COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO RILEVATI

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 GENERALE

Relazione Geotecnica

	GENERAL CONTRACTOR				אוט	ETTORE LAV	OKI	
	OGETTISTA INTEGRATORE	Consorz	io					SCALA
ngo fseriff	MALAVENDA callordine degli perda Venezia n. 4289	Iricav	Due Sarmon	а				-
	Gennaio 2022	Data: Ce	lour maio 202	22 Date	a:			
COM	imessa lotto fa	se ente	TIPO D	OC. OPER	RA/DISCIPLINA	PROGR.	REV.	FOGLIO
IN	1 7 1 2	E I 2	R	B R I	3 0 0 0	0 0	1 B	D
						VIS	to consc	DRZIO IRICAV DUE
					Firma			Data
	Iricav2				Luca	RANDOLFI	>	Gennaio 2022
Proge	ettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
Α	EMISSIONE	M. Conti	Luglio	V. Pastore	Luglio 2021	P. Ascari	Luglio	P. Ascari
	EMISSIONE	Lleria Carli	2021	Militaria	- Lugilo 2021	Porls Africa	2021	LESSO MAC.
	REVISIONE	EVISIONE Gennaio	0	V. Pastore	Gennaio	P. Ascari	Gennaio	Carried State of the state of t
В			Valinierofistico	2022	Polo Hali	2022	Data: Gennaio 2022	
CIG	8377957CD1		ID. 1/1F	91000000	000	File	· INI1712	FI2RBRI3000001B DOCX

Progetto cofinanziato dalla Unione Europea

Cod. origine:

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI3000001B
 2 di 110

INDICE

1 IN	TRODUZIONE	4
2 DC	OCUMENTI DI RIFERIMENTO	5
2.1	Documentazione di progetto	5
2.2	Normativa e standard di riferimento	5
2.3	Bibliografia	6
3 IN	QUADRAMENTO DELL'OPERA	7
3.1	Geometria del rilevato	7
4 CA	RATTERIZZAZIONE GEOTECNICA	9
4.1	Premessa	9
4.2	Indagini disponibili	9
4.3	Inquadramento stratigrafico	10
4.4	Livello di falda	12
4.5	Condizioni geotecniche del sito	13
4.6	Sintesi del modello geotecnico di riferimento	20
4.7	Materiale da rilevato	20
5 CA	RATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	21
5.1	Sollecitazione sismica di progetto	21
5.1	.1 Vita Nominale	21
5.1	.2 Classe d'uso	21
5.1	.3 Periodo di riferimento per l'azione sismica	22
5.1	.4 Categorie di Sottosuolo	22
5.1	.5 Condizioni topografiche	22
5.1	.6 Accelerazione sismica di riferimento	23
5.2	Suscettibilità alla liquefazione	23
5.2	2.1 CRR da correlazione su prove CPT	25
5.2	2.2 CRR da correlazione su prove SPT	27
5.2	2.3 Commento ai risultati	30
5.2	2.4 Soil improvement	40
6 VE	RIFICA GEOTECNICA DEL RILEVATO	51
6.1	Criteri di verifica agli Stati Limite	51
6.1	.1 Stati limite ultimi (SLU)	51
6.1	.2 Stati limite di esercizio (SLE)	53
6.1	.3 Verifiche in condizioni sismiche e post-sismiche	53
6.2	Azioni di progetto	53
6.2	2.1 Azioni permanenti	54

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI3000001B
 3 di 110

6.2.2 Azioni variabili	54
6.2.3 Azione sismica	54
6.3 Verifiche e risultati SLU	55
6.3.1 Premessa	55
6.3.2 Verifiche SLU in condizione statiche	55
6.3.1 Verifiche SLU in condizioni sismiche	56
6.3.2 Verifiche SLU in condizioni post sismiche	57
6.4 Verifica e risultati SLE	58
7 CONCLUSIONI E RACCOMANDAZIONI	63
Allegati	64
ALLEGATO 1 - PROFILO STRATIGRAFICO	65
ALLEGATO 2 – INDAGINI GEOGNOSTICHE	67
ALLEGATO 3 - TABULATI DI SLIDE – ANALISI SLU STATICA	83
ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU IN CAMPO SISMICO	91
ALLEGATO 5 - TABULATI DI SLIDE – ANALISI SLU POST SISMA	99
ALLEGATO 6 - TABULATI DI SETTLE 3D – ANALISI SLE	
ALLEGATO 7 - VERSIONE SOFTWARE DI CALCOLO LITILIZZATI	

