COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE **LEGGE OBIETTIVO N. 443/01**

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO **PONTI E VIADOTTI** VIADOTTO SU RIO GUA' DAL km 33+722,75 AL km 34+800,75 **PILE**

Rela	Relazione di calcolo pile e plinto – Pile da P1 a P10, P17, da P21 a P25							
	GENERAL CON	TRACTOR			DIRI	ETTORE LAV	/ORI	
Ing	GETTISTA INTEGRATORE Giovanni MALA VENDA INGEGNERI PROVIDI MESSINA n. 4503							SCALA -
COMA			TIPO DO	DC. OPER	0 9 0 4	PROGR.	REV.	FOGLIO P
	irio	CAV2				irma D LEVORATO		Data
Proge	ettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
А	EMISSIONE	E.d.in	- Apr.2021	M. Proietti	Apr.2021	G. Grimaldi	Apr.2021	GIUSEPPE GRIMALDI ORDINE INGEGNERI
С	EMISSIONE A SEGUITO RDV IN1710E09ISVI0900001B	E.d.in	Lug.22	M. Proietti	Lug.22	G. Grimaldi	Lug.22	INGEGINA 17703 A
CIG. 8	3377957CD1	CI	UP: J41E	5910000C	00009	Fi	le: IN1712	EI2CLVI0904001C
Drogatta assimanziata						C	od. origine:	:

Progetto cofinanziato dalla Unione Europea

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	12	EI2CLVI0904001	С

INDICE

1. PREMESSA	3
2. NORMATIVA E DOCUMENTI DI RIFERIMEN	TO4
2.1 Normative	4
2.2 Elaborati di riferimento	
3. MATERIALI	5
3.1 Calcestruzzo per fusto pila e pulvino	
3.2 Calcestruzzo per fondazione	
3.3 Acciaio per barre di armature	
3.4 Stati limite	
3.4.1 Stati limite ultimi	
3.4.2 Stati limite diami	
5.4.2 Stati illinite a GGC/G/2/6	······································
4. CARATTERIZZAZIONE GEOTECNICA	9
5. DESCRIZIONE DELL'OPERA	0
5.1 Modelli di analisi e verifica	
5.2 Sistemi di riferimento ed unità di misura	
5.2 Sistemi di nienmento ed unita di misura	12
6. ANALISI DEI CARICHI	13
6.1 Permanenti strutturali e non (G1 e G2)	13
6.2 Carichi da traffico verticali (Q1)	16
6.3 Effetti dinamici	17
6.4 Disposizione treni di carico	17
6.5 Carichi da traffico orizzontali	
6.5.1 Forza centrifuga (Q4)	22
6.5.2 Serpeggio	
6.5.3 Frenatura ed avviamento (Q3)	
6.5.4 Forza d'attrito (Q8)	
6.6 Azione del Vento (Q5)	
6.7 Azione termica (Q7)	
6.8 Azione Sismica (E)	
6.8.1 Inquadramento Sismico	
6.8.2 Definizione della domanda sismica	
6.8.3 Calcolo dell'azione Sismica	
6.8.4 Check analisi statica	
6.8.5 Analisi statica equivalente	

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	12	EI2CLVI0904001	С

7. CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	49
7.1 Caratteristiche di sollecitazioni	54
7.1.1 Combinazioni Estradosso Pulvino – configurazione treni 1,2 e 3	54
7.1.2 Combinazioni Estradosso Plinto – configurazione 1,2 e 3	57
7.1.3 Combinazioni Intradosso Plinto – configurazione 1,2 e 3	60
8. VERIFICHE STRUTTURALI	64
9. FUSTO PILA	64
9.1 Modello locale per ritiro differenziale	65
9.2 Verifica a presso flessione	65
9.3 Verifica a taglio	82
9.4 Verifica minimi di armatura	87
9.5 Verifica deformabilità	90
9.6 Determinazione spostamenti	90
10. PULVINO	93
11. PLINTO DI FONDAZIONE	95
11.1 Geometria del plinto e della palificata	95
11.2 Modellazione strutturale	
11.3 Azioni di progetto	98
11.3.1 Reazioni dei pali	
11.3.2 Peso proprio plinto di fondazione	99
11.3.3 Peso terreno di ricoprimento	99
11.4 Risultati di analisi	100
11.5 Dimensionamento e verifica delle armature	104
11.5.1 Dimensionamento delle armature	104
11.5.2 Verifica a flessione	
11.5.3 Verifica a taglio	
11.5.4 Verifica a taglio-punzonamento	118
12. VALUTAZIONE DELLA ACCETTABILITÀ DEI RISULTATI OTTENUTI	(RIF.PAR.10.2
DM 14/01/2008)	122

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

1. Premessa

Oggetto della presente relazione è il dimensionamento degli elementi in elevazione del *Viadotto Rio Guà*– *VI09*, che si inserisce nell'ambito della progettazione esecutiva del collegamento ferroviario della linea AV/AC Verona-Padova.

Tale relazione si ritiene valida per tutte le pile del viadotto di altezza compresa tra 8.5m (escluso) e 9.5m, con fondazione 12.0m x 12.0m x 2.5m su 9 pali e sulle quali afferiscono due impalcati in c.a.p. di L=25.0m (P01-P02-P03-P04-P05-P06-P07-P08-P09-P10-P17-P21-P22-P23-P24-P25). Si prende a riferimento la pila di altezza massima P10 per tutte le verifiche esplicitate nella presente relazione (H=9.5m), ad eccezione della verifica a taglio del fusto pila, nella quale si fa riferimento anche alla pila di altezza minima P03 (H=9.0m).

La presente relazione ha per oggetto il calcolo dello stato di sollecitazione e le verifiche dei vari elementi costituenti la pila, secondo il metodo semiprobabilistico agli Stati Limite (S.L.)

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

2. Normativa e documenti di riferimento

2.1 Normative

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Norme tecniche per le costruzioni».
- [2] Ministero delle Infrastrutture e Trasporti, Circolare 2 febbraio 2009, n. 617/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC SI PS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- [4] Istruzione RFI DTC SI CS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- [5] Regolamento (UE) N.1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- [6] Eurocodice UNI EN 1991-1-4 Azioni sulle strutture azioni in generale azioni del vento
- [7] Eurocodice UNI EN 1992-1-1 Progettazione delle strutture di calcestruzzo regole generali e regole per gli edifici

2.2 Elaborati di riferimento

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

Inoltre, si richiamano le relazioni:

- o IN1710EI2CLVI0004001, Studio degli effetti locali sulle pile
- IN1710EI2CLVI0900001, Relazione interazione treno binario struttura
- o IN1712EI2CLVI0904012, Relazione di calcolo pulvini, baggioli e ritegni
- o IN1712EI2RBVI09A0001, Relazione geotecnica
- o IN1712EI2RBVI09C0001, Relazione geotecnica

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

3. Materiali

3.1 Calcestruzzo per fusto pila e pulvino

Classe C32/40			
Rck =	40,00	MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	32,00	MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	40,00	MPa	Valore medio resistenza cilindrica
acc =	0,85		Coeff. rid. per carichi di lunga durata
γM =	1,50	-	Coefficiente parziale di sicurezza SLU
$fcd = acc fck/\gamma M =$	18,13	MPa	Resistenza di progetto
fctm = 0,3 fck $^{(2/3)}$ =	3,03	MPa	Resistenza media a trazione semplice
fcfm = 1,2 fctm =	3,68	MPa	Resistenza media a trazione per flessione
fctk = 0.7 fctm =	2,12	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0.55 \text{ fck} =$	17,60	MPa	Tensione limite in esercizio in comb. rara (rif. §2.5.1.8.3.2.1 [3])
$\sigma c = 0,40 \text{ fck} =$	12,80	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §2.5.1.8.3.2.1 [3])
Ecm = 22000 $(fcm/10)^{(0,3)}$	33643,00	MPa	Modulo elastico di progetto
v =	0,20		Coefficiente di Poisson
Gc = Ecm /(2(1+ v)=	14018,00	MPa	Modulo elastico tangenziale di progetto
Classe di esposizione =	XC4+XF1		
C =	5,00	cm	Copriferro minimo
w =	0,20	mm	Apertura massima fessure in esercizio in comb. rara (rif. §2.5.1.8.3.2.4 [3])

3.2 Calcestruzzo per fondazione

Classe C25/30			
Rck =	30,00	MPa	Resistenza caratteristica cubica
fck = 0,83 Rck =	25,00	MPa	Resistenza caratteristica cilindrica
fcm = fck +8 =	33,00	MPa	Valore medio resistenza cilindrica
acc =	0,85		Coeff. rid. per carichi di lunga durata
γM =	1,50	-	Coefficiente parziale di sicurezza SLU
fcd = αcc fck/γM =	14,17	MPa	Resistenza di progetto

fctm = $0.3 \text{ fck}^{(2/3)}$ =	2,56	MPa	Resistenza media a trazione semplice
fcfm = 1,2 fctm =	3,08	MPa	Resistenza media a trazione per flessione
fctk = 0,7 fctm =	1,80	MPa	Valore caratteristico resistenza a trazione (frattile 5%)
$\sigma c = 0.55 \text{ fck} =$	13,75	MPa	Tensione limite in esercizio in comb. rara (rif. §2.5.1.8.3.2.1 [3])
$\sigma c = 0.40 \text{ fck} =$	10,00	MPa	Tensione limite in esercizio in comb. quasi perm. (rif. §2.5.1.8.3.2.1 [3])
Ecm = 22000 (fcm/10) ^(0,3) =	31476,00	MPa	Modulo elastico di progetto
v =	0,20		Coefficiente di Poisson
Gc = Ecm /(2(1+ v)=	13115,00	MPa	Modulo elastico tangenziale di progetto
Classe di esposizione =	XC2		
C =	4,00	cm	Copriferro minimo
w =	0,20	mm	Apertura massima fessure in esercizio in comb. rara (rif. §2.5.1.8.3.2.4 [3])

3.3Acciaio per barre di armature

B450C

fyk≥	450,00	MPa	Tensione caratteristica di snervamento
ftk ≥	540,00	MPa	Tensione caratteristica di rottura
(ft/fy) _k ≥	1,15		
$(ft/fy)_k <$	1,35		
γs=	1,15	-	Coefficiente parziale di sicurezza SLU
$fyd = fyk/\gamma s =$	391,30	MPa	Tensione caratteristica di snervamento
Es =	210000,00	MPa	Modulo elastico di progetto
εyd =	0,20	%	Deformazione di progetto a snervamento
$\epsilon uk = (Agt)_k$	7,50	%	Deformazione caratteristica ultima
σ s = 0,75 fyk =	337,50	MPa	Tensione in esercizio in comb. rara (rif. §2.5.1.8.3.2.1 [3])

3.4 Stati limite

3.4.1 Stati limite ultimi

In coerenza con quanto prescritto nel capitolo 2.6.1 e 2.5.3 delle NTC2008, gli stati limiti ultimi si traducono nel confrontare in modo diretto la domanda amplificata con la capacità decrementata. Coefficienti amplificativi e deamplificativi variano in funzione della tipologia di sollecitazione e di concomitanza, traducendosi in:

 $A_{Ed} \leq A_{Rd}$

3.4.2 Stati limite d'esercizio

La verifica nei confronti degli Stati limite di esercizio consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.4.2.1 Verifica tensionale

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

tensione massima di compressione del calcestruzzo

per combinazione caratteristica (rara): 0.55 fck = 17,6 MPa
 per combinazione quasi permanente: 0.40 fck = 12,8 MPa

• per spessori minori di 5cm tali valori devono essere decrementati del 30%.

tensione massima di trazione dell'acciaio

per combinazione caratteristica (rara): 0.75 f_{vk} = 337,5 MPa

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

3.4.2.2 Verifica fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]. In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di		0 1: : :		Armat	ura	
esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Sensibile Poco sensibil		
	ambientan	azione	Stato limite	wk	Stato limite	wk
A	Ordinarie	frequente	ap. fessure	\leq_{W_2}	ap. fessure	te wk $\leq w_3$ $\leq w_2$ $\leq w_2$ $\leq w_1$
Λ	Ordinarie	quasi permanente	ap. fessure	\leq_{W_1}	ap. fessure	\leq w ₂
В	A compositive	frequente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}
Б	Aggressive	quasi permanente	decompressione	ı	ap. fessure	\leq w ₁
С	Molto frequente	formazione fessure	-	ap. fessure	\leq w ₁	
	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}

Tabella 2 - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1. XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

- $w_1 = 0.2 \text{ mm}$
- w₂= 0.3 mm
- w₃= 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

4. Caratterizzazione geotecnica

Per la caratterizzazione geotecnica della Tratta si fa riferimento agli elaborati specialistici di riferimento.

5. Descrizione dell'opera

Il *Viadotto Rio Guà* – *VI09*, a doppio binario con intervia 4.2m, si estende dal km 33+722,75 al km 34+800,75 della *Tratta Verona-Padova* per uno sviluppo complessivo di 1078m ed è costituito da 40 campate isostatiche con travi in c.a.p. a cassoncini e una campata realizzata con impalcato ad arco.

Le pile, in c.a., presentano un fusto a sezione rettangolare smussata cava costante su tutta l'altezza di dimensioni esterne pari a 3.60m x 9.40m.

Il pulvino presenta un'altezza di 1.50m, con dimensioni esterne medesime alla pila e pieno. Su esso sono disposti gli apparecchi di appoggio dell'impalcato secondo gli schemi sotto riportati.

I plinti presentano una pianta rettangolare di dimensioni variabili in relazione alla tipologia di impalcato che afferisce alla pila. In particolare, in questa relazione sono analizzati i plinti di dimensioni pari a 12.0m x 12.0m e di spessore 2.5m. Le fondazioni previste sono su pali (9 pali Φ1500).

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

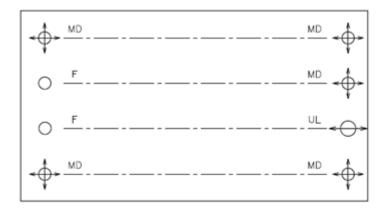


Figura 1 - Schema appoggi

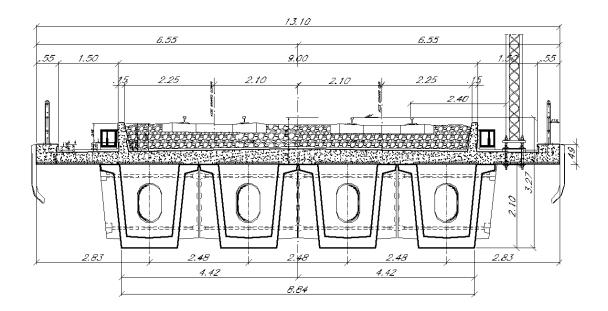


Figura 2 - Sezione impalcato

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 12 EI2CLV10904001			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

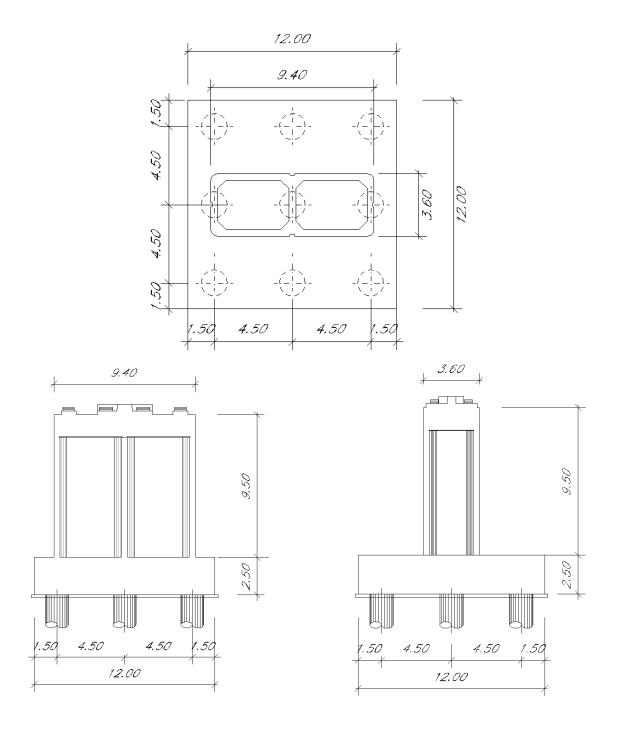


Figura 3 - Pianta e sezioni pila

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

5.1 Modelli di analisi e verifica

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio, alle quali sono state combinate le azioni determinate dalle azioni indotte dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello a mensola della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto. Per l'analisi e la verifica del plinto di fondazione, è stato realizzato un modello agli elementi finiti, descritto al paragrafo 11.

5.2Sistemi di riferimento ed unità di misura

- -Asse X parallelo all'asse trasversale dell'impalcato
- -Asse Y parallelo all'asse longitudinale dell'impalcato
- -Asse Z verticale
- -[Lunghezze] m
- -[Forze] KN

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

6. Analisi dei carichi

I dati di seguito riportati fanno riferimento alla pila di altezza massima.

6.1 Permanenti strutturali e non (G1 e G2)

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

DATI DI LINEA			
velocità massima della linea raggio di curvatura	V R	220 2500	km/h m
numero di binari		doppio	

IMPALCATO			_		_
		SX		DX	╛
altezza cassoncino sezione in appoggio	h ₁	2.10	m	2.10	m
altezza cassoncino sezione in mezzeria	h ₂	2.10	m	2.10	m
spessore soletta	S	0.35	m	0.35	m
estradosso impalcato sull'appoggio	H ₁	2.45	m	2.45	m
altezza totale impalcato in mezzeria	H_2	2.45		2.45	m
spessore ballast	h_b	0.80	m	0.80	m
altezza PF da estradosso trave	h_{PF}	1.20	m	1.20	m
lunghezza travata	L	25.00	m	25.00	m
luce appoggi travata	L_a	22.80	m	22.80	m
larghezza totale impalcato	В	13.10	m	13.10	m
peso permanente strutturale	G_1	6275	kN	6275	kN
peso permanenti non struttrutturali	G_2	5150	kN	5150	kN

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Altezze dal intradosso del cassoncino					
baricentro sezione cassone+soletta	Gb1	1.600	m	1.600	m
baricentero del ballast	Gb2	2.850	m	2.850	m
altezza al piano del ferro	Н	3.30	m	3.30	m
baricentro treno	Gb3	5.10	m	5.10	m

I requisiti idraulici impongono un getto di riempimento di magrone fino all'altezza di piena con Tr>200anni, questo è stato tenuto in conto nella progettazione esclusivamente come massa aggiunta. Per tener conto di baggioli e ritegni. è incrementato del 10% la massa del pulvino.

alterna mile (estrado aso fond estrado aso mulvino)	Ш	9.50	
altezza pila (estradosso fond-estradosso pulvino)	Нр	9.30	m
tipologia di sezione		rettangola	re
larghezza trasversale pila	b	9.40	m
larghezza longitudinale pila	d	3.60	m
raggio angolo esterno	r	0.40	m
area della sezione	A	11.45	m2
inerzia sezione direzione trasversale	I11	103.81	m4
inerzia sezione direzione longitudinale	I22	22,26	m4
modulo elastico cls pila	Ec	33346	MPa
eventuale abbattimento del modulo	%	50	
modulo di calcolo	E	16673	MPa
calcestruzzo	fck	32	MPa
massa pila	mp	2291	kN

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 12 EI2CLV10904001 C

PULVINO			
larghezza in direzione trasversale	b	9.40	m
larghezza in direzione longitudinale	d	3.60	m
altezza pulvino	h	1.50	m
massa pulvino	mp	1269	kN

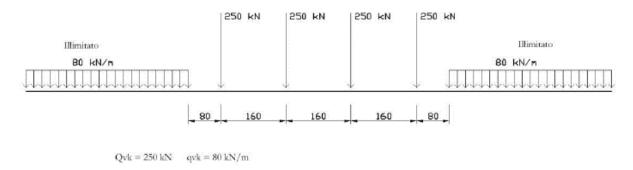
FONDAZIONE			
larghezza in direzione trasversale	Ъ	12.00	m
larghezza in direzione longitudinale	d	12.00	m
altezza della fondazione	h	2.50	m
area della fondazione	Af	144.00	m2
pali di fondazione	Φ	1.50	m
numero di pali	n.	9	

Ulteriori distante e bracci			
distanza asse pila/ asse appoggi per momento long.	\mathbf{i}_{l}	1.10	
altezza baggioli e apparecchi d'appoggio	h_{B}	0.50	
interasse tra i binari (se singolo 0)	i_{b}	4.20	m
dist. tra interasse del singolo binario e asse pila	a	2.10	m

Si riassumono gli scarichi ai diversi livelli di analisi, come azione globale desunta dalla campata di destra e di sinistra, alla pila in esame:

	N [kN]	Mlong [kN m]
scarichi estradosso Pila - G1	6275	0
scarichi estradosso Pila - G2	5150	0
scarichi estradosso Fondazione - G1	9835	0
scarichi estradosso Fondazione - G2	5150	0
scarichi intradosso Fondazione - G1	20932	0
scarichi intradosso Fondazione - G2	5150	0

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

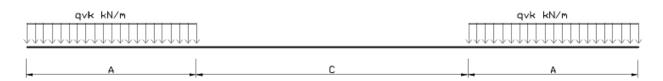

Lo scarico G1 a intradosso fondazione tiene conto del peso del plinto di fondazione e del peso del terreno di ricoprimento al di sopra di esso, di spessore pari a 1 m.

6.2 Carichi da traffico verticali (Q1)

L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2. Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.3.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito:</u> 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2008 (par. 5.2.2.3.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2CLV10904001 C

SW/0

Carico distribuito	Qvk	133	KN/m
Lunghezza	Α	15	m
Lunghezza	С	5.3	m

SW/2

Carico distribuito	Qvk	150	KN/m
Lunghezza	Α	25	m
Lunghezza	С	7	m

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario. Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001).

MODELLO DI CARICO	COEFFICIENTE "α"
LM/71	1.10
SW/0	1.10
SW/2	1.00

6.3 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 14.1.2008 che per l'opera in esame riporta:

$$\Phi_2 = \frac{1.44}{\sqrt{L_{\phi}} - 0.2} + 0.82$$
 con la limitazione $1.00 \le \Phi_2 \le 1.67$

6.4 Disposizione treni di carico

La disposizione dei treni di carico è stata individuata per ottenere le seguenti massime sollecitazioni:

- <u>Sforzo Assiale</u>: il convoglio è localizzato sostanzialmente al di sopra della pila in esame
- Momento Longitudinale: il convoglio è localizzato sulla campata di luce maggiore, più o meno centrato a seconda dei rapporti di lunghezza del treno di carico e della campata.
- <u>Momento Trasversale:</u> è fornito dallo stesso schema di posizionamento del massimo sforzo assiale, ma considerando un solo binario carico.

