COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO PONTI E VIADOTTI VIADOTTO GRENA DAL km 18+841,81 AL km 18+913,81 GENERALE

Interazione treno binario struttura - relazione di calcolo

GENERAL CONTRACTOR

dalla Unione Europea

IL PROGETTISTA INTEGRATORE	Consorzio			SCALA	
PROVIDE PROVID	Iricav Due			-	
acritic all ardine degli	ing. Paolo Carmona				
ingegneri di Venezia n. 4289					
Data:	Data:				
COMMESSA LOTTO FASE	ENTE TIPO DOC. OPE	era/disciplina progr.	REV.	FOGLIO	
N 1 7 1 2 E	I 2 CL V	I 1 8 0 0 0 0 0	1 A -	- D	
		V	'ISTO CONSORZIO IRICAV D	DUE	
		Firma		Data	
Consorzio	IricAV Due	Luca RANDOLFI			
CONSOLEIO	THO W Duc				
Progettazione:			l .		
Rev. Descrizione F	Redatto Data Verificato	Data Approvato		L PROGETTISTA	
4 5,000,000	E.d.in M. Proietti	G. Grimaldi	OH 24	GIUSEPPE	
A EMISSIONE —	Ott.21	Ott.21	Oll.21	ONE GRIMALDI	
			(E)	ONA NO	
	7 7 7		130	* Swap So	
CIG. 8377957CD1	CUP: J41E9100000	0009 Fi	le: IN1712EI2CLVI180	0001A	
L			od. origine:		

DIRETTORE LAVORI

GENERAL CONTRACTOR Consorzio IricAV Due

 Progetto
 Lotto
 Codifica

 IN17
 12
 EI2CLVI1800001
 A

INDICE

1	PREI	MESSA	3
		RIMENTI NORMATIVI	
		ATTERISTICHE DEI MATERIALI	
		LICABILITÀ DEL METODO SEMPLIFICATO	
5	RISU	JLTATI DELLE ANALISI	9
	5.1	Risultati delle analisi in forma sintetica	10
	5.2	Risultati delle analisi in forma estesa	11
		Spalla SA	11
	5.2.1	Pila P1	14
	5.2.2	Pila P2	17

GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

1 PREMESSA

Oggetto della presente relazione sono le <u>analisi di interazione binario-struttura</u> del **Viadotto Grena (VI18)**, a doppio binario, che si estende dal **km 18+841.809 al km 18+913.809.** L'opera si inserisce all'interno della linea AV/AC Torino – Venezia, tratta Verona – Padova, lotto funzionale Verona – Bivio Vicenza.

Le <u>analisi di interazione binario-struttura</u> sono state svolte con lo scopo di valutare le sollecitazioni agenti sulle sottostrutture.

Le analisi sono state condotte attraverso il metodo semplificato indicato nell'allegato 3 del Manuale di Progettazione RFI [1].

Il viadotto è costituito da:

- 2 campate in CAP con luce 25m;
- 1 campata con struttura a travi incorporate con luce 22m.

Le campate totali sono dunque tre. Le due pile presenti e le due spalle sono in calcestruzzo armato.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	El2CLVI1800001	А

2 RIFERIMENTI NORMATIVI

[1]	RFIDTCSIPSMAIFS001 - Manuale di progettazione delle opere civili - Parte II -
	Sezione 2.

- [2] Decreto ministeriale 14 Gennaio 2008.
- [3] Circolare 2 febbraio 2009 n°617/C.S.LL.PP..

GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

3 CARATTERISTICHE DEI MATERIALI

Per le caratteristiche dei materiali dell'opera in esame si rimanda all'elaborato IN1710EI2TTVI000000 "tabella materiali".

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

4 APPLICABILITÀ DEL METODO SEMPLIFICATO

La valutazione delle azioni agenti sulle sottostrutture connesse agli effetti di interazione binario struttura, è stata eseguita mediante il metodo semplificato riportato nell'allegato 3 del Manuale di Progettazione RFI [1]. Tale metodo risulta applicabile in quanto, come di seguito illustrato, i viadotti rispettano tutti i requisiti richiesti.

L'applicabilità del metodo semplificato inoltre garantisce il rispetto dei limiti sulle altre grandezze di interesse (tensioni nelle rotaie e spostamenti relativi binario-impalcato), senza la necessità di condurre specifiche verifiche.

Secondo quanto riportato nell'allegato 3 del Manuale di Progettazione RFI [1]:

"Il metodo riportato in questo allegato, ferme restando le indicazioni di carattere generale fornite nel precedente punto 1.4.5, può essere applicato solo se sono rispettate le condizioni riportate al punto 2.5.1.4.5.2 e quelle di seguito riportate:

- a) La tipologia strutturale è ad impalcati semplicemente appoggiati (ivi compreso il ponte ad una sola campata);
- b) Le luci delle campate sono all'incirca uguali, con differenze massime rispetto al valor medio non superiori al 20%, ad eccezione dei casi riportati nel successivo punto b')
- c) La rigidezza dei vincoli fissi dell'impalcato in corrispondenza delle pile (rigidezza del sistema fondazione-pila-appoggio fisso) è all'incirca costante lungo il viadotto, con differenze massime rispetto al valor medio non superiori al 40% e differenze massime tra due campate adiacenti non superiori al 20 %, ad eccezione dei casi riportati nei successivi punti c') e c") tali condizioni si ritengono comunque soddisfatte nei viadotti con pile di altezza massima non superiore a 14 m e rigidezza minima non inferiore a 13200 kN/m/m per binario, calcolata senza tener conto della deformabilità delle fondazioni:
- d) La successione dei vincoli fisso e mobile è la stessa per tutte le campate (ad esempio fisso a destra e mobile a sinistra), senza eccezioni;
- e) La luce L delle singole campate è contenuta entro i seguenti limiti:
- L < [75] m per strutture metalliche, con armamento su ballast o attacco diretto;
- L < [65] m per strutture in C.A., C.A.P. o miste, con armamento su ballast.
- f) Il binario è continuo lungo tutta l'opera ed alle sue estremità per almeno 100 m a monte e a valle dell'opera stessa;
- g) Nel caso di posa del binario con attacco diretto, la disposizione degli attacchi e le relative forze di serraggio sono così distribuite:

