COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE
OBIETTIVO N. 443/01
LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA
Lotto funzionale Verona – Bivio Vicenza
PROGETTO ESECUTIVO
SL - SOTTOVIA
SL20 - SOTTOVIA AL KM 23+049
GENERALE

GENERAL CONTRACTOR

IL PROGETTISTA INTEGRATORE

Consorzio

SCALA

Iricav Due

ing. Rgolo CARMONA

Data: Settembre 2021

Data: Settembre 2021

Data: Settembre	2021		Data: Sett	embre 2021							
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR. REV.	F	OGLIO			
I N 1 7	1 2	Е	1 2	CL	S L 2 0 0 0	0 0 1 A		- D	-	-	-

					VISTO CONSORZIO IRICAV DUE			
				Firma			Data	
	Conson	zia Inia Ad	/ Dire		Luc	a RANDOLFI		
Consorzio IricAV Due								
Proge	Progettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
Α	EMISSIONE	CODING	30/09/21	C. Pinti	30/09/21	P. Luciani	30/09/21	Giuseppetabrizio Coppa
ζ.	EIVIISSIONE	Lei	30/09/21	Comer Wh	30/09/21	Suc Pitor	30/09/21	Giuseppeiabrizio Coppa
								n A8176 0
								100 * 400
								The state of the s

CIG. 8377957CD1

CUP: J41E91000000009

File: IN1712EI2CLSL2000001A.DOCX Cod. origine:

Progetto cofinanziato dalla Unione Europea

Relazione di calcolo sottovia

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

INDICE

1	1 PREMESSA	4
2	NORMATIVA DI RIFERIMENTO	6
3	3 UNITÁ DI MISURA	7
4	4 CARATTERISTICHE DEI MATERIALI 4.1 Calcestruzzo 4.2 Acciaio per armature ordinarie 4.3 Copriferri 4.4 Durabilità e prescrizioni sui materiali	8 8 8 8
5	5 PARAMETRI SISMICI	10
6	CARATTERIZZAZIONE GEOTECNICA 6.1 Rilevati e rinterri 6.2 Stratigrafia e parametri geotecnici 6.3 Liquefacibilita' dei terreni	12 12 12 13
7	7 GEOMETRIA DELLA STRUTTURA	14
8	8.1 Condizioni di carico 8.1.1 Peso proprio strutturale (PP) 8.1.2 Carichi permanenti portati (PERM) 8.1.3 Spinta del terreno (SPTSX e SPTDX) 8.1.4 Azioni della falda (SPTW) 8.1.5 Azioni termiche (TERM) 8.1.6 Ritiro (RITIRO) 8.1.7 Azioni variabili da traffico 8.1.8 Azioni sismiche 8.2 Combinazioni di carico	15 15 15 16 17 17 17 18 22 24
9	9.1 Verifica agli Stati Limite di Esercizio 9.1.1 Verifica a fessurazione 9.1.2 Verifica delle tensioni in esercizio 9.2 Verifica agli Stati Limite Ultimi 9.2.1 Sollecitazioni flettenti 9.2.2 Sollecitazioni taglianti	31 31 31 32 33 33 33
10	10 MODELLAZIONE STRUTTURALE 10.1 Codice di calcolo 10.2 Modello di calcolo 10.3 Interazione terreno-struttura	35 35 35 36

GENERAL CONTRACTOR Consorzio IricAtV Due Consorzio IricAtV Due Progetto IN17 12 EI2CLSL2000001 A

11 ANA	ALISI DELLE SOLLECITAZIONI	38			
12 VEF	RIFICHE DI DEFORMAZIONE E VIBRAZIONE	42			
12.1	Inflessione nel piano verticale dell'impalcato	42			
12.2	Stato limite di comfort dei passeggeri	43			
13 VEF	RIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	44			
13.1	Soletta superiore – sezione di mezzeria	45			
13.2	Soletta superiore – sezione di incastro	50			
13.3	Soletta inferiore – sezione di mezzeria	55			
13.4	Soletta inferiore – sezione di incastro	60			
13.5	Piedritti – sezione di incastro inferiore	65			
13.6	Piedritti – sezione di incastro superiore	70			
13.7	Piedritti – sezione di mezzeria	75			
14 VEF	RIFICHE GEOTECNICHE	80			
14.1	Verifica della capacità portante	80			
14.2	Valutazione dei cedimenti	91			
14.3	Verifica a sollevamento	92			
15 DIC	15 DICHIARAZIONE SECONDO NTC2008 (§ 10.2) 95				

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica			
	IN17	12	EI2CLSL2000001	А		

1 PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali del nuovo sottovia ferroviario denominato 'SL20', ubicato al km 23+049, nell'ambito della redazione dei documenti tecnici relativi alla progettazione esecutiva della Linea AV/AC Verona - Padova, Sub tratta Verona – bivio Vicenza, 1° sub lotto Montebello Vicentino - Vicenza.

La struttura scatolare a canna singola è del tipo gettato in opera ed ha dimensioni interne 11.00 x 6.30 m, con soletta di copertura di spessore 1.10 m, piedritti di spessore 1.20 m e soletta di fondazione di spessore 1.30 m. La distanza tra la quota del piano del ferro e l'estradosso della soletta superiore è pari a 1.31 m. L'opera presenta uno sviluppo longitudinale di 16.00 m.

L'asse del sottopasso risulta inclinato di 73° rispetto all'asse ferroviario (vi è pertanto un'inclinazione di 17° rispetto alla sezione in retto). Si individua nello stralcio planimetrico riportato a seguire l'ubicazione del sottovia in esame.

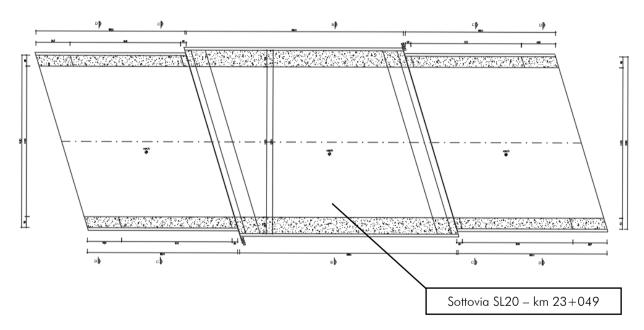


Figura 1.1: Stralcio planimetrico – Ubicazione sottovia SL20

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica			
	IN17	12	EI2CLSL2000001	А		

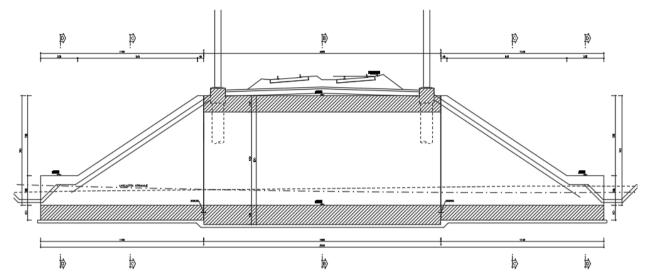


Figura 1.2: Sezione longitudinale sottovia SL20

Si riporta la sezione di calcolo:

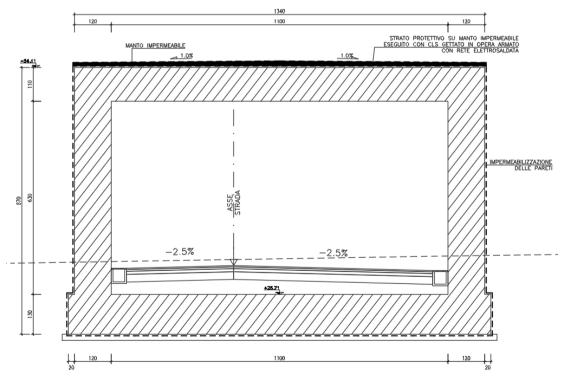


Figura 1.3: Sezione di calcolo sottovia SL20

Le strutture sono state progettate coerentemente con quanto previsto dalla normativa "Norme Tecniche per le Costruzioni"- DM 14.1.2008 e Circolare n .617 "Istruzioni per l'applicazione delle Nuove Norme Tecniche per le Costruzioni".

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica			
	IN17	12	EI2CLSL2000001	А		

2 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le disposizioni legislative in elenco e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 Gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 Febbraio 2009: Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-11-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- RFI DTC SI MA IFS 001 B Dicembre 2017: Manuale di progettazione delle opere civili.

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica				
	IN17	12	El2CLSL2000001	А			

3 UNITÁ DI MISURA

Le unità di misura usate nella presente relazione sono:

lunghezze [m]
forze [kN]
momenti [kNm]
tensioni [MPa]

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVE

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

Per la realizzazione dello scatolare, si prevede l'utilizzo di calcestruzzo avente classe di resistenza 32/40 ($R_{ck} \ge 40.00 \text{ N/mm}^2$) che presenta le seguenti caratteristiche:

Resistenza caratteristica a compressione (cilindrica)

Resistenza caratteristica a compression	one (cilinarica	a)
$f_{ck}=0.83\times R_{ck}=$	33.20	N/mm^2
Resistenza media a compressione		
$f_{cm} = f_{ck} + 8 =$	41.20	N/mm^2
Modulo elastico		
E_{cm} =22000 × $(fc_m/10)^{0.3}$ =	33643	N/mm^2
Resistenza di calcolo a compressione	e	
$f_{cd} = \alpha_c \times f_{ck}/\gamma c = 0.85^* f_{ck}/1.5 =$	18.81	N/mm^2
Resistenza a trazione media		
$f_{ctm} = 0.30 \times f_{ck}^{2/3} =$	3.10	N/mm^2
Resistenza a trazione		
$f_{ctk} = 0.7 \times f_{ctm} =$	2.17	N/mm^2
Resistenza a trazione di calcolo		
$f_{ctd} = f_{ctk} / \gamma_c =$	1.45	N/mm^2
Resistenza a compressione (comb. Re	ara)	
$\sigma_c = 0.55 \times f_{ck} =$	18.26	N/mm^2
Resistenza a compressione (comb. G	∖uasi perman	ente)
$\sigma_c = 0.40 \times f_{ck} =$	13.28	N/mm ²

4.2 ACCIAIO PER ARMATURE ORDINARIE

Classe acciaio per armature ordinarie		B4500	· -
Tensione di snervamento caratteristica	$f_{yk} \geq$		450 MPa
Tensione caratteristica di rottura		$f_t \geq$	540 MPa
Modulo di elasticità		$E_s =$	210000 MPa

4.3 COPRIFERRI

Si riportano di seguito i copriferri nominali per le strutture in calcestruzzo armato:

Strutture di elevazione 5.0 cm

Strutture di fondazione 5.0 cm

4.4 DURABILITÀ E PRESCRIZIONI SUI MATERIALI

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE						
	Progetto	Lotto	Codifica					
	IN17	12	EI2CLSL2000001	А				

Si adotta quanto segue:

Fondazione Classe di esposizione XC2 Elevazione Classe di esposizione XC4

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

5 PARAMETRI SISMICI

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato. La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni. La classe d'uso assunta è la III. Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

$$V_R = V_N \ x \ C_u = 100 \ x \ 1.5 = 150 \ anni.$$

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

 P_{VR} (SLV) = 10%.

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R(SLV) = -\frac{Vr}{\ln(1-Pvr)} = 1424$$
 anni

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di a_g, F₀, T*_c:

 $a_g \rightarrow accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;$

F₀ → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

 $S \rightarrow coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t);

Il calcolo viene eseguito con il metodo pseudostatico (N.T.C. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Le spinte delle terre, considerando lo scatolare una struttura rigida e priva di spostamenti (NTC par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta a riposo, condizione che comporta il calcolo delle spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Wood:

$$\Delta P_d = S \; \alpha_g/g \; \gamma \; {h_{tot}}^2$$

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

I valori delle caratteristiche sismiche per lo SLV sono i seguenti:

Latitudine: 45.241854 Longitudine: 11.174297

 $\alpha_g = 0.207 \text{ g};$ $F_0 = 2.438;$ $T^*_c = 0.286 \text{ s}.$

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Il sottosuolo su cui insiste l'opera ricade in categoria sismica "C" e categoria topografica "T1". I coefficienti di amplificazione stratigrafica e topografica risultano quindi:

$$S_S = 1.397;$$

 $S_T = 1.0.$

Risulta quindi:

$$a_{max} = 2.835 \text{ m/s}^2;$$

$$k_h = 0.289;$$

$$k_v=\pm 0.145$$

con:

$$a_{\max} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g}$$

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

Nel caso in esame, poiché l'opera non è in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

6 CARATTERIZZAZIONE GEOTECNICA

6.1 RILEVATI E RINTERRI

Sono riassunte nel prospetto riportato di seguito le caratteristiche del terreno dei rilevati ferroviari esistenti e di nuova progettazione (con γ pari al peso specifico del terreno; γ_{sat} pari al peso specifico saturo del terreno; c' pari alla coesione; ϕ' pari all'angolo di attrito; K_0 coefficiente di spinta a riposo):

Parametri del rilevato ferroviario						
γ γ_{sat} c' ϕ' k_0						
(kN/m^3)	(kN/m³)	(kPa)	(°)	(-)		
20.00	20.00	0.0	38.0	0.384		

6.2 STRATIGRAFIA E PARAMETRI GEOTECNICI

Si riportano di seguito le caratteristiche geotecniche relative al terreno di fondazione della tratta in cui ricade il sottovia in esame, desunte dagli esiti delle indagini disponibili. Le formazioni indicate nei prospetti di seguito fanno riferimento alle unità geotecniche descritte nel seguente elenco:

- Unità 2 Limi argillosi (da compatti a molto compatti);
- Unità 3b Limi argillosi/argille limose;
- Unità 4 Sabbie limose debolmente argillose.

La quota rispetto alla quale è individuata la stratigrafia riportata a seguire, corrispondente a 27.65 m s.l.m., è assunta coincidente col p.c. locale dell'opera in esame intercettato sulla linea.

Per quanto riguarda la falda di progetto, questa è assunta alla profondità di 24.65 m, ossia a 3.0 m dalla quota del p.c. locale.

Per ulteriori dettagli circa la posizione della falda di progetto si faccia riferimento alla relazione geotecnica della WBS SL20 in oggetto.

Tabella 1: Stratigrafia e valori caratteristici dei parametri geotecnici di calcolo

Strato	Formazione	spessore strato	z _{base} strato	γ	φ' _k	c' _k	C _{uk}	E'	Note						
Siluio	i omiazione	(m)	(m da p.c.)	(kN/m³)	(°)	(kPa)	(kPa)	(kN/m^2)							
1	UG3b	9.0	9.0	9.0 18	2		30 - 70	5000 -							
!	0036	7.0	7.0	10	6	1	30 - 70	10000							
2	UG4	8.5	8.5	8.5	8.5 17.5 19	17.5 10	3	0		40000 -					
	004	0.0	17.5	1 /	4	0	_	100000							
3	UG3b	4.5	22.0	18	2		50 – 80	10000 -							
	0000	٦.5	6	6	30 – 00	25000									
4	UG4	11.5	11.5 33.5	19	3	0	_	80000 -							
	004	11.5	00.0	1 /	4		-	130000							
5	UG2	3.5	37.0	18	1.0		100 -	15000 -							
<u> </u>	002	5.5	37.0		10	10	18	18	18 -		Ιδ -		_	150	30000

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

Strato	Formazione	spessore strato	z _{base} strato	γ	φ¹k	c' _k	Cuk	E'	Note
Siluio	i omiazione	(m)	(m da p.c.)	(kN/m^3)	(°)	(kPa)	(kPa)	(kN/m²)	
Z _w	z _w Profondità della falda dal p.c. locale				(3.00	m		

Profondità della falda dal p.c. locale 3.00 \mathbf{Z}_{W}

LEGENDA

 γ = peso di volume naturale;

 $\phi_{k'}$ = valore caratteristico dell'angolo di attrito;

 $c_{k}^{\prime}=$ valore caratteristico della resistenza al taglio in condizioni drenate;

 $c_{uk} = valore$ caratteristico della coesione non drenata;

E' = modulo elastico del terreno.

LIQUEFACIBILITA' DEI TERRENI 6.3

Non sono stati rilevati livelli di terreni potenzialmente liquefacibili in corrispondenza dell'opera in esame; per maggiori dettagli si rimanda alla relazione geotecnica relativa alla WBS in esame.

GENERAL CONTRACTOR Consorzio Iric-14 Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

7 GEOMETRIA DELLA STRUTTURA

Nel seguito sarà esaminata una striscia della porzione di scatolare gettata in opera avente lunghezza 1.00 m. Si riportano di seguito le dimensioni geometriche della sezione in retto.

