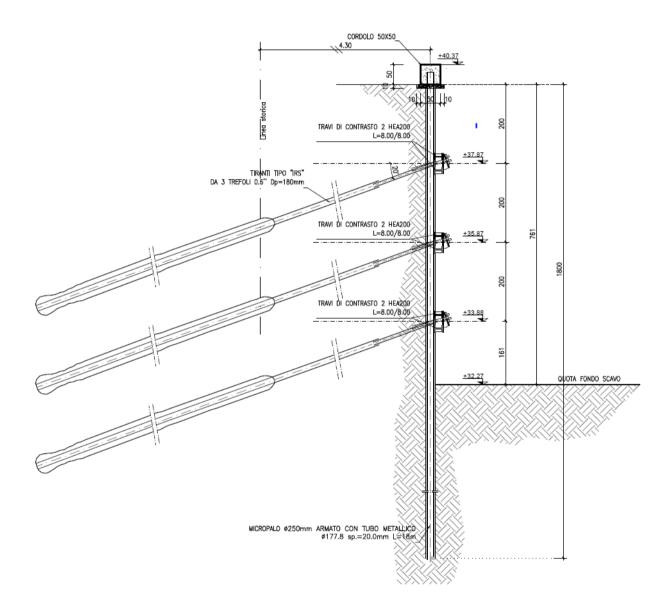


Figura 1.1: Sezione trasversale della paratia provvisoria di micropali

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR PUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 12 EI2CLISL0900002 Α

La paratia in esame, con altezza di scavo di circa 7.50 m, è realizzata con micropali di diametro Ø250 mm posti ad interasse di 0.40 m, aventi lunghezza di 18.00 m ed armati con tubi Ø177.8 mm di spessore s = 20 mm.

La paratia è vincolata da tre ordini di tiranti, tipo IRS, posto a quota -2.00 m, -4.00 m e -6.00 m, dall'intradosso del cordolo di collegamento dei micropali, che prevede perforazioni Ø150 mm e 3 trefoli da 0.6"; è prevista una trave di ripartizione al livello di ciascun ordine di tiranti costituita da 2 HEA 200.

In sommità è prevista la realizzazione di un cordolo 50 cm x 50 cm.

La distanza planimetrica tra l'asse dei micropali ed il binario più vicino è stata posta pari a 3.50 m. Nel prospetto di seguito si fornisce una sintesi delle caratteristiche della paratia in esame.

Ø micropalo	Interasse micropalo		atura opalo	Lunghezza micropalo	Ordini Tiranti	Interasse Tiranti	Incl.	n. trefoli	D _p	Travi ripartizione
[mm]	[mm]	Ø [mm]	Sp. [mm]	[m]		[m]	[°]		[mm]	
250	400	177.8	20	18	3	2.0	20	3	150	2HEA200

Caratteristiche geometriche tiranti:

1° Ordine di tiranti:

Lunghezza libera: 9.00 m Libera bulbo: 10.00 m Precarico: 200 kN

Interasse longitudinale: 2.00 m

2° Ordine di tiranti:

Lunghezza libera: 8.50 m Libera bulbo: 10.00 m Precarico: 250 kN

Interasse longitudinale: 2.00 m

3° Ordine di tiranti:

Lunghezza libera: 7.50 m Libera bulbo: 12.00 m Precarico: 350 kN

Interasse longitudinale: 2.00 m

FASI COSTRUTTIVE

Sono previste le seguenti fasi costruttive:

- 1. Realizzazione della paratia;
- 2. Scavo fino a quota di ciascun tirante e realizzazione degli infilaggi;
- 3. Scavo fino a quota fondo scavo;
- Messa in esercizio del monolite. 4.

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Si precisa che le operazioni di scavo e di realizzazione degli infilaggi sono eseguite senza interruzione dell'esercizio ferroviario della linea esistente.

L'opera è stata progettata coerentemente con quanto previsto dalla normativa "Norme Tecniche per le Costruzioni"- DM 14.1.2008 e Circolare n .617 "Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni".

Poiché si stima, per le lavorazioni necessarie alla realizzazione dei pali e dei plinti di fondazione, una durata inferiore a 2 anni, non sono state considerate le azioni sismiche, conformemente con quanto previsto nella succitata normativa.

GENERAL CONTRACTOR Consorzio IricAV Due		11	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

2 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le disposizioni legislative in elenco e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 Gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 Febbraio 2009: Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1991-2 Marzo 2005: Eurocodice 1. Azioni sulle strutture. Parte 2: Carichi da traffico sui ponti.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-11-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- RFI DTC SI MA IFS 001 B Dicembre 2017: Manuale di progettazione delle opere civili.

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

3 UNITÁ DI MISURA

Le unità di misura usate nella presente relazione sono:

lunghezze [m]
forze [kN]
momenti [kNm]
tensioni [MPa]

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

Per la realizzazione di cordolo di collegamento e micropali, si prevede l'utilizzo di calcestruzzo avente classe di resistenza 25/30 ($R_{ck} \geq 30.00 \text{ N/mm}^2$) che presenta le seguenti caratteristiche:

Resistenza caratteristica a compressione (cilindrica)

Resistenza caratteristica a compressio	ne (ciinanca)	
$f_{ck}=0.83\times R_{ck}=$	24.90	N/mm^2
Resistenza media a compressione		
$f_{cm} = f_{ck} + 8 =$	32.90	N/mm^2
Modulo elastico		
$E_{cm} = 22000 \times (f_{cm}/10)^{0.3} =$	31447	N/mm^2
Resistenza di calcolo a compressione		
$f_{cd} = \alpha_{cc} \times f_{ck}/\gamma_c = 0.85^* f_{ck}/1.5 =$	14.11	N/mm^2
Resistenza a trazione media		
$f_{ctm} = 0.30 \times f_{ck}^{2/3} =$	2.56	N/mm^2
Resistenza a trazione		
$f_{ctk} = 0.7 \times f_{ctm} =$	1.79	N/mm^2
Resistenza a trazione di calcolo		
$f_{ctd} = f_{ctk} / \gamma_c =$	1.19	N/mm^2
Resistenza a compressione (comb. Ra	ra)	
$\sigma_c = 0.60 \times f_{ck} =$	14.94	N/mm^2
Resistenza a compressione (comb. Qu	uasi permanente	e)
$\sigma_c = 0.45 \times f_{ck} =$	11.21	N/mm^2

4.2 ACCIAIO PER ARMATURE ORDINARIE

Classe acciaio per armature ordinarie	B450C
Tensione di snervamento caratteristica	$f_{yk} \ge 450 \text{ MPa}$
Tensione caratteristica di rottura	$f_{t}~\geq 540~MPa$
Modulo di elasticità	E _s =210000 MPa

4.3 ACCIAIO PER ARMATURE TUBOLARI DEI MICROPALI

I tubolari impiegati come armature dei micropali sono laminati a caldo con profili a sezione cava; l'acciaio impiegato è del tipo S275JR (UNI EN 10210-1), avente le seguenti caratteristiche meccaniche: $t \le 40 \text{ mm}$:

 $\begin{array}{l} f_{yk} \geq 275 \; \text{MPa} \\ f_{tk} \geq 430 \; \text{MPa} \end{array}$

GENERAL CONTRACTOR Consorzio IricAV Due		1517	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

4.4 ACCIAIO ARMONICO PER TIRANTI

Si riassumono di seguito le caratteristiche dei tiranti previsti:

Diametro nominale 0.6''Sezione nominale singolo trefolo $139~\text{mm}^2$ Tensione caratteristica di rottura f_{ptk} 1860~MPaTensione caratteristica all'1% di deformazione totale $f_{\text{p(1)k}}$ 1670~MPa

4.5 COPRIFERRI

Si riportano di seguito i copriferri nominali per le strutture in calcestruzzo armato:


Cordolo di collegamento 4.0 cm Micropali provvisionali 6.0 cm

4.6 DURABILITÀ E PRESCRIZIONI SUI MATERIALI

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario durante le operazioni di varo del monolite, le quali risultano esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Si adotta quanto segue:

Cordolo di collegamento, micropali provvisionali Classe di esposizione XC2

5 CARATTERIZZAZIONE GEOTECNICA

5.1 RILEVATI E RINTERRI

Sono riassunte nel prospetto riportato di seguito le caratteristiche del terreno dei rilevati ferroviari esistenti e di nuova progettazione (con γ pari al peso specifico del terreno; γ sat pari al peso specifico saturo del terreno; c' pari alla coesione; φ pari all'angolo di attrito; K_0 coefficiente di spinta a riposo):

Parametri del rilevato ferroviario				
γ	γ _{sat}	c'	φ'	k_0
(kN/m^3)	(kN/m³)	(kPa)	(°)	(-)
20.00	20.00	0.0	38.0	0.384

5.2 STRATIGRAFIA E PARAMETRI GEOTECNICI

Si riportano di seguito le caratteristiche geotecniche relative al terreno di fondazione della tratta in cui ricade il sottovia in esame, desunte dagli esiti delle indagini disponibili. Le formazioni indicate nei prospetti di seguito fanno riferimento alle unità geotecniche descritte nel seguente elenco:

- Unità 3b –Limi argillosi e argille limose tenere;
- Unità 4 Sabbie da mediamente addensate a molto addensate;

La quota rispetto alla quale è individuata la stratigrafia riportata a seguire, corrispondente a 34.2 m s.l.m., è assunta coincidente col p.c. locale dell'opera in esame intercettato sulla linea.

Per quanto riguarda la falda di progetto, questa è assunta alla quota di 33.2 m s.l.m. Per ulteriori dettagli circa la posizione della falda di progetto si faccia riferimento alla relazione geotecnica della WBS SL09 in oggetto.

Tabella 1 - Stratigrafia e valori caratteristici dei parametri geotecnici di calcolo

Strato	Formazione	S	γ	φ' _k	c'_k	C _{uk}	E′
		(m)	(kN/m^3)	(°)	(kPa)	(kPa)	(kN/m^2)
1	UG 3b	2.00	18	23	-	60 - 80	10000
	UG 3b	7.20	18	23	-	25-80	7500
2	UG4	1.2	19	38	0	-	60000
3	Ug3b	>7.00	18	23	-	25 - 50	7500

Profondità della falda dal p.c. locale 6.00 m

LEGENDA

 Z_{w}

 γ = peso di volume naturale;

 $\phi_{k'}$ = valore caratteristico dell'angolo di attrito;

 c_k' = valore caratteristico della resistenza al taglio in condizioni drenate;

 c_{uk} = valore caratteristico della coesione non drenata;

E' = modulo elastico del terreno.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 12 FI2CUS10900002			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

5.3 LIQUEFACIBILITA' DEI TERRENI

Nell'area dell'opera in oggetto, le indagini a disposizione confermano l'assenza di situazioni potenzialmente critiche e/o di impatto progettuale, relativamente alla suscettibilità alla liquefazione dei terreni.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

6 ANALISI DEI CARICHI E CONDIZIONI DI CARICO

In accordo con quanto prescritto al par.2.4.1-NTC2008, le verifiche sismiche di opere provvisorie possono omettersi quando le relative durate previste in progetto siano inferiori a due anni. Nell'analisi riportata di seguito non si considera pertanto l'azione sismica.

6.1 CARICHI PERMANENTI STRUTTURALI (G1)

I carichi permanenti strutturali sono rappresentati dai pesi propri delle strutture portanti. Essi sono valutati sulla base della geometria degli elementi strutturali e del peso specifico assunto per i materiali:

calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3;$ acciaio: $\gamma_b = 78.5 \text{ kN/m}^3.$

6.2 SPINTA STATICA DELLE TERRE (G₂)

Nel modello di calcolo impiegato dal software di calcolo "ParatiePlus", la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_α e il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace s'h a quella verticale s'v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace f' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove
 $K_0^{NC} = 1 \cdot sen \phi'$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR = 1). L'OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = tan^2 (45 - \phi'/2)$$

 $K_p = tan^2 (45 + \phi'/2)$

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Il software "ParatiePlus" impiega per K_a e K_p le formulazioni rispettivamente di Coulomb e Caquot – Kerisel.

Formulazione di Coulomb per ka

$$k_{a} = \frac{\cos^{2}(\phi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi') \cdot \sin(\phi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

dove:

φ' è l'angolo di attrito del terreno

 β è l'angolo d'inclinazione del diaframma rispetto alla verticale

 δ è l'angolo di attrito paratia-terreno

i è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

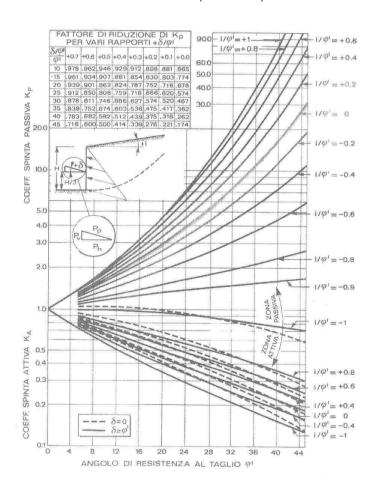
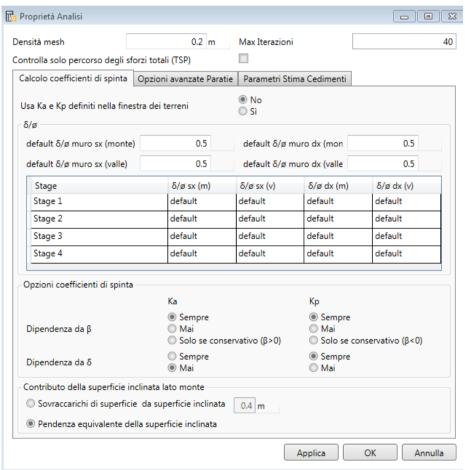


Figura 6.1: Formulazione di Caquot – Kerisel per K_p (superfici di rottura curvilinee)


Per quanto riguarda le assunzioni fatte per l'attrito paratia-terreno (angolo δ), di default viene tenuto in conto solo nel calcolo di k_p . Il coefficiente k_a viene sempre valutato con le formule di Coulomb, non considerando l'effetto di δ .

Il contributo ai coefficienti di spinta legato all'inclinazione della superficie di scavo (angolo β), sia a monte che a valle è tenuto in contro sia per k_a che per k_p . L'angolo β utilizzato in queste valutazioni viene stimato in base alla geometria.

Dell'inclinazione i del pendio a ridosso dell'opera si è tenuto conto nel calcolo del coefficiente di spinta attiva k_a con la formula di Coulomb.

L'angolo d'attrito δ all'interfaccia tra parete e terreno è posto cautelativamente pari a 0.5 ϕ' .

Nel prospetto di seguito la sintesi delle assunzioni fatte per la valutazione dei parametri di spinta del terreno.

Infine, il valore limite della tensione orizzontale sarà pari a

$$\sigma'_h = K_a \cdot \sigma'_v - 2 \cdot c' \cdot \sqrt{K_a}$$

$$\sigma'_h = K_p \cdot \sigma'_v + 2 \cdot c' \cdot \sqrt{K_p}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente.

Nelle formulazioni sopra riportate, c' è la coesione drenata del terreno.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

6.3 SOVRACCARICO VARIABILE DA TRAFFICO FERROVIARIO (Q)

Le azioni indotte dal traffico ferroviario agenti a monte della paratia, LM71 o SW/2, sono assunte pari ad un carico uniformemente distribuito su una lunghezza di 3 m ad un livello convenzionale di 0.70 m dal piano del ferro, posto ad una distanza dal bordo del cordolo di 3 m.

Il modello di carico LM71 è costituito dalla presenza del locomotore con gli assi da 250 kN disposti ad interesse longitudinale pari ad 1.60 m e da un carico distribuito di 80 kN/m.

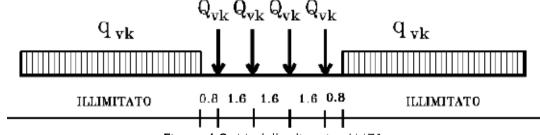


Figura 6.2: Modello di carico LM71

In questo progetto dato il tipo di traffico che interessa la linea, il coefficiente di adattamento α relativo alle categorie STI è da assumersi pari a 1,1.

Il carico complessivo agente vale pertanto:

$$q_{LM71} = (250 \text{ kN x 4}) \times 1,1 / (6.4 \times 3) = 57.3 \text{ kPa}$$

Il treno di carico SW/2 è pari a 150 kN/m, con coefficiente di adattamento pari a 1.0.

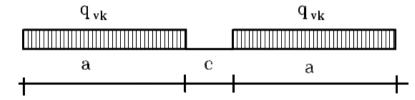


Figura 6.3: Modello di carico SW/2

 $Q_{SW/2} = 150 \text{ kN x } 1.0 \text{ /(3)} = 50.00 \text{ kPa}$

Nell'analisi condotta tale treno di carico non risulta dimensionante.

GENERAL CONTRACTOR Consorzio IricAV Due		1517	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

7 COMBINAZIONI DI CARICO

Le verifiche strutturali sono effettuate secondo il metodo semiprobabilistico agli stati limite di esercizio (SLE) e agli stati limite ultimi (SLU), in accordo con la normativa vigente (NTC 2008). Sono state considerate le seguenti combinazioni delle azioni:

- Combinazione fondamentale, impiegata per le verifiche agli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \tag{2.5.1}$
- Combinazione caratteristica (rara), impiegata per le verifiche agli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

- Combinazione frequente, impiegata per le verifiche agli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ (2.5.3)
- Combinazione quasi permanente, impiegata per le verifiche agli stati limite di esercizio (SLE) effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

• Combinazione sismica, impiegata per gli stati limte ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

In accordo con quanto prescritto al par.6.5.3.1.2 del DM 14.1.2008, la verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.8.I.

Le rimanenti verifiche della paratia devono essere effettuate considerando le seguenti combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.1, 6.2.11 e 6.5.1.

In particolare, per le verifiche per il dimensionamento geotecnico delle paratie (GEO) si considera lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e in particolare dal raggiungimento delle condizioni di equilibrio limite nel terreno interagente con la paratia. L'analisi di stabilità del tratto di paratia infisso e/o collasso per rotazione rigida al piede è stata condotta con la Combinazione 2 (A2+M2+R1), in cui i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali M2 e le azioni sono amplificate tramite i coefficienti parziali A2.

Nelle verifiche strutturali delle paratie (STR) si considerano gli stati limite ultimi per il raggiungimento della resistenza degli elementi strutturali (micropali e travi). Le analisi sono condotte in accordo con la

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric/AV Due Progetto IN17 12 EI2CLISL0900002 A

Combinazione 1 (A1+M1+R1), in cui i parametri di resistenza del terreno (M1) sono unitari e le azioni sono amplificate mediante i coefficienti parziali A1.

Di seguito si riportano le Tabelle di riferimento per i coefficienti parziali delle azioni, dei materiali e delle resistenze.

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale y _E (0 y _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
remanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali ⁽¹⁾	Favorevole		0,0	0,0	0,0
remanenti non suttituan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
variaom	Sfavorevole	γQi	1,5	1,5	1,3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

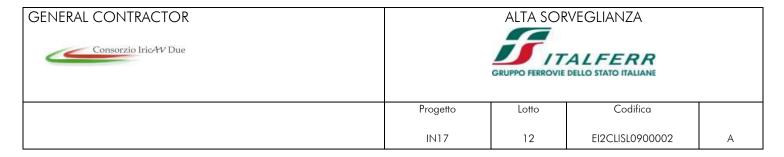

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	$\tan\phi'_k$	γφ	1,0	1,25
Coesione efficace	c'k	γε	1,0	1,25
Resistenza non drenata	Cuk	γец	1,0	1,4
Peso dell'unità di volume	γ	$\gamma_{\rm y}$	1,0	1,0

Tabella 6.5.I - Coefficienti parziali n per le verifiche agli stati limite ultimi STR e GEO di muri di sostegno.

	•		
	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
VERIFICA	PARZIALE	PARZIALE	PARZIALE
	(R1)	(R2)	(R3)
Capacità portante della fondazione	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$
Scorrimento	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1,1$
Resistenza del terreno a valle	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.0$	$\gamma_{R} = 1.4$

Tabella 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo.

Coefficiente	R2
γR	1.1

Per quanto riguarda i tiranti di ancoraggio, la verifica di sfilamento della fondazione dell'ancoraggio deve essere effettuata con riferimento alla combinazione A1+M1+R3, tenendo conto dei coefficienti parziali riportati nelle Tab. 6.2.l, 6.2.ll e 6.6.l.

Tabella 6.6.I - Coefficienti parziali per la resistenza di ancoraggi

	SIMBOLO	COEFFICIENTE PARZIALE
	γR	
Temporanei	$\gamma_{Ra,t}$	1,1
Permanenti	$\gamma_{Ra,p}$	1,2

Di seguito si riporta la sintesi delle combinazioni adottate per le verifiche dell'opera provvisionale:

SLU di tipo Geotecnico (GEO):

- Stabilità del tratto di paratia infissa e/o collasso per rotazione rigida al piede

A2+M2+R1 (Comb. 2)

- Stabilità globale dell'insieme terreno-opera

A2+M2+R2 (Comb. 2)

- Sfilamento dei tiranti

A1+M1+R3 (Comb. 1)

SLU di tipo Strutturale (STR):

- Resistenza elementi strutturali (micropali e trave di testa) A1+M

A1+M1+R1 (Comb. 1)

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

8 MODELLAZIONE NUMERICA

8.1 PROGRAMMA PER L'ANALISI AUTOMATICA

Lo stato tenso-deformativo degli elementi strutturali in esame è stato investigato, come già anticipato, mediante il software di calcolo "ParatiePlus" ver.20.0, programma non lineare agli elementi finiti per l'analisi di strutture di sostegno flessibili.

8.2 MODELLO DI CALCOLO

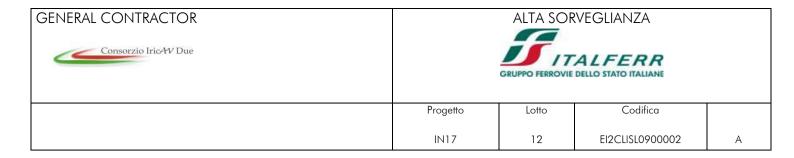
Si è considerato un comportamento piano nelle deformazioni, analizzando una striscia di parete di larghezza unitaria.

La realizzazione dello scavo sostenuto dalla paratia viene seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una certa quota di scavo, da un insieme di puntoni e tiranti applicati e da una ben precisa disposizione di carichi applicati.

Poiché il comportamento degli elementi finiti è di tipo elastoplastico, ogni configurazione dipende in generale dalle configurazioni precedenti e lo sviluppo di deformazioni plastiche ad un certo passo condiziona la risposta della struttura nei passi successivi.

In questa impostazione particolare, inoltre, gli sforzi verticali nel terreno non sono per ipotesi influenzati dal comportamento deformativo orizzontale, ma sono una variabile del tutto indipendente, legata ad un calcolo basato sulle classiche ipotesi di distribuzione geostatica.

Nei modelli di calcolo implementati, l'esecuzione dello scavo è schematizzata mediante una successione di step, corrispondenti ad eventi che hanno rilevanza nello stato tenso-deformativo del sistema (approfondimenti dello scavo, applicazione di puntelli, applicazione di carichi ecc.).


Per le opere oggetto della presente relazione, essendo di carattere provvisionale, sono state considerate le condizioni di carico previste dalla normativa vigente:

• Stato limite di servizio → SLE

• Stato limite ultimo verifiche STR: Combinazione A1+M1 → SLU1

• Stato limite ultimo verifiche GEO: Combinazione A2+M2 → SLU2

Si fa presente che la sezione di verifica presentata nell'analisi a seguire fa riferimento a quella in corrispondenza della quale si registra la distanza minore della paratia dal binario più vicino (si veda la Fig. 1.4 della presente relazioen di calcolo); le inerzie dei micropali sono state valutate trascurando il contributo del calcestruzzo, ovverosia considerando il solo contributo dell'armatura tubolare metallica.

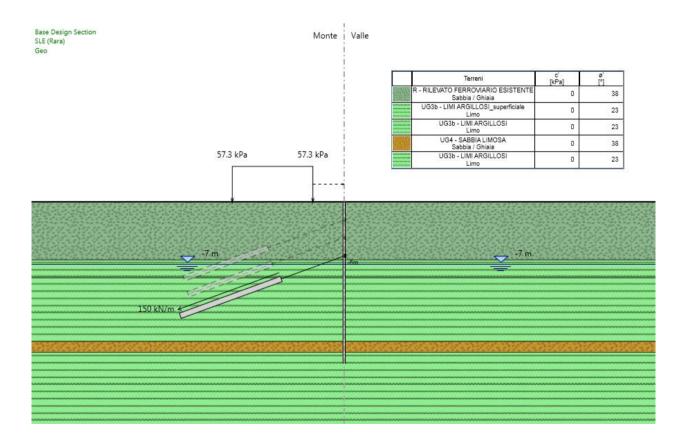
In fase di modellazione è stata implementata la seguente successione di step (in tutti è prevista la presenza del sovraccarico ferroviario):

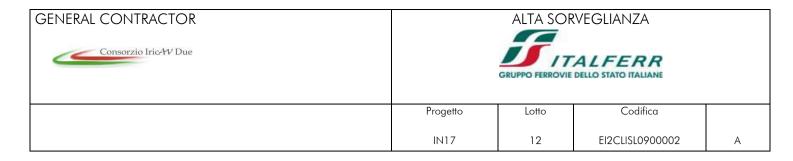
<u>Step 1</u>: Condizione geostatica per la valutazione delle tensioni verticali e delle tensioni orizzontali in assenza di deformazioni (spinta in quiete). In tale step vengono definiti i micropali;

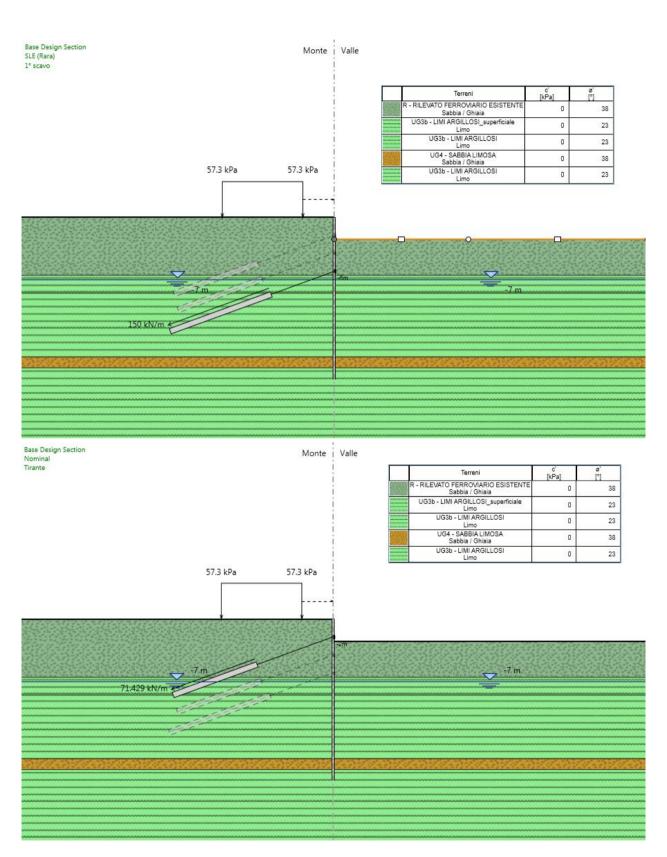
Step 2: Scavo a 0.50 m al di sotto della quota del primo ordine di tiranti previsto;

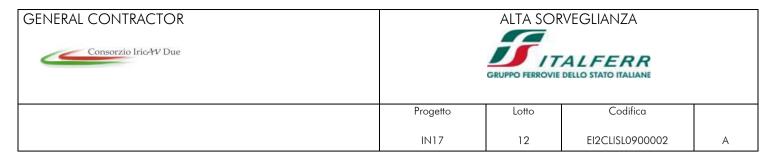
Step 3: Realizzazione dell'ordine di tiranti previsto ed applicazione del pre-tiro;

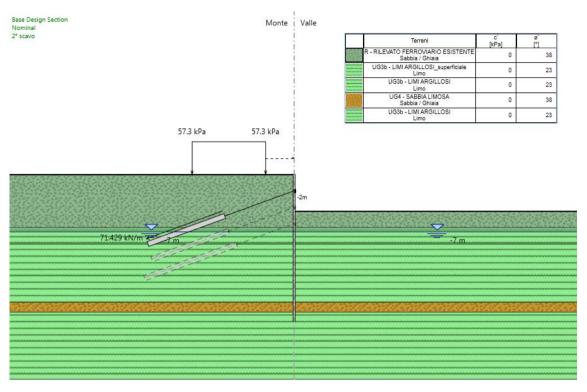
Step 4: : Scavo a 0.50 m al di sotto della quota del secondo ordine di tiranti previsto;

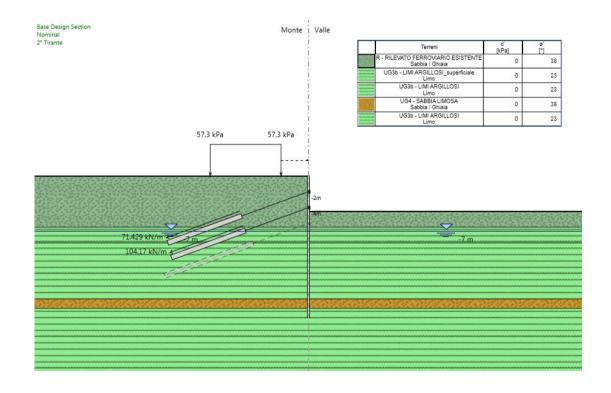

Step 5: Realizzazione del secondo ordine di tiranti previsto ed applicazione del pre-tiro;

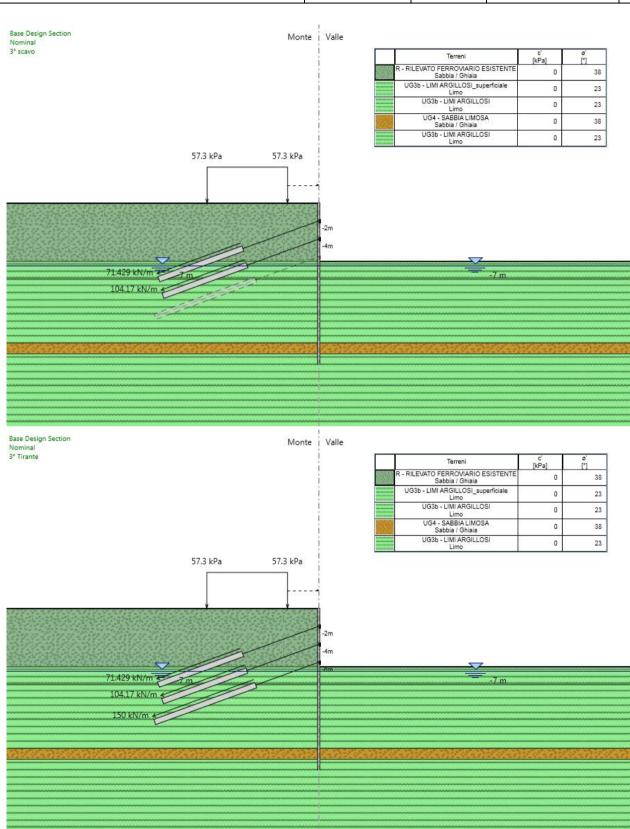

Step 6: Scavo a 0.50 m al di sotto della quota del terzo ordine di tiranti previsto;

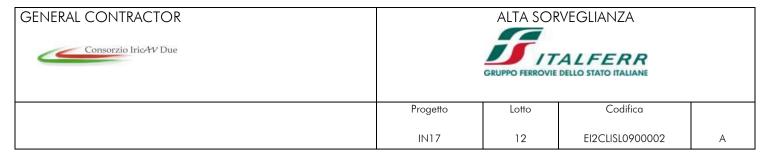

Step 7: Realizzazione del terzo ordine di tiranti previsto ed applicazione del pre-tiro;


Step 8: Scavo fino alla profondità di calcolo di 7.50 m.


Di seguito, la rappresentazione degli step di analisi considerati.







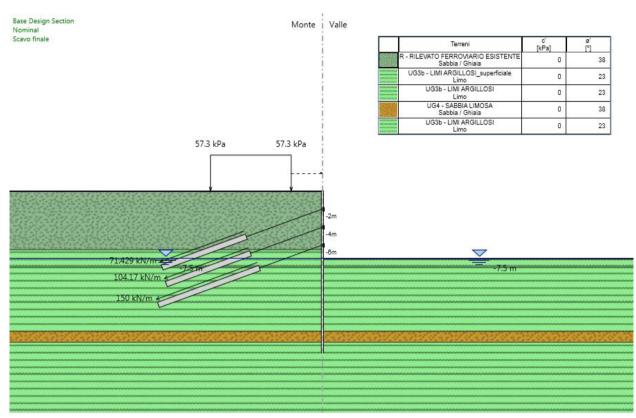


Figura 8.1: Step di calcolo della paratia provvisionale

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

9 ANALISI DEI RISULTATI

9.1 SOLLECITAZIONI

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per il modello implementato, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti e delle rispettive profondità. I valori riportati sono relativi all'analisi al metro lineare di parete.

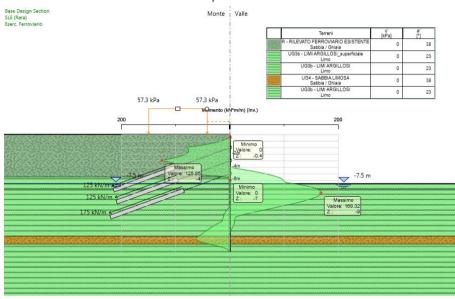


Figura 9.1: Inviluppo SLE – diagramma del momento flettente

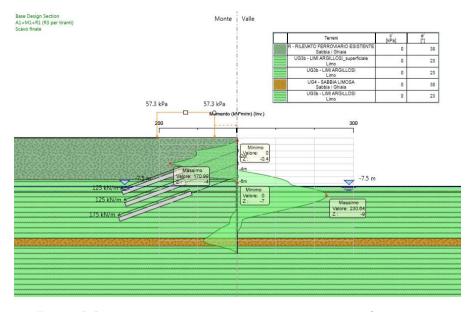


Figura 9.2: Inviluppo SLU – diagramma del momento flettente

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

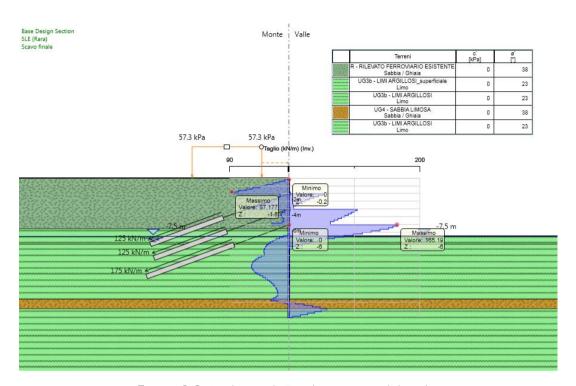


Figura 9.3: Inviluppo SLE – diagramma del taglio

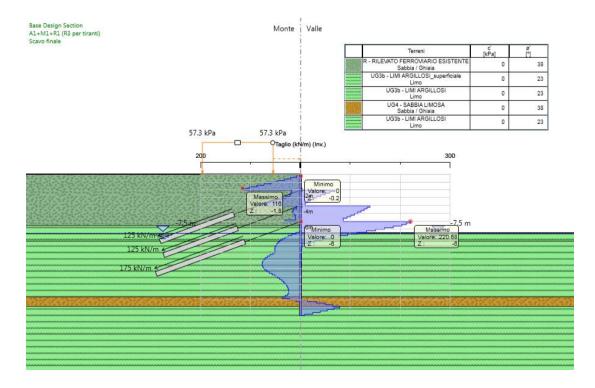


Figura 9.4: Inviluppo SLU – diagramma del taglio

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

9.2 SPOSTAMENTI

Di seguito si forniscono le indicazioni dei valori massimi degli spostamenti riscontrati in fase di esercizio.

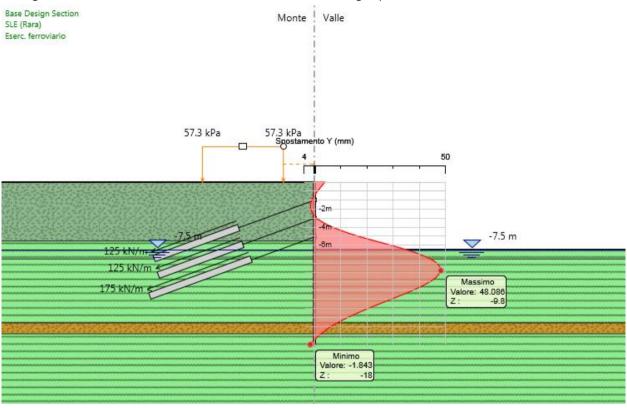


Figura 9.5: Inviluppo SLE – spostamenti orizzontali della paratia

Lo spostamento massimo orizzontale della paratia risulta pari a circa 4.8 cm, ritenuto ammissibile.

Le caratteristiche di deformabilità delle paratia devono essere tali da garantire che al passaggio dei convogli sul binario a monte delle paratie la geometria dell'armamento risponda ai livelli qualitativi fissati dagli standard di cui al documento RFI TCAR ST AR 01 001 D.

Nel caso particolare, i parametri indicati dal suddetto documento sui quali ha influenza la deformazione della paratia sono il difetto di sopraelevazione ΔH , lo scarto di livello trasversale SCARTXL e lo sghembo γ , che devono rispettare i limiti indicati nei paragrafi 6 e 7 della parte III (livelli di qualità geometrica correnti) della RFI TCAR ST AR 01 001 D.

Nel dettaglio, per il 1° livello di qualità (geometria del binario che non richiede la programmazione di interventi correttivi) devono essere verificate le seguenti diseguaglianze:

$$\Delta H < sotto = 10 \text{ mm} \qquad SCARTXL <= 4 \text{ mm per} \qquad 160 \text{ km/h} < V <= 300 \text{ km/h}$$

$$\gamma_{3m} < 4.5 \% \qquad \qquad \gamma_{9m} < 3.5 \% \qquad \qquad \text{per } V <= 200 \text{ km/h}$$

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

A vantaggio di sicurezza possiamo assumere che il binario subisca deformazioni nel punto ubicato in corrispondenza della sezione di calcolo della paratia e che tali deformazioni si esauriscano già 3 m prima e 3 m dopo tale punto. Con tale assunzione, neutralizzando l'eventuale contributo della sopraelevazione di progetto h, lo scarto di livello trasversale SCARTXL coincide con il livello trasversale XL e quest'ultimo coincide a sua volta con ΔH . In tali condizioni, il vincolo da rispettare è quello di 4 mm sul valore di SCARTXL; le limitazioni su ΔH , γ_{3m} e γ_{9m} risultano soddisfatte di conseguenza.

In base alla definizione di XL, pertanto, occorre verificare che non superi i 4 mm la differenza di abbassamento del terreno a tergo della paratia fra due punti distanti fra loro 1.5 m ed ubicati in corrispondenza delle due rotaie del binario più vicino all'opera di sostegno.

Il software "ParatiePlus" offre, come strumento di post-processing, un collegamento tra i risultati prodotti dall'analisi del comportamento laterale e i cedimenti in superficie, sfruttando alcune delle correlazioni di letteratura. Il metodo utilizzato è quello di Boone & Westland (2006).

Dai risultati forniti dal software sono stati estrapolati i valori dei cedimenti superficiali nella fase di calcolo corrispondente all'applicazione del carico da traffico e quelli della fase antecedente. Dalla differenza dei suddetti valori sono stati ottenuti i cedimenti relativi al solo carico da traffico, sui quali sono stati calcolati gli scarti tra punti a distanza 1.5 m.

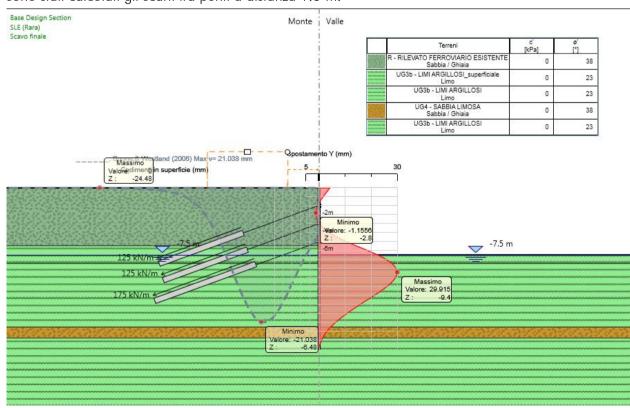


Figura 9.6: Cedimenti superficiali in fase di raggiungimento del fondo dello scavo

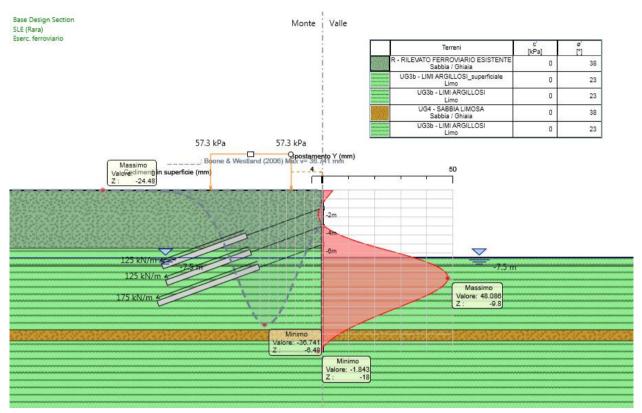


Figura 9.7: Cedimenti superficiali in fase di applicazione del carico ferroviario

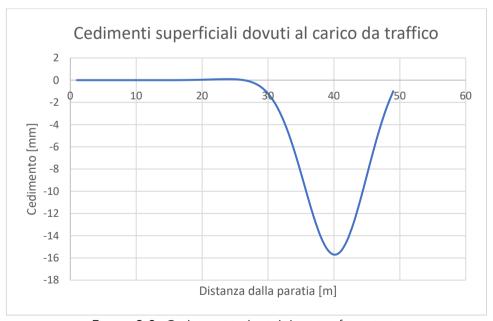


Figura 9.8: Cedimenti indotti dal carico ferroviario

Dall'analisi condotta risulta per effetto del carico ferroviario: $SCARTXL_{MAX} = 3.6 \text{ mm} \leq 4.00 \text{ mm}$ La verifica risulta quindi soddisfatta.