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

- A partire dall'appoggio fisso e per 0,15L sono disposti attacchi indiretti di tipo tradizionale, caratterizzati dal legame forza spostamento riportato in fig. 1.4.5.3-6a;
- Nella parte restante degli impalcati, e dunque per 0,85L, sono disposti attacchi elastici, caratterizzati dal legame forza spostamento riportato in fig. 1.4.5.3-6b;
- h) La rigidezza della sottostruttura, valutata portando in conto la deformabilità della fondazione, è non inferiore a 2000·L [kN/m] per binario, inoltre è tale che, nell'ipotesi di deformabilità nulla della fondazione, lo spostamento della singola campata soggetta, convenzionalmente, alle sole azioni di frenatura del modello di carico LM71 (vedi par. 1.4.3.3) competente geometricamente alla campata in esame (ossia ignorando gli effetti di interazione che ridistribuiscono parte del carico alle campate adiacenti) sia non superiore a 5 mm;
- i) Lo spostamento orizzontale, conseguente all'inflessione per carichi verticali, dovuto alle azioni da traffico, del piano di regolamento o di posa del ballast o, nel caso di attacco diretto, del piano di posa delle rotaie è, salvo diverse specifiche indicazioni fornite da FERROVIE, non superiore a 8 mm, sia per gli impalcati a semplice binario che per quelli a doppio binario caricati su entrambi i binari, secondo i criteri riportati al par. 2.5.1.8.3.2.2 e nota n. 6, senza tener conto né dell'amplificazione dinamica né della presenza del binario.

Con lo stesso metodo, adottando gli opportuni correttivi riportati nel seguito, possono essere trattati anche i casi che derogano localmente alle condizioni b) e c), rispettando invece le seguenti condizioni:

- b') Le luci delle campate sono all'incirca uguali, con differenze massime rispetto al valor medio non superiori al 30%, ad eccezione di due campate, la cui luce singola può essere molto più grande delle altre, fermo restando comunque il limite di cui al punto e); in tal caso il rapporto tra la rigidezza del vincolo fisso e la luce della campata più lunga deve essere all'incirca pari a quello delle campate adiacenti, con una tolleranza del ±20% %
- c') Possono fare eccezione alla condizione c) le ultime tre pile in vicinanza delle spalle, che possono avere rigidezze progressivamente crescenti andando verso la spalla, con rapporti di rigidezza rispetto alla rigidezza media non superiori a 10; nella valutazione della rigidezza media possono essere escluse le tre pile in prossimità della spalla;
- c") Possono fare eccezione alla condizione c) fino a tre campate interne con rapporti di rigidezza tra campate adiacenti non superiore a 5; nella valutazione della rigidezza media possono essere escluse le pile che derogano alla precedente condizione c).

Nel caso di viadotti lunghi, per l'applicazione di questo metodo semplificato, è lecito suddividere il viadotto in tratte di almeno 6 campate e 300 m di lunghezza e analizzare ciascuna tratta come un viadotto indipendente La suddivisione deve essere tale che l'ultima campata di una tratta e la prima campata della tratta successiva abbiano differenze di rigidezza dei vincoli non superiori al 20%. Tutte le pile di tratte che non includano una spalla saranno trattate come pile intermedie. "

GENERAL CONTRACTOR Consorzio Iricaty Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

Si riporta di seguito il calcolo della rigidezza e degli spostamenti testa-pila per azione di frenatura da LM71 relativi alle pile più alte presenti nei viadotti (condizione più gravosa).

L'altezza massima delle pile è pari a 5.00m per l'impalcato in C.A.P.

MASSIMO SPO	MASSIMO SPOSTAMENTO DELLE CAMPATA IN C.A.P. PER EFFETTO DELLA FRENATURA							
Caratteristiche	di rigidezza della	a pila più alta						
n° bin	[-]	2	Numero di binari					
L	[m]	25.00	Luce della campata					
Hp,max	[m]	5.00	Massima altezza delle pile presenti sul viadotto					
Ec	[kN/m2]	3.36E+07	Modulo di rigidezza del calcestruzzo della pila					
J	[m4]	22.26	Inerzia longitudinale della pila					
K	[kN/m]	1.80E+07	Rigidezza della pila: 3 E J /L³					
kvp	[kN/m/m]	359542	Rigidezza del vincolo fisso per unità di lunghezza della campata diviso il numero di binari					
kvp,min	[kN/m/m]	13200	Rigidezza minima ammissibile per validità analisi semplificata					
Spostamento p	oer effetto della 1	frenatura						
qlb,k	[kN/m]	22	Forza di frenatura per unità di lunghezza per treno LM71					
Qlb,k	[kN]	550	Forza di frenatura per treno LM71					
δ	[mm]	0.06	Spost. longitudinale testa-pila dovuto all'azione di frenatura					
δ max	[mm]	5.00	Massimo spostamento ammissibile per validità analisi semplificata					

Tabella 1 – Controllo delle massime deformazioni per effetto della frenatura associata al treno LM71

Le condizioni "c" ed "h" si ritengono dunque soddisfatte. La verifica richiesta per il soddisfacimento della condizione "i" è riportata nelle relazioni di calcolo degli impalcati.

Il metodo semplificato risulta applicabile in tale circostanza.

5 RISULTATI DELLE ANALISI

Nel presente capitolo si illustrano i risultati ottenuti dalle analisi di interazione binario-struttura del viadotto VI18.

Di seguito si riportano le rigidezze dei vincoli fissi utilizzate nei calcoli.

Vale il seguente significato dei simboli:

- H e J: rispettivamente l'altezza di calcolo e l'inerzia longitudinale della pila "i";
- L lunghezza della campata il cui appoggio fisso grava sulla pila "i";
- k_{vp} rigidezza del vincolo fisso "i" diviso per la lunghezza della campata e per il numero di binari;
- k_{vp,med}* rigidezza media di vincoli fissi, ad esclusione delle prime ed ultime tre pile;
- k_{νp}" rigidezza del vincolo fisso associato alla pila con minor rigidezza tra le due adiacenti alla pila "i";
- k_{vf} rigidezza del vincolo fisso adiacente alla pila "i", lato appoggio fisso;
- k_{vm} rigidezza del vincolo fisso adiacente alla pila "i", lato appoggio mobile.