Spessore medio del ballast + armamento	$H_b =$	1.31 m
Spessore sovralzo in curva	$H_{sv} =$	0.00 m
Spessore sub-ballast	$H_{sb} =$	0.00 m
Spessore supercompattato	$H_{sc} =$	0.00 m
Spessore rinterro	$H_r =$	0.00 m
Spessore massetto impermeabilizzazione	$H_m =$	0.00 m
Larghezza totale dello scatolare	$L_{tot} =$	13.40 m
Larghezza utile dello scatolare	$L_{int} =$	11.00 m
Larghezza mensola di fondazione sinistra	$L_{msx} =$	0.20 m
Larghezza mensola di fondazione destra	$L_{mdx} =$	0.20 m
Spessore della soletta di copertura	$S_s =$	1.10 m
Spessore piedritti	$S_p =$	1.20 m
Spessore ritto centrale	$S_{pc} =$	0.00 m
Spessore della soletta di fondazione	$S_f =$	1.30 m
Altezza libera dello scatolare	$H_{int} =$	6.30 m
Altezza totale dello scatolare	$H_{tot} =$	8.70 m
	$H_{w} =$	2.00 m
Quota falda da intradosso fondazione	b =	1.00 m
Larghezza striscia di calcolo	υ —	

L'asse del sottovia, come detto nella premessa, risulta inclinato di 73° rispetto all'asse ferroviario (vi è pertanto un'inclinazione di 17° rispetto alla sezione in retto).

GENERAL CONTRACTOR Consorzio IricAV Due		15,17	ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

8 ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono le condizioni di carico elementari assunte per l'analisi delle sollecitazioni e per le verifiche della struttura in esame. Tali condizioni di carico elementari saranno opportunamente combinate secondo quanto previsto dalla normativa vigente.

Per i materiali si assumono i seguenti pesi specifici:

calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$;

sovrastruttura stradale: $\gamma_{ril} = 18 \text{ kN/m}^3$;

massicciata + armamento: $\gamma_b = 18 \text{ kN/m}^3$.

8.1 CONDIZIONI DI CARICO

8.1.1 Peso proprio strutturale (PP)

Il peso proprio delle solette e dei piedritti risulta:

 $\begin{array}{ll} \text{Peso soletta superiore} & P_{ss} = 25.00 \text{ x } 1.10 = 27.50 \text{ kN/m} \\ \text{Peso soletta inferiore} & P_{si} = 25.00 \text{ x } 1.30 = 32.50 \text{ kN/m} \\ \text{Peso piedritti} & P_{p} = 25.00 \text{ x } 1.20 = 30.00 \text{ kN/m} \\ \text{Peso setto centrale} & P_{sc} = 25.00 \text{ x } 0.00 = 0.00 \text{ kN/m} \\ \end{array}$

8.1.2 Carichi permanenti portati (PERM)

8.1.2.1 Soletta superiore

Ballast e armamento	1.31 m	X	18.00	kN/mc = 16.2	0 kN/mq
Sovralzo per linee in curva	0.00 m		Χ	20.00 kN/mc =	0.00
kN/mq					
Sub-ballast	0.00 m		X	20.00 kN/mc =	0.00
kN/mq					
Supercompattato	0.00 m		Х	20.00 kN/mc =	0.00
kN/mq					
Rinterro	0.00 m	Χ	20.00	kN/mc = 0.00) kN/mq
Massetto impermeabilizzazion	e 0.00 m		X	25.00 kN/mc =	0.00
kN/mq					

Peso totale permanenti portati sulla soletta superiore:

$$P_{ps} = 23.58 \text{ kN/m}$$

Inoltre si considera, come carico concentrato nei nodi di connessione tra la soletta superiore e i piedritti, il carico permanente dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto):

Peso ricoprimento per metà spessore piedritto $P_{ps} = 14.15 \text{ kN}$

GENERAL CONTRACTOR Consorzio Iric-14 Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

8.1.2.2 Soletta inferiore

Sulla soletta inferiore sono stati considerati i carichi permanenti relativi alla sovrastruttura stradale:

Spessore medio sovrastruttura stradale 0.95 m

Peso specifico sovrastruttura stradale 18.0 kN/m³ Peso sovrastruttura stradale 17.10 kN/m

8.1.3 Spinta del terreno (SPTSX e SPTDX)

La struttura è stata analizzata nella condizione di spinta a riposo.

 $K_0 = 0.384$

La pressione del terreno è stata calcolata come:

 $P = (P_b + h_{variabile} * \gamma_{terreno piedritto}) * K_o$

al di sopra della falda

 $P = [P_b + h_{variabile} * (\gamma_{terreno piedritto} - \gamma_w)] * K_o$

al di sotto della falda

per cui risulta quanto segue.

Pressione estradosso soletta superiore $P_1 = 9.06 \text{ kN/m}$

Pressione in asse soletta superiore $P_2 = 13.29 \text{ kN/m}$ Pressione in asse soletta inferiore $P_3 = 63.06 \text{ kN/m}$ Pressione intradosso soletta inferiore $P_4 = 65.56 \text{ kN/m}$

Inoltre sono stati considerati, come carichi concentrati nei nodi della copertura e della fondazione, i contributi delle spinte del terreno esercitate su metà spessore delle soletta di copertura e di fondazione.

Spinta semispessore soletta di copertura

 $P_{H.t.cop} = 6.15 \text{ kN}$

Spinta semispessore soletta di fondazione $P_{H.t.fond} = 41.80 \text{ kN}$

Nella figura seguente si riportano i diagrammi di spinta del terreno agenti sui piedritti.

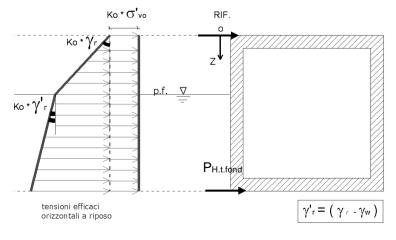
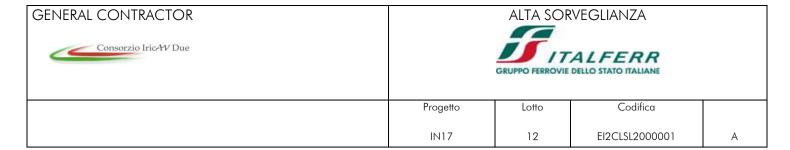



Figura 8.1: SPTSX

8.1.4 Azioni della falda (SPTW)

Qualora la falda sia posizionata al di sopra del piano di posa della fondazione si considera, in aggiunta alla spinta delle terre sopra definita, la spinta idrostatica esercitata dall'acqua sulle pareti verticali, pari a $S_w = \gamma_w *z$, e la sottospinta idraulica diretta verso l'alto sulla soletta inferiore, pari al prodotto del peso specifico dell'acqua, per l'altezza dello scatolare immerso, $P_w = \gamma_w *h_{imm}$.

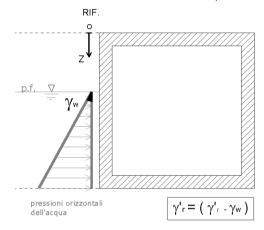


Figura 8.2: SPTW

8.1.5 Azioni termiche (TERM)

Sono stati considerati gli effetti dovuti alle variazioni termiche. In particolare, è stata considerata sulla soletta superiore una variazione termica uniforme di $\pm 15^{\circ}$ C ed una variazione termica nello spessore, tra estradosso ed intradosso, pari a $\Delta T_{\rm v}=\pm 5^{\circ}$ C. Il valore applicato della variazione termica uniforme viene ridotto di 1/3 per considerare gli effetti viscosi del calcestruzzo, ed è quindi pari a $\pm 5^{\circ}$ C. Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 * 10^{-6} = 0.00001 °C^{-1}$$
.

8.1.6 Ritiro (RITIRO)

Il ritiro viene applicato mediante una variazione termica uniforme della copertura, in grado di produrre la stessa deformazione nel calcestruzzo.

I fenomeni di ritiro sono stati considerati agenti sulla sola soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a:

$$\Delta T_{\text{ritiro}} = -11.64$$
 °C.

Di seguito i risultati delle analisi.

L'analisi delle sollecitazioni viene svolta per una striscia di larghezza unitaria, assumendo la dimensione convenzionale h_0 pari a $2 \times A_c/u$ ed un calcestruzzo C32/40.

Caratteristiche della sezione:

$$B = 1.00 \text{ m}$$

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

H = 1.10 m

Caratteristiche del cls a tempo zero:

 f_{ck} = 33.20 N/mm² classe del cls

 $f_{cm} = f_{ck} + 8 = 41.20 \text{ N/mm}^2$ resistenza a compressione media

Deformazione da ritiro:

U.R. = 75 % umidità relativa $\varepsilon_{ca}(t=\infty)$ = -5.80E-05 ritiro autogeno

 $\varepsilon_{cd}(t=\infty) = -2.68E-04$ ritiro per essiccamento

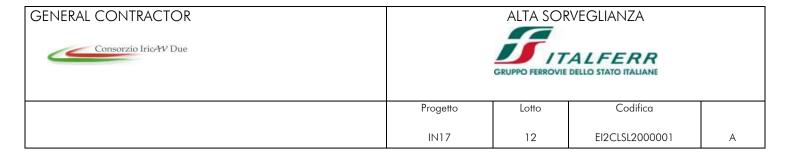
 $\epsilon_r = \epsilon_{ca} + \epsilon_{cd} = -3.26E-04$

Il ritiro viene considerato nel calcolo delle sollecitazioni come un'azione termica applicata alla soletta superiore di intensità pari a:

$$\alpha \times \Delta T \times E_c = \epsilon_r \times E_c / (1 + \phi)$$

$$\Delta T = \epsilon_r / [\alpha \times (1 + \phi)] = -3.26E-04/[1.00E-05 \times (1 + 1.80)] = -11.64^{\circ}C$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.


8.1.7 Azioni variabili da traffico

8.1.7.1 Coefficiente di incremento dinamico

Per il calcolo del coefficiente dinamico Φ si è fatto riferimento al paragrafo 2.5.1.4.2.5 del MdP RFI DTC SI PS MA IFS 001 C, tenendo conto di quanto riportato nella Tabella 2.5.1.4.2.5.3-1. In particolare, poiché la struttura ha altezza libera > 5.0 m e luce libera > 8.0 m, considerando la linea con elevato standard manutentivo, vale quanto segue:

In accordo alla normativa tale coefficiente dinamico viene ridotto in quanto il ricoprimento è superiore ad un metro; così facendo si ottiene un valore del coefficiente dinamico pari a:

Coeff. incremento dinamico ridotto $\emptyset_2 = 1.14$

8.1.7.2 Larghezza di diffusione

Il sovraccarico ferroviario è stato distribuito dalla rotaia alla quota del piano medio della soletta di copertura assumendo che detta diffusione avvenga con rapporto 4/1 lungo il ballast ed 1/1 nel massetto delle pendenze e nelle strutture in c.a., con un aumento dell'impronta di carico pari a:

$$\Delta_d = 0.78 \text{ m}$$

La diffusione del carico in senso trasversale all'asse binario risulta dunque pari a:

$$L_d = 2.60 + 2 \Delta d = 4.16 \text{ m}$$

8.1.7.3 Treno LM71 (ACCM LM71)

Carichi verticali sulla soletta superiore

Il treno LM71 viene schematizzato da 4 assi da 250 kN disposti ad interasse di 1,60 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una larghezza illimitata.

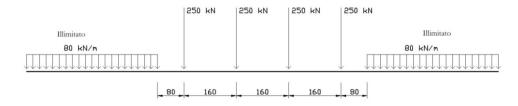


Figura 8.3: Treno LM71

La larghezza di diffusione in direzione longitudinale, considerando una larghezza della traversina pari a 0.30 m, risulta pari a:

$$L_I=0.+2\times\Delta_d=1.86~m$$

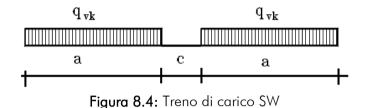
Poiché la larghezza è minore dell'interasse degli assi (1.6 m), le larghezze di diffusione dei singoli assi non si sovrappongono..

Si assume una lunghezza totale di diffusione dei quattro carichi concentrati:

$$L_1 = 6.36 \text{ m}.$$

Pertanto il carico ripartito dovuto al treno LM71 (considerando il coefficiente di adattamento α =1.1 ed il coefficiente dinamico Φ) risulta:

Carico ripartito prodotto dalle forze concentrate $P_{V.Q1.cop} = 47.46 \text{ kN/m}$


Carico ripartito prodotto dal carico distribuito $P_{V,Q2,cop} = 24.13 \text{ kN/m}$

I carichi del treno LM71 saranno dislocati a cavallo dell'asse di mezzeria della soletta superiore per cogliere il valore del massimo momento in campata; ubicandoli, invece, in adiacenza al piedritto di destra, si coglierà il valore del massimo taglio.

8.1.7.4 Treno SW/2 (ACCM SW2)

Carichi verticali sulla soletta superiore

Tale carico schematizza gli effetti statici prodotti dal traffico ferroviario pesante. Viene schematizzato da un carico lineare uniformemente ripartito di valore pari a 150 kN/m (coefficiente $\alpha = 1,00$):

Per la struttura scatolare in oggetto risulta:

$$q = q_{vk} / L_{d1} \times \varphi = 41.13 \text{ kN/m}$$

Si considera il treno di carico SW/2 applicato su tutta la soletta superiore.

8.1.7.5 Numero di treni contemporanei

Conformemente a quanto riportato nel par. 5.2.3.1.2_Tab.5.2.III del DM 14.1.2008, si sono considerati due treni contemportanei sull'impalcato, sia per il traffico normale che per quello pesante.

Tabella 2: Carichi mobili in funzione del numero di binari presenti sul ponte - Tab.5.2.III del DM 14.1.2008

Numero	Binari	Traffico	Traffico	
di binari	Carichi	caso a(1)	caso b(1)	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

8.1.7.6 Frenatura e avviamento (AW e FREN)

Le forze di frenatura e di avviamento agiscono sulla sommità del binario nella direzione longitudinale.

Treno LM71

⁽²⁾ Salvo i casi in cui sia esplicitamente escluso

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica

IN17

12

EI2CLSL2000001

Α

Avviamento $A_v = 33 \text{ kN/m}$

Carico distribuito su La:

 $q_{Av} = A_v \alpha / L_d = 9.14 \text{ kN/m}$

Treno SW/2

Frenatura $A_v = 35 \text{ kN/m}$

Carico distribuito su Ld:

$$q_{Av} = A_v \alpha / L_d = 8.81 \text{ kN/m}$$

Inoltre sono state aggiunte, come carichi concentrati nei nodi della soletta di copertura, le seguenti forze:

Spinta semispessore soletta di copertura (avviamento) $Q_{\alpha NODO} = 0.49 \text{ kN}$

Spinta semispessore soletta di copertura (frenatura) $Q_{fNODO} = 0.39 \text{ kN}$

Nel modello di calcolo si considera l'azione congruente al treno di carico verticale considerato. La spinta è applicata da sinistra verso destra per massimizzare gli effetti di sbilanciamento della struttura.

8.1.7.7 Spinta del sovraccarico sul rilevato (SPACCSX e SPACCDX)

Treno LM71

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate.

$$P_{H.Q.ritti} = (P_{V.Q1.cop} / \Phi) K_0 = 16.01 \text{ kN/m}$$

Anche in questo caso, sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione per la spinta sul piedritto sinistro e per la spinta sul piedritto destro, le seguenti forze:

Spinta semispessore soletta di copertura $P_{H.Q.cop} = 8.81 \text{ kN}$

Spinta semispessore soletta di fondazione $P_{H,Q,fond} = 10.41 \text{ kN}$

Treno SW/2

$$P_{H.Q.ritti} = (q_{sw/2} / \Phi) K_0 = 13.88 \text{ kN/m}$$

Anche in questo caso, sono stati aggiunti, come carichi concentrati nei nodi della copertura e della fondazione, le seguenti forze:

Spinta semispessore soletta di copertura $P_{H,Q,cop} = 7.63 \text{ kN}$

Spinta semispessore soletta di fondazione $P_{H,Q,fond} = 9.02 \text{ kN}$

8.1.7.8 Serpeggio (SERP)

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a a $Q_{sk}=100\ kN$ e la componente trasversale allo scatolare risulta:

$$Q_{\perp}=100 \text{ kN* sen } (17.00^{\circ}) = 29.24 \text{ kN}$$

Considerando la diffusione del carico, si avrà:

$$q_{serp} = Q_{\perp} / (L_d * L_{tot}) = 0.53 \text{ kN/m}^2.$$

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE						
	Progetto	Lotto	Codifica					
	IN17	12	El2CLSL2000001	А				

Sovraccarichi accidentali sulla soletta di fondazione (ACC SOLINF)

Si applica un carico uniformemente distribuito pari a 27.8 kPa, corrispondente ai carichi della Corsia n°1 dello Schema di Carico 1 per ponti stradali uniformemente distribuiti sulla larghezza utile dello scatolare (considerando una striscia di 1m di opera d'arte).

