COMMITTENTE:

ALTA SORVEGLIANZA:

SCALA

GENERAL CONTRACTOR:

IL PROGETTISTA INTEGRATORE

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO VIADOTTI E PONTI

AV - Viadotto Rio Guà dal km 34+125,75 al km 34+800,75 SCAVI, DEMOLIZIONE, OPERE PROVVISIONALI Relazione di calcolo opere provvisionali

Hs and Hs		On	o Carmon		O 9 C 1	PROGR.	REV.	FOGLIO D D	
		*				VIS	to consc	Drzio Iricav due	
					F	irma	Data		
	ırı	CAV2			Alberto	LEVORATO		Marzo 2022	
Prog	ettazione:								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA	
Α	EMISSIONE	G. Furlani	Aprile	V. Pastore	Aprile 2021	P. Ascari	Aprile	P. Ascari	
	LIVIIOOIOIVE	Gureffe Julani	2021	Whisingfuller	7 (2021	Porb Hari	2021		
	RECEPIMENTO	G. Furlani		V. Pastore		P. Ascari	Marzo	O Marina Constitution	
В	ISTRUTTORIE	Guryfe Judeni	Marzo 2022	Whenisoff Stee	Marzo 2022	Pa de .	2022	Marzo 2022	

DIRETTORE LAVORI

CIG. 8377957CD1

CUP: J41E91000000009

File: IN1712EI2CLVI09C1001B.DOCX

Cod. origine:

Progetto cofinanziato dalla Unione Europea

GENERAL CONTRACTOR

Consorzio

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto IN17 Lotto 12 Codifica Documento El2 CL VI 09 C 1 001 Rev. B Foglio 2 di 75

INDICE

1	PRE	MESSA	3
2	NOR	MATIVA E DOCUMENTI DI RIFERIMENTO	6
	2.1	Normativa di riferimento	6
	2.2	Documenti di riferimento	6
	2.3	Software di riferimento	6
3	CAR	ATTERISTICHE DEI MATERIALI	7
4	ANA	LISI DELLE PARATIE	8
	4.1	Combinazioni e coefficienti parziali	8
	4.2	Caratterizzazione geotecnica dei terreni	9
	4.3	Elementi strutturali	10
	4.4	Carichi applicati	10
	4.5	Stabilità globale	10
	4.6	Sezioni di calcolo	12
	4.7	Discretizzazione di calcolo	12
	4.8	Fasi di calcolo	12
	4.9	Principali risultati delle analisi	16
	4.10	Verifiche di resistenza palancole	20
5	ANA	LISI DI STABILITA'	23
	5.1	Metodologie di calcolo verifica di stabilità	23
	5.2	Carichi	23
	5.3	Sezioni di calcolo	24
	5.4	Caratterizzazione geotecnica dei terreni	24
	5.5	Risultati	25
	5.5.1	Sezione 1	25
	5.5.2	Sezione 2	26
Α	PPEND	ICE A. ANALISI STABILITA'. TABULATI DI CALCOLO SLIDE	27
	Sezion	e 1	27
	Sezion	e 2	35

GENERAL CONTRACTOR	ALTA SO	ORVEG	LIANZA		
	CENTRAL PROPERTY OF THE PARTY O		FERR STATO ITALIANE		
Iricav2					
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
VIOSO - NELAZIONE DI GALGOLO OPERE PROVVISIONALI	IN17	12	El2 CL VI 09 C 1 001	В	3 di 75

1 PREMESSA

La presente relazione sviluppa il dimensionamento, la verifica geotecnica e stabilità strutturale delle paratie provvisorie e degli scavi necessari per la realizzazione delle fondazioni del viadotto VI09C_AV - Viadotto Rio Guà dal km 34+125,75 al km 34+800,75, previsto nell'ambito della linea A.V. / A.C. Torino – Venezia, tratta Verona – Padova, lotto funzionale Verona – Bivio Vicenza.

In particolare si tratta di palancolati metallici posti a presidio dello scavo delle pile 15÷30. Verranno realizzati con profili a doppia onda PU18 disposti planimetricamente sull'intero perimetro delle fondazioni, al fine di consentire lo scavo in sicurezza e limitare i processi di filtrazione idraulica verso l'interno. In relazione alla massima profondità di scavo (-4.0 m dal p.c.) ed al livello di falda presente (+46.0 m s.l.m. a cui corrisponde una soggiacenza minima di circa -3.75 m dal p.c.) si prevedono palancole con lunghezza L=12.0 m, che verranno infisse per almeno 11.0 m.

È inoltre prevista la realizzazione di 2 pozzi di aggottamento per ogni plinto, ubicati all'interno del palancolato. In presenza di terreni granulari permeabili, verranno attivati prima di iniziare lo scavo e consentiranno di mantenere asciutto il fondo scavo durante l'approfondimento, la scapitozzatura dei pali, la posa delle armature e il getto del plinto.

Per le pile 31÷40, poiché il livello di falda di progetto per le opere provvisionali (+46 m s.l.m.) è sotto il fondo scavo e non vi sono interferenze al contorno, si prevedono scavi a cielo aperto con scarpate stabili a pendenza 2 (verticale) / 3 (orizzontale).

Le opere di sostegno in argomento, in accordo al punto 2.4.1 NTC2008, sono da ritenersi opere provvisionali e per esse è omessa la verifica sismica.

Le analisi statiche e le verifiche di seguito esposte hanno consentito di definire le caratteristiche minime di inerzia e resistenza delle opere provvisionali. Tuttavia, si deve tenere presente che nei terreni granulari addensati considerazioni legate a difficoltà di infissione delle palancole possono diventare determinanti nella scelta della sezione. In relazione alle condizioni locali ed alle tecnologie di infissione disponibili in cantiere, si potrebbe verificare la necessità di operare con palancole più 'pesanti', sovradimensionate quindi rispetto alle semplici necessità statiche.

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
	GRUPPO FERROVIE DELLO STATO ITALIANE
Iricav2	
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto Lotto Codifica Documento Rev. Foglio
VIOSC - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN17 12 EI2 CL VI 09 C 1 001 B 4 di 75

Nelle seguenti figure si riportano le sezioni delle opere provvisionali di riferimento per i calcoli di seguito eseguiti.

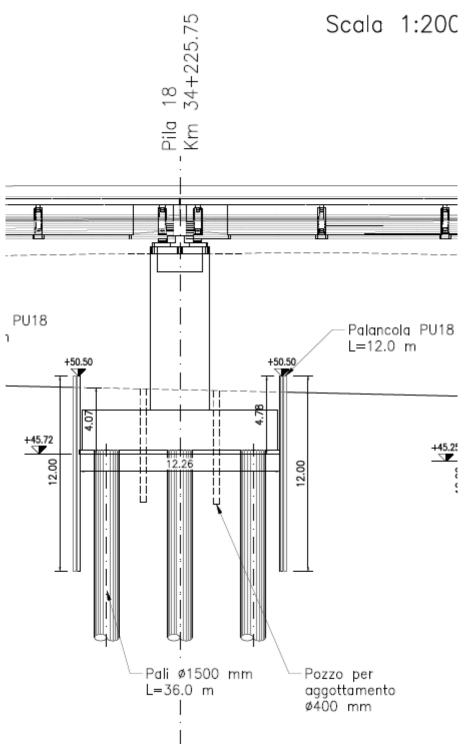


Figura 1 – Sezione longitudinale - Pila P18

GENERAL CONTRACTOR	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
Iricav2	
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto Lotto Codifica Documento Rev. Foglio
VIO9C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN17 12 EI2 CL VI 09 C 1 001 B 5 di 75

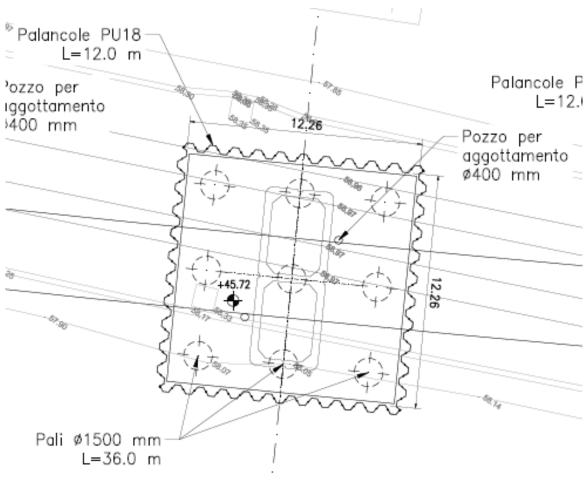


Figura 2 – Pianta - Pila P18

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normativa di riferimento

- [NR 1] D.M. 14/01/2008 "Nuove norme tecniche per le costruzioni".
- [NR 2] UNI EN 1997-1:2005 "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali".
- [NR 3] UNI EN 1998-1:2005 "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- [NR 4] BS 8006:1995 "Code of practice for Strengthened/reinforced soils and other fills".
- [NR 5] UNI EN 1993-5:2006 "Eurocodice 3 Progettazione delle strutture in acciaio-Piling".

2.2 Documenti di riferimento

- [DR 1.] IN1712EI2FZVI09C0001 Profilo Geotecnico AV Viadotto Rio Guà dal km 34+125,75 al km 34+800,75.
- [DR 2.] IN1711EI2RBGE0000004 Relazione Geotecnica Generale (dal km 33+500 al km 44+250).
- [DR 3.] IN1712EI2RBVI09C0001 Relazione Geotecnica AV Viadotto Rio Guà dal km 34+125,75 al km 34+800,75.

2.3 Software di riferimento

Le analisi sono svolte per mezzo dei seguenti programmi di calcolo:

- codice Plaxis 2D 2020 (Delft, Olanda).
- programma di calcolo Slide 2018, prodotto da Rocscience. Validato ed utilizzato in svariati ambiti progettuali (Italferr, Autostrade, ecc.). In accordo a quanto prescritto nel paragrafo 10.2 del D.M. 14/01/2008, il progettista certifica la affidabilità del suddetto codice di calcolo e l'idoneità di utilizzo nel caso specifico.

3 CARATTERISTICHE DEI MATERIALI

Per la realizzazione delle palancole si prevede l'impiego di acciaio S 275 JR - EN 10025-2 (Fe430 B) cui corrisponde una tensione di snervamento fyk = 275 MPa.

Nel presente documento si fa riferimento a palancole con un profilo PU18, le cui caratteristiche geometriche sono riportate sinteticamente nelle seguenti tabelle.

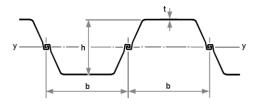


Tabella 1 - Caratteristiche palancole di progetto

Nome	Tipo	Α	b	h	t	S	lу	W _{elx}	W _{plx}	W
(-)	(-)	(m²/m)	(m)	(m)	(m)	(m)	(m ⁴ /m)	(m^3/m)	(m³/m)	(kN/m²)
PU18	U	0.01633	0.6	0.43	0.0112	0.009	0.0003865	0.0018	0.002134	1.26

GENERAL CONTRACTOR ITICAV2		AND ADDRESS OF HEILERS	TAL	FERR TATO ITALIANE		
IIICAVZ						
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI			Lotto	Codifica Documento	Rev.	Foglio
			12	El2 CL VI 09 C 1 001	В	8 di 75

4 ANALISI DELLE PARATIE

4.1 Combinazioni e coefficienti parziali

Le azioni sulle opere di sostegno sono state ricavate mediante lo studio dell'interazione tra l'opera e il terreno e dipendono quindi dallo stato tensionale iniziale in sito, dal regime delle pressioni interstiziali, dalle proprietà meccaniche dei terreni, degli elementi strutturali e dal contatto terra-opera, dalla geometria dell'opera e dalla sequenza costruttiva. Il peso del terreno che interagisce con la paratia e le azioni che da esso derivano sono considerati come azioni permanenti strutturali. Si considera inoltre un sovraccarico accidentale agente sul p.c. circostante che simula la presenza dei mezzi di cantiere.

Le analisi sono state effettuate in conformità al DM 14 gennaio 2008 (Norme Tecniche per le Costruzioni). In particolare la norma prevede tre combinazioni progettuali distinte. La prima combinazione, indicata con la sigla SLE è di riferimento per le verifiche di compatibilità delle deformazioni proprie ed indotte dalle paratie, la seconda combinazione, indicata con la sigla STR, è quella di riferimento per le verifiche di resistenza degli elementi strutturali, la terza, indicata con la sigla GEO, è di riferimento per le verifiche di stabilità geotecnica.

La prima analisi (SLE), volta alla valutazione delle deformazioni della struttura e delle sollecitazioni in esercizio è stata effettuata utilizzando nel modello i parametri caratteristici del terreno ed i valori caratteristici delle azioni.

La seconda analisi (STR) da usare per le verifiche di resistenza strutturale è stata svolta con riferimento all'Approccio 1 - Combinazione 1: A1+M1+R1. Quindi è stata effettuata utilizzando nel modello i parametri caratteristici del terreno ed i valori caratteristici delle azioni permanenti (spinte terreno ed acqua), nonché amplificando le azioni variabili per un coefficiente γ_q^* ($\gamma_q^* = 1.50/1.30 = 1.15$). Il coefficiente amplificativo equivalente del gruppo A1 ($\gamma_q = 1.30$) è stato infine applicato direttamente alle sollecitazioni ricavate dalle analisi, in accordo al paragrafo 6.2.4.1.3 del D.M. 17/01/2018.

Come indicato al par.C.6.5.3.1 della Circolare Ministeriale, per le verifiche di stabilità geotecnica (GEO) si fa riferimento all'Approccio 1 - Combinazione 2: A2+M2+R2. Pertanto, dopo la simulazione di tutte le fasi di scavo, il margine di sicurezza si ricava con un ulteriore passo di calcolo, finalizzato alla ricerca di un meccanismo di collasso del terreno, riducendo progressivamente i parametri di resistenza dopo aver incrementato le azioni permanenti non strutturali e le azioni variabili (sovraccarichi) dei coefficienti parziali (γ_{G2} , γ_{Q}) del gruppo A2. La verifica è soddisfatta se il fattore di riduzione dei parametri risulta non inferiore al prodotto dei coefficienti parziali γ_{M} e γ_{R} .