Questi schemi di base sono stati accoppiati nel caso di doppio binario, ottenendo le seguenti caratteristiche di sollecitazioni:

	N	Mlong	Mtrasv
	[kN]	[kN/m]	[kN/m]
COMBO N	5992	310	1298
COMBO ML	3529	2759	1090
COMBO MT	3162	206	6957

Si riportano i medesimi schemi graficamente per un caso rappresentativo:

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С



Figura 4- Posizione treni di carico - massimo sforzo assiale

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

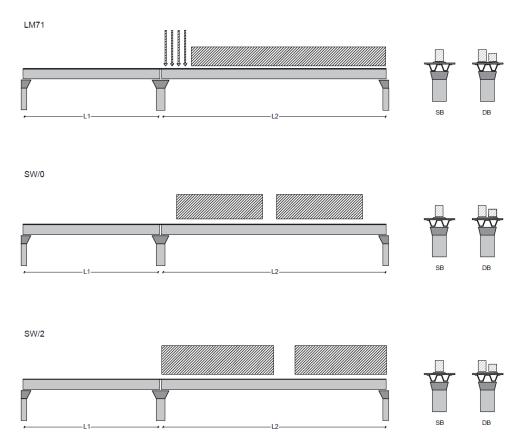


Figura 5- Posizione treni di carico – massimo momento longitudinale

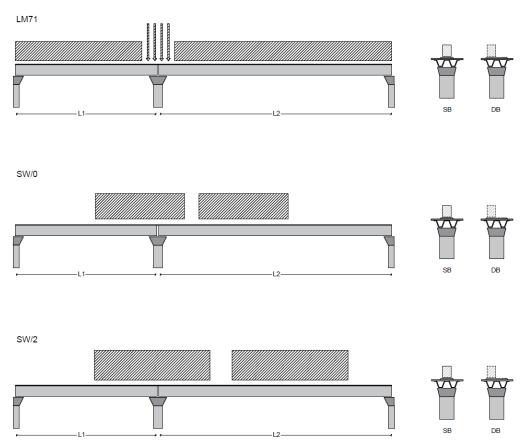


Figura 6- Posizione treni di carico – massimo momento trasversale

6.5 Carichi da traffico orizzontali

6.5.1 Forza centrifuga (Q4)

L'azione centrifuga è schematizzata come una forza agente in direzione orizzontale perpendicolarmente al binario e verso l'esterno della curva, applicata ad 1,80 m al di sopra del p.f.. Il valore caratteristico della forza centrifuga si determina in accordo con la seguente espressione:

$$Q_{tk} = V^2 \cdot f \cdot (\alpha \cdot Q_{vk})/(127 \cdot R)$$

dove V

V velocità di progetto espressa in km/h

Qvk valore caratteristico dei carichi verticali

R raggio di curvatura in m

f fattore di riduzione (rif. §2.5.1.4.3.1 [3])

raggio di curvatura	R	2500	m
velocità massima compatibile con il tracciato della linea	Vmax	220	km/h
		SX	
lunghezza di influenza della parte curva del binario	Lf	22.8	m
fattore di riduzione funzione della Lf e della V	f	0.65	

Per il modello di carico LM71 e per velocità di progetto superiori a 120 km/h, si considerano i seguenti 2 casi:

- a) modello di carico LM71 e forza centrifuga per V = 120 km/h e f = 1;
- b) modello di carico LM71 e forza centrifuga calcolata per la massima velocità di progetto.

La forza centrifuga non deve essere incrementata dei coefficienti dinamici.

	Massima velocità della		Azione	e centrifu	ga basata su:	traffico verticale
Valore di α	linea [Km/h]	v	α	f		associato
arri (a	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	v	1	1	1 x 1 x SW/2	Ф x 1 x SW/2
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤120	v	α	1	α x 1 x (LM71"+"SW/0)	Φxαx1x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

LM71 caso a		SX	
velocità massima	Vmax	120	
fattore di riduzione funzione della Lf e della V	f	1.00	
coefficiente di adattamento	a	1.10	
valore caratteristico dei carichi verticali	Qvk	250.0	kN x asse
valore caratteristico dei carichi verticali	qvk	80.0	kN/m
valore caratteristico della forza centrifuga	Qtk	12.5	kN x asse
valore caratteristico della forza centrifuga	qtk	4.0	kN/m

LM71 caso b			
velocità massima compatibile con il tracciato della linea	Vmax	22 0	
fattore di riduzione funzione della Lf e della V	f	0.65	
coefficiente di adattamento	a	1.0	
valore caratteristico dei carichi verticali	Qvk	250.0	kN x asse
valore caratteristico dei carichi verticali	qvk	80.0	kN/m
valore caratteristico della forza centrifuga	Qtk	24.7	kN x asse
valore caratteristico della forza centrifuga	qtk	7.9	kN/m

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Per quanto riguarda il modello di carico SW/2 si deve assumere: una velocità V non superiore a 100 km/h, un valore di f pari ad 1 ed il valore di a pari a 1:

velocità massima compatibile con il tracciato della linea	Vmax	100	
fattore di riduzione funzione della Lf e della V	f	1.00	
coefficiente di adattamento	a	1.00	
valore caratteristico dei carichi verticali	qvk	150.00	kN/n
valore caratteristico della forza centrifuga	qtk	4.72	kN/n

Riassumendo:

	Qtk sx	qtk sx	Qtk dx	qtk dx	F testa Pila Mom Trasv
	KN	KN/m	KN	KN/m	KN KN/m
Fcen_LM/71_1	49.9	4.0	49.9	4.0	124 689
Fcen_LM/71_2	98.9	7.9	98.9	7.9	255 1414
Fcen_SW/2_1	0.0	4.7	0.0	4.7	118 656

6.5.2 Serpeggio

La forza laterale indotta dal serpeggio si schematizza come una forza concentrata agente orizzontalmente perpendicolarmente all'asse del binario. Il valore caratteristico di tale forza è assunto pari a 100 kN. Tale valore deve essere moltiplicato per α ma non per il coefficiente di amplificazione dinamica. Essa si applicherà sia in rettifilo che in curva.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

viadotto a binario combinazione treni	doppio LM/71 + SW	/2	
	,		
valore caratterstico della forza	Qsk	100	kN
coefficiente di adattamento	a	1.1	
coefficiente di adattamento	a2	1	
Questa forza laterale deve essere semp	ore combinata con	i carichi vo	erticali
		i carichi vo	
altezza baggioli e apparecchi d'appogg		0.5	erticali m m
			m
altezza baggioli e apparecchi d'appogg altezza impalcato + soletta		0.5 2.45	m m
altezza baggioli e apparecchi d'appogg altezza impalcato + soletta armamento		0.5 2.45 0.8	m m m

Tale forza rappresenta l'azione complessiva in testa alla pila di riferimento.

6.5.3 Frenatura ed avviamento (Q3)

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato. I valori da considerare sono i seguenti:

- avviamento: Qla,k = 33 kN/m · L ≤ 1000 kN per i modelli di carico LM71,SW/2
- frenatura: Qlb,k = 20 kN/m · L ≤ 6000 kN per i modelli di carico LM71
- Qlb,k = 35 kN/m per i modelli di carico SW/2

I valori caratteristici dell'azione di frenatura e di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ . Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento e l'altro in fase di frenatura.

Nei sotto paragrafi che seguono si riportano i risultati delle reazioni vincolari per le diverse disposizioni di carico considerate e descritte precedentemente nel §6.4.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

numero di binari		doppio	
combinazione treni	L	M/71 + S	W/2
posizionamento vincoli fissi	C	aso peggi	ore
estradosso pulvino sommità binario	Н	0.5	m
lunghezza del binario	L	25	m

FRENATURA

LM/71			
coefficiente di adattamento	a	1.1	
lunghezza del binario	L	25	m
valore caratteristico della forza	Qla,k	550	kN
SW/0			
coefficiente di adattamento	a	1.1	
lunghezza del binario	L	19.7	m
valore caratteristico della forza	Qla,k	433.4	kN
SW/2			
coefficiente di adattamento	a	1	
lunghezza del binario	L	25	
valore caratteristico della forza	Qla,k	875	

AVVIAMENTO

LM/71 valore caratteristico della forza	Qla,k	908	kN
SW/0 valore caratteristico della forza	Qla,k	715	kN
SW/2 valore caratteristico della forza	Qla,k	825	kN

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Si rimanda alla "Relazione interazione treno binario struttura" per l'analisi di interazione binario-struttura. Le variazioni in termini di sollecitazioni longitudinali non risultano significative e, di conseguenza, non verranno portate in conto nella presente relazione.

6.5.4 Forza d'attrito (Q8)

Le forze parassitarie dei vincoli si esplicano in corrispondenza degli apparecchi d'appoggio mobili per traslazione relativa impalcato-apparecchi d'appoggio. Essendo funzione del carico verticale, la sua definizione è associata ai coefficienti moltiplicativi delle combinazioni γ e ψ dei carichi da peso proprio strutturali e non, e dei carichi verticali da traffico. Si riporta per questo motivo un esempio di forza d'attrito "caratteristica" solo come esempio di calcolo, in quanto il calcolo è stato eseguito a valle della combinazione di carico.

Per la valutazione delle coazioni generate è stato considerato un coefficiente d'attrito f pari a 0,04. Con riferimento a quanto riportato nel §2.5.1.6.3 [3] la forza agente sulle pile per impalcati a travate isostatiche, facendo riferimento all'apparecchio d'appoggio maggiormente caricato tra i due presenti sulla pila, si considera pari a:

$$F_a = f (0.2 \cdot V_G + V_Q)$$

dove V_G reazione verticale massima associata ai carichi permanenti

VQ reazione verticale massima associata ai carichi mobili dinamizzati

altezza baggioli e apparecchi d'appoggio	h	0.5	m
lunghezza del binario	L	25	m
reazione verticale massima associata ai carichi permanenti	Vg1	6275	kN
reazione verticale massima associata ai carichi permanenti	Vg2	5150	KN
reazione verticale massima associata ai carichi mobili	Vq	7361	kN
coefficiente d'attrito (da assum. In relazione alle cart. App.)	f	0.04	
forza d'attrito trasmessa alla pila	Fa	385.8	kN
momento longitudinale in testa pila	M	192.9	kN/n

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

6.6 Azione del Vento (Q5)

L'azione del vento viene ricondotta ad un'azione statica equivalente costituita da pressioni e depressioni agenti normalmente alle superfici. Ricadendo nella classificazione ordinaria di ponti l'azione del vento è valutata come agente su una superficie continua, convenzionalmente alta 4m dal piano del ferro rappresentante il convoglio. L'altezza effettiva è valutata sia in funzione della presenza o meno del convoglio sia in funzione dell'altezza delle barriere antirumore, convenzionalmente alte 5m.

La valutazione è stata svolta in coerenza con i capitoli 3.3, 5.1.3.7 delle NTC2008 e dei 8.1, 8.2, 8.3 e 8.4 del Eurocodice 1991-1-4.

Non essendo ritenuta la necessità di un'analisi dinamica, per la valutazione della risposta sotto azione del vento, è possibile utilizzare il metodo semplificato che permette di esprimete Fw con la seguente espressione:

$$F_{\rm w} = \frac{1}{2} \times \rho \times v_{\rm b}^2 \times C \times A_{\rm ref,x}$$

dove:

v_b indica la velocità di base del vento

C indica il fattore del carico del vento. $C = c_{\rm e} \times c_{\rm f.x}$ dove $c_{\rm e}$ è il fattore di esposizione e $c_{\rm f.x}$ coefficienti di forza

A_{ref.x} indica l'area di riferimento

ρ indica la densità dell'aria

Di seguito si riportano le assunzioni principali per la scrittura di tale forza, a partire dai contributi del fattore del carico del vento $c_e \times c_{f,x}$ e del coefficiente di esposizione sulla base della classe d'esposizione e l'altezza z del punto considerato. Altezza posta pari alla massima quota del complesso impalcato, barriere antirumore, sagoma del treno. A tal proposito il §2.5.1.4.4.2 [3] impone di considerare il treno come una superficie piana continua convenzionalmente alta 4,00 m sul p.f.. L'azione del vento dovrà comunque considerarsi agente sulle b.a. presenti considerando la loro altezza effettiva se disponibile oppure un'altezza convenzionale di 4,00 m misurati dall'estradosso della soletta qualora le b.a. non siano previste al momento della redazione del progetto.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Illustrazione dei fattore di esposizione $c_{\rm e}(z)$ per $c_{\rm o}$ = 1,0 e $k_{\rm i}$ = 1,0

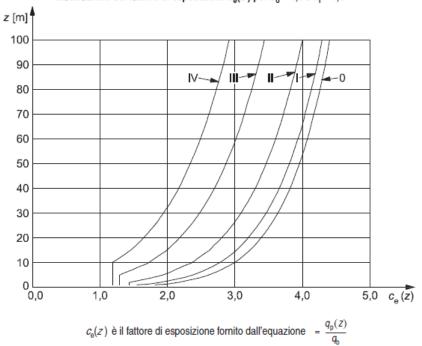


Figura 7 -fattore di esposizione - Eurocodice 1991-1-4

Illustrazione del fattore di forza c_{fx,0}

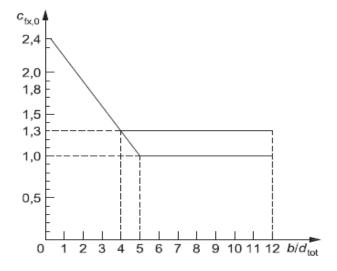


Figura 8 - Fattore di forza trasversale - Eurocodice 1991-1-4

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

$$c_{f,x} = c_{fx,0}$$

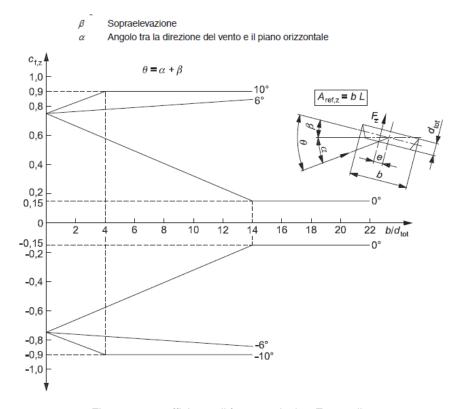
dove:

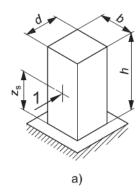
 $c_{\mathrm{fx,0}}$ indica il coefficiente di forza relativo all'impalcato in assenza di flusso di estremità libera

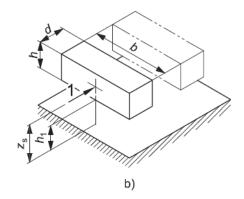
- a) Fase di costruzione, parapetti aperti (aperti più del 50%) e barriere di sicurezza aperte
- b) Parapetti solidi, barriere antirumore, barriere di sicurezza solide o traffico
- 1 Tipo di ponte
- 2 Travi reticolari separatamente

Figura 9 - Area effettiva - Eurocodice 1991-1-4

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С




Figura 10 - coefficiente di forza verticale - Eurocodice 1991-1-4


L'azione longitudinale del vento se non espressamente richiesta può essere trascurata. In generale, le forze spiranti da direzioni diverse non agiscono simultaneamente. Nel caso di azione verticale, essendo prodotta da un ampio ventaglio di direzioni è possibile combinarla con altri venti se il contributo aggiunto è sfavorevole.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

- a) Struttura verticale per esempio edifici, ecc.
- b) Oscillatore parallelo, per esempio strutture orizzontali come travi, ecc.
- c) Strutture puntuali per esempio insegne, ecc.
- 1) Vento

$$z_{s} = 0.6 \times h \ge z_{min}$$
 $z_{s} = h_{1} + \frac{h}{2} \ge z_{min}$ $z_{s} = h_{1} + \frac{h}{2} \ge z_{min}$

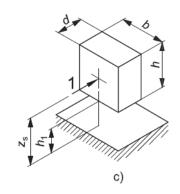


Figura 11 - Altezza di riferimento - Eurocodice 1991-1-4

tab. 3.3.I	Zona	1	
tab.3.3.II	Categoria	II	
tab. 3.3.III	Classe rug	D	
velocità di base di riferimento s.l.m.	Vbo	25	m
parametro di quota	ao	1000	m
altitudine sul livello del mare	as	150	m
parametro adimensionale	ks	0.4	
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	25	m

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

termpo di ritorno azione del vento	Tr	150	an
coefficiente di ritorno	cr	1.06	
velocità di riferimento	Vr	26.5	m
fattore di terreno	Kr	0.19	
lunghezza di rugosità	ZO	0.05	m
altezza minima	zmin	4	m

6.6.1.1 <u>Impalcato</u>

ponte carico			
altezza pila	z 1	9.50	m
altezza baggioli e app. d'appoggio	z2	0.50	m
altezza all'intradosso	zint	10	m
altezza di riferimento	Z	13.6	m
coefficiente di topografia	ct	1	
coefficiente di esposizione	ce	2.55	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	439.8	n/m2
pressione statica di picco	qpicco	1122.4	n/m2
larghezza impalcato	d	13.1	m
altezza impalcato+soletta	z 3	2.45	m
armamento	z4	0.80	m
altezza treno	z5a	4	m
altezza barriere	z5b	4	m
altezza di impatto treno o barriere	htot	7.25	m
-	d/h	1.81	
coefficiente di forza trasversale	cfx	1.90	
coefficiente di forza trasversale	cfz	0.9	

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

forza trasversale	fx	18.1	kN/m
forza equivalente in testa pila	Fx	453.1	kN
momento trasv equivalente in testa pila	Mx	1869.1	kN/m
forza verticale	fz	32.8	kN/m
forza equivalente in testa pila	Fz	818.8	kN
momento trasv equivalente in testa pila	Mx	2681.4	kN/m
ponte scarico			
ponte scarico			
altezza di impatto treno o barriere	htot	6.45	m
altezza di impatto treno o barriere	htot d/h	6.45 2.03	m
ponte scarico altezza di impatto treno o barriere rapporto geometrico coefficiente di forza trasversale			m
altezza di impatto treno o barriere rapporto geometrico	d/h	2.03	m
altezza di impatto treno o barriere rapporto geometrico coefficiente di forza trasversale	d/h cfx	2.03 1.84	m kN/m

1501.6

32.8

818.8

2681.4

Mx

fz

Fz

Mx

kN/m

kN/m

kN/m

kN

6.6.1.2 Pila

forza verticale

Nel caso di pila con sezione rettangolare, il coefficiente di forma della pila e l'area di riferimento per il calcolo della risultante si determinano in base alle indicazioni del $\S7.2$ della UNI EN1991-1-4. A tal proposito si riconduce il coefficiente di forma c_p al coefficiente di forza c_f .

Il coefficiente di forza c_i si determina mediante l'espressione:

momento trasv equivalente in testa pila

momento trasv equivalente in testa pila

forza equivalente in testa pila

	$C_f = C_{f,0} \cdot \psi_r \cdot \psi_\lambda$				
dove	Cf,0	è il coefficiente di forma in assenza di effetto di estremità;			
	ψ_{r}	è il fattore riduttivo per sezioni con spigoli arrotondati;			
	Ψλ	è il fattore di effetto di estremità, posto cautelativamente pari a 1.			

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

I valori di $c_{f,0}$ e ψ_r si determinano in funzione del rapporto tra le dimensioni in sezione dell'elemento investito, secondo gli abachi riportati nella figura seguente.

Coefficienti di forza $c_{\rm f,0}$ con sezioni rettangolari a spigoli vivi in assenza di fiusso di estremità libera

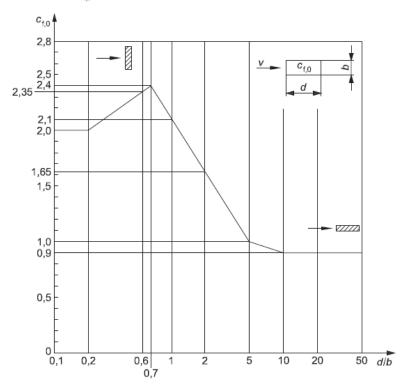


Figura 12 - Correlazione tra dimensioni in sezione dell'elemento e il coefficiente di forma cfx0 (figura 7.23 EC1-4)

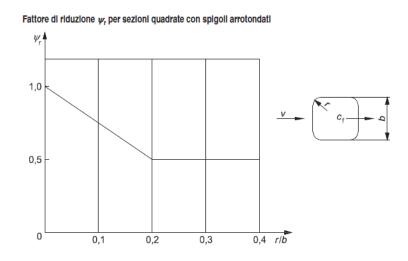


Figura 13 - correlazione tra il raggio di arrotondamento dello spigolo e il fattore riduttivo ψr (figura 7.24 EC1-4)

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Coefficiente di forza $c_{\rm f,0}$ per cilindri circolari in assenza di effetti di estremità libera in corrispondenza di diversi valori della rugosità equivalente kb

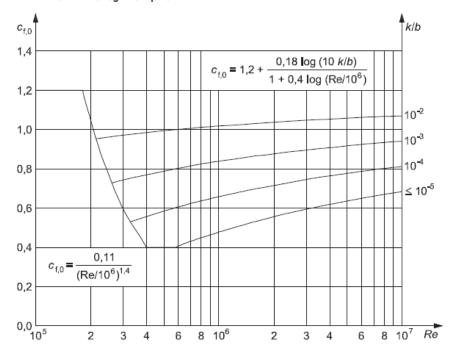


Figura 14 - Fattori di forza pila - Eurocodice 1991-1-4

GENERAL CONTRACTOR ALTA SORVEGLIANZA FINAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto	Lotto	Codifica	
IN17	12	EI2CLVI0904001	С

direzione trasversale			
altezza di riferimento	Z	9.5	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.32	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	439.8	n/m2
pressione statica di picco	qpicco	1020.2	n/m2
		1.02	Kpa
tipologia di sezione		rettangolare	<u> </u>
larghezza trasversale pila	Ъ	9.4	m
larghezza longitudinale pila	d	3.6	m
raggio della sezione	R	0.40	m
rapporto geometrico	b/d	2.61	
rapporto geometrico	r/b	0.11	
coefficiente di forza trasversale sez. ret.	cf, 0	1.46	
end-effect factor	ψλ	0.72	
viscosità cinematica dell'aria	ν	1.50E-05	m/s
numero di Reynolds	Re	1.81E+06	
materiale pila		cls ruvido	
rugosità equivalente	k	1	mm
rapporto	k/b	2.50E-03	
coefficiente di forza trasversale sez. circ.	cf, 0	0.94	
rapporto geometrico	1/b	2.64	
snellezza effettiva	λ	70.00	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.89	
forza trasversale	f tras	9.0	kN/m
forza equivalente totale	F tras	85.5	kN
altezza di applicazione sulla pila	h tra	5.0	m

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

direzione longitudinale			
tipologia di sezione		rettangolar	e
larghezza trasversale pila	b	9.4	m
larghezza longitudinale pila	d	3.6	m
raggio della sezione	R	0.4	m
rapporto geometrico	b/d	0.38	
rapporto geometrico	r/b	0.04	
coefficiente di forza long. sez.ret	cf, 0	2.21	
coefficiente di forza trasversale sez.circ.	cf, 0	0.94	
end-effect factor	ψλ	0.89	
rapporto geometrico	l/b	1.01	
snellezza effettiva	λ	70.00	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.89	
forza longitudinale	flon	23.50	kN/m
forza equivalente totale	Flon	223.25	kN
altezza di applicazione sulla pila	h lon	4.99	m

6.7 Azione termica (Q7)

Le azioni termiche sono state applicate all'impalcato e alle pile. In particolare, all'impalcato è stata applicata una variazione termica uniforme, al fine di calcolare le escursioni di appoggi e giunti; sono state considerate le seguenti variazioni:

- DT= ± 15°C per impalcati in c.a.p. e in c.a.
- DT= ± 15°C per impalcati in struttura mista acciaio-calcestruzzo e per le travi incorporate
 Come previsto nelle NTC2008, la variazione di temperatura è stata incrementata del 50 % per tutte le tipologie di impalcato.