GENERAL CONTRACTOR ILICAV2		SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
Pilevato farroviario AV da ok 16±800 00 a ok 17±266 00	Progetto	Lotto	Codifica	Foglio

IN17

12

EI2RBRI3000001B

4 di 110

1 INTRODUZIONE

Relazione Geotecnica

Il presente documento costituisce la Relazione Geotecnica del rilevato RI30, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato si estende tra il km 16+800.00 e il km 17+266.00.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta. Le verifiche discusse sono state eseguite ai sensi della Normativa vigente (v. capitolo seguente) e gli interventi proposti sono volti a garantire la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	5 di 110

2 DOCUMENTI DI RIFERIMENTO

2.1 Documentazione di progetto

- [1] Sezioni di Progetto Esecutivo
- [2] IN1710El2RBGE0000002C Relazione Geotecnica (da 10+050 a 21+990)
- [3] IN1710EI2LZGE0000014B Planimetria con ubicazione indagini e profilo geotecnico 4 di 11
- [4] IN1710El2RHGE0000005B Relazione sulla modellazione sismica del sito e pericolosità sismica di base 1/2
- [5] IN1710El2P5GE0000001B Planimetrie con classificazione sismica del territorio 1 di 11
- [6] IN1710EI2RHGE0000003C Relazione idrogeologica 1/2
- [7] IN1710EI2RHGE0000007C-8C Relazione di sintesi dei sondaggi e delle prove eseguite
- [8] IN1710EI2PRGE0000001B-2B, Risultati Indagini in sito di Progetto SOCOTEC
- [9] IN1710EI2PRGE0000003B-4B, Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [10] IN1710EI2PRGE0000005B-6B-7C-8B, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC
- [11] IN1710EI2PRGE0000009B-12B, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [12] IN1710El2IGGE0000001B-2B, Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC
- [13] IN1710El2IGGE0000003B-4B, Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [14] IN0D00DI2RGIM0003002B, Ambiente. Siti contaminati. Relazione Generale e schede.

2.2 Normativa e standard di riferimento

- [15] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [16] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [17] UNI EN 1997-1 : Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [18] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [19] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [20] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [21] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [22] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie

- [23] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 "Opere in terra e scavi" RFI
- [24] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [25] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

2.3 Bibliografia

- [26] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [27] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [28] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [29] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [30] Rocscience (2017), Slide ver 7.0, 2017
- [31] Rocscience (2009), Settle 3D ver 2.0, 2009
- [32] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [33] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [34] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [35] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.
- [36] Priebe H.J., "Vibroreplacement to prevent earthquake induced liquefaction". Ground Engineering, September 1998.
- [37] Idriss I.M. and Boulanger R.W. (2008), "Soil liquefaction during earthquakes".

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	7 di 110

3 INQUADRAMENTO DELL'OPERA

Il rilevato ferroviario in esame si estende tra il km tra il km 16+800,00 e il km 17+266,00 per una lunghezza totale di circa 470 m. Per la tratta in esame non si evidenziano altre interferenze con opere principali adiacenti e/o attraversate.

3.1 Geometria del rilevato

Il rilevato presenta una sezione regolare per tutto il tracciato, con scarpate di pendenza 2/3 (V:H). Alla pk 16+925, si riscontra l'altezza massima del rilevato pari a 2.7 m. La sezione citata, denominata Sezione A (Figura 1) è quella ritenuta più significativa per le verifiche del rilevato in esame.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	8 di 110

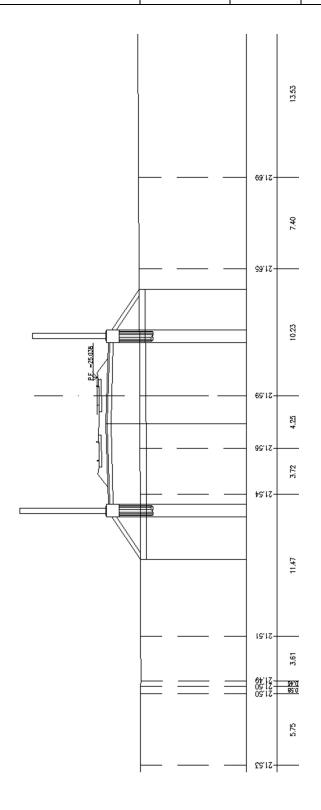


Figura 1 – Sezione di riferimento A (pk 16+925, n. 591) estratta da sezioni PE (Doc Rif. [1])

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Premessa

Nel presente capitolo si riporta la caratterizzazione geotecnica. Si segnala che il sito è classificato come potenzialmente contaminato alla luce della relazione ambientale di PD (Doc. Rif. [14]), essendo interessato dai riempimenti di materiale della ex cava Corte Cicogna. I test eseguiti in sed di PD hanno evidenziato il superamento di alcuni limiti di legge per i materiali testati, con particolare riferimento a arsenico, PCB e idrocarburi. Per il dettaglio si rimanda agli specifici elaborati progettuali.