Nelle seguenti tabelle si riportano i coefficienti parziali indicati dalla normativa (amplificativi per le azioni e riduttivi per i parametri di resistenza del terreno) ed adottati nelle suddette combinazioni di calcolo.

Tabella 2 - Combinazioni per analisi statiche in esercizio (SLE)

	A	Proprietà del				
Peri	manenti	Varia	abili		terreno	(γм)
sfavorevoli	favorevoli	sfavorevoli	favorevoli	tan φ'	c'	cu
1.00 1.00		1.00	1.00	1.00	1.00	1.00

Tabella 3 - Combinazioni per analisi statiche (STR e GEO)

		Az	ioni (γ _F)		Proprie	età del to	erreno	Resistenze (γR)		
	Permanenti		Variabili			(7M)	(111)			
	sfavorevoli	favorevoli st		favorevoli	tan φ'	c'	cu			
STR (A1 + M1 + R1)	1.30	1.00	1.50	0.00	1.00	1.00	1.00	1.00		
GEO $(A2 + M2 + R2)$	1.00	1.00 1.00		0.00	1.25	1.25	1.40	1.10		

4.2 Caratterizzazione geotecnica dei terreni

Per le unità costituenti il terreno esistente si è utilizzato un modello costitutivo elastico-perfettamente-plastico con criterio di rottura alla Mohr-Coulomb.

Nelle seguenti tabelle si riportano, per i litotipi di interesse progettuale, la stratigrafia ed i parametri geotecnici di resistenza e di rigidezza che ne caratterizzano il comportamento numerico.

Tabella 4 – Parametri geotecnici

da	а	Unità	γ	cu	φ'	c'	E'
[m]	[m]	geotecnica	[kN/m³]	[kPa]	[°]	[kPa]	[MPa]
0.0	-12.0	ghiaia	19.0	-	39	0	50
-12.0	-15.0	argilla	18.5	60	27	5	15
-15.0	-20.0	ghiaia	19.0	-	39	0	50
-20.0	-25.0	argilla	18.5	80	27	5	15

Dove:

 γ = peso di volume naturale

φ' = angolo di resistenza al taglio

c' = coesione drenata

E' = modulo di deformazione elastico di Young operativo = Eo / (3÷5)

Cu = resistenza al taglio in condizioni non drenate

GENERAL CONTRACTOR		ALTA SO	ORVEG	LIANZA		
Iricav2		CENTRAL PROPERTY AND ADDRESS OF THE PARTY OF		FERR ITATO ITALIANE		
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI			Lotto	Codifica Documento	Rev.	Foglio
VIU9C - RELAZIONE DI CALCOLO OPE	KE PROVVISIONALI	IN17	12	EI2 CL VI 09 C 1 001	В	10 di 75

La falda, in accordo a quanto indicato nella relazione geotecnica ([DR 3.]) è stata assunta per il calcolo delle opere provvisionali a quota +46.0 m s.l.m..

4.3 Elementi strutturali

Le palancole provvisorie sono state modellate con elementi snelli (tipo beam), con legame costitutivo elastico lineare, aventi modulo di Young dell'acciaio (E=2.1·10⁸ kPa), area e inerzia propria del profilato scelto (vedasi Tabella 1).

Gli elementi strutturali interagiscono con il terreno circostante mediante elementi interfaccia caratterizzati con adesione nulla ed angolo di resistenza al taglio $\delta' = 2/3 \ \phi' \le 20^{\circ}$.

4.4 Carichi applicati

La presenza del sovraccarico accidentale dovuto al transito dei mezzi di cantiere è stata cautelativamente considerata nelle analisi applicando al piano campagna un sovraccarico di 10 kPa, uniformemente distribuito ed infinitamente esteso.

4.5 Stabilità globale

La determinazione del coefficiente di sicurezza avviene mediante un algoritmo iterativo (φ' – c' reduction method, Dawson, Roth and Dresher, 1999) che, sulla base dei dati di partenza (c' e tan φ'), determina successive condizioni di equilibrio del sistema eseguendo, ad ogni ciclo, una progressiva riduzione delle resistenze fino al raggiungimento del collasso (condizione di non equilibrio del sistema):

$$c' prova = c' / FS prova$$

 $\phi' prova = \arctan (\tan \phi' / FS prova)$

In Figura 3 la progressiva riduzione delle resistenze è rappresentata nel piano di Mohr-Coulomb per il singolo elemento di terreno. Si osserva che i parametri di deformabilità non influenzano in maniera apprezzabile i risultati del calcolo e, pertanto, possono essere considerati senza particolari affinamenti.

GENERAL CONTRACTOR		ALTA SO	DRVEG	LIANZA		
Iricav2		GRUPPO FERRO		FERR STATO ITALIANE		
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI			Lotto	Codifica Documento	Rev.	Foglio
VI09C - RELAZIONE DI CALCOLO OPE	RE PROVVISIONALI	IN17	12	EI2 CL VI 09 C 1 001	В	11 di 75

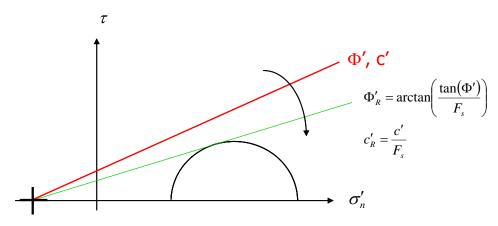


Figura 3 - Phi-c reduction method

Rispetto ai classici metodi dell'equilibrio limite presenta numerosi vantaggi (e.g. Dawson and Roth, 1999, and Cala and Flisiak, 2001):

- le superfici di rottura si propagano in maniera "naturale"; quindi non occorre specificare preventivamente i cinematismi e le potenziali superfici di rottura su cui ricercare il coefficiente di sicurezza minimo;
- non richiede la definizione di ipotesi di calcolo "artificiali" (es. ipotesi sulle forze di interfaccia);
- la metodologia non implica limitazioni sulla forma e la modalità di propagazione delle potenziali superfici di rottura (anche multiple e/o con propagazioni complesse delle zone di snervamento) in funzione delle esigenze del sistema;
- l'interazione con eventuali elementi strutturali vengono modellate in maniera realistica con una mobilitazione delle resistenze in funzione della deformazione relativa rispetto al terreno circostante e non semplicemente mediante forze equivalenti.
- la soluzione converge in un meccanismo che è cinematicamente ammissibile (si noti che i metodi classici dell'equilibrio limite prescindono dalla valutazione degli spostamenti e non richiedono pertanto la conoscenza dei legami tensioni-deformazioni ma del solo criterio di resistenza dei terreni interessati).

Tale analisi di stabilità è generalmente svolta a partire dalla configurazione di progetto maggiormente cautelativa che risulta essere la fase di raggiungimento della massima profondità di scavo.

Tale analisi equivale alla verifica SLU (GEO) prevista dalla normativa vigente: combinazione 2 (A2+M2+R2), in base alla quale la stabilità geotecnica deve essere verificata con i parametri di resistenza del terreno ridotti tramite i coefficienti parziali del gruppo M2 ($\gamma_M = 1.25$ sia per la coesione sia per la resistenza al taglio, $\gamma_R = 1.1$).

Pertanto, per soddisfare le verifiche di stabilità geotecnica richieste dalla normativa occorre avere FS > 1.25 · 1.1 = 1.375.

4.6 Sezioni di calcolo

Si è individuata una sezione di calcolo (Pila 18) cautelativamente rappresentativa per tutti i palancolati dell'opera, che contempla la condizione stratigrafica peggiore e la massima altezza di scavo (4.0 m), vedasi Figura 1 e Figura 2.

4.7 Discretizzazione di calcolo

La mesh è costituita da elementi finiti triangolari a 15 nodi, quindi con funzioni di forma del 4° grado, con 12 punti di integrazione numerica interni per ogni elemento. Le dimensioni della mesh, in relazione alle dimensioni degli scavi, sono sempre sufficienti a garantire che i risultati delle analisi siano indipendenti dalla particolare discretizzazione adottata e sono tali da permettere di vincolare il lato inferiore della mesh bloccando gli spostamenti verticali ed orizzontali ed i lati sinistro e destro bloccando gli spostamenti orizzontali.

Nella seguente immagine si riporta la discretizzazione di calcolo adottata, in cui è evidenziata la successione stratigrafica. Il dominio discretizzato ha una larghezza di 100 m e un'altezza di 25 m circa, è costituito da circa 1860 elementi triangolari e da circa 15490 nodi.

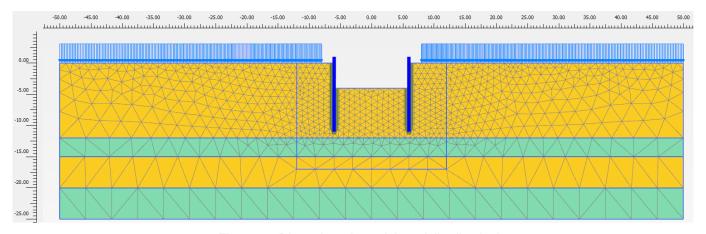


Figura 4 - Discretizzazione del modello di calcolo

4.8 Fasi di calcolo

Il tipo di analisi utilizzato consente di riprodurre nel dettaglio la storia della costruzione di opere geotecniche.

In generale, mediante il codice FEM utilizzato, possono essere schematizzate le paratie contrapposte, l'evoluzione delle condizioni idrauliche al contorno, la variazione delle condizioni di vincolo e di carico.

Le analisi eseguite sono di tipo sequenziale, riproducendo in successione tutte le principali fasi operative previste per la realizzazione dell'opera. Quindi, il termine di ciascuna analisi rappresenta la condizione iniziale per la fase successiva. Le fasi di scavo vengono simulate mediante la disattivazione dei cluster di terreno corrispondenti.

Nelle fasi in cui lo scavo intercetta il livello di falda, il calcolo tenso-deformativo viene fatto procedere dall'analisi 2D di filtrazione per la corretta determinazione delle pressioni neutre in fase di scavo. Tale calcolo idraulico contempla le seguenti condizioni al contorno: sui bordi della discretizzazione del modello di calcolo vengono fissati i valori iniziali delle pressioni neutre; pertanto tali bordi permettono la comunicazione con l'esterno e quindi l'alimentazione del processo di filtrazione; i contorni delle palancole si considerano impermeabili; il piano di scavo viene definito come una superficie drenante in equilibrio con la pressione atmosferica (pressione neutra nulla); viene così simulata l'operazione di emungimento a fondo scavo.

I modelli 2D sviluppati includono tutte le principali fasi esecutive, per i vari stati limite di progetto previsti dalla normativa. Nel seguito si illustrano esclusivamente le fasi di calcolo che riguardano le opere provvisionali. I risultati delle analisi saranno riportati nella sezione successiva.

- Fase 1. Inizializzazione geostatica con presenza della falda di riferimento (corrisponde ad una soggiacenza minima di circa -3.75 m dal p.c.).
- Fase 2. Posa in opera delle palancole.
- Fase 3. Raggiungimento dello scavo massimo (-4.0 m dal p.c.) e contestuale attivazione del sistema di dewatering e mantenimento del livello idrico interno allo scavo a quota fondo scavo. Il mantenimento "all'asciutto" dell'interno della trincea (tramite emungimento) è simulato imponendo la quota del piano libero della falda interno a fondo scavo e operando un'analisi di filtrazione in condizioni stazionarie.
- Fase 4. Applicazione del carico accidentale.
- Fase 5. Amplificazione del carico accidentale (x 1.50/1.30 = 1.15).
- Fase 6. A partire dalla Fase 4, amplificazione del carico accidentale (x 1.30).
- Fase 7. A partire dalla Fase 6 si esegue la verifica di stabilità globale, riducendo progressivamente i parametri di resistenza al taglio dei terreni (φ' -c' reduction method) fino al raggiungimento del coefficiente di sicurezza desiderato, maggiore di 1.375 (FS min = 1.25 x 1.1), in osservanza alla normativa per la verifica SLU GEO (cfr. § 4.5).

Le Fasi 3 e 4 sono rappresentative delle condizioni SLE per la valutazione degli spostamenti.

La Fase 5 è quella di riferimento per le verifiche STR A1+M1 amplificando le sollecitazioni di calcolo ottenute x 1.30. La Fase 7 contempla la verifica di stabilità GEO (A2+M2+R2).

Le principali fasi di calcolo sono rappresentate nelle seguenti immagini.

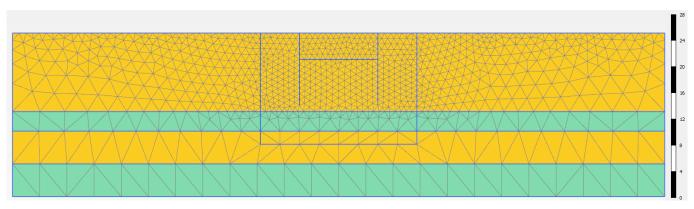


Figura 5 - Inizializzazione geostatica

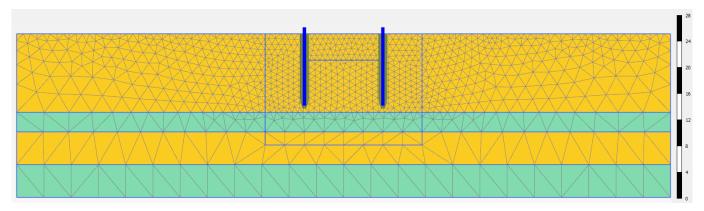


Figura 6 - Realizzazione palancole

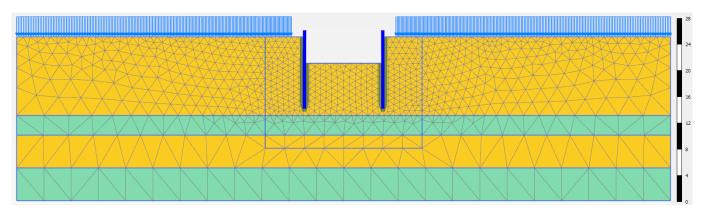


Figura 7 - Scavo massimo e applicazione carico accidentale

GENERAL CONTRACTOR		ALTA SO	DRVEG	LIANZA		
Iricav2		GRUPPO FERROVIE DELLO STATO ITALIANE				
IIICAVZ		Progetto	1 - 11 -	0-16 0	D	F 1' -
VI09C - RELAZIONE DI CALCOLO OPE	VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Lotto	Codifica Documento	Rev.	Foglio
V1000 1122/12/0112 B1 0/120020 01 2	THE THOU VIOLOTULE	IN17	12	EI2 CL VI 09 C 1 001	В	15 di 75

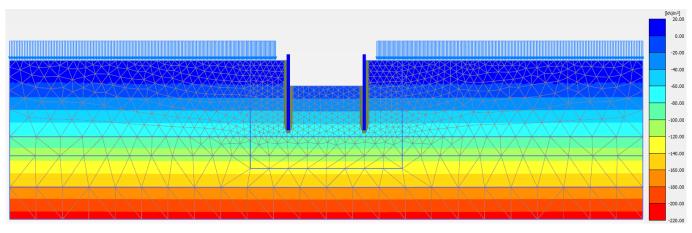


Figura 8 - Pressioni neutre in fase di massimo scavo con carico accidentale

4.9 Principali risultati delle analisi

La sezione di calcolo presenta palancole PU18 di lunghezza 12.0 m a sbalzo, la falda è circa a quota -3.75 m da p.c. e lo scavo massimo risulta a quota -4.0 m da p.c..