VALORI MEDI DELLE RIGIDEZZE DEI VINCOLI FISSI DELLE PILE					
Kvp,med	[kN/m/m]	381269			
k _{vp,med} * (escluse pile terminali)	[kN/m/m]	-			

Tabella 2 – Valori medi della rigidezza dei vincoli fissi delle pile

PILA	Н	J	L	k _{vp}	k _{vp} /k _{vp,med} *	k _{vp} "	k _{vp} '/k _{vp} "	k vf	k _{vm}
[-]	[m]	[m ⁴]	[m]	[kN/m/m]	[-]	[kN/m/m]	[-]	[kN/m/m]	[kN/m/m]
SA			25	10000000000					405606
P1	5.00	22.3	22	405606	-	-	1.14	10000000000	356933
P2	5.00	22.3	25	356933	-	-	-	405606	10000000000
SB				10000000000					

Tabella 3 – Valori delle rigidezze dei vincoli fissi assunti nei calcoli

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

5.1 Risultati delle analisi in forma sintetica

Si riportano nel presente paragrafo i risultati in forma sintetica dell'analisi di interazione binario-struttura svolta. I risultati sono espressi in termini massima azione caratteristica longitudinale agente sul vincolo fisso, pari a:

 $F = 0.6F_{tp} + F_{hp} + F_{vp}$ nel caso di pila

 $F = 0.6F_{ts} + F_{hs} + F_{vs}$ nel caso di spalla

dove di pedici "p" ed "s" stanno rispettivamente per pila e spalla, mentre i pedici "t", "h" e "v" indicano rispettivamente: azione termica, azioni orizzontali (frenatura e avviamento) e carichi verticali da traffico.

Le azioni conseguenti alle deformazioni da carichi verticali hanno sempre verso ad uscire (azione diretta da appoggio mobile verso appoggio fisso), mentre le azioni conseguenti alla termica, alla frenatura e all'avviamento possono agire in entrambi i versi (ad entrare e ad uscire). Nel calcolo della massima sollecitazione agente in direzione uscente i tre effetti sono dunque stati sommati; nel calcolo invece della massima sollecitazione agente in direzione entrante, l'azione causata dai carichi verticali è stata, a favore di sicurezza, assunta pari a zero.

Il valore della forza "F", associata agli effetti di interazione binario-struttura indotti dai carichi già menzionati, viene confrontato con l'azione longitudinale "F₀", prodotta dagli stessi carichi, ottenuta però da un'analisi in assenza di binario.

Poiché le analisi senza binario portano a reazioni nulle sui vincoli fissi associate alle variazioni termiche e all'inflessione per carichi verticali, la forza "F₀" si riduce alla reazione associata dalla frenatura e dall'avviamento agenti sulla campata il cui appoggio fisso grava sulla pila/spalla in esame.

PILA	L	F ₀	F	F ₀ > F
[-]	[m]	[kN]	[kN]	[-]
SA	25	1782.5	1188.7	SI
P1	22	1568.6	1178.0	SI
P2	25	1782.5	1298.2	SI

Tabella 4 - Confronto tra analisi con e senza binario

Dai risultati ottenuti, rappresentati nella tabella precedente, si può concludere che dall'analisi di interazione binariostruttura si ottengono sollecitazioni minori rispetto ad un'analisi senza binario.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

5.2 Risultati delle analisi in forma estesa

Si riportano i calcoli in forma estesa delle massime azioni agenti sulla spalla lato fisso e sulle pile di maggior interesse.

Il calcolo dei coefficienti α è stato eseguito in accordo con quanto indicato nel Manuale di progettazione RFI, a cui si rimanda per maggiori approfondimenti.

5.2.1 Spalla SA

DATI DI INPI	JT		
Calcestruzzo	delle spalle		
Ec	[kN/m2]	3.33E+07	Modulo elastico del calcestruzzo
Caratteristic	he del binario)	
A_b	[m2]	0.0153	Area del binario (2 rotaie)
Еь	[kN/m2]	2.10E+08	Modulo elastico dell'acciaio delle rotaie
β	[kN] ^{0.5}	1794.8	$(E_b A_b)^{1/2}$
Caratteristic	he generali d	el viadotto	
Verso Perc.	[-]	FISSO- >MOBILE	Verso di percorrenza dei treni
n° bin	[-]	2	Numero di binari
n° camp	[-]	3	Numero di campate
Caratteristic	he della spall	a in esame	
SPALLA	[-]	SA	Spalla in esame
L	[m]	25.00	Luce della campata con appoggio fisso sulla spalla
k vs	[kN/m/m]	1.00E+15	Rigidezza del vincolo fisso associato alla spalla
Rigidezza de	ei vincoli fissi a	adiacenti	
kvf	[kN/m/m]	1.00E+15	Rigidezza del rilevato (infinita)
kvm	[kN/m/m]	405606	Rigidezza dalla pila adiacente alla spalla lato mobile
kvp	[kN/m/m]	381269	Rigidezza delle due pile subito adiacenti alla spalla
		-	
TABELLA DI	RIEPILOGO DI	ELLA AZIONI AG	SENTI SULL'APPOGGIO FISSO
	EL N.D.		