4.2 Indagini disponibili

L'ubicazione delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 3, estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [3]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [7] - [2]). Il risultato delle indagini è riportato in ALLEGATO 2.

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Vista l'omogeneità della stratigrafia nel tratto in esame si prendono in considerazione sia le indagini che ricadono nel tracciato di Ri30 sia quelle inerenti a Ri29. Nel seguente paragrafo si riporta la caratterizzazione geotecnica, ottenuta basandosi sui risultati delle indagini relative all'aera di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2])

Tabella 1 - Indagini da pk 16+500,00 a pk 17+266,00

Progressiva	ID indagini	Campagna
pk	-	anno
16+556	BH-PE-34	2020-2021
16+576	BH2V	2015
16+610	CPTU1V	2015
16+635	PT23	
16+761	CPTU-PE-15	2020-2021
16+767	MASW-PE-07	2020-2021
16+792	BH-PE-36	2020-2021
16+820	P10	2015

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	10 di 110

Progressiva	ID indagini	Campagna
pk	-	anno
16+556	BH-PE-34	2020-2021
16+823	CPTU2V	2015
17+050	BH3V+CH1V	2015
17+200	CPTU-PE-16	2020-2021
17+250	CPTU3V	2015
17+250	P11	2015
17+250	P11bis	2015

4.3 Inquadramento stratigrafico

Dal punto di vista stratigrafico, l'area del rilevato è interessata dalla presenza di una coltre superficiale di spessore esiguo, circa 2/3 m, di terreni sciolti di natura limoso sabbiosa, alternata a livelli limosi teneri (Unità 3a/3b). Al di sotto di questi depositi si riscontra uno strato di ghiaie ben addensate (Unità 6) fino a una profondità di circa 15 m.

Al di sotto delle ghiaie si incontra il substrato sabbioso (Unità 4) che si estende in profondità a partire da 15 m pc.

Da quanto sopra, risulta evidente che il comportamento del rilevato sarà governato principalmente dalle caratteristiche della coltre superficiale soprastante le ghiaie. Pertanto, nei capitoli successivi, si presterà quindi particolare attenzione alle caratteristiche geotecniche di tale strato.

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]).

Nella Figura 2 si riporta il profilo geotecnico specifico per il rilevato RI30, estratto dalla Planimetria e Profilo Geotecnico Tav. 4 di 11 (Doc. Rif. [3]).

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	11 di 110

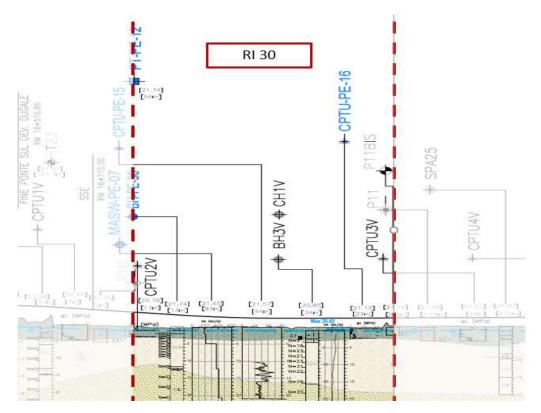


Figura 2 - Profilo Geotecnico Rilevato RI30, estratto dal Profilo Geotecnico Generale (Doc. Rif. [3])



Figura 3 - Planimetria Rilevato RI30, estratto dalla Planimetria Generale (Doc. Rif. [3])

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Procetto Codifica			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	12 di 110

4.4 Livello di falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Ref. [6]). Quest'ultimi indicano una sostanziale stabilità nelle escursioni stagionali.

Ai fini progettuali si assume perciò una falda di progetto a piano campagna.