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

9.3 SFORZI NEI TIRANTI

Di seguito si forniscono le indicazioni dei valori massimi di sollecitazione nei tiranti.

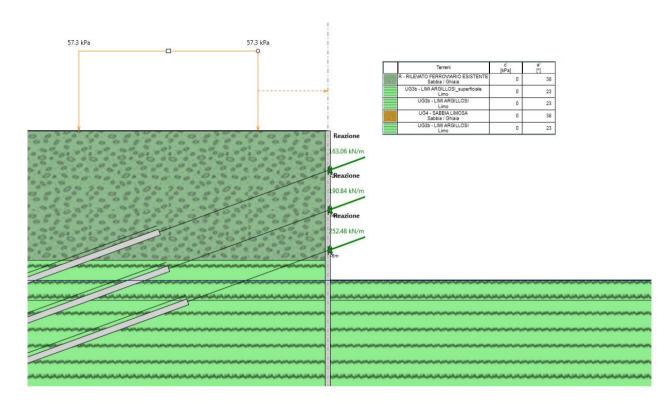


Figura 9.9: Inviluppo SLU – sollecitazioni nel tirante di ancoraggio

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

10 VERIFICHE DELL'OPERA

Si riportano a seguire le seguenti verifiche dell'opera provvisionale:

- Verifiche strutturali: sono eseguite le verifiche allo SLU a flessione e a taglio dei micropali provvisionali e della trave di ripartizione;
- Verifiche geotecniche: sono eseguite le verifiche di stabilità globale dell'opera e di collasso per rotazione rigida attorno al piede dell'opera;
- Verifiche dei tiranti di ancoraggio: sono eseguite le verifiche sulla lunghezza libera minima, a sfilamento del bulbo di ancoraggio (verifica geotecnica) e a rottura dell'elemento allo SLU (verifica strutturale).

10.1 VERIFICHE STRUTTURALI

10.1.1 VERIFICA DEI MICROPALI

Di seguito si riporta la verifica strutturale del singolo profilo tubolare di armatura dei micropali, φ177.8 spessore 20 mm, eseguita secondo la combinazione A1+M1+R1, considerando le seguenti sollecitazioni massime flettenti e di taglio allo SLU:

Max. momento (assoluto) [kNm/m]	178.17	Z = -8.10 m
Max. taglio [kN/m]	156.02	Z = -5.5 m

Di seguito, la sintesi del calcolo condotto. Le verifiche strutturali risultano soddisfatte.

Massimo momento agente	M_{max}	230.6	kN*m/m
Massimo taglio agente a metro	$V_{\text{ed/m}}$	220.7	kN/m
Diametro tubolare	D_m	177.8	mm
Spessore tubolare	sp	20.0	mm
Interasse micropali	i	0.4	m
Momento riferito al singolo micropalo	M_{m}	92.3	kN*m
Taglio riferito al singolo micropalo	V_{ed}	88.3	kN
Tensione snervamento	F_{yk}	275	N/mm²
Coefficiente di sicurezza	γm0	1.05	
Tensione limite	f _y k/γ _{M0}	262	N/mm²

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Modulo di resistenza micropalo	W_{pl}	500683 mr	m^3
Area sezione acciaio	Α	9915 mr	m^2
Area resistente a taglio $Av=2*A/\pi$	A_V	6312 mr	m²
Massima tensione normale	Отах	184 N/	mm²
Massimo sfruttamento in flessione	F.S.	0.70	Verificato
Massima tensione tangenziale	τ	14 N/	mm²
Massimo sfruttamento a taglio	F.S.	0.09	Verificato
Verifica Tensione ideale	$\sqrt{\sigma^2 + 3\tau^2}$	186 N/	mm² Verificato

10.1.2 VERIFICA DELLA TRAVE DI RIPARTIZIONE

La verifica delle travi di ripartizione è stata effettuata considerando tutte le azioni sui tiranti di ogni ordine per tutte le fasi di calcolo. Il comportamento globale della trave è schematizzabile come quello di trave semplicemente appoggiata in corrispondenza delle testate dei tiranti, per la parte centrale. Si considera quindi un carico uniformemente distribuito sulla trave che equilibra le reazioni dei tiranti ricavate dal programma di calcolo.

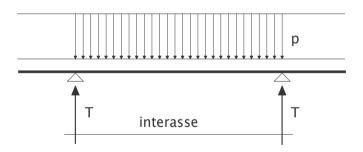


Figura 10.1: Modello di calcolo della trave di ripartizione

In favore di sicurezza, la verifica della sezione più sollecitata (sezione di Classe I) della zona centrale è condotta in campo elastico. Di seguito, la sintesi del calcolo condotto sulla trave di ripartizione maggiormante sollecitata. La verifica risulta soddisfatta.

Caratteristiche delle sollecitazioni

T	=	252.48 kN/m	sollecitazione nel tirante per metro di profondità (SLU/sisma)
L	=	2 m	interasse tiranti
n°	=	2	n° travi di ripartizione

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 12 EI2CLISL0900002 A

Momento	۵	taalio	ultimo
MOHIEHIO	$\overline{}$	layiiu	ullillio

M_{sd}	=	63.1	kNm	momento sollecitante ultimo
V_{sd}	=	126.2	kNm	taglio sollecitante ultimo

Caratteristiche travi di ripartizione

2HEA200

2HEA 200

W	= 389	cm ³	modulo elastico di resistenza singolo profilato
h	= 190	mm	altezza trave
t_{w}	= 6.5	mm	spessore anima
tf	= 10	mm	spessore ali
Α	= 1105	;	area anima
f_{yd}	= 262	MPa	tensione di snervamento (S275)
\mathbf{t}_{yd}	= 151	MPa	tensione tangenziale di snervamento

Momento e taglio resistente

M_{rd}	=	102 kNm	momento resistente ultimo
V_{rd}	=	167 kN	taglio resistente ultimo

Verifiche

M_{sd}	=	63.1 kNm	<	M_{rd}	=	101.9	kNm	verificato
V_{sd}	=	126.2 kNm	<	V_{rd}	=	167	kN	verificato

Per quanto riguarda la verifica della zona di estremità della trave di ripartizione, si considera cautelativamente uno schema a mensola. Di seguito si riporta il calcolo della sezione più sollecitata della zona di estremità. In favore di sicurezza, la verifica della sezione (Classe I) è condotta in campo elastico. Di seguito, la sintesi del calcolo condotto. La verifica risulta soddisfatta.

Caratteristiche delle sollecitazioni

T	=	252.48	kN/m	sollecitazione nel tirante per metro di profondità (SLU/sisma)
L	=	1.2	m	lunghezza mensola (dall'ultimo tirante all'estremità libera della trave)
n°	=	2		n° travi di ripartizione

Momento e taglio ultimo

M_{sd}	=	90.9	kNm	momento sollecitante ultimo
V_{sd}	=	151.5	kNm	taglio sollecitante ultimo

ristiche travi di ripartizione	
--------------------------------	--

W	=	389 cm ³	modulo di resistenza	
h	=	190 mm	altezza trave	
t_{w}	=	6.5 mm	spessore anima	
t_f	=	10 mm	spessore ali	
Α	=	1105	area anima	
f_{yd}	=	262 MPa	tensione di snervamento (S275)	
t _{yd}	=	151 MPa	tensione tangenziale di snervamento	

GENERAL CONTRACTOR Consorzio Iric-14 Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

M_{rd}	=	102 kNm	mome	ento resistente	e ultimo				
V_{rd}	=	167 kN	taglio	taglio resistente ultimo					
Verifiche									
M_{sd}	=	90.9 kNm	<	M_{rd}	=	101.9	kNm	verificato	
V_{sd}	=	151.5 kNm	<	V_{rd}	=	167.1	kN	verificato	

10.2 VERIFICHE GEOTECNICHE

10.2.1 VERIFICA GEOTECNICA DI STABILITA' GLOBALE DELL'OPERA

In accordo con le norme tecniche, le verifiche di stabilità globale dell'insieme terreno-opera è stata condotta secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2).

I risultati ottenuti assicurano la stabilità globale dell'opera, garantendo, lungo tutte le superfici di scivolamento analizzate, dei coefficienti di sicurezza conformi a quanto richiesto dalle NTC.

L'analisi di stabilità globale è stata condotta mediante il programma "ParatiePlus", applicando il metodo di Bishop. Le superfici analizzate presentano coefficiente di sicurezza minimo pari a:

1.4 > 1.1

La verifica risulta pertanto soddisfatta.

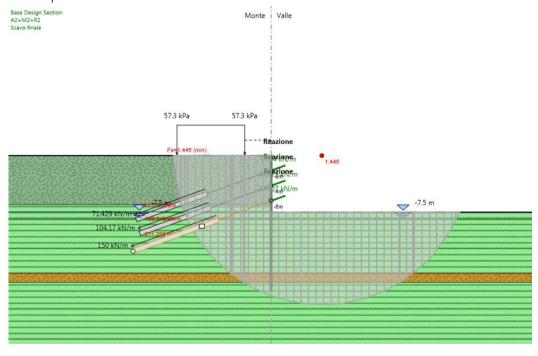


Figura 10.2: Risultati dell'analisi di stabilità globale dell'opera

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

10.2.2 VERIFICA GEOTECNICA A COLLASSO PER ROTAZIONE RIGIDA ATTORNO AL PIEDE

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Max. Rapporto Spinte (Efficace/Passiva) (Lato DX) 0.784

D.A. A2+M2+R1 (Stage di scavo finale)

10.3 VERIFICHE DEI TIRANTI DI ANCORAGGIO

10.3.1 CONTROLLO DELLA LUNGHEZZA LIBERA DEL TIRANTE

La lunghezza libera dei tiranti è calcolata imponendo che l'ancoraggio sia posizionato oltre la potenziale superficie di rottura inclinata di 45 - $\phi'/2$ sull'orizzontale.

$$L_{lib} = (h_{paratia} - h_{tirante}) \frac{sen(45 - \varphi/2)}{sen(45 + \varphi/2 + \theta)}$$

dove:

h_{paratia} = altezza della paratia;

 $h_{tirante}$ = quota del tirante rispetto alla testa della paratia;

φ = angolo di attrito del terreno;

 θ = inclinazione del tirante sull'orizzontale.

1° ORDINE

TONDINE									
CONDIZIONE STATICA									
h _{paratia}	=	18	m						
h tirante_Testa_Paratia	=	2	m						
ф	=	30	0						
θ	=	20	0						
L _{lib_min}	=	8.37	m						

L_{libera} di progettto = 9.00 m

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 12 EI2CLISL0900002 A

2° ORDINE

CONDIZIONE STATICA									
h _{paratia}	=	18	m						
h tirante_Testa_Paratia	=	4.0	m						
ф	=	23	0						
θ	=	20	0						
L _{lib}	=	8.20	m						

L_{libera} di progettto = 8.50 m

3° ORDINE

0 0/10//12								
CONDIZIONE STATICA								
h _{paratia}	=	18	m					
h tirante_Testa_Paratia	=	6	m					
ф	=	23	0					
θ	=	20	0					
L _{lib}	=	7.06	m					

L_{libera} di progettto = 7.50 m

Il controllo sulla lunghezza libera del tirante risulta soddisfatto, pertanto si procede con le verifiche.

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
	Progetto	Lotto	Codifica			
	IN17	12	EI2CLISL0900002	А		

10.3.2 VERIFICA A SFILAMENTO DEL BULBO DI ANCORAGGIO DEL TIRANTE

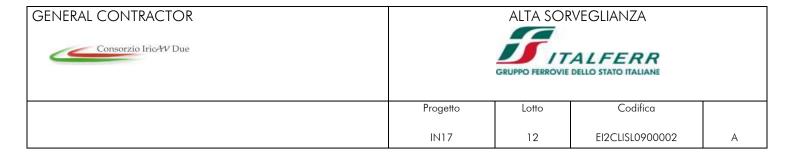
Il dimensionamento geotecnico ed in particolare la verifica allo sfilamento della fondazione dell'ancoraggio è stata svolta confrontando la massima azione di progetto sviluppata in tutti gli stage di analisi, con la resistenza di progetto, conformemente con quanto previsto nelle norme tecniche. La resistenza allo sfilamento T_{lim} è calcolata in base alla seguente relazione:

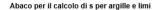
$$T_{lim} = \pi \Phi_{perf} \alpha L_{fond} \tau_{lim}$$

in cui:

 Φ_{perf} = diametro della perforazione, pari a 150 mm;

 α = coefficiente moltiplicativo per il calcolo del diametro del bulbo;


L_{fond} = lunghezza di ancoraggio di progetto;


 τ_{lim} = tensione limite allo sfilamento (dipendente dai terreni interessati).

Per quanto riguarda il valore di α per la determinazione del diametro del bulbo nei terreni in esame, questo è stato assunto pari a 1.4 (tiranti IRS). Si faccia riferimento alla Tabella riportata di seguito.

La tensione limite τ_{lim} di progetto, al contatto bulbo-terreno, è stata calcolata, considerando valori di aderenza limite, come indicato nell'abaco seguente, valido per sabbie e ghiaie, in cui le curve SG1 sono valide per bulbi realizzati con iniezioni ripetute (IRS), mentre le curve SG2 per bulbi realizzati con iniezioni semplici a getto unico (IGU).

Nel caso in esame i bulbi sono realizzati con iniezioni ripetute (IRS). In relazione al numero di colpi Nspt nella zona in esame assunto pari a 10, la tensione di aderenza che ne risulta, adottata per le verifiche di sfilamento del tirante, è pari a 150 kPa.

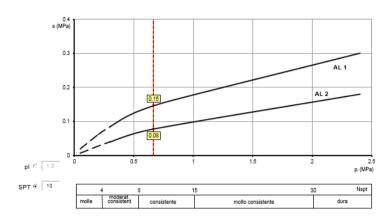


Figura 10.3: Abaco per il calcolo della tensione limite (s) per argille e limi

TERRENO	Valori di α					
	IRS	IGU				
Ghiaia	1.8	1.3 - 1.4				
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4				
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3				
Sabbia grossa	1.4 - 1.5	1.1 - 1.2				
Sabbia media	1.4 - 1.5	1.1 - 1.2				
Sabbia fine	1.4 - 1.5	1.1 -1.2				
Sabbia limosa	1.4 - 1.5	1.1 - 1.2				
Limo	1.4 - 1.6	1.1 - 1.2				
Argilla	1.8 - 2.0	1.2				
Marne	1.8	1.1 - 1.2				
Calcari marnosi	1.8	1.1 - 1.2				
Calcari alterati o fratturati	1.8	1.1 - 1.2				
Roccia alterata e/o fratturata	1.2	1.1				

Figura 10.4: Tabella per il calcolo di α

l valori caratteristici delle resistenze sono stati quindi dedotti ricorrendo al fattore di correlazione ξ_3 funzione del numero di profili di indagine come esposto in tabella 6.6.III delle NTC 2008. Il fattore ξ_3 utilizzato nelle verifiche geotecniche è pari a 1.80.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Infine la resistenza unitaria di progetto R_{ad} , è ottenuta applicando alla resistenza caratteristica i coefficienti parziali γ_r riportati nella tabella 6.6.1 delle NTC 2008. In particolare, per i tiranti provvisori in esame è assunto γ_r pari a 1.1.

Si riportano di seguito i risultati delle verifiche geotecniche di sfilamento dei tiranti (Comb. A1+M1+R3).

Design Assumption: A1+M1+R1 (R3 per tiranti)	Tipo Risultato: Verifiche Tiranti	Sollecitazione (kN)	Resistenza GEO (kN)	NTC2008 (ITA)
Tirante	Stage		` ,	FS GEO
1° Ordine	Scavo finale	312.2	485.95	0.516
2° Ordine	Scavo finale	370.46	499.8	0.741
3° Ordine	Scavo finale	504.96	599.76	0.842

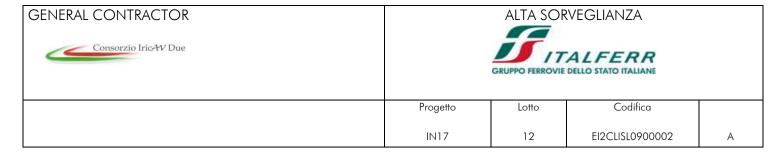
La verifica geotecnica dei tiranti di ancoraggio risulta soddisfatta.

10.3.3 VERIFICA STRUTTURALE DELL'ARMATURA DEL TIRANTE

La verifica strutturale dell'ancoraggio è stata effettuata controllando la trazione del tratto libero costituito dai trefoli in acciaio armonico. Nello specifico, il tiro di progetto deve risultare inferiore alla resistenza di progetto a trazione del tratto libero, calcolata come segue:

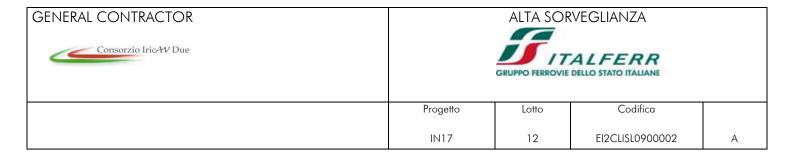
$$R_d = A_{trefoli} \times f_{p(1)k}/\gamma_r$$

dove:


 $A_{trefoli}$ = area complessiva degli n trefoli aventi ognuno area trasversale di 139 mm²

 $f_{p(1)k}$ = resistenza caratteristica allo 0.1% di deformazione (tensione di snervamento)

 γ_r = fattore parziale di resistenza dell'acciaio pari a 1.15


La verifica suddetta è condotta considerando le azioni sollecitanti sul tirante ottenute dall'approccio A1+M1+R3.

Si riportano di seguito i risultati delle verifiche per la condizione più gravosa. Si rimanda al tabulato di calcolo per maggiori dettagli.

Design Assumption: A1+M1+R1 (R3 per tiranti)	•			
Tirante	Stage		(kN)	FS STR
1° Ordine	Scavo finale	312.2	605.56	0.516
2° Ordine	Scavo finale	370.46	605.56	0.612
3° Ordine	Scavo finale	504.96	605.56	0.834

La verifica strutturale dei tiranti di ancoraggio risulta soddisfatta.

11 TABULATO DI CALCOLO

Si riportano di seguito, in allegato, i dati di input e output del software di calcolo.

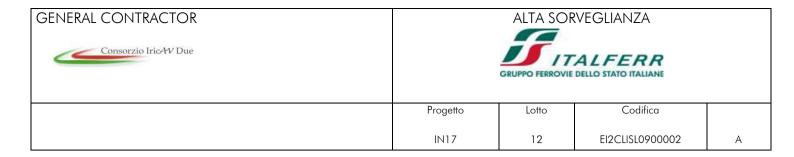
Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 0 m OCR: 1

Tipo: HORIZONTAL Quota: -6.5 m OCR: 3.5

Tipo: HORIZONTAL Quota: -8.5 m OCR: 1


Tipo: HORIZONTAL Quota: -15.6 m

OCR:1

Tipo : HORIZONTAL Quota : -16.8 m

OCR:1

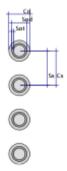
Strato di	Terreno	γ dry	γ sat	ø' ø	øcv øp	c'	Su	Modulo	Eu	Evc	Eur	Ah Av exp	Pa	Rur/Rvc	Rvc	Ku	Kvc	Kur
Terreno								Elastico										
		kN/m³	kN/m ³	3 •	• •	kPa l	kPa			kPa	kPa		kPa	ı	kPa k	N/m³	kN/m³	kN/m³
1	R - RILEVATO	20	20	38		0		Constant		30000	90000							
	FERROVIARIO ESISTENTE																	
2	UG3b - LIMI	18	18	23		0		Constant		10000	30000							
	ARGILLOSI_superficiale																	
3	UG3b - LIMI ARGILLOSI	18	18	23		0		Constant		7500	22500							
4	UG4 - SABBIA LIMOSA	19	19	38		0		Constant		60000	180000)						
5	UG3b - LIMI ARGILLOSI	18	18	23		0		Constant		7500	22500							

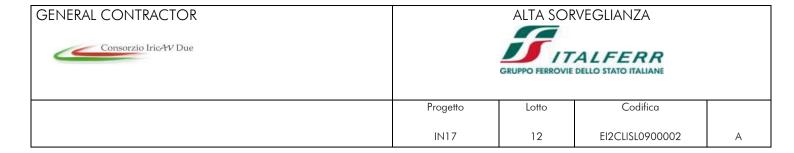
Descrizione Pareti

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Muro di sinistra

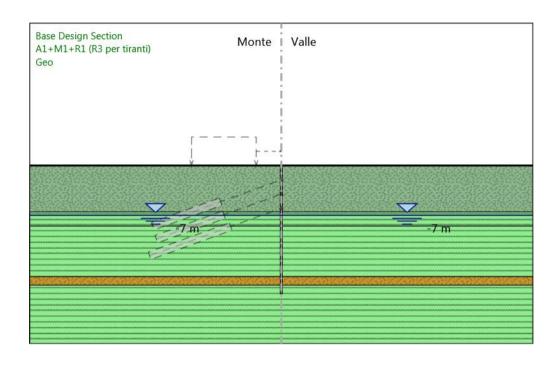
Sezione: MICROPALI


Area equivalente : 0.0394655751697979 m


Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent

Spaziatura : 0.4 m Diametro : 0.25 m

Efficacia: 1
Materiale acciaio: S275


Sezione: 0.1778x0.02 Tipo sezione: O Spaziatura: 0.4 m Spessore: 0.02 m Diametro: 0.1778 m

Fasi di Calcolo

Geo

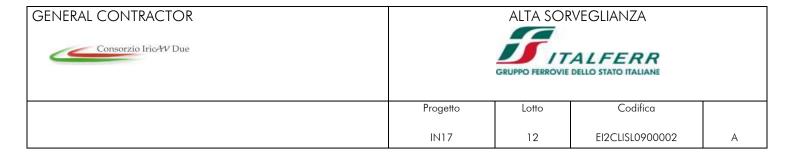
Geo

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)


0 m

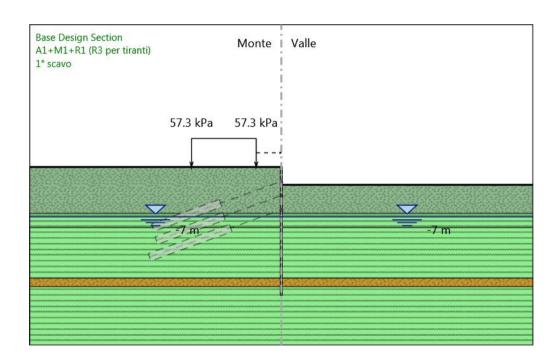
Linea di scavo di destra (Orizzontale)

0 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Elementi strutturali


Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

1° scavo

1° scavo

Scavo

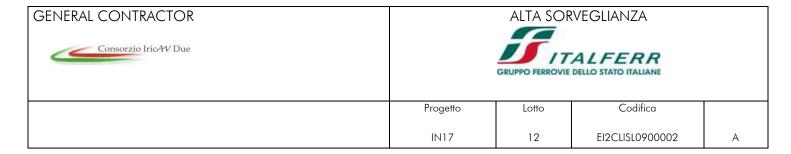
Muro di sinistra

Lato monte : 0 m Lato valle : -2.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

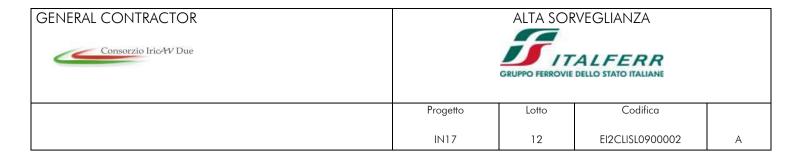

-2.5 m

Falda acquifera

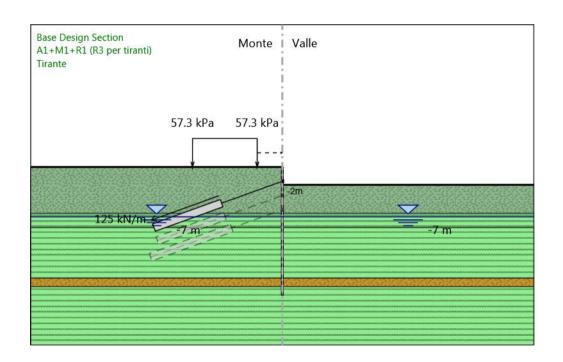
Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge


Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali


Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

Tirante

Tirante

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -2.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-2.5 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM LOTO Codifica IN17 12 EI2CLISL0900002 A

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia: WallElement

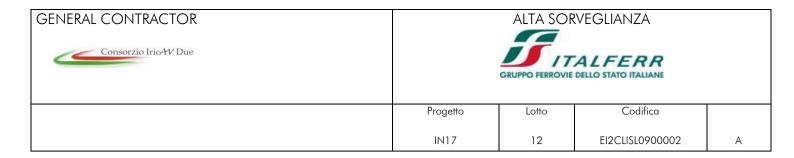
X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

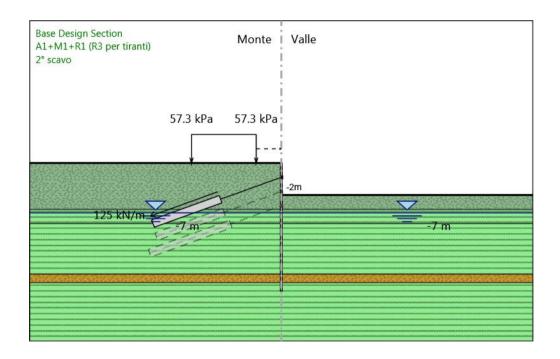
Tirante : 1° Ordine

X : 0 m Z : -2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m


Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli


Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

2° scavo

2° scavo

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -4.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-4.5 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio Iricaty Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORV

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia: WallElement

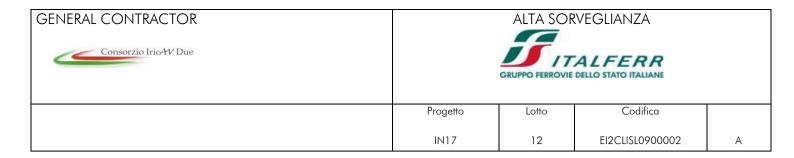
X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

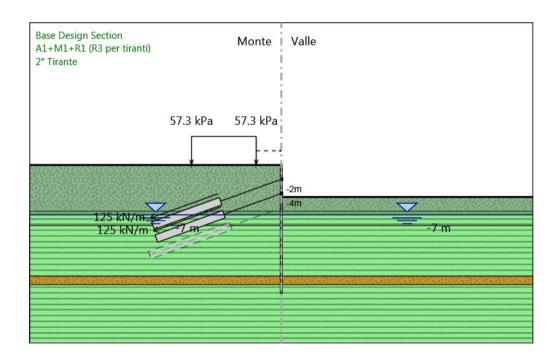
Tirante : 1° Ordine

X : 0 m Z : -2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m


Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli


Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

2° Tirante

2° Tirante

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -4.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-4.5 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

Tirante : 1° Ordine

X:0 m Z:-2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3

Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

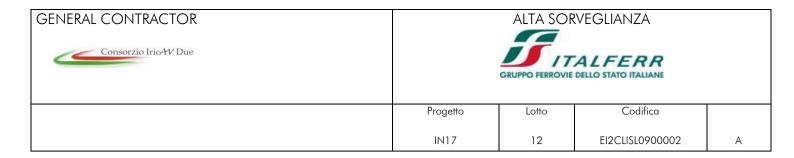
Materiale: S275

 ${\sf Tirante:2°Ordine}$

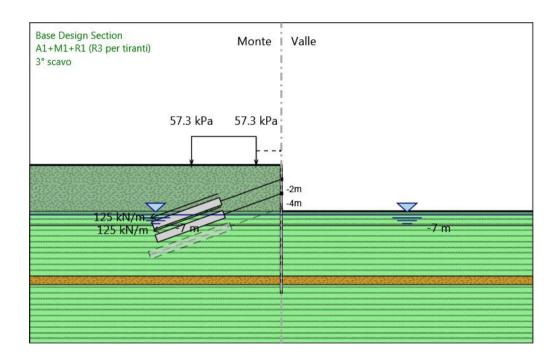
X : 0 m Z : -4 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 8.5 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli


> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2


Trave di Ripartizione : 2 HEA 200 2° $\,$

Sezione : 2HEA200 HE 200A

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

3° scavo

3° scavo

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -6.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-6.5 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

Tirante : 1° Ordine

X : 0 m Z : -2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

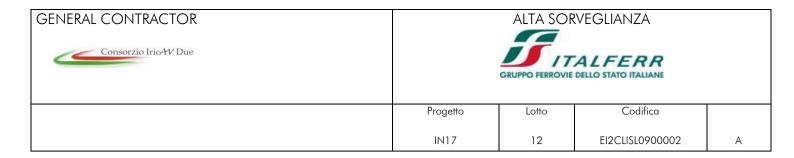
Materiale : S275

Tirante : 2° Ordine

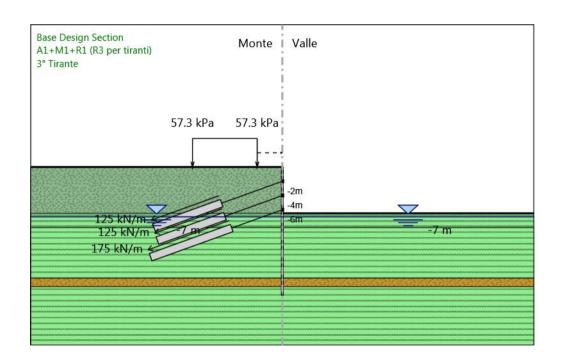
X : 0 m Z : -4 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 8.5 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli


> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2


Trave di Ripartizione : 2 HEA 200 2°

Sezione : 2HEA200 HE 200A

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

3° Tirante

3° Tirante

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -6.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-6.5 m

Falda acquifera

Falda di sinistra : -7 m Falda di destra : -7 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVE

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

Tirante : 1° Ordine

X:0 m Z:-2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

Materiale: S275

Tirante : 2° Ordine

X:0 m Z:-4 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 8.5 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2

Trave di Ripartizione : 2 HEA 200 2°

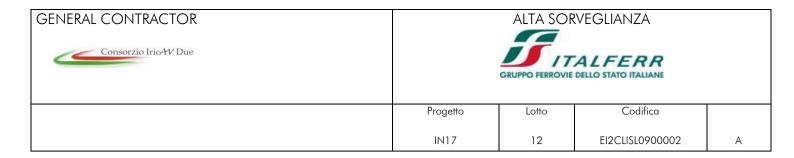
Sezione : 2HEA200 HE 200A

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

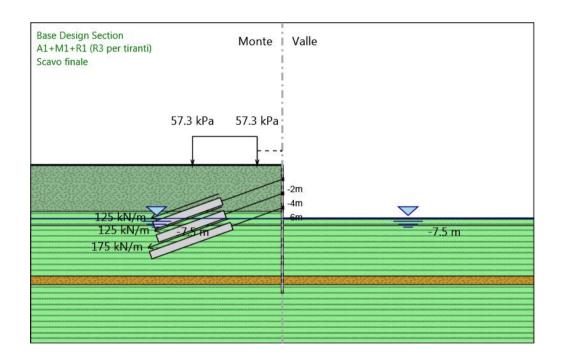
Tirante: 3° Ordine

X:0 m Z:-6 m

Lunghezza bulbo : 12 m Diametro bulbo : 0.15 m Lunghezza libera : 7.5 m Spaziatura orizzontale : 2 m


Precarico : 350 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli


Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : 2 HEA 200 3°

Sezione : 2HEA200 HE 200A

Scavo finale

Scavo finale

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -7.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-7.5 m

Falda acquifera

Falda di sinistra : -7.5 m Falda di destra : -7.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROGETO IN17 ALTA SORVEGLIANZA ALTA S

Pressione iniziale : 57.3 kPa Pressione finale : 57.3 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m Sezione : MICROPALI

Tirante : 1° Ordine

X : 0 m Z : -2 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2

Trave di Ripartizione : 2 HEA 200-1

Sezione : 2HEA200 HE 200A

Materiale: S275

Tirante : 2° Ordine

X : 0 m Z : -4 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.15 m Lunghezza libera : 8.5 m Spaziatura orizzontale : 2 m

Precarico : 250 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m

Area: 0.000417 m^2

Trave di Ripartizione : 2 HEA 200 2°

Sezione : 2HEA200 HE 200A

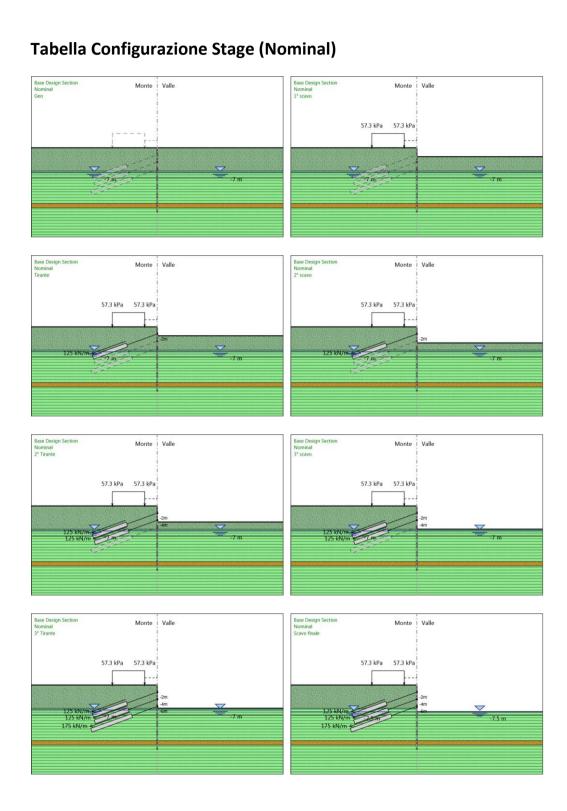
GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

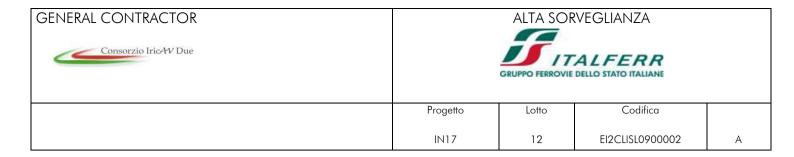
Tirante: 3° Ordine

X:0 m Z:-6 m

Lunghezza bulbo : 12 m Diametro bulbo : 0.15 m Lunghezza libera : 7.5 m Spaziatura orizzontale : 2 m

Precarico : 350 kN Angolo : 20 ° Sezione : 3 trefoli


Tipo di barre : Barre trefoli


Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Trave di Ripartizione : 2 HEA 200 3°

Sezione : 2HEA200 HE 200A

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Descrizione Coefficienti Design Assumption

Coefficienti A


Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
					(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
					erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1	1	1	1
1 2	1	1 5	1	0	1 2	1	1	1	1	1 2	0.0	1
1.5	1	1.5	1	U	1.5	1	1	1	1	1.5	0.9	1
1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
1	1	4.2	4	0		4	4	1	4	1.2	0.0	1
1	1	1.3	1	U	1	1	1	1	1	1.3	0.9	1
	Permanenti Sfavorevoli (F_dead_load _unfavour) γG	Permanenti Sfavorevoli (F_dead_load (F_dead_loa _unfavour) γG γG 1 1 1 1 1.3 1	Permanenti Permanenti Variabili Sfavorevoli Favorevoli Sfavorevoli (F_dead_load (F_dead_loa unfavour) (F_live_load unfavour) γG γG γQ 1 1 1 1 1 1 1.3 1 1.5	Permanenti Permanenti Variabili Variabili Sfavorevoli Favorevoli Sfavorevoli Favorevoli (F_dead_load (F_dead_loa unfavour) (F_live_load (F_live_load (F_live_load unfavour)) (F_live_load unfavour) γG γG γQ γQ 1 1 1 1 1 1 1 1 1 1 1.5 1	Permanenti Permanenti Variabili Variabili Sismico (F_seis Favorevoli) Sfavorevoli Favorevoli Sfavorevoli Favorevoli (F_seis Favorevoli) (F_seis Favorevoli) m_load) γG γG γQ γQ γQE 1 1 1 1 1 1 1 1 1 0 1.3 1 1.5 1 0	Permanenti Sfavorevoli Permanenti Favorevoli Variabili Sfavorevoli Variabili Favorevoli Variabili Favorevoli Sismico (F_seis Favorevoli ni (F_seis) (F_dead_load unfavour) (F_live_load (F_live_load) (F_live_load) (F_live_load) Monte (F_WaterDR) γG γG γQ γQ γQE γG 1 1 1 1 1 1 1 1 1 0 1 1.3 1 1.5 1 0 1.3	Permanenti Permanenti Sfavorevoli Sfavorevoli Favorevoli Favorevoli Favorevoli Favorevoli Favorevoli Favorevoli Favorevoli (F_seis Acqua Acqua (F_dead_load (F_dead_load (F_live_load (F_live_load m_load Lato Lato Monte Valle (F_wat (F_wat (F_wat (F_wat F_wat (F_wat (Permanenti Sfavorevoli Permanenti Sfavorevoli Variabili Variabili Sismico ni Favorevoli ni Permanenti ni Permanenti Sfavorevoli Permanenti Sfavorevoli Favorevoli (F_seis Acqua Acqua nti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli (F_dead_load (F_dead_load (F_live_load (F_live_load nti Pavorevoli numfavour)) Value (F_seis Acqua Acqua nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Permanenti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload numload nti Pavorevoli numload nti Pavorevoli (F_seis Acqua Acqua nti Pavorevoli numload nti Pavorevoli numload nti Pavorevoli numload nti Pavorevoli numload numload nti Pavorevoli numload numload nti Pavorevoli numload numlo	Permanenti Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli (F_seis Acqua Load Ioad Ioad Ioad Ioad Ioad Ioad Ioad I	Permanenti Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli (F_seis Acqua Acqua nti enti Destabili (F_dead_load (F_dead_load (F_live_load (F_live_load nti unfavour) d_favour) d_favour) Monte Valle (F_ute (F	Permanenti Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Pavorevoli (F_seis Sfavorevoli F_avorevoli F_avorevoli (F_seis Sfavorevoli F_avorevoli (F_seis Sfavorevoli F_avorevoli (F_seis Acqua Acqua nti enti Destabili nti Destabili (F_dead_load (F_dead_load (F_live_load (F_live_load M_acqua nti enti Destabili Nti Destabiliunfavour) Nonte Valle zzanti Zzanti anti (F_UPL_ zzanti Zzanti [F_WPL_ zzanti [F_WAt (F_WAt (F_UPL_ (F_UPL_ QDStab) GStab) [F_WPL_ zzanti [F_WAt (F_WAt (Permanenti Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli Sfavorevoli (F_seis Acqua Inti enti (F_dead_load (F_dead_load (F_live_load Inti enti Inti enti Inti Inti Inti Inti Inti Inti Inti I

Coefficienti M

Nome	Parziale su tan(ø') (F_Fr)	Parziale su c' (F_eff_cohe)	Parziale su Su (F_Su)	Parziale su qu (F_qu)	Parziale su peso specifico (F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1
A2+M2+R2	1.25	1.25	1.4	1	1

Coefficienti R

Nome	Parziale resistenza terreno (es. Kp) (F Soil Res walls)	Parziale resistenza Tiranti permanenti (F Anch P)	Parziale resistenza Tiranti temporanei (F Anch T)	Parziale elementi strutturali (F wall)
Simbolo	vRe	yap	vat	structuran (i _wan)
Nominal	1	1	1	1
SLE (Rara)	1	1	1	1
A1+M1+R1 (R3	1	1.2	1.1	1
per tiranti)				
A2+M2+R1	1	1.2	1.1	1
A2+M2+R2	1.1	1.2	1.1	1

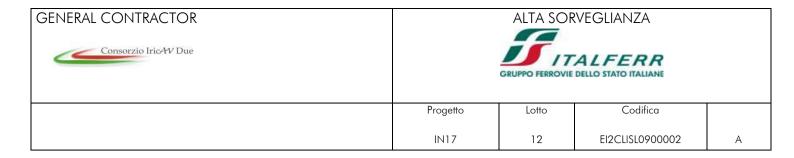

Risultati SLE (Rara)