F _{ts}	[kN]	440.0	Reazione del vincolo fisso associata alla variazione termica uniforme
Fhs	[kN]	265.4	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71
F_{hs}	[kN]	193.1	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2
F_{hs}	[kN]	247.5	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71
F_{hs}	[kN]	315.0	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico SW/2
F _{vs}	[kN]	137.7	Reazione del vincolo fisso associata all'inflessione indotta dal carico verticale del modello LM71
F_{vs}	[kN]	206.6	Reazione del vincolo fisso associata all'inflessione indotta dal carico verticale del modello SW2
NI COMBI	NATE		
F _{N_MF}	[kN]	1052.4	Combinazione 1 (Traffico Normale + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P1_MF}	[kN]	1188.7	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P2_MF}	[kN]	1048.9	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{N FM}	[kN]	776.9	Combinazione 1 (Traffico Normale + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile

F _{P1_FM}	[kN]	844.4	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{P2_FM}	[kN]	704.6	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{max}	[kN]	1188.7	Massima azione diretta sull'appoggio fisso in valore assoluto

VARIAZIONE ⁻	TERMICA UNIF	ORME	
q	[kN/m]	20	Resistenza a scorrimento del ballast nel condizione di binario scarico
ΔΤ	[°C]	15	Variazione termica uniforme dell'impalcato
α_{ts1}	[-]	0.55	Coeff. funzione della variazione di temperatura
α_{ts2}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k _{vs} del vincolo fisso (sistema fondazione- spalla-appoggio)
α_{ts3}	[-]	0.80	Coeff. funzione del numero di campate dell'opera
F _{ts}	[kN]	440.0	Reazione del vincolo fisso associata alla variazione termica uniforme

AZIONE DI AV	AZIONE DI AVVIAMENTO - MODELLO DI CARICO LM71						
Qla,k	[kN/m]	36.3	Forza di avviamento per unità di lunghezza associata al modello LM71 (α=1.1)				
Lq	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 1000 kN)				
$\alpha_{\text{hs}1}$	[-]	0.50	Coeff. funzione della luce della campata e del tipo di posa (posa su ballast)				
α_{hs2}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k _{vs} del vincolo fisso (sistema fondazione- spalla-appoggio)				
$\alpha_{\text{hs}3}$	[-]	1.00	Coeff. funzione del valore medio della rigidezza, per unità di lunghezza della campata, k_{vp} del vincolo fornito dalle due pile successive				
α_{hs4}	[-]	0.90	Coeff. funzione del numero di campate dell'opera				
$\alpha_{\text{hs}5}$	[-]	0.65	Coeff. funzione del tipo di posa (posa su ballast)				
F _{hs}	[kN]	265.4	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71				

AZIONE DI AV	IZIONE DI AVVIAMENTO - MODELLO DI CARICO SW/2						
q _{la,k}	[kN/m]	33	Forza di avviamento per unità di lunghezza associata al modello SW/2 (α=1.0)				
Lq	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (F _{max} = 1000 kN)				
$\alpha_{\text{hs}1}$	[-]	0.50	Coeff. funzione della luce della campata e del tipo di posa (posa su ballast)				
α_{hs2}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k _{vs} del vincolo fisso (sistema fondazione- spalla-appoggio)				
$\alpha_{\text{hs}3}$	[-]	0.80	Coeff. funzione del valore medio della rigidezza, per unità di lunghezza della campata, $k_{\nu p}$ del vincolo fornito dalle due pile successive				
α_{hs4}	[-]	0.90	Coeff. funzione del numero di campate dell'opera				
α_{hs5}	[-]	0.65	Coeff. funzione del tipo di posa (posa su ballast)				
F _{hs}	[kN]	193.1	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2				

AZIONE DI FR	AZIONE DI FRENATURA - MODELLO DI CARICO LM71						
q _{lb,k}	[kN/m]	22	Forza di frenatura per unità di lunghezza associata al modello LM71 (α=1.1)				
La	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 6000 kN)				
$\alpha_{\text{hs}1}$	[-]	0.50	Coeff. funzione della luce della campata e del tipo di posa (posa su ballast)				
α_{hs2}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, kvs del vincolo fisso (sistema fondazione- spalla-appoggio)				
$\alpha_{\text{hs}3}$	[-]	1.00	Coeff. funzione del valore medio della rigidezza, per unità di lunghezza della campata, k_{vp} del vincolo fornito dalle due pile successive				
α_{hs4}	[-]	0.90	Coeff. funzione del numero di campate dell'opera				

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica

IN17

12

EI2CLVI1800001

Α

Fhe	[kN]	247.5	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico I M71
i ns	INIAI	27/.3	incazione dei vincolo noso associata an azione di inchatara dei modello di carico civi7 i

AZIONE DI ER	ZIONIE DI FRENIATI IRA. MODELLO DI CARICO SW/2						
AZIONE DI FR	AZIONE DI FRENATURA - MODELLO DI CARICO SW/2						
q _{lb,k}	[kN/m]	35	Forza di frenatura per unità di lunghezza associata al modello LM71 ($lpha$ =1.1)				
La	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (L_{Q} = L)				
$\alpha_{\text{hs}1}$	[-]	0.50	Coeff. funzione della luce della campata e del tipo di posa (posa su ballast)				
α_{hs2}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k _{vs} del vincolo fisso (sistema fondazione- spalla-appoggio)				
$lpha_{hs3}$	[-]	0.80	Coeff. funzione del valore medio della rigidezza, per unità di lunghezza della campata, k_{vp} del vincolo fornito dalle due pile successive				
α_{hs4}	[-]	0.90	Coeff. funzione del numero di campate dell'opera				
F _{hs}	[kN]	315.0	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico SW/2				

INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE LM71				
θ	[rad]	0.0002614	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo LM71, senza tener conto del binario nell'analisi	
Н	[m]	2.675	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso	
Х	[m]	0.950	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)	
δ_{yf0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso	
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile	
\mathbf{k}_{vf}	[kN/m/m]	1.00E+15	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso	
\mathbf{k}_{vm}	[kN/m/m]	405606	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile	
q_f	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adaciente alla campata in esame lato appoggio fisso	
q _m	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile	
δ ₀	[mm]	0.23	Per impalcati a più binari: $0.5*\Theta*(H-x)$. Per impalcati a singolo binario $(0.5\pm0.4x/H)*\Theta*(H-x)$, con \pm in funzione del verso di percorrenza	
δ_{yf}	[mm]	2.00	$\delta_{yf0} + q_f / k_{vf}$	
δ_{ym}	[mm]	2.15	δ_{ym0} + q_m / k_{vm}	
δ_{f}	[mm]	2.00	max (δ_0 , δ_{yf})	
δ_{m}	[mm]	2.15	max (δ_0 , δ_{ym})	
α_{vp1}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k_{vs} del vincolo fisso (sistema fondazionespalla-appoggio)	
F _{vs}	[kN]	137.7	Reazione del vincolo fisso associata all'inflessione indotta dal carico verticale del modello LM71	