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TALI D FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	INI 1.7	12	FI2PRPI300001R	13 di 110

4.5 Condizioni geotecniche del sito

Come definito dalla sezione stratigrafica, il tratto in oggetto è caratterizzato da una copertura superficiale di prevalenti limi sabbiosi e limi argillosi (Unità3a/3b) per uno spessore di circa 2/3 m.

La Figura 5 mostra i risultati delle prove SPT eseguite nel tratto interessato dal rilevato in esame. I valori registrati in superficie si aggirano intorno ai 10 colpi/30cm. Le descrizioni dei materiali dei sondaggi, e le caratteristiche granulometriche stimabili dalla prova CPT indicano che tali coltri sono costituiti, in predominanza, da limi sabbiosi, generalmente sciolti.

A tale proposito, la Figura 4 riporta i dati granulometrici dei materiali granulari, così come ottenuti dalle determinazioni granulometriche di laboratorio delle indagini effettuate nella zona. Come si può notare, gran parte dei materiali di superficie ricade nell'ambito dei terreni potenzialmente liquefacibili, così come definiti dalle NTC 2008.

Procedendo con la profondità si incontra uno strato di ghiaie e ghiaie sabbiose ben addensate (Unità 6), che si estende fino a circa 15 m pc. All'interno del deposito incoerente le percentuali di materiale a grana fine sono generalmente inferiori a 20% e si registrano valori di N_{SPT} mediamente pari a 40 colpi/30cm. La densità relativa delle ghiaie risulta pari 50% e quindi il deposito risulta mediamente addensato.

Sotto lo strato di ghiaie si individua un deposito di sabbia limosa mediamente addensata (Unità 4), a partire dalla profondità di 15 m pc fino alla quota di fine sondaggi. In questo deposito le percentuali di materiale fino sono inferiori al 10%, i valori medi di N_{SPT} sono pari a 40 colpi/30cm. La densità relativa delle sabbie risulta generalmente attorno a 60%.

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove DH, MASW e infine SPT, conferma la presenza di materiali incoerenti da mediamente a molto addensati. Fino a 15 m pc, per le ghiaie superficiali si stimano valori di Vs pari a 320-350 m/s. A profondità maggiori, nelle sabbie, le velocità sono pari a 370 m/s. Sulla base dei valori di Vs si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per le ghiaie si considera un valore di 200 MPa, mentre per le sabbie profonde si ottengono valori pari a 300 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 , ed utilizzando valori di v = 0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

Le seguenti figure riportano i risultati delle principali prove di sito e dei parametri geotecnici dei terreni, interpretati alla luce di quanto riferito in [2] e [4].

- Distribuzione delle granulometrie da analisi di laboratorio, con riferimento all'Unità 3a/3b (v. Figura 4);
- Valori N_{SPT} da prove SPT (v. Figura 5);
- Densità relativa stimata da prove SPT (v. Figura 6);
- Angolo di attrito stimato da prove SPT (v. Figura 7);
- Velocità delle onde di taglio stimata da prove in sito (v. Figura 8);
- Modulo di taglio alle piccole deformazioni valutati a partire dai valori stimati di Vs (v. Figura 9).

GRANULOMETRIE DEI MATERIALI DA TRATTARE CON COLONNE IN GHIAIA

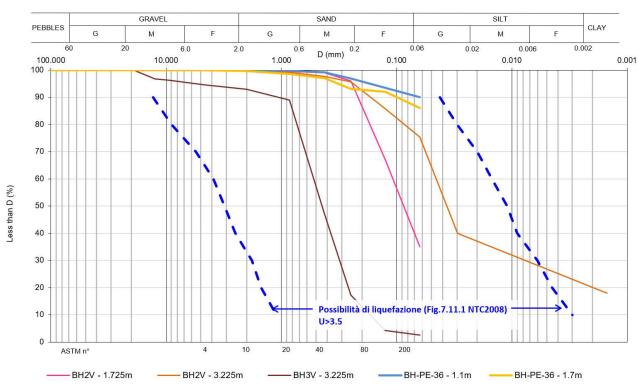


Figura 4 –Sintesi analisi granulometriche dei terreni superficiali, suscettibili alla liquefazione