Tabella Spostamento SLE (Rara) - LEFT Stage: Geo

Design Assumption:	SLE (Rara) Tipo Risultato: Spostamento	Muro: LEFT
Stage		Spostamento orizzontale (mm)
Geo	0	0
Geo	-0.2	0
Geo	-0.4	0
Geo	-0.6	0
Geo	-0.8	0
Geo	-1	0
Geo	-1.2	0
Geo	-1.4	0
Geo	-1.6	0 0
Geo Geo	-1.8 -2	0
Geo	-2.2	0
Geo	-2.4	0
Geo	-2.6	0
Geo	-2.8	0
Geo	-3	0
Geo	-3.2	0
Geo	-3.4	0
Geo	-3.6	0
Geo	-3.8	0
Geo	-4	0
Geo Geo	-4.2 -4.4	0 0
Geo	-4.4 -4.6	0
Geo	-4.8	0
Geo	-5	0
Geo	-5.2	0
Geo	-5.4	0
Geo	-5.6	0
Geo	-5.8	0
Geo	-6	0
Geo	-6.2	0
Geo Geo	-6.4 -6.6	0 0
Geo	-6.8	0
Geo	-7	0
Geo	-7.2	0
Geo	-7.4	0
Geo	-7.6	0
Geo	-7.8	0
Geo	-8	0
Geo	-8.2	0
Geo	-8.4	0
Geo	-8.6	0
Geo Geo	-8.8 -9	0 0
Geo	-9.2	0
Geo	-9.4	0
Geo	-9.6	0
Geo	-9.8	0
Geo	-10	0
Geo	-10.2	0
Geo	-10.4	0
Geo	-10.6	0
Geo	-10.8	0
Geo	-11	0

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica		
	IN17	12	EI2CLISL0900002	А	

Design Assumption: SLE (Rara	a) Tipo Risultato: Spostame	ento Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
Geo	-11.2	0
Geo	-11.4	0
Geo	-11.6	0
Geo	-11.8	0
Geo	-12	0
Geo	-12.2	0
Geo	-12.4	0
Geo	-12.6	0
Geo	-12.8	0
Geo	-13	0
Geo	-13.2	0
Geo	-13.4	0
Geo	-13.6	0
Geo	-13.8	0
Geo	-14	0
Geo	-14.2	0
Geo	-14.4	0
Geo	-14.6	0
Geo	-14.8	0
Geo	-15	0
Geo	-15.2	0
Geo	-15.4	0
Geo	-15.6	0
Geo	-15.8	0
Geo	-16	0
Geo	-16.2	0
Geo	-16.4	0
Geo	-16.6	0
Geo	-16.8	0
Geo	-17	0
Geo	-17.2	0
Geo	-17.4	0
Geo	-17.6	0
Geo	-17.8	0
Geo	-18	0

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: Geo

Desire Assessed to CLE (Desire	Anto tratino de	. A4 LEET	
Design Assumption: SLE (Rara			\ T!:- (!-8! /
Stage	Z (m)	Momento (kN*m/n	
Geo	0	0	0 0
Geo Geo	-0.2 -0.4	0 0	0
Geo	-0.4	0	0
Geo	-0.8	0	0
Geo	-1	0	0
Geo	-1.2	0	0
Geo	-1.4	0	0
Geo	-1.6	0	0
Geo	-1.8	0	0
Geo	-2	0	0
Geo	-2.2	0	0
Geo	-2.4	0	0
Geo	-2.6	0	0
Geo	-2.8	0	0
Geo	-3	0	0
Geo	-3.2	0	0
Geo	-3.4	0	0
Geo	-3.6	0	0
Geo	-3.8	0	0
Geo	-4	0	0
Geo	-4.2	0	0
Geo	-4.4	0	0
Geo	-4.6 -4.8	0 0	0
Geo Geo	-4.8 -5	0	0 0
Geo	-5.2	0	0
Geo	-5.4	0	0
Geo	-5. 4 -5.6	0	0
Geo	-5.8	0	0
Geo	-6	0	0
Geo	-6.2	0	0
Geo	-6.4	0	0
Geo	-6.6	0	0
Geo	-6.8	0	0
Geo	-7	0	0
Geo	-7.2	0	0
Geo	-7.4	0	0
Geo	-7.6	0	0
Geo	-7.8	0	0
Geo	-8	0	0
Geo	-8.2	0	0
Geo	-8.4	0	0
Geo	-8.6	0	0
Geo	-8.8	0	0
Geo	-9 -9.2	0 0	0 0
Geo Geo	-9.2 -9.4	0	0
Geo	-9.4 -9.6	0	0
Geo	-9.8	0	0
Geo	-10	0	0
Geo	-10.2	0	0
Geo	-10.4	0	0
Geo	-10.6	0	0
Geo	-10.8	0	0
Geo	-11	0	0
Geo	-11.2	0	0
Geo	-11.4	0	0
Geo	-11.6	0	0

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Ra	ara) Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Geo	-11.8	0	0
Geo	-12	0	0
Geo	-12.2	0	0
Geo	-12.4	0	0
Geo	-12.6	0	0
Geo	-12.8	0	0
Geo	-13	0	0
Geo	-13.2	0	0
Geo	-13.4	0	0
Geo	-13.6	0	0
Geo	-13.8	0	0
Geo	-14	0	0
Geo	-14.2	0	0
Geo	-14.4	0	0
Geo	-14.6	0	0
Geo	-14.8	0	0
Geo	-15	0	0
Geo	-15.2	0	0
Geo	-15.4	0	0
Geo	-15.6	0	0
Geo	-15.8	0	0
Geo	-16	0	0
Geo	-16.2	0	0
Geo	-16.4	0	0
Geo	-16.6	0	0
Geo	-16.8	0	0
Geo	-17	0	0
Geo	-17.2	0	0
Geo	-17.4	0	0
Geo	-17.6	0	0
Geo	-17.8	0	0
Geo	-18	0	0

Tabella Spostamento SLE (Rara) - LEFT Stage: 1° scavo

Design Assumption: SLE (Rara)	Tipo Risultato: Spostamento	Muro: LEFT
Stage		postamento orizzontale (mm)
1° scavo	0	6.05
1° scavo	-0.2	5.7
1° scavo	-0.4	5.36
1° scavo	-0.6	5.01
1° scavo	-0.8	4.66
1° scavo	-1	4.32
1° scavo	-1.2	3.97
1° scavo	-1.4	3.63
1° scavo	-1.6	3.29
1° scavo	-1.8	2.95
1° scavo	-2 -2.2	2.62
1° scavo 1° scavo	-2.2 -2.4	2.3 1.99
1° scavo	-2.4 -2.6	1.7
1° scavo	-2.8	1.43
1° scavo	-3	1.17
1° scavo	-3.2	0.95
1° scavo	-3.4	0.76
1° scavo	-3.6	0.59
1° scavo	-3.8	0.45
1° scavo	-4	0.34
1° scavo	-4.2	0.26
1° scavo	-4.4	0.21
1° scavo	-4.6	0.17
1° scavo	-4.8	0.15
1° scavo	-5	0.16
1° scavo	-5.2	0.18
1° scavo	-5.4	0.21
1° scavo	-5.6	0.25
1° scavo	-5.8	0.31
1° scavo 1° scavo	-6 -6.2	0.38 0.46
1° scavo	-6.4	0.46
1° scavo	-6.6	0.64
1° scavo	-6.8	0.74
1° scavo	-7	0.84
1° scavo	-7.2	0.93
1° scavo	-7.4	1.02
1° scavo	-7.6	1.1
1° scavo	-7.8	1.18
1° scavo	-8	1.25
1° scavo	-8.2	1.31
1° scavo	-8.4	1.37
1° scavo	-8.6	1.42
1° scavo	-8.8	1.46
1° scavo	-9 2.2	1.5
1° scavo	-9.2	1.54 1.57
1° scavo 1° scavo	-9.4 -9.6	1.59
1° scavo	-9.8	1.61
1° scavo	-10	1.63
1° scavo	-10.2	1.64
1° scavo	-10.4	1.65
1° scavo	-10.6	1.66
1° scavo	-10.8	1.66
1° scavo	-11	1.65
1° scavo	-11.2	1.65
1° scavo	-11.4	1.64
1° scavo	-11.6	1.62

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

esign Assumption: SLE (Rara)	Tipo Risultato: Spostamo	ento Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
1° scavo	-11.8	1.61
1° scavo	-12	1.58
1° scavo	-12.2	1.56
1° scavo	-12.4	1.53
1° scavo	-12.6	1.49
1° scavo	-12.8	1.46
1° scavo	-13	1.41
1° scavo	-13.2	1.36
1° scavo	-13.4	1.31
1° scavo	-13.6	1.25
1° scavo	-13.8	1.19
1° scavo	-14	1.12
1° scavo	-14.2	1.05
1° scavo	-14.4	0.97
1° scavo	-14.6	0.89
1° scavo	-14.8	0.81
1° scavo	-15	0.72
1° scavo	-15.2	0.63
1° scavo	-15.4	0.55
1° scavo	-15.6	0.48
1° scavo	-15.8	0.41
1° scavo	-16	0.36
1° scavo	-16.2	0.32
1° scavo	-16.4	0.3
1° scavo	-16.6	0.31
1° scavo	-16.8	0.32
1° scavo	-17	0.36
1° scavo	-17.2	0.4
1° scavo	-17.4	0.44
1° scavo	-17.6	0.49
1° scavo	-17.8	0.55
1° scavo	-18	0.6

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 1° scavo

	SLE (Rara) Risultati Para		
Stage	Z (m)	Momento (kN*m/	
1° scavo	0	0	0
1° scavo	-0.2	0	0
1° scavo	-0.2	0	0
1° scavo	-0.4	-0.04	-0.19
1° scavo	-0.6	-0.15	-0.57
1° scavo	-0.8	-0.38	-1.15
1° scavo	-1	-0.76	-1.91
1° scavo	-1.2	-1.34	-2.88
1° scavo	-1.4	-2.15	-4.04
1° scavo 1° scavo	-1.6 -1.8	-3.23 -4.62	-5.4 -6.97
1° scavo	-1.8 -2		
1° scavo	-2.2	-6.37 -8.51	-8.74 -10.72
1° scavo	-2.4	-11.1	-12.91
1° scavo	-2.4	-14.16	-15.3
1° scavo	-2.8	-17.16	-15.02
1° scavo	-3	-19.36	-13.02
1° scavo	-3.2	-20.79	-7.15
1° scavo	-3.4	-21.48	-3.46
1° scavo	-3.6	-21.46	0.1
1° scavo	-3.8	-20.76	3.51
1° scavo	-4	-19.47	6.45
1° scavo	-4.2	-17.8	8.36
1° scavo	-4.4	-16.01	8.94
1° scavo	-4.6	-14.29	8.57
1° scavo	-4.8	-12.77	7.6
1° scavo	-5	-11.51	6.32
1° scavo	-5.2	-10.51	5.01
1° scavo	-5.4	-9.72	3.94
1° scavo	-5.6	-9.06	3.3
1° scavo	-5.8	-8.39	3.37
1° scavo	-6	-7.52	4.33
1° scavo	-6.2	-6.24	6.4
1° scavo	-6.4	-4.3	9.72
1° scavo	-6.6	-1.45	14.21
1° scavo	-6.8	0.72	10.86
1° scavo	-7	2.31	7.97
1° scavo	-7.2	3.42	5.55
1° scavo	-7.4	4.13	3.53
1° scavo	-7.6	4.52	1.94
1° scavo	-7.8	4.66	0.73
1° scavo	-8	4.64	-0.12
1° scavo	-8.2	4.51	-0.63
1° scavo	-8.4	4.33	-0.88
1° scavo	-8.6	4.16	-0.86
1° scavo	-8.8	3.97	-0.96
1° scavo	-9	3.77	-0.99
1° scavo	-9.2	3.58	-0.97
1° scavo	-9.4	3.4	-0.9
1° scavo	-9.6	3.24	-0.81
1° scavo	-9.8	3.09	-0.71
1° scavo	-10	2.97	-0.6
1° scavo	-10.2	2.87	-0.5
1° scavo	-10.4	2.79	-0.39
1° scavo	-10.6	2.74	-0.28
1° scavo	-10.8	2.71	-0.17
1° scavo	-11	2.69	-0.07
1° scavo	-11.2	2.7	0.03
1° scavo	-11.4	2.72	0.13

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Design Assumption: SLE (Rara	\ Disultati Davat	ia Muro: LEFT	
• •	•		\ (1.a.()
Stage	Z (m)	Momento (kN*m/n	, , , ,
1° scavo	-11.6	2.77	0.23
1° scavo	-11.8	2.84	0.32
1° scavo	-12	2.91	0.39
1° scavo	-12.2	3	0.45
1° scavo	-12.4	3.11	0.51
1° scavo	-12.6	3.22	0.55
1° scavo	-12.8	3.33	0.58
1° scavo	-13	3.45	0.58
1° scavo	-13.2	3.56	0.55
1° scavo	-13.4	3.65	0.48
1° scavo	-13.6	3.72	0.35
1° scavo	-13.8	3.73	0.05
1° scavo	-14	3.64	-0.48
1° scavo	-14.2	3.39	-1.23
1° scavo	-14.4	2.94	-2.25
1° scavo	-14.6	2.23	-3.54
1° scavo	-14.8	1.21	-5.11
1° scavo	-15	-0.19	-6.99
1° scavo	-15.2	-2.02	-9.18
1° scavo	-15.4	-4.36	-11.67
1° scavo	-15.6	-7.25	-14.46
1° scavo	-15.8	-10.75	-17.52
1° scavo	-16	-12.77	-10.12
1° scavo	-16.2	-13.58	-4.04
1° scavo	-16.4	-13.35	1.16
1° scavo	-16.6	-12.16	5.96
1° scavo	-16.8	-10	10.81
1° scavo	-17	-6.77	16.15
1° scavo	-17.2	-4.21	12.77
1° scavo	-17.4	-2.3	9.56
1° scavo	-17.6	-0.99	6.56
1° scavo	-17.8	-0.24	3.76
1° scavo	-18	0	1.18

Tabella Spostamento SLE (Rara) - LEFT Stage: Tirante

Stage Z (m) Spostamento orizzor Tirante 0 5.3 Tirante -0.2 4.84 Tirante -0.4 4.39 Tirante -0.6 3.93 Tirante -0.8 3.48	ntale (mm)
Tirante -0.2 4.84 Tirante -0.4 4.39 Tirante -0.6 3.93	
Tirante -0.4 4.39 Tirante -0.6 3.93	
Tirante -0.6 3.93	
Tirante -0.8 3.48	
T' 1	
Tirante -1 3.03	
Tirante -1.2 2.6 Tirante -1.4 2.18	
Tirante -1.6 1.79	
Tirante -1.8 1.45	
Tirante -2 1.15	
Tirante -2.2 0.91	
Tirante -2.4 0.73	
Tirante -2.6 0.59	
Tirante -2.8 0.48	
Tirante -3 0.39	
Tirante -3.2 0.32	
Tirante -3.4 0.27	
Tirante -3.6 0.23	
Tirante -3.8 0.2	
Tirante -4 0.18	
Tirante -4.2 0.17	
Tirante -4.4 0.17	
Tirante -4.6 0.17	
Tirante -4.8 0.19	
Tirante -5 0.21	
Tirante -5.2 0.23 Tirante -5.4 0.27	
Tirante -5.6 0.32	
Tirante -5.8 0.37	
Tirante -6 0.44	
Tirante -6.2 0.51	
Tirante -6.4 0.59	
Tirante -6.6 0.68	
Tirante -6.8 0.77	
Tirante -7 0.86	
Tirante -7.2 0.95	
Tirante -7.4 1.03	
Tirante -7.6 1.11	
Tirante -7.8 1.18	
Tirante -8 1.25	
Tirante -8.2 1.31	
Tirante -8.4 1.37	
Tirante -8.6 1.42	
Tirante -8.8 1.46	
Tirante -9 1.5	
Tirante -9.2 1.54 Tirante -9.4 1.56	
Tirante -9.4 1.56 Tirante -9.6 1.59	
Tirante -9.8 1.61	
Tirante -10 1.63	
Tirante -10.2 1.64	
Tirante -10.4 1.65	
Tirante -10.6 1.65	
Tirante -10.8 1.65	
Tirante -11 1.65	
Tirante -11.2 1.65	
Tirante -11.4 1.64	
Tirante -11.6 1.62	

GENERAL CONTRACTOR Consorzio Iric/IV Due		15,17	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) T	ipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
Tirante	-11.8	1.6
Tirante	-12	1.58
Tirante	-12.2	1.56
Tirante	-12.4	1.53
Tirante	-12.6	1.49
Tirante	-12.8	1.46
Tirante	-13	1.41
Tirante	-13.2	1.36
Tirante	-13.4	1.31
Tirante	-13.6	1.25
Tirante	-13.8	1.19
Tirante	-14	1.12
Tirante	-14.2	1.05
Tirante	-14.4	0.97
Tirante	-14.6	0.89
Tirante	-14.8	0.81
Tirante	-15	0.72
Tirante	-15.2	0.63
Tirante	-15.4	0.55
Tirante	-15.6	0.48
Tirante	-15.8	0.41
Tirante	-16	0.36
Tirante	-16.2	0.32
Tirante	-16.4	0.3
Tirante	-16.6	0.31
Tirante	-16.8	0.32
Tirante	-17	0.36
Tirante	-17.2	0.4
Tirante	-17.4	0.44
Tirante	-17.6	0.49
Tirante	-17.8	0.55
Tirante	-18	0.6

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: Tirante

Design Assumption: SLE (Rara) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
Tirante	0	0	0
Tirante	-0.2	0	0
Tirante	-0.2	0	0
Tirante	-0.4	-0.7	-3.5
Tirante	-0.6	-2.25	-7.74
Tirante	-0.8	-4.79	-12.71
Tirante	-1	-8.47	-18.41
Tirante	-1.2	-13.43	-24.82
Tirante	-1.4	-19.81	-31.9
Tirante	-1.6	-27.73	-39.59
Tirante	-1.8 -2	-37.29	-47.81
Tirante Tirante	-2 -2.2	-48.58 -38.15	-56.44 52.16
Tirante	-2.2 -2.4	-38.15 -29.5	43.24
Tirante	-2.6	-23.5	34.43
Tirante	-2.8	-17.43	25.9
Tirante	-3	-13.56	19.36
Tirante	-3.2	-10.77	13.97
Tirante	-3.4	-8.84	9.66
Tirante	-3.6	-7.56	6.36
Tirante	-3.8	-6.77	3.95
Tirante	-4	-6.21	2.83
Tirante	-4.2	-5.79	2.12
Tirante	-4.4	-5.54	1.22
Tirante	-4.6	-5.49	0.27
Tirante	-4.8	-5.62	-0.64
Tirante	-5	-5.9	-1.42
Tirante	-5.2	-6.29	-1.94
Tirante	-5.4	-6.7	-2.05
Tirante	-5.6	-7.03	-1.67
Tirante	-5.8	-7.15	-0.6
Tirante	-6 -6.2	-6.89 6.03	1.33
Tirante Tirante	-6.2 -6.4	-6.03 -4.35	4.28 8.39
Tirante	-6.6	-1.64	13.56
Tirante	-6.8	0.44	10.4
Tirante	-7	1.97	7.67
Tirante	-7.2	3.05	5.37
Tirante	-7.4	3.74	3.46
Tirante	-7.6	4.13	1.95
Tirante	-7.8	4.29	0.8
Tirante	-8	4.29	0
Tirante	-8.2	4.19	-0.49
Tirante	-8.4	4.05	-0.72
Tirante	-8.6	3.91	-0.69
Tirante	-8.8	3.75	-0.8
Tirante	-9	3.58	-0.83
Tirante	-9.2	3.42	-0.82
Tirante	-9.4	3.27	-0.76
Tirante	-9.6	3.13	-0.68
Tirante	-9.8	3.01	-0.6
Tirante	-10	2.91	-0.5
Tirante	-10.2	2.83	-0.41
Tirante	-10.4	2.76	-0.32
Tirante	-10.6	2.72	-0.22 0.11
Tirante	-10.8	2.7	-0.11
Tirante Tirante	-11 -11.2	2.69 2.7	-0.03 0.06
Tirante	-11.2 -11.4	2.7 2.73	0.06 0.16
i ii alite	-11.4	2.73	0.10

GENERAL CONTRACTOR Consorzio Iric/AV Due		15,17	RVEGLIANZA TALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara	•		
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Tirante	-11.6	2.78	0.25
Tirante	-11.8	2.85	0.33
Tirante	-12	2.93	0.4
Tirante	-12.2	3.02	0.46
Tirante	-12.4	3.12	0.51
Tirante	-12.6	3.23	0.55
Tirante	-12.8	3.35	0.57
Tirante	-13	3.46	0.57
Tirante	-13.2	3.57	0.54
Tirante	-13.4	3.67	0.47
Tirante	-13.6	3.73	0.34
Tirante	-13.8	3.74	0.04
Tirante	-14	3.65	-0.48
Tirante	-14.2	3.4	-1.24
Tirante	-14.4	2.95	-2.25
Tirante	-14.6	2.24	-3.54
Tirante	-14.8	1.21	-5.12
Tirante	-15	-0.18	-6.99
Tirante	-15.2	-2.02	-9.18
Tirante	-15.4	-4.35	-11.67
Tirante	-15.6	-7.25	-14.46
Tirante	-15.8	-10.75	-17.52
Tirante	-16	-12.77	-10.12
Tirante	-16.2	-13.58	-4.04
Tirante	-16.4	-13.35	1.16
Tirante	-16.6	-12.16	5.96
Tirante	-16.8	-10	10.81
Tirante	-17	-6.77	16.15
Tirante	-17.2	-4.21	12.77
Tirante	-17.4	-2.3	9.56
Tirante	-17.6	-0.99	6.56
Tirante	-17.8	-0.24	3.76
Tirante	-18	0	1.18

Tabella Spostamento SLE (Rara) - LEFT Stage: 2° scavo

•		· ·
Design Assumption: SLE (Rara)	Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
2° scavo	0	5.01
2° scavo	-0.2	4.6
2° scavo	-0.4	4.18
2° scavo	-0.6	3.76
2° scavo	-0.8	3.35
2° scavo	-1	2.95
2° scavo	-1.2	2.56
2° scavo 2° scavo	-1.4 -1.6	2.19 1.84
2° scavo	-1.8	1.54
2° scavo	-2	1.3
2° scavo	-2.2	1.12
2° scavo	-2.4	0.99
2° scavo	-2.6	0.91
2° scavo	-2.8	0.87
2° scavo	-3	0.84
2° scavo	-3.2	0.84
2° scavo	-3.4	0.84
2° scavo	-3.6	0.86
2° scavo	-3.8	0.88
2° scavo	-4	0.9
2° scavo	-4.2	0.92
2° scavo	-4.4	0.95
2° scavo	-4.6	0.98
2° scavo	-4.8	1.02
2° scavo	-5 5.0	1.07
2° scavo	-5.2	1.13
2° scavo	-5.4 E.6	1.2
2° scavo 2° scavo	-5.6 -5.8	1.29 1.4
2° scavo	-5.8 -6	1.53
2° scavo	-6.2	1.68
2° scavo	-6.4	1.84
2° scavo	-6.6	2.01
2° scavo	-6.8	2.19
2° scavo	-7	2.37
2° scavo	-7.2	2.55
2° scavo	-7.4	2.72
2° scavo	-7.6	2.88
2° scavo	-7.8	3.04
2° scavo	-8	3.19
2° scavo	-8.2	3.34 3.47
2° scavo 2° scavo	-8.4 -8.6	3.6
2° scavo	-8.8	3.71
2° scavo	-9	3.82
2° scavo	-9.2	3.91
2° scavo	-9.4	3.99
2° scavo	-9.6	4.06
2° scavo	-9.8	4.13
2° scavo	-10	4.17
2° scavo	-10.2	4.21
2° scavo	-10.4	4.24
2° scavo	-10.6	4.25
2° scavo	-10.8	4.26
2° scavo	-11	4.25
2° scavo	-11.2	4.23
2° scavo 2° scavo	-11.4 -11.6	4.2 4.16
2 SCAVU	-11.6	4.10

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) 1	Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
2° scavo	-11.8	4.1
2° scavo	-12	4.03
2° scavo	-12.2	3.95
2° scavo	-12.4	3.86
2° scavo	-12.6	3.76
2° scavo	-12.8	3.64
2° scavo	-13	3.51
2° scavo	-13.2	3.37
2° scavo	-13.4	3.22
2° scavo	-13.6	3.05
2° scavo	-13.8	2.87
2° scavo	-14	2.69
2° scavo	-14.2	2.5
2° scavo	-14.4	2.29
2° scavo	-14.6	2.09
2° scavo	-14.8	1.88
2° scavo	-15	1.67
2° scavo	-15.2	1.47
2° scavo	-15.4	1.27
2° scavo	-15.6	1.09
2° scavo	-15.8	0.93
2° scavo	-16	0.8
2° scavo	-16.2	0.69
2° scavo	-16.4	0.62
2° scavo	-16.6	0.59
2° scavo	-16.8	0.58
2° scavo	-17	0.59
2° scavo	-17.2	0.62
2° scavo	-17.4	0.66
2° scavo	-17.6	0.7
2° scavo	-17.8	0.75
2° scavo	-18	0.8

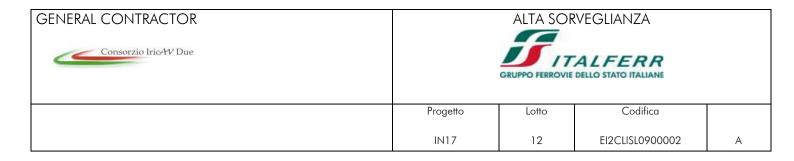


Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 2° scavo

	SLE (Rara) Risultati Para		
Stage	Z (m)	Momento (kN*m/	
2° scavo	0	0	0
2° scavo	-0.2	0	0
2° scavo	-0.2	0	0
2° scavo	-0.4	-0.8	-4
2° scavo	-0.6	-2.53	-8.66
2° scavo	-0.8	-5.33	-13.98
2° scavo	-1	-9.32	-19.93
2° scavo	-1.2	-14.62	-26.51
2° scavo	-1.4	-21.35	-33.68
2° scavo	-1.6	-29.62	-41.35
2° scavo	-1.8	-39.48	-49.26
2° scavo	-2	-50.93	-57.28
2° scavo	-2.2	-40.4	52.64
2° scavo	-2.4	-31.4	44.99
2° scavo	-2.6	-23.84	37.8
2° scavo	-2.8	-17.61	31.18
2° scavo	-3	-12.57	25.18
2° scavo	-3.2	-8.61	19.79
2° scavo	-3.4	-5.61	15 10.72
2° scavo	-3.6	-3.47	10.72
2° scavo 2° scavo	-3.8 -4	-2.08 -1.47	6.94
	-4 -4.2		3.05
2° scavo 2° scavo	-4.2 -4.4	-1.68	-1.05 5.26
2° scavo	-4.4 -4.6	-2.75 -4.73	-5.36 -9.89
2° scavo	-4.8	-4.73 -7.08	-9.89 -11.74
2° scavo	-4.6 -5	-7.08 -9.26	-11.74
2° scavo	-5.2	-11.13	-9.35
2° scavo	-5.4	-12.56	-7.14
2° scavo	-5. 4 -5.6	-13.41	-4.27
2° scavo	-5.8	-13.55	-0.69
2° scavo	-6	-12.82	3.64
2° scavo	-6.2	-11.06	8.79
2° scavo	-6.4	-8.13	14.69
2° scavo	-6.6	-3.93	21
2° scavo	-6.8	-0.72	16.06
2° scavo	-7	1.67	11.9
2° scavo	-7.2	3.37	8.51
2° scavo	-7.4	4.52	5.78
2° scavo	-7.6	5.27	3.74
2° scavo	-7.8	5.74	2.34
2° scavo	-8	6.05	1.56
2° scavo	-8.2	6.32	1.37
2° scavo	-8.4	6.66	1.69
2° scavo	-8.6	7.16	2.51
2° scavo	-8.8	7.53	1.83
2° scavo	-9	7.79	1.3
2° scavo	-9.2	7.97	0.9
2° scavo	-9.4	8.09	0.61
2° scavo	-9.6	8.17	0.41
2° scavo	-9.8	8.23	0.28
2° scavo	-10	8.27	0.2
2° scavo	-10.2	8.3	0.16
2° scavo	-10.4	8.34	0.16
2° scavo	-10.6	8.38	0.2
2° scavo	-10.8	8.43	0.26
2° scavo	-11	8.49	0.31
2° scavo	-11.2	8.56	0.37
2° scavo	-11.4	8.65	0.43

GENERAL CONTRACTOR Consorzio Iric/AV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara	a) Risultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
2° scavo	-11.6	8.74	0.47
2° scavo	-11.8	8.84	0.49
2° scavo	-12	8.93	0.45
2° scavo	-12.2	9.01	0.37
2° scavo	-12.4	9.05	0.23
2° scavo	-12.6	9.06	0.03
2° scavo	-12.8	9.01	-0.24
2° scavo	-13	8.89	-0.62
2° scavo	-13.2	8.67	-1.1
2° scavo	-13.4	8.32	-1.72
2° scavo	-13.6	7.83	-2.48
2° scavo	-13.8	7.15	-3.4
2° scavo	-14	6.25	-4.5
2° scavo	-14.2	5.09	-5.79
2° scavo	-14.4	3.63	-7.28
2° scavo	-14.6	1.84	-8.99
2° scavo	-14.8	-0.35	-10.92
2° scavo	-15	-2.96	-13.08
2° scavo	-15.2	-6.11	-15.72
2° scavo	-15.4	-9.89	-18.91
2° scavo	-15.6	-14.41	-22.62
2° scavo	-15.8	-19.78	-26.83
2° scavo	-16	-23.01	-16.15
2° scavo	-16.2	-24.15	-5.69
2° scavo	-16.4	-23.38	3.84
2° scavo	-16.6	-20.98	11.99
2° scavo	-16.8	-17.08	19.48
2° scavo	-17	-11.7	26.94
2° scavo	-17.2	-7.37	21.62
2° scavo	-17.4	-4.08	16.47
2° scavo	-17.6	-1.78	11.49
2° scavo	-17.8	-0.43	6.73
2° scavo	-18	0	2.17

Tabella Spostamento SLE (Rara) - LEFT Stage: 2° Tirante

esign Assumption: SLE (Rara)	Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m) S	postamento orizzontale (mm)
2° Tirante	0	5.4
2° Tirante	-0.2	4.87
2° Tirante	-0.4	4.35
2° Tirante	-0.6	3.83
2° Tirante	-0.8	3.3
2° Tirante	-1	2.79
2° Tirante	-1.2	2.28
2° Tirante	-1.4	1.79
2° Tirante	-1.6	1.33
2° Tirante	-1.8	0.9
2° Tirante	-2	0.53
2° Tirante	-2.2	0.21
2° Tirante	-2.4	-0.05
2° Tirante	-2.6	-0.27
2° Tirante	-2.8	-0.45
2° Tirante	-3	-0.6
2° Tirante	-3.2	-0.72
2° Tirante	-3.4	-0.81
2° Tirante	-3.6	-0.86
2° Tirante	-3.8	-0.87
2° Tirante	-4	-0.83
2° Tirante	-4.2	-0.72
2° Tirante	-4.4	-0.57
2° Tirante 2° Tirante	-4.6	-0.39
2° Tirante	-4.8 -5	-0.18 0.04
2° Tirante	-5.2	0.04
2° Tirante	-5.4	0.52
2° Tirante	-5. 4 -5.6	0.76
2° Tirante	-5.8	1
2° Tirante	-5.6 -6	1.25
2° Tirante	-6.2	1.5
2° Tirante	-6.4	1.74
2° Tirante	-6.6	1.99
2° Tirante	-6.8	2.22
2° Tirante	-7	2.45
2° Tirante	-7.2	2.66
2° Tirante	-7.4	2.86
2° Tirante	-7.6	3.05
2° Tirante	-7.8	3.22
2° Tirante	-8	3.38
2° Tirante	-8.2	3.52
2° Tirante	-8.4	3.66
2° Tirante	-8.6	3.78
2° Tirante	-8.8	3.89
2° Tirante	-9	3.99
2° Tirante	-9.2	4.08
2° Tirante	-9.4	4.15
2° Tirante	-9.6	4.21
2° Tirante	-9.8	4.26
2° Tirante	-10	4.3
2° Tirante	-10.2	4.33
2° Tirante	-10.4	4.34
2° Tirante	-10.6	4.35
2° Tirante	-10.8	4.34
2° Tirante	-11	4.33
2° Tirante	-11.2	4.3
2° Tirante	-11.4	4.26
2° Tirante	-11.6	4.21

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) T	ipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
2° Tirante	-11.8	4.14
2° Tirante	-12	4.07
2° Tirante	-12.2	3.98
2° Tirante	-12.4	3.89
2° Tirante	-12.6	3.78
2° Tirante	-12.8	3.65
2° Tirante	-13	3.52
2° Tirante	-13.2	3.38
2° Tirante	-13.4	3.22
2° Tirante	-13.6	3.05
2° Tirante	-13.8	2.88
2° Tirante	-14	2.69
2° Tirante	-14.2	2.49
2° Tirante	-14.4	2.29
2° Tirante	-14.6	2.09
2° Tirante	-14.8	1.88
2° Tirante	-15	1.67
2° Tirante	-15.2	1.47
2° Tirante	-15.4	1.27
2° Tirante	-15.6	1.09
2° Tirante	-15.8	0.93
2° Tirante	-16	0.8
2° Tirante	-16.2	0.69
2° Tirante	-16.4	0.62
2° Tirante	-16.6	0.59
2° Tirante	-16.8	0.58
2° Tirante	-17	0.59
2° Tirante	-17.2	0.62
2° Tirante	-17.4	0.66
2° Tirante	-17.6	0.7
2° Tirante	-17.8	0.75
2° Tirante	-18	0.8

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 2° Tirante

Assumption: SLE (Rara) Risultati Parat	tia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
2° Tirante	0	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.4	-0.46	-2.3
2° Tirante	-0.6	-1.64	-5.92
2° Tirante	-0.8	-3.81	-10.85
2° Tirante 2° Tirante	-1 -1.2	-7.19 -11.96	-16.9 -23.81
2° Tirante	-1.2 -1.4	-18.26	-25.61
2° Tirante	-1.6	-26.27	-40.02
2° Tirante	-1.8	-36.11	-49.2
2° Tirante	-2	-47.89	-58.93
2° Tirante	-2.2	-38.54	46.76
2° Tirante	-2.4	-31.26	36.41
2° Tirante	-2.6	-26.06	25.99
2° Tirante	-2.8	-22.94	15.61
2° Tirante	-3	-21.88	5.31
2° Tirante	-3.2	-22.85	-4.87
2° Tirante	-3.4	-25.84	-14.96
2° Tirante	-3.6	-30.84	-24.96
2° Tirante	-3.8	-37.82	-34.89
2° Tirante	-4	-46.86	-45.21
2° Tirante	-4.2	-34.54	61.6
2° Tirante	-4.4	-24.39	50.75
2° Tirante	-4.6	-16.43	39.78
2° Tirante 2° Tirante	-4.8 -5	-10.66 -6.65	28.85 20.07
2° Tirante	-5.2	-0.03 -4.1	12.72
2° Tirante	-5.4	-2.66	7.24
2° Tirante	-5.6	-1.88	3.89
2° Tirante	-5.8	-1.35	2.61
2° Tirante	-6	-0.69	3.32
2° Tirante	-6.2	0.49	5.91
2° Tirante	-6.4	2.53	10.17
2° Tirante	-6.6	5.65	15.62
2° Tirante	-6.8	7.77	10.62
2° Tirante	-7	9.08	6.55
2° Tirante	-7.2	9.76	3.39
2° Tirante	-7.4	9.96	0.99
2° Tirante	-7.6	9.83	-0.65
2° Tirante	-7.8	9.51	-1.59
2° Tirante	-8	9.14	-1.87
2° Tirante	-8.2	8.83	-1.54
2° Tirante 2° Tirante	-8.4 -8.6	8.69 8.83	-0.69 0.67
2° Tirante	-8.8	8.86	0.67
2° Tirante	- 0.0 -9	8.83	-0.18
2° Tirante	-9.2	8.74	-0.41
2° Tirante	-9.4	8.64	-0.53
2° Tirante	-9.6	8.52	-0.58
2° Tirante	-9.8	8.41	-0.56
2° Tirante	-10	8.31	-0.5
2° Tirante	-10.2	8.23	-0.42
2° Tirante	-10.4	8.17	-0.31
2° Tirante	-10.6	8.13	-0.18
2° Tirante	-10.8	8.12	-0.06
2° Tirante	-11	8.13	0.06
2° Tirante 2° Tirante	-11.2 -11.4	8.16 8.22	0.17 0.27

GENERAL CONTRACTOR Consorzio Iricaty Due Progetto IN17 Lotto Codifica IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM Lotto Codifica IN17 12 EI2CLISL09000002 A

Design Assumption: SLE (Rara)	Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	Taglio (kN/m)
2° Tirante	-11.6	8.29	0.37
2° Tirante	-11.8	8.38	0.44
2° Tirante	-12	8.47	0.45
2° Tirante	-12.2	8.55	0.4
2° Tirante	-12.4	8.61	0.29
2° Tirante	-12.6	8.63	0.11
2° Tirante	-12.8	8.6	-0.14
2° Tirante	-13	8.5	-0.5
2° Tirante	-13.2	8.31	-0.98
2° Tirante	-13.4	7.99	-1.58
2° Tirante	-13.6	7.52	-2.34
2° Tirante	-13.8	6.87	-3.26
2° Tirante	-14	6	-4.35
2° Tirante	-14.2	4.87	-5.64
2° Tirante	-14.4	3.44	-7.14
2° Tirante	-14.6	1.67	-8.85
2° Tirante	-14.8	-0.48	-10.78
2° Tirante	-15	-3.07	-12.95
2° Tirante	-15.2	-6.19	-15.59
2° Tirante	-15.4	-9.95	-18.79
2° Tirante	-15.6	-14.45	-22.51
2° Tirante	-15.8	-19.8	-26.73
2° Tirante	-16	-23.01	-16.07
2° Tirante	-16.2	-24.14	-5.65
2° Tirante	-16.4	-23.37	3.86
2° Tirante	-16.6	-20.97	12
2° Tirante	-16.8	-17.08	19.47
2° Tirante	-17	-11.69	26.93
2° Tirante	-17.2	-7.37	21.62
2° Tirante	-17.4	-4.08	16.46
2° Tirante	-17.6	-1.78	11.49
2° Tirante	-17.8	-0.43	6.72
2° Tirante	-18	0	2.17

Tabella Spostamento SLE (Rara) - LEFT Stage: 3° scavo

•	, ,	J
Design Assumption: SLE (Rara) T	ipo Risultato: Spostamer	nto Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
3° scavo	0	1.81
3° scavo	-0.2	1.54
3° scavo	-0.4	1.27
3° scavo	-0.6	1
3° scavo	-0.8	0.73
3° scavo	-1	0.49
3° scavo	-1.2	0.26
3° scavo	-1.4	0.06
3° scavo	-1.6	-0.08
3° scavo	-1.8	-0.16
3° scavo	-2	-0.15
3° scavo	-2.2	-0.04
3° scavo	-2.4	0.18
3° scavo	-2.6	0.51
3° scavo	-2.8	0.94
3° scavo	-3	1.48
3° scavo	-3.2	2.13
3° scavo	-3.4	2.89
3° scavo	-3.6	3.77
3° scavo	-3.8	4.77
3° scavo	-4	5.91
3° scavo	-4.2	7.17
3° scavo 3° scavo	-4.4 -4.6	8.54 10
3° scavo	-4.8	11.51
3° scavo	-4.6 -5	13.05
3° scavo	-5.2	14.6
3° scavo	-5.2 -5.4	16.13
3° scavo	-5. 4 -5.6	17.63
3° scavo	-5.8	19.07
3° scavo	-6	20.44
3° scavo	-6.2	21.72
3° scavo	-6.4	22.91
3° scavo	-6.6	23.97
3° scavo	-6.8	24.92
3° scavo	-7	25.73
3° scavo	-7.2	26.4
3° scavo	-7.4	26.94
3° scavo	-7.6	27.35
3° scavo	-7.8	27.61
3° scavo	-8	27.75
3° scavo	-8.2	27.76
3° scavo	-8.4	27.65
3° scavo	-8.6	27.43
3° scavo	-8.8	27.1
3° scavo	-9	26.68
3° scavo	-9.2	26.18
3° scavo	-9.4	25.6
3° scavo	-9.6	24.96
3° scavo	-9.8	24.26
3° scavo	-10	23.52
3° scavo	-10.2	22.74
3° scavo	-10.4	21.93
3° scavo	-10.6	21.1
3° scavo	-10.8	20.26
3° scavo	-11	19.41
3° scavo	-11.2	18.56
3° scavo	-11.4	17.7
3° scavo	-11.6	16.85

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara)	Tino Risultato: Snostamento	Muro: LEFT
Stage		Spostamento orizzontale (mm)
3° scavo	-11.8	16.01
3° scavo	-12	15.18
3° scavo	-12.2	14.36
3° scavo	-12.4	13.55
3° scavo	-12.6	12.76
3° scavo	-12.8	11.99
3° scavo	-13	11.23
3° scavo	-13.2	10.49
3° scavo	-13.4	9.77
3° scavo	-13.6	9.06
3° scavo	-13.8	8.38
3° scavo	-14	7.72
3° scavo	-14.2	7.07
3° scavo	-14.4	6.44
3° scavo	-14.6	5.84
3° scavo	-14.8	5.25
3° scavo	-15	4.69
3° scavo	-15.2	4.16
3° scavo	-15.4	3.65
3° scavo	-15.6	3.19
3° scavo	-15.8	2.76
3° scavo	-16	2.38
3° scavo	-16.2	2.05
3° scavo	-16.4	1.78
3° scavo	-16.6	1.55
3° scavo	-16.8	1.37
3° scavo	-17	1.22
3° scavo	-17.2	1.1
3° scavo	-17.4	0.99
3° scavo	-17.6	0.9
3° scavo	-17.8	0.8
3° scavo	-18	0.71

Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 3° scavo

Design Assumations CLE /Days	\ Discultati Dayati	n NAMES I SET	
Design Assumption: SLE (Rara			.\(a / a /\
Stage	Z (m)	Momento (kN*m/m	
3° scavo	0	0	0
3° scavo	-0.2	0	0
3° scavo	-0.4	-1.16	-5.79
3° scavo	-0.6	-4.05	-14.48
3° scavo	-0.8	-8.79	-23.68
3° scavo	-1	-15.47	-33.38
3° scavo	-1.2	-24.18	-43.56
3° scavo 3° scavo	-1.4 -1.6	-35.01 -48.03	-54.16 -65.11
3° scavo	-1.8	-63.29	-03.11 -76.31
3° scavo	-1.8 -2	-80.73	-87.18
3° scavo	-2.2	-77.42	16.57
3° scavo	-2.4	-75.99	7.11
3° scavo	-2.6	-76.18	-0.91
3° scavo	-2.8	-77.56	-6.92
3° scavo	-3	-79.63	-10.35
3° scavo	-3.2	-82.31	-13.39
3° scavo	-3.4	-85.63	-16.63
3° scavo	-3.6	-89.65	-20.1
3° scavo	-3.8	-94.41	-23.77
3° scavo	-4	-99.94	-27.66
3° scavo	-4.2	-79.12	104.08
3° scavo	-4.4	-59.17	99.76
3° scavo	-4.6	-40.12	95.24
3° scavo	-4.8	-22.02	90.49
3° scavo	-5	-4.92	85.51
3° scavo	-5.2	11.14	80.31
3° scavo	-5.4	26.11	74.87
3° scavo	-5.6	39.95	69.18
3° scavo	-5.8	52.6	63.27
3° scavo 3° scavo	-6 -6.2	64.03 74.19	57.14 50.79
3° scavo	-6.4	83.03	44.22
3° scavo	-6.6	90.52	37.42
3° scavo	-6.8	95.63	25.55
3° scavo	-7	98.71	15.42
3° scavo	-7.2	100.11	7.01
3° scavo	-7.4	99.98	-0.69
3° scavo	-7.6	98.45	-7.64
3° scavo	-7.8	95.68	-13.84
3° scavo	-8	91.83	-19.28
3° scavo	-8.2	87.03	-23.97
3° scavo	-8.4	81.44	-27.94
3° scavo	-8.6	75.21	-31.15
3° scavo	-8.8	68.49	-33.6
3° scavo	-9	61.43	-35.3
3° scavo	-9.2	54.18	-36.26
3° scavo	-9.4	46.89	-36.46
3° scavo	-9.6	39.71	-35.89
3° scavo	-9.8 10	32.8	-34.57
3° scavo 3° scavo	-10 -10.2	26.3 20.37	-32.48 -29.65
3° scavo	-10.4	15.07	-2 <i>9</i> .03
3° scavo	-10.4	10.37	-20.5
3° scavo	-10.8	6.23	-20.7
3° scavo	-11	2.61	-18.08
3° scavo	-11.2	-0.52	-15.65
3° scavo	-11.4	-3.2	-13.4
3° scavo	-11.6	-5.46	-11.33

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara)	Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
3° scavo	-11.8	-7.35	-9.45
3° scavo	-12	-8.91	-7.78
3° scavo	-12.2	-10.17	-6.29
3° scavo	-12.4	-11.17	-4.99
3° scavo	-12.6	-11.94	-3.88
3° scavo	-12.8	-12.53	-2.93
3° scavo	-13	-12.96	-2.13
3° scavo	-13.2	-13.25	-1.48
3° scavo	-13.4	-13.45	-0.98
3° scavo	-13.6	-13.57	-0.62
3° scavo	-13.8	-13.67	-0.49
3° scavo	-14	-13.84	-0.87
3° scavo	-14.2	-14.2	-1.76
3° scavo	-14.4	-14.82	-3.14
3° scavo	-14.6	-15.83	-5.01
3° scavo	-14.8	-17.3	-7.37
3° scavo	-15	-19.34	-10.2
3° scavo	-15.2	-22.04	-13.49
3° scavo	-15.4	-25.48	-17.22
3° scavo	-15.6	-29.75	-21.36
3° scavo	-15.8	-34.93	-25.88
3° scavo	-16	-37.67	-13.69
3° scavo	-16.2	-38.08	-2.07
3° scavo	-16.4	-36.26	9.1
3° scavo	-16.6	-32.28	19.94
3° scavo	-16.8	-26.2	30.38
3° scavo	-17	-18.2	40
3° scavo	-17.2	-11.65	32.77
3° scavo	-17.4	-6.55	25.49
3° scavo	-17.6	-2.91	18.2
3° scavo	-17.8	-0.73	10.91
3° scavo	-18	0	3.63

Tabella Spostamento SLE (Rara) - LEFT Stage: 3° Tirante

Stage 3° Tirante	2 (m) 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	2.02 1.75 1.48 1.21 0.94 0.69 0.46 0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	1.75 1.48 1.21 0.94 0.69 0.46 0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	1.48 1.21 0.94 0.69 0.46 0.25 0.09 -0.01 -0.04 0.04
3° Tirante	-0.6 -0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	1.21 0.94 0.69 0.46 0.25 0.09 -0.01 -0.04 0.04
3° Tirante	-0.8 -1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	0.94 0.69 0.46 0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-1 -1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	0.69 0.46 0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-1.2 -1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	0.46 0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-1.4 -1.6 -1.8 -2 -2.2 -2.4 -2.6	0.25 0.09 -0.01 -0.04 0.04 0.2
3° Tirante	-1.6 -1.8 -2 -2.2 -2.4 -2.6	0.09 -0.01 -0.04 0.04 0.2
3° Tirante 3° Tirante 3° Tirante 3° Tirante 3° Tirante 3° Tirante	-1.8 -2 -2.2 -2.4 -2.6	-0.01 -0.04 0.04 0.2
3° Tirante 3° Tirante 3° Tirante 3° Tirante 3° Tirante	-2 -2.2 -2.4 -2.6	-0.04 0.04 0.2
3° Tirante 3° Tirante 3° Tirante 3° Tirante	-2.2 -2.4 -2.6	0.04 0.2
3° Tirante 3° Tirante 3° Tirante	-2.4 -2.6	0.2
3° Tirante 3° Tirante	-2.6	
3° Tirante		
	7 O	0.46
3° Tirante	-2.8	0.8
	-3	1.23
3° Tirante	-3.2	1.74
3° Tirante	-3.4	2.35
3° Tirante	-3.6	3.05
3° Tirante	-3.8	3.84
3° Tirante	-4	4.74
3° Tirante	-4.2	5.74
3° Tirante	-4.4	6.83
3° Tirante	-4.6	7.99
3° Tirante	-4.8	9.19
3° Tirante	-5 5.2	10.42
3° Tirante	-5.2	11.67
3° Tirante	-5.4	12.93
3° Tirante 3° Tirante	-5.6 -5.8	14.19
3° Tirante	-5.8 -6	15.45 16.71
3° Tirante	-6.2	16.71 17.98
3° Tirante	-6.2 -6.4	19.23
3° Tirante	-6.6	20.42
3° Tirante	-6.8	21.54
3° Tirante	-0.6 -7	22.56
3° Tirante	, -7.2	23.48
3° Tirante	-7.4	24.26
3° Tirante	-7.6	24.92
3° Tirante	-7.8	25.45
3° Tirante	-8	25.83
3° Tirante	-8.2	26.09
3° Tirante	-8.4	26.21
3° Tirante	-8.6	26.21
3° Tirante	-8.8	26.09
3° Tirante	-9	25.85
3° Tirante	-9.2	25.52
3° Tirante	-9.4	25.1
3° Tirante	-9.6	24.6
3° Tirante	-9.8	24.03
3° Tirante	-10	23.4
3° Tirante	-10.2	22.72
3° Tirante	-10.4	22
3° Tirante	-10.6	21.25
3° Tirante	-10.8	20.47
3° Tirante	-11	19.67
3° Tirante	-11.2	18.86
3° Tirante	-11.4	18.04
3° Tirante	-11.6	17.22

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara)	Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
3° Tirante	-11.8	16.39
3° Tirante	-12	15.57
3° Tirante	-12.2	14.76
3° Tirante	-12.4	13.95
3° Tirante	-12.6	13.16
3° Tirante	-12.8	12.38
3° Tirante	-13	11.61
3° Tirante	-13.2	10.85
3° Tirante	-13.4	10.12
3° Tirante	-13.6	9.39
3° Tirante	-13.8	8.69
3° Tirante	-14	8
3° Tirante	-14.2	7.33
3° Tirante	-14.4	6.69
3° Tirante	-14.6	6.06
3° Tirante	-14.8	5.45
3° Tirante	-15	4.87
3° Tirante	-15.2	4.31
3° Tirante	-15.4	3.79
3° Tirante	-15.6	3.3
3° Tirante	-15.8	2.85
3° Tirante	-16	2.45
3° Tirante	-16.2	2.11
3° Tirante	-16.4	1.81
3° Tirante	-16.6	1.57
3° Tirante	-16.8	1.37
3° Tirante	-17	1.2
3° Tirante	-17.2	1.07
3° Tirante	-17.4	0.94
3° Tirante	-17.6	0.83
3° Tirante	-17.8	0.72
3° Tirante	-18	0.62

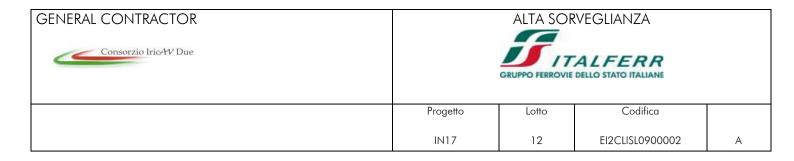


Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: 3° Tirante

Assumption: SLE (Rara	a) Risultati Para	tia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	0	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.4	-0.97	-4.87
3° Tirante 3° Tirante	-0.6 -0.8	-3.5 -7.69	-12.64
3° Tirante	-0.8 -1	-13.64	-20.94 -29.75
3° Tirante	-1.2	-21.45	-39.05
3° Tirante	-1.4	-31.21	-48.8
3° Tirante	-1.6	-43	-58.95
3° Tirante	-1.8	-56.88	-69.4
3° Tirante	-2	-72.8	-79.63
3° Tirante	-2.2	-67.82	24.92
3° Tirante	-2.4	-64.66	15.79
3° Tirante	-2.6	-63.09	7.84
3° Tirante	-2.8	-62.77	1.6
3° Tirante	-3	-63.26	-2.44
3° Tirante	-3.2	-64.57	-6.55
3° Tirante	-3.4	-66.86	-11.44
3° Tirante	-3.6	-70.3	-17.21
3° Tirante	-3.8	-75.09	-23.97
3° Tirante	-4	-81.46	-31.83
3° Tirante	-4.2	-63.11	91.75
3° Tirante	-4.4	-46.84	81.35
3° Tirante 3° Tirante	-4.6 -4.8	-32.82 -21.16	70.1 58.32
3° Tirante	-4.8 -5	-21.16 -11.96	58.52 45.98
3° Tirante	-5.2	-5.34	33.09
3° Tirante	-5.4	-1.44	19.51
3° Tirante	-5.6	-0.42	5.11
3° Tirante	-5.8	-2.42	-10.02
3° Tirante	-6	-7.58	-25.79
3° Tirante	-6.2	16.89	122.35
3° Tirante	-6.4	38.02	105.65
3° Tirante	-6.6	55.75	88.63
3° Tirante	-6.8	70.18	72.17
3° Tirante	-7	81.35	55.85
3° Tirante	-7.2	89.6	41.23
3° Tirante	-7.4	95.15	27.79
3° Tirante	-7.6	98.27	15.58
3° Tirante	-7.8	99.2	4.63
3° Tirante	-8	98.18	-5.07
3° Tirante	-8.2	95.48	-13.52
3° Tirante 3° Tirante	-8.4	91.33	-20.76
3° Tirante	-8.6 -8.8	85.97 70.76	-26.8
3° Tirante	-o.o -9	79.76 72.91	-31.05 -34.24
3° Tirante	-9.2	65.63	-36.41
3° Tirante	-9.4	58.11	-37.58
3° Tirante	-9.6	50.56	-37.75
3° Tirante	-9.8	43.17	-36.95
3° Tirante	-10	36.13	-35.19
3° Tirante	-10.2	29.63	-32.54
3° Tirante	-10.4	23.74	-29.41
3° Tirante	-10.6	18.46	-26.41
3° Tirante	-10.8	13.75	-23.56
3° Tirante	-11	9.57	-20.9
3° Tirante	-11.2	5.89	-18.41
3 mante	11.2	5.05	10.41

GENERAL CONTRACTOR Consorzio Iricaty Due Progetto IN17 Lotto Codifica IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM Lotto Codifica IN17 12 EI2CLISL09000002 A

Design Assumption: SLE (Rara	a) Dicultati Darati	a Muro: LEFT	
• •	•		\= " (I \cdot \)
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	-11.6	-0.12	-13.94
3° Tirante	-11.8	-2.51	-11.98
3° Tirante	-12	-4.56	-10.22
3° Tirante	-12.2	-6.28	-8.64
3° Tirante	-12.4	-7.73	-7.25
3° Tirante	-12.6	-8.94	-6.04
3° Tirante	-12.8	-9.94	-5.01
3° Tirante	-13	-10.77	-4.12
3° Tirante	-13.2	-11.44	-3.38
3° Tirante	-13.4	-12	-2.79
3° Tirante	-13.6	-12.47	-2.35
3° Tirante	-13.8	-12.88	-2.06
3° Tirante	-14	-13.33	-2.23
3° Tirante	-14.2	-13.91	-2.91
3° Tirante	-14.4	-14.73	-4.11
3° Tirante	-14.6	-15.9	-5.82
3° Tirante	-14.8	-17.5	-8.03
3° Tirante	-15	-19.65	-10.72
3° Tirante	-15.2	-22.43	-13.89
3° Tirante	-15.4	-25.93	-17.51
3° Tirante	-15.6	-30.24	-21.56
3° Tirante	-15.8	-35.44	-26.01
3° Tirante	-16	-38.18	-13.7
3° Tirante	-16.2	-38.58	-1.98
3° Tirante	-16.4	-36.73	9.26
3° Tirante	-16.6	-32.7	20.15
3° Tirante	-16.8	-26.54	30.79
3° Tirante	-17	-18.46	40.42
3° Tirante	-17.2	-11.82	33.17
3° Tirante	-17.4	-6.65	25.84
3° Tirante	-17.6	-2.96	18.48
3° Tirante	-17.8	-0.74	11.09
3° Tirante	-18	0	3.7

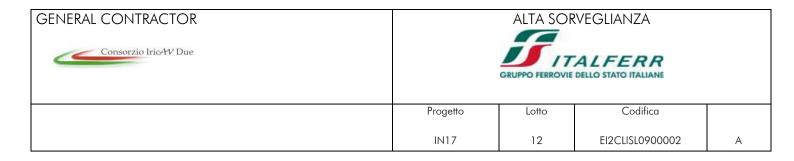


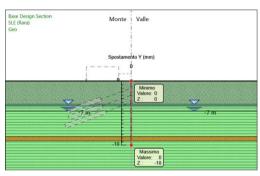
Tabella Spostamento SLE (Rara) - LEFT Stage: Scavo finale

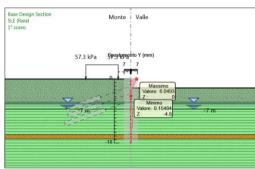
Design Assumption: SLE (Rara) 1	Tipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m) S	oostamento orizzontale (mm)
Scavo finale	0	2.17
Scavo finale	-0.2	1.83
Scavo finale	-0.4	1.48
Scavo finale	-0.6	1.14
Scavo finale	-0.8	0.8
Scavo finale	-1	0.48
Scavo finale	-1.2	0.17
Scavo finale	-1.4	-0.11
Scavo finale Scavo finale	-1.6 -1.8	-0.34
Scavo finale	-1.8 -2	-0.51 -0.6
Scavo finale	-2.2	-0.59
Scavo finale	-2.4	-0.48
Scavo finale	-2.6	-0.27
Scavo finale	-2.8	0.04
Scavo finale	-3	0.45
Scavo finale	-3.2	0.98
Scavo finale	-3.4	1.63
Scavo finale	-3.6	2.4
Scavo finale	-3.8	3.32
Scavo finale	-4	4.39
Scavo finale	-4.2	5.63
Scavo finale	-4.4	7.02
Scavo finale	-4.6	8.56
Scavo finale	-4.8	10.24
Scavo finale	-5	12.04
Scavo finale	-5.2	13.96
Scavo finale	-5.4	16
Scavo finale	-5.6	18.15
Scavo finale Scavo finale	-5.8 -6	20.41
Scavo finale	-6.2	22.79 25.28
Scavo finale	-6.2 -6.4	25.28
Scavo finale	-6.6	30.42
Scavo finale	-6.8	32.99
Scavo finale	-7	35.51
Scavo finale	-7.2	37.94
Scavo finale	-7.4	40.26
Scavo finale	-7.6	42.43
Scavo finale	-7.8	44.44
Scavo finale	-8	46.26
Scavo finale	-8.2	47.87
Scavo finale	-8.4	49.28
Scavo finale	-8.6	50.46
Scavo finale	-8.8	51.41
Scavo finale	-9	52.13
Scavo finale	-9.2	52.62
Scavo finale	-9.4	52.88
Scavo finale	-9.6	52.92
Scavo finale	-9.8	52.74
Scavo finale	-10 10.3	52.35
Scavo finale	-10.2 10.4	51.76
Scavo finale Scavo finale	-10.4 -10.6	50.98
Scavo finale Scavo finale	-10.6 -10.8	50.03 48.92
Scavo finale Scavo finale	-10.8 -11	48.92 47.66
Scavo finale	-11 -11.2	46.27
Scavo finale	-11.2 -11.4	44.76
Scavo finale	-11.4	43.15
JCGVO IIIIGIE	-11.0	-JJ.1J

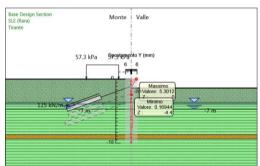
GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

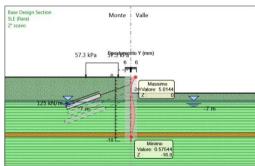
Design Assumption: SLE (Rara) T	ipo Risultato: Spostamento	Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
Scavo finale	-11.8	41.46
Scavo finale	-12	39.69
Scavo finale	-12.2	37.87
Scavo finale	-12.4	36.01
Scavo finale	-12.6	34.12
Scavo finale	-12.8	32.22
Scavo finale	-13	30.31
Scavo finale	-13.2	28.4
Scavo finale	-13.4	26.5
Scavo finale	-13.6	24.63
Scavo finale	-13.8	22.79
Scavo finale	-14	20.98
Scavo finale	-14.2	19.21
Scavo finale	-14.4	17.48
Scavo finale	-14.6	15.81
Scavo finale	-14.8	14.19
Scavo finale	-15	12.63
Scavo finale	-15.2	11.14
Scavo finale	-15.4	9.71
Scavo finale	-15.6	8.36
Scavo finale	-15.8	7.09
Scavo finale	-16	5.9
Scavo finale	-16.2	4.8
Scavo finale	-16.4	3.78
Scavo finale	-16.6	2.84
Scavo finale	-16.8	1.96
Scavo finale	-17	1.14
Scavo finale	-17.2	0.36
Scavo finale	-17.4	-0.39
Scavo finale	-17.6	-1.13
Scavo finale	-17.8	-1.87
Scavo finale	-18	-2.6

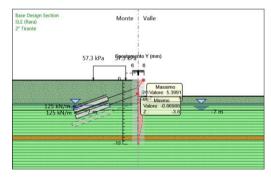
Tabella Risultati Paratia SLE (Rara) - Left Wall - Stage: Scavo finale

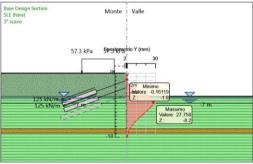

esign Assumption: SLE (Rara)			
Stage	Z (m)	Momento (kN*m/m	
Scavo finale	0	0	0
Scavo finale Scavo finale	-0.2 -0.2	0 0	0 0
Scavo finale	-0.2 -0.4	-0.92	-4.58
Scavo finale	-0.4	-3.38	-4.56 -12.34
Scavo finale	-0.8	-7.56	-20.89
Scavo finale	-1	-13.61	-30.22
Scavo finale	-1.2	-21.67	-40.31
Scavo finale	-1.4	-31.87	-50.98
Scavo finale	-1.6	-44.29	-62.1
Scavo finale	-1.8	-59	-73.57
Scavo finale	-2	-76.04	-85.22
Scavo finale	-2.2	-72.85	15.99
Scavo finale	-2.4	-71.92	4.61
Scavo finale	-2.6	-73.1	-5.87
Scavo finale	-2.8	-76.05	-14.8
Scavo finale	-3	-80.38	-21.65
Scavo finale	-3.2	-86.11	-28.62
Scavo finale	-3.4	-93.37	-36.33
Scavo finale	-3.6	-102.33	-44.77
Scavo finale	-3.8	-113.11	-53.91
Scavo finale	-4	-125.85	-63.71
Scavo finale	-4.2	-114.26	57.97
Scavo finale	-4.4	-104.65	48.03
Scavo finale	-4.6	-96.98	38.35
Scavo finale	-4.8	-91.16	29.09
Scavo finale Scavo finale	-5	-87.04	20.61
Scavo finale Scavo finale	-5.2 -5.4	-84.31 -82.66	13.68 8.25
Scavo finale	-5.4 -5.6	-82.00 -82.14	8.25 2.56
Scavo finale	-5.8	-82.81	-3.35
Scavo finale	-5.8 -6	-84.71	-9.48
Scavo finale	-6.2	-51.67	165.19
Scavo finale	-6.4	-19.95	158.62
Scavo finale	-6.6	10.42	151.82
Scavo finale	-6.8	38.2	138.91
Scavo finale	-7	63.33	125.65
Scavo finale	-7.2	85.74	112.03
Scavo finale	-7.4	105.34	98.03
Scavo finale	-7.6	122.08	83.67
Scavo finale	-7.8	135.98	69.51
Scavo finale	-8	147.2	56.11
Scavo finale	-8.2	155.89	43.46
Scavo finale	-8.4	162.2	31.53
Scavo finale	-8.6	166.27	20.36
Scavo finale	-8.8	168.26	9.95
Scavo finale	-9	168.32	0.29
Scavo finale	-9.2	166.59	-8.63
Scavo finale	-9.4	163.23	-16.79
Scavo finale	-9.6	158.4	-24.18
Scavo finale	-9.8 10	152.23	-30.82
Scavo finale	-10 10.2	144.9	-36.69
Scavo finale Scavo finale	-10.2 -10.4	136.53	-41.82 -46.19
Scavo IIIIdie	-10.4 -10.6	127.29 117.34	-46.18 -49.78
Scavo finale		11/.34	-4J./O
Scavo finale		106.82	-52.61
Scavo finale	-10.8	106.82 95.88	-52.61 -54.7
		106.82 95.88 84.67	-52.61 -54.7 -56.02

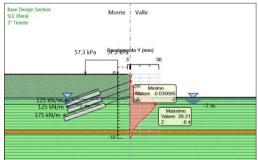

GENERAL CONTRACTOR Consorzio Iricaty Due Progetto IN17 Lotto Codifica IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM Lotto Codifica IN17 12 EI2CLISL09000002 A

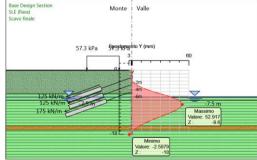

Design Assumention CLF (Design)	Disultati Danat	in Manager LEFT	
Design Assumption: SLE (Rara)			
Stage	Z (m)	Momento (kN*m/m	ı) Taglio (kN/m)
Scavo finale	-11.6	62.09	-56.35
Scavo finale	-11.8	51.02	-55.36
Scavo finale	-12	40.29	-53.62
Scavo finale	-12.2	30.07	-51.11
Scavo finale	-12.4	20.51	-47.82
Scavo finale	-12.6	11.76	-43.77
Scavo finale	-12.8	3.87	-39.43
Scavo finale	-13	-3.22	-35.47
Scavo finale	-13.2	-9.6	-31.87
Scavo finale	-13.4	-15.33	-28.65
Scavo finale	-13.6	-20.49	-25.8
Scavo finale	-13.8	-25.15	-23.33
Scavo finale	-14	-29.4	-21.22
Scavo finale	-14.2	-33.29	-19.48
Scavo finale	-14.4	-36.92	-18.1
Scavo finale	-14.6	-40.33	-17.08
Scavo finale	-14.8	-43.61	-16.4
Scavo finale	-15	-46.82	-16.05
Scavo finale	-15.2	-50.05	-16.17
Scavo finale	-15.4	-53.51	-17.29
Scavo finale	-15.6	-57.38	-19.37
Scavo finale	-15.8	-61.85	-22.34
Scavo finale	-16	-62.99	-5.68
Scavo finale	-16.2	-61.1	9.47
Scavo finale	-16.4	-56.44	23.26
Scavo finale	-16.6	-49.27	35.86
Scavo finale	-16.8	-39.79	47.39
Scavo finale	-17	-28.19	58.01
Scavo finale	-17.2	-18.37	49.13
Scavo finale	-17.4	-10.49	39.35
Scavo finale	-17.6	-4.74	28.76
Scavo finale	-17.8	-1.21	17.66
Scavo finale	-18	0	6.05

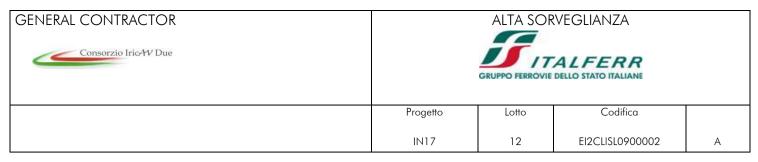

GENERAL CONTRACTOR Consorzio Iric/W Due		1517	EVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

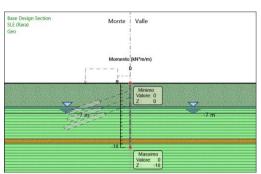

Tabella Grafici dei Risultati

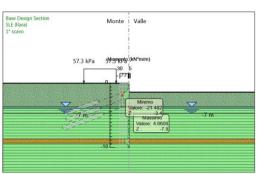


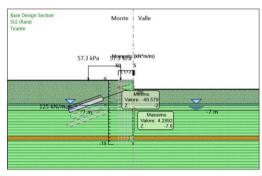


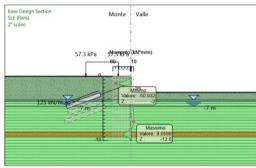


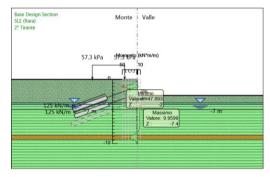


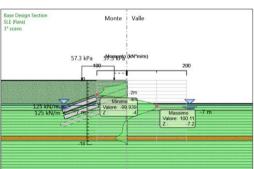


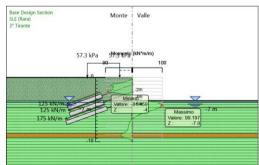


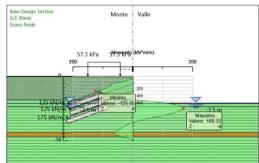


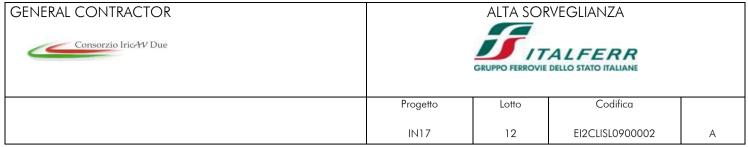


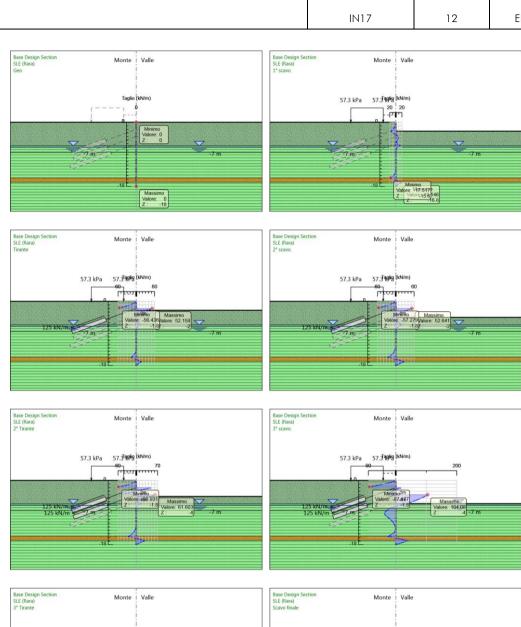


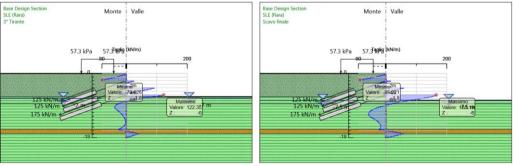












Risultati Elementi strutturali - SLE (Rara)

Design Assumption: SLE (Rara) Sollecitazione 1° Ordine			
Stage	Forza (kN/m)		
Tirante	125		
2° scavo	125.4229		
2° Tirante	123.2624		
3° scavo	121.3574		
3° Tirante	121.6847		

GENERAL CONTRACTOR Consorzio IricAV Due		11	VEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) Sollecitazione 1° Ordine Forza (kN/m) Stage 120.094

Scavo finale

GENERAL CONTRACTOR Consorzio Iric/1/ Due		1517	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) Sollecitazione 2° Ordine

Stage	Forza (kN/m)
2° Tirante	125
3° scavo	144.5515
3° Tirante	141.1592
Scavo finale	140.1389

GENERAL CONTRACTOR Consorzio IricAV Due		11	VEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: SLE (Rara) Sollecitazione 3° Ordine Stage Forza (kN/m)

3° Tirante 175 Scavo finale 192.6406

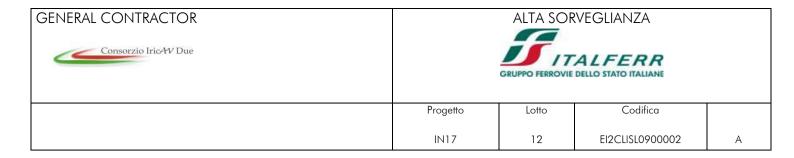

Risultati A1+M1+R1 (R3 per tiranti)

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Geo

Design Assumption: A1+M1+R1 (R3 per tirant			
Stage	Z (m)	Momento (kN*m/m)	Taglio (kN/m)
Geo	0	0	0
Geo	-0.2	0	0
Geo	-0.4	0	0
Geo	-0.6	0	0
Geo	-0.8	0	0
Geo	-1	0	0
Geo	-1.2	0	0
Geo	-1.4	0	0
Geo	-1.6	0	0
Geo	-1.8	0	0
Geo	-2	0	0
Geo	-2.2	0	0
Geo	-2.4	0	0
Geo	-2.6	0	0
Geo	-2.8	0	0
Geo	-3	0	0
Geo	-3.2	0	0
Geo	-3.4	0	0
Geo	-3.6	0	0
Geo	-3.8	0	0
Geo	-4	0	0
Geo	-4.2	0	0
Geo	-4.4	0	0
Geo	-4.6	0	0
Geo	-4.8	0	0
Geo	-5	0	0
Geo	-5.2	0	0
Geo	-5.4	0	0
Geo	-5.6	0	0
Geo	-5.8	0	0
Geo	-6	0	0
Geo	-6.2	0	0
Geo	-6.4	0	0
Geo	-6.6	0	0
Geo	-6.8	0	0
Geo	-7	0	0
Geo	-7.2	0	0
Geo	-7.4	0	0
Geo	-7.6	0	0
Geo	-7.8	0	0
Geo	-8	0	0
Geo	-8.2	0	0
Geo	-8.4	0	0
Geo	-8.4 -8.6	0	0
Geo	-8.8	0	0
Geo	-o.o -9	0	0
Geo	-9.2	0	0
Geo	-9.2 -9.4	0	0
Geo	-9.6 0.8	0	0
Geo	-9.8 10	0	0
Geo	-10	0	0
Geo	-10.2	0	0
Geo	-10.4	0	0
Geo	-10.6	0	0
Geo	-10.8	0	0
Geo	-11	0	0

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	Α

Design Assumption: A1+M1+R1 (R3 per tiral	nti) Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	Taglio (kN/m)
Geo	-11.2	0	0
Geo	-11.4	0	0
Geo	-11.6	0	0
Geo	-11.8	0	0
Geo	-12	0	0
Geo	-12.2	0	0
Geo	-12.4	0	0
Geo	-12.6	0	0
Geo	-12.8	0	0
Geo	-13	0	0
Geo	-13.2	0	0
Geo	-13.4	0	0
Geo	-13.6	0	0
Geo	-13.8	0	0
Geo	-14	0	0
Geo	-14.2	0	0
Geo	-14.4	0	0
Geo	-14.6	0	0
Geo	-14.8	0	0
Geo	-15	0	0
Geo	-15.2	0	0
Geo	-15.4	0	0
Geo	-15.6	0	0
Geo	-15.8	0	0
Geo	-16	0	0
Geo	-16.2	0	0
Geo	-16.4	0	0
Geo	-16.6	0	0
Geo	-16.8	0	0
Geo	-17	0	0
Geo	-17.2	0	0
Geo	-17.4	0	0
Geo	-17.6	0	0
Geo	-17.8	0	0
Geo	-18	0	0

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 1° scavo

esign Assumption: A1+M1+R1 (R3 per tiranti) Risultati Paratia	Muro: LEFT	
Stage		Momento (kN*m/m) Taglio (kN/m)
1° scavo	0	0	0
1° scavo	-0.2	0	0
1° scavo	-0.2	0	0
1° scavo	-0.4	-0.05	-0.25
1° scavo	-0.6	-0.2	-0.74
1° scavo	-0.8	-0.5	-1.49
1° scavo	-1	-0.99	-2.49
1° scavo	-1.2	-1.74	-3.75
1° scavo	-1.4	-2.8	-5.26
1° scavo	-1.6	-4.2	-7.04
1° scavo	-1.8	-6.02	-9.08
1° scavo	-2	-8.3	-11.4
1° scavo	-2.2	-11.1	-13.98
1° scavo	-2.4 -2.6	-14.47	-16.85
1° scavo 1° scavo	-2.8	-18.46 -22.39	-19.99 10.64
1° scavo	-2.o -3	-25.27	-19.64 -14.4
1° scavo	-3.2	-27.15	-14.4 -9.41
1° scavo	-3.4	-28.08	-4.63
1° scavo	-3.6	-28.08	-0.01
1° scavo	-3.8	-27.2	4.43
1° scavo	-4	-25.54	8.26
1° scavo	-4.2	-23.39	10.76
1° scavo	-4.4	-21.09	11.5
1° scavo	-4.6	-18.89	10.99
1° scavo	-4.8	-16.96	9.68
1° scavo	-5	-15.37	7.94
1° scavo	-5.2	-14.14	6.16
1° scavo	-5.4	-13.2	4.69
1° scavo	-5.6	-12.44	3.79
1° scavo	-5.8	-11.68	3.81
1° scavo	-6	-10.66	5.06
1° scavo	-6.2	-9.11	7.8
1° scavo	-6.4	-6.66	12.25
1° scavo	-6.6	-3.02	18.19
1° scavo	-6.8 7	-0.26	13.77
1° scavo	-7 -7.2	1.74	10
1° scavo 1° scavo	-7.2 -7.4	3.11 3.98	6.88 4.34
1° scavo	-7.4 -7.6	3.98 4.46	4.34 2.42
1° scavo	-7.8 -7.8	4.68	1.08
1° scavo	-7.8 -8	4.74	0.3
1° scavo	-8.2	4.75	0.06
1° scavo	-8.4	4.8	0.27
1° scavo	-8.6	4.99	0.94
1° scavo	-8.8	5.15	0.77
1° scavo	-9	5.28	0.64
1° scavo	-9.2	5.38	0.51
1° scavo	-9.4	5.46	0.41
1° scavo	-9.6	5.53	0.33
1° scavo	-9.8	5.58	0.29
1° scavo	-10	5.64	0.26
		5.68	0.22
1° scavo	-10.2	3.06	0.22
1° scavo 1° scavo	-10.2 -10.4	5.72	0.2
	-10.4 -10.6	5.72 5.76	0.2 0.19
1° scavo	-10.4 -10.6 -10.8	5.72 5.76 5.79	0.2 0.19 0.18
1° scavo 1° scavo 1° scavo 1° scavo	-10.4 -10.6 -10.8 -11	5.72 5.76 5.79 5.82	0.2 0.19 0.18 0.15
1° scavo 1° scavo 1° scavo	-10.4 -10.6 -10.8	5.72 5.76 5.79	0.2 0.19 0.18

GENERAL CONTRACTOR Consorzio IricAv Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Design Assumption: A1+M1+R1 (R3 per tiranti) Risultati Paratia Muro: LEFT				
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)	
1° scavo	-11.6	5.88	0.06	
1° scavo	-11.8	5.88	0.01	
1° scavo	-12	5.87	-0.08	
1° scavo	-12.2	5.83	-0.19	
1° scavo	-12.4	5.76	-0.33	
1° scavo	-12.6	5.66	-0.49	
1° scavo	-12.8	5.53	-0.65	
1° scavo	-13	5.37	-0.8	
1° scavo	-13.2	5.19	-0.94	
1° scavo	-13.4	4.97	-1.06	
1° scavo	-13.6	4.74	-1.19	
1° scavo	-13.8	4.46	-1.4	
1° scavo	-14	4.11	-1.75	
1° scavo	-14.2	3.62	-2.42	
1° scavo	-14.4	2.92	-3.51	
1° scavo	-14.6	1.91	-5.04	
1° scavo	-14.8	0.51	-7.01	
1° scavo	-15	-1.38	-9.45	
1° scavo	-15.2	-3.85	-12.36	
1° scavo	-15.4	-7	-15.72	
1° scavo	-15.6	-10.9	-19.52	
1° scavo	-15.8	-15.64	-23.72	
1° scavo	-16	-18.31	-13.32	
1° scavo	-16.2	-19.28	-4.85	
1° scavo	-16.4	-18.82	2.31	
1° scavo	-16.6	-17.05	8.83	
1° scavo	-16.8	-13.97	15.38	
1° scavo	-17	-9.46	22.54	
1° scavo	-17.2	-5.9	17.84	
1° scavo	-17.4	-3.22	13.37	
1° scavo	-17.6	-1.39	9.18	
1° scavo	-17.8	-0.33	5.27	
1° scavo	-18	0	1.66	

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Tirante

		•	
n Assumption: A1+M1+R1 (R3 per ti			-) T!:- /!-N:/)
Stage	Z (m)	Momento (kN*m/n	, , , ,
Tirante Tirante	0 -0.2	0 0	0 0
Tirante	-0.2	0	0
Tirante	-0.2	-0.91	-4.55
Tirante	-0.4	-2.92	-4.55
Tirante	-0.8	-6.22	-16.51
Tirante	-0.8	-11.01	-23.92
Tirante	-1.2	-17.45	-32.25
Tirante	-1.4	-25.75	-41.45
Tirante	-1.6	-36.04	-51.46
Tirante	-1.8	-48.47	-62.15
Tirante	-2	-63.14	-73.38
Tirante	-2.2	-49.59	67.77
Tirante	-2.4	-38.36	56.16
Tirante	-2.6	-29.43	44.66
Tirante	-2.8	-22.72	33.54
Tirante	-3	-17.71	25.04
Tirante	-3.2	-14.11	18.02
Tirante	-3.4	-11.63	12.39
Tirante	-3.6	-10.02	8.06
Tirante	-3.8	-9.02	4.96
Tirante	-4	-8.32	3.52
Tirante	-4.2	-7.79	2.63
Tirante	-4.4	-7.5	1.47
Tirante	-4.6	-7.46	0.2
Tirante	-4.8	-7.67	-1.03
Tirante	-5	-8.09	-2.11
Tirante	-5.2	-8.66	-2.86
Tirante	-5.4	-9.28	-3.09
Tirante	-5.6	-9.81	-2.68
Tirante	-5.8	-10.08	-1.33
Tirante	-6	-9.85	1.17
Tirante	-6.2	-8.84	5.05
Tirante	-6.4	-6.73	10.52
Tirante	-6.6	-3.26	17.36
Tirante	-6.8	-0.63	13.18
Tirante	-7	1.3	9.61
Tirante	-7.2	2.63	6.65
Tirante	-7.4	3.47	4.25
Tirante	-7.6	3.96	2.43
Tirante	-7.8	4.2	1.17
Tirante	-8	4.29	0.45
Tirante	-8.2	4.33	0.24
Tirante	-8.4	4.43	0.48
Tirante	-8.6	4.66	1.16
Tirante	-8.8	4.86	0.99
Tirante	-9	5.03	0.85
Tirante	-9.2	5.17	0.7
Tirante	-9.4	5.29	0.59
Tirante	-9.6	5.39	0.5
Tirante	-9.8	5.48	0.43
Tirante	-10	5.55	0.39
Tirante	-10.2	5.62	0.33
Tirante	-10.4	5.68	0.29
Tirante	-10.6	5.73	0.27
Tirante	-10.8	5.78	0.25
Tirante	-11	5.82	0.21
Tirante	-11.2	5.86	0.17
Tirante	-11.4	5.88	0.13

GENERAL CONTRACTOR Consorzio IricAv Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