INFLESSION	INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE SW/2				
θ	[rad]	0.0003921	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo, senza tener conto del binario		
Н	[m]	2.675	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso		
Х	[m]	0.950	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)		
δ_{yf0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso		
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile		
\mathbf{k}_{vf}	[kN/m/m]	1.00E+15	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso		
\mathbf{k}_{vm}	[kN/m/m]	405606	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile		
q_f	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio fisso		
q _m	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile		
δ_0	[mm]	0.34	Per impalcati a più binari: $0.5*\Theta$ *(H-x). Per impalcati a singolo binario $(0.5 \pm 0.4x/H)$ * Θ *(H-x), con \pm in funzione del verso di percorrenza		

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

δ_{yf}	[mm]	2.00	δ_{yf0} + q_f / k_{vf}
δ_{ym}	[mm]	2.15	δ_{ym0} + q_m / k_{vm}
δ_{f}	[mm]	2.00	\max (δ_0 , δ_{yf})
δ_{m}	[mm]	2.15	$max (\delta_0 , \delta_{ym})$
α_{vp1}	[-]	1.00	Coeff. funzione della rigidezza, per unità di lunghezza della campata, k _{vs} del vincolo fisso (sistema fondazione- spalla-appoggio)
F _{vs}	[kN]	206.6	Reazione del vincolo fisso associata all'inflessione indotta dal carico verticale del modello SW/2

5.2.1 Pila P1

DATI DI INPUT						
Calcestruzzo del	Calcestruzzo delle pile					
Ec	[kN/m2]	3.33E+07	Modulo elastico del calcestruzzo			
Caratteristiche o	del binario					
A_b	[m2]	0.0153	Area del binario (2 rotaie)			
Еь	[kN/m2]	2.10E+08	Modulo elastico dell'acciaio delle rotaie			
β	[kN] ^{0.5}	1794.8	$(E_b A_b)^{1/2}$			
Caratteristiche g	generali del via	dotto				
Verso Perc.	[-]	FISSO->MOBILE	Verso di percorrenza dei treni, nel caso di viadotto a singolo binario			
n° bin	[-]	2	Numero di binari			
n° camp	[-]	3	Numero di campate			
L _{medio}	[kN/m/m]	24.00	Lunghezza media delle campate del viadotto			
Caratteristiche o	della pila in esa	me				
PILA	[-]	P1	Pila in esame			
Нр	[m]	5.00	Altezza della pila			
J_p	[m4]	22.30	Inerzia longitudinale della pila			
L	[m]	22.00	Luce della campata con appoggio fisso sulla pila in esame			
var. L _{medio}	[%]	-8.3	Variazione % della lunghezza della campata in esame, rispetto alla lunghezza media delle campate (se >20%, campata anomala)			
K	[kN/m]	17846653	Rigidezza della pila			
k_{vp}	[kN/m/m]	405606	Rigidezza per unità di lunghezza e per numero di binari del vincolo fisso			
$k_{vp}/k_{vp,med} \ast$	[-]	-	Se pila terminale (tra le prime/ultime 3 pile) più rigida: rapporto tra la rigidezza della pila e la media tra le rigidezza delle pile intermedie			
$k_{vp}{}^{\prime}/k_{vp}{}^{\prime\prime}$	[-]	1.136	Se pila intermedia più rigida: rapporto tra la rigidezza della pila e il valore minimo tra le rigidezze delle pile adiacenti			
k_{vf}	[kN/m/m)	10000000000	Rigidezza per unità di lunghezza della pila adiacente lato vincolo fisso			
k_{vm}	[kN/m/m)	356933	Rigidezza per unità di lunghezza della pila adiacente lato vincolo mobile			

TABELLA DI RIEPILO	TABELLA DI RIEPILOGO DELLA AZIONI AGENTI SULL'APPOGGIO FISSO DELLA PILA P1				
F _{tp}	[kN]	77.4	Reazione del vincolo fisso associata alla variazione termica uniforme		
F _{hp_a_LM71}	[kN]	399.3	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71		
F _{hp_a_SW/2}	[kN]	363.0	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2		
F _{hp_b_LM71}	[kN]	435.6	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71		
F _{hp_b_SW/2}	[kN]	577.5	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico SW/2		
Evn 1M71 AVV	[kN]	154.8	Reazione del vincolo per carico verticale LM71 associata ad avviamento		

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA Consorzio IricAV Due ALTA SORVEGLIANZA LOTTALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 12 EI2CLVI1800001 A

F _{vp_LM71_FREN(+)}	[kN]	0.0	Reazione del vincolo per carico verticale LM71 associata a frenatura da mobile a fisso
	. ,		·
F _{vp_LM71_FREN(-)}	[kN]	-87.1	Reazione del vincolo per carico verticale LM71 associata a frenatura da fisso a mobile
$F_{vp_SW/2_AVV}$	[kN]	174.0	Reazione del vincolo per carico verticale SW/2 associata ad avviamento
F _{vp_SW/2_FREN(+)}	[kN]	0.0	Reazione del vincolo per carico verticale SW/2 associata a frenatura da mobile a fisso
F _{vp_sw/2_fren(-)}	[kN]	-115.5	Reazione del vincolo per carico verticale SW/2 associata a frenatura da fisso a mobile
AZIONI COMBINATE			
F _{N_MF}	[kN]	1036.1	Combinazione 1 (Traffico Normale + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P1_MF}	[kN]	1178.0	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P2_MF}	[kN]	1019.0	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
$F_{N_{L}FM}$	[kN]	881.4	Combinazione 1 (Traffico Normale + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{P1_FM}	[kN]	1023.3	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{P2_FM}	[kN]	845.1	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{max}	[kN]	1178.0	Massima azione diretta sull'appoggio fisso in valore assoluto