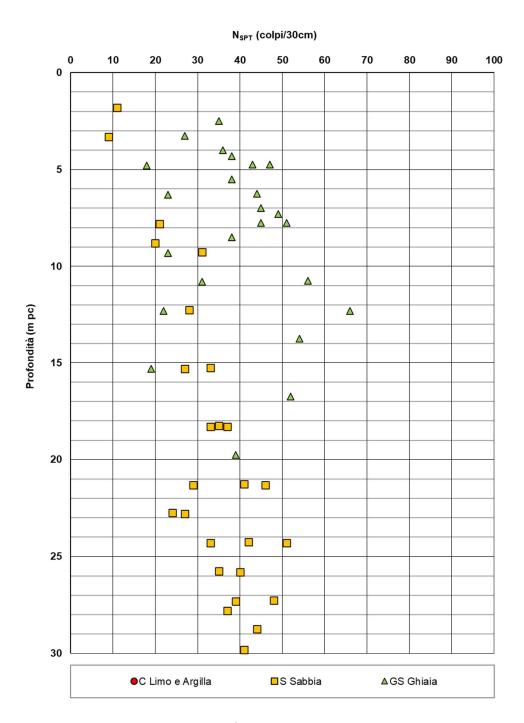


Figura 5 – Esito delle prove SPT da pk 16+800,00 a pk 17+266,00

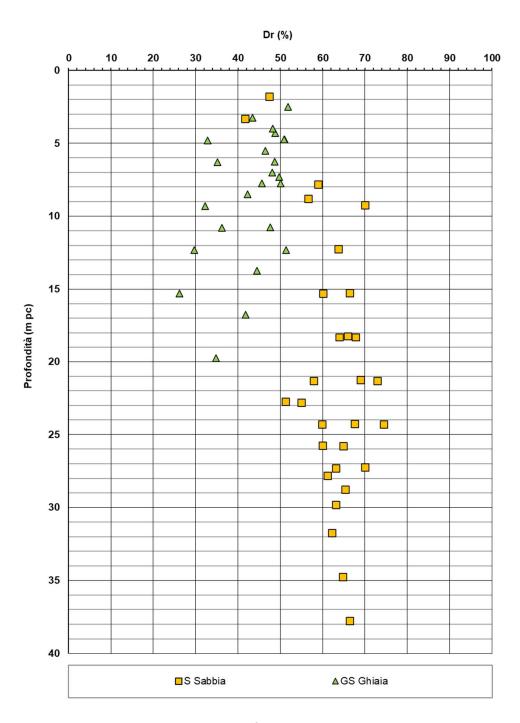


Figura 6 – Densità relativa da prove SPT da pk 16+800,00 a pk 17+266,00

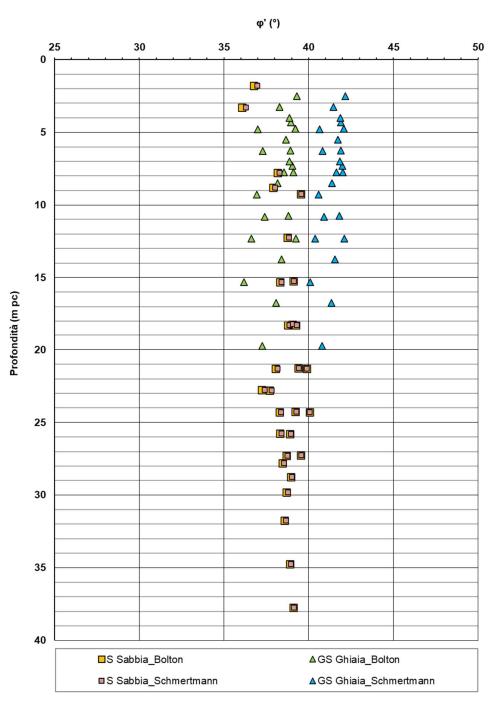


Figura 7 – Angoli di attrito da prove SPT da pk 16+800,00 a pk 17+266,00

GENERAL CONTRACTOR	ALTA	SORVEGLIA	NZA	
Iricav2	Salation of the last	FERROVIE DELLO ST		
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	18 di 110