8.1.7.10 Forza centrifuga

Non presentando i binari un tracciato in curva, la forza centrifuga non è stata considerata.

8.1.8 Azioni sismiche

8.1.8.1 Forze di inerzia:

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_v = k_v \times W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

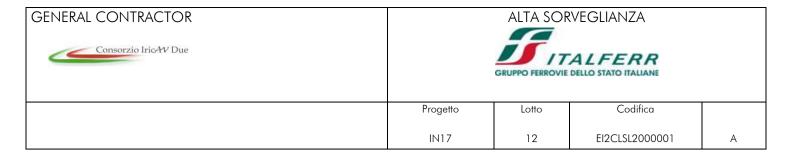
$$k_h = a_{max}/g$$

 $k_v = \pm 0.5 \times k_h$

Gli effetti dell'azione sismica sono stati valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \psi_{2j} Q_{kj}$$

Dove nel caso specifico si assumerà, per i carichi dovuti al transito dei convogli ferroviari, $\psi_{2j} = 0.2$. Come massa del treno è stato considerato il carico uniformemente distribuito sulla copertura di intensità maggiore tra LM71 e SW/2.


Pertanto avremo che:

 $G_1 = 27.50 \text{ kN/m}$ Massa associata al peso proprio copertura Massa associata al carico permanente $G_2 =$ 23.58 kN/m Massa treno $Q_k = 47.46 \text{ kN/m}$ Massa associata al peso proprio piedritti $G_3 =$ 30.00 kN/m $G_4 = 0.00 \text{ kN/m}$

8.1.8.2 Forze sismiche orizzontali (SISMA H)

Massa associata al peso del setto centrale

Forza orizzontale sulla soletta. di copertura (carico orizzontale uniformemente distribuito applicato alla soletta di copertura):

$$F'_h = k_h (G_1 + G_2 + \psi_{2j} Q_{kj}) = 17.51 \text{ kN/m}$$

Forza orizzontale sui piedritti (carico orizzontale uniformemente distribuito applicato ai piedritti):

$$F''_h = k_h G_p = 8.67 \text{ kN/m}$$

8.1.8.3 Forze sismiche verticali (SISMA V)

Per la forza sismica verticale avremo analogamente (carico verticale uniformemente distribuito applicato alla soletta di copertura):

Forza verticale sulla soletta di copertura:

$$F'_{v} = k_{v} (G_1 + G_2 + \psi_{2j} Q_{kj}) = 8.75 \text{ kN/m}$$

Figura 8.5: Forze sismiche agenti sulla struttura

8.1.8.4 Spinta delle terre in fase sismica (SPSDX e SPSSX)

Le spinte delle terre sono state determinate con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (\alpha_{max}/g) \cdot \gamma \cdot H^2 = 437.5 \text{ kN/m}$$

con risultante applicata ad un'altezza pari ad H/2.

GENERAL CONTRACTOR Consorzio Iric/4V Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

Sisma proveniente da sinistra

Sisma proveniente da destra

 $\underline{\hspace{0.1cm} \Delta S^{e}}$

Figura 4.6: Spinta sismica del terreno secondo la teoria di Wood

Nel modello di calcolo si è applicato il valore della forza sismica per unità di superficie agente su un piedritto, pari a:

$$\Delta s_E = \Delta s_E / H = 50.3 \text{ kN/m}^2$$

8.2 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni. Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ 0 x } E_Z$$
 oppure $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 14/01/2008 di seguito riportata. In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Tabella 5.2.IV: Valutazione dei carichi da traffico (da DM 14/01/2008)

TIPO DI CARICO	Azioni vertic	cali	Azioni orizzontali					
Gruppo di carico	Carico Verticale (1)	Treno Scarico	Frenatura ed Avviamento	Centrifuga	Serpeggio	COMMENTI		
Gruppo 1 (2)	1.0	-	0.5 (0.0)	1.0 (0.0)	1.0 (0.0)	massima azione verticale e laterale		
Gruppo 2 (2)	-	1.0	0.0	1.0 (0.0)	1.0 (0.0)	stabilità laterale		
Gruppo 3 (2)	1.0 (0.5)	-	1.0	0.5 (0.0)	0.5 (0.0)	massima azione longitudinale		
Gruppo 4	0.8 (0.6; 0.4)	-	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	fessurazione		
11-		Azione do	Azione dominante					

- (1) Includendo tutti i fattori ad essi relativi (Φ , α , ecc..)
- (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e, tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza.

l coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR. Di seguito viene riportata la Tabella 5.2.III delle NTC08 dove si mostrano i carichi mobili in funzione del numero di binari presenti:

Numero	Binari	Traffico	normale	T (0
di binari	Carichi	caso a ⁽¹⁾	caso b(1)	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 12 EI2CLSL2000001 A

Si ripota la Tabella 5.2.V delle NTC08 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 14/01/2008)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γo	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Si riporta la Tabella 5.2.VI delle NTC08 in cui sono espressi i coefficienti di combinazione delle azioni:

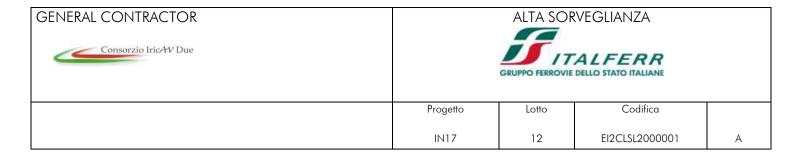


Tabella 5.2.VI: Coefficienti di combinazione ψ delle azioni (da DM 14/01/2008)

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

	creative and control and contr			
Azioni		ψο	ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_{k}	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\psi_2=0.2$ (paragrafo 5.1.3.12 del DM 14/01/2008) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

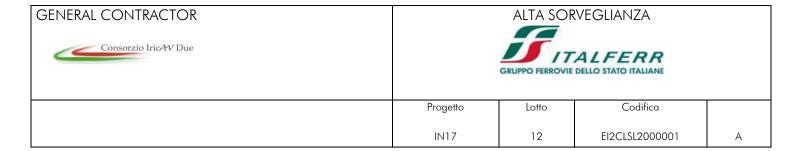


Tabella 3: Combinazioni di carico SLU (01-13)

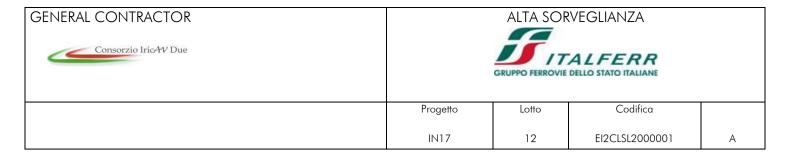
	SLU01	SLU02	SLU03	SLU04	SLU05	SLU06	SLU07	SLU08	SLU09	SLU10	SLU11	SLU12	SLU13
PP	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1
SPTDX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1
SPTW	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1
ACC_LM71	1.45	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.16	1.16	0
ACC_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SPACCSX_LM71	1.45	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	0
SPACCDX_LM71	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCSX_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SPACCDX_SW2	0	0	0	0	0	0	0	0	0	0	0	0	0
AVV_LM71	1.45	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	0
FREN_SW2	0	0	0	0	0	0	0	0	0	0	0	0	1.45
SERP	0	0	0	0	0	0	0	0	0	0	0	0	0
TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0
RITIRO	0	1.2	0	0	0	0	0	0	0	1.2	1.2	1.2	0
ACC_SOLINF	0	1.16	0	0	1.16	0	0	0	0	0	0	0	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 4: Combinazioni di carico SLU (14-26)

	SLU14	SLU15	SLU16	SLU17	SLU18	SLU19	SLU20	SLU21	SLU22	SLU23	SLU24	SLU25	SLU26
PP	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35	1.35
PERM	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1	1
SPTW	1	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
ACC_LM71	0	0	0	0	0	0	0	0	0	0	0	1.45	0
ACC_SW2	1.45	1.45	1.45	1.45	0	1.45	0	1.45	1.45	1.45	1.45	0	1.45
SPACCSX_LM71	0	0	0	0	0	0	0	0	0	0	0	1.45	0
SPACCDX_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	1.45	1.45	1.45	1.45	1.45	1.45	0	1.16	1.16	0	1.45
SPACCDX_SW2	0	0	0	0	0	0	0	0	1.45	0	0	0	0
AVV_LM71	0	0	0	0	0	0	0	0	0	0	0	0	0
FREN_SW2	1.45	1.45	1.45	1.45	0	1.45	0	0	0	0	0	0.725	0.725
SERP	0	0	0	0	0	0	0	0	0	0	0	1.45	1.45
TERM	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0	0
RITIRO	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	0	0
ACC_SOLINF	1.16	0	0	1.16	0	0	0	0	0	0	0	0	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabella 5: Combinazioni di carico SLV (01-08)

	SLV01	SLV02	SLV03	SLV04	SLV05	SLV06	SLV07	SLV08
PP	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	1	1	1	1	1	1	1	1
SPTW	1	1	1	1	1	1	1	1
ACC_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
ACC_SW2	0	0	0	0	0	0	0	0
SPACCSX_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCDX_LM71	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	0	0	0	0	0	0
SPACCDX_SW2	0	0	0	0	0	0	0	0
AVV_LM71	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
FREN_SW2	0	0	0	0	0	0	0	0
SERP	0	0	0	0	0	0	0	0
TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	1	1	1	1	1	1	1	1
ACC_SOLINF	0	0	0	0	0	0	0	0
SISMA_H	1	1	-1	-1	0.3	0.3	-0.3	-0.3
SISMA_V	0.3	-0.3	0.3	-0.3	1	-1	1	-1
SPSSX	1	1	0	0	0.3	0.3	0	0
SPSDX	0	0	1	1	0	0	0.3	0.3


Tabella 6: Combinazioni di carico SLV (09-16)

	SLV09	SLV10	SLV11	SLV12	SLV13	SLV14	SLV15	SLV16
PP	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	1	1	1	1	1	1	1	1
SPTW	1	1	1	1	1	1	1	1
ACC_LM71	0	0	0	0	0	0	0	0
ACC_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCSX_LM71	0	0	0	0	0	0	0	0
SPACCDX_LM71	0	0	0	0	0	0	0	0
SPACCSX_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SPACCDX_SW2	0	0	0	0	0	0	0	0
AVV_LM71	0	0	0	0	0	0	0	0
FREN_SW2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
SERP	0	0	0	0	0	0	0	0
TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	1	1	1	1	1	1	1	1
ACC_SOLINF	0	0	0	0	0	0	0	0
SISMA_H	1	1	-1	-1	0.3	0.3	-0.3	-0.3
SISMA_V	0.3	-0.3	0.3	-0.3	1	-1	1	-1
SPSSX	1	1	0	0	0.3	0.3	0	0
SPSDX	0	0	1	1	0	0	0.3	0.3

Tabella 7: Combinazioni di carico SLE

	SLE_RARA01	SLE_RARA02	SLE_RARA03	SLE_RARA04	SLE_RARA05	SLE_RARA06	SLE_RARA07	SLE_RARA08	SLE_FREQ01	SLE_FREQ02	SLE_QPERM01
PP	1	1	1	1	1	1	1	1	1	1	1
PERM	1	1	1	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1	1	1	1
SPTDX	1	1	0.8	1	1	0.8	0.8	0.8	0.8	0.8	1
SPTW	1	1	1	1	1	1	1	1	1	1	1
ACC_LM71	0.8	0.8	0.8	0	0	0	1	0	0.8	0	0
ACC_SW2	0	0	0	0.8	0.8	0.8	0	1	0	0.8	0
SPACCSX_LM71	0.8	0.8	0.8	0	0	0	1	0	0.8	0	0
SPACCDX_LM71	0.8	0.8	0	0	0	0	0	0	0	0	0
SPACCSX_SW2	0	0	0	0.8	0.8	0.8	0	1	0	0.8	0
SPACCDX_SW2	0	0	0	0.8	0.8	0	0	0	0	0	0
AVV_LM71	-0.8	0.8	0.8	0	0	0	0	0	0.4	0.4	0
FREN_SW2	0	0	0	-0.8	0.8	0.8	0.5	0.5	0	0	0
SERP	0	0	0	0	0	0	1	1	0.8	0.8	0
TERM	-0.6	0.6	-0.6	-0.6	0.6	-0.6	-0.6	-0.6	-0.5	-0.5	0
RITIRO	0	0	1	0	0	1	0	0	0	0	0
ACC_SOLINF	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0
SISMA_H	0	0	0	0	0	0	0	0	0	0	0
SISMA_V	0	0	0	0	0	0	0	0	0	0	0
SPSSX	0	0	0	0	0	0	0	0	0	0	0
SPSDX	0	0	0	0	0	0	0	0	0	0	0

9 CRITERI DI VERIFICA STRUTTURALI

Le verifiche di sicurezza strutturali sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme Tecniche per le Costruzioni"- DM 14.1.2008 -, tenendo inoltre conto delle integrazioni riportate nel "Manuale di progettazione delle opere civili".

In particolare vengono effettuate le verifiche agli stati limite di servizio, riguardanti gli stati tensionale e di fessurazione, ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali in c.a..

9.1 VERIFICA AGLI STATI LIMITE DI ESERCIZIO

9.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008, tenendo inoltre conto delle ulteriori prescrizioni riportate nel "Manuale di progettazione delle opere civili RFI".

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Cumpi di	Condizioni	Combinazione	Armatura						
	ambientali	di azioni	Sensibile	Poco sensibile					
	amorentan	di azioni	Stato limite	Wd	Stato limite	Wd			
	a Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$			
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$			
ь	Aggressian	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$			
	b Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq \mathbf{w}_1$			
	. Malta a servicios	frequente	formazione fessure	-	ap. fessure	$\leq w_1$			
С	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$			

Figura 5.1: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 14.1.2008

Nella Tabella sopra riportata, $w_1=0.2$ mm, $w_2=0.3$ mm; $w_3=0.4$ mm.

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVE

Più restrittivi risultano i limiti di apertura delle fessure riportati nel "Manuale di progettazione delle opere civili". L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica (rara) per gli SLE, deve risultare:

- a) $\delta_f \le w_1$ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- b) δ_f ≤ w₂ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 14.1.2008.

Si assume pertanto per tutti gli elementi strutturali analizzati nel presente documento:

• Stato limite di fessurazione: $w_d \le w_1 = 0.2 \text{ mm}$ - combinazione di carico rara

In accordo con la normativa seguita, il valore di calcolo di apertura delle fessure w_d è dato da:

$$w_d = 1.7 w_m$$

dove w_m rappresenta l'ampiezza media delle fessure calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_m = \varepsilon_{sm} \, \Delta_{sm}$$

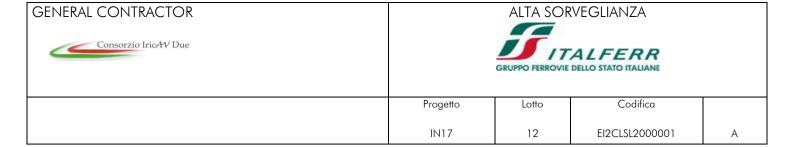
Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati i criteri consolidati riportati nella letteratura tecnica.

9.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

Le prescrizioni riportate di seguito fanno riferimento al par. 2.5.1.8.3.2.1 del "Manuale di progettazione delle opere civili".