VARIAZIONE TERM	'ARIAZIONE TERMICA UNIFORME			
q	[kN/m]	20	Resistenza a scorrimento del ballast nella condizione di binario scarico	
ΔΤ	[°C]	15	Variazione termica uniforme dell'impalcato	
α_{t1}	[-]	0.55	Coeff. funzione della variazione di temperatura	
α_{t2}	[-]	1.00	Coeff. funzione della rigidezza del vincolo fisso della spalla (o della pila in esame in caso di campata anomala)	
α_{t3}	[-]	0.80	Coeff. funzione del numero di campate dell'opera	
coeff.	[-]	0.20	Coefficiente correttivo per pile intermedie o per pile terminali	
F _{tp}	[kN]	77.4	Reazione del vincolo fisso associata alla variazione termica uniforme, caso di appoggio fisso su spalla	

AZIONE DI AVVIAN	AZIONE DI AVVIAMENTO - MODELLO DI CARICO LM71				
q _{la,k}	[kN/m]	36.3	Forza di avviamento per unità di lunghezza associata al modello LM71 (α=1.1)		
L_{Q}	[m]	22.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 1000 kN)		
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c'')		
α_{hp4}	[-]	0.50	Coeff. funzione della luce della campata		
F _{hp}	[kN]	399.3	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71		

AZIONE DI AVVIAN	AZIONE DI AVVIAMENTO - MODELLO DI CARICO SW/2			
Qla,k	[kN/m]	33	Forza di avviamento per unità di lunghezza associata al modello SW/2 (α=1.0)	
Lq	[m]	22.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 1000 kN)	
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c")	
$lpha_{hp4}$	[-]	0.50	Coeff. funzione della luce della campata	
F _{hp}	[kN]	363.0	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2	

AZIONE DI FRENATURA - N	MODELLO DI CARICO LM71
-------------------------	------------------------

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 Lotto Codifica El2CLVI1800001 A

Lq	[m]	22.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 6000 kN)
α_{hp1}	[-]	0.90	Coeff. funzione del numero di campate dell'opera $(\alpha_{hp1}=\alpha_{hp5})$
α_{hp2}	[-]	1.00	Coeff. correttivo per pile terminali con rigidezza molto maggiore (condizione c')
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c')
F _{hp}	[kN]	435.6	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71

AZIONE DI FRENA	TURA - MODELLO I	DI CARICO SW/2	2
Qlb,k	[kN/m]	35	Forza di frenatura per unità di lunghezza associata al modello SW/2 (α=1.0)
Lq	[m]	22.0	Lunghezza sulla quale è applicata l'azione di avviamento ($L_Q=L$)
α_{hp1}	[-]	0.75	Coeff. funzione del numero di campate dell'opera ($\alpha_{hp1} = \alpha_{hp5}$)
α_{hp2}	[-]	1.00	Coeff. correttivo per pile terminali con rigidezza molto maggiore (condizione c')
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c')
F _{hp}	[kN]	577.5	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71

INFLESSIONE DE	INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE LM71					
θ	[rad]	0.001345878	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo LM71, senza tener conto del binario nell'analisi			
Н	[m]	1.335	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso			
х	[m]	0.706	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)			
δ_{yf0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso			
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile			
\mathbf{k}_{vf}	[kN/m/m]	10000000000	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso			
\mathbf{k}_{vm}	[kN/m/m]	356933	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile			
q_{f}	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio fisso			
qm	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile			
δ_0	[mm]	0.42	Per impalcati a più binari: $0.5*\Theta*(H-x)$. Per impalcati a singolo binario $(0.5\pm0.4x/H)*\Theta*(H-x)$, con \pm in funzione del verso di percorrenza			
δ_{yf}	[mm]	2.00	$\delta_{\gamma f0} + q_f / k_{vf}$			
δ_{ym}	[mm]	2.17	$\delta_{ym0} + q_m / k_{vm}$			
δ_{f}	[mm]	2.00	\max (δ_0 , δ_{vf})			
δ_{m}	[mm]	2.17	max (δ_0 , δ_{ym})			
α_{vp1}	[-]	0.60	Coeff. funzione della rigidezza per unità di lunghezza (L) del vincolo fisso (k_{vs})			
F _{vp_Fren} (+)	[kN]	0.0	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea alla frenatura agente da MOBILE a FISSO			
F _{vp_Fren} (-)	[kN]	-87.1	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea alla frenatura agente da FISSO a MOBILE			
F _{vp_Avv}	[kN]	154.8	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea all'azione di avviamento			

INFLESSIONE DELL	INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE SW/2					
θ	[rad]	0.001512687	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo SW/2, senza tener conto del binario nell'analisi			
Н	[m]	1.335	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso			

GENERAL CONTRACTOR Consorzio Iric-AV Due		SORVEGLIA ITALE FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2CLVI1800001	А

х	[m]	0.706	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)
δ_{yfo}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile
\mathbf{k}_{vf}	[kN/m/m]	10000000000	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso
\mathbf{k}_{vm}	[kN/m/m]	356933	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile
q_{f}	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio fisso
q _m	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile
δ_0	[mm]	0.48	Per impalcati a più binari: $0.5*\Theta*(H-x)$. Per impalcati a singolo binario $(0.5\pm0.4x/H)*\Theta*(H-x)$, con \pm in funzione del verso di percorrenza
δ_{yf}	[mm]	2.00	$\delta_{yf0} + q_f / k_{vf}$
δ_{ym}	[mm]	2.17	$\delta_{\gamma m0} + q_m / k_{\nu m}$
δ_{f}	[mm]	2.00	max (δ_0 , δ_{vf})
δ_{m}	[mm]	2.17	max (δ_0 , δ_{ym})
α_{vp1}	[-]	0.60	Coeff. funzione della rigidezza per unità di lunghezza (L) del vincolo fisso (k_{vs})
F _{vp_Fren} (+)	[kN]	0.0	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea alla frenatura agente da MOBILE a FISSO
F _{vp_Fren} (-)	[kN]	-115.5	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea alla frenatura agente da FISSO a MOBILE
F _{vp_Avv}	[kN]	174.0	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea all'azione di avviamento