Per le pile cave invece, sono state adottate le seguenti ipotesi:

- Differenza di temperatura tra interno ed esterno pari a 10° C (con interno più caldo dell'esterno o viceversa, considerando un modulo elastico E non ridotto;
- Ritiro differenziale fusto-fondazione (fusto-pulvino), considerando un plinto (pulvino)
 parzialmente stagionato, che non ha, quindi, ancora esaurito la relativa deformazione da ritiro.

Conseguentemente a tale situazione si potrà considerare un valore di ritiro differenziale pari al 50% di quello a lungo termine, considerando un valore convenzionale del modulo di elasticità pari ad 1/3 di quello misurato (tale contributo è stato valutato in modo esplicito);

 Variazione termica uniforme tra fusto, pila e zattera interrata pari a 5 °C (zattera più fredda della pila e viceversa con variazione lineare tra l'estradosso zattera di fondazione ed un'altezza da assumersi, in mancanza di determinazioni più precise, pari a 5 volte lo spessore

6.8 Azione Sismica (E)

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo.

Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi.

6.8.1 Inquadramento Sismico

La determinazione della pericolosità sismica di base è definita a partire dall'ubicazione dell'opera e dalle sue caratteristiche progettuali come la vita nominale V_N e la classe d'uso C_u. Sulla base del *"Manuale di Progettazione delle Opere Civili"*. I parametri indentificativi dell'opera sono:

Vita Nominale	Classe d'Uso	Coeff. D'uso
100	III	1.5

La geo-localizzazione permette di ottenere le coordinate geografiche delle singole opere e individuare puntualmente la domanda sismica secondo gli spettri normativi rappresentativi delle due componenti (orizzontale e verticale), ovvero determinare i singoli parametri indipendenti di riferimento.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

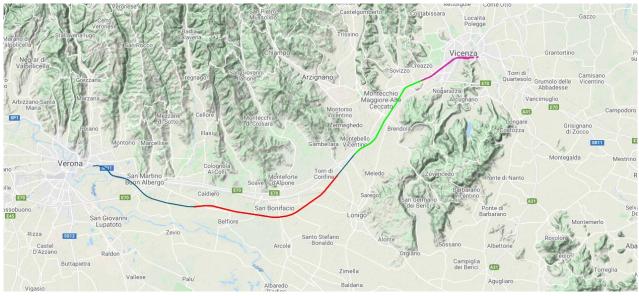


Figura 15 - Individuazione geografica della linea ferroviaria

I parametri indipendenti per le forme spettrali di riferimento hanno una variazione spaziale lungo la linea poco influente; per le seguenti analisi si è fatto riferimento alle seguenti coordinate individuando così la condizione sismica più gravosa fra quelle dell'intera tratta di interesse.

Latitudine 45.40294 Longitudine 11.11012

6.8.2 Definizione della domanda sismica

Secondo le NTC 2008 l'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione. Sulla base dello studio geologico, i terreni in esame sono di tipo C, pianeggianti, tali da ricadere nella categoria topografica T1. Risulta quindi possibile tracciare lo spettro di riferimento normativo.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Figura 16 - Sito di riferimento secondo "Spettri_NTC"

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

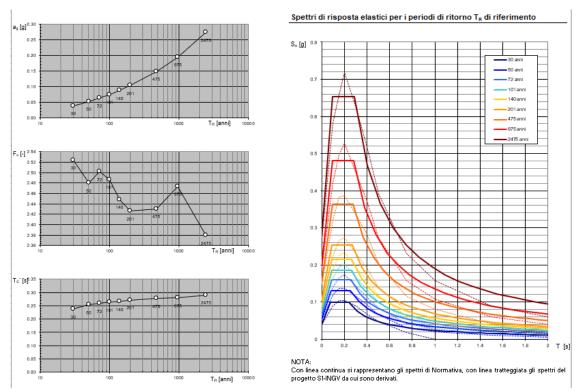
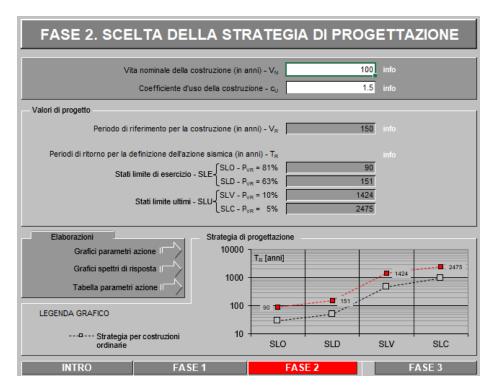


Figura 17 - Parametri di riferimento del sito secondo "Spettri_NTC"


Valori dei parametri a_g , F_o , $T_c^{}$ per i periodi di ritorno T_R di riferimento

T _R	a g	F _o	T _C *
[anni]	[g]	[-]	[s]
30	0.039	2.524	0.237
50	0.053	2.480	0.253
72	0.064	2.501	0.259
101	0.075	2.486	0.263
140	0.088	2.448	0.265
201	0.104	2.426	0.271
475	0.149	2.430	0.278
975	0.195	2.474	0.280
2475	0.275	2.379	0.291

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. L'ANIDIS non potrà essere ritenuta responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 18 - Tabella riassuntiva degli stati limite di riferimento del sito in esame

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

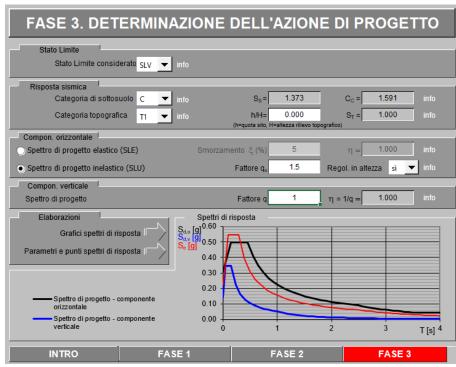


Figura 19 - Definizione della domanda sismica allo SLV

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti			
STATO LIMITE	SLV		
a _o	0.22 4 g		
F _o	2.435		
T _c '	0.284 s		
Ss	1.373		
Co	1.591		
S _⊤	1.000		
q	1.500		

Parametri dipendenti

S	1.373
η	0.667
T _B	0.151 s
T _C	0.452 s
T _D	2.495 s

Espressioni dei parametri dipendenti

$\mathbb{S} = \mathbb{S}_{_{\mathrm{S}}} \cdot \mathbb{S}_{_{\mathrm{T}}}$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$\mathbf{T}_{C} = \mathbf{C}_{C} \cdot \mathbf{T}_{C}^{t}$	(NTC-07 Eq. 3.2.7)
$T_D = 4,0 \cdot a_{_{\rm K}} / g + 1,6$	(NTC-07 Eq. 3.2.9)
Fancasiani dalla anattra	di signanta (UTC 005- 004)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D \leq T & \quad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti d	lello spettro	di risposta
	T [s]	Se [g]
	0.000	0.307
T₀ ∢	0.151	0.499
Tc◀	0.452	0.499
	0.549	0.410
	0.646	0.349
	0.744	0.303
	0.841	0.268
	0.938	0.240
	1.036	0.218
	1.133	0.199
	1.230	0.183
	1.328	0.170
	1.425	0.158
	1.522	0.148
	1.619	0.139
	1.717	0.131
	1.814	0.124
	1.911	0.118
	2.009	0.112
	2.106	0.107
	2.203	0.102
	2.301	0.098
_	2.398	0.094
Tø◀−	2,495	0.090
	2.567	0.085
	2.638	0.081
	2.710	0.077
	2.782	0.073
	2.853	0.069
	2.925	0.066
4)	2.997	0.063
	3.068	0.060
	3.140	0.057
	3.212	0.055
	3.283	0.052
	3,355	0.050
	3.427	0.048
	3,498	0.046
	3.570	0.045
	3.642	0.045
	3.713	0.045
	3.785	0.045
	3.857	0.045
η	3.928	0.045
1	4.000	0.045
	4.000	0.040

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. L'ANIDIS non potrà essere ritenuta responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 20 – Parametri indipendenti e dipendenti spettro orizzontale allo SLV q=1.5

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

6.8.3 Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle NTC 2008. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila e quindi delle sollecitazioni sismiche, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello agli Elementi Finiti monodimensionali (Beam/Frame) mediante il software di calcolo Midas Civil.

Per lo spettro orizzontale è stato applicato un fattore di struttura q pari a 1.5, confermando l'assunzione di PD ed in linea con quanto previsto dall'EC8.

Per la verifica degli apparecchi di appoggio è stato utilizzato invece lo spettro elastico non ridotto dal coefficiente di comportamento, utilizzando, sempre secondo le regole del manuale di progettazione riportate al paragrafo 2.5.1.8.3.3, uno smorzamento viscoso pari a ζ = 10%.

Infine, per i 'Pali di fondazione', secondo il paragrafo del §2.5.1.8.3.3 del citato manuale RFI, si assume allo SLV sui pali un'azione sismica di progetto pari a quella derivante da un'analisi della struttura condotta adottando un fattore di struttura q=1.5

Nella scrittura delle combinazioni di carico si è distinta la posizione del convoglio per massimizzare le singole sollecitazioni (N,Mx,My,Tx,Ty), identificando tre configurazioni, ovvero tre masse statiche.

Nell'analisi sismica la massa partecipante riferita ai carichi da traffico è stata valutata in maniera distinta per le tre componenti del moto e successivamente messa in combinazione per le tre configurazioni statiche.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

6.8.4 Check analisi statica

Direzione Longitudinale			
massa treno per direzione long	Com Nmax	7059	kN
massa sismica treno per direzione long	treno	1412	kN
massa impalcato (G1 + G2)	Mimp	11425	kN
massa sismica portata sulla pila	Mimp t	12837	kN
1/5 della massa sismica sulla pila	1/5 Mimp t	2567	kN
massa pila	Mpul	2291	kN
massa pulvino	Mpila	1269	kN
massa efficace pila	Mpe	2033	kN
massa sismica totale da utilizzare dir. Long	Mtot long	14869	kN
verifica requisito di norma Mep<1/5Mimp	O	ОК	

Direzione Trasversale			
massa treno per direzione long	Com Mmax	5992	kN
massa sismica treno per direzione long	treno	1198	kN
massa impalcato (G1 + G2)	Mimp	11425	kN
1/5 della massa sismica sulla pila	Mimp t	12623	kN
massa pila	Mpul	2291	kN
massa pulvino	Mpila	1269	kN
massa efficace pila	Mpe	2033	kN
massa sismica totale da utilizzare dir. Trasv verifica requisito di norma Mep<1/5Mimp	Mtot tras	14656 <i>OK</i>	kN

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Direzione Verticale			
massa treno per direzione long	Com Mmax	5992	kN
massa sismica treno per direzione long	treno	1198	kN
massa impalcato (G1 + G2)	Mimp	11425	kN
1/5 della massa sismica sulla pila	Mimp t	12623	kN
massa pila	Mpul	2291	kN
massa pulvino	Mpila	1269	kN
massa efficace pila	Mpe	2033	kN
massa sismica totale da utilizzare dir. Vert verifica requisito di norma Mep<1/5Mimp	Mtot vert	14656 <i>OK</i>	kN

6.8.5 Analisi statica equivalente

area della sezione	A	11.5	m2
inerzia sezione direzione trasversale	I11	104	m4
inerzia sezione direzione longitudinale	I22	22	m4
modulo elastico cls pila	Ec	33346	MPa
eventuale abbattimento del modulo	%	50.00	
modulo di calcolo	E	16673	MPa
calcestruzzo	fck	32	MPa
altezza pila est. fondazione - estr. pulvino	Н	9.50	m
altezza plinto di fondazione	hf	0.00	m
altezza baggioli ed app. appoggio	hap	0.50	m
altezza equivalente sdof	Не	10.00	m
rigidezza flessionale sdof in dir. Trasv	Ktra	2.60E+09	N/m
rigidezza flessionale sdof in dir. Long	Klong	1.11E+09	N/m
	0		·
rigidezza assiale sdof in dir. Vert	Kvert	3.03E+10	N/m
periodo di vibrare sdof dir. Trasversale	Ttra	0.15	sec
periodo di vibrare sdof dir. Longitudinale	Tlong	0.23	sec
periodo di vibrare sdof dir. Verticale	Tvert	0.04	sec

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

		SLV		SLD	
Tabella Riassuntiva	a	q=1.5	q=1	q=1	
accelerazione compone	ente trasversale	0.50	0.75	0.33	g
accelerazione compone	ente longitudinale	0.50	0.75	0.33	g
accelerazione compone	ente verticale	0.32	0.32	0.08	g
Sforzo assiale		4649	4649	1215	kN
Taglio Sism testa pila d	lirez. trasversale	7310	10965	4904	kN
Taglio Sism testa pila d	lirez. longitudinale	7416	11125	4975	kN
Momento flessionale tr	rasversale	89475	134212	60019	kN m
Momento flessionale lo	ongitudinale	74164	111246	49749	kN m

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

7. Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC 2008, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots \tag{2.5.2}$$

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{ m P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e quindi, alle verifiche strutturali.

сомво	61	62	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
A1_SLU_gr1_Treno_	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0	0	0	0	1.5
A1_SLU_gr2_Scarico_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0	0	0	0	1.5
A1_SLU_gr3_Fre/avv_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0	0	0	0	1.5
A1_SLU_gr1+vento_	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr2+vento_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr3+vento_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0.9	0	0	0	1.5
A1_SLU_vento_gr1_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr2_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr3_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_Scalz_gr1_	1.35	1.5	0.87	0	0.435	0.87	0.87	0.54	0	0	0	0	1.5
A1_SLU_Scalz_gr2_	1.35	1.5	0	0.87	0	0.87	0.87	0.54	0	0	0	0	1.5
A1_SLU_Scalz_gr3_	1.35	1.5	0.87	0	0.87	0.435	0.435	0.54	0	0	0	0	1.5

сомво	61	62	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
SLE_rar_gr1_Treno_	1	1	1	0	0.5	1	1	0.6	0	0	0	0	1
SLE_rar_gr2_Scarico_	1	1	0	1	0	1	1	0.6	0	0	0	0	1
SLE_rar_gr3_Fre/avv_	1	1	1	0	1	0.5	0.5	0.6	0	0	0	0	1
SLE_rar_gr4_Centrif_	1	1	0.6	0	0.6	0.6	0.6	0.6	0	0	0	0	1
SLE_rar_gr1+vento_	1	1	1	0	0.5	1	1	0.6	0.6	0	0	0	1
SLE_rar_gr2+vento_	1	1	0	1	0	1	1	0.6	0.6	0	0	0	1
SLE_rar_gr3+vento_	1	1	1	0	1	0.5	0.5	0.6	0.6	0	0	0	1
SLE_rar_gr4+vento_	1	1	0.6	0	0.6	0.6	0.6	0.6	0.6	0	0	0	1
SLE_rar_vento_gr1_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr2_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr3_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr4_	1	1	0	0	0	0	0	0	1	0	0	0	1

сомво	61	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	Idra
SLE_fre_gr1_Treno_	1	1	0.6	0	0.3	0.6	0.6	0.3	0	0	0	0	1
SLE_fre_gr2_Scarico_	1	1	0	0.6	0	0.6	0.6	0.3	0	0	0	0	1
SLE_fre_gr3_Fre/avv_	1	1	0.6	0	0.6	0.3	0.3	0.3	0	0	0	0	1
SLE_fre_gr4_Centrif_	1	1	0.6	0	0.6	0.6	0.6	0.5	0	0	0	0	1
SLE_fre_gr1+vento_	1	1	0.6	0	0.3	0.6	0.6	0.3	0	0	0	0	1
SLE_fre_gr2+vento_	1	1	0	0.6	0	0.6	0.6	0.3	0	0	0	0	1
SLE_fre_gr3+vento_	1	1	0.6	0	0.6	0.3	0.3	0.3	0	0	0	0	1
SLE_fre_gr4+vento_	1	1	0.6	0	0.6	0.6	0.6	0.5	0	0	0	0	1
SLE_fre_vento_gr1_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr2_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr3_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr4_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_gr1_temp	1	1	0	0	0	0	0	0.6	0	0	0	0	1
SLE_fre_gr2_temp	1	1	0	0	0	0	0	0.6	0	0	0	0	1
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0	0	0	0	1
SLE_fre_gr4_temp	1	1	0	0	0	0	0	0.6	0	0	0	0	1

сомво	61	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	Idra
SLE_qp_gr1_Treno_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_Scarico_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_Fre/avv_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr1+vento_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2+vento_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3+vento_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_vento_gr1_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_vento_gr2_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_vento_gr3_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr1_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
				cari	Φ.	ut	و		0	бı	 a	.	_
сомво	5	G2	Treno	Treno scari	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
E_103x_	1	1	0.2	0	0	0	0	0.5	0	1	0.3	0.3	1
E_103y_	1	1	0.2	0	0	0	0	0.5	0	0.3	1	0.3	1

Nota: nelle combinazioni sismiche gli effetti dei convogli come azioni statiche sono tenute in conto direttamente a monte della combinazione

0.5

0.3

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

• asse X coincidente con l'asse trasversale del ponte;

0.2

E_103z

- asse Y coincidente con l'asse longitudinale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione ed inversione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

7.1 Caratteristiche di sollecitazioni

Come precedentemente descritto si è valutata la posizione del singolo convoglio per massimizzare la sollecitazione d'interesse. Questo ha portato alla definizione di tre configurazioni per la progettazione e verifica del pulvino, del fusto pila e della fondazione. Di seguito si riportano le tabelle di tutte le combinazioni di carico, funzione delle suddette configurazioni, per la pila di altezza massima.

7.1.1 Combinazioni Estradosso Pulvino – configurazione treni 1,2 e 3

CARATTERISTICHE SO TESTA I		ZIONI IN			
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	24885	1722	1043	1311	7154
A1_SLU_gr2_Scarico_2	16857	140	1043	70	5272
A1_SLU_gr3_Fre/avv_3	24885	3014	522	1957	4518
A1_SLU_gr1+vento_5	25622	1923	1528	2313	11634
A1_SLU_gr2+vento_6	17594	341	1528	1072	9752
A1_SLU_gr3+vento_7	25622	3215	1006	2959	8998
A1_SLU_vento_gr1_9	17424	335	808	1670	7465
A1_SLU_vento_gr2_10	17424	335	808	1670	7465
A1_SLU_vento_gr3_11	17424	335	808	1670	7465
A1_SLU_Scalz_gr1_13	21409	958	626	749	4293
A1_SLU_Scalz_gr2_14	16593	79	626	39	3163
A1_SLU_Scalz_gr3_15	21409	1733	313	1137	2711
SLE_rar_gr1_Treno_1	17417	1090	719	855	4934
SLE_rar_gr2_Scarico_2	11881	66	719	33	3636
SLE_rar_gr3_Fre/avv_3	17417	1981	360	1301	3116
SLE_rar_gr1+vento_5	17908	1224	1043	1523	7920
SLE_rar_gr2+vento_6	12372	200	1043	701	6622

			Progetto	Lotto	Codifica
			IN17	12	EI2CLVI0904001
SLE_rar_gr3+vento_7	17908	2115	683	1969	6102
SLE_rar_vento_gr1_9	12244	223	539	1113	4977
SLE_rar_vento_gr2_10	12244	223	539	1113	4977
SLE_rar_vento_gr3_11	12244	223	539	1113	4977
-					
SLE_rar_gr4_Centrif_4	15020	1211	432	791	2960
SLE_rar_gr4+vento_8	15512	1345	755	1460	5947
SLE_rar_vento_gr4_12	12244	223	539	1113	4977
SLE_qp_gr1+vento_33	11425	46	0	23	0
E_103x_SLV_q=1.5_45	14018	6472	1889	3298	6116
E_103y_SLV_q=1.5_46	14018	1990	6296	1057	19782
E_103z_SLV_q=1.5_47	17273	1990	1889	1057	6116
E_103x_SLD_q=1_54	12988	4365	1267	2244	4188
E_103y_SLD_q=1_55	12988	1358	4223	741	13355
E_103z_SLD_q=1_56	13839	1358	1267	741	4188

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_57	21314	1593	1043	4797	6853				
A1_SLU_gr2_Scarico_58	16857	140	1043	70	5272				
A1_SLU_gr3_Fre/avv_59	21314	2885	522	5443	4217				
A1_SLU_gr1+vento_61	22051	1794	1528	5799	11332				
A1_SLU_gr2+vento_62	17594	341	1528	1072	9752				
A1_SLU_gr3+vento_63	22051	3086	1006	6445	8696				
A1_SLU_vento_gr1_65	17424	335	808	1670	7465				
A1_SLU_vento_gr2_66	17424	335	808	1670	7465				
A1_SLU_vento_gr3_67	17424	335	808	1670	7465				
A1_SLU_Scalz_gr1_69	19267	912	626	2856	4112				
A1_SLU_Scalz_gr2_70	16593	79	626	39	3163				
A1_SLU_Scalz_gr3_71	19267	1687	313	3244	2530				
					_				
SLE_rar_gr1_Treno_57	14954	1031	719	3274	4726				
SLE_rar_gr2_Scarico_58	11881	66	719	33	3636				
SLE_rar_gr3_Fre/avv_59	14954	1922	360	3720	2908				
SLE_rar_gr1+vento_61	15446	1165	1043	3942	7712				
SLE_rar_gr2+vento_62	12372	200	1043	701	6622				
SLE_rar_gr3+vento_63	15446	2056	683	4388	5894				

С

		Progetto	Lotto	Codifica
		IN17	12	El2CLVI090400
12244	223	539	1113	4977
12244	223	539	1113	4977
12244	223	539	1113	4977
13543	1175	432	2243	2836
14034	1309	755	2911	5822
12244	223	539	1113	4977
11425	46	0	23	0
13526	6462	1889	3783	6075
13526	1981	6296	1542	19741
16780	1981	1889	1542	6075
12495	4355	1267	2729	4147
12495	1348	4223	1226	13314
13346	1348	1267	1226	4147
	12244 12244 13543 14034 12244 11425 13526 13526 16780 12495 12495	12244 223 12244 223 13543 1175 14034 1309 12244 223 11425 46 13526 6462 13526 1981 16780 1981 12495 4355 12495 1348	12244 223 539 12244 223 539 12244 223 539 12244 223 539 13543 1175 432 14034 1309 755 12244 223 539 11425 46 0 13526 6462 1889 13526 1981 6296 16780 1981 1889 12495 4355 1267 12495 1348 4223	1244 223 539 1113 12244 223 539 1113 12244 223 539 1113 12244 223 539 1113 13543 1175 432 2243 14034 1309 755 2911 12244 223 539 1113 11425 46 0 23 13526 6462 1889 3783 13526 1981 6296 1542 16780 1981 1889 1542 12495 4355 1267 2729 12495 1348 4223 1226