Design Assumption: A1+M1+R1 (R3 per tiranti) Risultati Paratia Muro: LEFT				
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)	
Tirante	-11.6	5.9	0.08	
Tirante	-11.8	5.9	0.02	
Tirante	-12	5.89	-0.07	
Tirante	-12.2	5.85	-0.19	
Tirante	-12.4	5.78	-0.33	
Tirante	-12.6	5.68	-0.49	
Tirante	-12.8	5.55	-0.66	
Tirante	-13	5.39	-0.81	
Tirante	-13.2	5.2	-0.94	
Tirante	-13.4	4.99	-1.07	
Tirante	-13.6	4.75	-1.2	
Tirante	-13.8	4.47	-1.41	
Tirante	-14	4.12	-1.75	
Tirante	-14.2	3.63	-2.43	
Tirante	-14.4	2.93	-3.52	
Tirante	-14.6	1.92	-5.04	
Tirante	-14.8	0.51	-7.02	
Tirante	-15	-1.38	-9.46	
Tirante	-15.2	-3.85	-12.36	
Tirante	-15.4	-7	-15.72	
Tirante	-15.6	-10.9	-19.52	
Tirante	-15.8	-15.64	-23.72	
Tirante	-16	-18.31	-13.32	
Tirante	-16.2	-19.28	-4.85	
Tirante	-16.4	-18.82	2.31	
Tirante	-16.6	-17.05	8.84	
Tirante	-16.8	-13.97	15.38	
Tirante	-17	-9.46	22.54	
Tirante	-17.2	-5.9	17.84	
Tirante	-17.4	-3.22	13.37	
Tirante	-17.6	-1.39	9.18	
Tirante	-17.8	-0.33	5.27	
Tirante	-18	0	1.66	

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 2° scavo

Pesign Assumption: A1+M1+R1 (R3 per tira	nti) Risultati Paratia	Muro: LEFT	
Stage		Momento (kN*m/m) Taglio (kN/m)
2° scavo	0	0	0
2° scavo	-0.2	0	0
2° scavo	-0.2	0	0
2° scavo	-0.4	-1.04	-5.21
2° scavo	-0.6	-3.3	-11.27
2° scavo	-0.8	-6.93	-18.18
2° scavo	-1	-12.12	-25.93
2° scavo	-1.2	-19.02	-34.49
2° scavo	-1.4	-27.78	-43.8
2° scavo	-1.6	-38.53	-53.78
2° scavo	-1.8	-51.35	-64.07
2° scavo	-2	-66.25	-74.49
2° scavo	-2.2	-52.57	68.41
2° scavo	-2.4	-40.87	58.46
2° scavo	-2.6	-31.05	49.11
2° scavo	-2.8	-22.95	40.5
2° scavo	-3	-16.41	32.69
2° scavo	-3.2	-11.27	25.69
2° scavo 2° scavo	-3.4	-7.39	19.45
	-3.6 -3.8	-4.61 2.81	13.88 9
2° scavo	-3.8 -4	-2.81 -2.03	3.89
2° scavo 2° scavo	-4 -4.2	-2.03 -2.33	-1.5
2° scavo	-4.2 -4.4	-2.55 -3.77	-1.5 -7.17
2° scavo	-4.4 -4.6	-6.39	-13.12
2° scavo	-4.8	-9.51	-15.6
2° scavo	-5	-12.42	-14.52
2° scavo	-5.2	-14.92	-12.52
2° scavo	-5.4	-16.85	-9.65
2° scavo	-5.6	-18.04	-5.94
2° scavo	-5.8	-18.3	-1.3
2° scavo	-6	-17.43	4.33
2° scavo	-6.2	-15.22	11.04
2° scavo	-6.4	-11.5	18.63
2° scavo	-6.6	-6.15	26.76
2° scavo	-6.8	-2.08	20.31
2° scavo	-7	0.9	14.91
2° scavo	-7.2	3.01	10.55
2° scavo	-7.4	4.43	7.11
2° scavo	-7.6	5.36	4.63
2° scavo	-7.8	5.97	3.06
2° scavo	-8	6.45	2.39
2° scavo	-8.2	6.96	2.57
2° scavo	-8.4	7.67	3.53
2° scavo	-8.6	8.72	5.27
2° scavo	-8.8	9.59	4.34
2° scavo	-9	10.3	3.56
2° scavo	-9.2 0.4	10.88	2.88
2° scavo	-9.4 0.6	11.34	2.32
2° scavo	-9.6 -0.8	11.72	1.87
2° scavo	-9.8 -10	12.02	1.53
2° scavo	-10 -10.2	12.28	1.27 1.06
2° scavo		12.49 12.67	0.91
2° scavo 2° scavo	-10.4 -10.6	12.84	0.91
2° scavo	-10.6 -10.8	12.84 12.99	0.82
2° scavo	-10.8 -11	13.13	0.76
2° scavo	-11.2	13.13	0.69
2° scavo	-11.4	13.37	0.58
2 30000	11.7	10.07	0.50

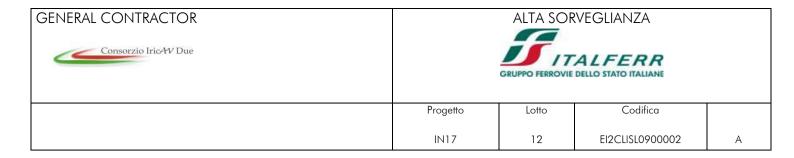

Design Assumption: A1+M1+R1 (R3 per tiran	•		
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
2° scavo	-11.6	13.47	0.5
2° scavo	-11.8	13.55	0.39
2° scavo	-12	13.59	0.2
2° scavo	-12.2	13.58	-0.05
2° scavo	-12.4	13.5	-0.38
2° scavo	-12.6	13.34	-0.8
2° scavo	-12.8	13.08	-1.3
2° scavo	-13	12.71	-1.87
2° scavo	-13.2	12.21	-2.52
2° scavo	-13.4	11.55	-3.28
2° scavo	-13.6	10.72	-4.15
2° scavo	-13.8	9.67	-5.24
2° scavo	-14	8.36	-6.59
2° scavo	-14.2	6.71	-8.23
2° scavo	-14.4	4.68	-10.17
2° scavo	-14.6	2.19	-12.42
2° scavo	-14.8	-0.81	-15.01
2° scavo	-15	-4.39	-17.92
2° scavo	-15.2	-8.64	-21.25
2° scavo	-15.4	-13.72	-25.37
2° scavo	-15.6	-19.77	-30.24
2° scavo	-15.8	-26.93	-35.81
2° scavo	-16	-31.3	-21.86
2° scavo	-16.2	-32.95	-8.26
2° scavo	-16.4	-31.95	5
2° scavo	-16.6	-28.68	16.36
2° scavo	-16.8	-23.35	26.65
2° scavo	-17	-16	36.75
2° scavo	-17.2	-10.09	29.54
2° scavo	-17.4	-5.59	22.52
2° scavo	-17.6	-2.44	15.74
2° scavo	-17.8	-0.6	9.22
2° scavo	-18	0	2.98

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 2° Tirante

gn Assumption: A1+M1+R1 (R3 per tiranti) Risultati Paratia Muro: LEFT			
Stage	Z (m)	Momento (kN*m/r	n) Taglio (kN/
2° Tirante	0	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.4	-0.6	-3
2° Tirante	-0.6	-2.14	-7.71
2° Tirante	-0.8	-4.96	-14.12
2° Tirante	-1	-9.36	-21.99
2° Tirante	-1.2	-15.55	-30.96
2° Tirante	-1.4	-23.75	-40.99
2° Tirante	-1.6	-34.16	-52.02
2° Tirante	-1.8	-46.94	-63.94
2° Tirante	-2	-62.26	-76.59
2° Tirante	-2.2	-50.09	60.84
2° Tirante	-2.4	-40.62	47.38
2° Tirante	-2.6	-33.85	33.84
2° Tirante	-2.8	-29.78	20.34
2° Tirante	-3	-28.39	6.95
2° Tirante	-3.2	-29.66	-6.31
2° Tirante	-3.4	-33.54	-19.44
2° Tirante	-3.6	-33.34 -40.04	-19.44
2° Tirante	-3.8	-49.12	-45.41
2° Tirante	-3.8 -4	-60.9	-58.9
2° Tirante	-4.2	-44.93 24.70	79.88
2° Tirante	-4.4	-31.79	65.69
2° Tirante	-4.6	-21.52	51.34
2° Tirante	-4.8	-14.12	37.01
2° Tirante	-5 5.2	-9 5.0	25.58
2° Tirante	-5.2	-5.8	15.98
2° Tirante	-5.4	-4.03	8.9
2° Tirante	-5.6	-3.11	4.57
2° Tirante	-5.8	-2.52	2.94
2° Tirante	-6	-1.74	3.89
2° Tirante	-6.2	-0.29	7.3
2° Tirante	-6.4	2.27	12.77
2° Tirante	-6.6	6.23	19.79
2° Tirante	-6.8	8.88	13.26
2° Tirante	-7	10.47	7.98
2° Tirante	-7.2	11.26	3.92
2° Tirante	-7.4	11.44	0.91
2° Tirante	-7.6	11.23	-1.05
2° Tirante	-7.8	10.83	-2.02
2° Tirante	-8	10.42	-2.04
2° Tirante	-8.2	10.18	-1.18
2° Tirante	-8.4	10.28	0.47
2° Tirante	-8.6	10.86	2.9
2° Tirante	-8.8	11.3	2.22
2° Tirante	-9	11.63	1.67
2° Tirante	-9.2	11.88	1.22
2° Tirante	-9.4	12.05	0.87
2° Tirante	-9.6	12.18	0.63
2° Tirante	-9.8	12.27	0.48
2° Tirante	-10	12.35	0.4
2° Tirante	-10.2	12.43	0.36
2° Tirante	-10.4	12.5	0.34
2° Tirante	-10.6	12.57	0.35
2° Tirante	-10.8	12.64	0.37
2° Tirante	-11	12.71	0.37
2° Tirante	-11.2	12.79	0.37
2° Tirante	-11.4	12.86	0.36

Design Assumentions A4: 844: D4 /D2 month		NA LEFT	
Design Assumption: A1+M1+R1 (R3 per ti	•		
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
2° Tirante	-11.6	12.92	0.33
2° Tirante	-11.8	12.98	0.28
2° Tirante	-12	13.01	0.16
2° Tirante	-12.2	13	-0.04
2° Tirante	-12.4	12.94	-0.33
2° Tirante	-12.6	12.79	-0.72
2° Tirante	-12.8	12.56	-1.19
2° Tirante	-13	12.21	-1.74
2° Tirante	-13.2	11.73	-2.37
2° Tirante	-13.4	11.11	-3.12
2° Tirante	-13.6	10.31	-3.98
2° Tirante	-13.8	9.3	-5.06
2° Tirante	-14	8.02	-6.41
2° Tirante	-14.2	6.41	-8.04
2° Tirante	-14.4	4.42	-9.98
2° Tirante	-14.6	1.97	-12.24
2° Tirante	-14.8	-1	-14.83
2° Tirante	-15	-4.55	-17.75
2° Tirante	-15.2	-8.77	-21.09
2° Tirante	-15.4	-13.81	-25.22
2° Tirante	-15.6	-19.83	-30.09
2° Tirante	-15.8	-26.96	-35.67
2° Tirante	-16	-31.31	-21.76
2° Tirante	-16.2	-32.95	-8.2
2° Tirante	-16.4	-31.95	5.04
2° Tirante	-16.6	-28.67	16.38
2° Tirante	-16.8	-23.34	26.65
2° Tirante	-17	-15.99	36.74
2° Tirante	-17.2	-10.09	29.53
2° Tirante	-17.4	-5.59	22.51
2° Tirante	-17.6	-2.44	15.73
2° Tirante	-17.8	-0.6	9.22
2° Tirante	-18	0	2.98

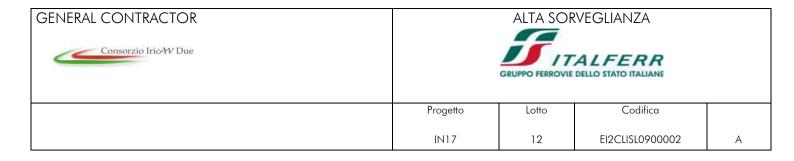
Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 3° scavo

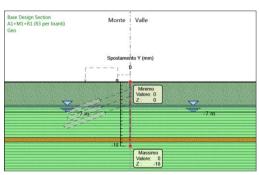
Stage Z (m) 3° scavo 0 3° scavo -0.2 3° scavo -0.6 3° scavo -0.8 3° scavo -1 3° scavo -1.2 3° scavo -1.2 3° scavo -1.6 3° scavo -1.6 3° scavo -2 3° scavo -2.2 3° scavo -2.2 3° scavo -2.4 3° scavo -2.4 3° scavo -2.8 3° scavo -2.8 3° scavo -3.4 3° scavo -3.4 3° scavo -3.4 3° scavo -3.8 3° scavo -3.8 3° scavo -3.8 3° scavo -4.2 3° scavo -4.2 3° scavo -4.2 3° scavo -4.2 3° scavo -5.2 3° scavo -5.2 3° scavo -5.6 3° scavo	aratia Muro: LEFT
3° scavo	
3° scavo -0.4 3° scavo -0.6 3° scavo -0.8 3° scavo -1.2 3° scavo -1.2 3° scavo -1.4 3° scavo -1.6 3° scavo -2.2 3° scavo -2.2 3° scavo -2.4 3° scavo -2.4 3° scavo -2.8 3° scavo -2.8 3° scavo -3.2 3° scavo -3.4 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -3.6 3° scavo -4.2 3° scavo -4.2 3° scavo -4.2 3° scavo -5.6 3° scavo -5.3 3° scavo -5.4 3° scavo -5.4 3° scavo -5.6 3° scavo -6.3 3° scavo -6.2 3° scavo -6.3 3° scavo -7.3 3° scavo -7.3 3° scavo -7.4 3° scavo -6.8 3° scavo -7.2 3° scavo -7.4 3° scavo -7.4 3° scavo -7.8 3° scavo -7.8 3° scavo -7.9 3° scavo -9.9 3°	0 0
3° scavo	0 0
3° scavo	-1.51 -7.53
3° scavo	-5.4 -19.48
3° scavo	-11.8 -32.02
3° scavo	-20.83 -45.12
3° scavo	-32.58 -58.75
3° scavo	-47.15 -72.85
3° scavo -2.2 3° scavo -2.4 3° scavo -2.4 3° scavo -2.6 3° scavo -2.8 3° scavo -2.8 3° scavo -2.8 3° scavo -3.2 3° scavo -3.2 3° scavo -3.4 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -4.2 3° scavo -4.2 3° scavo -4.2 3° scavo -4.6 3° scavo -4.6 3° scavo -5.3 3° scavo -5.2 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -6.8 3° scavo -6.8 3° scavo -6.8 3° scavo -7.2 3° scavo -7.2 3° scavo -7.2 3° scavo -7.8 3° scavo -7.8 3° scavo -7.8 3° scavo -9.8 3° scavo -9.9 3° scavo -10.0 3° scavo -10.0 3° scavo -10.0 3° scavo -10.0	-64.61 -87.31
3° scavo	-85.01 -101.99
3° scavo -2.4 3° scavo -2.8 3° scavo -3 3° scavo -3.2 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -4.3 3° scavo -4.4 3° scavo -4.4 3° scavo -4.8 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -5.6 3° scavo -5.6 3° scavo -6.2 3° scavo -6.2 3° scavo -6.8 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.2 3° scavo -8.6 3° scavo -9.6 3	-108.21 -116
3° scavo -2.6 3° scavo -2.8 3° scavo -3.2 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -4 3° scavo -4.2 3° scavo -4.6 3° scavo -4.6 3° scavo -5.2 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -6.3 3° scavo -6.2 3° scavo -6.6 3° scavo -6.6 3° scavo -7.2 3° scavo -7.6 3° scavo -7.6 3° scavo -8.2 3° scavo -8.2 3° scavo -8.6 3° scavo -9.2 3° scavo -9.6 3	-104.35 19.31
3° scavo -2.8 3° scavo -3.2 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -4 3° scavo -4.2 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -5.8 3° scavo -6.3 3° scavo -6.2 3° scavo -6.6 3° scavo -6.6 3° scavo -7.2 3° scavo -7.6 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3	-102.83 7.59
3° scavo -3.2 3° scavo -3.4 3° scavo -3.6 3° scavo -3.8 3° scavo -4 3° scavo -4.2 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.4 3° scavo -5.4 3° scavo -5.6 3° scavo -5.8 3° scavo -5.8 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.2 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -9.6 3° scavo -9.6 3° scavo -9.6 3° scavo -9.8 3° scavo -9.6 3	-103.21 -1.92
3° scavo -3.2 3° scavo -3.6 3° scavo -3.8 3° scavo -4 3° scavo -4.2 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.2 3° scavo -5.6 3° scavo -5.6 3° scavo -5.8 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7.2 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.8 3° scavo -8.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -9.9 3	-104.91 -8.47
3° scavo -3.4 3° scavo -3.6 3° scavo -4 3° scavo -4.2 3° scavo -4.4 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.4 3° scavo -5.4 3° scavo -5.8 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -9.6 3° scavo -9.6 3° scavo -9.8 3° scavo -9.8 3° scavo -9.8 3° scavo -9.8 3° scavo -10.2	-107.34 -12.17
3° scavo -3.6 3° scavo -4 3° scavo -4.2 3° scavo -4.4 3° scavo -4.6 3° scavo -4.8 3° scavo -5 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.2 3° scavo -10.6 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3	-110.57 -16.15
3° scavo -3.8 3° scavo -4.2 3° scavo -4.4 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -9.8 3° scavo -9.8 3° scavo -9.8 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8	-114.65 -20.41 -119.64 -24.95
3° scavo -4 3° scavo -4.2 3° scavo -4.4 3° scavo -4.6 3° scavo -4.8 3° scavo -5 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.8 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -10.2 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8	
3° scavo -4.2 3° scavo -4.6 3° scavo -4.6 3° scavo -5.2 3° scavo -5.2 3° scavo -5.6 3° scavo -5.6 3° scavo -6.2 3° scavo -6.2 3° scavo -6.6 3° scavo -6.6 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	-125.6 -29.78
3° scavo -4.4 3° scavo -4.6 3° scavo -4.8 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.8 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -6.6 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3 3° scavo -10.6 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	-132.58 -34.89
3° scavo -4.6 3° scavo -4.8 3° scavo -5 3° scavo -5.2 3° scavo -5.6 3° scavo -5.6 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8	-104.76 139.05
3° scavo -4.8 3° scavo -5 3° scavo -5.2 3° scavo -5.6 3° scavo -5.6 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -8.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8	-78.09 133.39
3° scavo -5 3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -5.6 3° scavo -5.8 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -6.6 3° scavo -6.8 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.4 3° scavo -7.8 3° scavo -7.8 3° scavo -7.8 3° scavo -9.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.4 3° scavo -8.6 3° scavo -9.6 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3	-52.6 127.44 -28.36 121.2
3° scavo -5.2 3° scavo -5.4 3° scavo -5.6 3° scavo -6.2 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.4 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	-5.43 114.64
3° scavo -5.4 3° scavo -5.6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.4 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	16.12 107.78
3° scavo -5.6 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -8.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8	36.25 100.61
3° scavo -5.8 3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8	54.87 93.11
3° scavo -6 3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8	71.93 85.32
3° scavo -6.2 3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10.2 3° scavo -10.3 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8	87.38 77.22
3° scavo -6.4 3° scavo -6.6 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	101.15 68.84
3° scavo -6.6 3° scavo -6.8 3° scavo -7 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8 3° scavo -8.2 3° scavo -8.6 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	113.18 60.17
3° scavo -6.8 3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10.2 3° scavo -10.3° scavo -10.6 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	123.41 51.18
3° scavo -7 3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -7.8 3° scavo -8 3° scavo -8.2 3° scavo -8.6 3° scavo -8.8 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8 3° scavo -11	130.51 35.49
3° scavo -7.2 3° scavo -7.4 3° scavo -7.6 3° scavo -8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -8.8 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	134.92 22.03
3° scavo -7.4 3° scavo -7.6 3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -8.6 3° scavo -9.2 3° scavo -9.2 3° scavo -9.2 3° scavo -9.4 3° scavo -9.4 3° scavo -9.6 3° scavo -10.3° scavo -10.2 3° scavo -10.3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -10.8	137.08 10.81
3° scavo -7.6 3° scavo -7.8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9.8 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -11.8	137.18 0.5
3° scavo -7.8 3° scavo -8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -10.8 3° scavo -11.8	135.41 -8.84
3° scavo -8 3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11.8	131.97 -17.22
3° scavo -8.2 3° scavo -8.4 3° scavo -8.6 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	127.04 -24.62
3° scavo -8.4 3° scavo -8.6 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	120.83 -31.05
3° scavo -8.6 3° scavo -8.8 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	113.52 -36.55
3° scavo -8.8 3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	105.31 -41.07
3° scavo -9 3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	96.38 -44.61
3° scavo -9.2 3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	86.95 -47.18
3° scavo -9.4 3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	77.19 -48.79
3° scavo -9.6 3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	67.31 -49.43
3° scavo -9.8 3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	57.49 -49.07
3° scavo -10 3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	47.94 -47.73
3° scavo -10.2 3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	38.86 -45.41
3° scavo -10.4 3° scavo -10.6 3° scavo -10.8 3° scavo -11	
3° scavo -10.6 3° scavo -10.8 3° scavo -11	
3° scavo -10.8 3° scavo -11	
3° scavo -11	
	4.99 -26.02
3° scavo -11.2	
3° scavo -11.4	
3° scavo -11.6	

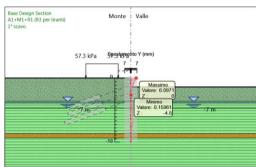
Design Assumption: A1+M1+R1 (R3 per tira	nti) Risultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° scavo	-11.8	-9.52	-13.94
3° scavo	-12	-11.84	-11.63
3° scavo	-12.2	-13.76	-9.58
3° scavo	-12.4	-15.32	-7.81
3° scavo	-12.6	-16.58	-6.31
3° scavo	-12.8	-17.59	-5.05
3° scavo	-13	-18.4	-4.01
3° scavo	-13.2	-19.03	-3.19
3° scavo	-13.4	-19.55	-2.58
3° scavo	-13.6	-19.98	-2.18
3° scavo	-13.8	-20.38	-1.99
3° scavo	-14	-20.78	-2.01
3° scavo	-14.2	-21.34	-2.76
3° scavo	-14.4	-22.18	-4.22
3° scavo	-14.6	-23.46	-6.4
3° scavo	-14.8	-25.31	-9.27
3° scavo	-15	-27.88	-12.81
3° scavo	-15.2	-31.28	-17.01
3° scavo	-15.4	-35.64	-21.83
3° scavo	-15.6	-41.09	-27.24
3° scavo	-15.8	-47.73	-33.19
3° scavo	-16	-51.14	-17.03
3° scavo	-16.2	-51.47	-1.68
3° scavo	-16.4	-48.87	13.01
3° scavo	-16.6	-43.44	27.16
3° scavo	-16.8	-35.28	40.78
3° scavo	-17	-24.54	53.71
3° scavo	-17.2	-15.72	44.09
3° scavo	-17.4	-8.85	34.36
3° scavo	-17.6	-3.93	24.57
3° scavo	-17.8	-0.98	14.75
3° scavo	-18	0	4.92

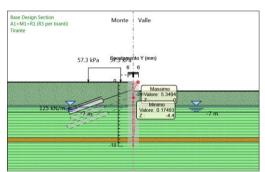
Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: 3° Tirante

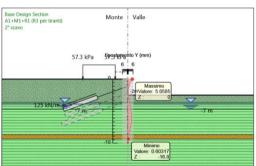
sign Assumption: A1+M1+R1 (R3 per tirar			
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	0	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.4	-1.27	-6.33
3° Tirante	-0.6	-4.69	-17.11
3° Tirante	-0.8	-10.38	-28.47
3° Tirante	-1	-18.46	-40.41
3° Tirante	-1.2	-29.05	-52.91
3° Tirante	-1.4	-42.23	-65.91
3° Tirante	-1.6	-58.09	-79.34
3° Tirante	-1.8	-76.71	-93.06
3° Tirante	-2	-97.96	-106.25
3° Tirante	-2.2	-91.93	30.12
3° Tirante 3° Tirante	-2.4 -2.6	-88.17	18.81
3° Tirante	-2.8	-86.29 -85.77	9.41 2.57
3° Tirante	-2.o -3	-86.15	
3° Tirante	-3.2	-87.61	-1.91 7.27
3° Tirante	-3.4	-90.34	-7.27 -13.65
3° Tirante	-3.4 -3.6	-94.57	-13.03
3° Tirante	-3.8	-100.57	-29.97
3° Tirante	-3.8 -4	-108.61	-40.21
3° Tirante	-4.2	-83.97	123.19
3° Tirante	-4.2 -4.4	-62.04	109.66
3° Tirante	-4.6	-43.04	94.97
3° Tirante	-4.8	-27.13	79.57
3° Tirante	-5	-14.44	63.44
3° Tirante	-5.2	-5.12	46.6
3° Tirante	-5.4	0.64	28.8
3° Tirante	-5.6	2.62	9.91
3° Tirante	-5.8	0.63	-9.93
3° Tirante	-6	-5.49	-30.62
3° Tirante	-6.2	26.86	161.77
3° Tirante	-6.4	54.83	139.86
3° Tirante	-6.6	78.34	117.51
3° Tirante	-6.8	97.51	95.86
3° Tirante	-7	112.39	74.38
3° Tirante	-7.2	123.41	55.12
3° Tirante	-7.4	130.88	37.37
3° Tirante	-7.6	135.13	21.21
3° Tirante	-7.8	136.46	6.68
3° Tirante	-8	135.22	-6.23
3° Tirante	-8.2	131.71	-17.52
3° Tirante	-8.4	126.26	-27.27
3° Tirante	-8.6	119.17	-35.44
3° Tirante	-8.8	110.91	-41.31
3° Tirante	-9	101.75	-45.81
3° Tirante	-9.2	91.95	-49
3° Tirante	-9.4	81.77	-50.87
3° Tirante	-9.6	71.48	-51.46
3° Tirante	-9.8	61.32	-50.79
3° Tirante	-10	51.54	-48.89
3° Tirante	-10.2	42.38	-45.82
3° Tirante	-10.4	34.06	-41.57
3° Tirante	-10.6	26.59	-37.35
3° Tirante	-10.8	19.92	-33.35
		1.4	20.61
3° Tirante	-11	14	-29.61
3° Tirante 3° Tirante	-11 -11.2	8.78	-29.01

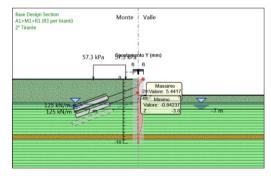

Design Assumption: A1+M1+R1 (R3 per tiral	•		
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
3° Tirante	-11.6	0.23	-19.87
3° Tirante	-11.8	-3.2	-17.15
3° Tirante	-12	-6.14	-14.71
3° Tirante	-12.2	-8.65	-12.54
3° Tirante	-12.4	-10.78	-10.65
3° Tirante	-12.6	-12.58	-9.02
3° Tirante	-12.8	-14.11	-7.64
3° Tirante	-13	-15.41	-6.48
3° Tirante	-13.2	-16.51	-5.53
3° Tirante	-13.4	-17.47	-4.81
3° Tirante	-13.6	-18.34	-4.31
3° Tirante	-13.8	-19.14	-4.02
3° Tirante	-14	-19.93	-3.94
3° Tirante	-14.2	-20.81	-4.42
3° Tirante	-14.4	-21.94	-5.63
3° Tirante	-14.6	-23.45	-7.58
3° Tirante	-14.8	-25.5	-10.24
3° Tirante	-15	-28.22	-13.59
3° Tirante	-15.2	-31.75	-17.63
3° Tirante	-15.4	-36.21	-22.3
3° Tirante	-15.6	-41.72	-27.58
3° Tirante	-15.8	-48.41	-33.43
3° Tirante	-16	-51.83	-17.1
3° Tirante	-16.2	-52.15	-1.61
3° Tirante	-16.4	-49.51	13.18
3° Tirante	-16.6	-44.02	27.45
3° Tirante	-16.8	-35.75	41.35
3° Tirante	-17	-24.89	54.29
3° Tirante	-17.2	-15.97	44.64
3° Tirante	-17.4	-9	34.84
3° Tirante	-17.6	-4.01	24.96
3° Tirante	-17.8	-1	15.01
3° Tirante	-18	0	5.02

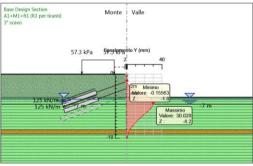

Tabella Risultati Paratia A1+M1+R1 (R3 per tiranti) - Left Wall - Stage: Scavo finale

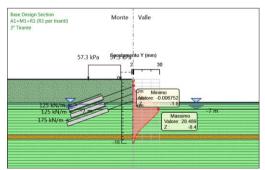

n Assumption: A1+M1+R1 (R3 per tira	•	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
Scavo finale	0	0	0
Scavo finale	-0.2	0	0
Scavo finale	-0.2	0	0
Scavo finale	-0.4	-1.2	-5.99
Scavo finale	-0.6	-4.56	-16.79
Scavo finale	-0.8	-10.27	-28.55
Scavo finale	-1	-18.52	-41.25
Scavo finale	-1.2	-29.49	-54.88
Scavo finale	-1.4	-43.32	-69.12
Scavo finale	-1.6	-60.09	-83.86
Scavo finale	-1.8	-79.88	-98.95
Scavo finale	-2	-102.72	-114.21
Scavo finale	-2.2	-99.26	17.33
Scavo finale	-2.4	-98.69	2.81
Scavo finale	-2.6	-100.71	-10.09
Scavo finale	-2.8	-104.84	-20.63
Scavo finale Scavo finale	-3	-110.63	-28.96
Scavo finale Scavo finale	-3.2	-118.28	-38.22
Scavo finale Scavo finale	-3.4	-127.96	-48.41
Scavo finale	-3.6	-139.86	-59.51
	-3.8	-154.15	-71.47
Scavo finale	-4	-170.99	-84.2
Scavo finale Scavo finale	-4.2 -4.4	-155.58	77.04
		-142.7	64.43
Scavo finale Scavo finale	-4.6	-132.25	52.27
Scavo finale Scavo finale	-4.8	-124.08 117.00	40.81
Scavo finale Scavo finale	-5 -5.2	-117.99 -113.52	30.47 22.37
Scavo finale	-5.2 -5.4	-110.48	15.2
Scavo finale	-5.4 -5.6	-108.94	7.7
Scavo finale	-5.8	-108.95	-0.1
Scavo finale	-5.8 -6	-110.59	-8.19
Scavo finale	-6.2	-66.46	220.68
Scavo finale	-6.4	-24.06	212
Scavo finale	-6.6	16.55	203.01
Scavo finale	-6.8	53.74	185.97
Scavo finale	-0.8 -7	87.43	168.45
Scavo finale	-7 -7.2	117.52	150.46
Scavo finale	-7.2 -7.4	143.91	131.95
Scavo finale	-7. 4 -7.6	166.5	112.97
Scavo finale	-7.8	185.35	94.25
Scavo finale	-7.8 -8	200.65	76.5
Scavo finale	-8.2	212.6	59.72
Scavo finale	-8.4	221.37	43.87
Scavo finale	-8.6	227.17	29
Scavo finale	-8.8	230.2	15.11
Scavo finale	-9 -9	230.64	2.2
Scavo finale	-9.2	228.68	-9.76
Scavo finale	-9.4	224.54	-20.74
Scavo finale	-9.6	218.39	-30.74
Scavo finale	-9.8	210.44	-39.75
Scavo finale	-10	200.89	-33.73 -47.77
	-10.2	189.92	-54.83
Scavo tinale		177.74	-60.91
Scavo finale Scavo finale	-111 4	±,,,,	00.51
Scavo finale	-10.4 -10.6	164 54	-65 99
Scavo finale Scavo finale	-10.6	164.54 150.52	-65.99 -70.08
Scavo finale Scavo finale Scavo finale	-10.6 -10.8	150.52	-70.08
Scavo finale Scavo finale Scavo finale Scavo finale	-10.6 -10.8 -11	150.52 135.88	-70.08 -73.21
Scavo finale Scavo finale Scavo finale	-10.6 -10.8	150.52	-70.08

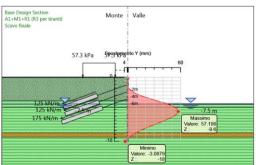

Design Assumption: A1+M1+R1 (R3 per tiranti	Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
Scavo finale	-11.6	90.19	-76.62
Scavo finale	-11.8	75.04	-75.76
Scavo finale	-12	60.25	-73.94
Scavo finale	-12.2	46.03	-71.11
Scavo finale	-12.4	32.57	-67.29
Scavo finale	-12.6	20.08	-62.46
Scavo finale	-12.8	8.76	-56.61
Scavo finale	-13	-1.43	-50.94
Scavo finale	-13.2	-10.59	-45.8
Scavo finale	-13.4	-18.83	-41.19
Scavo finale	-13.6	-26.25	-37.11
Scavo finale	-13.8	-32.96	-33.57
Scavo finale	-14	-39.08	-30.56
Scavo finale	-14.2	-44.69	-28.07
Scavo finale	-14.4	-49.91	-26.09
Scavo finale	-14.6	-54.83	-24.62
Scavo finale	-14.8	-59.56	-23.65
Scavo finale	-15	-64.19	-23.16
Scavo finale	-15.2	-68.82	-23.13
Scavo finale	-15.4	-73.6	-23.92
Scavo finale	-15.6	-78.82	-26.09
Scavo finale	-15.8	-84.73	-29.55
Scavo finale	-16	-86.08	-6.77
Scavo finale	-16.2	-83.32	13.82
Scavo finale	-16.4	-76.83	32.46
Scavo finale	-16.6	-66.96	49.32
Scavo finale	-16.8	-54.05	64.58
Scavo finale	-17	-38.36	78.44
Scavo finale	-17.2	-25.03	66.63
Scavo finale	-17.4	-14.34	53.48
Scavo finale	-17.6	-6.49	39.21
Scavo finale	-17.8	-1.66	24.15
Scavo finale	-18	0	8.31

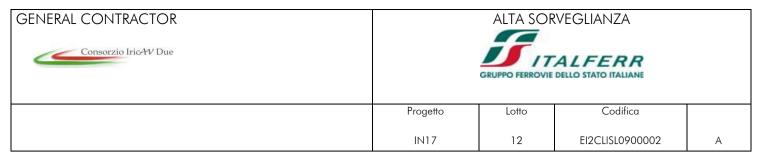


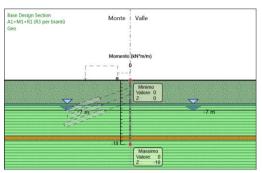

Tabella Grafici dei Risultati

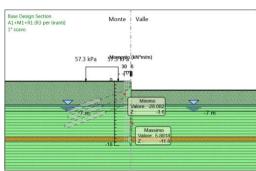


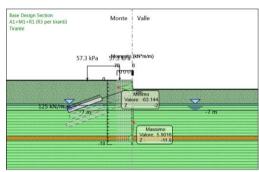


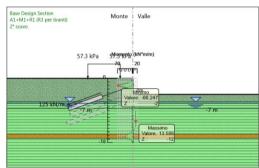


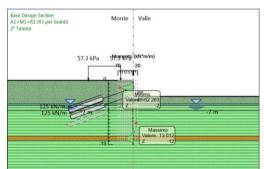


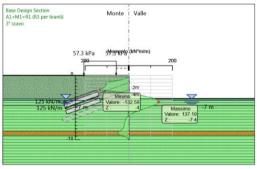


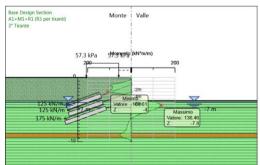




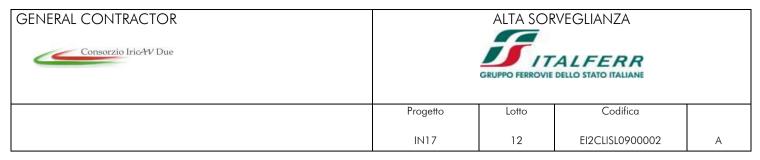


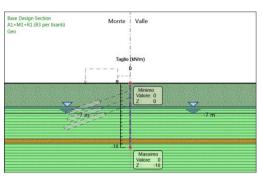


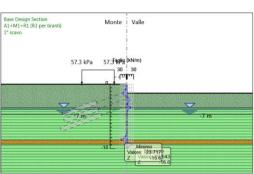


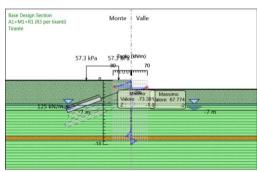


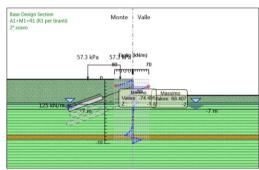


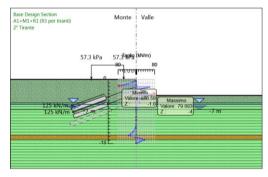


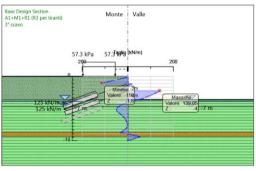


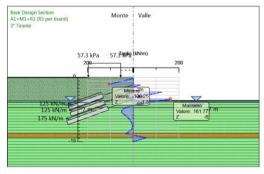


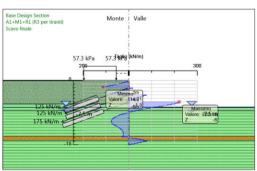












Risultati Elementi strutturali - A1+M1+R1 (R3 per tiranti)

Design Assumption: A1+M1+R1 (R3 per tiranti) Sollecitazione 1° Ordine					
Stage	Forza (kN/m)				
Tirante	162.5				
2° scavo	163.05731				
2° Tirante	160.27167				
3° scavo	157.8798				
3° Tirante	158.30685				

GENERAL CONTRACTOR Consorzio Iric/1/ Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A1+M1+R1 (R3 per tiranti) Sollecitazione 1° Ordine Forza (kN/m) 156.09841

Scavo finale

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A1+M1+R1 (R3 per tiranti) Sollecitazione 2° Ordine

Stage	Forza (kN/m)
2° Tirante	162.5
3° scavo	190.84221
3° Tirante	186.46004
Scavo finale	185.22881

GENERAL CONTRACTOR Consorzio Iric-14 Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A1+M1+R1 (R3 per tiranti) Sollecitazione 3° Ordine
Stage Forza (kN/m)
3° Tirante 227.5

Scavo finale 252.47781

Risultati A2+M2+R1

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: Geo

Design Assumption: A2+M2+F				
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)	
Geo	0	0	0	
Geo	-0.2	0	0	
Geo	-0.4	0	0	
Geo	-0.6	0	0	
Geo	-0.8	0	0	
Geo	-1	0	0	
Geo	-1.2	0	0	
Geo	-1.4	0	0	
Geo	-1.6	0	0	
Geo	-1.8	0	0	
Geo	-2	0	0	
Geo	-2.2	0	0	
Geo	-2.4	0	0	
Geo	-2.6	0	0	
Geo	-2.8	0	0	
Geo	-3	0	0	
Geo	-3.2	0	0	
Geo	-3.4	0	0	
Geo	-3.6	0	0	
Geo	-3.8	0	0	
Geo	-4	0	0	
Geo	-4.2	0	0	
Geo	-4.4	0	0	
Geo	-4.6	0	0	
Geo	-4.8	0	0	
Geo	-5	0	0	
Geo	-5.2	0	0	
Geo	-5.4	0	0	
Geo	-5.6	0	0	
Geo	-5.8	0	0	
Geo	-6	0	0	
Geo	-6.2	0	0	
Geo	-6.4	0	0	
Geo	-6.6	0	0	
Geo	-6.8	0	0	
Geo	-7	0	0	
Geo	-7.2	0	0	
Geo	-7.4	0	0	
Geo	-7.6	0	0	
Geo	-7.8	0	0	
Geo	-8	0	0	
Geo	-8.2	0	0	
Geo	-8.4	0	0	
	-8.6	0	0	
Geo	-8.8	0		
Geo			0	
Geo	-9	0	0	
Geo	-9.2	0	0	
Geo	-9.4	0	0	
Geo	-9.6	0	0	
Geo	-9.8	0	0	
Geo	-10	0	0	
Geo	-10.2	0	0	
Geo	-10.4	0	0	
Geo	-10.6	0	0	
Geo	-10.8	0	0	
Geo	-11	0	0	

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R	1 Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Geo	-11.2	0	0
Geo	-11.4	0	0
Geo	-11.6	0	0
Geo	-11.8	0	0
Geo	-12	0	0
Geo	-12.2	0	0
Geo	-12.4	0	0
Geo	-12.6	0	0
Geo	-12.8	0	0
Geo	-13	0	0
Geo	-13.2	0	0
Geo	-13.4	0	0
Geo	-13.6	0	0
Geo	-13.8	0	0
Geo	-14	0	0
Geo	-14.2	0	0
Geo	-14.4	0	0
Geo	-14.6	0	0
Geo	-14.8	0	0
Geo	-15	0	0
Geo	-15.2	0	0
Geo	-15.4	0	0
Geo	-15.6	0	0
Geo	-15.8	0	0
Geo	-16	0	0
Geo	-16.2	0	0
Geo	-16.4	0	0
Geo	-16.6	0	0
Geo	-16.8	0	0
Geo	-17	0	0
Geo	-17.2	0	0
Geo	-17.4	0	0
Geo	-17.6	0	0
Geo	-17.8	0	0
Geo	-18	0	0