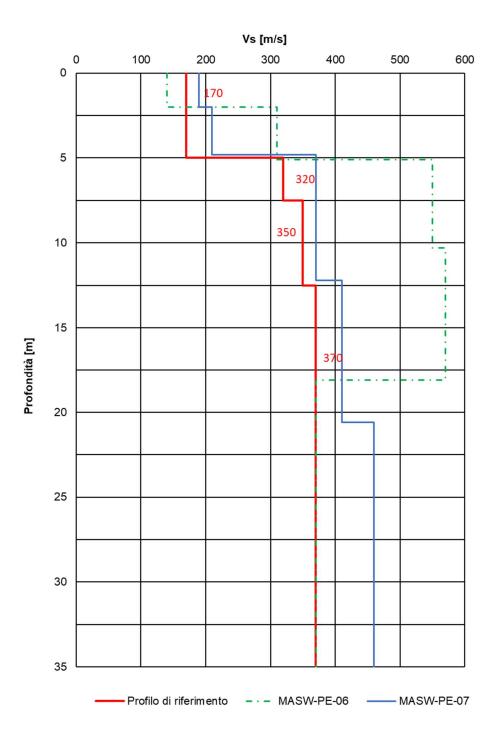


Figura 8 – Profilo di Vs di riferimento, a confronto con dati di correlazioni con SPT e prove geofisiche tipo MASW da pk 16+800,00 a pk 17+266,00

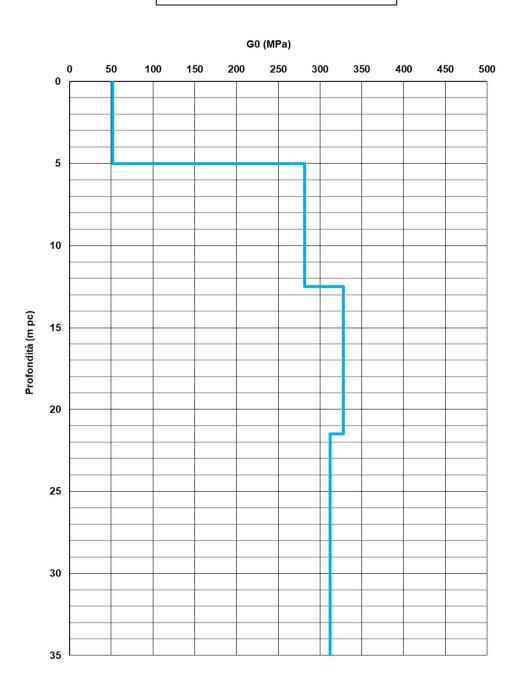


Figura 9 – Modulo di taglio G₀ da pk 16+800,00 a pk 17+266,00

4.6 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2.

Tabella 2 – Modello geotecnico di riferimento

Unità	da	а	γ	φk	C _k '	C _{u,k}	G₀	E'op
Unita	m pc*	m pc*	kN/m³	•	kPa	kPa	MPa	MPa
3a	1.5	2.5	18	34 (36)**	-	-	-	5(12)**
6	2.5	15	19	39	-	-	200	60
4	15	-	19	38	-	-	300	80

^{*} quota piano campagna = 21.60 m s.l.m.

In relazione a quanto riportato nelle tabelle, si precisa quanto segue:

- Come si vedrà in seguito, le coperture superficiali si presentano sciolte, e necessitano di interventi di miglioramento delle caratteristiche meccaniche, in relazione all'esito delle verifiche di liquefazione.
- I valori dei parametri indicati fra parentesi sono quelli del terreno migliorato con le colonne di ghiaia. In particolare:
 - Il valore dell'angolo di resistenza al taglio del terreno sciolto, una volta trattato con colonne di ghiaia avente angolo di resistenza al taglio φ'= 40° è stato stimato pari a 36°
- I moduli E' del terreno naturale sono stati impiegati per ricavare le caratteristiche del terreno migliorato con colonne di ghiaia, secondo quanto riportato al punto 6.4

Per la falda si fa riferimento a quanto riportato in 4.4.

4.7 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. rif. [20]) e sono di seguito riassunte:

Tabella 3 - Caratteristiche materiale da rilevato

	Y kN/m³	φ .	c' kPa
Materiale da rilevato	20	38	0

^{**}i valori tra parentesi () si riferiscono alle caratteristiche del terreno compattato

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP (Doc. rif. [19] e [20]), l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 4 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	$V_N = 50 \ anni$
Altre opere nuove a velocità V < 250 km/h	$V_N = 75 anni$
Altre opere nuove a velocità V ≥ 250 km/h	V_N = 100 anni
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- II Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

Tabella 5 – Valori del coefficiente di uso Cu

Classe d'uso	ļ	II	III	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

II periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica (Doc. rif. [4]) e nelle Planimetrie con classificazione sismica dei terreni (Doc. rif. [5]), i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media i > 15°.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	23 di 110

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

a _g (g) (SLV)	0.218
Coefficiente di amplificazione stratigrafica Ss	1.382
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
a_{max} (g) ($a_{max} = S \cdot a_{\sigma} = S_{S} \cdot S_{T} \cdot a_{\sigma}$)	0.301

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa vigente (Doc. rif. [15]). Le analisi di liquefazione sono descritte in dettaglio nelle Relazioni sulla modellazione sismica del sito e pericolosità sismica di base (Doc. rif. [4]), alla quale si rimanda per maggiori dettagli.