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:


 $\sigma_c < 0.55 f_{ck}$ per combinazione caratteristica (rara)

 $\sigma_c < 0.40 \; f_{ck}$ per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ_s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_s < 0.75 \; f_{yk}$$

dove f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

9.2 VERIFICA AGLI STATI LIMITE ULTIMI

9.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabola-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 (σ_{max} = 0.85×0.83×R_{ck}/1.5);
- legame costitutivo dell'armatura d'acciaio elastico-perfettamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{vk} / 1.15$)

9.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d = 0.00 \cdot 10^{-10} \cdot 10^{$$

con:

$$\begin{array}{l} k = 1 \, + \, (200/d)^{1/2} \leq 2 \\ v_{min} = \, 0.035 k^{3/2} \, f_{ck}^{-1/2} \end{array}$$

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl}/(b_w \times d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0.2 f_{cd}$);

b_w è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$1 \le ctg \theta \le 2.5$

La verifica di resistenza (SLU) si pone con:

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

 $V_{Rd} \geq V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{\text{Rcd}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f \, {'}_{\text{cd}} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

s_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

θ è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;

 f'_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd}=0.5f_{cd}$);

à è un coefficiente maggiorativo, pari ad 1 per membrature non compresse.

GENERAL CONTRACTOR Consorzio Iric/IV Due		F17	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

10 MODELLAZIONE STRUTTURALE

10.1 CODICE DI CALCOLO

L' analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (STRAUS7) facendo riferimento agli assi baricentrici degli elementi schematizzati con elementi "beam".

10.2 MODELLO DI CALCOLO

Le analisi sono state condotte per una striscia di struttura di lunghezza unitaria, implementando un modello di calcolo bidimensionale in condizioni di deformazione piana. La struttura è definita sulla base degli assi baricentrici degli elementi. La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo Errore. L'origine riferimento non è stata trovata..

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

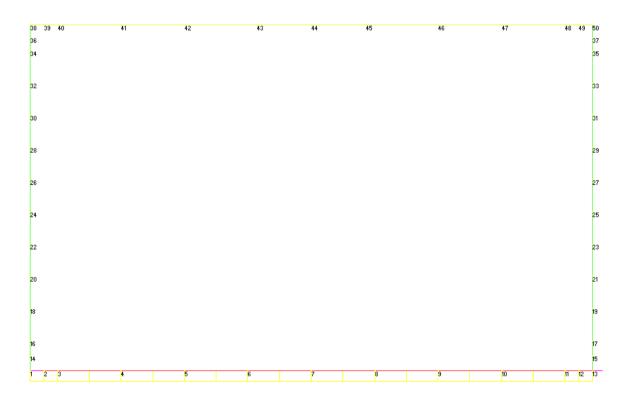


Figura 6.1: Modello F.E.M struttura - numerazione nodi

GENERAL CONTRACTOR Consorzio IricAV Due		11	ALFERR DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica		
	IN17	12	El2CLSL2000001	А	

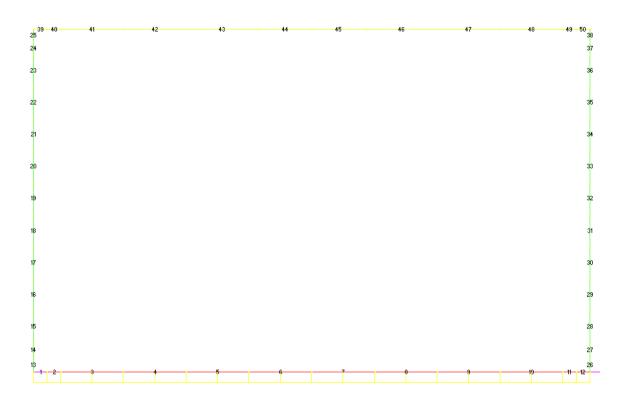


Figura 7: Modello F.E.M. struttura – numerazione aste

10.3 Interazione terreno-struttura

L'interazione struttura-terreno è simulata mediante l'applicazione sugli elementi interessati di un sistema di molle alla Winkler, definite assumendo cautelativamente un modulo di reazione verticale K_v pari a 3000 kN/m³: il calcolo della costante di Winkler è stato condotto applicando il procedimento proposto da Vesic e riportato da Bowles nel testo "Fondazioni", secondo la seguente formulazione:

$$k_s = \frac{E}{B(1-\mu^2)I_sI_F}$$

dove:

E = modulo elastico medio dello spessore di terreno sottostante la fondazione;

B = larghezza della fondazione;

 μ = coefficiente di Poisson del terreno di fondazione, assunto pari a 0.3.

Il valore del coefficiente di influenza I_s è stato calcolato attraverso la seguente equazione:

$$I_S = I_1 + \frac{1 - 2\mu}{1 - \mu} I_2$$

dove:

 $I_1 e I_2 = \text{coefficienti dipendenti dai rapporti H/B' e L/B;}$

H = spessore dello strato compressibile, pari a 5B;

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

B' = larghezza corrispondente al punto di calcolo assunto coincidente con il centro della fondazione, pari a B/2.

Il valore del coefficiente di influenza IF è stato estrapolato in funzione dei valori dei rapporti L/B e D/B.

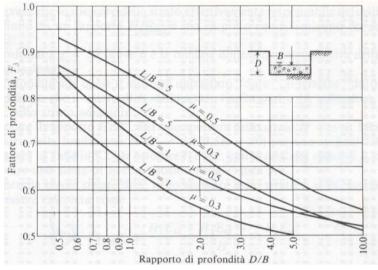


Figura 10.3: Grafico per la determinazione del fattore di profondità F_s

Le tabelle seguenti riportano le grandezze caratteristiche dell'opera.

Larghezza	Profondità	Lunghezza	Modulo
fondazione - B	fondazione - D	fondazione - L	elastico - E _s
(m)	(m)	(m)	(kPa)
13.80	9.25	16.00	7500

D/B	L/B	H/B'
0.67	1.16	2.50

Н	μ
69.0	0.3

La tabella seguente riporta i parametri l₁, l₂, l₅ e l_F.

I ₁	l ₂	Is	I _f
0.239	0.062	0.274	0.72

La tabella seguente riassume il valore calcolato della costante di sottofondo (k_s) e il valore assunto nei calcoli strutturali successivi.

k _s (daN/cm ³)	k _{s-assunto} (daN/cm ³)
0.3023	0.3000

GENERAL CONTRACTOR Consorzio IricAV Due		17 17	VEGLIANZA ALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

11 ANALISI DELLE SOLLECITAZIONI

Nelle seguenti tabelle sono riportati i valori massimi delle caratteristiche delle sollecitazioni ricavati per le sezioni oggetto di verifica, indicate in figura.

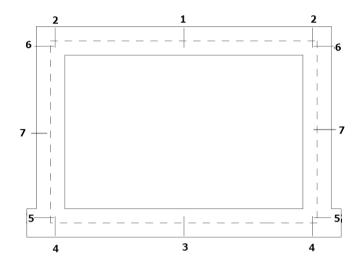


Figura 8: Sezioni di verifica

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

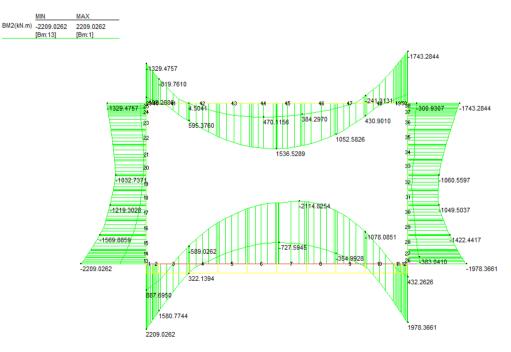


Figura 9: Inviluppo SLU/Sisma: momenti flettenti

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLSL2000001	А

	MIN	MAX
SF2(kN)	-1194.6616	1242.5759
	[Bm:1]	[Bm:12]

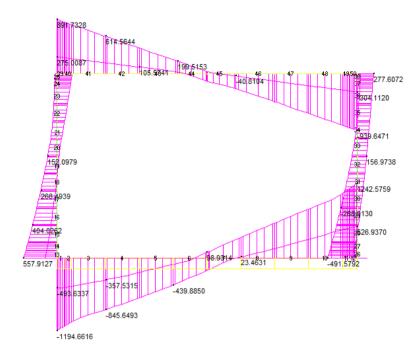


Figura 10 Inviluppo SLU/Sisma: sollecitazioni taglianti

	MIN	MAX
Force(kN)	-1258.7759	24.8883
	[Bm:26]	[Bm:39]

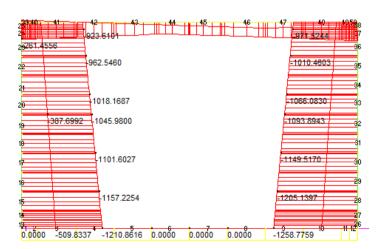


Figura 11 Inviluppo SLU/Sisma: sforzo normale

GENERAL CONTRACTOR Consorzio IricAV Due		11	EVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

	MIN	MAX
BM2(kN.m)	-1472.0777	1472.0777
	[Bm:13]	[Bm:1]

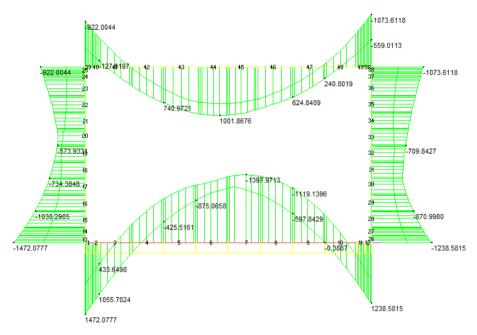


Figura 12 Inviluppo SLE: momenti flettenti

	MIN	MAX
SF2(kN)	-789.5652	860.8894
	[Bm:1]	[Bm:12]

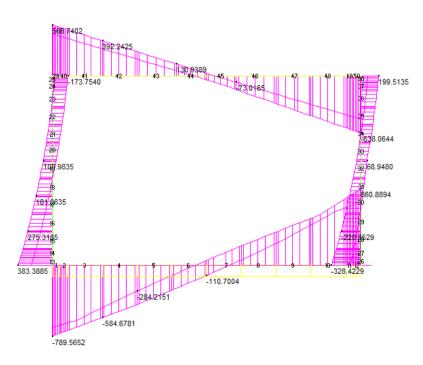
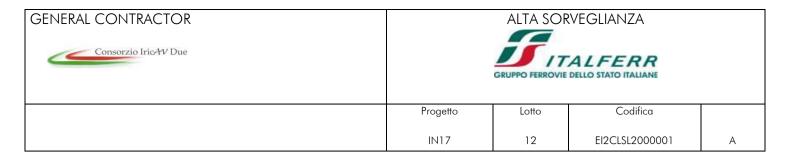



Figura 13 Inviluppo SLE: sollecitazioni taglianti

Di seguito si riportano i valori delle sollecitazioni per tutte le combinazioni di carico relative a tutte le sezioni di verifica.

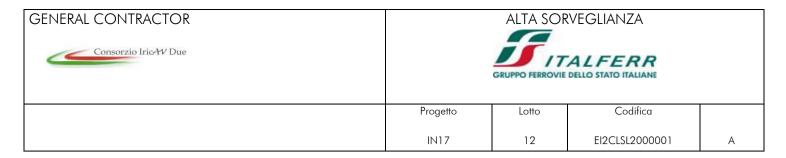
COP_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	140	1540	100
SLV	185	745	60
SLE RARA	150	1005	-
SLE FREQUENTE	105	905	-
SLE QUASI PERM.	95	490	-

COP_INC	Ν	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	160	-1730	925
SLV	250	-775	430
SLE RARA	180	-1065	-
SLE FREQUENTE	120	-945	-
SLE QUASI PERM.	95	-445	-

FOND_MEZZ	Ν	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	0	-2115	250
SLV	0	-955	110
SLE RARA	0	-1400	-
SLE FREQUENTE	0	-1295	-
SLE QUASI PERM.	0	-870	-

FOND_INC	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU+	0	2190	1230
SLV	0	1175	655
SLE RARA	0	1460	-
SLE FREQUENTE	0	1305	-
SLE QUASI PERM.	0	720	-

PIEDR_PIEDE	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	500	-2190	550
SLV	520	-1175	390
SLE RARA	800	-1460	-
SLE FREQUENTE	740	-1305	-
SLE QUASI PERM.	545	-720	-
PIEDR_TESTA	Ν	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	170	-1730	255
SLV	420	-775	260


GENERAL CONTRACTOR Consorzio Iric/1V Due		F17	VEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

SLE RARA	590	-1065	-
SLE FREQUENTE	530	-945	-
SLE QUASI PERM.	335	-445	-

PIEDR_MEZZ	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU	335	-1065	160
SLV	470	-420	90
SLE RARA	695	-710	-
SLE FREQUENTE	635	-635	-
SLE QUASI PERM.	440	-295	-

12 VERIFICHE DI DEFORMAZIONE E VIBRAZIONE

12.1 INFLESSIONE NEL PIANO VERTICALE DELL'IMPALCATO

In base a quanto indicato nel paragrafo 1.7.4.3.4. del MpD 2017 FS, nonché nel D.M. 14.01.08 (paragrafo 5.2.3.2.2), considerando la presenza del treno di carico LM71, incrementato con il corrispondente coefficiente e con il coefficiente α e gli effetti della variazione di temperatura lineare, l'inflessione nel piano orizzontale dell'impalcato non deve produrre all'estremità dell'impalcato una variazione angolare maggiore di θ_{amm} = 0.001500 rad.

Per quanto riguarda le rotazioni attribuibili alla presenza del treno di carico LM71, esse sono valutate sui nodi estremi della soletta superiore e in corrispondenza del piedritto interno, se presente, depurate della rototraslazione rigida della struttura.

Nel caso in esame risulta:

 $\theta_{tot} = 0.000375 \text{rad} << \theta_{amm} = 0.001500 \text{ rad}$

12.2 STATO LIMITE DI COMFORT DEI PASSEGGERI

L'inflessione verticale deve calcolarsi in asse al binario, considerando il modello di carico LM71 con il relativo incremento dinamico e con il coefficiente α .

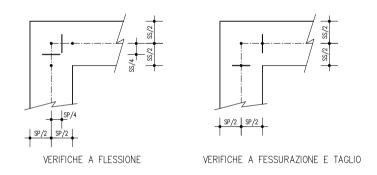
Freccia limite ammissibile (velocità del treno V > 350 km/h):

$$\delta_{lim}=1/1500\times L=7.33~mm$$

Freccia massima dell'impalcato prodotta dal treno LM71:

 $\delta_{\text{max}} = 2.06 \text{ mm} < \delta_{\text{lim}}$

13 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO


Si riassumono di seguito i risultati delle verifiche allo stato limite ultimo per le sollecitazioni di taglio e flessione, relative all'inviluppo delle combinazioni di carico. In particolare si riportano le sollecitazioni massime per tutte le sezioni di verifica e le combinazioni di carico più gravose (minimo coefficiente di sicurezza), sia per la verifica a flessione sia per la verifica a taglio.

Nelle verifiche della soletta di fondazione, cautelativamente, non si è tenuto in conto del contributo dello sforzo normale.

Le verifiche a flessione in corrispondenza dei nodi tra setti adiacenti sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta;
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite.

Si riporta di seguito l'armatura degli elementi strutturali nelle sezioni di mezzeria e di incastro.