Nelle seguenti immagini, per ogni sezione di calcolo, si riporta:

- il campo di spostamenti totali al raggiungimento del fondo scavo massimo;
- gli spostamenti delle palancole in rappresentazione vettoriale;
- le azioni interne di momento flettente, azione assiale e taglio sulle palancole, come inviluppo di tutte le fasi esecutive modellate;
- la tabella riassuntiva delle azioni interne massime nelle palancole;
- evidenza della verifica di stabilità globale.

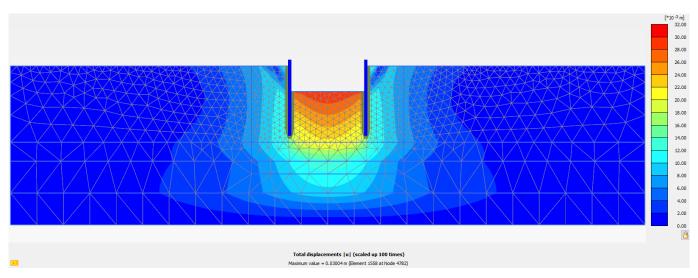


Figura 9 - Spostamenti totali in fase di scavo massimo

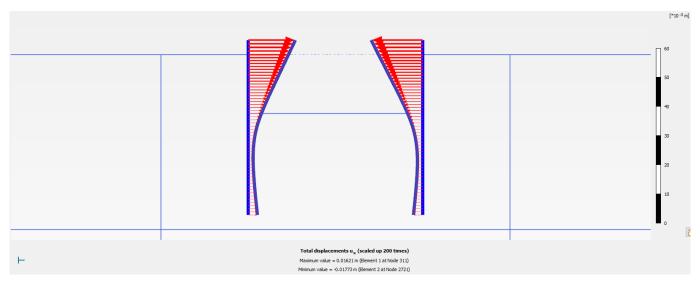


Figura 10 - Spostamenti totali palancole SLE

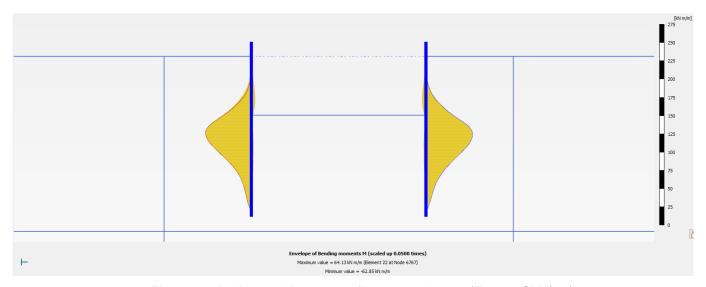


Figura 11 - Inviluppo del momento flettente palancole (Fase 5: SLU/1.3)

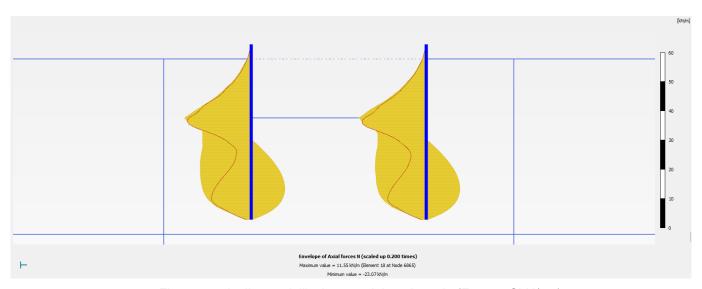


Figura 12 - Inviluppo dell'azione assiale palancole (Fase 5: SLU/1.3)

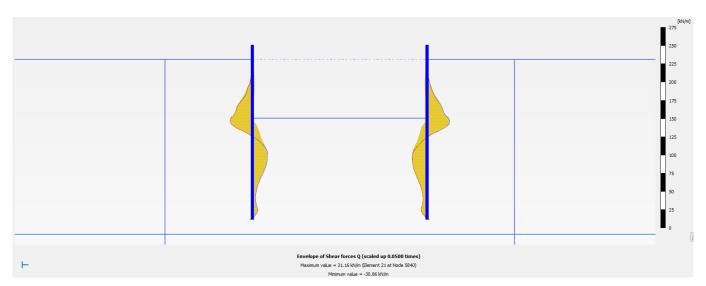


Figura 13 - Inviluppo del taglio palancole (Fase 5: SLU/1.3)

Nella seguente tabella si riportano sinteticamente i massimi risultati in termini di azione interne sulle palancole, finalizzanti le verifiche di resistenza. I valori delle sollecitazioni allo SLU si ottengono amplificando i risultati della fase di calcolo 5 per il coefficiente parziale $\gamma_A = 1.3$, in accordo a quanto esplicitato nel precedente paragrafo 4.8.

Tabella 5 - Sintesi risultati palancole

Paratia di Palancole	Fase 5: SLU/1.3	SLU	
azione assiale massima, Nmax [kN/m]	23.1	30.0	
momento massimo, Mmax [kNm/m]	64.1	83.3	
taglio massimo, Tmax [kN/m]	31.2	40.6	
Spostamento max [mm]	16		

GENERAL CONTRACTOR		ALTA SORVEGLIANZA				
Iricav2		GRUPPO FERROVIE DELLO STATO ITALIANE				
IIICAVZ						
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Progetto	Lotto	Codifica Documento	Rev.	Foglio
		IN17	12	El2 CL VI 09 C 1 001	В	19 di 75

Nelle seguenti immagini si espongono nell'ordine il campo di spostamenti globali e i punti di plasticizzazione ottenuti al termine dell'analisi c- φ -reduction effettuata con la finalità di soddisfare la verifica di stabilità globale dell'opera in condizioni di scavo massimo. Nella successiva immagine si riporta anche il diagramma dell'incremento del fattore di sicurezza con lo spostamento totale di un punto di controllo. Quest'ultimo evidenzia che il fattore di sicurezza alla stabilità globale ottenuto è superiore al minimo imposto dalla normativa, pari a 1.375, pertanto la verifica di stabilità globale è soddisfatta.

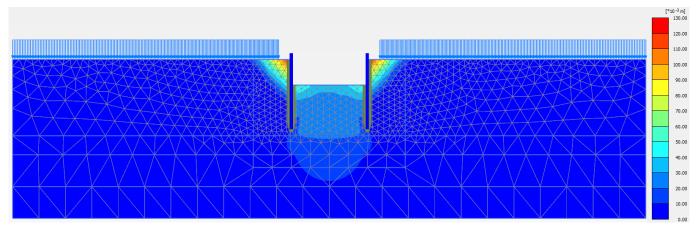


Figura 14 - Individuazione del cinematismo di potenziale instabilità

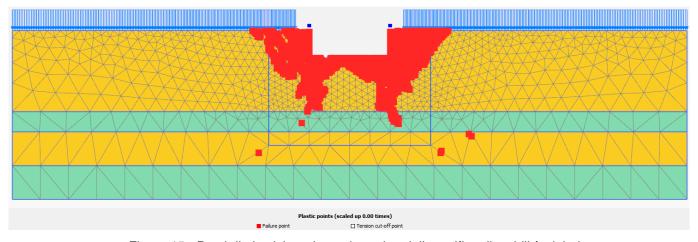


Figura 15 - Punti di plasticizzazione al termine della verifica di stabilità globale

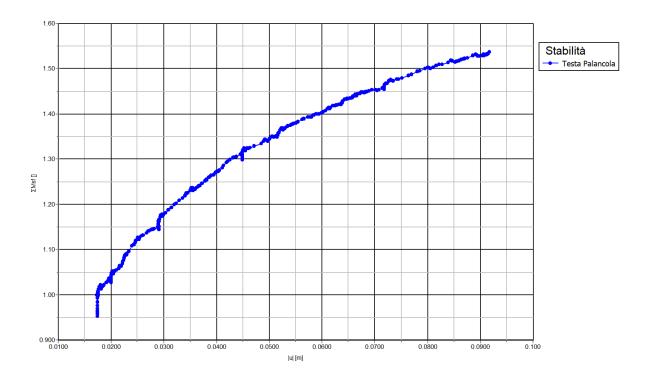


Figura 16 - Sicurezza alla stabilità globale vs spostamento totale del punto di controllo (FS > 1.1 x 1.25 = 1.375)

4.10 Verifiche di resistenza palancole

Per le palancole si adotta la metodologia di verifica in accordo con la normativa italiana vigente (N.T.C.'08) e con l'Eurocodice 3 (EN 1993-5). Per le verifiche si considera cautelativamente per l'acciaio $f_{yk} = 270$ MPa.

Le azioni interne allo stato limite ultimo, N_{Ed}, M_{Ed} and V_{Ed}, sono ottenute dal paragrafo 4.9.

Si determina quindi:

$$M_{Rd} = W_{pl} \cdot f_{yd} \cdot \beta_B$$
 momento resistente di progetto per sezioni di classe 1 e 2

dove:

W_{pl} è il modulo di resistenza plastico

 β_B è un coefficiente riduttivo per palancole a U, dipendente dal numero di palancole interconnesse e dal tipo di suolo

$$V_{Rd} = \frac{A_V \cdot f_{yd}}{\sqrt{3}}$$
 resistenza a taglio di progetto

Se la forza di taglio agente di progetto V_{Ed} è maggiore del 50% della resistenza di progetto V_{Rd} , il momento resistente si riduce secondo la seguente espressione:

GENERAL CONTRACTOR

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto IN17

Lotto 12

Codifica Documento El2 CL VI 09 C 1 001 Rev.

Foglio 21 di 75

$$\boldsymbol{M}_{Rd} = \left(\beta_{B} \cdot W_{pl} - \frac{\rho \cdot A_{V}^{2}}{4 \cdot t_{w} \cdot \sin \alpha}\right) f_{yd}$$

momento resistente ridotto

$$\rho = \left(2V_{Ed}/V_{Rd}-1\right)^2$$

Data l'azione assiale resistente del palancolato $N_{Rd}=A\cdot f_{yd}$, dove A è la sezione resistente, se il rapporto N_{Ed}/N_{Rd} è maggiore di 0.25 per palancole ad U, o maggiore di 0.1 per palancole a Z, il momento resistente si riduce secondo la seguente espressione:

$$\boldsymbol{M}_{N,Rd} = k \cdot \boldsymbol{M}_{Rd} \left(1 - \boldsymbol{N}_{Ed} / \boldsymbol{N}_{Rd} \right) \leq \boldsymbol{M}_{Rd}$$

momento resistente ridotto

dove:

k = 1.33

per palancole ad U

k = 1.11

per palancole a Z

Essendo $N_{Ed} \le N_{Rd}$, $M_{Ed} \le M_{N,Rd} \le M_{Rd}$, $V_{Ed} \le V_{Rd}$, come mostrato nelle seguenti tabelle, la verifica è soddisfatta.

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
	GRUPPO FERROVIE DELLO STATO ITALIANE
Iricav2	
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto Lotto Codifica Documento Rev. Foglio
VIOSC - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN17 12 EI2 CL VI 09 C 1 001 B 22 di 75

Tipo di profilo:	U Z Sheet Pile			
Profilo:	PU 18			
Classe acciaio:	S 270			
f _{yk} =	270	N/mm ²	tensione di snervamento caratteristica	
$\gamma_{m,slu} =$	1.05		fattore parziale	
f _{yd} =	257	N/mm ²	tensione di snervamento di progetto	
N _{Ed} =	30	kN/m	axial load	1
M _{Ed} =	83		r bending moment	1
V _{Ed} =	41	kN/m	shear	
tipo:	2			
classe:	U			
W _{el} =	1800	cm ³ /m	modulo di resistenza elastico - asse forte	
A =	163	cm ² /m	area	
W _{pl} =	2134	cm ³ /m	modulo di resistenza plastico - asse forte	
A _v =	62.8	cm ² /m	area resistente a taglio	
b =	600	mm	larghezza	
h =	430	mm	altezza	
t _w =	9	mm	spessore anima	
t _f =	11.2	mm	spessore ali	
α =	57.5°	deg	inclinazione dell'anima	
β _B =	1.0		coefficiente riduttivo	
n =	0.01		axial load strength ratio	

Tabella 6 - Verifica di resistenza

AZIONI DI PROGETTO			RESISTENZE DI PROGETTO			VERIFICA		
	(F _{Ed})			(F	l₀)		(>1)	
N _{Ed}	M _{Ed}	V _{Ed}	N _{Rd}	M _{Rd}	V_{Rd}	M _{N,Rd}	$(R_d/F_{Ed})_{min}$	
kN/m	kNm/m	kN/m	kN/m	kNm/m	kN/m	kNm/m		
30	83	41	4191	549	933	549	6.59	OK

GENERAL CONTRACTOR		ALTA SO	DRVEG	LIANZA		
Iricav2		GRUPPO FERROVIE DELLO STATO ITALIANE				
IIICAVE		Progetto	1 - 11 -	0-16 0	D	E C -
VI09C - RELAZIONE DI CALCOLO OPE	VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Lotto	Codifica Documento	Rev.	Foglio
VIOSO RELAZIONE DI GALGGEO GI ERE I ROVVIGIONALI		IN17	12	EI2 CL VI 09 C 1 001	В	23 di 75

5 ANALISI DI STABILITA'

Nel presente capitolo si riporta la verifica di stabilità globale della scarpata di scavo provvisionale prevista per la realizzazione delle fondazioni per quanto riguarda le pile 31÷40 comprese.