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, $V_R = 150$ anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 (riportato in Figura 1), alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [4] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.0.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio	
IN17	12	EI2RBRI3000001B	24 di 110	

(CRR) così definiti:

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_l}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma'_{vo}} = 0.65 \frac{\tau_{\text{max}}}{\sigma'_{vo}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{vo}}{\sigma'_{vo}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

τ valore rappresentativo dello sforzo di taglio ciclico

 $\sigma_{\scriptscriptstyle
m vo}$ tensione verticale alla profondità in esame, in termini di tensioni totali

 σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

r_d coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per $M \neq 7.5$ è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M=7.5}} = \left(\frac{N_{M=7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto, mentre $(CSR)_{M=7.5}$ e $N_{M=7.5}$ sono riferiti all'evento con M=7.5.

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica RIPROSPERAL CONTRACTOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 25 di 110

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e Idriss e Boulanger (2004) si è assunto per M = 6.0 - MSF = 2.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 10: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per
$$(q_{c1N})_{cs} < 50$$
 $CRR_{7.5} = 0.833 \left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$

per 50 \le (q_{c1N})_{cs} < 160
$$CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$$

In Figura 10, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = \left[(3.47 - \log Q)^2 + (1.22 + \log F)^2 \right]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

$$F = \frac{f_s}{q_c - \sigma_{vo}} \times 100$$

Tanto maggiore è il valore di Ic, tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore Ic =

2.6 è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e I_c sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se I_c così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di $n = I_c$ sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove Kcè definito dalle seguenti equazioni (Robertson & Wride, 1998):

per $lc \le 1.64$ $K_c = 1.0$

per lc > 1.64 $K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$

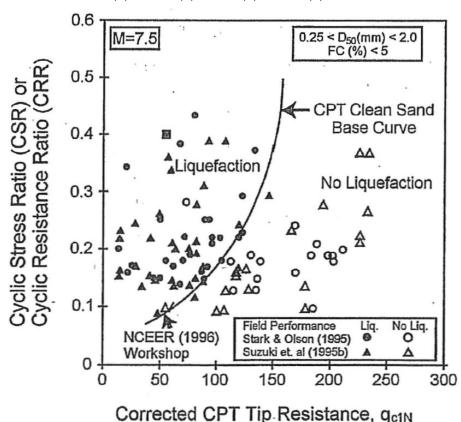


Figura 10: Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 11, originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 11, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti N₁₍₆₀₎, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT} C_N C_E C_B C_R C_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 11, viene riportato il valore di CSR calcolato ed i corrispondenti valori di N₁₍₆₀₎ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	getto Lotto Codifica		Foglio
IN17	12	EI2RBRI3000001B	28 di 110

Si può osservare dalla Figura 11 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{\left[10 \cdot (N_1)_{60} + 45\right]^2} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori di $N_{1(60)}$ ai valori corrispondenti per sabbia pulita $N_{1(60)cs}$:

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

 α = 0 per FC < 5%

 α = exp [1.76 – (190/FC2)] per 5% < FC < 35%

 α = 5 per FC \geq 35%

 β = 1 per FC < 5%

 β = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

β = 1.2 per FC \ge 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il sequente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

p_a = pressione atmosferica di riferimento

f = fattore che dipende dalla densità relative del materiale in sito.

GENERAL CONTRACTOR ICLAN2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	29 di 110

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR <60% f = 0.7÷0.8

60% < DR <80% f = 0.6÷0.7

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

FL = (CRR_{7.5}/CSR) MSF k_{σ}

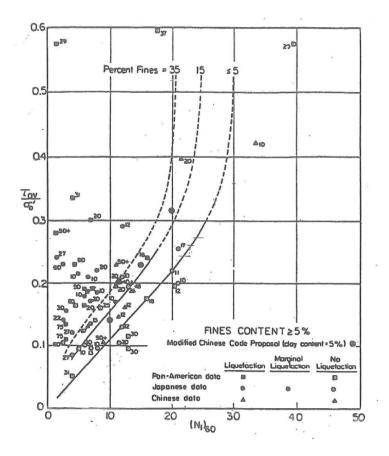


Figura 11: Relazione tra sforzo di taglio ciclico a liquefazione e $N_{1(60)}$ – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