CARATTERISTICHE	SOLLECIT	'AZIONI I	N TESTA I	PILA	
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_113	20782	1574	1043	1085	15361
A1_SLU_gr2_Scarico_114	16857	140	1043	70	5272
A1_SLU_gr3_Fre/avv_115	20782	2866	522	1732	12724
A1_SLU_gr1+vento_117	21519	1775	1528	2088	19840
A1_SLU_gr2+vento_118	17594	341	1528	1072	9752
A1_SLU_gr3+vento_119	21519	3067	1006	2734	17204
A1_SLU_vento_gr1_121	17424	335	808	1670	7465
A1_SLU_vento_gr2_122	17424	335	808	1670	7465
A1_SLU_vento_gr3_123	17424	335	808	1670	7465
A1_SLU_Scalz_gr1_125	18948	905	626	631	9216
A1_SLU_Scalz_gr2_126	16593	79	626	39	3163
A1_SLU_Scalz_gr3_127	18948	1680	313	1019	7635
SLE_rar_gr1_Treno_113	14587	1022	719	717	10593
SLE_rar_gr2_Scarico_114	11881	66	719	33	3636
SLE_rar_gr3_Fre/avv_115	14587	1913	360	1162	8775
SLE_rar_gr1+vento_117	15079	1156	1043	1385	13580
SLE_rar_gr2+vento_118	12372	200	1043	701	6622
SLE_rar_gr3+vento_119	15079	2047	683	1831	11762
SLE_rar_vento_gr1_121	12244	223	539	1113	4977

С

GENERAL CONTRACTOR		A	LTA SORVEG	LIANZA			
		G	ITA .	LFERR O STATO ITALIANE			
Iricav2							
			Progetto	Lotto	Codif	fica	
			IN17	12	EI2CLVI09	904001	С
SLE_rar_vento_gr2_122	12244	223	539	1113	4977		
SLE_rar_vento_gr3_123	12244	223	539	1113	4977		
SLE_rar_gr4_Centrif_116	13322	1170	432	708	6356		
SLE_rar_gr4+vento_120	13814	1304	755	1377	9342		
SLE_rar_vento_gr4_124	12244	223	539	1113	4977		
SLE_qp_gr1+vento_145	11425	46	0	23	0		
E_103x_SLV_q=1.5_157	13452	6461	1889	3272	7248		
E_103y_SLV_q=1.5_158	13452	1979	6296	1031	20914		
E_103z_SLV_q=1.5_159	16707	1979	1889	1031	7248		
E_103x_SLD_q=1_166	12422	4353	1267	2218	5320		
E_103y_SLD_q=1_167	12422	1347	4223	715	14487		
E_103z_SLD_q=1_168	13273	1347	1267	715	5320		

7.1.2 Combinazioni Estradosso Plinto – configurazione 1,2 e 3

CARATTERISTICHE SOLLECITAZIONI BASE PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_1	29690	1722	1043	17667	17065				
A1_SLU_gr2_Scarico_2	21663	140	1043	1404	15183				
A1_SLU_gr3_Fre/avv_3	29690	3014	522	30590	9474				
A1_SLU_gr1+vento_5	30427	1923	1528	20578	26150				
A1_SLU_gr2+vento_6	22400	341	1528	4315	24268				
A1_SLU_gr3+vento_7	30427	3215	1006	33501	18558				
A1_SLU_vento_gr1_9	22230	335	808	4851	15141				
A1_SLU_vento_gr2_10	22230	335	808	4851	15141				
A1_SLU_vento_gr3_11	22230	335	808	4851	15141				
A1_SLU_Scalz_gr1_13	26215	958	626	9850	10239				
A1_SLU_Scalz_gr2_14	21398	79	626	785	9110				
A1_SLU_Scalz_gr3_15	26215	1733	313	17603	5684				
SLE_rar_gr1_Treno_1	20977	1090	719	11209	11769				
SLE_rar_gr2_Scarico_2	15441	66	719	658	10471				

			Progetto	Lotto	Codifica
			IN17	12	EI2CLVI0904001
				•	<u> </u>
SLE_rar_gr3_Fre/avv_3	20977	1981	360	20122	6534
SLE_rar_gr1+vento_5	21468	1224	1043	13150	17825
SLE_rar_gr2+vento_6	15932	200	1043	2598	16527
SLE_rar_gr3+vento_7	21468	2115	683	22062	12590
SLE_rar_vento_gr1_9	15803	223	539	3234	10094
SLE_rar_vento_gr2_10	15803	223	539	3234	10094
SLE_rar_vento_gr3_11	15803	223	539	3234	10094
SLE_rar_gr4_Centrif_4	18580	1211	432	12292	7061
SLE_rar_gr4+vento_8	19071	1345	755	14233	13118
SLE_rar_vento_gr4_12	15803	223	539	3234	10094
SLE_qp_gr1+vento_33	14985	46	0	457	0
E_103x_SLV_q=1.5_45	17578	7486	2193	74261	27102
E_103y_SLV_q=1.5_46	17578	2295	7310	22346	89734
E_103z_SLV_q=1.5_47	20832	2295	2193	22346	27102
E_103x_SLD_q=1_54	16548	5045	1471	49846	18265
E_103y_SLD_q=1_55	16548	1562	4904	15022	60279
E_103z_SLD_q=1_56	17398	1562	1471	15022	18265
· · · · · · · · · · · · · · · · · · ·					,

CARATTERISTICHE SOLLECITAZIONI BASE PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_57	26119	1593	1043	19932	16764				
A1_SLU_gr2_Scarico_58	21663	140	1043	1404	15183				
A1_SLU_gr3_Fre/avv_59	26119	2885	522	32855	9172				
A1_SLU_gr1+vento_61	26856	1794	1528	22843	25848				
A1_SLU_gr2+vento_62	22400	341	1528	4315	24268				
A1_SLU_gr3+vento_63	26856	3086	1006	35766	18257				
A1_SLU_vento_gr1_65	22230	335	808	4851	15141				
A1_SLU_vento_gr2_66	22230	335	808	4851	15141				
A1_SLU_vento_gr3_67	22230	335	808	4851	15141				
A1_SLU_Scalz_gr1_69	24072	912	626	11517	10058				
A1_SLU_Scalz_gr2_70	21398	79	626	785	9110				
A1_SLU_Scalz_gr3_71	24072	1687	313	19271	5503				
SLE_rar_gr1_Treno_57	18514	1031	719	13067	11561				
SLE_rar_gr2_Scarico_58	15441	66	719	658	10471				
SLE_rar_gr3_Fre/avv_59	18514	1922	360	21979	6326				

С

11107112					•
		\Box	Progetto	Lotto	Codifica
			IN17	12	EI2CLVI090400
					•
SLE_rar_gr1+vento_61	19005	1165	1043	15007	17618
SLE_rar_gr2+vento_62	15932	200	1043	2598	16527
SLE_rar_gr3+vento_63	19005	2056	683	23920	12382
SLE_rar_vento_gr1_65	15803	223	539	3234	10094
SLE_rar_vento_gr2_66	15803	223	539	3234	10094
SLE_rar_vento_gr3_67	15803	223	539	3234	10094
SLE_rar_gr4_Centrif_60	17102	1175	432	13407	6937
SLE_rar_gr4+vento_64	17593	1309	755	15347	12993
SLE_rar_vento_gr4_68	15803	223	539	3234	10094
SLE_qp_gr1+vento_89	14985	46	0	457	0
E_103x_SLV_q=1.5_101	17085	7476	2193	74746	27061
E_103y_SLV_q=1.5_102	17085	2285	7310	22831	89693
E_103z_SLV_q=1.5_103	20340	2285	2193	22831	27061
E_103x_SLD_q=1_110	16055	5035	1471	50331	18224
E_103y_SLD_q=1_111	16055	1552	4904	15506	60237
E_103z_SLD_q=1_112	16906	1552	1471	15506	18224

CARATTERISTICHE SOLLECITAZIONI BASE PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_113	25587	1574	1043	16039	25271				
A1_SLU_gr2_Scarico_114	21663	140	1043	1404	15183				
A1_SLU_gr3_Fre/avv_115	25587	2866	522	28962	17680				
A1_SLU_gr1+vento_117	26324	1775	1528	18949	34356				
A1_SLU_gr2+vento_118	22400	341	1528	4315	24268				
A1_SLU_gr3+vento_119	26324	3067	1006	31873	26764				
A1_SLU_vento_gr1_121	22230	335	808	4851	15141				
A1_SLU_vento_gr2_122	22230	335	808	4851	15141				
A1_SLU_vento_gr3_123	22230	335	808	4851	15141				
A1_SLU_Scalz_gr1_125	23753	905	626	9227	15163				
A1_SLU_Scalz_gr2_126	21398	79	626	785	9110				
A1_SLU_Scalz_gr3_127	23753	1680	313	16981	10608				
SLE_rar_gr1_Treno_113	18147	1022	719	10426	17428				
SLE_rar_gr2_Scarico_114	15441	66	719	658	10471				
SLE_rar_gr3_Fre/avv_115	18147	1913	360	19338	12193				
SLE_rar_gr1+vento_117	18638	1156	1043	12366	23485				

С

GEN	ERAL CONTRACTOR			ALTA SORVE	GLIANZA			
				GRUPPO FERROVIE E	ALFER	R ANE		
	Iricav2							
				Progetto	Lotto		Codifica	
				IN17	12	El20	CLVI0904001	С
	SLE_rar_gr2+vento_118	15932	200	1043	2598	16527		
	SLE_rar_gr3+vento_119	18638	2047	683	21279	18249		
	SLE_rar_vento_gr1_121	15803	223	539	3234	10094		
	SLE_rar_vento_gr2_122	15803	223	539	3234	10094		
	SLE_rar_vento_gr3_123	15803	223	539	3234	10094	_	
							_	
	SLE_rar_gr4_Centrif_116	16882	1170	432	11822	10457		
	SLE_rar_gr4+vento_120	17373	1304	755	13763	16513		
	SLE_rar_vento_gr4_124	15803	223	539	3234	10094	_	
	SLE_qp_gr1+vento_145	14985	46	0	457	0	- -	
	E_103x_SLV_q=1.5_157	17012	7475	2193	74235	28234	_	
	E_103y_SLV_q=1.5_158	17012	2283	7310	22320	90866		
	E_103z_SLV_q=1.5_159	20266	2283	2193	22320	28234		
	E_103x_SLD_q=1_166	15982	5033	1471	49819	19397		
	E_103y_SLD_q=1_167	15982	1551	4904	14995	61411		
	E_103z_SLD_q=1_168	16832	1551	1471	14995	19397		

7.1.3 Combinazioni Intradosso Plinto – configurazione 1,2 e 3

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_1	44672	1722	1043	21971	19673				
A1_SLU_gr2_Scarico_2	36645	140	1043	1755	17791				
A1_SLU_gr3_Fre/avv_3	44672	3014	522	38125	10778				
A1_SLU_gr1+vento_5	45409	1923	1528	25385	29970				
A1_SLU_gr2+vento_6	37381	341	1528	5168	28088				
A1_SLU_gr3+vento_7	45409	3215	1006	41539	21074				
A1_SLU_vento_gr1_9	37212	335	808	5689	17161				
A1_SLU_vento_gr2_10	37212	335	808	5689	17161				
A1_SLU_vento_gr3_11	37212	335	808	5689	17161				
A1_SLU_Scalz_gr1_13	38365	958	626	12244	11804				
A1_SLU_Scalz_gr2_14	33548	79	626	982	10675				
A1_SLU_Scalz_gr3_15	38365	1733	313	21937	6467				

Lotto

Codifica

С

Progetto

			IN17	12	El2CLVI0904001
		·			
SLE_rar_gr1_Treno_1	32074	1090	719	13934	13568
SLE_rar_gr2_Scarico_2	26538	66	719	822	12270
SLE_rar_gr3_Fre/avv_3	32074	1981	360	25075	7433
SLE_rar_gr1+vento_5	32566	1224	1043	16210	20432
SLE_rar_gr2+vento_6	27029	200	1043	3098	19134
SLE_rar_gr3+vento_7	32566	2115	683	27350	14297
SLE_rar_vento_gr1_9	26901	223	539	3792	11440
SLE_rar_vento_gr2_10	26901	223	539	3792	11440
SLE_rar_vento_gr3_11	26901	223	539	3792	11440
SLE_rar_gr4_Centrif_4	0	0	29677	1211	432
SLE_rar_gr4+vento_8	0	0	30169	1345	755
SLE_rar_vento_gr4_12	0	0	26901	223	539
SLE_qp_gr1+vento_33	26082	46	0	571	0
E_103x_SLV_q=1.5_45	29151	10252	3023	96433	33622
E_103y_SLV_q=1.5_46	29151	3124	10075	29120	111466
E_103z_SLV_q=1.5_47	33516	3124	3023	29120	33622
E_103x_SLD_q=1_54	27769	6277	1841	63998	22405
E_103y_SLD_q=1_55	27769	1932	6136	19389	74078
E_103z_SLD_q=1_56	28909	1932	1841	19389	22405

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE					
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_57	41101	1593	1043	23915	19372
A1_SLU_gr2_Scarico_58	36645	140	1043	1755	17791
A1_SLU_gr3_Fre/avv_59	41101	2885	522	40069	10476
A1_SLU_gr1+vento_61	41838	1794	1528	27328	29668
A1_SLU_gr2+vento_62	37381	341	1528	5168	28088
A1_SLU_gr3+vento_63	41838	3086	1006	43482	20773
A1_SLU_vento_gr1_65	37212	335	808	5689	17161
A1_SLU_vento_gr2_66	37212	335	808	5689	17161
A1_SLU_vento_gr3_67	37212	335	808	5689	17161
A1_SLU_Scalz_gr1_69	36222	912	626	13796	11623
A1_SLU_Scalz_gr2_70	33548	79	626	982	10675
A1_SLU_Scalz_gr3_71	36222	1687	313	23488	6286
SLE_rar_gr1_Treno_57	29612	1031	719	15644	13360

11 1 07 11 =						
			Progetto	Lotto	Codifica	_
			IN17	12	EI2CLVI0904001	
		I				
SLE_rar_gr2_Scarico_58	26538	66	719	822	12270	
SLE_rar_gr3_Fre/avv_59	29612	1922	360	26784	7225	
SLE_rar_gr1+vento_61	30103	1165	1043	17919	20224	
SLE_rar_gr2+vento_62	27029	200	1043	3098	19134	
SLE_rar_gr3+vento_63	30103	2056	683	29060	14089	
SLE_rar_vento_gr1_65	26901	223	539	3792	11440	
SLE_rar_vento_gr2_66	26901	223	539	3792	11440	
SLE_rar_vento_gr3_67	26901	223	539	3792	11440	
					 ,	
SLE_rar_gr4_Centrif_60	28200	1175	432	16345	8016	
SLE_rar_gr4+vento_64	28691	1309	755	18620	14880	
SLE_rar_vento_gr4_68	26901	223	539	3792	11440	
SLE_qp_gr1+vento_89	26082	46	0	571	0	
E_103x_SLV_q=1.5_101	28659	10242	3023	96893	33580	
E_103y_SLV_q=1.5_102	28659	3114	10075	29580	111425	
E_103z_SLV_q=1.5_103	33023	3114	3023	29580	33580	
E_103x_SLD_q=1_110	27276	6267	1841	64458	22364	
E_103y_SLD_q=1_111	27276	1922	6136	19849	74036	
E_103z_SLD_q=1_112	28416	1922	1841	19849	22364	

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE						
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv	
A1_SLU_gr1_Treno_113	40569	1574	1043	19974	27879	
A1_SLU_gr2_Scarico_114	36645	140	1043	1755	17791	
A1_SLU_gr3_Fre/avv_115	40569	2866	522	36127	18984	
A1_SLU_gr1+vento_117	41306	1775	1528	23387	38176	
A1_SLU_gr2+vento_118	37381	341	1528	5168	28088	
A1_SLU_gr3+vento_119	41306	3067	1006	39541	29280	
A1_SLU_vento_gr1_121	37212	335	808	5689	17161	
A1_SLU_vento_gr2_122	37212	335	808	5689	17161	
A1_SLU_vento_gr3_123	37212	335	808	5689	17161	
A1_SLU_Scalz_gr1_125	35903	905	626	11489	16728	
A1_SLU_Scalz_gr2_126	33548	79	626	982	10675	
A1_SLU_Scalz_gr3_127	35903	1680	313	21181	11390	
SLE_rar_gr1_Treno_113	29245	1022	719	12981	19227	
SLE_rar_gr2_Scarico_114	26538	66	719	822	12270	

С

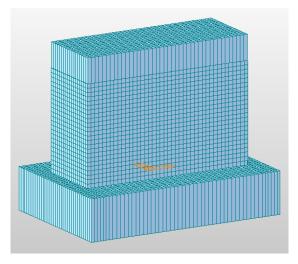
Iricav2						
			Progetto	Lotto	Codifica	
			IN17	12	EI2CLVI0904001	С
SLE_rar_gr3_Fre/avv_115	29245	1913	360	24121	13092	
SLE_rar_gr1+vento_117	29736	1156	1043	15256	26091	
SLE_rar_gr2+vento_118	27029	200	1043	3098	19134	
SLE_rar_gr3+vento_119	29736	2047	683	26397	19957	
SLE_rar_vento_gr1_121	26901	223	539	3792	11440	
SLE_rar_vento_gr2_122	26901	223	539	3792	11440	
SLE_rar_vento_gr3_123	26901	223	539	3792	11440	
SLE_rar_gr4_Centrif_116	27980	1170	432	14747	11536	
SLE_rar_gr4+vento_120	28471	1304	755	17022	18401	
SLE_rar_vento_gr4_124	26901	223	539	3792	11440	
SLE_qp_gr1+vento_145	26082	46	0	571	0	
E_103x_SLV_q=1.5_157	28585	10240	3023	96378	34754	
E_103y_SLV_q=1.5_158	28585	3113	10075	29065	112598	
E_103z_SLV_q=1.5_159	32950	3113	3023	29065	34754	
E_103x_SLD_q=1_166	27203	6265	1841	63943	23537	
E_103y_SLD_q=1_167	27203	1920	6136	19334	75210	
E_103z_SLD_q=1_168	28343	1920	1841	19334	23537	

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

8. Verifiche strutturali

Le armature di calcolo derivanti dalle verifiche di resistenza e di esercizio soddisfano le quantità minime indicate dalla normativa; si riepilogano i quantitativi per il fusto pila mentre quelli per il plinto di fondazione sono riportati al paragrafo 11.5.

elemento	arm. flessionale	staffe	c.f
fusto	344 Φ20 interasse 20 cm ⁽¹⁾	Ф14/15 (2)	7.6 cm


(1)è riferito alla corona esterna di armatura mentre, l'interasse della corona interna è funzione dell'allineamento con quella esterna. È comunque rispettato l'iterasse minimo.

 $^{(2)}$ in testa e alla base del fusto pila sono presenti Φ 16/15 in sostituzione dei Φ 14/15

Le spille adottate sono disposte nel rispetto della norma vigente.

9. Fusto pila

Determinate le sollecitazioni indotte dai carichi statici e delle azioni sismiche è possibile verificare la sezione d'incastro del fusto. A queste sollecitazioni va aggiunta un'ulteriore armatura flessionale e a taglio che assorba un effetto locale indotto dal ritiro differenziale tra il plinto ed il fusto della pila. Questa sollecitazione è stata individuata mediante un modello spaziale della fondazione, nel programma di calcolo Midas Civil.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Le verifiche allo SLU flessionale e agli SLE di fessurazione e tensionale della sezione in oggetto vengono effettuate mediante l'ausilio del programma RC-SEC.

9.1 Modello locale per ritiro differenziale

Si richiama la "Relazione effetti lenti" per la descrizione del modello, delle analisi effettuate per il ritiro differenziale e del calcolo dell'armatura aggiuntiva. Nel seguito, pertanto, le verifiche a pressoflessione e a taglio sono state effettuate considerando un'armatura ridotta rispetto a quella realmente presente nel fusto della pila, eliminando cioè il quantitativo di acciaio necessario ad offrire una sufficiente resistenza nei confronti delle sollecitazioni indotte dai fenomeni termici e di ritiro differenziale. Questa riduzione è stata tenuta in conto nelle verifiche lasciando invariato il numero di barre d'armatura ed attribuendo loro un diametro equivalente diverso da quello reale.

9.2 Verifica a presso flessione

Di seguito viene riportato l'output del programma per la sezione in oggetto e per tutte le combinazioni considerate e descritte nei precedenti paragrafi.