Elemento	Sezione	Dimer	sion	i [cm]	Flessione		Flessione Armatura Ripartitori	
Elemento	Sezione	В		I	Lato terra	Lato interno	a taglio	(esterni)
SOLETTA SUP.	INCASTRO	100		110	(10+5)\phi26	10φ26	φ12/20x40	φ16/20
SOLLTIA SUP.	MEZZERIA	100	Х	110	10φ26	10φ26	φ12/40x40	φ16/20
	TESTA				(10+5)\phi26	10φ26	9φ12/m²	φ16/20
PIEDRITTI	MEZZERIA	100	х	120	(10+5)\phi26	10φ26	9φ12/m²	φ16/20
	PIEDE				(10+5)\phi26	10φ26	9φ12/m²	φ16/20
COLETTA INIE	INCASTRO			120	(10+5) _{\$\phi\$26\$}	10φ26	φ12/20x40	φ16/20
SOLETTA INF.	MEZZERIA	100	Х	130	10φ26	(10+5)\phi26	φ12/40x40	φ16/20

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 12 EI2CLSL2000001 Α

13.1 SOLETTA SUPERIORE – SEZIONE DI MEZZERIA

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Dominio: Classe Calcestruzzo:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	100.0	110.0
2	100.0	0.0
3	0.0	0.0
4	0.0	110.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	100.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	100.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NºDorro	Numero di barro concrete equidistanti qui si riferiose la concre

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA ALTA SORVE

2 3 2 8 26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] applicato nel Baric. (+ se di compressione)								
Mx		Momento flettent	e [kNm] intorno all'a	asse x princ. d'inerzi	a					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.								
Vy		•								
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x								
N°Comb.	N	Mx	My	Vy	Vx					
1	140.00	1540.00	0.00	0.00	0.00					
2	185.00	745.00	0.00	0.00	0.00					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	[kN] applicato nel Baricentro (se di compressione)	
Mx	Momento flette	nte [kNm] intorno all'asse x prir	c. d'inerzia (tra parentesi Mom	.Fessurazione)
	con verso posit	tivo se tale da comprimere il ler	nbo superiore della sezione	
Му	Momento flette	nte [kNm] intorno all'asse y prir	c. d'inerzia (tra parentesi Mom	.Fessurazione)
	con verso posit	tivo se tale da comprimere il ler	nbo destro della sezione	
NOC a mala	N	Max	NA	
N°Comb.	IN	Mx	Му	
4	450.00	4005.00	0.00	
T	150.00	1005.00	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

1	105.00	905.00 (834.23)	0.00 (0.00)							
N°Comb.	N	Mx	Му							
Му	Momento f	lettente [kNm] intorno all'asse y positivo se tale da comprimere i	princ. d'inerzia (tra parentesi							
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione									
N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)									

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento t	male [kN] applicato nel Baricent flettente [kNm] intorno all'asse x positivo se tale da comprimere i	princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
Му	Momento t		princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
N°Comb.	N	Mx	Му	
1	95.00	490.00 (848.35)	0.00 (0.00)	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.8 cm

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Ver S = combinazione verificata / N = combin, non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1 53.1(19.7)	S	140.00	1540.00	0.00	139.94	2047.18	0.00	1.33	
2 53.1(19.7)	S	185.00	745.00	0.00	185.21	2067.95	0.00	2.78	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.107	100.0	110.0	0.00054	90.9	100.9	-0.02928	9.1	9.1
2	0.00350	0.108	100.0	110.0	0.00057	90.9	100.9	-0.02898	9.1	9.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000324850	-0.032233489	0.107	0.700
2	0.000000000	0.000321856	-0.031904207	0.108	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Ss min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 5.64
 0.0
 110.0
 -194.0
 81.8
 9.1
 2262
 53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Ver.		La sezior Esito dell		a sempre f	essurata	a anche n	el caso in	cui la trazion	e minima del o	calcestru	zzo sia inferiore a f	ctm	
e1		Massima	deformazione u										
e2			Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]										
k1 kt			r barre ad adere r comb. quasi p					[ofr og (7.0)]	EC31				
kt k2			flessione; =(e1										
k3		= 3.400 (Coeff. in eq.(7.1	1) come da	anness	si naziona	ali	[04.(//0/202	-1				
k4		= 0.425 (Coeff. in eq.(7.1	1) come da	anness	si naziona	ali						
Ø			[mm] equivaler						eff [eq.(7.11)E	C2]			
Cf	0 0m		o [mm] netto cal a tra le deforma						C4 1 7\NITC1				
6 2111	- e cm		a tra le delornia ntesi: valore mir						C4.1.7)N1C]				
sr ma	ax		distanza tra le			_0 [(1.0	,,202 0 (0	11.1.0/1110]					
wk		Apertura	fessure in mm	calcolata =	sr max*	(e_sm - e	e_cm) [(7.	8)EC2 e (C4.	1.7)NTC]. Val	ore limite	tra parentesi		
Mx fe		Compone	ente momento d	li prima fes	surazio	ne intorno	all'asse	([kNm]					
My fe	ess.	Compone	ente momento d	ıı prıma tes	surazioi	ne intorno	all'asse	r [kinm]					
Comb.	Ver	e1	e2	k2	Ø	Cf		•	e sm - e cm	sr max	wk	Mx fessN	ly fess
1	S	-0.00110	0.00000	0.500	26.0	78		0.0005	8 (0.00058)	453	0.264 (990.00)	840.20	0.00
COMBIN	COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)												
COMBIN	ALION	TICLOCIAT	I IIV LOLIKOIZ	.io - iiiA	OUINE	ILITOR		INIALI LD A	LICIONA	LUUUI	(L (NTO/LOZ)		
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	5.06	0.0 110).0 -	177.3	81.8	9.1	2300	53.1				
COMBIN	IAZIONI	FREQUENT	I IN ESERCIZ	IO - APE	RTUR	A FESS	URE [§ 7	'.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	Cf		(e sm - e cm	sr max	wk	Mx fessN	ly fess
4		0.00400	0.00000	0.500	00.0	70		0.0005	0 (0 00050)	457	0.040 (0.00)	004.00	0.00
1	N	-0.00100	0.00000	0.500	26.0	78		0.0005	3 (0.00053)	457	0.243 (0.20)	834.23	0.00
COMBIN	IAZIONI	QUASI PER	MANENTI IN	ESERCIZ	<u> 10 - 1</u>	MASSIM	E TENS	ONI NORM	ALI ED APE	RTURA	A FESSURE (NTC	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc m	ax S	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	2.77	100.0 110	0.0	-92.7	9.1	9.1	2291	53.1				
COMBIN	IAZIONI	QUASI PER	MANENTI IN	ESERCIZ	<u>'10 - Al</u>	PERTUR	RA FESS	URE [§ 7.3.	4 EC2]				
Comb.	Ver	e1	e2	k2	Ø	Cf			e sm - e cm	sr may	wk	Mx fessN	lv fess
1	S	-0.00052	0.00000	0.500	26.0	78		0.0002	8 (0.00028)	456	0.127 (0.20)	848.35	0.00

GENERAL CONTRACTOR Consorzio Iricaty Due Consorzio Iricaty Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

SEZIONE					
b _w	=	100	cm		
h	=	110	cm		
С	=	5	cm		
d	=	h-c	=	105	cm
MATERIALI					
f _{y wd}	=	391.30	MPa		

				_	
R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa

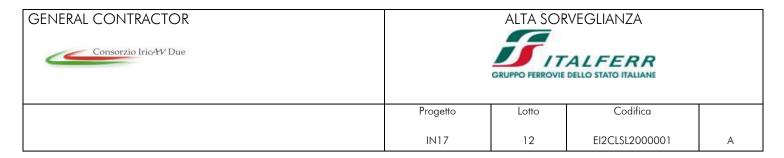
ARMATURE	A TAGLIC		_	
Ø _{st}	=	12		
braccia	=	2.5		
Ø _{st2}	=	0		
braccia	=	0		_
passo	=	40	cm	
(A_{sw}/s)	=	7.069	cm ² / m	
α	=	90	0	(90° staffe verticali)

TAGLIO AGENTE		V _{Ed} =	100	(KN)
SFORZO NORMALE		N _{ed} =	0	(KN)
		$\alpha_c =$	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 5.75$


θ= 9.87 °

IPOTESI 1	$1 <= \cot \theta <= 2.5$	Rottura bilanciata	V _{Red} =V _{Red}
		i tottala bilanorata	* KSU * KCU

 $V_{Rsd} = 1501.73 (KN)$

 $V_{Rcd} = 3065.28 (KN)$

 $V_{Rd} = 653 (KN) min(V_{Rsd}, VR_{cd})$

13.2 SOLETTA SUPERIORE – SEZIONE DI INCASTRO

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequer		mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2 :	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	110.0
2	100.0	0.0
3	0.0	0.0
4	0.0	110.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	100.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	100.9	26
5	9.1	94.9	26
6	90.9	94.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODesse	Ni anno all bono concerto confidenti cui si afferica de concer

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM Consorzio IricAV Due IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM Consorzio IricAV Due IN17 ALTA SORVEGLIANZA ALTA

1	1	4	8	26
2	3	2	8	26 26 26
3	5	6	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [k	(N) applicato nel Bar	ric. (+ se di compre	ssione)
Mx		Momento flettente	e [kNm] intorno all'as	sse x princ. d'inerzia	, 1
		con verso positivo	se tale da comprim	nere il lembo sup. de	ella sez.
My Momento flettente [kNm] intorr			e [kNm] intorno all'as	sse y princ. d'inerzia	ì
		con verso positivo se tale da comprimere il lembo destro della se			
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y			
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia				zia x
N°Comb.	N	Mx	Му	Vy	Vx

N°Comb.	N	MX	My	Vy	VX
1	160.00	-1730.00	0.00	0.00	0.00
2	250.00	-775.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale [kN] applicato	, ,	ressione) tra parentesi Mom.Fessurazione)
Му	con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione		
N°Comb.	N	Mx	Му

-1065.00

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

180.00

N Mx	Momento	rmale [kN] applicato nel Baricentro flettente [kNm] intorno all'asse x p positivo se tale da comprimere il	princ. d'inerzia (tra parentesi N	,
Му		flettente [kNm] intorno all'asse y p positivo se tale da comprimere il	· ·	flom.Fessurazione)
N°Comb.	N	Mx	Му	
1	120.00	-945.00 (-890.98)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento	rmale [kN] applicato nel Baricent flettente [kNm] intorno all'asse x positivo se tale da comprimere i	princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
Му	Momento	flettente [kNm] intorno all'asse y positivo se tale da comprimere i	princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
N°Comb.	N	Mx	Му	
1	95.00	-445.00 (-907.36)	0.00 (0.00)	

RISULTATI DEL CALCOLO

1

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto IN17 12 EI2CLSL2000001 A

Copriferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

As Tesa

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000
Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Tesa S 160.00 -1730.00 0.00 159.78 -2943.29 0.00 1.70 79.6(19.7) S 0.00 250.00 -775.00 0.00 249.97 -2983.78 3.84 2 79.6(19.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	X/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.134	0.0	0.0	0.00115	9.1	9.1	-0.02261	90.9	100.9
2	0.00350	0.137	0.0	0.0	0.00119	9.1	9.1	-0.02209	90.9	100.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

O.Na. Oon. arnaaz. momenti per sola liessione iir tavi continue

N°Comb C.Rid. а b С x/d 0.00000000 -0.000258789 0.003500000 0.700 0.134 0.00000000 -0.000253663 0.003500000 2 0.137 0.700

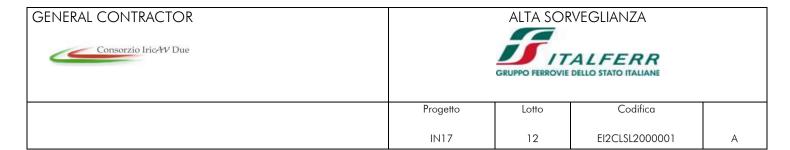
COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

As min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)


As off

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 79.6 1 S 5.43 100.0 0.0 -145.7 18.2 100.9 2450

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto IN17 12 EI2CLSL2000001 Α

COMBINAZIO	COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]					
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e cn sr max wk Mx fess. My fess.	Esito della verifica Massima deforma Minima deformazi = 0.8 per barre ac = 0.4 per comb. c = 0.5 per flessione = 3.400 Coeff. in e 0.425 Coeff. in e Diametro [mm] en Copriferro [mm] en Differenza tra le d Tra parentesi: valc Massima distanza Apertura fessure i Componente mon	izione unitaria di trazione ne one unitaria di trazione nel di daderenza migliorata [eq. (7 quasi permanenti /= 0.6 per eq. (7.11) come da annessi req. (7.11) come da annessi ruivalente delle barre tese co etto calcolato con riferimenti eformazioni medie di acciaio per minimo = 0.6 Smax / Es etto le fessure [mm]	I calcestruzzo (trazio calcestruzzo (trazio calcestruzzo (trazio calcestruzzo (trazio calcestruzzo [cdione eccentrica [equazionali cazionali calcestruzzo [(7 c	(7.13)EC2] fficace Ac eff [eq.(7.11)EC2] a. 8)EC2 e (C4.1.7)NTC] 1.8)NTC] EC2 e (C4.1.7)NTC]. Valore li	surata ırata	ctm
Comb. Ve	e1	e2 k2 Ø	Cf	e sm - e cm sr m	ax wk	Mx fessMy fess
1 S	-0.00083 0.000	000 0.500 26.0	78	0.00044 (0.00044) 4	01 0.175 (990.00)	-898.86 0.00
COMBINAZIO	NI FREQUENTI IN ESI	ERCIZIO - MASSIME T	ENSIONI NORM	ALI ED APERTURA FES	SURE (NTC/EC2)	
N°Comb Ve	Sc max Xc max	Yc max Ss min Xs	s min Ys min	Ac eff. As eff.		
1 S	4.79 100.0	0.0 -131.6	9.1 100.9	2500 79.6		
COMBINAZIO	NI FREQUENTI IN ESI	ERCIZIO - APERTURA	FESSURE [§ 7.3	.4 EC2]		
Comb. Ve	e1	e2 k2 Ø	Cf	e sm - e cm sr m	ax wk	Mx fessMy fess
1 S	-0.00075 0.000	000 0.500 26.0	78	0.00039 (0.00039) 4	04 0.159 (0.20)	-890.98 0.00
COMBINAZIO	NI QUASI PERMANEN	ITI IN ESERCIZIO - MA	ASSIME TENSION	NI NORMALI ED APERTI	JRA FESSURE (NTC	C/EC2)
N°Comb Ve			smin Ysmin	Ac eff. As eff.		
1 S	2.28 100.0		9.1 100.9	2450 79.6		
COMBINAZIO	NI QUASI PERMANEN	ITI IN ESERCIZIO - APE	RTURA FESSU	RE [§ 7.3.4 EC2]		
Comb. Ve	e1	e2 k2 Ø	Cf	e sm - e cm sr m	ax wk	Mx fessMy fess
1 S	-0.00034 0.000	000 0.500 26.0	78	0.00018 (0.00018) 4	0.072 (0.20)	-907.36 0.00

SEZIONE					
b _w	=	100	cm		
h	=	110	cm		
С	=	5	cm		
d	=	h-c	=	105	cm
					•

MATERIALI

f _{y wd} =	391.30	MPa
---------------------	--------	-----

R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	МРа
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa

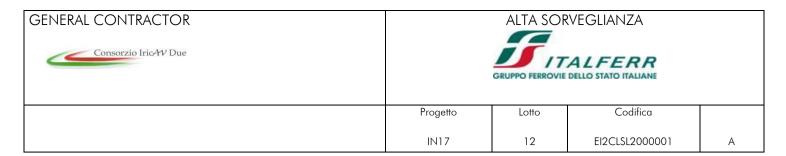
ARMATURE A TAGLIO

=	12		
=	5		
=	0		
=	0		_
=	40	cm	
=	14.137	cm ² / m	
=	90	0	(90° staffe verticali)
	= = = = = = =	= 5 = 0 = 0 = 40 = 14.137	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

TAGLIO AGENTE	V _{Ed} =	925	(KN)
SFORZO NORMALE	N _{ed} =	0	(KN)
	$\alpha_c =$	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot 0


 $\cot(\theta) = 4.00$ $\theta = 14.03$ °

IPOTESI 2	cot of > 2 F	Ci cocumo	on 24 00
HPULESIZ	COL () > 2.5	Si assume	ϑ = 21.8°

Armatura trasversale

 $V_{Rsd} = 1306.92 (KN)$ $V_{Rcd} = 3065.28 (KN)$ $V_{Rd} = 1307 (KN)$

 $min(V_{Rsd}, VR_{cd})$

13.3 SOLETTA INFERIORE – SEZIONE DI MEZZERIA

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
CALCLOTINUZZO -	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	WII G
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	MD-
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	130.0
2	100.0	0.0
3	0.0	0.0
4	0.0	130.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	120.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	120.9	26
5	9.1	114.9	26
6	90.9	114.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NIOD - · · ·	No construction of the con

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA LOTTO Codifica IN17 A EI2CLSL2000001 A

1	1	4	8	26
2	3	2	8	26
3	5	6	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vy							
Vx		•	Componente del Taglio [kN] parallela all'asse princ d'inerzia x				
N°Comb.	N	Mx	Му	Vy	Vx		
1	0.00	-2115.00	0.00	0.00	0.00		
2	0.00	-955.00	0.00	0.00	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	e [kN] applicato nel Baricentro (-	se di compressione)	
Mx		ente [kNm] intorno all'asse x prir tivo se tale da comprimere il len	` '	m.Fessurazione)
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazio con verso positivo se tale da comprimere il lembo destro della sezione			
N°Comb.	N	Mx	My	
1	0.00	-1400.00	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)						
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)						
	con vers	so positivo se tale da comprimere il	lembo superiore della sezione				
Му	Moment	o flettente [kNm] intorno all'asse y	princ. d'inerzia (tra parentesi Mom	.Fessurazione)			
	con vers	so positivo se tale da comprimere il	lembo destro della sezione				
N°Comb.	N	Mx	My				
1	0.00	-1295.00 (-1180.26)	0.00 (0.00)				
•	0.00		0.00 (0.00)				

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento con verso	ormale [kN] applicato nel Baricento o flettente [kNm] intorno all'asse x o positivo se tale da comprimere il	princ. d'inerzia (tra parentesi Mo lembo superiore della sezione	,		
My		Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione				
N°Comb.	N	Mx	My			
1	0.00	-870.00 (-1180.26)	0.00 (0.00)			

RISULTATI DEL CALCOLO

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLSL2000001 **IN17** 12 Α

Copriferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Μy N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1 79.6(21.6)	S	0.00	-2115.00	0.00	0.00	-3494.54	0.00	1.65	
79.6(21.6) 2 79.6(21.6)	S	0.00	-955.00	0.00	0.00	-3494.54	0.00	3.66	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.108	0.0	0.0	0.00106	9.1	9.1	-0.02890	90.9	120.9
2	0.00350	0.108	0.0	0.0	0.00106	9.1	9.1	-0.02890	90.9	120.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d C.Rid.