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 1° scavo

Design Assumption: A2+M2+R1			
Stage	Z (m)	Momento (kN*m/m	ı)Taglio (kN/m)
1° scavo	0	0	0
1° scavo	-0.2	0	0
1° scavo	-0.2	0	0
1° scavo	-0.4	-0.05	-0.25
1° scavo	-0.6	-0.2	-0.74
1° scavo	-0.8	-0.49	-1.48
1° scavo	-1	-0.99	-2.47
1° scavo	-1.2	-1.73	-3.72
1° scavo	-1.4	-2.78	-5.23
1° scavo	-1.6	-4.18	-7
1° scavo	-1.8	-5.98	-9.03
1° scavo	-2	-8.25	-11.34
1° scavo	-2.2	-11.04	-13.92
1° scavo	-2.4	-14.39	-16.78
1° scavo	-2.6	-18.38	-19.92
1° scavo	-2.8	-22.65	-21.4
1° scavo	-3	-26.51	-19.28
1° scavo	-3.2	-29.25	-13.68
1° scavo	-3.4	-30.99	-8.74
1° scavo	-3.6	-31.87	-4.39
1° scavo	-3.8	-31.98	-0.54
1° scavo	-4	-31.41	2.87
1° scavo	-4.2	-30.22	5.95
1° scavo	-4.4	-28.46	8.76
1° scavo	-4.6	-26.27	10.99
1° scavo	-4.8	-23.97	11.51
1° scavo	-5	-21.83	10.67
1° scavo	-5.2	-20.03	9
1° scavo	-5.4	-18.63	6.98
1° scavo	-5.6	-17.64	4.99
1° scavo	-5.8	-16.94	3.48
1° scavo	-6	-16.37	2.86
1° scavo 1° scavo	-6.2 -6.4	-15.68 -14.62	3.45
1° scavo	-6.4 -6.6		5.27 7.83
1° scavo	-6.8	-13.06 -12.18	7.65 4.4
1° scavo	-0.8 -7	-12.18	1.78
1° scavo	-7 -7.2	-11.82	0.06
1° scavo	-7.2 -7.4	-11.96	-0.74
1° scavo	-7. 4 -7.6	-12.06	-0.49
1° scavo	-7.8	-11.88	0.91
1° scavo	-8	-11.17	3.53
1° scavo	-8.2	-9.68	7.46
1° scavo	-8.4	-7.13	12.74
1° scavo	-8.6	-3.23	19.49
1° scavo	-8.8	0.26	17.45
1° scavo	-9	3.37	15.58
1° scavo	-9.2	6.14	13.83
1° scavo	-9.4	8.59	12.23
1° scavo	-9.6	10.74	10.79
1° scavo	-9.8	12.64	9.49
1° scavo	-10	14.31	8.33
1° scavo	-10.2	15.76	7.26
1° scavo	-10.4	17.02	6.31
1° scavo	-10.6	18.11	5.45
1° scavo	-10.8	19.05	4.69
1° scavo	-11	19.84	3.97
1° scavo	-11.2	20.5	3.3
1° scavo	-11.4	21.04	2.67

Design Assumption: A2+M2+F	11 Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
1° scavo	-11.6	21.45	2.06
1° scavo	-11.8	21.74	1.46
1° scavo	-12	21.9	0.81
1° scavo	-12.2	21.93	0.14
1° scavo	-12.4	21.81	-0.59
1° scavo	-12.6	21.53	-1.39
1° scavo	-12.8	21.08	-2.25
1° scavo	-13	20.45	-3.17
1° scavo	-13.2	19.62	-4.15
1° scavo	-13.4	18.57	-5.23
1° scavo	-13.6	17.29	-6.42
1° scavo	-13.8	15.74	-7.73
1° scavo	-14	13.91	-9.19
1° scavo	-14.2	11.75	-10.8
1° scavo	-14.4	9.23	-12.59
1° scavo	-14.6	6.32	-14.55
1° scavo	-14.8	2.98	-16.7
1° scavo	-15	-0.83	-19.05
1° scavo	-15.2	-5.15	-21.6
1° scavo	-15.4	-10.02	-24.35
1° scavo	-15.6	-15.48	-27.29
1° scavo	-15.8	-21.56	-30.41
1° scavo	-16	-25.25	-18.43
1° scavo	-16.2	-26.74	-7.44
1° scavo	-16.4	-26.2	2.68
1° scavo	-16.6	-23.78	12.09
1° scavo	-16.8	-19.6	20.92
1° scavo	-17	-13.74	29.3
1° scavo	-17.2	-8.88	24.3
1° scavo	-17.4	-5.05	19.15
1° scavo	-17.6	-2.28	13.87
1° scavo	-17.8	-0.58	8.48
1° scavo	-18	0	2.9

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: Tirante

Design Assumption: A2+M2+R			
Stage	Z (m)	Momento (kN*m/m	
Tirante	0	0	0
Tirante	-0.2	0	0
Tirante	-0.2	0	0
Tirante	-0.4	-0.78	-3.88
Tirante	-0.6	-2.49	-8.55
Tirante	-0.8	-5.27	-13.91
Tirante	-1	-9.26	-19.96
Tirante	-1.2	-14.59	-26.67
Tirante	-1.4 -1.6	-21.4	-34.02
Tirante Tirante	-1.6 -1.8	-29.79 -39.87	-41.96 -50.4
Tirante	-1.8 -2	-51.71	-59.23
Tirante	-2.2	-41.88	49.15
Tirante	-2.4	-33.88	39.99
Tirante	-2.6	-27.7	30.9
Tirante	-2.8	-23.29	22.08
Tirante	-3	-20.55	13.69
Tirante	-3.2	-18.69	9.32
Tirante	-3.4	-17.53	5.8
Tirante	-3.6	-16.92	3.05
Tirante	-3.8	-16.72	0.99
Tirante	-4	-16.77	-0.28
Tirante	-4.2	-16.83	-0.3
Tirante	-4.4	-16.69	0.71
Tirante	-4.6	-16.27	2.12
Tirante	-4.8	-15.76	2.56
Tirante	-5	-15.32	2.16
Tirante	-5.2	-15.07	1.28
Tirante	-5.4	-15.02	0.25
Tirante	-5.6	-15.15	-0.67
Tirante	-5.8	-15.37	-1.07
Tirante Tirante	-6 -6.2	-15.49 -15.31	-0.64 0.94
Tirante	-6.4	-14.58	3.65
Tirante	-6.6	-13.18	6.99
Tirante	-6.8	-12.42	3.79
Tirante	-7	-12.15	1.36
Tirante	-7.2	-12.19	-0.21
Tirante	-7.4	-12.37	-0.88
Tirante	-7.6	-12.47	-0.53
Tirante	-7.8	-12.28	0.95
Tirante	-8	-11.56	3.62
Tirante	-8.2	-10.04	7.59
Tirante	-8.4	-7.46	12.9
Tirante	-8.6	-3.53	19.65
Tirante	-8.8	-0.01	17.62
Tirante	-9	3.14	15.74
Tirante	-9.2	5.94	13.99
Tirante	-9.4	8.42	12.38
Tirante Tirante	-9.6	10.6 12.53	10.93
Tirante	-9.8 -10	14.22	9.62 8.45
Tirante	-10.2	15.69	7.36
Tirante	-10.2	16.97	6.4
Tirante	-10.4	18.07	5.53
Tirante	-10.8	19.03	4.76
Tirante	-11	19.83	4.02
Tirante	-11.2	20.5	3.34
Tirante	-11.4	21.04	2.71

GENERAL CONTRACTOR Consorzio IricAV Due	J ITALFE	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto Lotto C	Codifica		
	IN17 12 EI2CL	LISL0900002	А	

	4 51 11 11 5		
Design Assumption: A2+M2+F			
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Tirante	-11.6	21.46	2.09
Tirante	-11.8	21.75	1.48
Tirante	-12	21.92	0.83
Tirante	-12.2	21.95	0.15
Tirante	-12.4	21.83	-0.59
Tirante	-12.6	21.55	-1.39
Tirante	-12.8	21.1	-2.25
Tirante	-13	20.47	-3.17
Tirante	-13.2	19.64	-4.16
Tirante	-13.4	18.59	-5.23
Tirante	-13.6	17.31	-6.42
Tirante	-13.8	15.76	-7.74
Tirante	-14	13.92	-9.19
Tirante	-14.2	11.76	-10.81
Tirante	-14.4	9.24	-12.59
Tirante	-14.6	6.33	-14.56
Tirante	-14.8	2.99	-16.71
Tirante	-15	-0.82	-19.06
Tirante	-15.2	-5.15	-21.61
Tirante	-15.4	-10.02	-24.35
Tirante	-15.6	-15.47	-27.29
Tirante	-15.8	-21.56	-30.42
Tirante	-16	-25.25	-18.43
Tirante	-16.2	-26.73	-7.45
Tirante	-16.4	-26.2	2.68
Tirante	-16.6	-23.78	12.09
Tirante	-16.8	-19.6	20.92
Tirante	-17	-13.74	29.3
Tirante	-17.2	-8.88	24.3
Tirante	-17.4	-5.05	19.15
Tirante	-17.6	-2.28	13.87
Tirante	-17.8	-0.58	8.48
Tirante	-18	0	2.9

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 2° scavo

Stage 2° scavo 2° scavo 2° scavo 2° scavo	Z (m) 0 -0.2 -0.2	Momento (kN*m/m	n) Taglio (kN/m) 0
2° scavo 2° scavo	-0.2		n
2° scavo			U
	0.2	0	0
2° scavo	-0.2	0	0
2 30000	-0.4	-0.78	-3.88
2° scavo	-0.6	-2.68	-9.51
2° scavo	-0.8	-5.81	-15.65
2° scavo	-1	-10.26	-22.29
2° scavo	-1.2	-16.15	-29.42
2° scavo	-1.4	-23.55	-37
2° scavo 2° scavo	-1.6	-32.54	-44.96 52.04
2° scavo	-1.8 -2	-43.13 -55.27	-52.94 -60.72
2° scavo	-2 -2.2	-35.27 -45.24	50.72
2° scavo	-2.4	-36.57	43.34
2° scavo	-2.6	-29.12	37.26
2° scavo	-2.8	-22.72	32.02
2° scavo	-3	-17.19	27.67
2° scavo	-3.2	-12.45	23.68
2° scavo	-3.4	-8.57	19.42
2° scavo	-3.6	-5.59	14.86
2° scavo	-3.8	-3.59	10.03
2° scavo	-4	-2.61	4.91
2° scavo	-4.2	-2.7	-0.49
2° scavo	-4.4	-3.94	-6.18
2° scavo	-4.6	-6.37	-12.14
2° scavo	-4.8	-9.66	-16.47
2° scavo	-5	-13.11	-17.23
2° scavo	-5.2	-16.03	-14.59
2° scavo	-5.4	-18.36	-11.67
2° scavo	-5.6 5.0	-20.04	-8.42
2° scavo	-5.8 -6	-21.03 -21.28	-4.95 1.33
2° scavo 2° scavo	-6.2	-21.28 -20.72	-1.22 2.82
2° scavo	-6.2 -6.4	-19.27	7.22
2° scavo	-6.6	-16.87	11.99
2° scavo	-6.8	-15.31	7.79
2° scavo	-7	-14.4	4.55
2° scavo	-7.2	-13.93	2.36
2° scavo	-7.4	-13.68	1.24
2° scavo	-7.6	-13.42	1.3
2° scavo	-7.8	-12.9	2.64
2° scavo	-8	-11.82	5.36
2° scavo	-8.2	-9.92	9.54
2° scavo	-8.4	-6.87	15.23
2° scavo	-8.6	-2.37	22.53
2° scavo	-8.8	1.63	19.98
2° scavo	-9	5.16	17.65
2° scavo	-9.2	8.26	15.5
2° scavo	-9.4	10.97	13.56
2° scavo	-9.6	13.33	11.83
2° scavo	-9.8 10	15.39	10.29
2° scavo	-10	17.18	8.93
2° scavo	-10.2	18.72	7.7 6.62
2° scavo	-10.4	20.04	6.62
2° scavo	-10.6 -10.8	21.17	5.67 4.84
2° scavo 2° scavo	-10.8 -11	22.14 22.96	4.84 4.07
2° scavo	-11 -11.2	23.63	3.38
2° scavo	-11.2	24.18	3.36 2.74

Design Assumption: A2+M2+	R1 Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
2° scavo	-11.6	24.61	2.13
2° scavo	-11.8	24.91	1.52
2° scavo	-12	25.08	0.86
2° scavo	-12.2	25.12	0.18
2° scavo	-12.4	25	-0.57
2° scavo	-12.6	24.72	-1.41
2° scavo	-12.8	24.26	-2.33
2° scavo	-13	23.59	-3.32
2° scavo	-13.2	22.71	-4.43
2° scavo	-13.4	21.58	-5.65
2° scavo	-13.6	20.17	-7.03
2° scavo	-13.8	18.45	-8.59
2° scavo	-14	16.39	-10.33
2° scavo	-14.2	13.93	-12.29
2° scavo	-14.4	11.04	-14.47
2° scavo	-14.6	7.66	-16.89
2° scavo	-14.8	3.74	-19.57
2° scavo	-15	-0.76	-22.51
2° scavo	-15.2	-5.9	-25.72
2° scavo	-15.4	-11.74	-29.19
2° scavo	-15.6	-18.33	-32.93
2° scavo	-15.8	-25.71	-36.91
2° scavo	-16	-30.22	-22.56
2° scavo	-16.2	-32.09	-9.34
2° scavo	-16.4	-31.5	2.92
2° scavo	-16.6	-28.63	14.38
2° scavo	-16.8	-23.59	25.18
2° scavo	-17	-16.5	35.48
2° scavo	-17.2	-10.63	29.35
2° scavo	-17.4	-6.02	23.05
2° scavo	-17.6	-2.69	16.62
2° scavo	-17.8	-0.68	10.07
2° scavo	-18	0	3.39

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 2° Tirante

Decian Assumption 43 443 D	I Discultati Danis	io Marcalett	
Design Assumption: A2+M2+R1			\\
Stage 2° Tirante	Z (m) 0	Momento (kN*m/m	
2° Tirante	-0.2	0	0 0
2° Tirante	-0.2	0	0
2° Tirante	-0.4	-0.42	-2.08
2° Tirante	-0.6	-1.72	-6.5
2° Tirante	-0.8	-4.12	-12.04
2° Tirante	-1	-7.86	-18.69
2° Tirante	-1.2	-13.07	-26.03
2° Tirante	-1.4	-19.87	-34.03
2° Tirante	-1.6	-28.4	-42.65
2° Tirante	-1.8	-38.77	-51.82
2° Tirante	-2	-51.05	-61.41
2° Tirante	-2.2	-42.05	45
2° Tirante	-2.4	-35.05	34.99
2° Tirante	-2.6	-30.05	25.01
2° Tirante	-2.8	-27.02	15.13
2° Tirante	-3	-25.94	5.41
2° Tirante	-3.2	-26.81	-4.32
2° Tirante	-3.4	-29.66	-14.28
2° Tirante	-3.6	-34.55	-24.45
2° Tirante	-3.8	-41.51	-34.82
2° Tirante	-4	-50.6	-45.43
2° Tirante	-4.2	-38.4	61.03
2° Tirante	-4.4 -4.6	-28.44	49.76
2° Tirante 2° Tirante	-4.6 -4.8	-20.78 -15.41	38.32 26.85
2° Tirante	-4.o -5	-13.41 -12.1	16.55
2° Tirante	-5.2	-10.01	10.46
2° Tirante	-5.4	-8.91	5.47
2° Tirante	-5.6	-8.53	1.89
2° Tirante	-5.8	-8.54	-0.04
2° Tirante	-6	-8.63	-0.43
2° Tirante	-6.2	-8.5	0.62
2° Tirante	-6.4	-7.9	3.01
2° Tirante	-6.6	-6.58	6.61
2° Tirante	-6.8	-6.13	2.25
2° Tirante	-7	-6.32	-0.96
2° Tirante	-7.2	-6.91	-2.96
2° Tirante	-7.4	-7.67	-3.78
2° Tirante	-7.6	-8.34	-3.33
2° Tirante	-7.8	-8.64	-1.52
2° Tirante	-8	-8.3	1.71
2° Tirante	-8.2	-7.01	6.43
2° Tirante	-8.4	-4.48	12.68
2° Tirante	-8.6	-0.4	20.39
2° Tirante	-8.8	3.21	18.05
2° Tirante	-9 0.2	6.4	15.93
2° Tirante	-9.2	9.2	13.99
2° Tirante	-9.4 0.6	11.64	12.25
2° Tirante 2° Tirante	-9.6	13.78 15.65	10.7
2° Tirante	-9.8 -10	17.28	9.33 8.14
2° Tirante	-10.2	18.69	7.07
2° Tirante	-10.2	19.92	6.12
2° Tirante	-10.4	20.97	5.28
2° Tirante	-10.8	21.88	4.54
2° Tirante	-11	22.65	3.83
2° Tirante	-11.2	23.28	3.19
2° Tirante	-11.4	23.8	2.59

Design Assumption: A2+M2+R1	L Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
2° Tirante	-11.6	24.2	2
2° Tirante	-11.8	24.49	1.43
2° Tirante	-12	24.65	0.8
2° Tirante	-12.2	24.67	0.14
2° Tirante	-12.4	24.56	-0.59
2° Tirante	-12.6	24.28	-1.38
2° Tirante	-12.8	23.83	-2.27
2° Tirante	-13	23.18	-3.25
2° Tirante	-13.2	22.31	-4.33
2° Tirante	-13.4	21.2	-5.54
2° Tirante	-13.6	19.82	-6.91
2° Tirante	-13.8	18.13	-8.45
2° Tirante	-14	16.09	-10.19
2° Tirante	-14.2	13.66	-12.14
2° Tirante	-14.4	10.8	-14.33
2° Tirante	-14.6	7.45	-16.75
2° Tirante	-14.8	3.56	-19.43
2° Tirante	-15	-0.91	-22.37
2° Tirante	-15.2	-6.03	-25.58
2° Tirante	-15.4	-11.84	-29.06
2° Tirante	-15.6	-18.4	-32.79
2° Tirante	-15.8	-25.75	-36.78
2° Tirante	-16	-30.25	-22.47
2° Tirante	-16.2	-32.1	-9.27
2° Tirante	-16.4	-31.51	2.96
2° Tirante	-16.6	-28.63	14.4
2° Tirante	-16.8	-23.59	25.19
2° Tirante	-17	-16.5	35.48
2° Tirante	-17.2	-10.63	29.35
2° Tirante	-17.4	-6.02	23.05
2° Tirante	-17.6	-2.69	16.62
2° Tirante	-17.8	-0.68	10.06
2° Tirante	-18	0	3.39

Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 3° scavo

Design Assumption: A2+M2+I			\= " (1 a. ()
Stage	Z (m)	Momento (kN*m/n	
3° scavo	0	0	0
3° scavo	-0.2 -0.2	0 0	0 0
3° scavo 3° scavo	-0.2 -0.4	-0.78	-3.88
3° scavo	-0.4 -0.6	-0.78 -3.11	-3.66 -11.66
3° scavo	-0.8	-3.11 -7.78	-23.36
3° scavo	-0.8 -1	-15.57	-38.96
3° scavo	-1.2	-27.26	-58.44
3° scavo	-1.4	-43.44	-80.91
3° scavo	-1.6	-63.4	-99.79
3° scavo	-1.8	-86.39	-114.96
3° scavo	-2	-111.29	-124.49
3° scavo	-2.2	-112.62	-6.67
3° scavo	-2.4	-114.56	-9.7
3° scavo	-2.6	-117.16	-12.96
3° scavo	-2.8	-120.45	-16.45
3° scavo	-3	-124.48	-20.17
3° scavo	-3.2	-129.31	-24.16
3° scavo	-3.4	-135	-28.42
3° scavo	-3.6	-141.59	-32.98
3° scavo	-3.8	-149.15	-37.81
3° scavo	-4	-157.74	-42.93
3° scavo	-4.2	-120.81	184.66
3° scavo	-4.4	-85.01	178.98
3° scavo	-4.6	-50.41	173.01
3° scavo	-4.8 -5	-17.06	166.75
3° scavo 3° scavo	-5 -5.2	14.97 45.63	160.17 153.28
3° scavo	-5.2 -5.4	74.84	146.07
3° scavo	-5. 4 -5.6	102.55	138.53
3° scavo	-5.8	128.69	130.68
3° scavo	-6	153.19	122.54
3° scavo	-6.2	176.01	114.1
3° scavo	-6.4	197.09	105.37
3° scavo	-6.6	216.35	96.31
3° scavo	-6.8	232.66	81.56
3° scavo	-7	246.27	68.05
3° scavo	-7.2	257.43	55.78
3° scavo	-7.4	266.22	43.98
3° scavo	-7.6	272.77	32.71
3° scavo	-7.8	277.16	21.97
3° scavo	-8	279.51	11.75
3° scavo	-8.2	279.92	2.06
3° scavo	-8.4	278.5	-7.13
3° scavo	-8.6	275.34	-15.79
3° scavo	-8.8	270.56	-23.91
3° scavo	-9 -9.2	264.26	-31.5
3° scavo 3° scavo	-9.2 -9.4	256.54 247.52	-38.58 -45.11
3° scavo	-9.6	237.3	-51.11
3° scavo	-9.8	225.99	-56.55
3° scavo	-10	213.7	-61.46
3° scavo	-10.2	200.53	-65.84
3° scavo	-10.4	186.59	-69.68
3° scavo	-10.6	172	-72.97
3° scavo	-10.8	156.85	-75.71
3° scavo	-11	141.27	-77.92
3° scavo	-11.2	125.35	-79.58
3° scavo	-11.4	109.22	-80.69

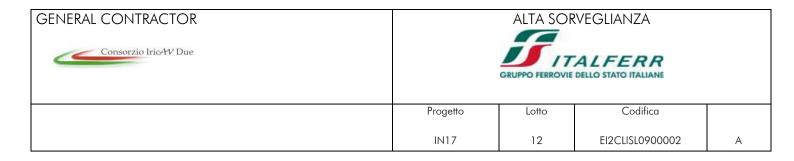
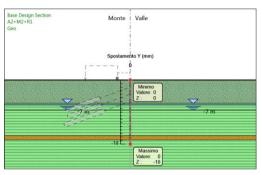

Design Assumption: A2+M2+R	1 Risultati Paratia		
Stage	Z (m)	Momento (kN*m/m	Taglio (kN/m)
3° scavo	-11.6	92.97	-81.24
3° scavo	-11.8	76.72	-81.24
3° scavo	-12	60.58	-80.71
3° scavo	-12.2	44.65	-79.62
3° scavo	-12.4	29.06	-77.97
3° scavo	-12.6	13.91	-75.76
3° scavo	-12.8	-0.69	-72.97
3° scavo	-13	-14.6	-69.56
3° scavo	-13.2	-27.71	-65.54
3° scavo	-13.4	-39.89	-60.9
3° scavo	-13.6	-51.02	-55.66
3° scavo	-13.8	-60.98	-49.8
3° scavo	-14	-69.64	-43.33
3° scavo	-14.2	-76.98	-36.69
3° scavo	-14.4	-83.2	-31.1
3° scavo	-14.6	-88.51	-26.56
3° scavo	-14.8	-93.12	-23.05
3° scavo	-15	-97.23	-20.52
3° scavo	-15.2	-101.02	-18.96
3° scavo	-15.4	-104.69	-18.33
3° scavo	-15.6	-108.41	-18.6
3° scavo	-15.8	-112.35	-19.72
3° scavo	-16	-110.34	10.03
3° scavo	-16.2	-103.35	35
3° scavo	-16.4	-92.24	55.51
3° scavo	-16.6	-77.87	71.88
3° scavo	-16.8	-60.99	84.39
3° scavo	-17	-43.82	85.84
3° scavo	-17.2	-28.91	74.53
3° scavo	-17.4	-16.69	61.12
3° scavo	-17.6	-7.55	45.67
3° scavo	-17.8	-1.91	28.21
3° scavo	-18	0	9.56

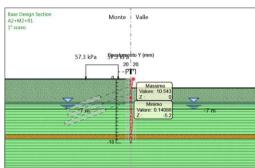
Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: 3° Tirante

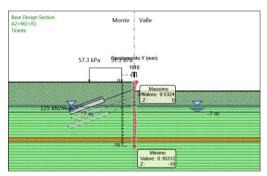
Design Assumption: A2+M2+R	1 Risultati Para	tia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	0	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.4	-0.53	-2.66
3° Tirante	-0.6	-2.38	-9.26
3° Tirante	-0.8	-6.35	-19.85
3° Tirante	-1	-13.23	-34.38
3° Tirante	-1.2	-23.8	-52.85
3° Tirante	-1.4	-38.68	-74.39
3° Tirante	-1.6	-57.16	-92.43
3° Tirante	-1.8	-78.54	-106.88
3° Tirante	-2	-101.71	-115.84
3° Tirante	-2.2	-101.21	2.49
3° Tirante	-2.4	-101.31	-0.48
3° Tirante	-2.6	-102.08	-3.89
3° Tirante	-2.8	-103.67	-7.9
3° Tirante	-3 2.2	-106.18	-12.59
3° Tirante 3° Tirante	-3.2 -3.4	-109.8 -114.69	-18.07 -24.46
3° Tirante	-3.4	-121.06	-31.86
3° Tirante	-3.8	-121.00	-40.37
3° Tirante	-4	-139.16	-50.1
3° Tirante	-4.2	-105.61	167.74
3° Tirante	-4.4	-74.39	156.08
3° Tirante	-4.6	-45.63	143.8
3° Tirante	-4.8	-19.45	130.9
3° Tirante	-5	4.02	117.38
3° Tirante	-5.2	24.68	103.26
3° Tirante	-5.4	42.39	88.56
3° Tirante	-5.6	57.02	73.14
3° Tirante	-5.8	68.41	56.99
3° Tirante	-6	76.45	40.18
3° Tirante	-6.2	113.9	187.27
3° Tirante	-6.4	147.8	169.49
3° Tirante	-6.6	178.07	151.35
3° Tirante	-6.8	204.47	132
3° Tirante	-7	227.03	112.78
3° Tirante	-7.2	245.78	93.73
3° Tirante	-7.4	260.84	75.33
3° Tirante	-7.6 7.9	272.44	58.01
3° Tirante 3° Tirante	-7.8 -8	280.8 286.14	41.79 26.67
3° Tirante	-8.2		12.64
3° Tirante	-8.4	288.66 288.59	-0.35
3° Tirante	-8.4 -8.6	286.14	-0.35 -12.28
3° Tirante	-8.8	281.77	-12.28
3° Tirante	-9	275.66	-30.56
3° Tirante	-9.2	267.94	-38.59
3° Tirante	-9.4	258.77	-45.87
3° Tirante	-9.6	248.29	-52.41
3° Tirante	-9.8	236.64	-58.24
3° Tirante	-10	223.97	-63.36
3° Tirante	-10.2	210.4	-67.83
3° Tirante	-10.4	196.07	-71.68
3° Tirante	-10.6	181.07	-74.96
3° Tirante	-10.8	165.53	-77.7
3° Tirante	-11	149.55	-79.92
3° Tirante	-11.2	133.23	-81.58
3° Tirante	-11.4	116.7	-82.69

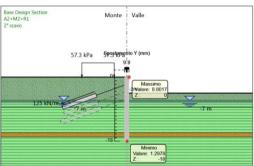
Design Assumption: A2+M2+R3	l Risultati Parat		
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	-11.6	100.05	-83.24
3° Tirante	-11.8	83.4	-83.23
3° Tirante	-12	66.86	-82.7
3° Tirante	-12.2	50.54	-81.61
3° Tirante	-12.4	34.55	-79.96
3° Tirante	-12.6	19	-77.76
3° Tirante	-12.8	4	-74.96
3° Tirante	-13	-10.31	-71.55
3° Tirante	-13.2	-23.81	-67.53
3° Tirante	-13.4	-36.39	-62.9
3° Tirante	-13.6	-47.92	-57.65
3° Tirante	-13.8	-58.28	-51.79
3° Tirante	-14	-67.35	-45.32
3° Tirante	-14.2	-75.05	-38.53
3° Tirante	-14.4	-81.61	-32.8
3° Tirante	-14.6	-87.24	-28.13
3° Tirante	-14.8	-92.13	-24.48
3° Tirante	-15	-96.5	-21.84
3° Tirante	-15.2	-100.54	-20.18
3° Tirante	-15.4	-104.43	-19.46
3° Tirante	-15.6	-108.36	-19.64
3° Tirante	-15.8	-112.5	-20.69
3° Tirante	-16	-110.61	9.42
3° Tirante	-16.2	-103.68	34.69
3° Tirante	-16.4	-92.59	55.44
3° Tirante	-16.6	-78.2	71.97
3° Tirante	-16.8	-61.28	84.57
3° Tirante	-17	-44.03	86.25
3° Tirante	-17.2	-29.05	74.92
3° Tirante	-17.4	-16.75	61.46
3° Tirante	-17.6	-7.57	45.9
3° Tirante	-17.8	-1.92	28.28
3° Tirante	-18	0	9.59

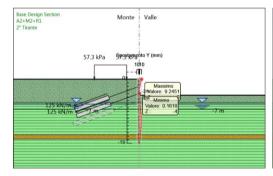
Tabella Risultati Paratia A2+M2+R1 - Left Wall - Stage: Scavo finale

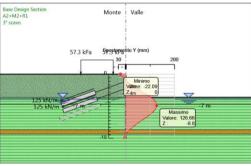

Design Assumption: A2+M2+R1			
Stage	Z (m)	Momento (kN*m/m	, , , ,
Scavo finale	0	0	0
Scavo finale	-0.2	0	0
Scavo finale	-0.2	0	0
Scavo finale	-0.4	-0.78	-3.88
Scavo finale	-0.6	-3.11	-11.66
Scavo finale	-0.8	-7.78	-23.36
Scavo finale	-1	-15.59	-39.04
Scavo finale Scavo finale	-1.2 -1.4	-27.34	-58.75
Scavo finale	-1.4 -1.6	-43.85	-82.54 102.7
Scavo finale Scavo finale	-1.6 -1.8	-64.59 -88.85	-103.7 -121.3
Scavo finale	-1.6 -2	-115.88	-121.3
Scavo finale	-2.2	-121.69	-29.03
Scavo finale	-2.4	-129.41	-38.63
Scavo finale	-2.6	-139.11	-48.5
Scavo finale	-2.8	-150.85	-58.67
Scavo finale	-3	-164.62	-68.86
Scavo finale	-3.2	-180.34	-78.61
Scavo finale	-3.4	-197.93	-87.96
Scavo finale	-3.6	-217.19	-96.3
Scavo finale	-3.8	-237.86	-103.33
Scavo finale	-4	-259.64	-108.9
Scavo finale	-4.2	-236.15	117.44
Scavo finale	-4.4	-213.8	111.76
Scavo finale	-4.6	-192.64	105.79
Scavo finale	-4.8	-172.74	99.53
Scavo finale	-5	-154.15	92.95
Scavo finale	-5.2	-136.94	86.05
Scavo finale	-5.4	-121.17	78.85
Scavo finale	-5.6 5.0	-106.91	71.31
Scavo finale Scavo finale	-5.8 -6	-94.21 -83.15	63.46 55.32
Scavo finale	-6.2	-30.15	264.98
Scavo finale	-6.4	21.1	256.25
Scavo finale	-6.6	70.54	247.2
Scavo finale	-6.8	116.86	231.61
Scavo finale	-7	159.97	215.58
Scavo finale	-7.2	199.8	199.13
Scavo finale	-7.4	236.24	182.19
Scavo finale	-7.6	269.2	164.83
Scavo finale	-7.8	298.71	147.52
Scavo finale	-8	324.86	130.74
Scavo finale	-8.2	347.76	114.49
Scavo finale	-8.4	367.5	98.74
Scavo finale	-8.6	384.21	83.51
Scavo finale	-8.8	397.97	68.83
Scavo finale	-9 0.2	408.91	54.68
Scavo finale	-9.2	417.12	41.04
Scavo finale Scavo finale	-9.4 -9.6	422.71 425.78	27.94 15.38
Scavo finale	-9.8	426.46	3.37
Scavo finale	-10	424.84	-8.09
Scavo finale	-10.2	421.03	-19.04
Scavo finale	-10.4	415.14	-29.44
Scavo finale	-10.6	407.28	-39.3
Scavo finale	-10.8	397.56	-48.6
Scavo finale	-11	386.09	-57.37
Scavo finale	-11.2	372.97	-65.6
Scavo finale	-11.4	358.31	-73.27

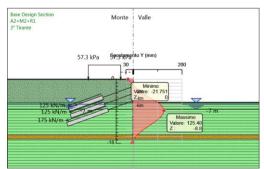

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

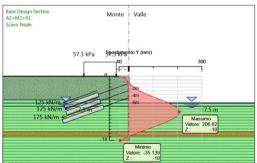

Design Assumption: A2+M2+R1	. Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo finale	-11.6	342.24	-80.39
Scavo finale	-11.8	324.85	-86.94
Scavo finale	-12	306.25	-92.98
Scavo finale	-12.2	286.56	-98.45
Scavo finale	-12.4	265.89	-103.36
Scavo finale	-12.6	244.35	-107.72
Scavo finale	-12.8	222.05	-111.49
Scavo finale	-13	199.12	-114.64
Scavo finale	-13.2	175.68	-117.18
Scavo finale	-13.4	151.86	-119.11
Scavo finale	-13.6	127.78	-120.43
Scavo finale	-13.8	103.55	-121.13
Scavo finale	-14	79.3	-121.23
Scavo finale	-14.2	55.16	-120.71
Scavo finale	-14.4	31.24	-119.59
Scavo finale	-14.6	7.67	-117.85
Scavo finale	-14.8	-15.43	-115.51
Scavo finale	-15	-37.94	-112.55
Scavo finale	-15.2	-59.74	-109
Scavo finale	-15.4	-80.7	-104.83
Scavo finale	-15.6	-100.71	-100.05
Scavo finale	-15.8	-119.77	-95.3
Scavo finale	-16	-128.91	-45.66
Scavo finale	-16.2	-127.78	5.62
Scavo finale	-16.4	-118.15	48.18
Scavo finale	-16.6	-102.09	80.3
Scavo finale	-16.8	-81.62	102.31
Scavo finale	-17	-58.72	114.5
Scavo finale	-17.2	-38.52	101.02
Scavo finale	-17.4	-22.2	81.59
Scavo finale	-17.6	-10.12	60.4
Scavo finale	-17.8	-2.61	37.55
Scavo finale	-18	0	13.06

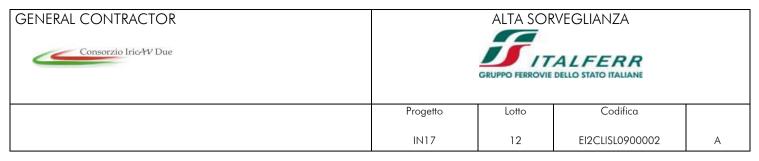

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

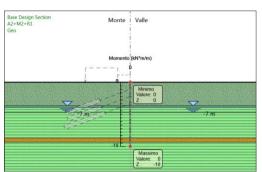

Tabella Grafici dei Risultati

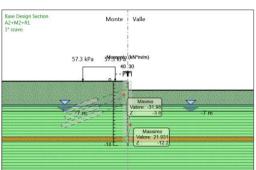


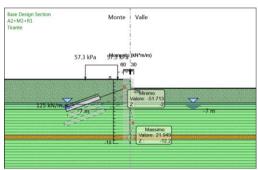


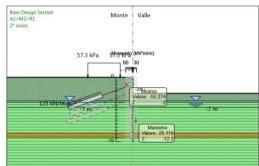


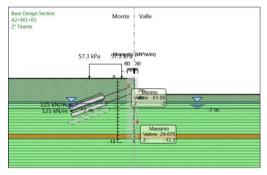


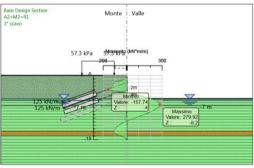


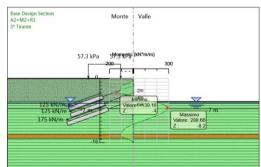


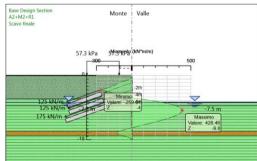


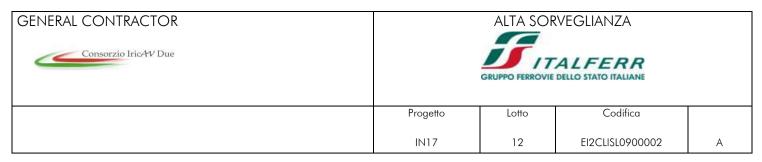


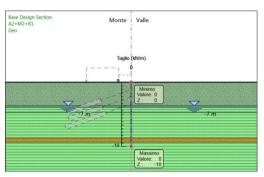


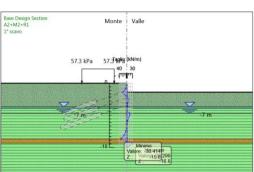


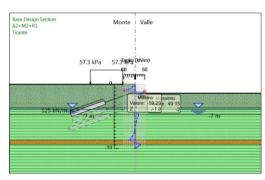


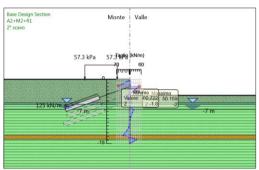


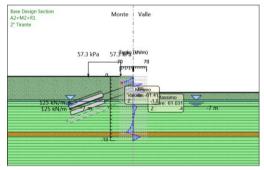


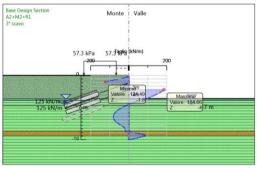


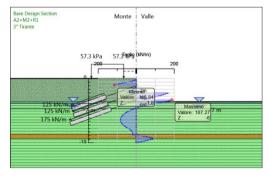


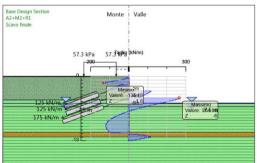








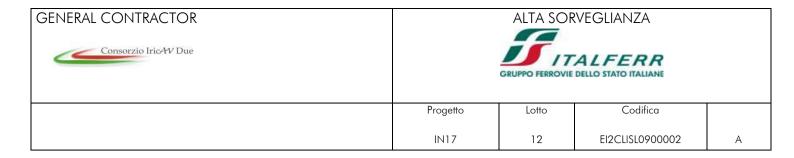




Risultati Elementi strutturali - A2+M2+R1

Design Assumption: A2+M2+R1 Sollecitazione 1° Ordine			
Stage	Forza (kN/m)		
Tirante	125		
2° scavo	125.8708		
2° Tirante	123.7537		
3° scavo	128.3783		
3° Tirante	128.6637		

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А


Design Assumption: A2+M2+R1 Sollecitazione 1° Ordine
Stage Forza (kN/m)
Scavo finale 122.8782

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R1 Sollecitazione 2° Ordine				
Stage	Forza (kN/m)			
2° Tirante	125			
3° scavo	247.9512			
3° Tirante	243.5767			
Scavo finale	246.6165			

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R1 Sollecitazione 3° OrdineStageForza (kN/m)3° Tirante175Scavo finale232.1052

Risultati A2+M2+R2

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Geo

Design Assumption: A2+M2+I			
Stage	Z (m)	Momento (kN*m/r	m) Taglio (kN/m)
Geo	0	0	0
Geo	-0.2	0	0
Geo	-0.4	0	0
Geo	-0.6	0	0
Geo	-0.8	0	0
Geo	-1	0	0
Geo	-1.2	0	0
Geo	-1.4	0	0
Geo	-1.6	0	0
Geo	-1.8	0	0
Geo	-2	0	0
Geo	-2.2	0	0
Geo	-2.4	0	0
Geo	-2.6	0	0
Geo	-2.8	0	0
Geo	-3	0	0
Geo	-3.2	0	0
Geo	-3.4	0	0
Geo	-3.6	0	0
Geo	-3.8	0	0
Geo	-4	0	0
Geo	-4.2	0	0
Geo	-4.4	0	0
Geo	-4.6	0	0
Geo	-4.8	0	0
Geo	-5	0	0
Geo	-5.2	0	0
Geo	-5.4	0	0
Geo	-5.6	0	0
Geo	-5.8	0	0
Geo	-6	0	0
Geo	-6.2	0	0
Geo	-6.4	0	0
Geo	-6.6	0	0
Geo	-6.8	0	0
Geo	-7	0	0
Geo	-7.2	0	0
Geo	-7.4	0	0
Geo	-7.6	0	0
Geo	-7.8	0	0
Geo	-8	0	0
Geo	-8.2	0	0
Geo	-8.4	0	0
	-8.6	0	0
Geo	-8.8	0	
Geo			0
Geo	-9 0.3	0	0
Geo	-9.2	0	0
Geo	-9.4	0	0
Geo	-9.6	0	0
Geo	-9.8	0	0
Geo	-10	0	0
Geo	-10.2	0	0
Geo	-10.4	0	0
Geo	-10.6	0	0
Geo	-10.8	0	0
Geo	-11	0	0