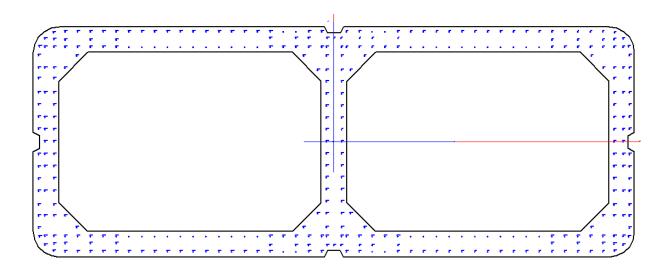


Figura 21 - Sezione implementata in RC-SEC

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 12 EI2CLVI0904001 C

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: PILA_9.5m_VI09A_fi18.3

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Molto aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di progetto fcd: 18.1 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33346.0 MPa Resis. media a trazione fctm: 3.02 MPa Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 17.6 MPa Sc limite S.L.E. comb. Frequenti: 17.6 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 12.8 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.0 MPa
391.3 MPa
391.3 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINI CALCESTRUZZO

DOMINIO Nº 1

Forma del Do	Poligonale	
Classe Calces	C32/40	
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9	112.3 102.3 102.3 104.3 109.9 118.8 129.9 142.3 557.3	304.4 309.4 434.4 446.8 458.0 466.8 472.5 474.4
10	562.3	464.4
11	582.3	464.4

Progetto	Lotto	Codifica		
IN17	12	EI2CLVI0904001	С	

587.3	474.4
	474.4
	472.5
	466.8
	458.0
	446.8
	434.4
	309.4
	304.4
	284.4
	279.4
	154.4
	142.1
	130.9
	122.1
	116.4
	114.4
	114.4
	124.4
	124.4
	114.4
	114.4
	116.4
	122.1
	130.9
	142.1
	154.4
	279.4
112.3	284.4
	587.3 1002.3 1014.7 1025.8 1034.7 1040.3 1042.3 1032.3 1032.3 1042.3 1042.3 1040.3 1034.7 1025.8 1014.7 1002.3 587.3 582.3 562.3 557.3 142.3 129.9 118.8 109.9 104.3 102.3 102.3 102.3 102.3 102.3 102.3 102.3

DOMINIO N° 2 Forma del Dominio:

Forma del D Classe Calces	Poligonale vuoto C32/40	
N°vertice:	X [cm]	Y [cm]
1	957.3	434.4
2	1002.3	389.4
3	1002.3	199.4
4	957.3	154.4
5	637.3	154.4
6	592.3	199.4
7	592.3	389.4
8	637.3	434.4

DOMINIO N° 3Forma del Dominio:

Forma del Do Classe Calces	Poligonale vuoto C32/40	
N°vertice:	X [cm]	Y [cm]
1	507.3	434.4
2	552.3	389.4
3	552.3	199.4
4	507.3	154.4
5	187.3	154.4
6	142.3	199.4
7	142.3	389.4
8	187.3	434.4

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	472.4	443.0	18.3
2 3	512.8	123.0	18.3
	492.7	123.0	18.3
4	651.9	123.0	18.3
5	631.8	123.0	18.3
6	651.9	465.8	18.3
7 8	631.8 512.8	465.8	18.3
9	492.7	465.8 465.8	18.3 18.3
10	120.0	133.2	18.3
11	134.0	124.7	18.3
12	112.6	146.2	18.3
13	1024.6	133.2	18.3
14	1010.6	124.7	18.3
15	1032.0	146.2	18.3
16	120.0	455.7	18.3
17	134.0	464.2	18.3
18	112.6	442.7	18.3
19 20	1024.6 1010.6	455.7 464.2	18.3
20	1032.0	464.2 442.7	18.3 18.3
22	1032.0	274.1	18.3
23	1033.7	314.8	18.3
24	110.9	314.8	18.3
25	110.9	274.1	18.3
26	552.0	123.0	18.3
27	592.6	123.0	18.3
28	552.0	465.8	18.3
29	993.6	410.3	18.3
30	975.0	428.9	18.3
31 32	601.0 619.6	410.3 428.9	18.3 18.3
33	993.6	178.6	18.3
34	975.0	160.0	18.3
35	601.0	178.6	18.3
36	619.6	160.0	18.3
37	543.6	410.3	18.3
38	525.0	428.9	18.3
39	151.0	410.3	18.3
40	169.6	428.9	18.3
41	543.6	178.6	18.3
42 43	525.0 151.0	160.0 178.6	18.3 18.3
43 44	169.6	160.0	18.3
45	231.6	135.4	18.3
46	191.4	135.4	18.3
47	152.0	135.4	18.3
48	133.7	134.5	18.3
49	133.7	178.9	18.3
50	120.9	178.9	18.3
51 50	110.9	178.8	18.3
52 53	133.7	195.6	18.3
53 54	110.9 110.9	195.6 159.4	18.3 18.3
J '1	110.5	133.4	10.5

Progetto	Lotto	Codifica		
IN17	12	EI2CLVI0904001	С	

55 56 57 58 59 60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 77 80 81 82 83 84 85 88 89 90 91 92 93 94 95 96 97 100 101 102 103 104 105 106 106 107 108 108 109 109 109 109 109 109 109 109 109 109
133.7 110.9 110.9 120.9 120.9 120.9 120.9 133.7 133.7 133.7 133.7 561.1 560.9 560.9 560.9 560.9 560.9 553.0 532.9 472.6 231.6 211.5 191.4 171.3 152.0 532.9 472.6 452.5 432.4 412.4 392.3 372.2 352.1 332.0 311.9 291.8 271.8
146.0 255.5 236.5 217.5 146.0 217.7 256.1 275.2 217.7 236.9 256.1 275.2 145.8 160.4 182.3 201.0 219.7 238.4 257.1 145.8 145.8 145.8 145.8 145.8 145.8 123.0 123.5 453.5 453.5 454.4 409.9 409.9 400.1 30
18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

Progetto	Lotto	Codifica		l
IN17	12	EI2CLVI0904001	С	

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 151 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
110.9 133.7 110.9 110.9 110.9 110.9 121.5 120.9 120.9 120.9 133.7 133.7 133.7 133.7 133.7 561.1 560.9 560.9 560.9 560.9 560.9 560.9 560.9 560.9 553.0 532.9 512.8 231.6 211.5 191.4 171.3 152.0 532.9 472.6 452.5 432.4 412.4 392.3 372.2 352.1 332.0 311.9 291.8 271.8 271.8 271.8 271.8 271.8 271.6 211.5 191.4 171.3 152.0 532.9 472.6 452.5 432.4 412.4 392.3 372.2 352.1 332.0 311.9 291.8 271.8 251.7 231.6 211.5 191.4 171.3 152.0 472.4 512.4 532.3 561.3 560.9 913.0 953.2 992.6 1010.9 1010.9
429.4 442.8 333.4 352.4 371.4 442.9 371.2 332.8 313.6 294.4 371.2 352.0 332.8 313.6 294.4 443.0 428.5 406.6 387.9 369.2 350.5 331.8 294.4 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 443.0 445.8 465.8 455.8 455.8 455.8 455.8 455.8 455.8 455.8 455.8
18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

Progetto	Lotto	Codifica		
IN17	12	EI2CLVI0904001	С	

173	1023.7	178.9	18.3
174	1033.7	178.8	18.3
175	1010.9	195.6	18.3
176	1033.7	195.6	18.3
177	1033.7	159.4	18.3
178	1010.9	146.0	18.3
179	1033.7	255.5	18.3
180	1033.7	236.5	18.3
181	1033.7	217.5	18.3
182	1024.3	146.0	18.3
183	1023.7	217.7	18.3
184	1023.7	256.1	18.3
185	1023.7	275.2	18.3
186	1010.9	217.7	18.3
187	1010.9	236.9	18.3
188	1010.9	256.1	18.3
189	1010.9	275.2	18.3
190	583.5	145.8	18.3
191	583.7	160.4	18.3
192	583.7	182.3	18.3
193	583.7	201.0	18.3
194	583.7	219.7	18.3
195	583.7	238.4	18.3
196	583.7	257.1	18.3
197	591.6	145.8	18.3
			10.0
198	611.7	145.8	18.3
199	672.0	145.8	18.3
200	913.0	145.8	18.3
201	933.1	145.8	18.3
202	953.2	145.8	18.3
203	973.3	145.8	18.3
204	992.6	145.8	18.3
205	611.7	123.0	18.3
206	672.0	123.0	18.3
207	692.1	123.0	18.3
208	712.1	123.0	18.3
209	732.2	123.0	18.3
210	752.3	123.0	18.3
211	772.4	123.0	18.3
212	792.5	123.0	18.3
213	812.6	123.0	18.3
214	832.7	123.0	18.3
215	852.8	123.0	18.3
216	872.8	123.0	18.3
217	892.9	123.0	18.3
218	913.0	123.0	18.3
219	933.1	123.0	18.3
220	953.2	123.0	18.3
221	973.3	123.0	18.3
222	992.6	123.0	18.3
223	672.2	133.0	18.3
224	632.2	133.0	18.3
225	612.3	133.0	18.3
226	583.3	133.0	18.3
227	572.3	133.0	18.3
228			
	583.7	275.8	18.3
229	913.0	453.5	18.3
230	953.2	453.5	18.3
231			
201	992.6	453.5	18.3

Progetto	Lotto	Codifica	
IN17	12	EI2CLVI0904001	С

232	1010.9	454.4	18.3
232	1010.9	409.9	18.3
234	1010.3	409.9	18.3
234	1023.7	410.1	18.3
236	1010.9	393.3	18.3
237	1033.7	393.3	18.3
238	1033.7	429.4	18.3
239	1010.9	442.8	18.3
240	1033.7	333.4	18.3
241	1033.7	352.4	18.3
242	1033.7	371.4	18.3
243	1024.3	442.9	18.3
244	1023.7	371.2	18.3
245	1023.7	332.8	18.3
246	1023.7	313.6	18.3
247	1023.7	294.4	18.3
248	1010.9	371.2	18.3
249	1010.9	352.0	18.3
250	1010.9	332.8	18.3
251	1010.9	313.6	18.3
252	1010.9	294.4	18.3
253	583.5	443.0	18.3
254	583.7	428.5	18.3
255	583.7	406.6	18.3
256	583.7	387.9	18.3
257	583.7	369.2	18.3
258	583.7	350.5	18.3
259	583.7	331.8	18.3
		294.4	
260	583.7		18.3
261	591.6	443.0	18.3
262	611.7	443.0	18.3
263	672.0	443.0	18.3
264	913.0	443.0	18.3
265	933.1	443.0	18.3
266	953.2	443.0	18.3
267	973.3	443.0	18.3
268	992.6	443.0	18.3
269	592.6	465.8	18.3
270	611.7	465.8	18.3
271	672.0	465.8	18.3
272	692.1	465.8	18.3
273	712.1	465.8	18.3
274	732.2	465.8	18.3
275	752.3	465.8	18.3
276	772.4	465.8	18.3
277	792.5	465.8	18.3
278	812.6	465.8	18.3
279	832.7	465.8	18.3
280	852.8	465.8	18.3
281	872.8	465.8	18.3
282	892.9	465.8	18.3
283	913.0	465.8	18.3
284	933.1	465.8	18.3
285	953.2	465.8	18.3
286	973.3	465.8	18.3
287	992.6	465.8	18.3
288	672.2	455.8	18.3
289	632.2	455.8	18.3
290	612.3	455.8	18.3
200	012.0	TUU.U	10.0

GENERAL CONTRACTOR ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 EI2CLVI0904001 С 12

291	583.3	455.8	18.3
292	572.3	455.8	18.3
293	583.7	313.1	18.3

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

re Numero di barre generate equidistanti cui si riferisce la generazione
Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	140	1	11	18.3
2	263	264	11	18.3
3	77	76	11	18.3
4	199	200	11	18.3
5	1	139	1	18.3
6	262	263	2	18.3
7	76	75	2	18.3
8	198	199	2	18.3

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia Mx
- con verso positivo se tale da comprimere il lembo sup. della sez.

 Momento flettente [kNm] intorno all'asse y princ. d'inerzia
 con verso positivo se tale da comprimere il lembo destro della sez.
 Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
 Componente del Taglio [kN] parallela all'asse princ.d'inerzia x Му

N°Comb.	N	Mx	Му	Vy	Vx
1	29690.28	17667.11	17065.10	0.00	0.00
2	21662.83	1404.16	15183.02	0.00	0.00
2	29690.28	30590.24	9473.59	0.00	0.00
4	30427.15	20578.01	26149.62	0.00	0.00
5 6	22399.70	4315.05	24267.54	0.00	0.00
6	30427.15	33501.13	18558.11	0.00	0.00
7	22229.75	4851.49	15140.87	0.00	0.00
8	22229.75	4851.49	15140.87	0.00	0.00
9	22229.75	4851.49	15140.87	0.00	0.00
10	26214.82	9849.57	10239.06	0.00	0.00
11	21398.35	785.37	9109.81	0.00	0.00
12	26214.82	17603.44	5684.16	0.00	0.00
13	26119.25	19931.82	16763.86	0.00	0.00
14	21662.83	1404.16	15183.02	0.00	0.00
15	26119.25	32854.95	9172.35	0.00	0.00
16	26856.13	22842.72	25848.38	0.00	0.00
17	22399.70	4315.05	24267.54	0.00	0.00
18	26856.13	35765.84	18256.87	0.00	0.00
19	22229.75	4851.49	15140.87	0.00	0.00
20	22229.75	4851.49	15140.87	0.00	0.00
21	22229.75	4851.49	15140.87	0.00	0.00
22	24072.20	11516.93	10058.31	0.00	0.00
23	21398.35	785.37	9109.81	0.00	0.00

Progetto	Lotto	Codifica	
IN17	12	El2CLVI0904001	С

24	24072.20	19270.81	5503.41	0.00	0.00
25	25587.20	16038.52	25271.27	0.00	0.00
26	21662.83	1404.16	15183.02	0.00	0.00
27	25587.20	28961.64	17679.76	0.00	0.00
28	26324.07	18949.41	34355.79	0.00	0.00
29	22399.70	4315.05	24267.54	0.00	0.00
30	26324.07	31872.54	26764.28	0.00	0.00
31	22229.75	4851.49	15140.87	0.00	0.00
32	22229.75	4851.49	15140.87	0.00	0.00
33	22229.75	4851.49	15140.87	0.00	0.00
34	23752.97	9226.92	15162.76	0.00	0.00
35	21398.35	785.37	9109.81	0.00	0.00
36	23752.97	16980.79	10607.85	0.00	0.00
37	17577.71	74261.19	27102.07	0.00	0.00
38	17577.71	22346.19	89734.49	0.00	0.00
39	20832.10	22346.19	27102.07	0.00	0.00
40	17085.16	74745.96	27060.51	0.00	0.00
41	17085.16	22830.95	89692.94	0.00	0.00
42	20339.54	22830.95	27060.51	0.00	0.00
43	17011.77	74234.64	28233.95	0.00	0.00
44	17011.77	22319.63	90866.37	0.00	0.00
45	20266.16	22319.63	28233.95	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- Ν
- Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
 Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
 con verso positivo se tale da comprimere il lembo superiore della sezione Mx
- Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione Му

N°Comb.	N	Mx	My
1	20976.71	11209.33	11769.04
2	15440.54	657.84	10471.05
3	20976.71	20121.83	6533.51
4	21467.96	13149.92	17825.38
5	15931.79	2598.43	16527.40
6	21467.96	22062.42	12589.86
7	15803.29	3234.32	10093.91
8	15803.29	3234.32	10093.91
9	15803.29	3234.32	10093.91
10	18513.94	13066.73	11561.28
11	15440.54	657.84	10471.05
12	18513.94	21979.23	6325.76
13	19005.19	15007.32	17617.63
14	15931.79	2598.43	16527.40
15	19005.19	23919.82	12382.10
16	15803.29	3234.32	10093.91
17	15803.29	3234.32	10093.91
18	15803.29	3234.32	10093.91
19	18147.00	10425.73	17428.46
20	15440.54	657.84	10471.05
21	18147.00	19338.23	12192.94
22	18638.25	12366.32	23484.81
23	15931.79	2598.43	16527.40
24	18638.25	21278.82	18249.28
25	15803.29	3234.32	10093.91
26	15803.29	3234.32	10093.91

GENERAL CONTRACTOR ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto

IN17

Lotto

12

Codifica

EI2CLVI0904001

С

27	15803.29	3234.32	10093.91
28	16547.51	49845.92	18265.39
29	16547.51	15021.60	60278.89
30	17398.11	15021.60	18265.39
31	16054.96	50330.69	18223.83
32	16054.96	15506.37	60237.34
33	16905.55	15506.37	18223.83
34	15981.57	49819.37	19397.27
35	15981.57	14995.05	61410.78
36	16832.17	14995.05	19397.27

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx con verso positivo se tale da comprimere il lembo superiore della sezione
- Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	18579.84	12292.46 (0.00)	7061.42 (0.00)
2	19071.09	14233.05 (1629164.71)	13117.77 (1501505.86)
3	15803.29	3234.32 (0.00)	10093.91 (0.00)
4	17102.18	13406.90 (0.00)	6936.77 (0.00)
5	17593.43	15347.49 (213709.99)	12993.12 (180925.97)
6	15803.29	3234.32 (0.00)	10093.91 (0.00)
7	16882.02	11822.30 (0.00)	10457.08 (0.00)
8	17373.27	13762.89 (163633.58)	16513.42 (196335.95)
9	15803.29	3234.32 (0.00)	10093.91 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

- Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
- Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione
- Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	14984.54	457.00 (0.00)	0.00 (0.00)
2	14984.54	457.00 (0.00)	0.00 (0.00)
3	14984.54	457.00 (0.00)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica

IN17	12	El2CLVI0904001	С

As Totale)	Area totale l	barre longitudina	li [cm²]. [Tra par	entesi il valore mir	nimo di normativa]			
N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Totale
1	S	29690.28	17667.11	17065.10	29690.54	102495.66	99817.85	5.82	904.8(343.3)
2	S	21662.83	1404.16	15183.02	21662.87	22172.07	235155.37	15.49	904.8(343.3)
3	S	29690.28	30590.24	9473.59	29690.31	106296.18	33110.19	3.48	904.8(343.3)
4	S	30427.15	20578.01	26149.62	30427.05	100005.62	127085.23	4.86	904.8(343.3)
5	S	22399.70	4315.05	24267.54	22399.72	39664.70	224800.04	9.26	904.8(343.3)
6	S	30427.15	33501.13	18558.11	30427.32	106372.67	59310.36	3.18	904.8(343.3)
7	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
8	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
9	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
10	S	26214.82	9849.57	10239.06	26215.08	97384.99	100364.95	9.84	904.8(343.3)
11	S	21398.35	785.37	9109.81	21398.55	19433.37	235706.28	25.87	904.8(343.3)
12	S	26214.82	17603.44	5684.16	26214.78	101068.63	32353.53	5.74	904.8(343.3)
13	S	26119.25	19931.82	16763.86	26119.51	98619.91	82674.03	4.94	904.8(343.3)
14	S	21662.83	1404.16	15183.02	21662.87	22172.07	235155.37	15.49	904.8(343.3)
15	S	26119.25	32854.95	9172.35	26119.33	101039.48	28246.70	3.08	904.8(343.3)
16	S	26856.13	22842.72	25848.38	26856.39	97244.89	110900.86	4.28	904.8(343.3)
17	S	22399.70	4315.05	24267.54	22399.72	39664.70	224800.04	9.26	904.8(343.3)
18	S	26856.13	35765.84	18256.87	26856.21	101373.58	51631.21	2.83	904.8(343.3)
19	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
20	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
21	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
22	S	24072.20	11516.93	10058.31	24072.43	95547.50	82790.48	8.27	904.8(343.3)
23	S	21398.35	785.37	9109.81	21398.55	19433.37	235706.28	25.87	904.8(343.3)
24	S	24072.20	19270.81	5503.41	24072.37	97931.38	28053.64	5.08	904.8(343.3)
25	S	25587.20	16038.52	25271.27	25587.35	90232.49	142766.11	5.64	904.8(343.3)
26	S	21662.83	1404.16	15183.02	21662.87	22172.07	235155.37	15.49	904.8(343.3)
27	S	25587.20	28961.64	17679.76	25587.37	99046.86	60801.89	3.43	904.8(343.3)
28	S	26324.07	18949.41	34355.79	26324.08	87245.19	158459.66	4.61	904.8(343.3)
29	S	22399.70	4315.05	24267.54	22399.72	39664.70	224800.04	9.26	904.8(343.3)
30	S	26324.07	31872.54	26764.28	26324.11	98907.91	82926.25	3.10	904.8(343.3)
31	S	22229.75	4851.49	15140.87	22230.05	63028.15	196249.34	12.96	904.8(343.3)
32 33	S S	22229.75 22229.75	4851.49 4851.49	15140.87 15140.87	22230.05 22230.05	63028.15 63028.15	196249.34 196249.34	12.96 12.96	904.8(343.3)
33 34	S	23752.97	9226.92	15140.67				9.49	904.8(343.3)
3 4 35	S	21398.35	785.37	9109.81	23753.07	87298.18 10422.27	144144.13	9.49 25.87	904.8(343.3) 904.8(343.3)
36	S	23752.97	16980.79	10607.85	21398.55 23752.70	19433.37 96275.52	235706.28 60624.72	5.68	, ,
30 37	S	17577.71	74261.19	27102.07	17577.69	87807.63	32446.49	1.18	904.8(343.3) 904.8(343.3)
38	S	17577.71	22346.19	89734.49	17577.69	49490.79	199658.85	2.22	904.8(343.3)
39	S	20832.10	22346.19	27102.07	20832.18	88675.89	107941.58	3.98	904.8(343.3)
40	S	17085.16	74745.96	27102.07	17084.92	87070.03	31368.55	1.16	904.8(343.3)
41	S	17085.16	22830.95	89692.94	17004.92	50943.06	196342.63	2.19	904.8(343.3)
42	S	20339.54	22830.95	27060.51	20339.43	88200.74	105113.00	3.88	904.8(343.3)
43	S	17011.77	74234.64	28233.95	17011.96	86901.54	33435.58	1.17	904.8(343.3)
43	S	17011.77	22319.63	90866.37	17011.86	49094.21	198266.17	2.18	904.8(343.3)
45	S	20266.16	22319.63	28233.95	20266.26	87583.01	110362.77	3.91	904.8(343.3)
70	J	20200.10	22013.00	20200.00	20200.20	07 000.01	110002.11	0.01	JU7.U(U7U.U)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del calcestruzzo a compressione Deform. unit. massima del calcestruzzo a compressione
• • • • • • • • • • • • • • • • • • •
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE TELECONORIO DE LA CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto	Lotto	Coditica		
IN17	12	EI2CLVI0904001	С	

Xs max
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	1002.3	474.4	0.00313	1010.6	464.2	-0.01350	134.0	124.7
2	0.00350	1040.3	446.8	0.00335	1032.0	442.7	-0.01207	112.6	146.2
3	0.00350	1002.3	474.4	0.00283	992.6	465.8	-0.02447	152.0	123.0
4	0.00350	1014.7	472.5	0.00325	1010.6	464.2	-0.01008	134.0	124.7
5	0.00350	1034.7	458.0	0.00337	1024.6	455.7	-0.00955	120.0	133.2
6	0.00350	1002.3	474.4	0.00297	992.6	465.8	-0.01947	152.0	123.0
7	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
8	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
9	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
10	0.00350	1002.3	474.4	0.00311	1010.6	464.2	-0.01444	134.0	124.7
11	0.00350	1040.3	446.8	0.00335	1032.0	442.7	-0.01267	112.6	146.2
12	0.00350	1002.3	474.4	0.00279	992.6	465.8	-0.02607	152.0	123.0
13	0.00350	1002.3	474.4	0.00303	992.6	465.8	-0.01719	152.0	123.0
14	0.00350	1040.3	446.8	0.00335	1032.0	442.7	-0.01207	112.6	146.2
15	0.00350	1002.3	474.4	0.00277	992.6	465.8	-0.02691	152.0	123.0
16	0.00350	1002.3	474.4	0.00317	1010.6	464.2	-0.01276	134.0	124.7
17	0.00350	1034.7	458.0	0.00337	1024.6	455.7	-0.00955	120.0	133.2
18	0.00350	1002.3	474.4	0.00290	992.6	465.8	-0.02218	152.0	123.0
19 20	0.00350	1025.8	466.8 466.8	0.00335	1024.6 1024.6	455.7 455.7	-0.00820	120.0 120.0	133.2 133.2
20 21	0.00350 0.00350	1025.8 1025.8	466.8	0.00335 0.00335	1024.6	455.7 455.7	-0.00820 -0.00820	120.0	133.2
22	0.00350	1002.3	400.6 474.4	0.00333	992.6	465.8	-0.00620 -0.01785	152.0	123.0
23	0.00350	1040.3	446.8	0.00302	1032.0	442.7	-0.01763	112.6	146.2
24	0.00350	1002.3	474.4	0.00333	992.6	465.8	-0.01207	152.0	123.0
25	0.00350	1014.7	472.5	0.00273	1010.6	464.2	-0.00947	134.0	124.7
26	0.00350	1040.3	446.8	0.00335	1032.0	442.7	-0.01207	112.6	146.2
27	0.00350	1002.3	474.4	0.00293	992.6	465.8	-0.02106	152.0	123.0
28	0.00350	1014.7	472.5	0.00332	1010.6	464.2	-0.00832	134.0	124.7
29	0.00350	1034.7	458.0	0.00337	1024.6	455.7	-0.00955	120.0	133.2
30	0.00350	1002.3	474.4	0.00303	992.6	465.8	-0.01708	152.0	123.0
31	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
32	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
33	0.00350	1025.8	466.8	0.00335	1024.6	455.7	-0.00820	120.0	133.2
34	0.00350	1014.7	472.5	0.00328	1010.6	464.2	-0.00962	134.0	124.7
35	0.00350	1040.3	446.8	0.00335	1032.0	442.7	-0.01267	112.6	146.2
36	0.00350	1002.3	474.4	0.00291	992.6	465.8	-0.02177	152.0	123.0
37	0.00350	1002.3	474.4	0.00270	992.6	465.8	-0.03001	152.0	123.0
38	0.00350	1025.8	466.8	0.00336	1024.6	455.7	-0.00972	120.0	133.2
39	0.00350	1002.3	474.4	0.00311	1010.6	464.2	-0.01474	134.0	124.7
40	0.00350	1002.3	474.4	0.00269	992.6	465.8	-0.03054	152.0	123.0
41	0.00350	1025.8	466.8	0.00336	1024.6	455.7	-0.00970	120.0	133.2
42	0.00350	1002.3	474.4	0.00309	1010.6	464.2	-0.01534	134.0	124.7
43	0.00350	1002.3	474.4	0.00270	992.6	465.8	-0.03006	152.0	123.0
44	0.00350	1025.8	466.8	0.00336	1024.6	455.7	-0.00987	120.0	133.2
45	0.00350	1002.3	474.4	0.00313	1010.6	464.2	-0.01449	134.0	124.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C D:4	Coeff di ridus momenti per cole fleccione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