5.1 Metodologie di calcolo verifica di stabilità

La valutazione dei fattori di sicurezza alla stabilità viene condotta mediante il codice di calcolo SLIDE 18, in cui la ricerca delle superfici critiche viene svolta attraverso la generazione automatica di un elevato numero di superfici di potenziale scivolamento. Il coefficiente di sicurezza a rottura lungo la superficie di scorrimento viene definito come rapporto tra la resistenza al taglio disponibile lungo la superficie e quella effettivamente mobilitata lungo la stessa superficie:

$$FS = \frac{\int_{\text{disp}} \tau_{\text{disp}}}{\int_{\text{nob}} \tau_{\text{mob}}}$$
 coefficiente di sicurezza

In conformità alla normativa vigente (D.M. 14/01/2008 "Norme Tecniche per le costruzioni" – NTC2008), l'analisi di stabilità globale deve svolgersi agli SLU: A2+M2+R2.

Secondo la normativa quindi i parametri di resistenza del terreno devono essere abbattuti a mezzo dei coefficienti parziali di seguito riportati.

 γ_{ϕ} = 1.25 coefficiente parziale per l'angolo di resistenza al taglio

 $\gamma_c = 1.25$ coefficiente parziale per la coesione drenata

L'analisi viene quindi condotta con i seguenti parametri geotecnici di calcolo:

 $tan(\phi'd) = tan(\phi'k) / \gamma_{\phi}$ angolo di resistenza al taglio

 $c'_d = c'_k / \gamma_c$ coesione drenata

Il coefficiente di sicurezza minimo per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo è pari ad 1.1 (γ_R) sia in condizioni statiche, che sismiche. Pertanto il fattore di sicurezza alla stabilità da verificare FS \geq 1.1.

5.2 Carichi

La presenza del sovraccarico accidentale dovuto al transito dei mezzi di cantiere è stata cautelativamente considerata nelle analisi applicando al piano campagna un sovraccarico di 10 kPa, uniformemente distribuito ed infinitamente esteso.

5.3 Sezioni di calcolo

La verifica di stabilità è svolta per 2 sezioni, cautelativamente rappresentative per le varie sezioni di scavo per le opere in progetto, che contemplano le differenti condizioni stratigrafiche e la massima altezza di scavo:

- **Sezione 1:** altezza di scavo di 4.2 m e falda cautelativamente considerata a quota fondo scavo. La sezione di calcolo è rappresentativa per le pile dalla 31 alla 37 (stratigrafia 1).
- Sezione 2. altezza di scavo di 3.5 m e falda cautelativamente considerata a quota fondo scavo. La sezione di calcolo è rappresentativa per le pile dalla 38 alla 40 (stratigrafia 2).

5.4 Caratterizzazione geotecnica dei terreni

Nelle seguenti tabelle si riportano, per le unità geotecniche di interesse progettuale, i parametri geotecnici, per maggiori dettagli si rimanda alla Relazione Geotecnica ([DR 3.]).

Tabella 7 - Stratigrafia 1 e parametri geotecnici per pile 31÷37

da [m]	a [m]	Unità geotecnica	γ [kN/m3]	φ ˈ [°]	c' [kPa]
-0.0	-12.0	ghiaia	19.0	39	0
-12.0	-15.0	argilla	18.5	27	5
-15.0	-20.0	ghiaia	19.0	39	0
-20.0	-25.0	argilla	18.5	27	5
-25.0	-32.0	ghiaia	19.0	39	0
-32.0	-35.0	argilla	18.5	27	5

Tabella 8 - Stratigrafia 2 e parametri geotecnici per pile 38÷40

da [m]	a [m]	Unità geotecnica	γ [kN/m3]	φ ˈ [°]	c' [kPa]
-0.0	-12.0	argilla	18.5	27	5
-12.0	-18.0	ghiaia	19.0	39	0
-18.0	-20.0	argilla	18.5	27	5
-20.0	-28.0	ghiaia	19.0	39	0
-28.0	-31.0	argilla	18.5	27	5
-31.0	-35.0	ghiaia	19.0	39	0

La falda è stata considerata cautelativamente a quota fondo scavo.

5.5 Risultati

Nelle seguenti figure si riportano i risultati della verifica di stabilità nelle sole condizioni statiche SLU in quanto si tratta di opere provvisionali. Il fattore di sicurezza minimo è > 1.1, quindi la verifica di stabilità è soddisfatta, secondo quanto previsto da normativa.

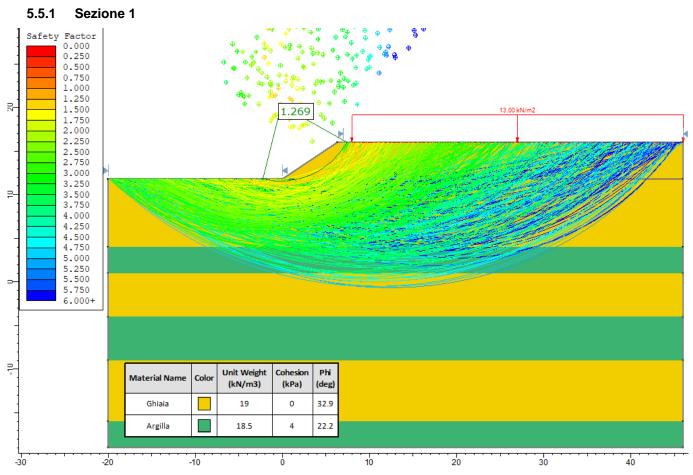


Figura 17 - Sezione 1, Risultati della verifica di stabilità - statica SLU

GENERAL CONTRACTOR		ALTA SO	ORVEG	LIANZA		
		GRUPPO FERROVIE DELLO STATO ITALIANE				
Iric <i>a</i> v2						
VIOOC PELAZIONE DI CALCOLO OPEI	VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Lotto	Codifica Documento	Rev.	Foglio
VIU9C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		IN17	12	EI2 CL VI 09 C 1 001	В	26 di 75

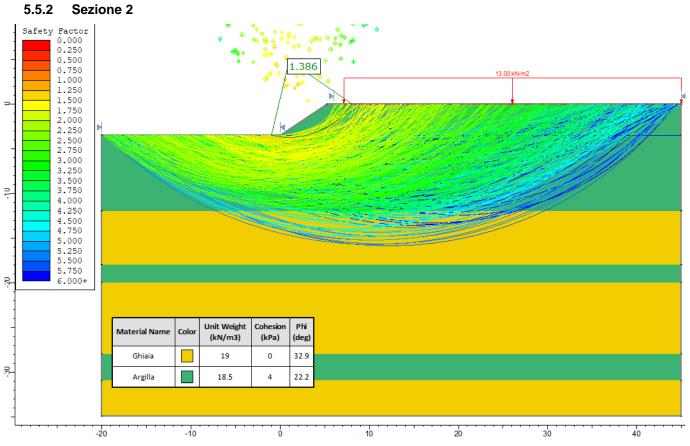


Figura 18 - Sezione 2, Risultati della verifica di stabilità - statica SLU

APPENDICE A. ANALISI STABILITA'. TABULATI DI CALCOLO SLIDE Sezione 1

Slide Analysis Information

VI09C_sez1

Project Summary

File Name: VI09C_sez1.sImd
Slide Modeler Version: 8.021
Compute Time: 00h:00m:00.86s
Project Title: SLIDE - An Interactive Slope Stability Program
Date Created: 26/04/2021, 09:06:10

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Data Output: Standard
Failure Direction: Right to Left

Analysis Options

Slices Type: Vertical

Analysis Methods Used Bishop simplified Number of slices: 50 0.005 Tolerance: Maximum number of iterations: 75 Check malpha < 0.2: Yes Create Interslice boundaries at intersections Yes with water tables and piezos: Initial trial value of FS: 1 Steffensen Iteration: Yes

Groundwater Analysis

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

Lotto

12

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto IN17 Codifica Documento EI2 CL VI 09 C 1 001 Rev. B Foglio 28 di 75

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116
Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Search Method: Slope Search Number of Surfaces: 500 Upper Angle [°]: Not Defined Lower Angle [°]: Not Defined Composite Surfaces: Disabled Reverse Curvature: **Invalid Surfaces** Minimum Elevation: Not Defined Minimum Depth: Not Defined Not Defined Minimum Area: Minimum Weight: Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

• 1 Distributed Load present

Distributed Load 1

Distribution: Constant
Magnitude [kPa]: 13
Orientation: Normal to boundary

GENERAL CONTRACTOR ALTA SORVEGLIANZA FORMAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE VIO9C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI Progetto Lotto Codifica Documento Rev. Foglio

IN17

12

29 di 75

В

EI2 CL VI 09 C 1 001

Materials

Property	Ghiaia	Argilla
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	19	18.5
Cohesion [kPa]	0	4
Friction Angle [°]	32.9	22.2
Water Surface	Water Table	Water Table
Hu Value	1	1

Global Minimums

Method: bishop simplified

FS	1.268620
Center:	-0.163, 20.285
Radius:	8.736
Left Slip Surface Endpoint:	-2.243, 11.800
Right Slip Surface Endpoint:	7.451, 16.000
Resisting Moment:	1001.78 kN-m
Driving Moment:	789.662 kN-m
Total Slice Area:	10.4997 m2
Surface Horizontal Width:	9.69393 m
Surface Average Height:	1.08312 m

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 495 Number of Invalid Surfaces: 5

Error Codes:

- O Error Code -113 reported for 4 surfaces
- O Error Code -114 reported for 1 surface

Error Codes

 $\label{thm:computation:thm:computation:} The \textit{ following errors were encountered during the computation:}$

IN17

12

30 di 75

В

EI2 CL VI 09 C 1 001

- -113 = Surface intersects outside slope limits.
- -114 = Surface with Reverse Curvature.

Slice Data

• Global Minimum Query (bishop simplified) - Safety Factor: 1.26862 Angle Base

Slice Numbe r	Width [m]	Weight [kN]	of Slice Base [degrees	Base Materia I	Base Cohesio n [kPa]	Friction Angle [degrees	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.19815 4	0.086875 9	-13.1106	Ghiaia	0	32.9	0.12271 2	0.15567 5	0.46693 7	0.22629 9	0.24063 8	0.43835 7	0.21205 8
2	0.19815 4	0.25154	-11.7796	Ghiaia	0	32.9	0.35030 2	0.4444	1.34229	0.65535 4	0.68693 9	1.26924	0.61388 7
3	0.19815 4	0.39816	-10.4551	Ghiaia	0	32.9	0.54699 3	0.69392 6	2.11004	1.03739	1.07265	2.00911	0.97171 6
4	0.19815 4	0.526981	-9.13616	Ghiaia	0	32.9	0.71444 6	0.90636 1	2.77408	1.37305	1.40103	2.65918	1.28613
5	0.19815 4	0.638214	-7.82212	Ghiaia	0	32.9	0.85414 9	1.08359	3.33785	1.66288	1.67497	3.22051	1.55763
6	0.19815 4	0.732038	-6.51221	Ghiaia	0	32.9	0.96742 1	1.22729	3.80446	1.90736	1.8971	3.69402	1.78666
7	0.19815 4	0.808602	-5.20572	Ghiaia	0	32.9	1.05546	1.33898	4.17661	2.10686	2.06975	4.08045	1.97359
8	0.19815 4	0.868029	-3.90193	Ghiaia	0	32.9	1.11936	1.42004	4.45675	2.2617	2.19505	4.3804	2.1187
9	0.19815 4	0.910411	-2.60017	Ghiaia	0	32.9	1.16008	1.4717	4.64703	2.37213	2.2749	4.59435	2.22222
10	0.19815 4	0.935814	-1.29975	Ghiaia	0	32.9	1.1785	1.49507	4.74935	2.43832	2.31103	4.72261	2.28429
11	0.19815 4	0.944278	0	Ghiaia	0	32.9	1.17543	1.49118	4.76539	2.46038	2.30501	4.76539	2.30501
12	0.19815 4	1.05033	1.29975	Ghiaia	0	32.9	1.44295	1.83056	5.26794	2.43832	2.82962	5.30068	2.86236
13	0.19815 4	1.4966	2.60017	Ghiaia	0	32.9	2.58218	3.2758	7.43576	2.37213	5.06363	7.55302	5.18089
14	0.19815 4	1.95157	3.90193	Ghiaia	0	32.9	3.73927	4.74371	9.59434	2.2617	7.33264	9.84939	7.58769
15	0.19815 4	2.3895	5.20572	Ghiaia	0	32.9	4.85019	6.15305	11.618	2.10686	9.51118	12.0599	9.95307
16	0.19815 4	2.81029	6.51221	Ghiaia	0	32.9	5.91607	7.50525	13.5087	1.90736	11.6013	14.184	12.2767
17	0.19815 4	3.21382	7.82212	Ghiaia	0	32.9	6.93792	8.80159	15.2681	1.66288	13.6052	16.2212	14.5583
18	0.19815 4	3.59994	9.13616	Ghiaia	0	32.9	7.91663	10.0432	16.8974	1.37305	15.5243	18.1706	16.7975
19	4	3.96847	10.4551	Ghiaia	0	32.9	8.85285	11.2309	18.3977	1.03739	17.3603	20.0313	18.9939
20	0.19815 4	4.31921	11.7796	Ghiaia	0	32.9	9.74728	12.3656	19.7696	0.65535 4	19.1142	21.8023	21.1469
21	0.19815 4	4.6519	13.1106	Ghiaia	0	32.9	10.6003	13.4478	21.0135	0.22629 9	20.7872	23.4823	23.256
22	0.19078 3	4.77624	14.4237	Ghiaia	0	32.9	11.2894	14.322	22.1385	0	22.1385	25.0421	25.0421