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+I	R2 Risultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	n) Taglio (kN/m)
Geo	-11.2	0	0
Geo	-11.4	0	0
Geo	-11.6	0	0
Geo	-11.8	0	0
Geo	-12	0	0
Geo	-12.2	0	0
Geo	-12.4	0	0
Geo	-12.6	0	0
Geo	-12.8	0	0
Geo	-13	0	0
Geo	-13.2	0	0
Geo	-13.4	0	0
Geo	-13.6	0	0
Geo	-13.8	0	0
Geo	-14	0	0
Geo	-14.2	0	0
Geo	-14.4	0	0
Geo	-14.6	0	0
Geo	-14.8	0	0
Geo	-15	0	0
Geo	-15.2	0	0
Geo	-15.4	0	0
Geo	-15.6	0	0
Geo	-15.8	0	0
Geo	-16	0	0
Geo	-16.2	0	0
Geo	-16.4	0	0
Geo	-16.6	0	0
Geo	-16.8	0	0
Geo	-17	0	0
Geo	-17.2	0	0
Geo	-17.4	0	0
Geo	-17.6	0	0
Geo	-17.8	0	0
Geo	-18	0	0

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: 1° scavo

Docian Accounties	A2 : M2 : D2 Discribati Daretia	Muray LEET	
	A2+M2+R2 Risultati Paratia Z (m)	Muro: LEFT Momento (kN*m/	m) Taglio (kN/m)
Stage 1° scavo	2 (m) 0	0	m) ragilo (kiv/m) 0
1° scavo	-0.2	0	0
1° scavo	-0.2	0	0
1° scavo	-0.4	-0.05	-0.27
1° scavo	-0.6	-0.22	-0.81
1° scavo	-0.8	-0.54	-1.63
1° scavo	-1	-1.09	-2.72
1° scavo	-1.2	-1.9	-4.09
1° scavo	-1.4	-3.05	-5.75
1° scavo	-1.6	-4.59	-7.7
1° scavo	-1.8	-6.58	-9.94
1° scavo	-2	-9.08	-12.47
1° scavo	-2.2	-12.14	-15.31
1° scavo	-2.4	-15.83	-18.46
1° scavo	-2.6	-20.21	-21.91
1° scavo	-2.8 -3	-24.99	-23.9
1° scavo 1° scavo	-3 -3.2	-29.53 -33.18	-22.69 -18.26
1° scavo	-3.4	-35.63	-18.26
1° scavo	-3.6	-37.06	-12.20 -7.11
1° scavo	-3.8	-37.59	-2.69
1° scavo	-4	-37.38	1.07
1° scavo	-4.2	-36.52	4.29
1° scavo	-4.4	-35.11	7.06
1° scavo	-4.6	-33.21	9.48
1° scavo	-4.8	-30.95	11.31
1° scavo	-5	-28.61	11.7
1° scavo	-5.2	-26.5	10.58
1° scavo	-5.4	-24.78	8.58
1° scavo	-5.6	-23.54	6.2
1° scavo	-5.8	-22.73	4.06
1° scavo	-6	-22.19	2.68
1° scavo	-6.2	-21.71	2.39
1° scavo	-6.4	-21.17	2.72
1° scavo	-6.6	-20.39	3.88
1° scavo	-6.8 -7	-20.3	0.46
1° scavo 1° scavo	-7 -7.2	-20.7 -21.36	-1.98 -3.29
1° scavo	-7.2 -7.4	-22.03	-3.38
1° scavo	-7.4	-22.44	-2.04
1° scavo	-7.8	-22.27	0.87
1° scavo	-8	-21.16	5.51
1° scavo	-8.2	-18.76	12.05
1° scavo	-8.4	-14.64	20.58
1° scavo	-8.6	-8.38	31.29
1° scavo	-8.8	-2.78	28.02
1° scavo	-9	2.22	24.99
1° scavo	-9.2	6.65	22.16
1° scavo	-9.4	10.57	19.58
1° scavo	-9.6	14.02	17.23
1° scavo	-9.8	17.04	15.12
1° scavo	-10	19.68	13.22
1° scavo	-10.2	21.98	11.49
1° scavo	-10.4	23.97	9.94
1° scavo	-10.6	25.68	8.57
1° scavo	-10.8	27.15	7.34
1° scavo	-11 -11 2	28.39	6.21 5.19
1° scavo 1° scavo	-11.2 -11.4	29.43 30.27	5.18 4.22
1 20400	-11.4	30.27	7.22

Design Assumption: A2+M2+	R2 Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
1° scavo	-11.6	30.94	3.32
1° scavo	-11.8	31.43	2.45
1° scavo	-12	31.74	1.55
1° scavo	-12.2	31.86	0.62
1° scavo	-12.4	31.79	-0.37
1° scavo	-12.6	31.5	-1.43
1° scavo	-12.8	30.99	-2.57
1° scavo	-13	30.23	-3.79
1° scavo	-13.2	29.21	-5.11
1° scavo	-13.4	27.89	-6.56
1° scavo	-13.6	26.26	-8.18
1° scavo	-13.8	24.27	-9.97
1° scavo	-14	21.87	-11.98
1° scavo	-14.2	19.03	-14.21
1° scavo	-14.4	15.69	-16.7
1° scavo	-14.6	11.8	-19.45
1° scavo	-14.8	7.3	-22.48
1° scavo	-15	2.14	-25.81
1° scavo	-15.2	-3.74	-29.43
1° scavo	-15.4	-10.42	-33.36
1° scavo	-15.6	-17.93	-37.59
1° scavo	-15.8	-26.36	-42.11
1° scavo	-16	-31.5	-25.72
1° scavo	-16.2	-33.68	-10.87
1° scavo	-16.4	-33.15	2.61
1° scavo	-16.6	-30.17	14.93
1° scavo	-16.8	-24.92	26.24
1° scavo	-17	-17.58	36.7
1° scavo	-17.2	-11.43	30.74
1° scavo	-17.4	-6.54	24.45
1° scavo	-17.6	-2.97	17.87
1° scavo	-17.8	-0.76	11.02
1° scavo	-18	0	3.82

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Tirante

Design Assumption: A2+M2+F			
Stage	Z (m)	Momento (kN*m/n	
Tirante	0	0	0
Tirante Tirante	-0.2 -0.2	0 0	0 0
Tirante	-0.2	-0.71	-3.53
Tirante	-0.4	-2.39	-3.33 -8.42
Tirante	-0.8	-5.19	-14.01
Tirante	-1	-9.25	-20.28
Tirante	-1.2	-14.69	-27.23
Tirante	-1.4	-21.65	-34.81
Tirante	-1.6	-30.25	-42.99
Tirante	-1.8	-40.59	-51.67
Tirante	-2	-52.74	-60.76
Tirante	-2.2	-43.27	47.37
Tirante	-2.4	-35.67	37.96
Tirante	-2.6	-29.95	28.6
Tirante	-2.8	-26.05	19.53
Tirante	-3	-23.86	10.92
Tirante	-3.2	-22.8	5.3
Tirante	-3.4	-22.24	2.8
Tirante	-3.6	-22.06	0.89
Tirante	-3.8	-22.17	-0.51
Tirante	-4 -4.2	-22.46	-1.48
Tirante Tirante	-4.2 -4.4	-22.78 -22.95	-1.61 -0.84
Tirante	-4.6	-22.83	0.62
Tirante	-4.8	-22.38	2.22
Tirante	- .5	-21.79	2.99
Tirante	-5.2	-21.26	2.63
Tirante	-5.4	-20.94	1.61
Tirante	-5.6	-20.87	0.33
Tirante	-5.8	-21.01	-0.69
Tirante	-6	-21.21	-1
Tirante	-6.2	-21.26	-0.27
Tirante	-6.4	-21.06	0.99
Tirante	-6.6	-20.47	2.97
Tirante	-6.8	-20.52	-0.22
Tirante	-7	-21.01	-2.46
Tirante	-7.2	-21.73	-3.6
Tirante	-7.4	-22.44	-3.55
Tirante	-7.6	-22.86	-2.11
Tirante	-7.8	-22.68	0.89
Tirante	-8	-21.56	5.59
Tirante	-8.2	-19.13	12.17
Tirante	-8.4 -8.6	-14.98 8.60	20.74 31.46
Tirante Tirante	-8.8	-8.69 -3.05	28.19
Tirante	-9.8	1.98	25.15
Tirante	-9.2	6.44	22.32
Tirante	-9.4	10.39	19.73
Tirante	-9.6	13.87	17.38
Tirante	-9.8	16.92	15.25
Tirante	-10	19.58	13.34
Tirante	-10.2	21.9	11.6
Tirante	-10.4	23.91	10.04
Tirante	-10.6	25.64	8.65
Tirante	-10.8	27.12	7.41
Tirante	-11	28.38	6.27
Tirante	-11.2	29.42	5.22
Tirante	-11.4	30.27	4.26

Design Assumption: A2+	M2+R2 Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	n) Taglio (kN/m)
Tirante	-11.6	30.94	3.35
Tirante	-11.8	31.44	2.47
Tirante	-12	31.75	1.56
Tirante	-12.2	31.88	0.63
Tirante	-12.4	31.8	-0.36
Tirante	-12.6	31.52	-1.42
Tirante	-12.8	31.01	-2.57
Tirante	-13	30.25	-3.79
Tirante	-13.2	29.23	-5.11
Tirante	-13.4	27.91	-6.57
Tirante	-13.6	26.28	-8.18
Tirante	-13.8	24.28	-9.98
Tirante	-14	21.88	-11.98
Tirante	-14.2	19.04	-14.22
Tirante	-14.4	15.7	-16.7
Tirante	-14.6	11.81	-19.45
Tirante	-14.8	7.31	-22.49
Tirante	-15	2.15	-25.81
Tirante	-15.2	-3.74	-29.44
Tirante	-15.4	-10.41	-33.37
Tirante	-15.6	-17.93	-37.59
Tirante	-15.8	-26.35	-42.11
Tirante	-16	-31.5	-25.73
Tirante	-16.2	-33.67	-10.88
Tirante	-16.4	-33.15	2.61
Tirante	-16.6	-30.17	14.92
Tirante	-16.8	-24.92	26.23
Tirante	-17	-17.58	36.7
Tirante	-17.2	-11.43	30.74
Tirante	-17.4	-6.54	24.45
Tirante	-17.6	-2.97	17.87
Tirante	-17.8	-0.76	11.02
Tirante	-18	0	3.82

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: 2° scavo

Design Assumptions	A2+M2+R2 Risultati Paratia	Muro: LEFT	
Stage	Z (m)		/m) Taglio (kN/m)
2° scavo		0	0
2° scavo		0	0
2° scavo		0	0
2° scavo	-0.4	-0.71	-3.53
2° scavo	-0.6	-2.69	-9.91
2° scavo	-0.8	-6.03	-16.72
2° scavo		-10.82	-23.93
2° scavo		-17.12	-31.53
2° scavo		-25.01	-39.46
2° scavo		-34.54	-47.66
2° scavo		-45.68	-55.68
2° scavo		-58.32	-63.18
2° scavo	-2.2	-48.57	48.74
2° scavo		-39.99	42.89
2° scavo		-32.36	38.15
2° scavo 2° scavo		-25.48 -19.42	34.39
2° scavo		-19.42 -14.23	30.32 25.93
2° scavo		-9.99	21.24
2° scavo		-6.74	16.23
2° scavo	-3.8	-4.56	10.91
2° scavo		-3.5	5.28
2° scavo		-3.63	-0.66
2° scavo		-5.02	-6.91
2° scavo	-4.6	-7.71	-13.48
2° scavo	-4.8	-11.43	-18.6
2° scavo	-5	-15.54	-20.55
2° scavo	-5.2	-19.41	-19.32
2° scavo	-5.4	-22.58	-15.85
2° scavo		-25.04	-12.3
2° scavo		-26.75	-8.59
2° scavo		-27.68	-4.66
2° scavo		-27.77	-0.44
2° scavo		-26.95	4.13
2° scavo		-25.13	9.08
2° scavo 2° scavo	-6.8 -7	-23.96	5.86 3.98
2° scavo		-23.16 -22.46	3.53
2° scavo		-21.64	4.08
2° scavo	-7.4 -7.6	-20.49	5.73
2° scavo	-7.8	-18.78	8.58
2° scavo	-8	-16.24	12.69
2° scavo	-8.2	-12.75	17.45
2° scavo	-8.4	-8.23	22.61
2° scavo		-2.59	28.21
2° scavo		2.45	25.16
2° scavo		6.91	22.35
2° scavo	-9.2	10.86	19.74
2° scavo		14.34	17.37
2° scavo		17.38	15.23
2° scavo		20.05	13.32
2° scavo		22.37	11.62
2° scavo		24.39	10.08
2° scavo		26.13	8.72
2° scavo		27.64	7.52
2° scavo		28.93	6.46
2° scavo		30.03	5.48
2° scavo 2° scavo		30.94 21.7	4.59 2.77
Z SCdVO	-11.4	31.7	3.77

Design Assumption: A2+M2+R	2 Risultati Parati		
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
2° scavo	-11.6	32.3	2.99
2° scavo	-11.8	32.74	2.23
2° scavo	-12	33.03	1.42
2° scavo	-12.2	33.14	0.57
2° scavo	-12.4	33.07	-0.35
2° scavo	-12.6	32.8	-1.37
2° scavo	-12.8	32.3	-2.48
2° scavo	-13	31.57	-3.68
2° scavo	-13.2	30.56	-5.02
2° scavo	-13.4	29.25	-6.55
2° scavo	-13.6	27.59	-8.3
2° scavo	-13.8	25.54	-10.29
2° scavo	-14	23.03	-12.55
2° scavo	-14.2	20	-15.11
2° scavo	-14.4	16.41	-17.99
2° scavo	-14.6	12.17	-21.2
2° scavo	-14.8	7.21	-24.77
2° scavo	-15	1.47	-28.7
2° scavo	-15.2	-5.13	-33
2° scavo	-15.4	-12.66	-37.67
2° scavo	-15.6	-21.2	-42.71
2° scavo	-15.8	-30.82	-48.1
2° scavo	-16	-36.71	-29.42
2° scavo	-16.2	-39.18	-12.39
2° scavo	-16.4	-38.55	3.16
2° scavo	-16.6	-35.07	17.43
2° scavo	-16.8	-28.94	30.63
2° scavo	-17	-20.35	42.94
2° scavo	-17.2	-13.19	35.83
2° scavo	-17.4	-7.51	28.39
2° scavo	-17.6	-3.38	20.64
2° scavo	-17.8	-0.86	12.61
2° scavo	-18	0	4.29

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: 2° Tirante

n Assumption: A2+M2+	R2 Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
2° Tirante	0	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.2	0	0
2° Tirante	-0.4	-0.31	-1.54
2° Tirante	-0.6	-1.61	-6.5
2° Tirante	-0.8	-4.1	-12.45
2° Tirante	-1	-7.98	-19.39
2° Tirante	-1.2	-13.4	-27.11
2° Tirante	-1.4	-20.47	-35.38
2° Tirante	-1.6	-29.31	-44.16
2° Tirante	-1.8	-39.98	-53.38
2° Tirante	-2	-52.57	-62.93
2° Tirante	-2.2	-43.72	44.23
2° Tirante	-2.4	-36.82	34.5
2° Tirante	-2.6	-31.84	24.89
2° Tirante	-2.8	-28.76	15.42
2° Tirante	-3	-27.62	5.69
2° Tirante	-3.2	-28.48	-4.29
2° Tirante 2° Tirante	-3.4	-31.38	-14.52
2° Tirante 2° Tirante	-3.6	-36.38	-25
2° Tirante	-3.8 -4	-43.52	-35.7 -46.6
		-52.84	
2° Tirante 2° Tirante	-4.2 -4.4	-40.92 -31.29	59.64 48.12
2° Tirante	-4.4 -4.6	-24.01	36.41
2° Tirante	-4.8	-19.08	24.67
2° Tirante	-4.8 -5	-16.39	13.42
2° Tirante	-5.2	-15.15	6.19
2° Tirante	-5.4	-14.74	2.06
2° Tirante	-5.6	-14.98	-1.19
2° Tirante	-5.8	-15.58	-3.02
2° Tirante	-6	-16.23	-3.24
2° Tirante	-6.2	-16.62	-1.93
2° Tirante	-6.4	-16.45	0.85
2° Tirante	-6.6	-15.45	4.98
2° Tirante	-6.8	-15.1	1.77
2° Tirante	-7	-15.09	0.02
2° Tirante	-7.2	-15.14	-0.2
2° Tirante	-7.4	-15	0.65
2° Tirante	-7.6	-14.47	2.69
2° Tirante	-7.8	-13.27	5.97
2° Tirante	-8	-11.21	10.29
2° Tirante	-8.2	-8.2	15.05
2° Tirante	-8.4	-4.16	20.21
2° Tirante	-8.6	1	25.81
2° Tirante	-8.8	5.58	22.91
2° Tirante	-9	9.63	20.25
2° Tirante	-9.2	13.19	17.78
2° Tirante	-9.4	16.3	15.56
2° Tirante	-9.6	19.01	13.57
2° Tirante	-9.8	21.37	11.8
2° Tirante	-10	23.42	10.24
2° Tirante	-10.2	25.19	8.82
2° Tirante	-10.4	26.7	7.59
2° Tirante	-10.6	28	6.5
2° Tirante	-10.8	29.11	5.55
2° Tirante	-11	30.05	4.67
2° Tirante	-11.2	30.83	3.88
2° Tirante	-11.4	31.46	3.15

Design Assumption: A2+M2+R	R2 Risultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
2° Tirante	-11.6	31.94	2.45
2° Tirante	-11.8	32.3	1.76
2° Tirante	-12	32.5	1.02
2° Tirante	-12.2	32.54	0.23
2° Tirante	-12.4	32.42	-0.64
2° Tirante	-12.6	32.1	-1.61
2° Tirante	-12.8	31.56	-2.67
2° Tirante	-13	30.79	-3.84
2° Tirante	-13.2	29.77	-5.14
2° Tirante	-13.4	28.45	-6.58
2° Tirante	-13.6	26.8	-8.26
2° Tirante	-13.8	24.76	-10.19
2° Tirante	-14	22.28	-12.4
2° Tirante	-14.2	19.29	-14.92
2° Tirante	-14.4	15.74	-17.77
2° Tirante	-14.6	11.55	-20.96
2° Tirante	-14.8	6.65	-24.5
2° Tirante	-15	0.96	-28.42
2° Tirante	-15.2	-5.58	-32.71
2° Tirante	-15.4	-13.05	-37.38
2° Tirante	-15.6	-21.53	-42.41
2° Tirante	-15.8	-31.09	-47.8
2° Tirante	-16	-36.92	-29.12
2° Tirante	-16.2	-39.34	-12.11
2° Tirante	-16.4	-38.66	3.4
2° Tirante	-16.6	-35.14	17.62
2° Tirante	-16.8	-28.98	30.77
2° Tirante	-17	-20.38	43
2° Tirante	-17.2	-13.21	35.89
2° Tirante	-17.4	-7.52	28.43
2° Tirante	-17.6	-3.38	20.67
2° Tirante	-17.8	-0.86	12.63
2° Tirante	-18	0	4.3

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: 3° scavo

Design Assumption	A2+M2+R2 Risultati Pa	ratia Muro: LEFT	
Stage	Z (m)		ı/m) Taglio (kN/m)
3° scavo	0	0	0
3° scavo	-0.2	0	0
3° scavo	-0.2	0	0
3° scavo	-0.4	-0.71	-3.53
3° scavo	-0.6	-2.83	-10.6
3° scavo	-0.8	-7.07	-21.24
3° scavo	-1	-14.17	-35.49
3° scavo	-1.2	-24.85	-53.41
3° scavo	-1.4	-39.86	-75.05
3° scavo	-1.6	-59.91	-100.25
3° scavo 3° scavo	-1.8 -2	-85.43 -114.7	-127.61 -146.35
3° scavo	-2.2	-121.95	-36.22
3° scavo		-129.85	-39.53
3° scavo	-2.6	-138.48	-43.1
3° scavo	-2.8	-147.86	-46.95
3° scavo	-3	-158.08	-51.06
3° scavo	-3.2	-169.17	-55.45
3° scavo	-3.4	-181.19	-60.11
3° scavo	-3.6	-194.21	-65.12
3° scavo	-3.8	-208.3	-70.44
3° scavo	-4	-223.51	-76.07
3° scavo	-4.2	-173.7	249.07
3° scavo	-4.4	-125.13	242.82
3° scavo	-4.6	-77.88	236.25
3° scavo	-4.8	-32.01	229.37 222.13
3° scavo 3° scavo	-5 -5.2	12.42 55.32	222.13 214.54
3° scavo	-5.2 -5.4	96.65	206.62
3° scavo	-5.6	136.31	198.32
3° scavo	-5.8	174.25	189.69
3° scavo	-6	210.4	180.73
3° scavo	-6.2	244.69	171.45
3° scavo	-6.4	277.06	161.84
3° scavo	-6.6	307.43	151.88
3° scavo		334.53	135.5
3° scavo	-7	358.56	120.15
3° scavo	-7.2	379.74	105.86
3° scavo	-7.4	398.12	91.94
3° scavo	-7.6	413.82	78.46
3° scavo	-7.8	426.9 427.46	65.41 52.81
3° scavo 3° scavo	-8 -8.2	437.46 445.59	52.81 40.64
3° scavo	-8.2 -8.4	445.39 451.36	28.87
3° scavo		451.36 454.87	28.87 17.56
3° scavo		456.21	6.68
3° scavo		455.46	-3.74
3° scavo		452.71	-13.74
3° scavo		448.05	-23.3
3° scavo		441.58	-32.4
3° scavo		433.37	-41.04
3° scavo	-10	423.52	-49.22
3° scavo	-10.2	412.13	-56.98
3° scavo		399.27	-64.27
3° scavo		385.05	-71.11
3° scavo		369.56	-77.47
3° scavo		352.88	-83.41
3° scavo		335.1	-88.88
3° scavo	-11.4	316.32	-93.88

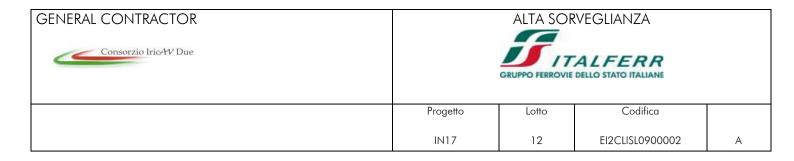
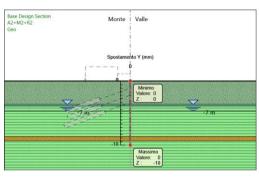
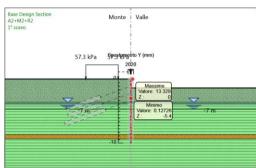

Design Assumption: A2+M2+	R2 Risultati Parati	a Muro: LEFT	
Stage	Z (m)	Momento (kN*m/r	n) Taglio (kN/m)
3° scavo	-11.6	296.64	-98.42
3° scavo	-11.8	276.14	-102.48
3° scavo	-12	254.92	-106.11
3° scavo	-12.2	233.07	-109.26
3° scavo	-12.4	210.68	-111.95
3° scavo	-12.6	187.85	-114.16
3° scavo	-12.8	164.68	-115.86
3° scavo	-13	141.27	-117.03
3° scavo	-13.2	117.74	-117.67
3° scavo	-13.4	94.18	-117.78
3° scavo	-13.6	70.71	-117.36
3° scavo	-13.8	47.43	-116.4
3° scavo	-14	24.44	-114.92
3° scavo	-14.2	1.86	-112.91
3° scavo	-14.4	-20.21	-110.37
3° scavo	-14.6	-41.67	-107.3
3° scavo	-14.8	-62.41	-103.7
3° scavo	-15	-82.33	-99.58
3° scavo	-15.2	-101.31	-94.93
3° scavo	-15.4	-119.26	-89.75
3° scavo	-15.6	-136.07	-84.05
3° scavo	-15.8	-151.94	-79.34
3° scavo	-16	-157	-25.27
3° scavo	-16.2	-150.94	30.28
3° scavo	-16.4	-135.86	75.37
3° scavo	-16.6	-114.22	108.2
3° scavo	-16.8	-88.4	129.15
3° scavo	-17	-63.03	126.84
3° scavo	-17.2	-41.25	108.87
3° scavo	-17.4	-23.74	87.56
3° scavo	-17.6	-10.81	64.64
3° scavo	-17.8	-2.79	40.12
3° scavo	-18	0	13.94

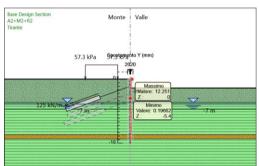
Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: 3° Tirante

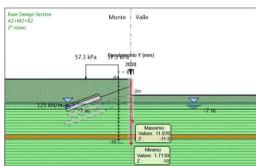
Design Assumption: A2+M2+R	2 Risultati Para	tia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	0	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.2	0	0
3° Tirante	-0.4	-0.45	-2.23
3° Tirante	-0.6	-2.06	-8.06
3° Tirante	-0.8	-5.56	-17.52
3° Tirante	-1	-11.69	-30.65
3° Tirante	-1.2	-21.2	-47.52
3° Tirante	-1.4	-34.83	-68.2
3° Tirante	-1.6	-53.34	-92.55
3° Tirante	-1.8	-77.18	-119.18
3° Tirante	-2	-104.65	-137.37
3° Tirante	-2.2	-109.98	-26.63
3° Tirante	-2.4	-115.97	-29.93
3° Tirante	-2.6	-122.71	-33.74
3° Tirante	-2.8	-130.35	-38.2
3° Tirante	-3	-139.03	-43.4
3° Tirante	-3.2	-148.92	-49.45
3° Tirante	-3.4	-160.21	-56.46
3° Tirante	-3.6	-173.12	-64.55
3° Tirante	-3.8	-187.89	-73.83
3° Tirante	-4	-204.77	-84.39
3° Tirante	-4.2	-158.62	230.77
3° Tirante	-4.4	-114.89	218.61
3° Tirante	-4.6	-73.74	205.79
3° Tirante	-4.8	-35.27	192.33
3° Tirante	-5	0.37	178.2
3° Tirante	-5.2	33.06	163.45
3° Tirante 3° Tirante	-5.4 -5.6	62.68 89.11	148.1 132.13
3° Tirante	-5.8	112.2	115.48
3° Tirante	-5.8 -6	131.84	98.17
3° Tirante	-6.2	180.78	244.75
3° Tirante	-6.4	226.07	226.45
3° Tirante	-6.6	267.63	207.78
3° Tirante	-6.8	304.98	186.73
3° Tirante	-7	338.14	165.8
3° Tirante	-7.2	367.15	145.05
3° Tirante	-7.4	392.04	124.45
3° Tirante	-7.6	412.97	104.67
3° Tirante	-7.8	430.16	85.93
3° Tirante	-8	443.8	68.23
3° Tirante	-8.2	454.12	51.57
3° Tirante	-8.4	461.29	35.88
3° Tirante	-8.6	465.53	21.2
3° Tirante	-8.8	467.31	8.89
3° Tirante	-9	466.77	-2.71
3° Tirante	-9.2	464.04	-13.66
3° Tirante	-9.4	459.25	-23.94
3° Tirante	-9.6	452.54	-33.55
3° Tirante	-9.8	444.03	-42.52
3° Tirante	-10	433.87	-50.85
3° Tirante	-10.2	422.14	-58.6
3° Tirante	-10.4	408.96	-65.9
3° Tirante	-10.6	394.42	-72.73
3° Tirante	-10.8	378.6	-79.1
3° Tirante	-11	361.59	-85.04
3° Tirante	-11.2	343.49	-90.51
3° Tirante	-11.4	324.39	-95.51

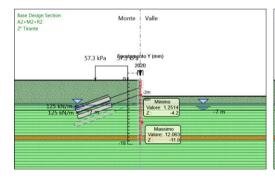
Design Assumption: A2+M2+R2	2 Risultati Parat		
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
3° Tirante	-11.6	304.38	-100.05
3° Tirante	-11.8	283.56	-104.11
3° Tirante	-12	262.01	-107.74
3° Tirante	-12.2	239.83	-110.89
3° Tirante	-12.4	217.12	-113.57
3° Tirante	-12.6	193.96	-115.78
3° Tirante	-12.8	170.46	-117.49
3° Tirante	-13	146.73	-118.66
3° Tirante	-13.2	122.87	-119.3
3° Tirante	-13.4	98.99	-119.41
3° Tirante	-13.6	75.19	-118.98
3° Tirante	-13.8	51.58	-118.03
3° Tirante	-14	28.28	-116.55
3° Tirante	-14.2	5.37	-114.54
3° Tirante	-14.4	-17.03	-111.99
3° Tirante	-14.6	-38.82	-108.92
3° Tirante	-14.8	-59.88	-105.33
3° Tirante	-15	-80.12	-101.2
3° Tirante	-15.2	-99.43	-96.55
3° Tirante	-15.4	-117.71	-91.38
3° Tirante	-15.6	-134.84	-85.68
3° Tirante	-15.8	-151.01	-80.85
3° Tirante	-16	-156.37	-26.78
3° Tirante	-16.2	-150.62	28.77
3° Tirante	-16.4	-135.76	74.28
3° Tirante	-16.6	-114.28	107.41
3° Tirante	-16.8	-88.57	128.56
3° Tirante	-17	-63.17	127
3° Tirante	-17.2	-41.36	109.05
3° Tirante	-17.4	-23.8	87.75
3° Tirante	-17.6	-10.84	64.8
3° Tirante	-17.8	-2.8	40.24
3° Tirante	-18	0	13.98

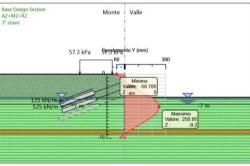

Tabella Risultati Paratia A2+M2+R2 - Left Wall - Stage: Scavo finale

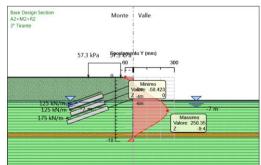

Design Assumption: A2+M2+R2	Picultati Parati	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
Scavo finale	0	0) ragilo (kiv) iii) 0
Scavo finale	-0.2	0	0
Scavo finale	-0.2	0	0
Scavo finale	-0.4	-0.71	-3.54
Scavo finale	-0.6	-2.83	-10.61
Scavo finale	-0.8	-7.08	-21.26
Scavo finale	-1	-14.18	-35.51
Scavo finale	-1.2	-24.87	-53.43
Scavo finale	-1.4	-39.88	-75.06
Scavo finale	-1.6	-59.98	-100.47
Scavo finale	-1.8	-85.92	-129.7
Scavo finale	-2	-116.66	-153.72
Scavo finale	-2.2	-129.57	-64.54
Scavo finale	-2.4	-145.16	-77.94
Scavo finale	-2.6	-163.25	-90.44
Scavo finale	-2.8	-183.77	-102.62
Scavo finale	-3	-206.71	-114.69
Scavo finale	-3.2	-231.99	-126.41
Scavo finale Scavo finale	-3.4 -3.6	-259.3	-136.56
Scavo finale	-3.8	-288.19 -318.15	-144.46 -149.76
Scavo finale	-3.6 -4	-349.22	-149.76
Scavo finale	-4.2	-314.83	172
Scavo finale	-4.2 -4.4	-281.68	165.75
Scavo finale	-4.6	-249.84	159.18
Scavo finale	-4.8	-219.38	152.3
Scavo finale	-5	-190.37	145.06
Scavo finale	-5.2	-162.87	137.48
Scavo finale	-5.4	-136.96	129.56
Scavo finale	-5.6	-112.71	121.26
Scavo finale	-5.8	-90.19	112.63
Scavo finale	-6	-69.45	103.67
Scavo finale	-6.2	-2.54	334.56
Scavo finale	-6.4	62.45	324.96
Scavo finale	-6.6	125.45	315
Scavo finale	-6.8	185.03	297.86
Scavo finale	-7	241.07	280.23
Scavo finale	-7.2	293.5	262.13
Scavo finale	-7.4	342.2	243.5
Scavo finale	-7.6	387.08	224.41
Scavo finale	-7.8	428.14	205.3
Scavo finale	-8	465.46	186.63
Scavo finale	-8.2	499.15	168.4
Scavo finale	-8.4	529.26	150.57
Scavo finale	-8.6	555.9	133.19
Scavo finale Scavo finale	-8.8	579.15 599.1	116.26
Scavo finale	-9 -9.2	615.84	99.77 83.7
Scavo finale	-9.2 -9.4	629.46	68.09
Scavo finale	-9. 4 -9.6	640.05	52.92
Scavo finale	-9.8	647.69	38.22
Scavo finale	-10	652.49	23.98
Scavo finale	-10.2	654.52	10.16
Scavo finale	-10.4	653.88	-3.2
Scavo finale	-10.6	650.66	-16.1
Scavo finale	-10.8	644.95	-28.53
Scavo finale	-11	636.85	-40.53
Scavo finale	-11.2	626.43	-52.06
Scavo finale	-11.4	613.81	-63.13

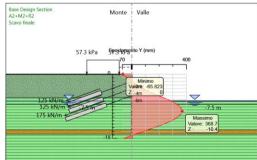

Design Assumption: A2+M2+R2	Risultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/n	n) Taglio (kN/m)
Scavo finale	-11.6	599.06	-73.73
Scavo finale	-11.8	582.29	-83.85
Scavo finale	-12	563.59	-93.54
Scavo finale	-12.2	543.03	-102.76
Scavo finale	-12.4	520.73	-111.5
Scavo finale	-12.6	496.78	-119.78
Scavo finale	-12.8	471.27	-127.55
Scavo finale	-13	444.31	-134.78
Scavo finale	-13.2	416.02	-141.48
Scavo finale	-13.4	386.48	-147.65
Scavo finale	-13.6	355.83	-153.29
Scavo finale	-13.8	324.14	-158.4
Scavo finale	-14	291.55	-162.98
Scavo finale	-14.2	258.14	-167.04
Scavo finale	-14.4	224.03	-170.56
Scavo finale	-14.6	189.32	-173.55
Scavo finale	-14.8	154.12	-176.02
Scavo finale	-15	118.52	-177.96
Scavo finale	-15.2	82.65	-179.37
Scavo finale	-15.4	46.6	-180.26
Scavo finale	-15.6	10.47	-180.62
Scavo finale	-15.8	-25.62	-180.46
Scavo finale	-16	-53.26	-138.18
Scavo finale	-16.2	-72.14	-94.43
Scavo finale	-16.4	-81.98	-49.19
Scavo finale	-16.6	-82.47	-2.47
Scavo finale	-16.8	-73.33	45.73
Scavo finale	-17	-55.38	89.74
Scavo finale	-17.2	-38.64	83.68
Scavo finale	-17.4	-23.73	74.57
Scavo finale	-17.6	-11.35	61.88
Scavo finale	-17.8	-3.1	41.27
Scavo finale	-18	0	15.49

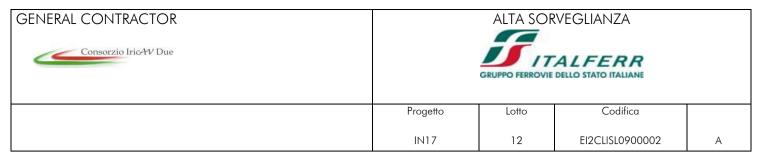

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

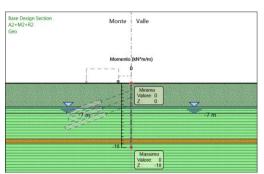

Tabella Grafici dei Risultati

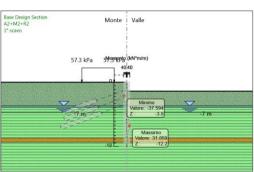


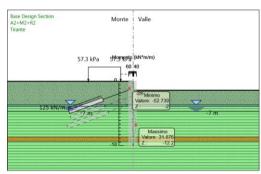


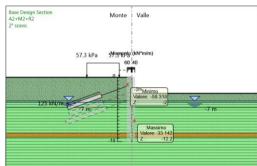




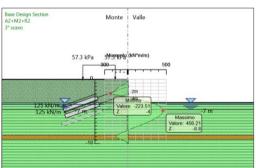


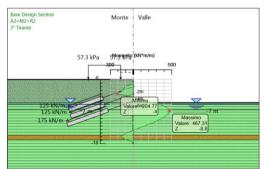


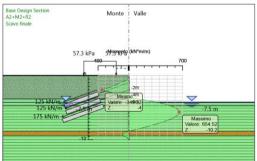


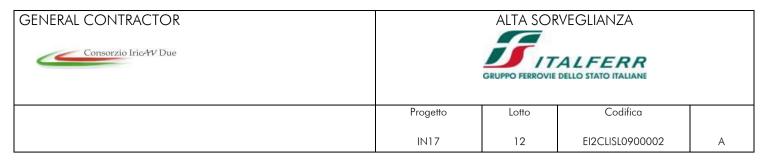


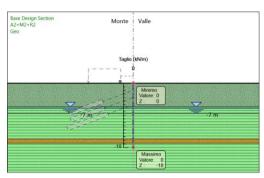


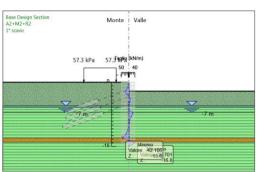


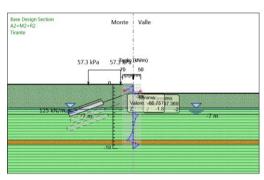


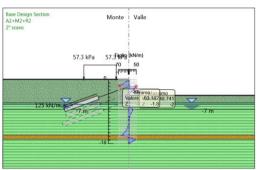


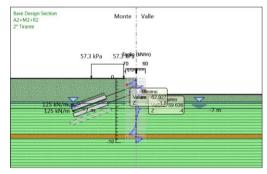


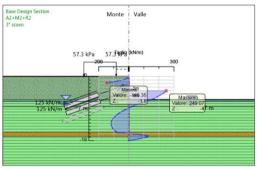


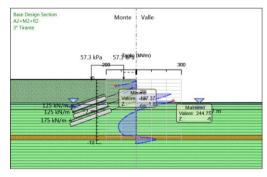


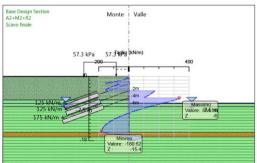












Risultati Elementi strutturali - A2+M2+R2

Design Assumption: A2+M2+R2 Sollecitazione 1° Ordine			
Stage	Forza (kN/m)		
Tirante	125		
2° scavo	126.3215		
2° Tirante	124.3898		
3° scavo	122.774		
3° Tirante	123.0372		

GENERAL CONTRACTOR Consorzio Iric/AV Due		17 17	VEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R2 Sollecitazione 1° Ordine
Stage Forza (kN/m)
Scavo finale 110.8966

GENERAL CONTRACTOR Consorzio IricAV Due		1517	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R2 Sollecitazione 2° Ordine					
Stage	Forza (kN/m)				
2° Tirante	125				
3° scavo	352.3276				
3° Tirante	347.6609				
Scavo finale	354.7261				

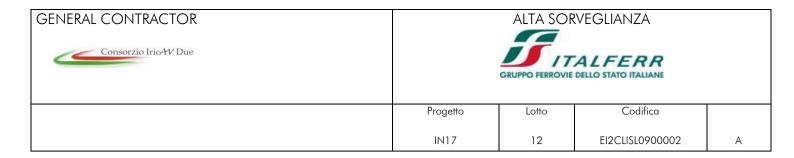
GENERAL CONTRACTOR Consorzio Iric/AV Due		17 17	VEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Design Assumption: A2+M2+R2 Sollecitazione 3° Ordine Stage Forza (kN/m) 3° Tirante 175
Con finale 255.5927

Scavo finale

GENERAL CONTRACTOR Consorzio Iric/W Due		11	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Normative adottate per le verifiche degli Elementi Strutturali


Normative Verifich	ie
Calcestruzzo	NTC
Acciaio	NTC
Tirante	NTC

Coefficienti per Verifica Ti	ranti
GEO FS	1
ξa3	1.8
γs	1.15

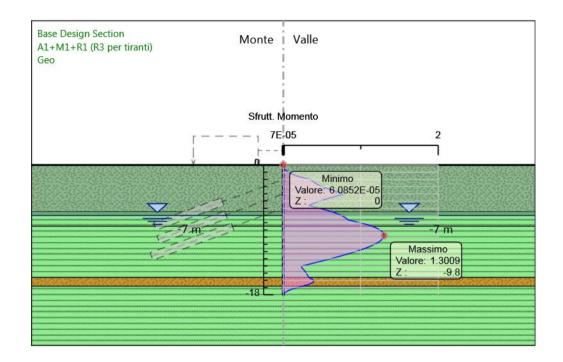
GENERAL CONTRACTOR Consorzio Iric/W Due		11	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Geo 1°	scavo	Tirante 2°	scavo 2°	Tirante 3°	scavo 3°	Tirante Sca	vo finale
CLE (Dara)	\/	\/	\ <u>'</u>	\/	V	\/	V	\ <u>'</u>
SLE (Rara) A1+M1+R1 (R3 per tiranti)			V V		V		V V	V V
A2+M2+R1	V		V		V	V	V	V
A2+M2+R2								

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT


Inviluppi Tasso di Sfruttamento a Momento - SteelWork	
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0
-0.4	0.005
-0.6	0.016
-0.8	0.036
-1	0.064
-1.2	0.099
-1.4	0.144
-1.6	0.197
-1.8	0.271
-2	0.353
-2.2	0.371
-2.4	0.395
-2.6	0.424
-2.8	0.46
-3	0.502
-3.2	0.55
-3.4	0.604
-3.6	0.663
-3.8	0.726
-4	0.792
-4.2	0.72
-4.4	0.652
-4.6	0.588
-4.8	0.527
-5	0.47
-5.2	0.418
-5.4	0.37
-5.6	0.332
-5.8	0.393
-6	0.467
-6.2	0.537
-6.4	0.601
-6.6	0.66
-6.8	0.71
-7	0.751
-7.2	0.785
-7.4	0.812
-7.6	0.832
-7.8	0.911
-8	0.991
-8.2	1.061
-8.4	1.121
-8.6	1.172
-8.8	1.214
-9	1.247
-9.2	1.272
-9.4	1.289
-9.6	1.299
-9.8	1.301
-10	1.296
-10.2	1.284
-10.4	1.266
-10.6	1.242
-10.8	1.213
-11	1.178