				ı
Progetto	Lotto	Codifica		l
IN17	12	EI2CLVI0904001	С	

1	0.000003763	0.000039252	-0.018894023	
2	0.000014729	0.000006338	-0.014655510	
3	0.000001645	0.000075621	-0.034026654	
4	0.000004532	0.000027579	-0.014128662	
5	0.000011156	0.000008781	-0.012063930	
6	0.000002560	0.000059181	-0.027143533	
7	0.000008356	0.000012396	-0.010858374	
8	0.000008356	0.000012396	-0.010858374	
9	0.000008356	0.000012396	-0.010858374	
10	0.000003884	0.000041635	-0.020146084	
11	0.000015534	0.000005863	-0.015280654	
12	0.000001672	0.000080099	-0.036178442	
13	0.000003358	0.000050758	-0.023947052	
14	0.000014729	0.000006338	-0.014655510	
15	0.000001510	0.000082898	-0.037344200	
16	0.000004190	0.000036070	-0.017812947	
17	0.000011156	0.000008781	-0.012063930	
18	0.000002365	0.000067365	-0.030831594	
19	0.000008356	0.000012396	-0.010858374	
20	0.000008356	0.000012396	-0.010858374	
21	0.000008356	0.000012396	-0.010858374	
22	0.000003418	0.000052487	-0.024827778	
23	0.000015534	0.000005863	-0.015280654	
24	0.000001540	0.000085509	-0.038613046	
25	0.000005321	0.000023807	-0.013147565	
26	0.000014729	0.000006338	-0.014655510	
27	0.000002693	0.000063363	-0.029260843	
28	0.000005789	0.000019315	-0.011499736	
29	0.000011156	0.000008781	-0.012063930	
30	0.000003360	0.000050448	-0.023802159	
31	0.000008356	0.000012396	-0.010858374	
32	0.000008356	0.000012396	-0.010858374	
33	0.000008356	0.000012396	-0.010858374	
34	0.000005529	0.000023731	-0.013322943	
35	0.000015534	0.000005863	-0.015280654	
36	0.000002728	0.000065325	-0.030227081	
37	0.000001858	0.000090880	-0.041478993	
38	0.000010501	0.000011107	-0.012456558	
39	0.000004380	0.000041283	-0.020476544	
40	0.000001821	0.000092470	-0.042197395	
41	0.000010339	0.000011496	-0.012472378	
42	0.000004301	0.000043172	-0.021293322	
43	0.000001913	0.000090870	-0.041530408	
44	0.000010638	0.000011181	-0.012632041	
45	0.000004508	0.000040242	-0.020110655	

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel calcestruzzo [MPa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min
Minima tensione (negativa se di trazione) nell'acciaio [MPa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.
As eff.
Ase eff.
Area barre [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Ss min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 2.89
 1014.7
 472.5
 6.5
 134.0
 124.7
 --- ---

 Progetto	Lotto	Codifica	
IN17	12	El2CLVI0904001	С

2	S	1.67	1040.3	446.8	11.3	112.6	146.2		
2 3	S	3.34	1002.3	474.4	0.2	152.0	123.0	0	0.0
4	S	3.29	1014.7	472.5	1.6	134.0	124.7		
5	S	2.07	1034.7	458.0	6.5	120.0	133.2		
6	S	3.77	1002.3	474.4	-5.4	134.0	124.7	1190	13.2
7	S	1.85	1025.8	466.8	9.5	120.0	133.2		
8	S	1.85	1025.8	466.8	9.5	120.0	133.2		
9	S	1.85	1025.8	466.8	9.5	120.0	133.2		
10	S S	2.82	1014.7	472.5	1.8	134.0	124.7		
11		1.67	1040.3	446.8	11.3	112.6	146.2		
12	S	3.32	1002.3	474.4	-6.0	152.0	123.0	2279	23.7
13	S	3.24	1014.7	472.5	-3.3	134.0	124.7	666	7.9
14	S	2.07	1034.7	458.0	6.5	120.0	133.2		
15	S	3.86	1002.3	474.4	-15.5	134.0	124.7	5571	55.2
16	S	1.85	1025.8	466.8	9.5	120.0	133.2		
17	S	1.85	1025.8	466.8	9.5	120.0	133.2		
18	S	1.85	1025.8	466.8	9.5	120.0	133.2		
19	S	2.82	1014.7	472.5	8.0	134.0	124.7		
20	S	1.67	1040.3	446.8	11.3	112.6	146.2		
21	S	3.32	1002.3	474.4	-7.0	134.0	124.7	2180	23.7
22	S	3.25	1014.7	472.5	-4.6	134.0	124.7	1282	15.8
23	S	2.07	1034.7	458.0	6.5	120.0	133.2		
24	S	3.86	1014.7	472.5	-16.0	134.0	124.7	5222	52.6
25	S	1.85	1025.8	466.8	9.5	120.0	133.2		
26	S	1.85	1025.8	466.8	9.5	120.0	133.2		
27	S	1.85	1025.8	466.8	9.5	120.0	133.2		
28	S	7.86	1002.3	474.4	-234.6	152.0	123.0	41160	334.0
29	S	6.01	1025.8	466.8	-78.5	120.0	133.2	13803	121.0
30	S	3.17	1014.7	472.5	-6.5	134.0	124.7	1884	21.0
31	S	7.91	1002.3	474.4	-244.5	152.0	123.0	41569	339.3
32	S	6.10	1025.8	466.8	-84.1	120.0	133.2	13986	121.0
33	S	3.19	1014.7	472.5	-8.3	134.0	124.7	2603	28.9
34	S	7.94	1002.3	474.4	-242.7	152.0	123.0	41100	334.0
35	S	6.13	1025.8	466.8	-86.0	120.0	133.2	14170	121.0
36	S	3.20	1014.7	472.5	-8.6	134.0	124.7	2731	28.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Ver. Esito della verifica Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata e1 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff e2 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1 kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2 k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa
Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Cf e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (990.00)	0.00	0.00
2	S	0.00000	0.00000					0.000 (990.00)	0.00	0.00
3	S	0.00000	0.00000	0.000	.0	77	0.00000 (0.00000) 0	0.003 (990.00)10	036894.33	336677.11

		ILICAV	2									
							Progetto	Lotto		Codifica		
							IN17	12	EI20	CLVI090400	1	С
4	4 S	0.00000	0.00000						0.000 (990.00)	0.00	0.00	
5	5 S	0.00000	0.00000						0.000 (990.00)		0.00	
6		-0.00003	0.00000	0.833	18.3	79	0.00002 (0.000	002) 737	,		99073.93	
7		0.00000	0.00000	0.000	10.5		0.00002 (0.000		0.000 (990.00)		0.00	
8		0.00000	0.00000						0.000 (990.00)		0.00	
ç		0.00000	0.00000						0.000 (990.00)		0.00	
1		0.00000	0.00000						0.000 (990.00)		0.00	
1		0.00000	0.00000						0 000 1000 001		0.00	
1:		-0.00004	0.00000	0.833	18.3	77	0.00002 (0.000		0.014 (990.00)		50568.35	
1		-0.00002	0.00000	0.833	18.3	79	0.00001 (0.000				206647.46	
1		0.00000	0.00000				(*****		0 000 (000 00)		0.00	
1:		-0.00008	0.00000	0.833	18.3	79	0.00005 (0.000	005) 791	,		53196.24	
1		0.00000	0.00000				,		0 000 (000 00)		0.00	
1		0.00000	0.00000						0 000 (000 00)		0.00	
1	8 S	0.00000	0.00000						0.000 (990.00)		0.00	
1	9 S	0.00000	0.00000						0.000 (990.00)	0.00	0.00	
2	0 S	0.00000	0.00000						0.000 (990.00)	0.00	0.00	
2		-0.00004	0.00000	0.833	18.3	79	0.00002 (0.000	002) 745	0.016 (990.00)	135386.48	85362.48	
2		-0.00003	0.00000	0.833	18.3	79	0.00001 (0.000	001) 689	0.010 (990.00)	116945.96	222091.43	
2		0.00000	0.00000						0.000 (990.00)	0.00	0.00	
2		-0.00009	0.00000	0.833	18.3	79	0.00005 (0.000	005) 782	0.038 (990.00)	84655.71	72602.98	
2		0.00000	0.00000						0.000 (990.00)	0.00	0.00	
2		0.00000	0.00000						0.000 (990.00)		0.00	
2		0.00000	0.00000						0.000 (990.00)		0.00	
2		-0.00121	0.00000	0.833	18.3	77	0.00070 (0.000		\ /		18459.10	
2		-0.00040	0.00000	0.833	18.3	79	0.00024 (0.000	,	,		87094.92	
3		-0.00004	0.00000	0.833	18.3	79	0.00002 (0.000		0.014 (990.00)		135010.93	
3		-0.00126	0.00000	0.833	18.3	77	0.00073 (0.000	,	()		17983.59	
3		-0.00043	0.00000	0.833	18.3	79	0.00025 (0.000	,	,		84196.48	
3		-0.00005	0.00000	0.833	18.3	79	0.00002 (0.000	,	()		114615.11	
3		-0.00125	0.00000	0.833	18.3	77	0.00073 (0.000	,	()		19067.18	
3	5 S	-0.00044	0.00000	0.833	18.3	79	0.00026 (0.000		,		85210.64	
3	6 S	-0.00005	0.00000	0.833	18.3	79	0.00003 (0.000	003) 757	0.020 (990.00)	91713.88	118639.08	

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.60	1002.3	474.4	5.2	134.0	124.7		
2	S	3.01	1014.7	472.5	0.4	134.0	124.7	0	0.0
3	S	1.85	1025.8	466.8	9.5	120.0	133.2		
4	S	2.56	1002.3	474.4	2.4	134.0	124.7		
5	S	2.97	1014.7	472.5	-2.6	134.0	124.7	463	5.3
6	S	1.85	1025.8	466.8	9.5	120.0	133.2		
7	S	2.56	1014.7	472.5	1.8	134.0	124.7		
8	S	2.98	1014.7	472.5	-3.4	134.0	124.7	737	7.9
9	S	1.85	1025.8	466.8	9.5	120.0	133.2		

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000	0.833	18.3	79	0.00003 (0.00003)	0	0.002 (0.20)1	629164.71	1501505.86
3	S	0.00000	0.00000				`		0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	-0.00002	0.00000	0.834	18.3	79	0.00001 (0.00001)	724	0.006 (0.20) 2	213709.99	180925.97
6	S	0.00000	0.00000				`		0.000 (0.20)	0.00	0.00
7	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

GENERAL CONTRACTOR ALTA SORVEGLIANZA Frogetto Lotto Codifica

8	S	-0.00002	0.00000	0.833	18.3	79	0.00001 (0.00001)	752	0.008 (0.20)	163633.58	196335.95
9	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

IN17

12

EI2CLVI0904001

С

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		123.0	992.6	17.1	474.4	142.3	1.20	S	1
		123.0	992.6	17.1	474.4	142.3	1.20	S	2
		123.0	992.6	17.1	474.4	142.3	1.20	S	3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

9.3 Verifica a taglio

La verifica SLU a taglio viene invece effettuata mediante calcolo diretto distintamente per le due direzioni, considerando sia la pila di altezza massima che quella di altezza minima.

In accordo al §7.9.5 delle NTC2008, le sollecitazioni di progetto sono state assunte pari al valore minimo tra:

- Taglio calcolato sulla base della gerarchia delle resistenze;
- Taglio ricavato moltiplicando il valore derivante dall'analisi per il fattore di struttura q e per un fattore di sicurezza addizionale γ_{bd1} pari a 1.25.

Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

$$\begin{split} &V_{Rcd} = min(V_{Rcd} \; ; \; V_{Rsd}) \\ &V_{Rcd} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg \; \alpha + ctg \; \theta) / (1 + ctg^2 \; \theta) \\ &V_{Rsd} = 0,9 \cdot d \cdot A_{sw} / s \cdot f_{yd} \cdot (ctg \; \alpha + ctg \; \theta) \cdot sen \; \alpha \end{split}$$

in cui

- d altezza utile della sezione
- bw larghezza minima della sezione

Asw area dell'armatura trasversale

- s interasse tra due armature trasversali consecutive
- θ inclinazione delle bielle di calcestruzzo (posto pari a 45°)
- α angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento
- fcd' resistenza a compressione ridotta (pari a 0,5 fcd)
- α_{cv} coefficiente maggiorativo che tiene conto della compressione (posto cautelativamente pari a 1)

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

P10 (H=9.5m)

<u>Calcolo del taglio agente – Direzione Longitudinale</u>

Hpila	9.50	m	Altezza fusto pila
M_{Rd,inf_long}	87070	kNm	Momento resistente della sezione di base della pila
M_{E,i_long}	74261.19	kNm	Momento sollecitante alla base della pila
γ_{Rd}	1		Fattore di sovraresistenza (§7.9.5.1 NTC2008)
$V_{\text{E,i,long}}$	7486	kN	Azione di taglio di calcolo base pila - Comb. Sismica di progetto
$V_{gr,0}$	8777	kN	Valore del taglio di progetto per la gerarchia delle resistenze V gr0=min (Ved γrd Mrd/Med; Ved q)
$V_{E,i,long}/V_{gr,C}$	0.853	-	
₽Rd	1.00	-	Fattore di sovraresistenza aggiuntivo (§7.9.5.2.2 NTC2008)
$V_{gr,i,long}$	8777	kN	Sollecitazione di taglio

Verifiche

Direzione Longitudianle			
altezza della sezione	h	3600	mm
copriferro netto	c netto	60	mm
copriferro al baricentro dell'armatura long	c'	86	mm
larghezza dell'anima resistente	bw	1000	mm
altezza utile della sezione	d	3514	mm
area della sezione di calcestruzzo	Ac	2909592	mm
diametro delle barre longitudinali	Øbl	20	mm
diametro delle staffe	Øst	11.2	mm
passo delle staffe	sst	150.0	mm
numero di bracci delle staffe	nbw	6.0	
inclinazione delle staffe (α=90° per staffe or	α	90	0
inclinazione delle bielle di calcestruzzo rispe		24	0
taglio resistente relativo alle armature tese	VRsd	10773	KN
taglio resistente relativo alle bielle compress	VRcd	10773	KN
taglio resistente di calcolo	VRd	10773	KN
taglio agente sul pannello	VEd	8777	KN
	C.S.	0.81	<1

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Direzione Trasversale			
altezza della seziobe	h	9400	mm
copriferro netto	c netto	60	mm
copriferro al baricentro dell'armatura long	c'	86	mm
larghezza dell'anima resistente	bw	800	mm
altezza utile della sezione	d	9314	mm
area della sezione di calcestruzzo	Ac	5849192	mm2
diametro delle barre longitudinali	Øbl	20	mm
diametro delle staffe	Øst	11.2	mm
passo delle staffe	sst	150.0	mm
numero di bracci delle staffe	nbw	4.0	
inclinazione delle staffe (α=90° per staffe or	α	90	0
inclinazione delle bielle di calcestruzzo rispe	θ	22	0
taglio resistente relativo alle armature tese	VRsd	21206	KN
taglio resistente relativo alle bielle compress	VRcd	21206	KN
taglio resistente di calcolo	VRd	21206	KN
taglio agente sul pannello	VEd	7310	KN
	C.S.	0.34	<1

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

P03 (H=9.0m)

Calcolo del taglio agente – Direzione Longitudinale

Hpila	9.00	m	Altezza fusto pila
M_{Rd,inf_long}	86861	kNm	Momento resistente della sezione di base della pila
M_{E,i_long}	70326.87	kNm	Momento sollecitante alla base della pila
γ_{Rd}	1		Fattore di sovraresistenza (§7.9.5.1 NTC2008)
$V_{\text{E,i,long}}$	7462	kN	Azione di taglio di calcolo base pila - Comb. Sismica di progetto
$V_{gr,0}$	9217	kN	Valore del taglio di progetto per la gerarchia delle resistenze V gr0=min (Ved γrd Mrd/Med; Ved q)
$V_{E,i,long}/V_{gr,C}$	0.810	-	
₽Rd	1.04	-	Fattore di sovraresistenza aggiuntivo (§7.9.5.2.2 NTC2008)
$V_{gr,i,long}$	9544	kN	Sollecitazione di taglio

Verifiche

Direzione Longitudianle			
altezza della sezione	h	3600	mm
copriferro netto	c netto	60	mm
copriferro al baricentro dell'armatura long	c'	86	mm
larghezza dell'anima resistente	bw	1000	mm
altezza utile della sezione	d	3514	mm
area della sezione di calcestruzzo	Ac	2909592	mm
diametro delle barre longitudinali	Øbl	20	mm
diametro delle staffe	Øst	11.2	mm
passo delle staffe	sst	150.0	mm
numero di bracci delle staffe	nbw	6.0	
inclinazione delle staffe (α=90° per staffe or	α	90	0
inclinazione delle bielle di calcestruzzo rispe	θ	24	0
taglio resistente relativo alle armature tese	VRsd	10773	KN
taglio resistente relativo alle bielle compress	VRcd	10773	KN
taglio resistente di calcolo	VRd	10773	KN
taglio agente sul pannello	VEd	9544	KN
	C.S.	0.89	<1

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Direzione Trasversale			
altezza della seziobe	h	9400	mm
copriferro netto	c netto	60	mm
copriferro al baricentro dell'armatura long	c'	86	mm
larghezza dell'anima resistente	bw	800	mm
altezza utile della sezione	d	9314	mm
area della sezione di calcestruzzo	Ac	5849192	mm2
diametro delle barre longitudinali	Øbl	20	mm
diametro delle staffe	Øst	11.2	mm
passo delle staffe	sst	150.0	mm
numero di bracci delle staffe	nbw	4.0	
inclinazione delle staffe (α=90° per staffe or	α	90	0
inclinazione delle bielle di calcestruzzo rispe	θ	22	0
taglio resistente relativo alle armature tese	VRsd	21206	KN
taglio resistente relativo alle bielle compress	VRcd	21206	KN
taglio resistente di calcolo	VRd	21206	KN
taglio agente sul pannello	VEd	7006	KN
	C.S.	0.33	<1

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

9.4 Verifica minimi di armatura

Secondo quanto prescritto dalle NTC 2008 e dal "Manuale di Progettazione delle Opere Civili" i quantitativi minimi di armatura da rispettare sono:

- L'area dell'armatura longitudinale dovrà essere non inferiore allo 0,6% dell'area della sezione
 effettiva del calcestruzzo. Questa prescrizione non si applica ai tratti di pile che, per motivi
 idraulici, sono realizzati a sezione piena; per queste, fatte salve le esigenze di calcolo, si
 manterrà l'armatura corrispondente alla sezione del tratto cavo immediatamente superiore;
- Le barre di armatura longitudinale non dovranno distare fra loro più di 300 mm compatibilmente con i limiti forniti nella Tab. 2.5.2.2.6-1;

Diametro delle barre	Massimo interasse delle barre
[mm]	[mm]
32	300
24	250
20	200

Tab. 2.5.2.2.6-1 - Diametri e relativi interassi massimi delle barre

- Non è ammesso l'impiego di staffe elicoidali (spirali);
- Non è consentito congiungere tra loro i bracci delle staffe per sovrapposizione. Le staffe devono essere chiuse risvoltando i bracci nel nucleo di calcestruzzo mediante la piegatura dei ferri di 135° verso l'interno e per una lunghezza non inferiore a 10 volte il diametro della staffa;
- Nella zona di spiccato delle pile e in quella di sommità delle pile a telaio, per un tratto di lunghezza non inferiore a 3 metri non è consentito operare alcun tipo di giunzione delle armature verticali; al di fuori di tale tratto è consentito congiungere, in modo graduale, le barre verticali mediante sovrapposizione o altro. In particolare, le giunzioni devono essere effettuate in modo da interessare non più di 1/3 delle barre longitudinali presenti nella generica sezione, sfalsando due riprese di armatura successive di almeno 40 diametri in senso verticale;
- L'interasse delle armature trasversali s non deve essere superiore a 10 volte il diametro delle barre longitudinali, né a 1/5 del diametro del nucleo della sezione interna alle stesse;
- Nelle pile a sezione cava dovranno prevedersi spille di collegamento fra le armature longitudinali in numero di almeno 6 a metro quadro;
- Nel caso in cui il fattore di struttura "q" sia minore o uguale ad 1,5 l'armatura di confinamento delle pile si devono rispettare le limitazioni sulla percentuale meccanica:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2CLVI0904001 C

Sezioni rettangolari piene o cave

In entrambe le direzioni parallele ai lati della sezione deve verificarsi che:

$$\omega_{wd,r} = \frac{A_{sw}}{s \cdot b} \cdot \frac{f_{yd}}{f_{cd}} \ge \zeta$$

Dove:

A_{sw}= Area totale delle staffe e/o delle spille in una direzione di confinamento;

b = Dimensione del nucleo di calcestruzzo confinato perpendicolare alla direzione del confinamento, misurata fra i bracci delle armature più esterne;

s = Interasse verticale delle staffe.

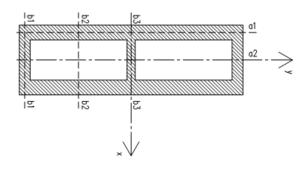
 ζ = 0,07 per le zone classificate sismiche con ag(SLV) \geq 0,35 g

 ζ = 0,05 per le zone classificate sismiche con ag(SLV) \geq 0,25 g

 $\zeta = 0.04$ per le zone classificate sismiche con $a_g(SLV) \ge 0.15$ g

 ζ =0,03 per le zone classificate sismiche con $a_{\rm g}({\rm SLV}) <$ 0,15 g

minimi per armatura flessionale			
numero di ferri longitudinali	n	344	
diametro del ferro longitudinale	fi	20	mm
passo massimo longitudinale	р	20	cm
area dell'armatura longitudinale	As	108070.7873	mm2
area di calcestruzzo (non riempito)	Ac	11452700	mm3
		0.94%	>0.6%
minimi per armatura trasversale			
diametro minimo armatura a taglio	fi	8	mm
dimensione (diametro) del nucleo	d	4000	mm
interasse massimo staffe	S	200	mm


GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica IN17 EI2CLVI0904001 С 12

Sez.

a2-a2

Verifica a confinamento

$$\omega_{wd,r} = \frac{A_{sw}}{s \cdot b} \cdot \frac{f_{yd}}{f_{cd}} \ge \zeta$$

b1-b1 Sez.