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.00000000	-0.000268002	0.003500000	0.108	0.700
2	0.00000000	-0.000268002	0.003500000	0.108	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 79.6 1 S 5.19 100.0 0.0 -168.2 9.1 120.9 2793

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FOR CONSORZIO ITALE PER CONTRACTOR ALTA SORVEGLIANZA FOR CONSORZIO ITALE PER CONTRACTOR ALTA SORVEGLIANZA FINANCIA PER CONTRACTOR FINANCIA P

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]								
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e cn sr max wk Mx fess. My fess.	Esito della Massima de = 0.8 per = 0.4 per = 0.5 per f = 3.400 Cd = 0.425 Cd Diametro [Copriferro Differenza Tra parent Massima d Apertura fe Componer	verifica deformazione unitaria d barre ad aderenza mi comb. quasi permani lessione; =(e1 + e2)/(oeff. in eq.(7.11) como oeff. in eq.(7.11) como [mm] equivalente delle [mm] netto calcolato tra le deformazioni m tesi: valore minimo = l distanza tra le fessure	di trazione nel cala i trazione nel cala i trazione nel calca gliorata [eq.(7.11) enti / = 0.6 per cor 2*e1) per trazione e da annessi nazio e da annessi nazio e da annessi nazio e da con riferimento all nedie di acciaio e do 0.6 Smax / Es [(i mm] ta = sr max*(e_sm fessurazione into	cestruzzo (trazio estruzzo (trazio EC2] nb.frequenti [ceccentrica [enalio rese nell'area a barra più tes alcestruzzo [(r.9)EC2 e (C4 - e_cm) [(7.8) rno all'asse X	efficace Ac eff [eq.(7.11)Eca efficace Ac eff [eq.(7.11)Eca 7.8)EC2 e (C4.1.7)NTC] .1.8)NTC] EC2 e (C4.1.7)NTC]. Valo [kNm]	e fessurat fessurata EC2]	ata a	fctm
Comb. Ve	e1	e2	k2 Ø	Cf	e sm - e cm	sr max	wk	Mx fessMy fess
1 S	-0.00093	0.00000 0.5	00 26.0	78	0.00050 (0.00050)	420	0.212 (990.00)	-1180.26 0.00
COMBINAZIO	NI FREQUENTI	IN ESERCIZIO -	MASSIME TENS	SIONI NORM	MALI ED APERTURA I	ESSUR	RE (NTC/EC2)	
N°Comb Ve	Sc max X	(c max Yc max	Ss min Xs mi	n Ys min	Ac eff. As eff.			
1 S	4.80	100.0 0.0	-155.6 18.	2 120.9	2786 79.6			
COMBINAZIO	NI FREQUENTI	IN ESERCIZIO - A	APERTURA FES	SURE [§ 7.3	3.4 EC2]			
Comb. Ve	e1	e2	k2 Ø	Cf	e sm - e cm	sr max	wk	Mx fessMy fess
1 S	-0.00086	0.00000 0.5	00 26.0	78	0.00047 (0.00047)	420	0.196 (0.20)	-1180.26 0.00
COMBINAZIO	NI QUASI PERN	MANENTI IN ESER	CIZIO - MASS	IME TENSIO	ONI NORMALI ED APE	RTURA	FESSURE (NT)	C/EC2)
N°Comb Ve		(c max Yc max	Ss min Xs mi		Ac eff. As eff.			5/ - 5-7
1 S	3.22	100.0 0.0	-104.5 18.	2 120.9	2788 79.6			
COMBINAZIO	NI QUASI PERN	MANENTI IN ESER	CIZIO - APERT	URA FESSU	IRE [§ 7.3.4 EC2]			
Comb. Ve	e1	e2	k2 Ø	Cf	e sm - e cm	sr max	wk	Mx fessMy fess
1 S	-0.00058	0.00000 0.5	00 26.0	78	0.00031 (0.00031)	420	0.132 (0.20)	-1180.26 0.00

GENERAL CONTRACTOR Consorzio IricAtV Due Consorzio IricAtV Due Progetto IN17 12 EI2CLSL2000001 A

SEZIONE					
b _w	=	100	cm		
h	=	130	cm		
С	=	5	cm		
d	=	h-c	=	125	cm
	•				•

MATERIALI

f _{y wd}	=	391.30	MPa

R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	II	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81	MPa

ARMATURE A TAGLIO

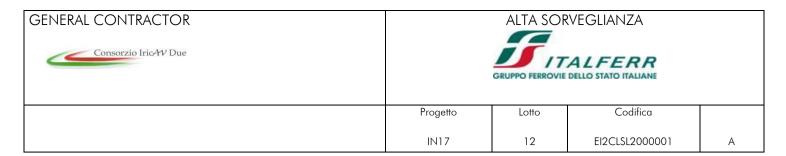
Ø _{st}	=	12		
braccia	=	2.5		
ø _{st2}	=	0		
braccia	=	0		_
passo	=	40	cm	
(A_{sw}/s)	=	7.069	cm ² / m	
α	=	90	٥	(90° staffe verticali)

TAGLIO AGENTE	V _{Ed} =	250	(KN)
SFORZO NORMALE	N _{ed} =	0	(KN)
	α _c =	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 5.75$


θ= 9.87 °

IPOTESI 1 1<= cot θ <= 2.5 Rottura bilanciata $V_{Rsd}=V_{Rcd}$

 $V_{Rsd} = 1787.78 (KN)$

 $V_{Rcd} = 3649.14 (KN)$

 $V_{Rd} = 778 (KN) min(V_{Rsd}, VR_{cd})$

13.4 SOLETTA INFERIORE – SEZIONE DI INCASTRO

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40 18.8	MPa
	Resis. compr. di progetto fcd: Def.unit. max resistenza ec2:	0.0020	IVIFa
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Frequen		mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	130.0
2	100.0	0.0
3	0.0	0.0
4	0.0	130.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	120.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	120.9	26
5	9.1	15.1	26
6	90.9	15.1	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODesse	Ni anno all bono concerto confidenti cui si afferica de concer

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA Consorzio IricAV Due ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2CLSL2000001 A

1	1	4	8	26
2	3	2	8	26
3	5	6	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy		Momento flettent con verso positiv Momento flettent con verso positiv Componente del	e [kNm] intorno all'a o se tale da compri e [kNm] intorno all'a o se tale da compri Taglio [kN] parallel	aric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d asse y princ. d'inerzi mere il lembo destro a all'asse princ.d'ine	a lella sez. a o della sez. erzia y
Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine	rzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	2190.00	0.00	0.00	0.00
2	0.00	1175.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 1460.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 1305.00 (1180.26) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 720.00 (1180.26) 0.00 (0.00)

RISULTATI DEL CALCOLO

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLSL2000001 **IN17** 12 Α

Copriferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Μy N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	2190.00	0.00	0.00	3494.54	0.00	1.60	
79.6(21.6) 2 79.6(21.6)	S	0.00	1175.00	0.00	0.00	3494.54	0.00	2.97	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.108	100.0	130.0	0.00106	90.9	120.9	-0.02890	9.1	9.1
2	0.00350	0.108	100.0	130.0	0.00106	90.9	120.9	-0.02890	9.1	9.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.00000000	0.000268002	-0.031340208	0.108	0.700
2	0.00000000	0.000268002	-0.031340208	0.108	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 79.6 1 S 5.41 0.0 130.0 -175.4 90.9 9.1 2800

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FOR CONSORZIO ITALE PER CONTRACTOR ALTA SORVEGLIANZA FOR CONSORZIO ITALE PER CONTRACTOR ALTA SORVEGLIANZA FINANCIA PER CONTRACTOR FINANCIA P

COMBINA	COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]											
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr ma: wk Mx fee	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; = (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi ess. Componente momento di prima fessurazione intorno all'asse X [kNm]											
Comb.	Ver	e1	e2	k2	Ø Cf		(e sm - e cm	sr max	wk	Mx fessN	ly fess
1	S	-0.00097	0.00000	0.500 26	.0 78		0.0005	3 (0.00053)	421	0.221 (990.00)	1180.26	0.00
COMBINA	AZION	FREQUENT	I IN ESERCIZ	IO - MASSI	ME TENSIO	ONI NOF	RMALI ED A	PERTURA F	ESSU	RE (NTC/EC2)		
N°Comb	Ver	Sc max	Xc max Yc m	ax Ss mi	n Xs min	Ys min	Ac eff.	As eff.				
1	S	4.84	0.0 130).0 -156.	8 90.9	9.1	2800	79.6				
COMBINA	AZION	FREQUENT	I IN ESERCIZ	IO - APERT	JRA FESS	URE [§]	7.3.4 EC2]					
Comb.	Ver	e1	e2	k2	Ø Cf		(e sm - e cm	sr max	wk	Mx fessN	ly fess
1	S	-0.00087	0.00000	0.500 26	.0 78		0.0004	7 (0.00047)	421	0.198 (0.20)	1180.26	0.00
COMBINA	AZION	QUASI PER	MANENTI IN	ESERCIZIO	- MASSIM	E TENS	IONI NORM	ALI ED APE	RTURA	A FESSURE (NTC	C/EC2)	
N°Comb	Ver		Xc max Yc m		n Xs min		Ac eff.	As eff.		(,	
1												
·	S	2.67	0.0 130			9.1	2800	79.6				
COMBINA	AZION	QUASI PER	MANENTI IN	ESERCIZIO ·	APERTU	RA FESS	SURE [§ 7.3.	.4 EC2]				
Comb.	Ver	e1	e2	k2	Ø Cf		(e sm - e cm	sr max	wk	Mx fessN	ly fess
1	S	-0.00048	0.00000	0.500 26	.0 78		0.0002	6 (0.00026)	421	0.109 (0.20)	1180.26	0.00

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

SEZIONE	•			ì	
b_w	=	100	cm		
h	=	130	cm		
С	=	5	cm		_
d	=	h-c	=	125	cm
MATERIALI					
$f_{y wd}$	=	391.30	MPa		
	l .	'		l	
R _{ck}	=	40	MPa		
γ _c	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_{c}$	=	18.81	MPa
					•
ARMATURE	A TAGLIC)			
Ø _{st}	=	12			
braccia	=	5			
ø _{st2}	=	0			
braccia	=	0			
passo	=	40	cm		
(A_{sw}/s)	=	14.137	cm ² /m		
α	=	90	0	(90° staffe	verticali)
					7
TAGLIO AG		V _{Ed} =	1230	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		$\alpha_{\rm c}$ =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ


 $\cot(\theta) = 4.00$ $\theta = 14.03$ °

cot ϑ > 2.5	Si assume	$\vartheta = 21.8^{\circ}$
- COL $0 > 2.5$	oi assume	· · · · · · · · · · · · · · · · · · ·

Armatura trasversale

 $V_{Rsd} = 1555.86 (KN)$ $V_{Rcd} = 3649.14 (KN)$ $V_{Rd} = 1556 (KN)$

 $min(V_{Rsd}, VR_{cd})$

13.5 PIEDRITTI – SEZIONE DI INCASTRO INFERIORE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque		mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	120.0
2	100.0	0.0
3	0.0	0.0
4	0.0	120.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	110.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	110.9	26
5	9.1	104.9	26
6	90.9	104.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODesse	Ni anno all bono concerto confidenti cui si afferica de concer

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA LOTTO Codifica IN17 A EI2CLSL2000001 A

1	1	4	8	26
2	3	2	8	26
3	5	6	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent	e [kNm] intorno all'a	aric. (+ se di compre asse x princ. d'inerzi	a ′
My		Momento flettent	e [kNm] intorno all'a	mere il lembo sup. c asse y princ. d'inerzi mere il lembo destro	а
Vy				a all'asse princ.d'ine	
Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine	erzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	500.00	-2190.00	0.00	0.00	0.00
2	520.00	-1175.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 800.00 -1460.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 740.00 -1305.00 (-1165.78) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.

N Mx My

1 545.00 -720.00 (-1224.92) 0.00 (0.00)

RISULTATI DEL CALCOLO

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto IN17 12 EI2CLSL2000001 Α

Copriferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Μy N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	500.00	-2190.00	0.00	500.00	-3431.93	0.00	1.56	
79.6(21.5) 2 79.6(21.5)	S	520.00	-1175.00	0.00	519.82	-3441.74	0.00	2.91	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.131	0.0	0.0	0.00131	9.1	9.1	-0.02313	90.9	110.9
2	0.00350	0.132	0.0	0.0	0.00132	9.1	9.1	-0.02301	90.9	110.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Di4	Coeff di riduz momenti per cole fleccione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000240129	0.003500000	0.131	0.700
2	0.000000000	-0.000239066	0.003500000	0.132	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 79.6 1 S 6.74 100.0 0.0 -148.0 9.1 110.9 2500

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROM LOTTO Codifica IN17 12 EI2CLSL2000001 A

COMBINAZIO	NI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e cm sr max wk Mx fess. My fess.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; = (e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]
Comb. Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess
1 S	-0.00084 0.00000 0.500 26.0 78 0.00044 (0.00044) 404 0.179 (990.00) -1160.14 0.00
COMBINAZIO	NI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)
N°Comb Ver	Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.
1 S	6.03 100.0 0.0 -131.0 18.2 110.9 2500 79.6
COMBINAZIO	NI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Comb. Ver	
1 S	-0.00075 0.00000 0.500 26.0 78 0.00039 (0.00039) 404 0.159 (0.20) -1165.78 0.00
COMBINAZIO	NI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)
N°Comb Ver	Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.
1 S	3.40 100.0 0.0 -65.1 18.2 110.9 2400 79.6
COMBINAZIO	NI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Comb. Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess
	,
1 S	-0.00037

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

SEZIONE					
b _w	=	100	cm		
h	=	120	cm		
С	=	5	cm		
d	=	h-c	=	115	cm

MATERIALI

f _{y wd} =	391.30	MPa
---------------------	--------	-----

R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa

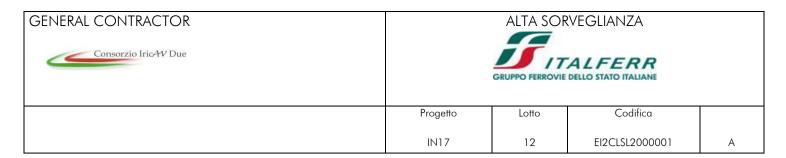
ARMATURE A TAGLIO

/ (I (III) (I OI (E	. / /	2	_	
Ø _{st}	=	12		
braccia	=	3		
ø _{st2}	=	0		
braccia	=	0		_
passo	=	33	cm	
(A_{sw}/s)	=	10.282	cm ² /m	
α	=	90	0	(90° staffe verticali)

TAGLIO AGENTE		V_{Ed} =	550	(KN)
SFORZO NORMALE		N_{ed} =	0	(KN)
		$\alpha_c =$	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ


 $\cot(\theta) = 4.73$ $\theta = 11.94$ °

cot ϑ > 2,5	Si assume	ϑ = 21,8°
	OT GOOGHTIO	

Armatura trasversale

 $V_{Rsd} = 1041.01 (KN)$ $V_{Rcd} = 3357.21 (KN)$ $V_{Rd} = 1041 (KN)$

 $min(V_{Rsd}, VR_{cd})$

13.6 PIEDRITTI – SEZIONE DI INCASTRO SUPERIORE

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 18.8 0.0020 0.0035	MPa
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist. caratt. rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del De Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	120.0
2	100.0	0.0
3	0.0	0.0
4	0.0	120.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	110.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	110.9	26
5	9.1	104.9	26
6	90.9	104.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione
Numero della barra finale cui si riferisce la generazione
Numero di barre generate equidistanti cui si riferisce la generazione N°Barra Ini. N°Barra Fin.