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

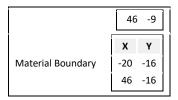
Progetto Lotto Codifica Documento Rev. Foglio
IN17 12 EI2 CL VI 09 C 1 001 B 31 di 75

23	0.19078 3	5.05102	15.7196	Ghiaia	0	32.9	11.8101	14.9825	23.1594	0	23.1594	26.4834	26.4834
24	0.19078	5.30887	17.0239	Ghiaia	0	32.9	12.2778	15.5759	24.0767	0	24.0767	27.836	27.836
25	0.19078	5.54944	18.3372	Ghiaia	0	32.9	12.6931	16.1027	24.8911	0	24.8911	29.098	29.098
26	0.19078	5.77233	19.6607	Ghiaia	0	32.9	13.0561	16.5632	25.6029	0	25.6029	30.2675	30.2675
27	0.19078	5.97714	20.9951	Ghiaia	0	32.9	13.3669	16.9575	26.2124	0	26.2124	31.3421	31.3421
28	0.19078	6.16337	22.3417	Ghiaia	0	32.9	13.6256	17.2857	26.7196	0	26.7196	32.3195	32.3195
29	0.19078	6.33051	23.7013	Ghiaia	0	32.9	13.832	17.5476	27.1245	0	27.1245	33.1967	33.1967
30	0.19078	6.47796	25.0753	Ghiaia	0	32.9	13.9861	17.743	27.4265	0	27.4265	33.9707	33.9707
31	0.19078	6.60507	26.4649	Ghiaia	0	32.9	14.0874	17.8716	27.6252	0	27.6252	34.6382	34.6382
32		6.71112	27.8715	Ghiaia	0	32.9	14.1356	17.9327	27.7197	0	27.7197	35.1951	35.1951
33	0.19078	6.79528	29.2966	Ghiaia	0	32.9	14.1302	17.9258	27.709	0	27.709	35.6374	35.6374
34	0.19078	6.85666	30.7418	Ghiaia	0	32.9	14.0704	17.85	27.5919	0	27.5919	35.9602	35.9602
35	0.19078	6.89422	32.2092	Ghiaia	0	32.9	13.9556	17.7043	27.3667	0	27.3667	36.1581	36.1581
36	0.19078	6.90682	33.7006	Ghiaia	0	32.9	13.7847	17.4876	27.0317	0	27.0317	36.2252	36.2252
37		6.89316	35.2184	Ghiaia	0	32.9	13.5568	17.1984	26.5847	0	26.5847	36.1545	36.1545
38	0.19078	6.85176	36.7652	Ghiaia	0	32.9	13.2706	16.8353	26.0233	0	26.0233	35.9384	35.9384
39	0.19078	6.78095	38.3438	Ghiaia	0	32.9	12.9245	16.3963	25.3447	0	25.3447	35.568	35.568
40	0.19078	6.67877	39.9577	Ghiaia	0	32.9	12.517	15.8793	24.5457	0	24.5457	35.033	35.033
41	0.19078	6.54298	41.6107	Ghiaia	0	32.9	12.0463	15.2822	23.6226	0	23.6226	34.3218	34.3218
42		6.37098	43.3072	Ghiaia	0	32.9	11.5101	14.602	22.5713	0	22.5713	33.4206	33.4206
43	0.19078	6.15967	45.0525	Ghiaia	0	32.9	10.9063	13.8359	21.387	0	21.387	32.3133	32.3133
44	0.19078	5.90518	46.853	Ghiaia	0	32.9	10.2314	12.9798	20.0637	0	20.0637	30.9793	30.9793
45	0.19078	5.35903	48.7161	Ghiaia	0	32.9	9.0697	11.506	17.7855	0	17.7855	28.1152	28.1152
46	0.19078	4.54348	50.651	Ghiaia	0	32.9	7.4946	9.5078	14.6968	0	14.6968	23.8375	23.8375
47	0.19078	3.66835	52.6695	Ghiaia	0	32.9	5.8819	7.46189	11.5343	0	11.5343	19.2469	19.2469
48	0.19078	2.72502	54.7862	Ghiaia	0	32.9	4.2329	5.36994	8.30068	0	8.30068	14.2981	14.2981
49	0.19078	1.70221	57.0206	Ghiaia	0	32.9	2.55047	3.23558	5.00144	0	5.00144	8.93192	8.93192
50		0.584665	59.399	Ghiaia	0	32.9	0.84014	1.06582	1.64751	0	1.64751	3.06806	3.06806

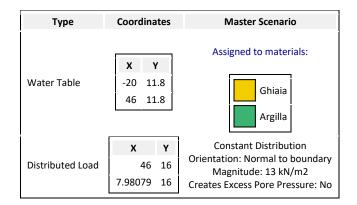
Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.26862							
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]		
1	-2.24337	11.8	0	0	0		
2	-2.04522	11.7538	0.045805	0	0		
3	-1.84707	11.7125	0.170514	0	0		
4	-1.64891	11.676	0.355788	0	0		
5	-1.45076	11.6441	0.585411	0	0		
6	-1.25261	11.6169	0.845107	0	0		
7	-1.05445	11.5943	1.12239	0	0		
8	-0.856299	11.5762	1.40641	0	0		
9	-0.658145	11.5627	1.68791	0	0		
10	-0.459992	11.5537	1.95903	0	0		
11	-0.261838	11.5492	2.21333	0	0		
12	-0.0636847	11.5492	2.44567	0	0		
13	0.134469	11.5537	2.70721	0	0		
14	0.332622	11.5627	3.1507	0	0		
15	0.530776	11.5762	3.76014	0	0		
16	0.728929	11.5943	4.50911	0	0		
17	0.927083	11.6169	5.37294	0	0		
18	1.12524	11.6441	6.3287	0	0		
19	1.32339	11.676	7.35505	0	0		
20	1.52154	11.7125	8.43223	0	0		
21	1.7197	11.7538	9.54198	0	0		
22	1.91785	11.8	10.6675	0	0		
23	2.10863 2.29942	11.8491 11.9028	11.7297 12.7337	0	0		
25	2.4902	11.9612	13.6639	0	0		
26	2.68098	12.0244	14.5056	0	0		
27	2.87177	12.0926	15.2452	0	0		
28	3.06255	12.1658	15.8699	0	0		
29	3.25333	12.2442	16.368	0	0		
30	3.44412	12.328	16.7286	0	0		
31	3.6349	12.4172	16.942	0	0		
32	3.82568	12.5122	16.9993	0	0		
33	4.01646	12.6131	16.8927	0	0		
34	4.20725	12.7201	16.6157	0	0		
35	4.39803	12.8336	16.1627	0	0		
36	4.58881	12.9538	15.5295	0	0		
37	4.7796	13.081	14.7134	0	0		
38	4.97038	13.2157	13.7131	0	0		
39	5.16116	13.3582	12.5292	0	0		
40	5.35195	13.5092	11.1642	0	0		
41	5.54273	13.669	9.62276	0	0		
42	5.73351	13.8385	7.91249	0	0		
43	5.9243	14.0183	6.04401	0	0		
44	6.11508	14.2094	4.03183	0	0		

45	6.30586	14.413	1.89522	0	0
46	6.49665	14.6302	-0.243269	0	0
47	6.68743	14.8629	-2.23669	0	0
48	6.87821	15.1131	-4.00275	0	0
49	7.06899	15.3834	-5.44097	0	0
50	7.25978	15.6774	-6.42607	0	0
51	7.45056	16	0	0	0


Entity Information

Group: Group 1


Shared Entities

Туре	Coc	oordinates			
	Х		Υ		
	-2	0 1	1.8		
	-2	0	4		
	-2	0	1		
	-2	0	-4		
	-2	0	-9		
	-2	0	-16		
	-2	0	-19		
External Boundary	4	6	-19		
	4	6	-16		
	4	6	-9		
	4	6	-4		
	4	6	1		
	4	6	4		
	4		16		
	6.		16		
		0 1	1.8		
		X	Υ		
Material Boundary	Ì	-20	4		
	Ĺ	46	4		
		X	Y		
Material Boundary	ĺ	-20	1		
	Ĺ	46	1		
		Х	Υ		
Material Boundary	ĺ	-20	-4		
		46	-4		
Material Boundary		Х	Υ		
iviaterial Boundary		-20	-9		

Scenario-based Entities

ALTA SORVEGLIANZA FOR PROVIE DELLO STATO ITALIANE VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI Progetto IN17 12 E12 CL VI 09 C 1 001 B 35 di 75

Sezione 2

Slide Analysis Information

VI09C_sez2

Project Summary

File Name: VIO9C_sez2.sImd
Slide Modeler Version: 8.021
Compute Time: 00h:00m:00.84s
Project Title: SLIDE - An Interactive Slope Stability Program
Date Created: 26/04/2021, 10:29:19

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Data Output: Standard
Failure Direction: Right to Left

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified Number of slices: 50 Tolerance: 0.005 Maximum number of iterations: 75 Check malpha < 0.2: Yes Create Interslice boundaries at intersections with water tables and piezos:

Initial trial value of FS: 1
Steffensen Iteration: Yes

Groundwater Analysis

Groundwater Method: Water Surfaces

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

Lotto

12

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto IN17 Codifica Documento El2 CL VI 09 C 1 001 Rev. B Foglio 36 di 75

Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Search Method: Slope Search Number of Surfaces: 500 Upper Angle [°]: Not Defined Not Defined Lower Angle [°]: Composite Surfaces: Disabled Reverse Curvature: **Invalid Surfaces** Minimum Elevation: Not Defined Not Defined Minimum Depth: Minimum Area: Not Defined Minimum Weight: Not Defined

Seismic Loading

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

• 1 Distributed Load present

Distributed Load 1

Distribution: Constant
Magnitude [kPa]: 13
Orientation: Normal to boundary

Materials

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto Lotto IN17 12

Codifica Documento EI2 CL VI 09 C 1 001 Rev. В

Foglio 37 di 75

Property	Ghiaia	Argilla
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	19	18.5
Cohesion [kPa]	0	4
Friction Angle [°]	32.9	22.2
Water Surface	Water Table	Water Table
Hu Value	1	1

Global Minimums

Method: bishop simplified

FS	1.386320
Center:	1.011, 4.867
Radius:	8.605
Left Slip Surface Endpoint:	-0.998, -3.500
Right Slip Surface Endpoint:	8.107, 0.000
Resisting Moment:	1208.08 kN-m
Driving Moment:	871.424 kN-m
Total Slice Area:	13.2929 m2
Surface Horizontal Width:	9.1051 m
Surface Average Height:	1.45994 m

Valid/Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: Number of Invalid Surfaces:

Error Codes:

- Error Code -113 reported for 4 surfaces
- Error Code -114 reported for 1 surface

Error Codes

The following errors were encountered during the computation:

-113 = Surface intersects outside slope limits.

GENERAL CONTRACTOR	ALTA S	ORVEG	LIANZA		
	CALL SALES OF THE PARTY OF THE		FERR STATO ITALIANE		
Iricav2					
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Lotto	Codifica Documento	Rev.	Foglio
		12	El2 CL VI 09 C 1 001	В	38 di 75

○ -114 = Surface with Reverse Curvature.

Slice Data

Slice Numbe r	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Materia I	Base Cohesio n [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strengt h [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.18264 6	0.070554 6	-12.8791	Argilla	4	22.2	3.1504 9	4.36758	1.1055 1	0.20477	0.90073 4	0.3851	0.18038
2	0.18264 6	0.204644	-11.6344	Argilla	4	22.2	3.2361 2	4.4863	1.7857	0.59407	1.19163	1.1193 9	0.52532
3	0.18264 6	0.324786	-10.3953	Argilla	4	22.2	3.3096 9	4.58829	2.3844 4	0.94287 6	1.44156	1.7772 8	0.83440 1
4	0.18264 6	0.431157	-9.16103	Argilla	4	22.2	3.3715 8	4.67408	2.9034 9	1.2517	1.65179	2.3597 7	1.10807
5	0.18264 6	0.523909	-7.93108	Argilla	4	22.2	3.4221 1	4.74414	3.3444 4	1.52098	1.82346	2.8676 9	1.34671
6	0.18264 6	0.66179	-6.70479	Argilla	4	22.2	3.5594 5	4.93454	4.0411 3	1.75111	2.29002	3.6226 9	1.87158
7	0.18264 6	1.0944	-5.48158	Argilla	4	22.2	4.1957 4	5.81664	6.3939 3	1.9424	4.45153	5.9912 9	4.04889
8	0.18264 6	1.55844	-4.26088	Argilla	4	22.2	4.8873 5	6.77543	8.8961	2.09512	6.80098	8.5319 8	6.43686
9	0.18264 6	2.00926	-3.04211	Argilla	4	22.2	5.5601 1	7.70809	11.295 9	2.20948	9.08641	11.000 4	8.79092
10	0.18264 6	2.44692	-1.82472	Argilla	4	22.2	6.2144 2	8.61517	13.594 8	2.28563	11.3091	13.396 8	11.1112
11	0.18264 6	2.87146	- 0.608147	Argilla	4	22.2	6.8506 3	9.49717	15.794 1	2.32368	13.4704	15.721 4	13.3977
12	0.18264 6	3.2829	0.608147	Argilla	4	22.2	7.4690 7	10.3545	17.894 9	2.32368	15.5713	17.974 2	15.6505
13	0.18264 6	3.68123	1.82472	Argilla	4	22.2	8.07	11.1876	19.898 3	2.28563	17.6127	20.155 4	17.8698
14	0.18264 6	4.06643	3.04211	Argilla	4	22.2	8.6536 4	11.9967	21.804 8	2.20948	19.5953	22.264 7	20.0552
15	0.18264 6	4.43847	4.26088	Argilla	4	22.2	9.2202	12.7821	23.615 1	2.09512	21.52	24.302 1	22.2069
16	0.18264 6	4.79731	5.48158	Argilla	4	22.2	9.7698 3	13.5441	25.329 5	1.9424	23.3871	26.267 1	24.3247
17	0.18264 6	5.14285	6.70479	Argilla	4	22.2	10.302 7	14.2828	26.948 2	1.75111	25.1971	28.159 4	26.4083
18	0.18264 6	5.47502	7.93108	Argilla	4	22.2	10.818 7	14.9982	28.471 3	1.52098	26.9503	29.978 5	28.4575
19	0.18264 6	5.7937	9.16103	Argilla	4	22.2	11.318 2	15.6906	29.898 6	1.2517	28.6469	31.723 8	30.4721
20	0.18264 6	6.09877	10.3953	Argilla	4	22.2	11.800 9	16.3598	31.229 7	0.94287 6	30.2869	33.394 6	32.4517
21	0.18264 6	6.39006	11.6344	Argilla	4	22.2	12.267	17.006	32.464 3	0.59407	31.8702	34.99	34.396
22	0.18264 6	6.6674	12.8791	Argilla	4	22.2	12.716 4	17.629	33.601 5	0.20477 3	33.3968	36.509 1	36.3043