Confinamento lungo la direzione long. del viadotto (direzione x)

	d	Α	n°
sp	10	78.5	8
st	16	200.96	10

Asw	2637.6 mm2			
S	150 mm	ω _{wd,r} =	0.108	ok
b	3500 mm			
fyd	391 Mpa			
fod	10 12 Mag			

Sez. a1-a1 Confinamento lungo la direzione trasv. del viadotto (direzione y)

	d	Α	n°
sp	10	78.5	20
st	16	200.96	10

mm	ω _{wd,r} =	0.108	ok
mm	,		
Мра			
Мра			
	mm mm Mpa Mpa	mm Mpa	mm

3579.6 mm2 Asw 150 mm 0.057 ok $\omega_{\text{wd,r}}$ = b 9100 mm fyd 391 Mpa fcd 18.13 Mpa 0.04

Sez. b2-b2

Confinamento lungo la direzione long. del viadotto (direzione x)

sp	10	78.5	0
st	16	200.96	4

Confiname	ento lungo l	la direzione	trasv. del	viadotto (direzione
	d	Α	n°	
sp	10	78.5	0	
st	16	200.96	6	

Asw	803.84 mm2			
S	150 mm	ω _{wd,r} =	0.144	ok
b	800 mm			
fyd	391 Mpa			
fcd	18.13 Mpa			
ζ	0.04			

Asw	1205.76 mm2			
S	150 mm	ω _{wd,r} =	0.144	ok
b	1200 mm			
fyd	391 Mpa			
fcd	18.13 Mpa			
ζ	0.04			

Sez. b3-b3

Confinamento lungo la direzione long. del viadotto (direzione x)

	d	Α	n°
sp	10	78.5	8
st	16	200.96	8

Asw	2235.68 mm2			
S	150 mm	ω _{wd,r} =	0.092	ok
b	3500 mm			
fyd	391 Mpa			
fcd	18.13 Mpa			
۲	0.04			

y)

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

9.5 Verifica deformabilità

Lo spostamento della singola campata soggetta, convenzionalmente, alle sole azioni di frenatura di 2 modelli di carico LM71, per doppio binario, non vede superare i 5 mm, come prescritto nell'Allegato 3 del "Manuale di Progettazione delle Opere Civili"

forza massima di frenatura	Ff	1100.0	kN
altezza pila estradosso apppoggi	h	10.0	m
rigidezza flessionale longitudinale	J	22.3	m4
modulo elastico	Е	33345.8	MPa
spostamento in testa pila	D	0.49	mm

9.6 Determinazione spostamenti

Per l'identificazione dell'escursione dei giunti tra le testate di due travi adiacenti si richiama il "Manuale di Progettazione delle Opere Civili" al capitolo 2.5.2.1.5.3 il quale fa riferimento allo spostamento longitudinale E_L identificabile come il contributo di una dilatazione termica, più un contributo indotto dall'azione sismica sulle fondazioni e sulle pile:

$$\begin{split} E_L &= k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2 \cdot D_t + 4 \cdot d_{Ed} \cdot k_2 + 2 \cdot d_{eg}) \\ \text{dove:} \\ E_1 &= & \text{spostamento dovuto alla variazione termica uniforme;} \\ E_2 &= & \text{spostamento dovuto alla risposta della struttura all'azione sismica;} \\ E_3 &= & \text{spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;} \\ k_1 &= & 0,45 \text{ coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo;} \\ k_2 &= & 0,55 \text{ coefficiente legato alla probabilità di moto in controfase di due pile adiacenti;} \end{split}$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica

IN17

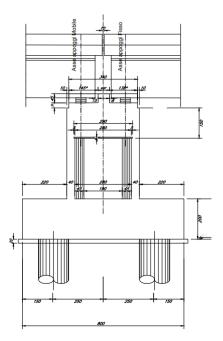
12

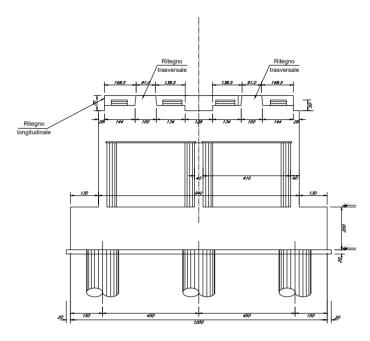
El2CLVI0904001

С

categoria di terreno		C	
periodo inizio tratto velocità costante	TC	0.452	S
periodo tratto a spostamento costante	TD	2.495	S
coef. categoria e topografia terreno	S	1.373	
accelerazione orizzontale max al sito	ag	0.224	g
periodo di vibrare longitudinale	T1	0.23	sec
fattore di struttura	q	1.5	
fattore di duttilità in spostamento	μ	2.0	
accelerazione di riferimento pila dir. long	ag (T)	0.50	g
	w	27.11	sec
		0.01	m
spostamento SLV relativo all'analisi spettrale	dEe	0.0000	m
spostamento totale relativo	d Ed	0.0131	m

spostamento massimo orizz. del terreno	dg	0.0850	m
	8		
spostamenti massimi terreno punto i	dji	0.085	m
spostamenti massimi terreno punto j	dgi	0.085	m
velocità prop. onde di taglio nel terreno	Vs	270	m/s
distanza tra i-esima tra punto i j (dist. Pile)	X	25	m
spostamento massimo rel	dij0	0.1502	m
tipologia di moto		indipenden	te
forti discontinuità del terreno		senza	
distanza		>20	
terreni		uguali	
spost. relativo tra due punti dipendenti	di(x)	0.032	m


variazione termica uniforme	DT	15	°C
coefficiente di dilatazione termica	α	1.00E-05	1/°C
dilatazione termica	Dt	0.004	m
dilatazione termica incrementata del 50%	Dt	0.006	m
spostamento longitudinale finale			
coefficiente non contemporaneità del moto	K1	0.45	
coefficiente controfase pile	k2	0.55	
spostamento longitudinale minimo	EL min	0.13	m
spostamento long di calcolo	El	0.05	m
spostamento longitudinale	EL	0.131	m
altri spostamenti longitudinali			
escursione longitudinale giunto	Eg	± 7.5	cm
corsa appoggi mobili	Cap	± 8.2	cm


GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI0904001	С

10. Pulvino

Il pulvino presenta un'altezza di 1.5m, sezione rettangolare piena smussata con forma medesima a quella della pila e dimensioni pari a 3.6m x 9.4m rispettivamente nelle direzioni degli assi longitudinale e trasversale del viadotto.

Su di esso sono disposti gli apparecchi d'appoggio dell'impalcato secondo lo schema sotto riportato. Su ogni pulvino sono inoltre presenti un ritegno sismico longitudinale centrale e due trasversali laterali.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

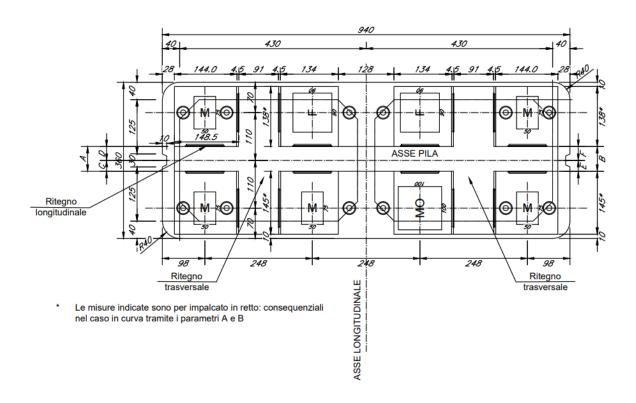


Figura 22 – Sezioni e pianta pulvino

Per la progettazione e verifica delle armature principali e secondarie del pulvino, dei baggioli e dei ritegni si rimanda alla Relazione di calcolo pulvini, baggioli e ritegni - IN1712EI2CLVI0904012.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

11. Plinto di fondazione

La progettazione del plinto di fondazione vede la determinazione dello stato sollecitativo in funzione dell'interazione tra pali e terreno di fondazione. Le sollecitazioni agenti in testa palo sono state dedotte dalle relazioni geotecniche.

Note le reazioni dei singoli pali, sono state calcolate le sollecitazioni agenti sul plinto mediante un modello spaziale dell'intera struttura di fondazione nel software di calcolo Midas Civil.

11.1 Geometria del plinto e della palificata

Nella seguente figura è mostrata la geometria della palificata della tipologia di pila in esame per il viadotto VI09. È inoltre esplicitato il sistema di riferimento e la numerazione dei pali utilizzata nel calcolo.

Si prevedono 9 pali aventi diametro D=1500 mm e lunghezza pari a 36.0 m se ricadono nel modello stratigrafico 1 e 4, o pari a 49.0m se ricadono nel modello 2. Il plinto è caratterizzato da un'altezza di 2.5 m ed ha delle dimensioni in pianta pari a 12.0 m x 12.0 m. Sul plinto di fondazione in esame è previsto un ricoprimento di terreno di spessore pari a 1.0 m.

Tra le tipologie di fondazione sopra citate ed analizzate nelle relazioni geotecniche, nei paragrafi che seguono verrà riportato il dimensionamento e la verifica del plinto di fondazione più critico, ovvero quello con pali di lunghezza pari a 49.0m e altezza del fusto pila pari a 9.5m (pila P10). Nella relazione geotecnica, le reazioni in testa palo di P10 sono state calcolate considerando i carichi della pila di altezza massima (h=10.5m).

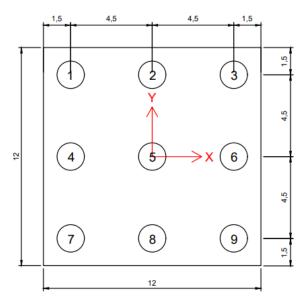


Figura 23 – Geometria del plinto di fondazione

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

11.2 Modellazione strutturale

Per valutare il comportamento del plinto di fondazione è stato realizzato un modello agli elementi finiti, mediante il programma di calcolo Midas Civil.

I vari elementi strutturali presenti nel modello sono stati modellati come di seguito descritto:

- *Plinto di fondazione*: nel suo piano medio mediante elementi "plate-thick" di spessore pari a 2.5 m;
- Palo di fondazione: mediante elementi "solid" nel tratto iniziale in prossimità del plinto e mediante un elemento "beam" nel tratto terminale. L'utilizzo di elementi "solid" nella modellazione della parte iniziale dei pali consente infatti di evitare la nascita di forti concentrazioni di tensione nel plinto di fondazione. Favorendo dunque la diffusione delle sollecitazioni provenienti dai pali, si ottiene un comportamento della struttura molto prossimo a quello reale.

Si riporta di seguito una vista tridimensionale, una vista in pianta e un prospetto del modello realizzato.

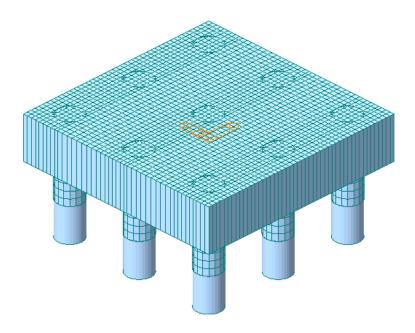


Figura 24 – Vista estrusa del modello agli elementi finiti

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

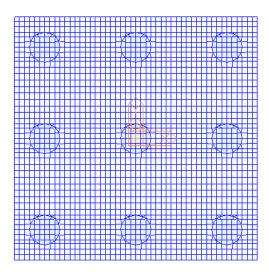


Figura 25 – Pianta del modello agli elementi finiti

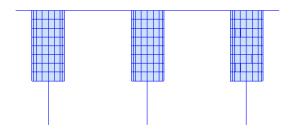


Figura 26 – Prospetto del modello agli elementi finiti

La piastra è vincolata lungo il perimetro della pila cava, cautelativamente con vincoli di incastro perfetto.

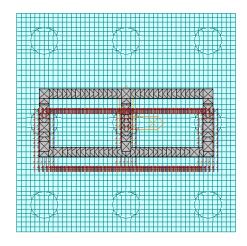


Figura 27 – Sistema di vincoli del modello agli elementi finiti

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

L'elemento "beam" che schematizza il tratto terminale di ogni singolo palo di fondazione è collegato agli elementi "solid" del tratto superiore mediante una serie di "rigid link".

Figura 28 – Sistema di vincoli del palo nel modello agli elementi finiti

Agli elementi "plate" che costituiscono il plinto è stato assegnato un calcestruzzo C25/30, così come ai pali di fondazione.

11.3 Azioni di progetto

11.3.1 Reazioni dei pali

La progettazione del plinto di fondazione è stata effettuata a partire dalle massime sollecitazioni in testa palo dedotte dalla relazione geotecnica.

Sono state considerate tutte le combinazioni che presentano azioni che:

- presentano il massimo sforzo di compressione sul palo;
- presentano il massimo sforzo di trazione sul palo;
- massimizzano il momento longitudinale;
- massimizzano il momento trasversale;
- massimizzano le deformazioni del plinto.

Le combinazioni agli SLU, SLV, SLE e SLD sono quelle esplicitate nel paragrafo 7.

Tali azioni sono state applicate nel modello di calcolo in termini di reazioni dei pali, mediante delle forze e dei momenti nodali alla base degli elementi beam che schematizzano la parte terminale dei pali stessi.

A titolo di esempio, nella figura che segue sono riportate le forze e momenti nodali della combinazione SLV-Treno 1-Sisma prevalente in direzione trasversale.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

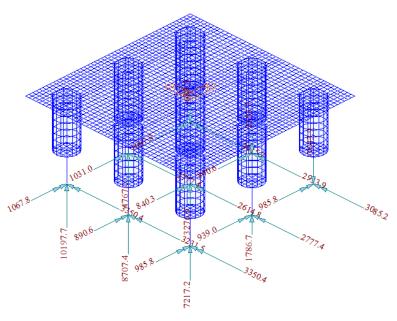


Figura 29 – Applicazione delle reazioni dei pali nel modello agli elementi finiti

11.3.2 Peso proprio plinto di fondazione

Il peso proprio del plinto di fondazione è stato valutato assumendo per il calcestruzzo un peso specifico γ_{cls} pari a 25 kN/m³, ed è stato calcolato automaticamente dal programma.

11.3.3 Peso terreno di ricoprimento

Il terreno di ricoprimento, caratterizzato da un peso specifico $\gamma_{terreno}$ pari a 19 kN/m³, è stato applicato come carico uniformemente distribuito sul plinto di fondazione, in tutta la zona esterna all'impronta del fusto pila.

 $P_{terreno} = \gamma_{terreno} \cdot h_{rinterro} = 19 \cdot 1.0 = 19.0 \ kN/m^2$

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

11.4 Risultati di analisi

Si riportano a titolo di esempio alcuni dei diagrammi delle sollecitazioni ritenuti più significativi. Le sollecitazioni sono espresse come forze al metro; gli assi locali e la convenzione di lettura degli output degli elementi è riportata a seguire.



Figura 30 – Posizioni di output delle forze dell'elemento piastra per unità di lunghezza e convenzione del segno

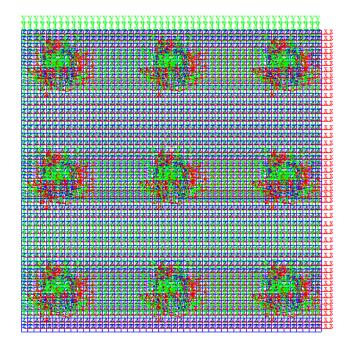


Figura 31 – Assi locali per gli elementi del plinto di fondazione

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

La direzione 1 del Wood Armer Moment coincide con la direzione X del sistema di riferimento riportato nel par. 11.1.

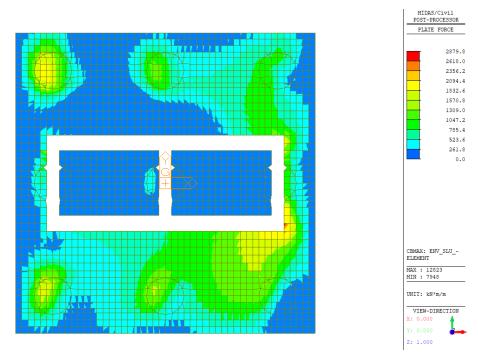


Figura 32 - Wood Armer Moment - Direction1 - Top (Inviluppo SLU/SLV)

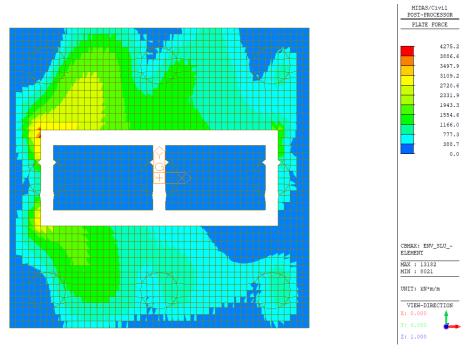


Figura 33 – Wood Armer Moment – Direction1 – Bottom (Inviluppo SLU/SLV)

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

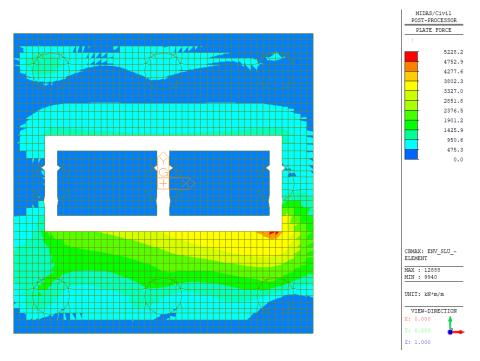


Figura 34 – Wood Armer Moment – Direction 2 – Top (Inviluppo SLU/SLV)

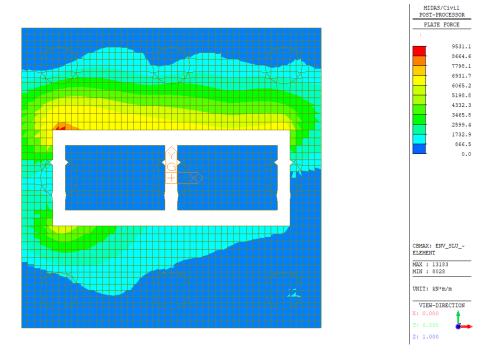
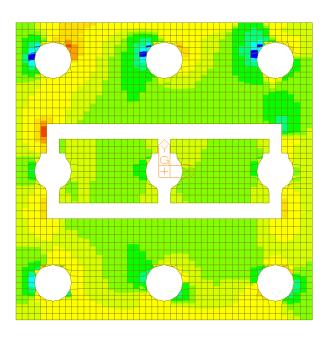



Figura 35 - Wood Armer Moment - Direction 2 - Bottom (Inviluppo SLU/SLV)

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

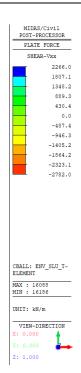


Figura 36 - Vxx, Inviluppo SLU/SLV

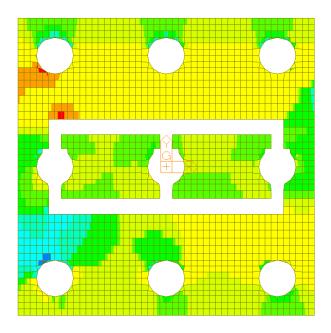
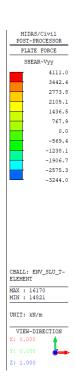
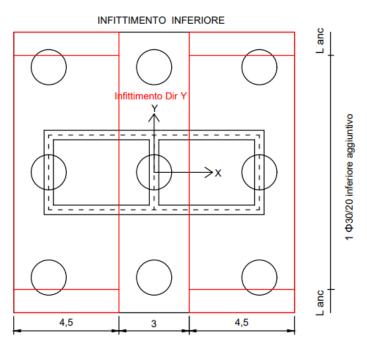
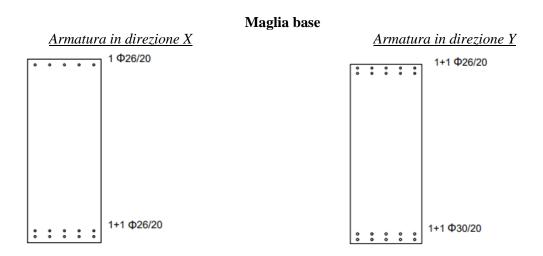



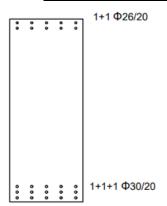
Figura 37 – Vyy, Inviluppo SLU/SLV

11.5 Dimensionamento e verifica delle armature

11.5.1 Dimensionamento delle armature

In funzione delle sollecitazioni precedentemente riportate è stata definita per il plinto la seguente armatura.


Figura 38: Zone di infittimento dell'armatura a flessione del plinto

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Armatura aggiuntiva

Armatura in direzione Y

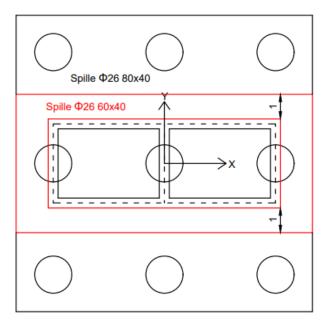


Figura 39 – Armatura a taglio del plinto

11.5.2 Verifica a flessione

Le verifiche allo SLU flessionale e agli SLE di fessurazione e tensionale vengono effettuate mediante l'ausilio del programma RC-SEC.

Sono state considerate due sezioni distinte per il dimensionamento e la verifica delle armature nelle due direzioni X e Y, di altezza pari all'altezza del plinto (2.5 m) e di larghezza pari a 1 m.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

Il plinto è stato verificato nei confronti dei momenti massimi derivanti dagli inviluppi delle combinazioni SLU, SLV, SLE rara, SLE fessurazione, SLE quasi permanente, sia nelle zone di infittimento che nelle zone in cui è presente la sola maglia di base.

Tali sollecitazioni sono riportate nella tabella che segue. Le sollecitazioni massime sono ottenute mediando i valori nell'intorno del picco su una larghezza di circa 1 m.

	W-A Mom_Top_X	W-A Mom_Top_Y	W-A Mom_Bottom_X	W-A Mom_Bottom_Y
	(kNm/m)	(kNm/m)	(kNm/m)	(kNm/m)
SLU/SLV	2093.3	4255.5	3177.2	8024.9
SLE Rara	1166.9	2254.7	2184.1	5676.1
SLE Fessurazione	540.7	366.6	1024.6	3155.2
SLE Quasi Perm.	297.6	204.2	452.1	1559.5

A titolo di esempio, vengono riportati gli output del programma per le due sezioni nelle zone di infittimento e per tutti i casi di carico sopra descritti.