GENERAL CONTRACTOR Consorzio IricAV Due		F17	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

I I I I I I I I I I I I I I I I I I I) rem
Inviluppi Tasso di Sfruttamento a Momento - SteelWorld	
• /	Tasso di Sfruttamento a Momento - SteelWorld
-11.2	1.138
-11.4	1.093
-11.6	1.044
-11.8	0.991
-12	0.934
-12.2	0.874
-12.4	0.811
-12.6	0.745
-12.8	0.677
-13	0.607
-13.2	0.536
-13.4	0.463
-13.6	0.39
-13.8	0.316
-14	0.242
-14.2	0.235
-14.4	0.254
-14.6	0.27
-14.8	0.284
-15	0.297
-15.2	0.308
-15.4	0.319
-15.6	0.331
-15.8	0.365
-16	0.393
-16.2	0.39
-16.4	0.36
-16.6	0.311
-16.8	0.249
-17	0.179
-17.2	0.118
-17.4	0.068
-17.6	0.031
-17.8	0.008
-18	0

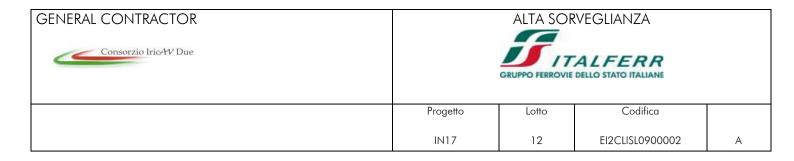
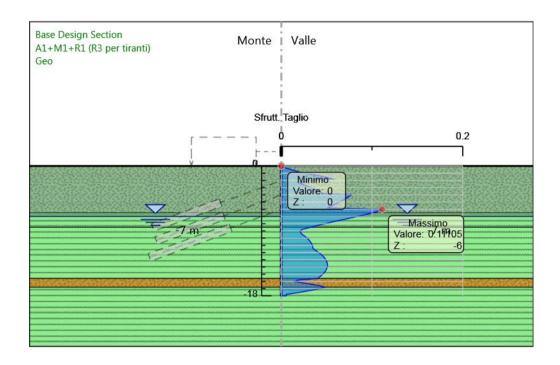

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Inviluppi

Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

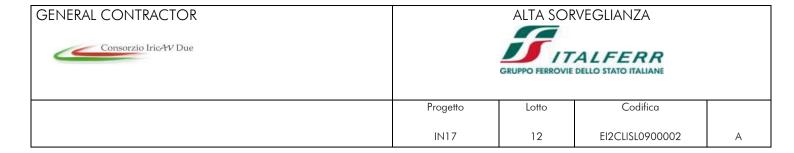

	_
Inviluppi Tasso di Sfruttamento a Taglio - SteelWorl	
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
0	0
-0.2	0.003
-0.4	0.008
-0.6	0.013
-0.8	0.019
-1	0.025
-1.2	0.035
-1.4	0.043
-1.6	0.051
-1.8	0.057
-2	0.029
-2.2 -2.4	0.025
	0.021
-2.6 -2.8	0.025
-2.o -3	0.029 0.033
-3.2	
-3.4	0.037 0.04
-3.6	0.043
-3.8	0.046
-4	0.077
-4.2	0.075
-4.4	0.073
-4.6	0.07
-4.8	0.067
-5	0.064
-5.2	0.061
-5.4	0.058
-5.6	0.055
-5.8	0.051
-6	0.111
-6.2	0.107
-6.4	0.104
-6.6	0.097
-6.8	0.09
-7	0.083
-7.2	0.076
-7.4	0.069
-7.6	0.062
-7.8	0.055
-8	0.048
-8.2	0.041
-8.4	0.035
-8.6	0.029
-8.8	0.023
-9 0.2	0.021
-9.2 -9.4	0.021
	0.022
-9.6 -9.8	0.024 0.027
-9.6 -10	0.027
-10.2	0.03
-10.2	0.03
-10.4	0.031
-10.8	0.033
-11	0.033
-11.2	0.035
-11.4	0.035
-11.6	0.036
11.0	5.550

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld	
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-11.8	0.039
-12	0.041
-12.2	0.043
-12.4	0.045
-12.6	0.047
-12.8	0.048
-13	0.049
-13.2	0.05
-13.4	0.05
-13.6	0.051
-13.8	0.051
-14	0.051
-14.2	0.05
-14.4	0.049
-14.6	0.048
-14.8	0.047
-15	0.046
-15.2	0.044
-15.4	0.042
-15.6	0.04
-15.8	0.019
-16	0.015
-16.2	0.023
-16.4	0.034
-16.6	0.043
-16.8	0.048
-17	0.042
-17.2	0.034
-17.4	0.025
-17.6	0.016
-17.8	0.005
-18	0.005

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld


Inviluppi

Tasso di Sfruttamento a Taglio - SteelWorld

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica	ALFERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

Verifiche Tiranti SLE (Rara)

Design Assumption:	Tipo Risultato:				NTC2008			
SLE (Rara)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	O Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
1° Ordine	Tirante	250	962.177	605.557	0.26	0.413		NO
1° Ordine	2° scavo	250.846	962.177	605.557	0.261	0.414		NO
1° Ordine	2° Tirante	246.525	962.177	605.557	0.256	0.407		NO
1° Ordine	3° scavo	242.715	962.177	605.557	0.252	0.401		NO
1° Ordine	3° Tirante	243.369	962.177	605.557	0.253	0.402		NO
1° Ordine	Scavo finale	240.188	962.177	605.557	0.25	0.397		NO
2° Ordine	2° Tirante	250	989.601	605.557	0.253	0.413		NO
2° Ordine	3° scavo	289.103	989.601	605.557	0.292	0.477		NO
2° Ordine	3° Tirante	282.318	989.601	605.557	0.285	0.466		NO
2° Ordine	Scavo finale	280.278	989.601	605.557	0.283	0.463		NO
3° Ordine	3° Tirante	350	1187.532	605.557	0.295	0.578		NO
3° Ordine	Scavo finale	385.281	1187.532	605.557	0.324	0.636		NO

Verifiche Tiranti A1+M1+R1 (R3 per tiranti)

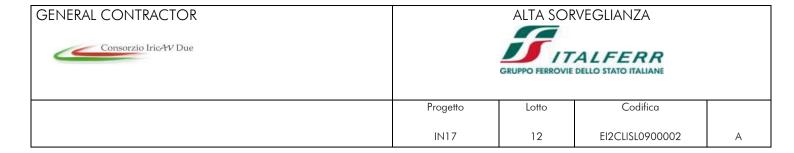
Design Assumption:	Tipo Risultato:				NTC2008			
A1+M1+R1 (R3 per tiranti)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR		Resistenze
1° Ordine	Tirante	325	485.948	605.557	0.669	0.537		
1° Ordine	2° scavo	326.115	485.948	605.557	0.671	0.539		
1° Ordine	2° Tirante	320.543	485.948	605.557	0.66	0.529		
1° Ordine	3° scavo	315.76	485.948	605.557	0.65	0.521		
1° Ordine	3° Tirante	316.614	485.948	605.557	0.652	0.523		
1° Ordine	Scavo finale	312.197	485.948	605.557	0.642	0.516		
2° Ordine	2° Tirante	325	499.798	605.557	0.65	0.537		
2° Ordine	3° scavo	381.684	499.798	605.557	0.764	0.63		
2° Ordine	3° Tirante	372.92	499.798	605.557	0.746	0.616		
2° Ordine	Scavo finale	370.458	499.798	605.557	0.741	0.612		
3° Ordine	3° Tirante	455	599.764	605.557	0.759	0.751		
3° Ordine	Scavo finale	504.956	599.764	605.557	0.842	0.834		

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	E12CLISL0900002	А

Verifiche Tiranti A2+M2+R1

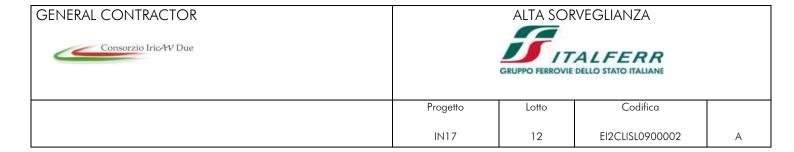
Design Assumption: A2+M2+R1	Tipo Risultato: Verifiche Tiranti				NTC2008 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
1° Ordine	Tirante	250	485.948	605.557	0.514	0.413		
1° Ordine	2° scavo	251.742	485.948	605.557	0.518	0.416		
1° Ordine	2° Tirante	247.507	485.948	605.557	0.509	0.409		
1° Ordine	3° scavo	256.757	485.948	605.557	0.528	0.424		
1° Ordine	3° Tirante	257.327	485.948	605.557	0.53	0.425		
1° Ordine	Scavo finale	245.756	485.948	605.557	0.506	0.406		
2° Ordine	2° Tirante	250	499.798	605.557	0.5	0.413		
2° Ordine	3° scavo	495.902	499.798	605.557	0.992	0.819		
2° Ordine	3° Tirante	487.153	499.798	605.557	0.975	0.804		
2° Ordine	Scavo finale	493.233	499.798	605.557	0.987	0.815		
3° Ordine	3° Tirante	350	599.764	605.557	0.584	0.578		
3° Ordine	Scavo finale	464.21	599.764	605.557	0.774	0.767		

GENERAL CONTRACTOR Consorzio IricAV Due		17	RVEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А

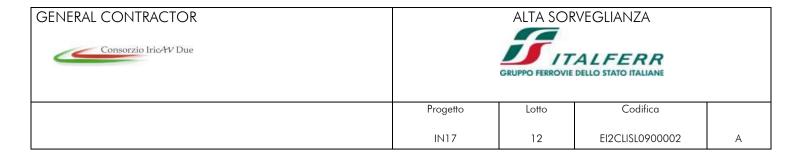

Verifiche Tiranti A2+M2+R2

Design Assumption:	Tipo Risultato:				NTC2008			
A2+M2+R2	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	(kN)	(kN)		STR		Resistenze
1° Ordine	Tirante	250	485.948	605.557	0.514	0.413		
1° Ordine	2° scavo	252.643	485.948	605.557	0.52	0.417		
1° Ordine	2° Tirante	248.78	485.948	605.557	0.512	0.411		
1° Ordine	3° scavo	245.548	485.948	605.557	0.505	0.405		
1° Ordine	3° Tirante	246.074	485.948	605.557	0.506	0.406		
1° Ordine	Scavo finale	221.793	485.948	605.557	0.456	0.366		
2° Ordine	2° Tirante	250	499.798	605.557	0.5	0.413		
2° Ordine	3° scavo	704.655	499.798	605.557	1.41	1.164	NO	
2° Ordine	3° Tirante	695.322	499.798	605.557	1.391	1.148	NO	
2° Ordine	Scavo finale	709.452	499.798	605.557	1.419	1.172	NO	
3° Ordine	3° Tirante	350	599.764	605.557	0.584	0.578		
3° Ordine	Scavo finale	511.185	599.764	605.557	0.852	0.844		

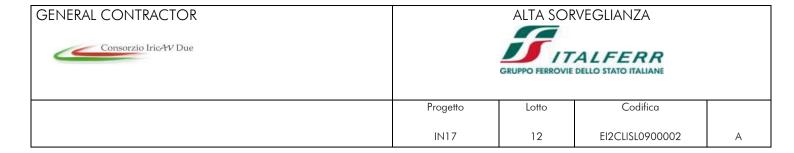
GENERAL CONTRACTOR Consorzio Iric/W Due		11	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLISL0900002	А


Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

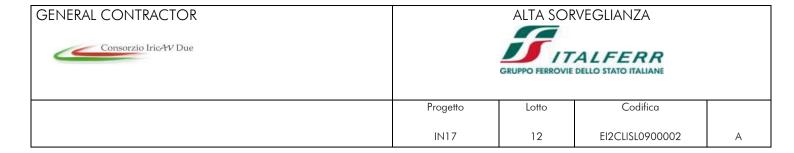
	Tipo Risultato:								
	Verifiche Tiranti								
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio	Ratio	Resistenza	Gerarchia delle	Design
		(kN)	GEO (kN)	(kN)	GEO	STR		Resistenze	Assumption
1° Ordine	2° scavo	326.115	485.948	605.557	0.671	0.539			A1+M1+R1 (R3 per tiranti)
2° Ordine	Scavo finale	709.452	499.798	605.557	1.419	1.172	NO		A2+M2+R2
3° Ordine	Scavo finale	511.185	599.764	605.557	0.852	0.844			A2+M2+R2


Verifiche Travi di Ripartizione Nominal

Design Assumption: Ti	po Risultato: Verifiche Trav	/i							
Nominal	di Ripartizione								
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEA 200-1	1° Ordine	HE 200A	S275	Tirante	125	0	0	0	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° scavo	125.423	0	0	0	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° Tirante	123.262	0	0	0	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	2° Tirante	125	0	0	0	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3° scavo	121.357	0	0	0	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° scavo	144.552	0	0	0	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3° Tirante	121.685	0	0	0	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° Tirante	141.159	0	0	0	0
2 HEA 200 3°	3° Ordine	HE 200A	S275	3° Tirante	175	0	0	0	0
2 HEA 200-1	1° Ordine	HE 200A	S275	Scavo finale	120.094	0	0	0	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	Scavo finale	140.139	0	0	0	0
2 HEA 200 3°	3° Ordine	HE 200A	S275	Scavo finale	192.641	0	0	0	0


Verifiche Travi di Ripartizione SLE (Rara)

Design Assumption:	Tipo Risultato: Verifiche	NTC2008							
SLE (Rara)	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEA 200-1	1° Ordine	HE 200A	S275	Tirante	125	0	0.404	0.289	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° scavo	125.423	0	0.406	0.29	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° Tirante	123.262	0	0.399	0.285	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	2° Tirante	125	0	0.404	0.289	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3° scavo	121.357	0	0.393	0.281	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° scavo	144.552	0	0.468	0.335	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3° Tirante	121.685	0	0.394	0.282	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° Tirante	141.159	0	0.457	0.327	0
2 HEA 200 3°	3° Ordine	HE 200A	S275	3° Tirante	175	0	0.566	0.405	0
2 HEA 200-1	1° Ordine	HE 200A	S275	Scavo finale	120.094	0	0.389	0.278	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	Scavo finale	140.139	0	0.453	0.325	0
2 HEA 200 3°	3° Ordine	HE 200A	S275	Scavo finale	192.641	0	0.623	0.446	0


Verifiche Travi di Ripartizione A1+M1+R1 (R3 per tiranti)

Design Assumption:	Tipo Risultato: Verifiche	NTC2008							
A1+M1+R1 (R3 per tiranti)	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico	Assiale	Ratio	Ratio	Instabilità
					distribuito	(kN)	momento	taglio	
					(kN/m)				•
2 HEA 200-1	1° Ordine	HE 200A	S275	Tirante	162.5	0	0.526	0.376	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° scavo	163.057	0	0.528	0.378	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2°	160.272	0	0.519	0.371	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	2°	162.5	0	0.526	0.376	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	3° scavo	157.88	0	0.511	0.366	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° scavo	190.842	0	0.617	0.442	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3°	158.307	0	0.512	0.367	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	3°	186.46	0	0.603	0.432	0
				Tirante					
2 HEA 200 3°	3° Ordine	HE 200A	S275	3°	227.5	0	0.736	0.527	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	Scavo	156.098	0	0.505	0.361	0
				finale					
2 HEA 200 2°	2° Ordine	HE 200A	S275	Scavo	185.229	0	0.599	0.429	0
				finale					
2 HEA 200 3°	3° Ordine	HE 200A	S275	Scavo	252.478	0	0.817	0.585	0
				finale					

Verifiche Travi di Ripartizione A2+M2+R1

Design Assumption:	Tipo Risultato: Verifiche	NTC2008							
A2+M2+R1	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEA 200-1	1° Ordine	HE 200A	S275	Tirante	125	0	0.404	0.289	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° scavo	125.871	0	0.407	0.291	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2°	123.754	0	0.4	0.287	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	2°	125	0	0.404	0.289	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	3° scavo	128.378	0	0.415	0.297	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° scavo	247.951	0	0.802	0.574	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3°	128.664	0	0.416	0.298	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	3°	243.577	0	0.788	0.564	0
				Tirante					
2 HEA 200 3°	3° Ordine	HE 200A	S275	3°	175	0	0.566	0.405	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	Scavo	122.878	0	0.398	0.285	0
				finale					
2 HEA 200 2°	2° Ordine	HE 200A	S275	Scavo	246.616	0	0.798	0.571	0
				finale					
2 HEA 200 3°	3° Ordine	HE 200A	S275	Scavo	232.105	0	0.751	0.537	0
				finale					

Verifiche Travi di Ripartizione A2+M2+R2

Design Assumption:	Tipo Risultato: Verifiche	NTC2008							
A2+M2+R2	Travi di Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
2 HEA 200-1	1° Ordine	HE 200A	S275	Tirante	125	0	0.404	0.289	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2° scavo	126.322	0	0.409	0.293	0
2 HEA 200-1	1° Ordine	HE 200A	S275	2°	124.39	0	0.402	0.288	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	2°	125	0	0.404	0.289	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	3° scavo	122.774	0	0.397	0.284	0
2 HEA 200 2°	2° Ordine	HE 200A	S275	3° scavo	352.328	0	1.14	0.816	0
2 HEA 200-1	1° Ordine	HE 200A	S275	3°	123.037	0	0.398	0.285	0
				Tirante					
2 HEA 200 2°	2° Ordine	HE 200A	S275	3°	347.661	0	1.125	0.805	0
				Tirante					
2 HEA 200 3°	3° Ordine	HE 200A	S275	3°	175	0	0.566	0.405	0
				Tirante					
2 HEA 200-1	1° Ordine	HE 200A	S275	Scavo	110.897	0	0.359	0.257	0
				finale					
2 HEA 200 2°	2° Ordine	HE 200A	S275	Scavo	354.726	0	1.148	0.821	0
				finale					
2 HEA 200 3°	3° Ordine	HE 200A	S275	Scavo	255.593	0	0.827	0.592	0
				finale					

Allegati

Design Assumption: Nominal - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION:Base Design Section USING ASSUMPTION: Nominal
* Time:venerdì 3 settembre 2021 11:06:44
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -18 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -18 0 1 0
SOIL 0_R LeftWall_32 -18 0 2 180
* 4: Defining soil layers
* Soil Profile (R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0)
LDATA R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 0 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 20 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 30000 90000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0)
LDATA UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 -6.5 LeftWall_32
ATREST 0.5 0.5 3.5
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 10000 30000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_391_1968647_L_0)
LDATA UG3b-LIMIARGILLOSI_391_1968647_L_0 -8.5 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
ENDL
* Soil Profile (UG4-SABBIALIMOSA_394_543814_L_0)
LDATA UG4-SABBIALIMOSA_394_543814_L_0 -15.6 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 19 9 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 60000 1.8E+05
* Soil Profile (UG3b-LIMIARGILLOSI_391_562569_L_0)
LDATA UG3b-LIMIARGILLOSI_391_562569_L_0 -16.8 LeftWall_32
WEIGHT 18 8 10
PERMEABILITY 0.0001
```

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	12	EI2CLISL0900002	А

RESISTANCE 0 23 0 0 0 TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0 YOUNG 7500 22500 ENDL \star 5: Defining structural materials * Steel material: 113 Name=S275 E=210000000 kPa MATERIAL S275 113 2.1E+08 * Concrete material: 104 Name=C25/30 E=31475800 kPa MATERIAL C2530 104 3.1476E+07 * Rebar material: 124 Name=acciaio armonico E=200100000 kPa MATERIAL acciaioarmonico 124 2.001E+08 * 6: Defining structural elements * 6.1: Beams and combined Wall Elements ** rev 2021 and later BEAM WallElement_33 LeftWall_32 -18 0 S275_113 0.11845 0.039466 0.00013849 3.0388 00 00 0 WIRE 1 Ordine 6759 LeftWall_32 -2 acciaioarmonico_124 1.4893E-05 125 20 0 0 slave WIRE 2 Ordine_548871 LeftWall_32 -4 acciaioarmonico_124 1.5444E-05 125 20 0 0 slave WIRE 3°Ordine_1896415 LeftWall_32 -6 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave * 6.3: Strips STRIP LeftWall 32 2 8 3.5 9 0 57.3 45 * 7: Defining Steps STEP Geo_31 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-FRICT=38 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-FRICT=38 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-KA=0.238 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KP=7.232 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KA=0.238 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KP=7.232 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-KP=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-KP=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-FRICT=23 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-FRICT=23 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KP=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KP=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KR=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KR=2.893 LeftWall_32 CHANGE UG4-SABRIALIMOSA_394_543814_L_0 U-FRICT=38_LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-FRICT=38 LeftWall_32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-FRICT=38 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KA=0.238 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KP=7.232 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KA=0.238 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KP=7.232 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 U-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KA=0.438 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KP=2.893 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.438 Leftwall 32
CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KP=2.893 Leftwall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-COHE=0 Leftwall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-ADHES=0 Leftwall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-COHE=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-COHE=0 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-ADHES=0 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-COHE=0 LeftWall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-ADHES=0 LeftWall 32

CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-COHE=0 LeftWall_32

GENERAL CONTRACTOR

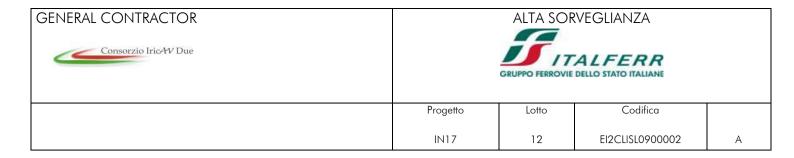
Progetto	Lotto	Codifica	
IN17	12	EI2CLISL0900002	А

CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-ADHES=0 LeftWall_32 SETWALL LeftWall_32 GEOM 0 0 SURCHARGE 0 0 0 0 0 WATER -7 0 -18 0 0 ADD Wallelement_33 ENDSTEP

STEP 1°scavo_159 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0

STEP Tirante 85367 SETWALL LeftWall 32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 1°Ordine 6759 ENDSTEP

WATER -7 0 -18 0 0


ENDSTEP

STEP 2°scavo_544237 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 2°Tirante_548650 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 2°Ordine_548871 ENDSTEP

STEP 3°scavo_1895135 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 3°Tirante_1895775 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 3°Ordine_1896415 ENDSTEP

Design Assumption: SLE (Rara) - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: SLE (Rara)
* Time:venerdì 3 settembre 2021 11:06:47
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -18 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -18 0 1 0
SOIL 0_R LeftWall_32 -18 0 2 180
* 4: Defining soil layers
* Soil Profile (R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0)
LDATA R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 0 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 20 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 30000 90000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0)
LDATA UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 -6.5 LeftWall 32
ATREST 0.5 0.5 3.5
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
YOUNG 10000 30000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI 391 1968647 L 0)
LDATA UG3b-LIMIARGILLOSI_391_1968647_L_0 -8.5 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
* Soil Profile (UG4-SABBIALIMOSA_394_543814_L_0)
LDATA UG4-SABBIALIMOSA 394 543814 L 0 -15.6 LeftWall 32
WEIGHT 19 9 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 60000 1.8E+05
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_391_562569_L_0)
LDATA UG3b-LIMIARGILLOSI_391_562569_L_0 -16.8 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
```

GENERAL CONTRACTOR Consorzio IricAt/ Due Consorzio IricAt/ Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

DMDT

```
* 5: Defining structural materials

* Steel material: 113 Name=S275 E=210000000 kPa

MATERIAL S275_113 2.1E+08

* Concrete material: 104 Name=C25/30 E=31475800 kPa

MATERIAL C2530_104 3.1476E+07

* Rebar material: 124 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_124 2.001E+08

* 6: Defining structural elements

* 6: Defining structural elements

** rev 2021 and later

BEAM WallElement_33 LeftWall_32 -18 0 S275_113 0.11845 0.039466 0.00013849 3.0388 00 00 0

* 6.2: Supports

WIRE 1°Ordine_6759 LeftWall_32 -2 acciaioarmonico_124 1.4893E-05 125 20 0 0 slave

WIRE 2°Ordine_548871 LeftWall_32 -4 acciaioarmonico_124 1.5444E-05 125 20 0 0 slave

WIRE 3°Ordine_1896415 LeftWall_32 -6 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave
```

```
* 6.3: Strips
 STRIP LeftWall 32 2 8 3.5 9 0 57.3 45
 * 7: Defining Steps
 STEP Geo_31
 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-FRICT=38 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 D-FRICT=38 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KA=0.238 LeftWall_32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-KP=7.232 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KA=0.238 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KP=7.232 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L 0 U-FRICT=23 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KA=0.438 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KP=2.893 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KA=0.438 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KP=2.893 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-FRICT=23 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-FRICT=23 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KA=0.438 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KP=2.893 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KA=0.438 Leftwall_32
 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KP=2.893 LeftWall_32
CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-FRICT=38 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-FRICT=38 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KP=7.232 Leftwall 32
CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KP=7.232 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 U-FRICT=23 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-FRICT=23 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 U-KA=0.438 Leftwall 32
CHANGE UG3b-LIMITARGILLOSI 391 562569 L 0 U-KP=2.893 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.438 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.438 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KP=2.893 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-COHE=0 LeftWall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-ADHES=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-COHE=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-COHE=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32
CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SAB
 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-COHE=0 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-ADHES=0 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-COHE=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-ADHES=0 LeftWall_32
  SETWALL LeftWall_32
```

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric-IV Due Consorzio Iric-IV Due Progetto Lotto Codifica

IN17

12

EI2CLISL0900002

Α

SURCHARGE 0 0 0 0
WATER -7 0 -18 0 0
ADD WallElement_33
ENDSTEP

STEP 1°scavo_159 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP Tirante_85367 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 1°Ordine_6759 ENDSTEP

STEP 2°scavo_544237 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 2°Tirante_548650 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 2°Ordine_548871 ENDSTEP

STEP 3°scavo_1895135 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 3°Tirante_1895775 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 3°Ordine_1896415 ENDSTEP

Design Assumption: A1+M1+R1 (R3 per tiranti) - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: A1+M1+R1 (R3 per tiranti)
* Time:venerdì 3 settembre 2021 11:06:49
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -18 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -18 0 1 0
SOIL 0_R LeftWall_32 -18 0 2 180
* 4: Defining soil layers
* Soil Profile (R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0)
LDATA R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 0 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 20 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 30000 90000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0)
LDATA UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 -6.5 LeftWall 32
ATREST 0.5 0.5 3.5
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
YOUNG 10000 30000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI 391 1968647 L 0)
LDATA UG3b-LIMIARGILLOSI_391_1968647_L_0 -8.5 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
* Soil Profile (UG4-SABBIALIMOSA_394_543814_L_0)
LDATA UG4-SABBIALIMOSA 394 543814 L 0 -15.6 LeftWall 32
WEIGHT 19 9 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 60000 1.8E+05
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_391_562569_L_0)
LDATA UG3b-LIMIARGILLOSI_391_562569_L_0 -16.8 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
```

GENERAL CONTRACTOR Consorzio IricAt/ Due Consorzio IricAt/ Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

DMDT

```
* 5: Defining structural materials

* Steel material: 113 Name=S275 E=210000000 kPa

MATERIAL S275_113 2.1E+08

* Concrete material: 104 Name=C25/30 E=31475800 kPa

MATERIAL C2530_104 3.1476E+07

* Rebar material: 124 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_124 2.001E+08

* 6: Defining structural elements

* 6: Defining structural elements

** rev 2021 and later

BEAM WallElement_33 LeftWall_32 -18 0 S275_113 0.11845 0.039466 0.00013849 3.0388 00 00 0

* 6.2: Supports

WIRE 1°Ordine_6759 LeftWall_32 -2 acciaioarmonico_124 1.4893E-05 125 20 0 0 slave

WIRE 2°Ordine_548871 LeftWall_32 -4 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave

WIRE 3°Ordine_1896415 LeftWall_32 -6 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave
```

```
* 6.3: Strips
 STRIP LeftWall 32 2 8 3.5 9 0 66.115 45
 * 7: Defining Steps
 STEP Geo_31
 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-FRICT=38 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 D-FRICT=38 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KA=0.238 LeftWall_32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-KP=7.232 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KA=0.238 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-KP=7.232 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L 0 U-FRICT=23 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-FRICT=23 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KA=0.438 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KP=2.893 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KA=0.438 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KP=2.893 LeftWall 32
 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-FRICT=23 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-FRICT=23 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KA=0.438 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-KP=2.893 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KA=0.438 Leftwall_32
 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KP=2.893 LeftWall_32
CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-FRICT=38 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-FRICT=38 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KP=7.232 Leftwall 32
CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KA=0.238 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-KP=7.232 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 U-FRICT=23 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-FRICT=23 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 U-KA=0.438 Leftwall 32
CHANGE UG3b-LIMITARGILLOSI 391 562569 L 0 U-KP=2.893 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.438 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=2.893 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KP=2.893 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-COHE=0 LeftWall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2_81339_L_0 U-COHE=0 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2_81339_L_0 U-COHE=0 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2_81339_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SAB
 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-COHE=0 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-ADHES=0 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-COHE=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-ADHES=0 LeftWall_32
  SETWALL LeftWall_32
```

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric-AV Due Consorzio Iric-AV Due Progetto Lotto Codifica

IN17

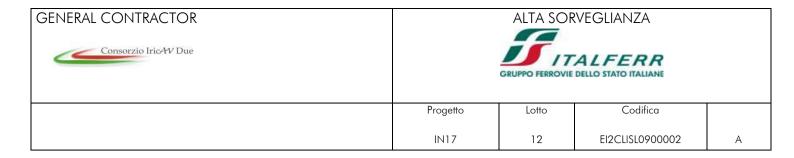
12

EI2CLISL0900002

Α

GEOM 0 0
SURCHARGE 0 0 0 0
WATER -7 0 -18 0 0
ADD WallElement_33
ENDSTEP

STEP 1°scavo_159 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP


STEP Tirante_85367 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 1°Ordine_6759 ENDSTEP

STEP 2°scavo_544237 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 2°Tirante_548650 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 2°Ordine_548871 ENDSTEP

STEP 3°scavo_1895135 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 3°Tirante_1895775 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 3°Ordine_1896415 ENDSTEP

Design Assumption: A2+M2+R1 - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: A2+M2+R1
* Time:venerdì 3 settembre 2021 11:06:52
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -18 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -18 0 1 0
SOIL 0_R LeftWall_32 -18 0 2 180
* 4: Defining soil layers
* Soil Profile (R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0)
LDATA R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 0 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 20 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 30000 90000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0)
LDATA UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 -6.5 LeftWall 32
ATREST 0.5 0.5 3.5
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
YOUNG 10000 30000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI 391 1968647 L 0)
LDATA UG3b-LIMIARGILLOSI_391_1968647_L_0 -8.5 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
* Soil Profile (UG4-SABBIALIMOSA_394_543814_L_0)
LDATA UG4-SABBIALIMOSA 394 543814 L 0 -15.6 LeftWall 32
WEIGHT 19 9 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 60000 1.8E+05
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_391_562569_L_0)
LDATA UG3b-LIMIARGILLOSI_391_562569_L_0 -16.8 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
```

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Lotto Proaetto

IN17

12

EI2CLISL0900002

Α

```
* 5: Defining structural materials
* Steel material: 113 Name=S275 E=210000000 kPa
MATERIAL S275_113 2.1E+08
* Concrete material: 104 Name=C25/30 E=31475800 kPa
MATERIAL C2530_104 3.1476E+07
* Rebar material: 124 Name=acciaio armonico E=200100000 kPa
MATERIAL acciaioarmonico 124 2.001E+08
* 6: Defining structural elements
* 6.1: Beams and combined Wall Elements
** rev 2021 and later
BEAM WallElement 33 Leftwall 32 -18 0 S275 113 0.11845 0.039466 0.00013849 3.0388 00 00 0
* 6.2: Supports
WIRE 1°Ordine_6759 LeftWall_32 -2 acciaioarmonico_124 1.4893E-05 125 20 0 0 slave
WIRE 2°Ordine 548871 LeftWall 32 -4 acciaioarmonico 124 1.5444E-05 125 20 0 0 slave
WIRE 3°Ordine_1896415 LeftWall_32 -6 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave
* 6.3: Strips
STRIP LeftWall 32 2 8 3.5 9 0 74.49 45
```

```
* 7: Defining Steps
 STEP Geo_31
 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-FRICT=32.007 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-FRICT=32.007 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-KA=0.307 LeftWall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KA=0.307 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KP=4.847 LeftWall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 D-KP=4.847 LeftWall_32 CHANGE UG33-LIMIARGILLOSI_supe_1968218_15451_L_0 U-FRICT=18.756 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-FRICT=18.756 LeftWall_32
CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 D-FRICT=18.756 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 U-KA=0.513 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 U-KP=2.327 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 D-KA=0.513 Leftwall 32
 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KP=2.327 LeftWall_32
CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-FRICT=32.007 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-FRICT=32.007 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KA=0.307 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KP=4.847 Leftwall 32
CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-KA=0.307 Leftwall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-KP=4.847 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-FRICT=18.756 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-FRICT=18.756 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KA=0.513 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KA=0.513 Leftwall_32
CHANGE UG3b-LIMITARGILLOSI 391 562569 L 0 U-KP=2.327 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.513 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.513 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KP=2.327 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-COHE=0 LeftWall 32
CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-ADHES=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-COHE=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-COHE=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32
CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SAB
 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-COHE=0 LeftWall_32
 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-ADHES=0 LeftWall_32
  SETWALL LeftWall_32
```

GENERAL CONTRACTOR Consorzio Iric/1/V Due Consorzio Iric/1/V Due Consorzio Iric/1/V Due Progetto Lotto Codifica

IN17

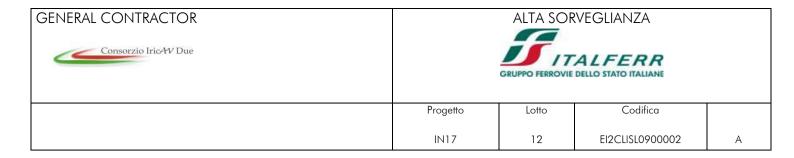
12

EI2CLISL0900002

Α

GEOM 0 0
SURCHARGE 0 0 0 0
WATER -7 0 -18 0 0
ADD WallElement_33
ENDSTEP

STEP 1°scavo_159 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP


STEP Tirante_85367 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 1°Ordine_6759 ENDSTEP

STEP 2°scavo_544237 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 2°Tirante_548650 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 2°Ordine_548871 ENDSTEP

STEP 3°scavo_1895135 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 3°Tirante_1895775 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 3°Ordine_1896415 ENDSTEP

Design Assumption: A2+M2+R2 - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: A2+M2+R2
* Time:venerdì 3 settembre 2021 11:06:55
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -18 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -18 0 1 0
SOIL 0_R LeftWall_32 -18 0 2 180
* 4: Defining soil layers
* Soil Profile (R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0)
LDATA R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 0 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 20 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 30000 90000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0)
LDATA UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 -6.5 LeftWall 32
ATREST 0.5 0.5 3.5
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
YOUNG 10000 30000
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI 391 1968647 L 0)
LDATA UG3b-LIMIARGILLOSI_391_1968647_L_0 -8.5 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
PERMEABILITY 0.0001
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
* Soil Profile (UG4-SABBIALIMOSA_394_543814_L_0)
LDATA UG4-SABBIALIMOSA 394 543814 L 0 -15.6 LeftWall 32
WEIGHT 19 9 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
TZDATA LINEAR 0 0 0 0.5 0
KSCALE 0 0
YOUNG 60000 1.8E+05
ENDL
* Soil Profile (UG3b-LIMIARGILLOSI_391_562569_L_0)
LDATA UG3b-LIMIARGILLOSI_391_562569_L_0 -16.8 LeftWall_32
ATREST 0.5 0.5 1
WEIGHT 18 8 10
RESISTANCE 0 23 0 0 0
TZDATA LINEAR 0 0 0 0.5 0 KSCALE 0 0
YOUNG 7500 22500
```

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 12 EI2CLISL0900002 A

* 5: Defining structural materials

* Steel material: 113 Name=S275 E=210000000 kPa

MATERIAL S275_113 2.1E+08

* Concrete material: 104 Name=C25/30 E=31475800 kPa

MATERIAL C2530_104 3.1476E+07

* Rebar material: 124 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_124 2.001E+08

* 6: Defining structural elements

* 6.1: Beams and combined Wall Elements

** rev 2021 and later
BEAM WallElement_33 LeftWall_32 -18 0 S275_113 0.11845 0.039466 0.00013849 3.0388 00 00 0

* 6.2: Supports
WIRE 1°Ordine_6759 LeftWall_32 -2 acciaioarmonico_124 1.4893E-05 125 20 0 0 slave
WIRE 2°Ordine_548871 LeftWall_32 -4 acciaioarmonico_124 1.5444E-05 125 20 0 0 slave
WIRE 3°Ordine_1896415 LeftWall_32 -6 acciaioarmonico_124 1.5444E-05 175 20 0 0 slave

* 6.3: Strips STRIP LeftWall 32 2 8 3.5 9 0 74.49 45 * 7: Defining Steps STEP Geo_31 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-FRICT=32.007 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-FRICT=32.007 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-KA=0.3377 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-RA=0.337 Leftwall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 U-KP=4.4064 Leftwall_32 CHANGE R-RILEVATOFERROVIARIOESISTENT_2_81339_L_0 D-KP=4.4064 Leftwall_32 CHANGE UG33-LIMIARGILLOSI_supe_1968218_15451_L_0 U-FRICT=18.756 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-FRICT=18.756 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KA=0.5643 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-KP=2.1155 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KA=0.5643 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 D-KP=2.1155 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-FRICT=18.756 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 D-FRICT=18.756 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 U-KA=0.5643 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 U-KP=2.1155 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 D-KA=0.5643 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 1968647 L 0 D-KA=0.5643 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-KP=2.1155 LeftWall_32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-FRICT=32.007 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 D-FRICT=32.007 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KA=0.3377 Leftwall 32 CHANGE UG4-SABBIALIMOSA 394 543814 L 0 U-KP=4.4064 Leftwall 32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-KA=0.3377 Leftwall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-KA=0.3377 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-FRICT=18.756 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-FRICT=18.756 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KA=0.5643 Leftwall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-KA=0.5643 Leftwall_32 CHANGE UG3b-LIMITARGILLOSI 391 562569 L 0 U-KP=2.1155 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=0.5643 Leftwall 32 CHANGE UG3b-LIMIARGILLOSI 391 562569 L 0 D-KA=2.1155 Leftwall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-COHE=0 Leftwall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 U-ADHES=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-COHE=0 LeftWall 32 CHANGE R-RILEVATOFERROVIARIOESISTENT 2 81339 L 0 D-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-COHE=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI supe 1968218 15451 L 0 U-ADHES=0 LeftWall 32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_supe_1968218_15451_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_1968647_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 U-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-COHE=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_L D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SABBIALIMOSA_394_543814_D-ADHES=0 LeftWall_32 CHANGE UG4-SAB CHANGE UG4-SABBIALIMOSA_394_543814_L_0 D-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 U-ADHES=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-COHE=0 LeftWall_32 CHANGE UG3b-LIMIARGILLOSI_391_562569_L_0 D-ADHES=0 LeftWall_32 SETWALL LeftWall_32

GENERAL CONTRACTOR Consorzio Iric/1/V Due Consorzio Iric/1/V Due Consorzio Iric/1/V Due Progetto Lotto Codifica

IN17

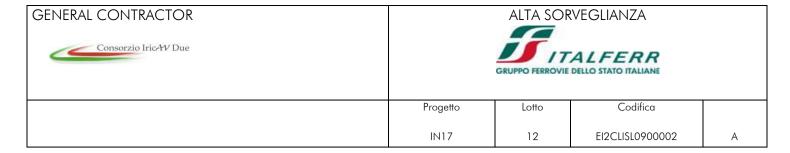
12

EI2CLISL0900002

Α

GEOM 0 0
SURCHARGE 0 0 0 0
WATER -7 0 -18 0 0
ADD WallElement_33
ENDSTEP

STEP 1°scavo_159 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP


STEP Tirante_85367 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 1°Ordine_6759 ENDSTEP

STEP 2°scavo_544237 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 2°Tirante_548650 SETWALL LeftWall_32 GEOM 0 -4.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 2°Ordine_548871 ENDSTEP

STEP 3°scavo_1895135 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ENDSTEP

STEP 3°Tirante_1895775 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -7 0 -18 0 0 ADD 3°Ordine_1896415 ENDSTEP

12 DICHIARAZIONE SECONDO NTC2008 (§ 10.2)

L'analisi strutturale e le verifiche sono condotte con l'ausilio di codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. Il calcolo delle sollecitazioni è stato condotto attraverso un'analisi agli elementi finiti.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi pseudostatica secondo le disposizioni del capitolo 7 del DM 17/01/2018. La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Lo stato tenso-deformativo dei sottostrutture è stato investigato mediante il software di calcolo PARATIE PLUS di CEAS srl.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, io sottoscritto asserisco che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.