GENERAL CONTRACTOR

ALTA SORVEGLIANZA

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

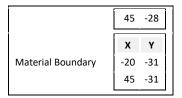
Progetto Lotto Codifica Documento Rev. Foglio
IN17 12 EI2 CL VI 09 C 1 001 B 39 di 75

23	0.18167 5	6.8931	14.1266	Argilla	4	22.2	13.086 4	18.1419	34.653 6	0	34.6536	37.947 1	37.9471
24	0.18167	7.13936	15.3777	Argilla	4	22.2	13.372 5	18.5385	35.625 5	0	35.6255	39.303 3	39.3033
25	0.18167 5	7.37124	16.6364	Argilla	4	22.2	13.631 9	18.8982	36.506 9	0	36.5069	40.580 2	40.5802
26	0.18167	7.58845	17.9033	Argilla	4	22.2	13.864 6	19.2208	37.297 4	0	37.2974	41.776 5	41.7765
27	0.18167 5	7.7907	19.1794	Argilla	4	22.2	14.070 3	19.506	37.996 2	0	37.9962	42.890 3	42.8903
28	0.18167 5	7.97764	20.4655	Argilla	4	22.2	14.248 7	19.7533	38.602 4	0	38.6024	43.92	43.92
29	0.18167 5	8.14889	21.7624	Argilla	4	22.2	14.399 6	19.9625	39.114 9	0	39.1149	44.863 3	44.8633
30	0.18167	8.30404	23.0712	Argilla	4	22.2	14.522 5	20.1328	39.532 3	0	39.5323	45.718	45.718
31	0.18167	8.44262	24.3928	Argilla	4	22.2	14.617	20.2638	39.853 1	0	39.8531	46.481 5	46.4815
32	0.18167 5	8.56413	25.7284	Argilla	4	22.2	14.682 5	20.3546	40.075 8	0	40.0758	47.151	47.151
33	0.18167 5	8.66799	27.0792	Argilla	4	22.2	14.718 5	20.4046	40.198 3	0	40.1983	47.723 4	47.7234
34	0.18167 5	8.75357	28.4465	Argilla	4	22.2	14.724 5	20.4128	40.218 3	0	40.2183	48.195 2	48.1952
35	0.18167 5	8.71337	29.8317	Argilla	4	22.2	14.551 3	20.1728	39.630 2	0	39.6302	47.974 5	47.9745
36	0.18167 5	8.3686	31.2365	Argilla	4	22.2	13.957 2	19.3492	37.612	0	37.612	46.076 9	46.0769
37	0.18167 5	7.98771	32.6624	Argilla	4	22.2	13.318 6	18.4638	35.442 5	0	35.4425	43.980 5	43.9805
38	0.18167 5	7.5852	34.1115	Argilla	4	22.2	12.656 2	17.5456	33.192 4	0	33.1924	41.765	41.765
39	0.18167 5	7.15994	35.5859	Argilla	4	22.2	11.969 5	16.5935	30.859 4	0	30.8594	39.424 2	39.4242
40	0.18167 5	6.71068	37.0879	Argilla	4	22.2	11.257 5	15.6065	28.441	0	28.441	36.951 2	36.9512
41	0.18167 5	6.23599	38.6204	Argilla	4	22.2	10.519 6	14.5836	25.934 4	0	25.9344	34.338 2	34.3382
42	0.18167 5	5.73421	40.1864	Argilla	4	22.2	9.7549 1	13.5234	23.336 4	0	23.3364	31.576	31.576
43	0.18167 5	5.20346	41.7895	Argilla	4	22.2	8.9623 2	12.4246	20.644	0	20.644	28.654 2	28.6542
44	0.18167 5	4.64154	43.4338	Argilla	4	22.2	8.1408 2	11.2858	17.853 3	0	17.8533	25.560 7	25.5607
45	0.18167 5	4.04586	45.1241	Argilla	4	22.2	8.4097	11.6585	18.766 7	0	18.7667	27.212 9	27.2129
46	0.18167 5	3.41337	46.8661	Argilla	4	22.2	9.3193 6	12.9196	21.856 9	0	21.8569	31.803 9	31.8039
47	0.18167 5	2.74039	48.6667	Argilla	4	22.2	8.3591 8	11.5885	18.595 1	0	18.5951	28.099	28.099
48	0.18167 5	2.02246	50.5343	Argilla	4	22.2	7	10.2052	15.205 4	0	15.2054	24.146 4	24.1464
49	0.18167 5	1.25407	52.4791	Argilla	4	22.2	6.3237 9	8.76679	11.680 6	0	11.6806	19.915 7	19.9157
50	0.18167 5	0.428246	54.5143	Argilla	4	22.2	5.2441	7.27	8.0128 9	0	8.01289	15.368 7	15.3687

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.38632										
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]					
1	-0.99838	-3.5	0	0	0					
2	-0.815734	-3.54176	0.620687	0	0					
3	-0.633088	-3.57937	1.27798	0	0					
4	-0.450442	-3.61287	1.96142	0	0					
5	-0.267796	-3.64233	2.66178	0	0					
6	-0.0851502	-3.66777	3.37093	0	0					
7	0.0974956	-3.68924	4.1068	0	0					
8	0.280142	-3.70677	4.984	0	0					
9	0.462787	-3.72038	5.99631	0	0					
10	0.645433	-3.73009	7.1199	0	0					
11	0.828079	-3.73591	8.33226	0	0					
12	1.01072	-3.73784	9.61215	0	0					
13	1.19337	-3.73591	10.9395	0	0					
14	1.37602	-3.73009	12.2954	0	0					
15	1.55866	-3.72038	13.6618	0	0					
16	1.74131	-3.70677	15.0218	0	0					
17	1.92395	-3.68924	16.3595	0	0					
18	2.1066	-3.66777	17.6596	0	0					
19	2.28925	-3.64233	18.9081	0	0					
20	2.47189	-3.61287	20.0914	0	0					
21	2.65454	-3.57937	21.197	0	0					
22	2.83718	-3.54176	22.2131	0	0					
23	3.01983	-3.5	23.1289	0	0					
24	3.2015	-3.45428	23.9181	0	0					
25	3.38318	-3.40431	24.5637	0	0					
26	3.56485	-3.35003	25.0546	0	0					
27	3.74653	-3.29134	25.3805	0	0					
28	3.9282	-3.22814	25.5316	0	0					
29	4.10988	-3.16034	25.4989	0	0					
30	4.29155	-3.08782	25.274	0	0					
31	4.47323	-3.01043	24.8491	0	0					
32	4.6549	-2.92805	24.2172	0	0					
33	4.83658	-2.8405	23.372	0	0					
34	5.01825	-2.74762	22.308	0	0					
35	5.19993	-2.6492	21.0205	0	0					
36	5.3816	-2.54502	19.5313	0	0					
37	5.56328	-2.43483	17.9187	0	0					
38	5.74495	-2.31837	16.2068	0	0					
39	5.92663	-2.19531	14.4179	0	0					
40	6.1083	-2.06531	12.5774	0	0					
41	6.28998	-1.92797	10.7133	0	0					
42	6.47165	-1.78284	8.8575	0	0					
43	6.65332	-1.62939	7.04588	0	0					
44	6.835	-1.46701	5.31947	0	0					

45	7.01667	-1.295	3.7253	0	0
46	7.19835	-1.11254	1.8265	0	0
47	7.38002	-0.91863	-0.721367	0	0
48	7.5617	-0.712076	-3.04598	0	0
49	7.74337	-0.491418	-5.0659	0	0
50	7.92505	-0.254834	-6.68229	0	0
51	8.10672	0	0	0	0


Entity Information

Group: Group 1

Shared Entities

Туре	Coordinates	
	х ү	
	-20 -3.5	
	-20 -12	
	-20 -18	
	-20 -20	
	-20 -28	
	-20 -31	
	-20 -35	
External Boundary	45 -35	
	45 -31	
	45 -28	
	45 -20	
	45 -18	
	45 -12	
	45 0	
	5.25 0	
	0 -3.5	
	Х У	
Material Boundary	-20 -12	
	45 -12	
	Х Ү	
Material Boundary	-20 -18	
	45 -18	
	Х Ү	
Material Boundary	-20 -20	
	45 -20	
Material Boundary	Х Ү	
iviaterial boundary	-20 -28	

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
	GRUPPO FERROVIE DELLO STATO ITALIANE
Iricav2	
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto Lotto Codifica Documento Rev. Foglio
VIOSO - NELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN17 12 EI2 CL VI 09 C 1 001 B 42 di 75

Scenario-based Entities

Туре	Coordina	tes	Master Scenario			
			Assigned to materials:			
	X Y	,				
Water Table	-20 -3.	.5	Ghiaia			
	45 -3.	.5				
			Argilla			
	х	Υ	Constant Distribution			
Distributed Load	45	0	Orientation: Normal to boundary Magnitude: 13 kN/m2			
	7.12946 0		Creates Excess Pore Pressure: No			

APPENDICE B. TABULATI DI CALCOLO PLAXIS

Sezione P18

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto IN17 Lotto 12 Codifica Documento El2 CL VI 09 C 1 001 Rev. Foglio

PLAXIS Report

1	PRE	MESSA	3
2	NOR	MATIVA E DOCUMENTI DI RIFERIMENTO	6
	2.1	Normativa di riferimento	6
	2.2	Documenti di riferimento	6
	2.3	Software di riferimento	6
3	CAR	ATTERISTICHE DEI MATERIALI	7
4	ANA	LISI DELLE PARATIE	8
	4.1	Combinazioni e coefficienti parziali	8
	4.2	Caratterizzazione geotecnica dei terreni	9
	4.3	Elementi strutturali	10
	4.4	Carichi applicati	10
	4.5	Stabilità globale	10
	4.6	Sezioni di calcolo	12
	4.7	Discretizzazione di calcolo	12
	4.8	Fasi di calcolo	12
	4.9	Principali risultati delle analisi	16
	4.10	Verifiche di resistenza palancole	20
5	ANA	LISI DI STABILITA'	23
	5.1	Metodologie di calcolo verifica di stabilità	23
	5.2	Carichi	23
	5.3	Sezioni di calcolo	24
	5.4	Caratterizzazione geotecnica dei terreni	24
	5.5	Risultati	25
	5.5.1	Sezione 1	25
	5.5.2	Sezione 2	26

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Lotto	Codifica Documento	Rev.	Foglio
VIU9C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN17	12	El2 CL VI 09 C 1 001	В	45 di 75

V109C - KLL	AZIONE DI CALCOLO OFERE FR	OVVISIONALI		IN17	12	EI2 CL VI 09 C 1 001
APPENDI	CE A. ANALISI STABILITA'.	TABULATI DI CA	LCOL	O SLIDE		27
Sezione	21					27
Sezione	2					35
APPENDI	CE B. TABULATI DI CALCO	LO PLAXIS				43
Sezione	P18					43
	1.1.1.1.1 Materials - Soil and interfaces Identification	s - Mohr-Coulomb (1/2)	Ghia		Argi	illo
	Identification		ia		_	illa
	number		1 Drai		4 Dra	ine
	Drainage type		ned		d	
	Colour					
	Comments					
		k N	19.0		40.	
	Yunsat	/ m 3	0		18.5	50
		k N				
	Ysat	/ m	19.0 0		18.5	50
		3				
	Dilatancy cut-off		No 0.50		No	
	Cinit		00		0.50	000
	e min		0.00		0.00	00
	e _{max}		999. 0		999	1.0
	Rayleigh α		0.00 0		0.00	00
	Rayleigh β		0.00 0		0.00	00
		k N	50.0		15.0	00
	E	/ m	0E3		E3	30
	v (nu)	2	0.30		0.30	000
		k	00			
	G	N / m	19.2 3E3		576	9
		m 2 k				
	Eoed	N /	67.3		20.1	19
		m 2	1E3		E3	
		k N	4.00			
	Cref	/ m	1.00 0		5.00	00
		2				

GENERAL CONTRACTOR

	Iricav2						
VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI		Progetto	Lotto	Codifica Documento	Rev.	Foglio	
	VIU9C - RELAZIONE DI CALCO	LO OPERE PROVVISIONALI	IN17	12	EI2 CL VI 09 C 1 001	В	46 di 75