5.2.2 Pila P2

DATI DI INPUT	-					
Calcestruzzo delle pile						
Ec	[kN/m2]	3.33E+07	Modulo elastico del calcestruzzo			
Caratteristiche	e del binario					
A_b	[m2]	0.0153	Area del binario (2 rotaie)			
Еь	[kN/m2]	2.10E+08	Modulo elastico dell'acciaio delle rotaie			
β	[kN] ^{0.5}	1794.8	$(E_b A_b)^{1/2}$			
Caratteristiche	e generali del	viadotto				
Verso Perc.	[-]	FISSO->MOBILE	Verso di percorrenza dei treni, nel caso di viadotto a singolo binario			
n° bin	[-]	2	Numero di binari			
n° camp	[-]	3	Numero di campate			
L _{medio}	[kN/m/m]	24.00	Lunghezza media delle campate del viadotto			
Caratteristiche	e della pila in	esame				
PILA	[-]	P2	Pila in esame			
Hp	[m]	5.00	Altezza della pila			
J_p	[m4]	22.30	Inerzia longitudinale della pila			
L	[m]	25.00	Luce della campata con appoggio fisso sulla pila in esame			

GENERAL CONTRACTOR

Consorzio IricAV Due

Progetto	Lotto	Codifica	
IN17	12	El2CLVI1800001	Α

var. L _{medio}	[%]	4.2	Variazione % della lunghezza della campata in esame, rispetto alla lunghezza media delle campate (se >20%, campata anomala)
K	[kN/m]	17846653	Rigidezza della pila
k_{vp}	[kN/m/m]	356933	Rigidezza per unità di lunghezza e per numero di binari del vincolo fisso
$k_{vp}/k_{vp,med}*$	[-]	-	Se pila terminale (tra le prime/ultime 3 pile) più rigida: rapporto tra la rigidezza della pila e la media tra le rigidezza delle pile intermedie
$k_{vp}^{}/k_{vp}^{}^{}$	[-]	-	Se pila intermedia più rigida: rapporto tra la rigidezza della pila e il valore minimo tra le rigidezze delle pile adiacenti
k_{vf}	[kN/m/m)	405606	Rigidezza per unità di lunghezza della pila adiacente lato vincolo fisso
k_{vm}	[kN/m/m)	10000000000	Rigidezza per unità di lunghezza della pila adiacente lato vincolo mobile

TABELLA DI RIEPI	ILOGO DELLA AZ	ZIONI AGENTI SULL'A	APPOGGIO FISSO DELLA PILA P2
F _{tp}	[kN]	176.0	Reazione del vincolo fisso associata alla variazione termica uniforme
F _{hp_a_LM71}	[kN]	453.8	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71
F _{hp_a_SW/2}	[kN]	412.5	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2
F _{hp_b_LM71}	[kN]	495.0	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71
F _{hp_b_SW/2}	[kN]	656.3	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico SW/2
F _{vp_LM71_AVV}	[kN]	82.6	Reazione del vincolo per carico verticale LM71 associata ad avviamento
F _{vp_LM71_fren(} +)	[kN]	0.0	Reazione del vincolo per carico verticale LM71 associata a frenatura da mobile a fisso
F _{vp_lm71_fren(}	[kN]	-99.0	Reazione del vincolo per carico verticale LM71 associata a frenatura da fisso a mobile
F _{vp_SW/2_AVV}	[kN]	123.9	Reazione del vincolo per carico verticale SW/2 associata ad avviamento
F _{vp_SW/2_FREN(} +)	[kN]	0.0	Reazione del vincolo per carico verticale SW/2 associata a frenatura da mobile a fisso
F _{vp_SW/2_FREN(-}	[kN]	-131.3	Reazione del vincolo per carico verticale SW/2 associata a frenatura da fisso a mobile
AZIONI COMBINA	ATE		
F _{N_MF}	[kN]	1137.0	Combinazione 1 (Traffico Normale + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P1_MF}	[kN]	1298.2	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{P2_MF}	[kN]	1137.0	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio mobile verso appoggio fisso
F _{N_FM}	[kN]	1054.4	Combinazione $\widehat{1}$ (Traffico Normale + $0.6*$ Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{P1_FM}	[kN]	1215.6	Combinazione 2 (Traffico Pesante tipo1 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{P2_FM}	[kN]	1013.1	Combinazione 3 (Traffico Pesante tipo2 + 0.6*Termica). Azione diretta da appoggio fisso verso appoggio mobile
F _{max}	[kN]	1298.2	Massima azione diretta sull'appoggio fisso in valore assoluto

VARIAZIONE TE	VARIAZIONE TERMICA UNIFORME						
q	[kN/m]	20	Resistenza a scorrimento del ballast nella condizione di binario scarico				
ΔΤ	[°C]	15	Variazione termica uniforme dell'impalcato				
$lpha_{t1}$	[-]	0.55	Coeff. funzione della variazione di temperatura				

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto IN17 12 EI2CLVI1800001 A

α_{t2}	[-]	1.00	Coeff. funzione della rigidezza del vincolo fisso della spalla (o della pila in esame in caso di campata anomala)
α_{t3}	[-]	0.80	Coeff. funzione del numero di campate dell'opera
coeff.	[-]	0.40	Coefficiente correttivo per pile intermedie o per pile terminali
F_{tp}	[kN]	176.0	Reazione del vincolo fisso associata alla variazione termica uniforme, caso di appoggio fisso su spalla

AZIONE DI AVV	IAMENTO - MOD	ELLO DI CARICO LM71	
AZIONE DI AVV	IAMENTO - MOD	LELO DI CANICO LIVI71	
$q_{Ia,k}$	[kN/m]	36.3	Forza di avviamento per unità di lunghezza associata al modello LM71 (α =1.1)
L_{Q}	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 1000 kN)
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c'')
α_{hp4}	[-]	0.50	Coeff. funzione della luce della campata
F _{hp}	[kN]	453.8	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico LM71