N°Barre

Diametro in mm delle barre della generazione

Ø N°Gen. N°Barra Ini. N°Barra Fin. N°Barre

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA Consorzio IricAV Due ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2CLSL2000001 A

1	1	4	8	26
2	3	2	8	26 26 26
3	5	6	3	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent	te [kNm] intorno all'a	ric. (+ se di compre sse x princ. d'inerzi	a ′
Му		con verso positivo se tale da comprimere il lembo sup. o Momento flettente [kNm] intorno all'asse y princ. d'inerz con verso positivo se tale da comprimere il lembo destr			а
Vy				a all'asse princ.d'ine	
Vx		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	rzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	170.00	-1730 00	0.00	0.00	0.00

2 420.00 -775.00 0.00 0.00 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento flette con verso posi Momento flette	rmale [kN] applicato nel Baricentro (+ se di compressione) flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) positivo se tale da comprimere il lembo superiore della sezione flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) positivo se tale da comprimere il lembo destro della sezione			
N°Comb.	N	Mx	Му		
1	590.00	-1065.00	0.00		

0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento	ormale [kN] applicato nel Baricentro flettente [kNm] intorno all'asse x o positivo se tale da comprimere il	princ. d'inerzia (tra parentesi M	,
Му	Momento	o flettente [kNm] intorno all'asse y o positivo se tale da comprimere il	princ. d'inerzia (tra parentesi M	
N°Comb.	N	Mx	Му	
1	530.00	-945.00 (-1163.94)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento	ormale [kN] applicato nel Baricenti o flettente [kNm] intorno all'asse x o positivo se tale da comprimere il	princ. d'inerzia (tra parentesi Mo	m.Fessurazione)
Му		o flettente [kNm] intorno all'asse y o positivo se tale da comprimere il		m.Fessurazione)
N°Comb.	N	Mx	My	
1	335.00	-445.00 (-1223.57)	0.00 (0.00)	

RISULTATI DEL CALCOLO

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLSL2000001 **IN17** 12 Α

Copriferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Μy N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	170.00	-1730.00	0.00	170.13	-3268.07	0.00	1.89	
79.6(21.5) 2 79.6(21.5)	S	420.00	-775.00	0.00	420.07	-3392.41	0.00	4.35	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.122	0.0	0.0	0.00115	9.1	9.1	-0.02513	90.9	110.9
2	0.00350	0.129	0.0	0.0	0.00128	9.1	9.1	-0.02360	90.9	110.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Did	Coeff di riduz momenti per cole fleccione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.00000000	-0.000258198	0.003500000	0.122	0.700
2	0.00000000	-0.000244362	0.003500000	0.129	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa] Ss min

Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 4.92 79.6 1 S 0.0 0.0 -107.6 36.4 110.9 2500

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 12 EI2CLSL2000001 A

COMBINAZIO	NI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - e cm sr max wk Mx fess. My fess.	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]
Comb. Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess
1 S	-0.00061 0.00000 0.500 26.0 78 0.00032 (0.00032) 404 0.130 (990.00) -1161.92 0.00
COMBINAZIO	NI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)
N°Comb Ver	Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.
1 S	4.37 0.0 0.0 -95.2 36.4 110.9 2500 79.6
COMBINAZIO	NI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Comb. Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess
1 S	-0.00054 0.00000 0.500 26.0 78 0.00029 (0.00029) 404 0.115 (0.20) -1163.94 0.00
COMBINAZIO	NI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)
N°Comb Ver	Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff.
1 S	2.10 100.0 0.0 -40.3 9.1 110.9 2400 79.6
COMBINAZIO	NI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]
Comb. Ver	e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fessMy fess
1 S	-0.00023

GENERAL CONTRACTOR Consorzio IricAtV Due Consorzio IricAtV Due Progetto IN17 12 EI2CLSL2000001 A

SEZIONE							
b _w	=	100	cm				
h	=	120	cm				
С	=	5	cm				
d	=	h-c	=	115	cm		
	<u>.</u>			<u>.</u>	!		

MATERIALI

$f_{y wd}$	=	391.30	MPa

R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	МРа

ARMATURE A TAGLIO

ø _{st}	=	12		
braccia	=	3		
ø _{st2}	=	0		
braccia	=	0		
passo	=	33	cm	
(A_{sw}/s)	=	10.282	cm ² / m	
α	=	90	0	(90° s

(90° staffe verticali)

TAGLIO AGENTE		V _{Ed} =	260	(KN)
SFORZO NORMALE		N _{ed} =	0	(KN)
		$\alpha_c =$	1.0000	

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ

 $\cot(\theta) = 4.73$

θ= 11.94 °

IPOTESI 1 1<= $\cot \theta$ <= 2.5 Rottura bilanciata $V_{Rsd} = V_{Rcd}$

 $V_{Rsd} = 1969.94 (KN)$

 $V_{Rcd} = 3357.21 (KN)$

 $V_{Rd} = 1041 (KN) min(V_{Rsd}, VR_{cd})$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Lotto Progetto IN17 12 EI2CLSL2000001 Α

13.7 PIEDRITTI – SEZIONE DI MEZZERIA

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.8	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33642.8	MPa
	Resis. media a trazione fctm:	3.10	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.9	MPa
	Sc limite S.L.E. comb. Frequenti:	19.9	MPa
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.9	MPa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
AOOIAIO -	Resist. caratt. snervam. fyk:	450.0	MPa
	Resist, caratt, rottura ftk:	450.0	MPa
	Resist. snerv. di progetto fyd:	391.3	MPa
	Resist. ultima di progetto ftd:	391.3	MPa
	Deform. ultima di progetto Epu:	0.068	iiii u
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	ddi i/ oili
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	360.00	MPa
	5 5.2.2. 53mb. Fairo.	000.00	🎜

CARATTERISTICHE DOMINIO CALCESTRUZZO

Forma del Do Classe Calces	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	100.0	120.0
2	100.0	0.0
3	0.0	0.0
4	0.0	120.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	90.9	110.9	26
2	90.9	9.1	26
3	9.1	9.1	26
4	9.1	110.9	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
NODesse	Niconana di banca annonte ancidistanti cui di diferiana la casaca

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA FROGETO ALTA SORVEGLIANZA ALTA SORVE

2 3 2 8 26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My		Momento flettent con verso positiv	e [kNm] intorno all'a o se tale da compri	aric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d asse y princ. d'inerzi	a lella sez.
Vy Vx		Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro del Componente del Taglio [kN] parallela all'asse princ.d'inerzia Componente del Taglio [kN] parallela all'asse princ.d'inerzia			
N°Comb.	N	Mx	Му	Vy	Vx
1	335.00	-1065.00	0.00	0.00	0.00
2	470.00	-420.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) N Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My -710.00 0.00 1 695.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My con verso positivo se tale da comprimere il lembo destro della sezione N°Comb. Ν Mx My 1 635.00 -635.00 (-1238.16) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 440.00 -295.00 (-1447.26) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.8 cm

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto EI2CLSL2000001 **IN17** 12 Α

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1 53.1(21.5)	S	335.00	-1065.00	0.00	334.85	-2361.11	0.00	2.22	
2 53.1(21.5)	S	470.00	-420.00	0.00	469.82	-2429.59	0.00	5.78	

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del calcestruzzo a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.101	0.0	0.0	0.00066	9.1	9.1	-0.03108	90.9	110.9
2	0.00350	0.104	0.0	0.0	0.00074	9.1	9.1	-0.03011	90.9	110.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb b x/d C.Rid. 0.700 0.000000000 -0.000311792 0.003500000 0.101 2 0.000000000 -0.000303065 0.003500000 0.104 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [MPa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Ss min

 ${\rm Xs\;min,\;Ys\;min}$ Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Ss min Xs min Ys min Ac eff. As eff. 100.0 2300 53.1 S 3.70 0.0 -76.2 18.2 110.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

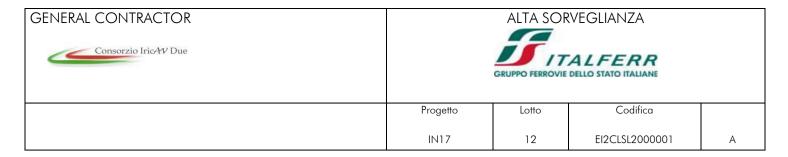
Vor	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica												
Ver. e1			ia verilica i deformazione	unitaria di tr	azione	nel calce	struzzo (ti	azione -) valu	utata in sezione	e fessura	ata		
e2		Minima o	leformazione u	nitaria di traz	zione ne	el calcest	ruzzo (tra						
k1		= 0.8 pe	r barre ad ader	enza miglio	ata [eq.	(7.11)EC	2]	r.c (7.0)	E001				
kt k2			er comb. quasi flessione; =(e´										
k3			Coeff. in eq.(7.					[eq.(7.13)LO2	<u>4</u>]				
k4		= 0.425 (Coeff. in eq.(7.	11) come da	anness	i naziona	lli						
Ø			[mm] equivale						eff [eq.(7.11)E	C2]			
Cf e sm - e	om	Copriterr	o [mm] netto ca a tra le deform	alcolato con	riterime	nto alla b	arra più t	esa (/7.8)EC2 o./	C/ 1 7\NTC1				
e siii - e	UIII		ntesi: valore mi						04.1. <i>1</i>)N10]				
sr max			distanza tra le				, (
wk			fessure in mm						1.7)NTC]. Valo	re limite	tra parentesi		
Mx fess.			ente momento										
My fess.		Compon	ente momento	ai prima ies	surazioi	ie intorno	allasse	T [KINIII]					
Comb. V	'er	e1	e2	k2	Ø	Cf		•	e sm - e cm s	sr max	wk	Mx fessN	ly fess
1	S	-0.00044	0.00000	0.500	26.0	78		0.0002	3 (0.00023)	457	0.104 (990.00)	-1230.52	0.00
COMBINAZ	IONI	FREQUENT	I IN ESERCI	ZIO - MAS	SSIME	TENSIC	ONI NOR	MALI ED A	PERTURA F	ESSUF	RE (NTC/EC2)		
N°Comb V	'er	Sc max	Xc max Yc n	nax Ss	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	3.31	100.0	0.0	-67.2	9.1	110.9	2300	53.1				
COMBINAZ	IONI	FREQUENT	I IN ESERCI	ZIO - APE	RTUR	A FESS	URE [§ 7	7.3.4 EC2]					
Comb. V	'er	e1	e2	k2	Ø	Cf		(e sm - e cm s	sr max	wk	Mx fessN	ly fess
1	S	-0.00038	0.00000	0.500	26.0	78		0 0002	0 (0.00020)	457	0.092 (0.20)	-1238.16	0.00
'	O	0.00000	0.00000	0.000	20.0	70		0.0002	0 (0.00020)	401	0.002 (0.20)	1200.10	0.00
COMBINAZ	IONI	QUASI PER	RMANENTI IN	ESERCIZ	10 - N	MASSIM	E TENS	IONI NORM	ALI ED APE	RTURA	A FESSURE (NT	C/EC2)	
N°Comb V	'er	Sc max	Xc max Yc n	nax Ss	s min	Xs min	Ys min	Ac eff.	As eff.				
1	S	1.56	100.0	0.0	-21.6	9.1	110.9	2100	53.1				
COMBINAZ	IONI (QUASI PER	RMANENTI IN	ESERCIZ	IO - AF	PERTUE	A FESS	URF [8 7.3.	4 FC21				
								13 110					
Comb. V	'er	e1	e2	k2	Ø	Cf		(e sm - e cm s	sr max	wk	Mx fessN	ly fess
1	S	-0.00013	0.00000	0.500	26.0	78		0.0000	6 (0.00006)	440	0.028 (0.20)	-1447.26	0.00

GENERAL CONTRACTOR Consorzio IricAV Due		11	RVEGLIANZA CALFERR DELLO STATO ITALIANE	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

r					
SEZIONE				•	
b_w	=	100	cm		
h	=	120	cm		
С	=	5	cm		
d	=	h-c	=	115	cm
				•	•
MATERIALI					
f _{y wd}	=	391.30	MPa		
				ı	
R _{ck}	=	40	MPa		
γс	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	МРа
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa
ARMATURE	A TAGLIC)			
ø _{st}	=	12			
braccia	=	3			
ø _{st2}	=	0			
braccia	=	0			
passo	=	33	cm		
(A_{sw}/s)	=	10.282	cm ² / m		
α	=	90	0	(90° staffe	verticali)
					-
TAGLIO AG	ENTE	V _{Ed} =	160	(KN)	
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	
		α_{c} =	1.0000		

ELEMENTI CON ARMATURA A TAGLIO

Calcolo di cot θ


 $\cot(\theta) = 4.73$ $\theta = 11.94$ °

$\vartheta = 21.8^{\circ}$

Armatura trasversale

 $V_{Rsd} = 1041.01 (KN)$ $V_{Rcd} = 3357.21 (KN)$ $V_{Rd} = 1041 (KN)$

 $min(V_{Rsd}, VR_{cd})$

14 VERIFICHE GEOTECNICHE

14.1 VERIFICA DELLA CAPACITÀ PORTANTE

La verifica a capacità portante del complesso fondazione – terreno è stata effettuata applicando la combinazione (A1+M1+R3) dell'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I delle NTC2008. I coefficienti γ_R sono riportati nella seguente tabella 6.4.I delle NTC08):

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

La pressione limite puo' essere calcolata in base alla formula generale di Brinch Hansen (1970):

$$q_{lim} = 0.5 \cdot \gamma \cdot B N_{\gamma} \cdot s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + q \cdot N_{q} s_{q} d_{q} i_{q} b_{q} g_{q} + c N_{c} s_{c} d_{c} i_{c} b_{c} g_{c}$$

(valida in condizioni drenate)

$$q_{lim} = c_U N_c^* d_C^* i_C^* s_C^* b_C^* g_C^* + q$$

(valida in condizioni non drenate)

essendo

 $N_{q_r}N_{c_r}N_{\gamma}$ i fattori di capacità portante in condizioni drenate;

 N_c^* il fattore di capacità portante in condizioni non drenate;

 $s_{\gamma} s_{\alpha} s_{c}$ i fattori di forma della fondazione;

 $i_{\gamma} i_{\alpha} i_{c}$ i fattori correttivi per l'inclinazione del carico;

 $b_{\gamma} b_{\alpha} b_{ci}$ fattori correttivi per l'inclinazione della base della fondazione;

 $g_{\gamma} g_{\alpha} g_{ci}$ fattori correttivi per l'inclinazione del piano campagna;

 $d_{\gamma} d_{\alpha} d_{c}$ i fattori correttivi per la profondità del piano di posa;

 $d_C^* i_C^* s_C^* b_C^* g_C^*$ i fattori correttivi corrispondenti rispettivamente a quanto sopra esposto ma validi in condizioni non drenate.

In condizioni drenate valgono le seguenti espressioni:

$$N_q = tg^2 (45 + \phi'/2) * e^{(\pi^* t g \phi')}$$

$$N_c = (N_q - 1)/tg\phi'$$

$$N_{y} = 1.5(N_{q} - 1) * tg\phi'$$

Progetto	Lotto	Codifica	
IN17	12	EI2CLSL2000001	Α

$$i_{y} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot g \phi'}\right]^{m+1}$$

$$i_{q} = i_{c} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot g \phi'}\right]^{m}$$

$$d_{q} = 1 + 2tg\phi' \cdot (1 - \sin\phi')^{2} \cdot \frac{D}{B'}$$

per D/B' ≤ 1

$$\mathbf{d}_{q} = 1 + 2 \operatorname{tg} \phi \cdot (1 - \sin \phi')^{2} \cdot \operatorname{arctg} \left(\frac{\mathbf{D}}{\mathbf{B}'} \right)$$

per D/B' > 1

$$\mathbf{d_c} = \mathbf{d_q} - \frac{1 - \mathbf{d_q}}{\mathrm{N_c} t g \phi'}$$

$$s_q = 1 + (B/2) tg \phi'$$

$$s_{x} = 1 - 0.4B/4$$

$$s_c = 1 + \frac{Nq B}{NcL}$$

$$g_y = g_g = (1-0.5 \text{ tg}\beta)^5$$

$$g_{c} = 1 - \beta^{\circ}/147^{\circ}$$

$$\mathbf{b}_{\mathbf{q}} = e^{(-2\eta t_{\mathcal{E}}\varphi)}$$

$$b\gamma = e^{(-2.7\eta \log \phi)}$$

ove
$$\beta+\eta \le 90^{\circ}e \beta \le \phi$$

In condizioni non drenate i fattori hanno le seguenti espressioni:

$$N_c^* = (2 + \pi)$$

$$s_c^* = 0.2 + \frac{B}{L}$$

$$i_c^* = \left[1 - \frac{mH}{B'cuNc} \right] m$$

$$d_c^* = 0.4 + \frac{D}{R}$$

per
$$D/B \le 1$$

$$d_c* = 0.4 + \frac{tg^{-1D}}{B}$$

per
$$D/B > 1$$

$$g^*_c = \beta^\circ/147^\circ$$

$$b_{c}^{*} = \eta^{\circ}/147^{\circ}$$

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Si sono indicate con:

q = γ^*D = pressione verticale totale agente alla quota di imposta della fondazione;

B' = larghezza efficace equivalente della fondazione;

 γ = peso di volume naturale del terreno;

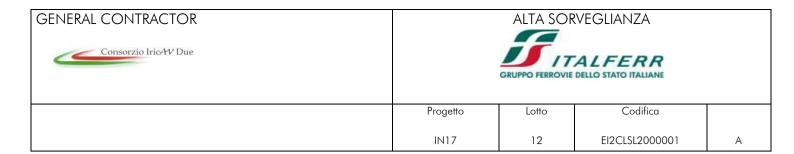
 c_{υ} = coesione non drenata;

D = affondamento della fondazione;

H = carico orizzontale agente.