φ (phi) 0 39.0 27.00 ψ (psi) 0 0.000 0.000 Identification Ghia is Argilla Vs / 99.6 55.31 Vs / 99.6 55.31 Vs / 99.6 55.31 Set to default values Yes Yes Kn / 0.00 0.000 Fec m 0.00 0.000 Jun 0.00 0.000 0.000 Val m 0.00 0.000 Val m 0.00 0.000 Tensin cut-off Yes Yes Val N 0.00 0.000 Tensile strength / 0.00 0.000 N 1.83<				
Identification	φ (phi)	٥	0	27.00
No. No.	ψ (psi)	0		0.000
Vs	Identification			Argilla
Vp	Vs	/		55.31
Set to default values Yes Yes	V_p	m /		103.5
Eise		5	Yes	Yes
Viral N		N / m ² /		0.000
N	y ref	m		0.000
Tension cut-off Yes Yes	C _{inc}	N / m ₂ /		0.000
Tensile strength	y ref	m		0.000
Tensile strength	Tension cut-off		Yes	Yes
Dehaviour Skempton-B Skem	Tensile strength	N / m		0.000
Skempton-B				
Vu 0.49 50 0.4950 K N N 1.87 562.5 E6 5E6 5E6 Stiffness Stan dard ard dard ard ard Strength Rigid d Rigid d Rigid R _{inter} 1.00 0 1.000 Consider gap closure Yes Yes S _{inter} 0.00 0 0.000 0.000 Cross permeability Imper me meable able Imper me able Drainage conductivity, dk / 0.00 0.000 0 0.000 0.000 0.000			0.97	
K	Vu		0.49	0.4950
Strength Rigid R	K _{w,ref} / n	N / m		
Rinter	Stiffness		Stan dard	Stand ard
Consider closure gap closure Yes Yes δ _{inter} 0.00 0 0.000 0.000 0 0.000 Cross permeability Impe rme meable able e Imper meable e Drainage conductivity, dk / 0.00 0.000 0.000	Strength		Rigi	
closure Tes Tes \$\delta_{inter}\$ 0.00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0	R _{inter}			1.000
Cross permeability Imper meable e Drainage / 0.000 Drainage / 0.00 cross permeability Imper meable e Drainage / 0.00 conductivity, dk s 0				Yes
permeability rme meable e m s Drainage / 0.00 conductivity, dk s 0	δ_{inter}		0	
Drainage / 0.00 0.000 conductivity, dk s 0			rme	meabl
m	Drainage conductivity, dk	3 / S /		0.000

GENERAL CONTRACTOR

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	Progetto	Lotto	Codifica Documento	Rev.	Foglio
VIOSC - RELAZIONE DI CALCOLO OFERE FROVVISIONALI	IN17	12	El2 CL VI 09 C 1 001	В	47 di 75

R	m ² K / k W	0.00 0	0.000
K_0 determination		Auto mati c	Autom atic
Identification		Ghiaia	Argilla
$K_{0,x} = K_{0,z}$		Yes	Yes
K _{0,x}		0.3707	0.5460
K _{0,z}		0.3707	0.5460
Data set		Standard	Standard
Туре		Coarse	Coarse
< 2 μm	%	10.00	10.00
2 μm - 50 μm	%	13.00	13.00
50 μm - 2 mm	%	77.00	77.00
Use defaults		None	None
k _x	m/s	0.1000E-3	5.000E-6
k _y	m/s	0.1000E-3	5.000E-6
-Ψ _{unsat}	m	10.00E3	10.00E3
e _{init}		0.5000	0.5000
S _s	1/m	0.000	0.000
Ck		1000E12	1000E12
C _S	kJ/t/K	0.000	0.000
λs	/K	0.000	0.000
ρs		0.000	0.000
Solid thermal expansion		Volumetric	Volumetric
α_s	1/K	0.000	0.000
D _v	m²/s	0.000	0.000
f _{TV}		0.000	0.000
Identification		Ghiaia	Argilla

None

None

1.1.1.1.2 Materials - Soil and interfaces - Mohr-Coulomb (2/2)

Identification	Argilla_Interfaccia	

Identification number

Unfrozen water content

6

VINGC -	RELAZIONE	DLCALCOLO	OPERE PRO	OVVISIONALI
V103C -	KLLAZIONL	DI CALCOLO	OF LIVE FIVE	JVVISIONALI

Progetto Lotto IN17 12 Codifica Documento El2 CL VI 09 C 1 001

Rev. B Foglio

48 di 75

Drainage type		Drained
Colour		
Comments		
γunsat	k N/ m 3	18.50
γsat	k N/ m 3	18.50
Dilatancy cut- off		No
einit		0.5000
emin		0.000
emax		999.0
Rayleigh α		0.000
Rayleigh β		0.000
Е	k N/ m ₂	15.00E3
v (nu)		0.3000
G	k N/ m 2	5769
Eoed	k N/ m	20.19E3

Identification		Argilla_Interfaccia	Ghiaia_Interfaccia
cref	kN/ m²	1.000	1.000
φ (phi)	o	18.00	20.00
ψ (psi)	0	0.000	0.000
Vs	m/s	55.31	99.65
Vp	m/s	103.5	186.4
Set to default values		Yes	Yes
Einc	kN/ m²/ m	0.000	0.000
yref	m	0.000	0.000
cinc	kN/ m²/ m	0.000	0.000

GENERAL CONTRACTOR

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto Lotto IN17 12 Codifica Documento El2 CL VI 09 C 1 001 Rev. B Foglio

49 di 75

yref	m	0.000	0.000
Tension cut- off		Yes	Yes
Tensile strength	kN/ m²	0.000	0.000
Undrained behaviour		Standard	Standard
Skempton-B		0.9783	0.9783
vu		0.4950	0.4950
Kw,ref / n	kN/ m²	562.5E3	1.875E6
Stiffness		Standard	Standard
Strength		Rigid	Rigid
Rinter		1.000	1.000

Identification		Argilla_Inter	Chinia Interfernia
identification		faccia	Ghiaia_Interfaccia
Consider gap closure		Yes	Yes
δinter		0.000	0.000
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m³/s/m	0.000	0.000
R	m² K/kW	0.000	0.000
K0 determination		Automatic	Automatic
K0,x = K0,z		Yes	Yes
K0,x		0.6910	0.6580
K0,z		0.6910	0.6580
Data set		Standard	Standard
Туре		Coarse	Coarse
< 2 µm	%	10.00	10.00
2 μm - 50 μm	%	13.00	13.00
50 μm - 2 mm	%	77.00	77.00
Use defaults		None	None
kx	m/s	5.000E-6	0.1000E-3
ky	m/s	5.000E-6	0.1000E-3

1.1.1.2 Materials - Plates -

Identification

Comments

Identification number

ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

12

VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Progetto Lotto IN17

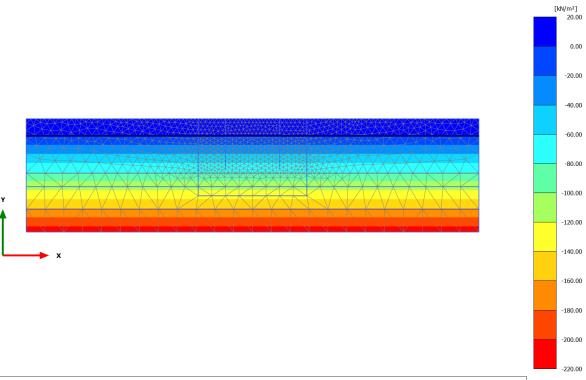
Codifica Documento EI2 CL VI 09 C 1 001 Rev. В 50 di 75

Foglio

-ψunsat		m	10.00E3		10.00E3	
einit			0.5000		0.5000	
	ld en tifi ca tio n			Argill a_Int erfac cia		Ghiaia_In terfaccia
	Ss		1 / m	0.00 0		0.000
	Ck			1000 E12		1000E12
	Cs		k J / t /	0.00 0		0.000
	λs		k W / m / K	0.00		0.000
	ρ_s		t / m 3	0.00 0		0.000
	So lid th er m al ex pa nsi on			Volu metri c		Volumetri c
	α_ s		1 / K	0.00 0		0.000
	D _v		m 2 / S	0.00		0.000
	f _{Tv}			0.00 0		0.000
	Un fro ze n wa ter co nt en t			Non e		None

PU_18

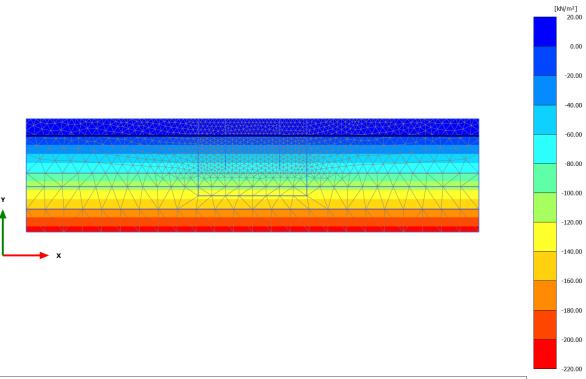
GENERAL CONTRACTOR


Progetto Lotto Codifica Documento Rev. Foglio VI09C - RELAZIONE DI CALCOLO OPERE PROVVISIONALI IN17 12 EI2 CL VI 09 C 1 001 В 51 di 75

Colour		
Material type		Elastic
Isotropic		Yes
EA1	kN/m	3.429E6
EA2	kN/m	3.429E6
EI	kN m²/m	81.16E3
d	m	0.5329
w	kN/m/ m	1.280
v (nu)		0.000
Rayleigh α		0.000
Rayleigh β		0.000
Prevent punching		No
Identification number		1
С	kJ/t/K	0.000
λ	kW/m/ K	0.000
Identification		PU_18
ρ	t/m³	0.000
α	1/K	0.000

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/0), Active pore pressures pactive

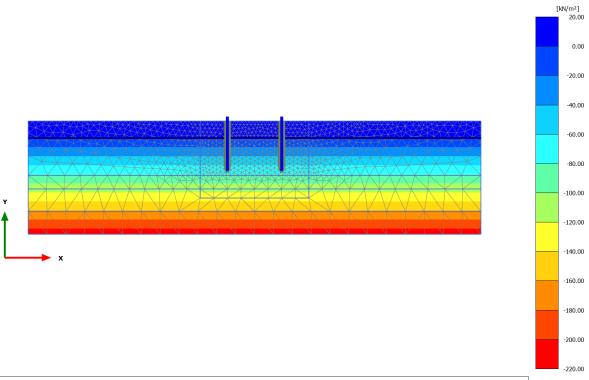
GENERAL CONTRACTOR


Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m² (Element 1 at Node 2819)

2.1.1.1.2 Calculation results, Nil Step [Phase_1] (1/2), Active pore pressures pactive

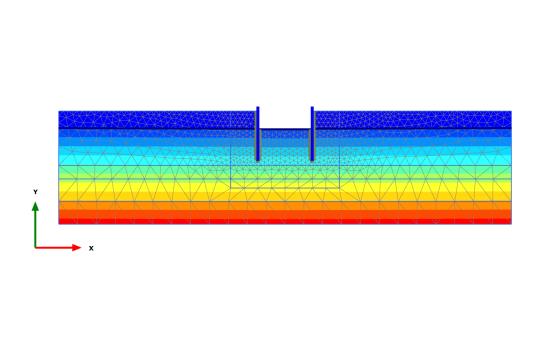
GENERAL CONTRACTOR


Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m² (Element 1 at Node 2819)

2.1.1.1.3 Calculation results, Palancolato [Phase_2] (2/4), Active pore pressures pactive

GENERAL CONTRACTOR



Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m² (Element 1 at Node 2819)

2.1.1.1.4 Calculation results, Scavo max [Phase_3] (3/455), Active pore pressures pactive

[kN/m²] 20.00

0.00

-20.00

-40.00

-60.00

-80.00

-100.00

-120.00

-140.00

-160.00

-180.00

-200.00

-220.00

Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m^2 (Element 174 at Node 2453)

[kN/m²] 20.00

0.00

-40.00

-60.00

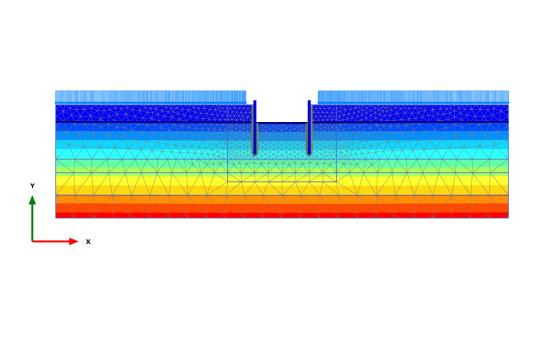
-80.00

-100.00

-120.00

-140.00

-160.00

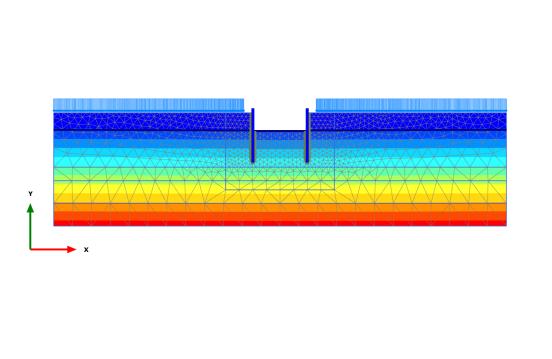

-180.00

-200.00

-220.00

2.1.1.1.5 Calculation results, Sovraccarico [Phase_5] (5/464), Active pore pressures pactive

GENERAL CONTRACTOR



Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m^2 (Element 174 at Node 2453)

2.1.1.1.6 Calculation results, Sovraccarico x1.15 (STR - SLU/1.3) [Phase_4] (4/468), Active pore pressures pactive

[kN/m²] 20.00

0.00

-60.00

-80.00

-100.00

-120.00

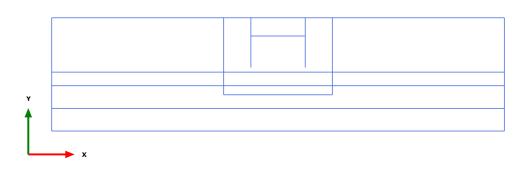
-140.00

-160.00

-180.00

-200.00

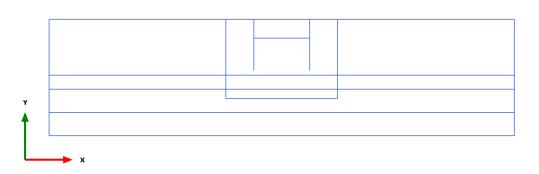
-220.00


Active pore pressures p_{active} (scaled up 0.0200 times) (Pressure = negative)

Maximum value = 0.000 kN/m^2 (Element 174 at Node 2453)