IONE DI AVVIAMENTO - MODELLO DI CARICO SW/2			
Q _{la,k}	[kN/m]	33	Forza di avviamento per unità di lunghezza associata al modello SW/2 (α=1.0)
Lq	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 1000 kN)
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c'')
α_{hp4}	[-]	0.50	Coeff. funzione della luce della campata
Fhp	[kN]	412.5	Reazione del vincolo fisso associata all'azione di avviamento del modello di carico SW/2

AZIONE DI FREI	AZIONE DI FRENATURA - MODELLO DI CARICO LM71			
Qlb,k	[kN/m]	22	Forza di frenatura per unità di lunghezza associata al modello LM71 (α=1.1)	
La	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (Fmax = 6000 kN)	
α_{hp1}	[-]	0.90	Coeff. funzione del numero di campate dell'opera $(\alpha_{hp1} = \alpha_{hp5})$	
α_{hp2}	[-]	1.00	Coeff. correttivo per pile terminali con rigidezza molto maggiore (condizione c')	
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c')	
F _{hp}	[kN]	495.0	Reazione del vincolo fisso associata all'azione di frenatura del modello di carico LM71	

AZIONE DI FREI	AZIONE DI FRENATURA - MODELLO DI CARICO SW/2				
q _{lb,k}	[kN/m]	35	Forza di frenatura per unità di lunghezza associata al modello SW/2 (α=1.0)		
Lq	[m]	25.0	Lunghezza sulla quale è applicata l'azione di avviamento (L_Q = L)		
α_{hp1}	[-]	0.75	Coeff. funzione del numero di campate dell'opera $(\alpha_{hp1} = \alpha_{hp5})$		
α_{hp2}	[-]	1.00	Coeff. correttivo per pile terminali con rigidezza molto maggiore (condizione c')		
α_{hp3}	[-]	1.00	Coeff. correttivo per pile intermedie con rigidezza molto maggiore (condizione c')		

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due

Progetto	Lotto	Codifica	
IN17	12	EI2CLVI1800001	Α

Reazione del vincolo fisso associata all'azione di frenatura del modello di [kN] 656.3 $F_{hp} \\$ carico LM71

INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE LM71			
Θ	[rad]	0.0002614	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo LM71, senza tener conto del binario nell'analisi
Н	[m]	2.675	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso
х	[m]	0.950	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)
δ_{yf0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile
\mathbf{k}_{vf}	[kN/m/m]	405606	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso
\mathbf{k}_{vm}	[kN/m/m]	10000000000	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile
qf	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio fisso
q _m	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile
δ_0	[mm]	0.23	Per impalcati a più binari: $0.5*\Theta*(H-x)$. Per impalcati a singolo binario $(0.5\pm0.4x/H)*\Theta*(H-x)$, con \pm in funzione del verso di percorrenza
δ_{yf}	[mm]	2.15	$\delta_{\gamma fo}$ + q_f / k_{vf}
δ_{ym}	[mm]	2.00	δ_{ym0} + q_{m} / k_{vm}
δ_{f}	[mm]	2.15	max (δ_0 , $\delta_{ ext{yf}}$)
δ_{m}	[mm]	2.00	\max (δ_0 , δ_{ym})
α_{vp1}	[-]	0.60	Coeff. funzione della rigidezza per unità di lunghezza (L) del vincolo fisso (kys)
F _{vp_Fren} (+)	[kN]	0.0	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea alla frenatura agente da MOBILE a FISSO
F _{vp_Fren} (-)	[kN]	-99.0	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea alla frenatura agente da FISSO a MOBILE
F _{vp_Avv}	[kN]	82.6	Reazione del vincolo fisso associata al carico verticale LM71, contemporanea all'azione di avviamento

INFLESSIONE DELL'IMPALCATO PER CARICO VERTICALE SW/2			
θ	[rad]	0.0003921	Rotazione di estremità dell'impalcato sotto l'azione del treno di calcolo SW/2, senza tener conto del binario nell'analisi
Н	[m]	2.675	Distanza del piano di regolamento del ballast dal centro di rotazione dell'appoggio fisso
х	[m]	0.950	Distanza del piano di regolamento del ballast dall'asse neutro della sezione dell'impalcato (>0 se via superiore)
δ_{yf0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio fisso
δ_{ym0}	[mm]	2.00	Spostamento al limite elastico del binario della parte limitrofa alla campata in esame lato appoggio mobile
\mathbf{k}_{vf}	[kN/m/m]	405606	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio fisso
\mathbf{k}_{vm}	[kN/m/m]	10000000000	Rigidezza long. per unità di lunghezza della campata limitrofa alla campata in esame lato appoggio mobile
qf	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio fisso
q_{m}	[kN/m]	60	Resistenza del ballast per unità di lunghezza nella tratta adiacente alla campata in esame lato appoggio mobile

GENERAL CONTRACTOR Consorzio IricAV Due Progetto IN17 Lotto Codifica El2CLVI1800001 A

δ_0	[mm]	0.34	Per impalcati a più binari: $0.5*\Theta$ *(H-x). Per impalcati a singolo binario $(0.5 \pm 0.4x/H)$ * Θ *(H-x), con \pm in funzione del verso di percorrenza
δ_{yf}	[mm]	2.15	$\delta_{\gamma fo}$ + q_f / k_{vf}
δ_{ym}	[mm]	2.00	$\delta_{\text{ym0}} + q_{\text{m}} / $ k_{vm}
δ_{f}	[mm]	2.15	max (δ_0 , $\delta_{ ext{vf}}$)
δ_{m}	[mm]	2.00	max (δ_0 , $\delta_{ m ym}$)
α_{vp1}	[-]	0.60	Coeff. funzione della rigidezza per unità di lunghezza (L) del vincolo fisso (k_{vs})
F _{vp_Fren} (+)	[kN]	0.0	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea alla frenatura agente da MOBILE a FISSO
F _{vp_Fren} (-)	[kN]	-131.3	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea alla frenatura agente da FISSO a MOBILE
F _{vp_Avv}	[kN]	123.9	Reazione del vincolo fisso associata al carico verticale SW/2, contemporanea all'azione di avviamento