Per valutare gli effetti dell'eccentricità è necessario inserire nell'equazione della capacità due dimensioni L' e B' ridotte secondo le:

$$L' = L - 2e_x$$


$$B' = B - 2e_v$$

dove B e L sono le reali dimensioni della fondazione e ex e ey sono le eccentricità.

Si riporta di seguito la verifica per la condizione più gravosa.

L'azione complessiva trasmessa al terreno dalla fondazione nella condizione più gravosa è pari a circa 3491.5 kN per una striscia di larghezza unitaria e 3491.5 x 31.17 = 108830 kN globalmente per la struttura in esame.

Il calcolo dei cedimenti viene effettuato sia a lungo termine (in termini di tensioni efficaci) che a breve termine (in termini di tensioni totali).

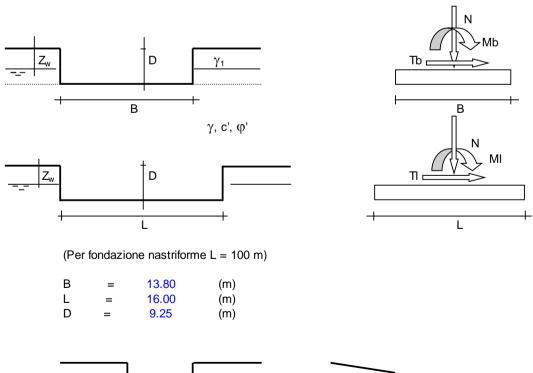
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

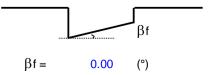
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

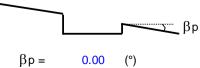
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

	azioni		proprietà del terreno		resistenze	
Metodo di calcolo	permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
Office of the control	1.30	1.50	1.00	1.00	2.30	1.10
SISMA	1.00	1.00	1.00	1.00	2.30	1.10
Definiti dal Progettista X	1.00	1.00	1.00	1.00	2.30	1.10

Progetto	Lotto	Codifica	
IN17	12	EI2CLSL2000001	А

AZIONI

		valori d	Valori di	
		permanenti	calcolo	
N	[kN]	53091		53091.20
Mb	[kNm]	19405		19404.80
MI	[kNm]	0.00		0.00
Tb	[kN]	2587		2587.20
П	[kN]	0.00		0.00
Н	[kN]	2587.20	0.00	2587.20

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) $\phi' = 26.00 (°)$

Valori di progetto

c' = 0.00 (kN/mq) $\phi' = 26.00 (°)$

Profondità della falda

Zw = 3.00 (m)

 $e_B = 0.37$ (m) $e_L = 0.00$ (m)

 $B^* = 13.07$ (m)

 $L^* = 16.00$ (m)

q : sovraccarico alla profondità D

q = 104.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 8.00 \text{ (kN/mc)}$

Nc, Nq, Ny: coefficienti di capacità portante

$$Nq = tan^{2}(45 + \phi'/2)^{*}e^{(\pi^{*}tg\phi')}$$

Nq = 11.85

 $Nc = (Nq - 1)/tan\phi'$

Nc = 22.25

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 12.54$

Progetto	Lotto	Codifica	
IN17	12	EI2CLSL2000001	А

s_c, s_q, s_y: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

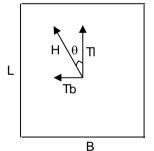
$$s_c = 1.44$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.40$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.67$$


$i_c,\,i_q,\,i_\gamma$: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

$$\theta = arctg(Tb/TI) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

$i_q = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

$$i_q = 0.93$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.92$$

$$i_{v} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_v = 0.88$$

$d_c,\,d_q,\,d_\gamma:$ <u>fattori di profondità del piano di appoggio</u>

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan φ ' (1 - sen φ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan φ ' (1 - sen φ ')²) * arctan (D / B*)

$$d_q = 1.22$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.24$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

Progetto	Lotto	Codifica	
IN17	12	EI2CLSL2000001	Α

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

$$\beta_f + \beta_p =$$

0.00
$$\beta_f + \beta_p < 45^{\circ}$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

$$b_{\gamma} = b_{q}$$

$$b_v = 1.00$$

$g_c,\,g_q,\,g_\gamma:\underline{fattori\ di\ inclinazione\ piano\ di\ campagna}$

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

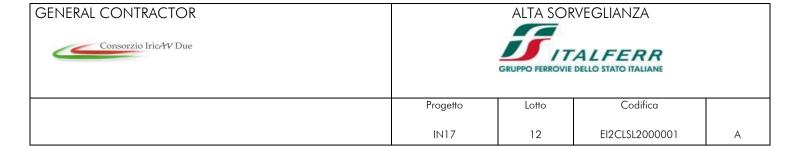
$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 2331.47$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$


$$q = 253.90 (kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 1013.68$$

≥

$$q = 253.90 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 2587.20 (kN)

Azione Resistente

 $Sd = N \tan(\varphi') + c' B^* L^*$

Sd = 25894.31 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 23540.28 **\geq Hd** = 2587.20 (kN)

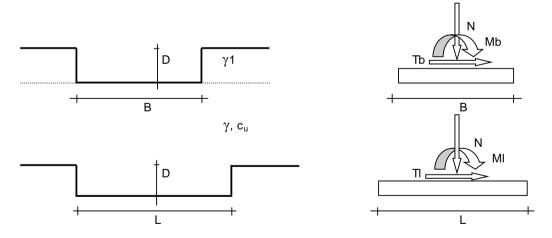
GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica IN17 12 EI2CLSL2000001 A

Fondazioni Dirette Verifica in tensioni totali

$qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

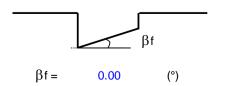

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L^* = L)

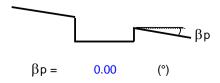
 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

	azioni		proprietà del terreno	resistenze	
Metodo di calcolo	permanenti	temporanee variabili	Cu	qlim	scorr
Stato Limite Offinite Offinit	1.30	1.50	1.00	2.30	1.10
SISMA CIT I	1.00	1.00	1.00	2.30	1.10
Definiti dal Progettista X	1.00	1.00	1.00	2.30	1.10




(Per fondazioni nastriformi L=100 m)

B = 13.80 (m)

L = 16.00 (m)

D = 9.25 (m)

GENERAL CONTRACTOR Consorzio Iric/41/ Due Consorzio Iric/41/ Due Consorzio Iric/41/ Due Progetto Lotto Codifica

IN17

AZIONI

		valori	Valori di	
		permanenti	temporanee	calcolo
Ν	[kN]	53091		53091.20
Mb	[kNm]	19405		19404.80
MI	[kNm]	0.00		0.00
Tb	[kN]	2587		2587.20
TI	[kN]	0		0.00
Н	[kN]	2587	0.00	2587.20

Peso unità di volume del terreno

 $\gamma_1 = 18.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 60.00 (kN/mq)$

0.37

(m)

 $e_L = 0.00$ (m)

Valore di progetto

 $c_u = 60.00 \text{ (kN/mq)}$

12

EI2CLSL2000001

Α

B* = 13.07

 $L^* = 16.00$ (m)

(m)

q : sovraccarico alla profondità D

q = 166.50 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

 e_B

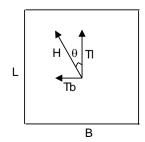
Nc = 5.14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1.16$

ic: fattore di inclinazione del carico


$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) = 1.55$$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) = 1.45$$

$$\theta = \operatorname{arctg}(\text{Tb/Tl}) = 90.00$$
 (°)

m = 1.55

(m=2 nel caso di fondazione nastriforme e m=(m_bsin² θ +m_lcos² θ) in tutti gli altri casi)

Progetto	Lotto	Codifica	
IN17	12	EI2CLSL2000001	А

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.94$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*
per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)

$$d_c = 1.28$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 598.22 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 253.90 \text{ (kN/m}^2\text{)}$$

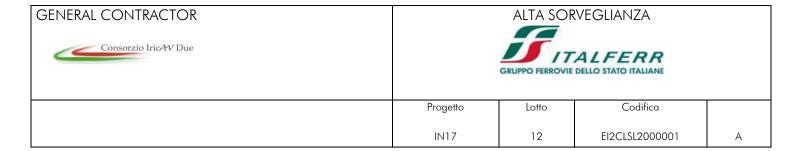
Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R = 260.1 \ge q = 253.90 \text{ (kN/m}^2)$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 2587.20$$
 (kN)

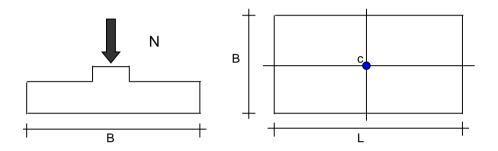

Azione Resistente

$$Sd = cu B^* L^*$$

$$Sd = 12546.24$$
 (kN)

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 11405.7 ≥ Hd = 2587.20 (kN)



14.2 VALUTAZIONE DEI CEDIMENTI

Si esibisce di seguito il calcolo dei cedimenti in fondazione dell'opera in esame.

CEDIMENTI DI UNA FONDAZIONE RETTANGOLARE

LAVORO:

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

$$\Delta \sigma z i = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3)) + ((L/2)(B/2)z)/R_3)(1/R_1^2 + 1/R_2^2))$$

$$\Delta \sigma x i = (q/2\pi)^* (tan^{-1}((L/2)(B/2))/(zR_3)) - ((L/2)(B/2)z)/R_3R_1^2))$$

$$\Delta \sigma yi = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_2^{-2}))$$

$$R1 = ((L/2)^2 + z^2)^{0.5}$$

$$R2 = ((B/2)^2 + z^2)^{0.5}$$

R3 =
$$((L/2)^2 + (B/2)^2 + z^2)^{0.5}$$

$$\delta_{tot} = \Sigma \delta t = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto IN17 12 EI2CLSL2000001 A

DATI DI INPUT:

B = 13.80 (Larghezza della Fondazione) (m) L= 16.00 (m) (Lunghezza della Fondazione) (Carico Verticale Agente) N = 36274 (kN) (kN/mq) (Pressione Agente (q = N/(B*L))) q= (numero strati) (massimo 6) 5 (-) ns =

Strato	Litologia	Spessore	da z _i	a z _{i+1}	∆zi	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m^2)	(-)	(cm)
1	3b	8.06	0.0	8.1	1.0	10000	0.30	8.21
2	4	8.50	8.1	16.6	1.0	70000	0.30	0.69
3	3b	4.50	16.6	21.1	1.0	25000	0.30	0.67
4	4	11.50	21.1	32.6	1.0	80000	0.30	0.26
5	2	3.50	32.6	36.1	1.0	30000	0.30	0.16
-			0.0	0.0	1.0			-

 δ_{ctot} = 10.00 (cm)

Il cedimento totale risulta essere pari a 10.00 cm.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

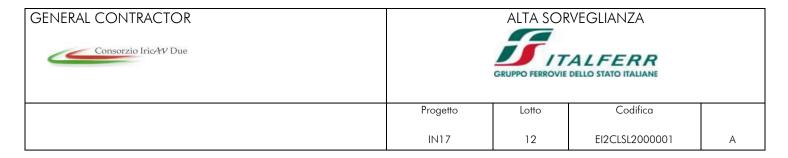
In accordo con quanto prescritto nella normativa di riferimento NTC2008-§6.2.3.2, si riporta di seguito la verifica di sollevamento dell'opera, in quanto interessata dalla presenza della sottospinta idraulica (Verifica nei confronti degli stati limite ultimi idraulici).

I coefficienti parziali sulle azioni, per le verifiche di stabilità al sollevamento, sono indicati nella Tabella 6.2.III della normativa NTC2008.

Tabella 6.2.III - Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento.

EFFETTO	Coefficiente parziale γ_F (o γ_E)	SOLLEVAMENTO (UPL)
Favorevole Yau	0,9	
Sfavorevole	IGI	1,1
Favorevole		0,0
Sfavorevole	IG2	1,5
Favorevole	24	0,0
Sfavorevole	,	1,5
	Favorevole Sfavorevole Favorevole Sfavorevole Favorevole Sfavorevole	$\begin{array}{c c} & parziale \\ \gamma_F \ (o \ \gamma_E) \\ \hline Favorevole \\ Sfavorevole \\ Favorevole \\ \hline Sfavorevole \\ \hline Favorevole \\ \hline Sfavorevole \\ \hline Sfavorevole \\ \hline Sfavorevole \\ \hline \end{array}$

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

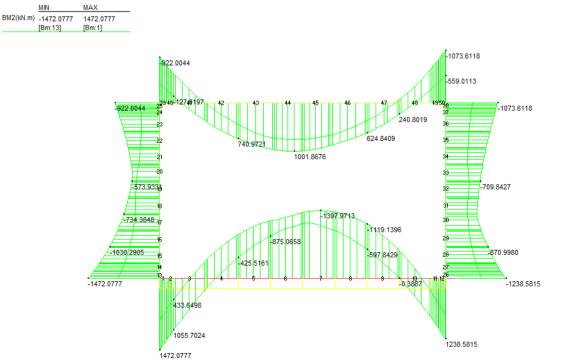

Risulta quanto segue:

SOLLEVAMENTO (Verifiche nei confronti degli stati limite ultimi idraulici)					
Carico permanente strutturale G1					
Peso soletta superiore			379.50	kN	
Peso soletta fondazione			461.50	kN	
Peso piedritti (x2)			378.00	kN	
Peso piedritto centrale			0.00	kN	
Coefficiente sicurezza			0.90	-	
Carico permanente non strutturale G2					
Carico permanente TOT. Portato dalla soletta superiore			0.00	kN	
Permanenti portati soletta inferiore			0.00	kN	
Coefficiente sicurezza			0.80	-	
Azione stabilizzante	PP	=	1097.10	kN	
Azione dell'acqua					
Quota Falda dalla quota di intradosso della fondazione			3.00	m	
Larghezza totale del sottovia			13.40	m	
Sottospinta idraulica	SPW	=	402.00	kN	
Coefficiente sicurezza			1.1		

GENERAL CONTRACTOR Consorzio Iric-14 Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLSL2000001	А

Fattor	e di sicurezza al sollevamento	FS	=	2.48	>	1	
					Verificato		

La verifica al sollevamento dell'opera risulta soddisfatta.



15 DICHIARAZIONE SECONDO NTC2008 (§ 10.2)

Nel presente paragrafo si procede al controllo dei risultati derivanti dal modello di calcolo verificando che il momento agente sulla soletta superiore in condizione SLE corrisponda al valore che si ottiene dal calcolo di una trave su 2 appoggi, considerando un vincolo di semi-incastro alle due estremità (in modo tale da meglio rappresentare il vincolo fra soletta superiore ed i piedritti della struttura).

Sollecitazioni soletta superiore						
Peso proprio	27.50	kN/m				
Permanenti	23.60	kN/m				
Accidentale	71.60	kN/m				
L soletta	12.20	m				
MEd-	998.0	kNm				
MEd+	-1014.6	kNm				

Sollecitazioni soletta superiore modello di calcolo		
MEd-	-1065	kNm
MEd+	1005	kNm