Sezione per la verifica delle armature in direzione X

DATI GENERALI SEZIONE GENERICA IN C.A. NOME FILE SEZIONE: VI09_P10_DirX

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa

Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: 391.30 MPa 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del De Classe Congle	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 50.0	125.0 125.0
3	50.0	-125.0
4	-50.0	-125.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	40.0	-108.9	26
2	20.0	-108.9	26
3	0.0	-108.9	26
4	-20.0	-108.9	26
5	-40.0	-108.9	26
6	40.0	117.1	26
7	20.0	117.1	26
8	0.0	117.1	26
9	-20.0	117.1	26
10	-40.0	117.1	26
11	40.0	-116.7	26
12	20.0	-116.7	26
13	0.0	-116.7	26
14	-20.0	-116.7	26
15	-40.0	-116.7	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vv		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate			
N°Comb.	N	Mx	Vv		
N COIIID.			,		
1	0.00	-2093.30	0.00		
.)	0.00	3177 20	0.00		

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Ν Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-1166.90	0.00
2	0.00	2184.10	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-540.70 (-2945.94)	0.00 (0.00)
2	0.00	1024.60 (3024.72)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-297.60 (-2945.94)	0.00 (0.00)
2	0.00	452.10 (3024.72)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S	0.00	-2093.30	0.00	-2532.41	1.21	53.1(37.0)
2	S	0.00	3177.20	0.00	4815.67	1.52	53.1(37.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

GENERAL CONTRACTOR ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica

IN17	12	El2CLVI0904001	С

es max

Deform. unit. massima nell'acciaio (positiva se di compress.)

Xs max

Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

Ys max

Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00333	0.047	50.0	-125.0	0.00090	40.0	-116.7	-0.06750	40.0	117.1
2	0.00350	0.051	-50.0	125.0	0.00125	40.0	117.1	-0.06519	40.0	-116.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 N°Comb
 a
 b
 c
 x/d
 C.Rid.

 1
 0.000000000
 -0.000292576
 -0.033239365
 0.047
 0.700

 2
 0.00000000
 0.000284191
 -0.032023841
 0.051
 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
Ase seff.
Ase seff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max Yc ma	x Sf min	Xs min	Ys min	Ac eff.	As eff.
	-		50.0 -125. -50.0 125.					

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	-0.00099	0	0.500	26.0	66	0.00057 (0.00057) 549	0.314 (990.00)	-2945.94	0.00
2	S	-0.00099	0	0.500	26.0	70	0.00057 (0.00057) 492	0.279 (990.00)	3024.72	0.00

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	12	El2CLVI0904001	С

N°Comb	Ver	Sc max	Xc max Yc max	Sf min Xs min Ys	min Ac eff.	As eff.
1	S	1.02	50.0 -125.0	-88.4 -40.0 11	7.1 1950	26.5
2	S	1.59	-50.0 125.0	-88.8 -40.0 -11	6.7 3050	53.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00046	0	0.500	26.0	66	0.00027 (0.00027)	549	0.146 (0.20)	-2945.94	0.00
2	S	-0.00046	0	0.500	26.0	70	0.00027 (0.00027)	492	0.131 (0.20)	3024.72	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.56	50.0 -125.0	-48.7	-40.0	117.1	1950	26.5
2	S	0.70	-50.0 125.0	-39.2	-40.0	-116.7	3050	53.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00025	0	0.500	26.0	66	0.00015 (0.00015)	549	0.080 (990.00)	-2945.94	0.00
2	S	-0.00020	0	0.500	26.0	70	0.00012 (0.00012)	492	0.058 (990.00)	3024.72	0.00

Sezione per la verifica delle armature in direzione Y

DATI GENERALI SEZIONE GENERICA IN C.A. NOME FILE SEZIONE: VI09_P10_DirY

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm

0.50

337.50 MPa

ACCIAIO -Tipo: B450C Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: MPa 391.30 Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: 391.30 MPa 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1	-50.0	125.0
2	50.0	125.0
3	50.0	-125.0
4	-50.0	-125.0

DATI BARRE ISOLATE

Mx

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	40.0	-103.9	30
2 3	20.0	-103.9	30
3	0.0	-103.9	30
4	-20.0	-103.9	30
5	-40.0	-103.9	30
6	40.0	-111.7	30
7	20.0	-111.7	30
8	0.0	-111.7	30
9	-20.0	-111.7	30
10	-40.0	-111.7	30
11	40.0	112.3	26
12	20.0	112.3	26
13	0.0	112.3	26
14	-20.0	112.3	26
15	-40.0	112.3	26
16	40.0	-119.5	30
17	20.0	-119.5	30
18	0.0	-119.5	30
19	-20.0	-119.5	30
20	-40.0	-119.5	30
21	40.0	119.7	26
22	20.0	119.7	26
23	0.0	119.7	26
24	-20.0	119.7	26
25	-40.0	119.7	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

con verso positivo se tale da comprimere il lembo sup. della sez.

Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

 N°Comb.
 N
 Mx
 Vy

 1
 0.00
 -4255.50
 0.00

 2
 0.00
 8024.90
 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 -2254.70
 0.00

 2
 0.00
 5676.10
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 -366.60 (-3208.61)
 0.00 (0.00)

 2
 0.00
 3155.20 (3372.57)
 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 -204.20 (-3208.61)
 0.00 (0.00)

 2
 0.00
 1559.50 (3372.57)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Vy

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 4.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

GENERAL CONTRACTOR ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Tesa
1	S	0.00	-4255.50	0.00	-5047.99	1.19 88.4(37.0)
2	S		8024.90	0.00	9466.28	1.18 106.0(37.0)

Progetto

IN17

Lotto

12

Codifica

EI2CLVI0904001

С

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.059	50.0	-125.0	0.00216	40.0	-119.5	-0.05593	40.0	119.7
2	0.00350	0.085	-50.0	125.0	0.00261	40.0	119.7	-0.03756	40.0	-119.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45								
N°Comb	а	b	С	x/d	C.Rid.				
1	0.000000000	-0.000242873	-0.026859140	0.059	0.700				
2	0.000000000	0.000167950	-0.017493789	0.085	0.700				

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.92	50.0 -125.0	-190.7	-40.0	119.7	2250	53.1
2	S	6.48	-50.0 125.0	-258.1	-40.0	-119.5	3300	106.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] e2

k1

Ver.

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2

k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	12	El2CLVI0904001	С

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max

Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] Mx fess. My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr ma	c wk	Mx fess	My fess
1 2	S S	-0.00098 -0.00133	0 0	0.500 0.500	26.0 30.0	40 40	,	3 0.187 (990.00) 5 0.296 (990.00)		0.00 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.47	50.0 -125.0	-31.0	-40.0	119.7	2250	53.1
2	S	3.60	-50.0 125.0	-143.5	-40.0	-119.5	3300	106.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00016	0	0.500	26.0	40	0.00009 (0.00009)		` ,		0.00
2	S	-0.00074	0	0.500	30.0	40	0.00043 (0.00043)	295	0.127 (0.20)	3372.57	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc n	nax Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.26	50.0 -12	5.0 -17.3	-40.0	119.7	2250	53.1
2	S	1.78	-50.0 12	5.0 -70.9	-40.0	-119.5	3300	106.0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00009	0	0.500	26.0	40	0.00005 (0.00005)	323	0.017 (990.00)	-3208.61	0.00
2	S	-0.00037	0	0.500	30.0	40	0.00021 (0.00021)	295	0.063 (990.00)	3372.57	0.00

11.5.3 Verifica a taglio

La verifica SLU a taglio viene invece effettuata mediante calcolo diretto distintamente per le due direzioni. Il valore resistente a taglio della sezione si determina secondo le indicazioni del §4.1.2.1.3.2 [1]:

$$\begin{split} &V_{Rcd} = min(V_{Rcd} \; ; \; V_{Rsd}) \\ &V_{Rcd} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot (ctg \; \alpha + ctg \; \theta) / (1 + ctg^2 \; \theta) \\ &V_{Rsd} = 0,9 \cdot d \cdot A_{sw} / s \cdot f_{yd} \cdot (ctg \; \alpha + ctg \; \theta) \cdot sen \; \alpha \end{split}$$

in cui:

- d altezza utile della sezione
- bw larghezza minima della sezione
- Asw area dell'armatura trasversale
- s interasse tra due armature trasversali consecutive
- θ inclinazione delle bielle di calcestruzzo (posto pari a 45°)
- α angolo di inclinazione dell'armatura trasversale rispetto all'asse dell'elemento
- f_{cd}' resistenza a compressione ridotta (pari a 0,5 f_{cd})
- α_{cv} coefficiente maggiorativo che tiene conto della compressione (posto cautelativamente pari a 1)

La verifica è stata effettuata nei confronti del valore massimo di taglio $V_{\text{Ed,max}}$, per le combinazioni SLU e SLV.

In particolar modo, per ogni elemento plate e per ogni combinazione è stato calcolato il taglio risultante $V_{Ed} = \sqrt{{V_{xx}}^2 + {V_{yy}}^2}$, dove V_{xx} è il taglio al metro lineare sulla faccia di normale l'asse x locale dell'elemento plate, mentre V_{yy} è il taglio al metro lineare sulla faccia di normale l'asse y. Il taglio di progetto è ottenuto poi mediando le sollecitazioni nell'intorno del picco su una larghezza di circa 1 m.

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

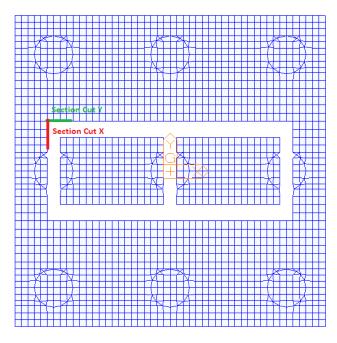


Figura 40 – Section cut considerate per la verifica a taglio

Non sono stati presi in considerazione gli elementi "plate" del plinto di fondazione in corrispondenza dei pali e della pila.

Di seguito viene esplicitata la verifica a taglio per la sezione più gravosa, sulla quale agisce un taglio massimo $V_{Ed,max} = 3421 \text{ kN/m}$.

Caratteristiche materiali

R _{ck} 30 N/mm² resistenza cubica caratteristica a compressione f _{ck} 24.90 N/mm² resistenza cilindrica caratteristica a compressione f _{cm} 32.90 N/mm² resistenza cilindrica media a compressione f _{cd} 14.11 N/mm² resistenza cilindrica di progetto a compressione f _{ctm} 2.56 N/mm² resistenza a trazione media f _{cfm} 3.07 N/mm² resistenza a trazione media per fessurazione	Cls			
f _{cm} 32.90 N/mm ² resistenza cilindrica media a compressione f _{cd} 14.11 N/mm ² resistenza cilindrica di progetto a compressione f _{ctm} 2.56 N/mm ² resistenza a trazione media	Rck	30	N/mm ²	resistenza cubica caratteristica a compressione
f _{cd} 14.11 N/mm ² resistenza cilindrica di progetto a compressione f _{ctm} 2.56 N/mm ² resistenza a trazione media	f_{ck}	24.90	N/mm^2	resistenza cilindrica caratteristica a compressione
f _{ctm} 2.56 N/mm ² resistenza a trazione media	fcm	32.90	N/mm^2	resistenza cilindrica media a compressione
	f_{cd}	14.11	N/mm^2	resistenza cilindrica di progetto a compressione
f _{cfm} 3.07 N/mm ² resistenza a trazione media per fessurazione	f_{ctm}	2.56	N/mm^2	resistenza a trazione media
	f_{cfm}	3.07	N/mm^2	resistenza a trazione media per fessurazione
E _{cm} 31447 N/mm ² modulo elastico istantaneo (valore secante fra 0 e 0.4 fcr	Ecm	31447	N/mm^2	modulo elastico istantaneo (valore secante fra 0 e 0.4 fcm)
v 0.2 coefficiente di Poisson	ν	0.2		coefficiente di Poisson

Acciaio barre longitudinali

f_{yk}	450	N/mm ²	tensione caratteristica di snervamento
f_{yd}	391.3	N/mm ²	resistenza di progetto di snervamento

Acciaio staffe

f_{yk}	450	N/mm ²	tensione caratteristica di snervamento
f_{vd}	391.3	N/mm ²	resistenza di progetto di snervamento

Calcoli preliminari

A_{sl}	2654.6	mm ²	area dell'armatura longitudinale
ρι	0.0011		rapporto geometrico d'armatura longitudinale
$\rho_{l,eff}$	0.0011		rapporto considerato nei calcoli
$\sigma_{\rm cp}$	0.000	N/mm ²	tensione media di compressione nella sezione
σ _{cp,eff}	0.000	N/mm ²	tensione media considerata nei calcoli
n_{bw}	1.67		numero di bracci degli spilli (in 1 m)
φst	26	mm	diametro degli spilli
Sst	400	mm	passo degli spilli
A_{sw}	884.9	mm^2	area della singola staffa (è considerato il numero di braccia)

Elemento non armato a taglio

k	1.29	
keff	1.29	
V _{min}	0.26	
$V_{Rd,1}$	522.08	KN
$V_{Rd,2}$	616.46	KN
V _{Rd}	616.46	KN

taglio resistente - valore 1 taglio resistente - valore 2 taglio resistente di calcolo

Elemento armato a taglio

to a tagno		
1.571	rad	inclinazione delle staffe rispetto all'orizzontale
0.384	rad	inclinazione delle bielle compresse rispetto all'asse della trave
7.055	N/mm^2	resistenza a compressione ridotta del cls d'anima
1.000		coefficiente maggiorativo per compressione
35275	KN	sforzo normale di compressione ultimo
0.00		
2.48		
4657.6	KN	taglio resistente relativo alle armature tese
5326.8	KN	taglio resistente relativo alle bielle compresse
4657.6	KN	taglio resistente di calcolo
3421	kN	Taglio di calcolo
ok		_
1.36		Coefficiente di sicurezza
	1.571 0.384 7.055 1.000 35275 0.00 2.48 4657.6 5326.8 4657.6 3421 0k	1.571 rad 0.384 rad 7.055 N/mm² 1.000 35275 KN 0.00 2.48 4657.6 KN 5326.8 KN 4657.6 KN 3421 kN ok

GENERAL CONTRACTOR ITICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

11.5.4 Verifica a taglio-punzonamento

Le verifiche a punzonamento sono state condotte secondo le formulazioni dell'Eurocodice 2, par. 6.4. Il punzonamento può essere determinato dalla reazione concentrata del palo agente su un'area relativamente piccola di plinto.

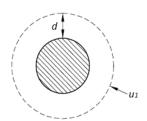
Il procedimento di calcolo per il taglio-punzonamento si fonda sulle verifiche alla faccia del palo e al perimetro di verifica di base u_1 . Si definiscono le seguenti tensioni di taglio di progetto lungo le sezioni di verifica:

- v_{Rd,c}: è il valore di progetto del taglio-punzonamento resistente di una piastra, priva di armature per il taglio-punzonamento, lungo la sezione di verifica considerata;
- v_{Rd,cs}: è il valore di progetto del taglio-punzonamento resistente di una piastra dotata di armature per il taglio-punzonamento, lungo la sezione di verifica considerata.

L'armatura per il taglio-punzonamento non è necessaria se:

$$v_{Ed} \leq v_{Rd,c}$$

Se v_{Ed} supera il valore $v_{Rd,c}$ si deve disporre armatura specifica per il taglio-punzonamento e deve risultare:


$$v_{Ed} \le v_{Rd,cs}$$

La tensione massima di taglio, nel caso generale di reazione d'appoggio eccentrica rispetto al perimetro di verifica, è pari a:

$$v_{Ed} = \beta \, \frac{V_{Ed}}{u_1 d}$$

Dove:

- d è l'altezza utile media della piastra;
- u1 è la lunghezza del perimetro di verifica
- Ved è il taglio agente
- βè un coefficiente assunto pari a 1

Secondo quanto riportato al §6.4.2 dell'Eurocodice 2 il perimetro di verifica di base u₁ può generalmente essere collocato a una distanza par a 2d dall'area caricata. Tuttavia, considerando lo spessore elevato del plinto di fondazione e, a favore di sicurezza, tale perimetro è stato collocato ad una distanza d dal bordo del palo.

La resistenza di progetto a punzonamento $v_{Rd,c}$ per una piastra priva di armatura specifica a taglio è pari a:

$$v_{\text{Rd,c}} = C_{\text{Rd,c}} k (100 \rho_1 f_{\text{ck}})^{1/3} + k_1 \sigma_{\text{cp}} \ge (v_{\text{min}} + k_1 \sigma_{\text{cp}})$$

Dove:

$$- k = 1 + \sqrt{\frac{200}{d}} \le 2.0 d$$

- $ho_l = \sqrt{
ho_{ly} \cdot
ho_{lz}} \le 0.02$, dove ho_{ly} e ho_{lz} sono riferiti all'acciaio teso aderente rispettivamente nelle direzioni y e z.

$$-\sigma_{cv}=0$$

$$-C_{Rd,c} = 0.18/\gamma_c$$

$$-k_1 = 1$$

$$- \nu_{min} = 0.035 \ k^{\frac{3}{2}} \sqrt{f_{ck}}$$

La resistenza di progetto a punzonamento $v_{Rd,cs}$ per una piastra munita di armatura specifica a taglio è pari a:

$$v_{\mathrm{Rd,cs}} = 0.75 \ v_{\mathrm{Rd,c}} + 1.5 \ (\sigma/s_{\mathrm{r}}) \ A_{\mathrm{sw}} \ f_{\mathrm{ywd,ef}} \ (1/(u_{\mathrm{l}}\sigma)) \ \mathrm{sin}\alpha$$

Dove:

- A_{sw} è l'area di armatura a taglio- punzonamento situata su di un perimetro intorno al pilastro;
- s_r è il passo dei perimetri dell'armatura a taglio-punzonamento;
- $f_{ywd,ef}$ è la resistenza di progetto efficace dell'armatura a taglio-punzonamento, secondo la relazione $f_{ywd,ef}=250+0.25d \leq f_{ywd}$;
- α è l'angolo compreso fra l'armatura a taglio e il piano della piastra (pari a 90° nel caso di armatura verticale).

Inoltre, in adiacenza ai pilastri la resistenza a taglio-punzonamento è limitata a un valore massimo di:

ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2CLVI0904001 C

$$v_{\mathsf{Ed}} = \frac{\beta V_{\mathsf{Ed}}}{u_0 d} \le v_{\mathsf{Rd},\mathsf{max}}$$

Dove:

- u₀ è il perimetro del pilastro;
- $v_{Rd,max} = 0.5 v f_{cd}$
- $-v = 0.6 (1 f_{ck}/250)$

La verifica è stata condotta in corrispondenza del palo d'angolo più sollecitato (palo 1), per lo sforzo assiale massimo della combinazione SLV - Treno 1 – Sisma Y prevalente: V_{Ed} = 10198 kN.

Tale sforzo assiale massimo è stato poi ridotto a causa dell'effetto favorevole del peso del plinto di fondazione e del terreno di ricoprimento.

Caratteristiche materiali

Caranerisiic	ne maieriaii		_
Rck	30	N/mm^2	Resistenza caratt. cubica cls
f_{ck}	25	N/mm^2	Resistenza caratt. cilindrica cls
γο	1.5		Coefficiente sicurezza cls
$\tau_{\rm rd}$	0.30	N/mm^2	Resist. unit. a taglio
f_{yk}	450	N/mm^2	Tensione di snervamento acciaio
$\gamma_{\rm s}$	1.15		Coefficiente di sicurezza acciaio

Armatura tesa

Aly	53.09	cm ² /m	Armatura tesa in direzione y (media)
A_{lx}			Armatura tesa in direzione x (media)

Impronta di carico

<u>impronta ai </u>	<u>carico</u>		_
a	75	cm	(a = raggio per sezioni circolari)
h	250	cm	Altezza plinto
d	242	cm	Altezza utile
β	1		Coeff, che tiene conto eccentricità del carico

			_
\mathbf{u}_1	809.76	cm	Perimetro di verifica di base
\mathbf{u}_0	471.24	cm	Perimetro dell'area caricata
k	1.29		Coefficiente
ρ_{l}	0.0016		Percentuale di armatura tesa

Peso del plinto

γcls	25	kN/m³	Peso specifico cls
$h_{plinto} \\$	2.5	m	Altezza plinto
A	10.48	m^2	Area di verifica in corrispondenza del baricentro del plinto
$\Delta V_{sd} \\$	654.7	kN	Riduzione di taglio dovuta al peso proprio del plinto

Peso del rinterro

γterr	19	kN/m³	Peso specifico terreno
$\mathbf{h}_{\mathrm{rint}}$	1	m	Altezza rinterro
A	19.12	m^2	Area di verifica in corrispondenza dell'estradosso del plinto
ΔV_{sd}	363.3	kN	Riduzione di taglio dovuta al peso del rinterro

Tensione massima di taglio

V_{ed}	10198	kN	Reazione agli SLU
V_{ed}	9180	kN	Taglio applicato (ridotto del peso proprio e del rinterro)
V_{ed}	1134	kN/m	Taglio applicato per unità di lunghezza
\mathbf{v}_{ed}	0.47	N/mm^2	Tensione di taglio agente

Resistenza a punzonamento offerta dal solo calcestruzzo immediatamente a ridosso del palo

Ved	0.81	N/mm ²	Tensione di taglio a rifosso del palo
Vrdmax	3.83	N/mm ²	Tensione resistente massima
Verifica	ok		
FS	4.74		

Resistenza a punz. per unità di lungh. senza armatura a taglio

	,		a constant of the constant of
VRd,c	0.26	N/mm^2	Tensione resistente senza armatura a taglio
V _{min}	0.26	N/mm^2	
V_{Rd}	617.69	kN/m	Taglio resistente per unità di lunghezza
Verifica	no		
FS	0.54		

Resistenza a punz. per unità di lungh. con armatura a taglio

fywd,ef	391.30	N/mm ²	Resistenza di progetto efficace dell'armatura a taglio-punzonamento
	90.00	0	Angolo compreso fra l'armatura a taglio e il piano della piastra
α	1.57	rad	

S_{Γ}	400	mm	Passo radiale dei perimetri dell'armatura a taglio-punzonamento
d/s-	6.04		

	Asw min	1531.7	mm^2	Area di armatura minima a taglio-punzonamento di uno strato
--	---------	--------	--------	---

φ	26	mm	Diametro armatura taglio-punzonamento
n ferri	3.75		Numero di ferri in uno strato
A_{sw}	1991.0	mm²	Area di armatura di armatura a taglio-punzonamento di uno strato

VRd,cs	0.55	N/mm ²	Valore di progetto del taglio-punzonamento resistente
VEd	0.47	N/mm^2	Tensione di taglio-punzonamento agente
Verifica	ok		-
FS	1.18		

GENERAL CONTRACTOR IFICAV2	ALTA SORVEG	LFERR		
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI0904001	С

12. Valutazione della accettabilità dei risultati ottenuti (rif.par.10.2 DM 14/01/2008)

Le analisi della struttura sono state condotte con un programma agli elementi finiti (MIDAS).

L'affidabilità del codice di calcolo è confermata dai test di validazione allegati alla release del programma e dalla sua ampia diffusione che lo pone tra i software specialistici standard previsti dalla specifica tecnica Italferr PPA.0002851.

I risultati ottenuti sono stati considerati attendibili dallo scrivente a fronte di verifiche condotte con metodi semplificati o con altri codici di calcolo nonché dal confronto critico con i risultati presentati dai documenti di progettazione definitiva.

Per lo studio dei plinti di fondazione sono stati sviluppati modelli agli elementi finiti a piastra caricati con tutti i carichi analizzati in modo da ottenere, in base alla distibuzione effettiva delle sollecitazioni, la corretta distribuzione di dettaglio delle armature.

Il confronto tra i risultati del PE con quelli del PD è stato criticamente eseguito al fine di validare i valori ottenuti.