3.1.1.1.1 Calculation results, Plate, Initial phase [InitialPhase] (0/0), Shear forces Q

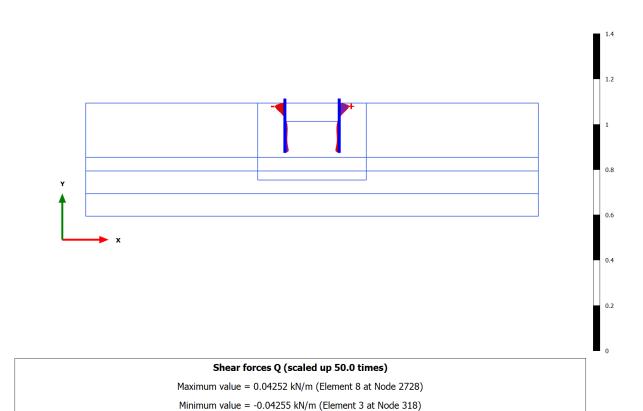
GENERAL CONTRACTOR



Shear forces Q (scaled up 1.00 times)

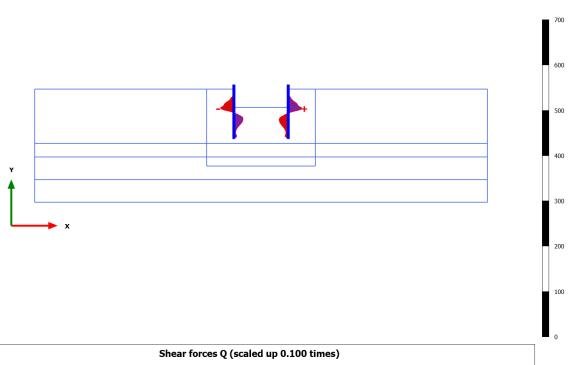
No results

3.1.1.1.2 Calculation results, Plate, Nil Step [Phase_1] (1/2), Shear forces Q


Shear forces Q (scaled up 1.00 times)

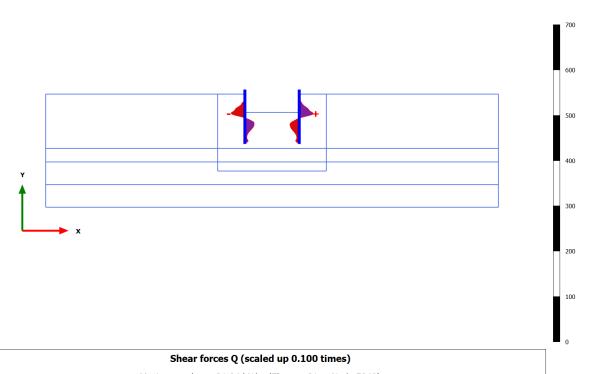
No results

3.1.1.1.3 Calculation results, Plate, Palancolato [Phase_2] (2/4), Shear forces Q


[kN/m]

3.1.1.1.4 Calculation results, Plate, Scavo max [Phase_3] (3/455), Shear forces Q $\,$

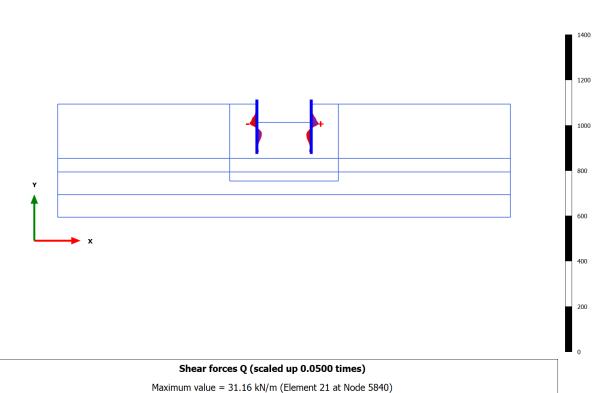
[kN/m]


Maximum value = 30.60 kN/m (Element 21 at Node 5840)

Minimum value = -29.73 kN/m (Element 13 at Node 2752)

3.1.1.1.5 Calculation results, Plate, Sovraccarico [Phase_5] (5/464), Shear forces Q

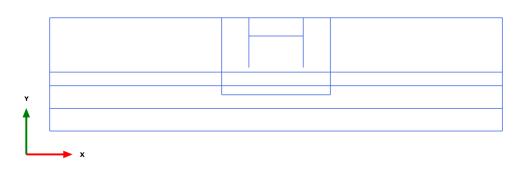
[kN/m]


Maximum value = 31.04 kN/m (Element 21 at Node 5840)

Minimum value = -30.69 kN/m (Element 13 at Node 2752)

3.1.1.1.6 Calculation results, Plate, Sovraccarico x1.15 (STR - SLU/1.3) [Phase_4] (4/468), Shear forces Q

[kN/m]



Minimum value = -30.86 kN/m (Element 13 at Node 2752)

3.1.1.2.1 Calculation results, Plate, Initial phase [InitialPhase] (0/0), Bending moments ${\rm M}$

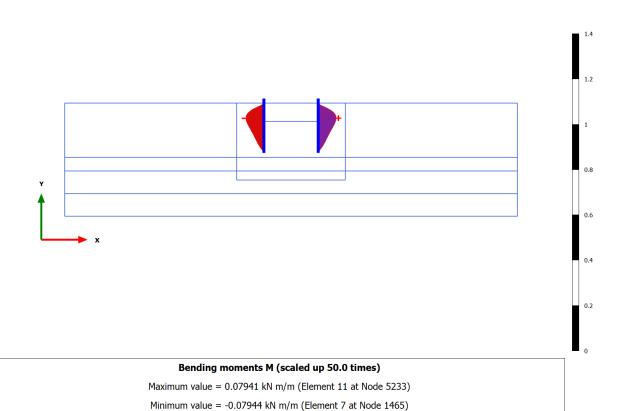
GENERAL CONTRACTOR

Bending moments M (scaled up 1.00 times)

No results

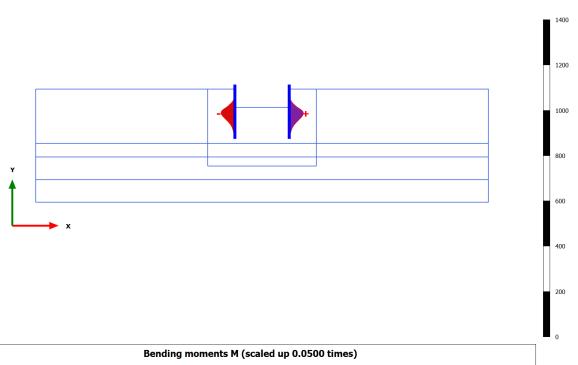
3.1.1.2.2 Calculation results, Plate, Nil Step [Phase_1] (1/2), Bending moments M

GENERAL CONTRACTOR


Bending moments M (scaled up 1.00 times)

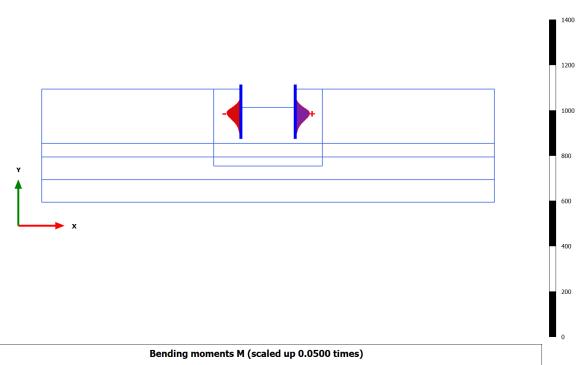
No results

3.1.1.2.3 Calculation results, Plate, Palancolato [Phase_2] (2/4), Bending moments M


[kN m/m]

 $3.1.1.2.4\ Calculation\ results,\ Plate,\ Scavo\ max\ [Phase_3]\ (3/455),\ Bending\ moments\ M$

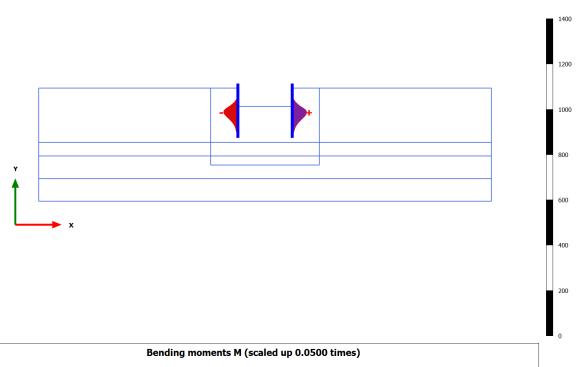
[kN m/m]


Maximum value = 62.90 kN m/m (Element 22 at Node 6767)

Minimum value = -61.11 kN m/m (Element 14 at Node 3607)

 $3.1.1.2.5\ Calculation\ results,\ Plate,\ Sovraccarico\ [Phase_5]\ (5/464),\ Bending\ moments\ M$

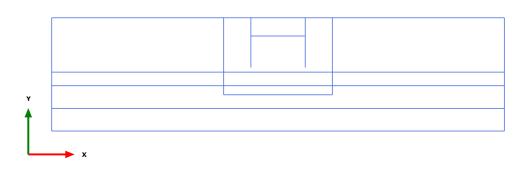
[kN m/m]


Maximum value = 63.97 kN m/m (Element 22 at Node 6767)

Minimum value = -62.42 kN m/m (Element 14 at Node 3607)

 $3.1.1.2.6\ Calculation\ results,\ Plate,\ Sovraccarico\ x1.15\ (STR\ -\ SLU/1.3)\ [Phase_4]\ (4/468),\ Bending\ moments\ M$

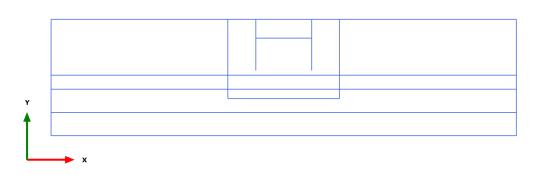
[kN m/m]


Maximum value = 64.13 kN m/m (Element 22 at Node 6767)

Minimum value = -62.85 kN m/m (Element 14 at Node 3607)

3.1.1.3.1 Calculation results, Plate, Initial phase [InitialPhase] (0/0), Axial forces N $\,$

GENERAL CONTRACTOR

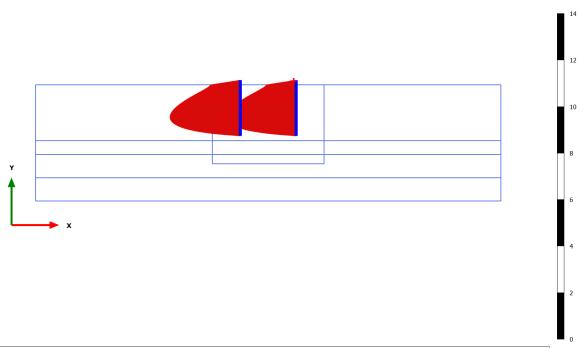

Axial forces N (scaled up 1.00 times)

No results

3.1.1.3.2 Calculation results, Plate, Nil Step [Phase_1] (1/2), Axial forces N

GENERAL CONTRACTOR

Axial forces N (scaled up 1.00 times)

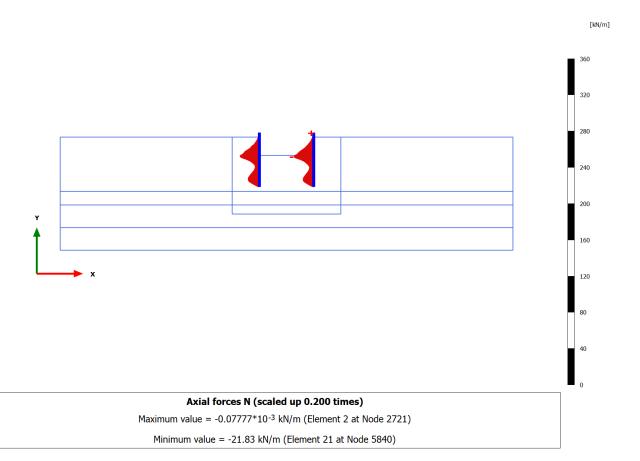

No results

3.1.1.3.3 Calculation results, Plate, Palancolato [Phase_2] (2/4), Axial forces N

GENERAL CONTRACTOR

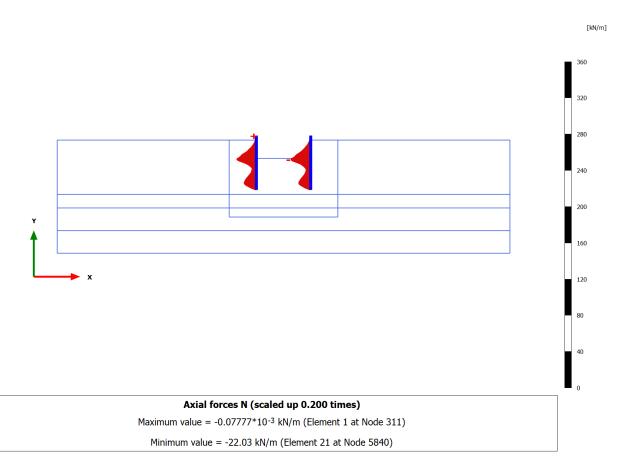
[kN/m]

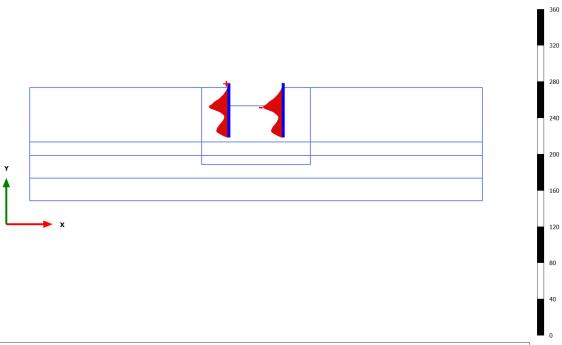
Axial forces N (scaled up 5.00 times)


Maximum value = $-0.07777*10^{-3}$ kN/m (Element 2 at Node 2721)

Minimum value = -3.023 kN/m (Element 24 at Node 8260)

3.1.1.3.4 Calculation results, Plate, Scavo max [Phase_3] (3/455), Axial forces N


GENERAL CONTRACTOR



3.1.1.3.5 Calculation results, Plate, Sovraccarico [Phase_5] (5/464), Axial forces N

GENERAL CONTRACTOR

Axial forces N (scaled up 0.200 times)

Maximum value = $-0.07777*10^{-3}$ kN/m (Element 1 at Node 311)

Minimum value = -22.05 kN/m (Element 21 at Node 5840)