GENERAL CONTRACTOR ILICAV2		SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
Pilevato farroviario AV da ok 16±800 00 a ok 17±266 00	Progetto	Lotto	Codifica	Foglio

IN17

12

30 di 110

EI2RBRI3000001B

5.2.3 Commento ai risultati

Relazione Geotecnica

I risultati (cfr. Figura 12 - Figura 20) indicano rischi di potenziale liquefazione nella porzione di tracciato interessata dal rilevato RI30. In particolare:

- dall'analisi sulla CPTU-1V si evidenzia la presenza in superficie (primo metro) di livelli sciolti tra 0 e 3 m pc
 di materiale potenzialmente liquefacibile, con FL<1.0. Si individua anche un secondo livello, di spessore
 decimetrico, con problematiche più legate allo sviluppo di sovrappressioni interstiziali non trascurabili, che
 non ad un vero e proprio livello continuo liquefacibile.
- dall'analisi sulla CPTU-PE-15, CPTU2V e CPTU3V si evidenzia la presenza di tra 0 e 2 m pc di materiale potenzialmente liquefacibile, con FL<1.0.
- dall'analisi sulla CPTU-PE-16 si evidenzia la presenza di tra 0 e 2.5 m pc di materiale potenzialmente liquefacibile, con FL<1.0.

Si conclude quindi che l'area è interessata da coperture superficiali di terreni potenzialmente liquefacibili, in misura tale da compromettere la stabilità dei rilevati. Le spessore di tali terreni è tuttavia limitato ad una coltre superficiale piuttosto esigua, dell'ordine generalmente del paio di metri, con locale presenza di qualche livello più profondo (ma non oltre i 3m), di materiali in grado di sviluppare rilevanti sovrappressioni interstiziali in occasione dell'evento sismico di progetto.

Si prescrivono pertanto interventi di miglioramento dei terreni, che verranno illustrati nel paragrafo successivo.

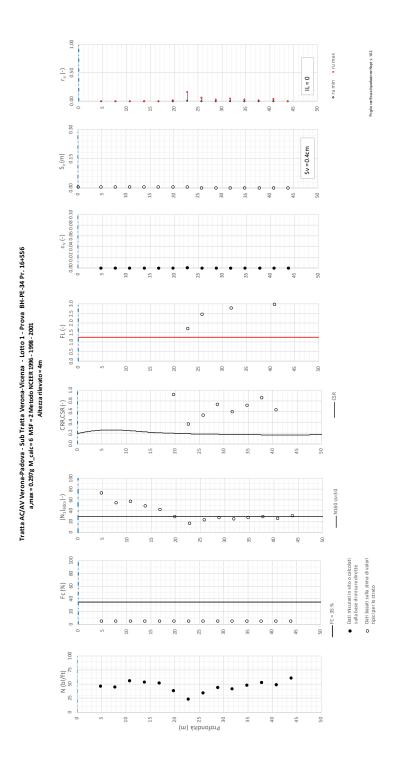


Figura 12 – Verifica Liquefazione da risultati BH-PE-34

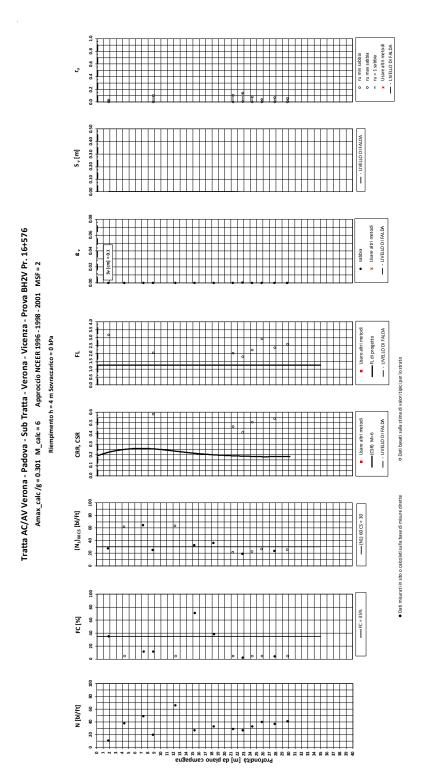


Figura 13 – Verifica Liquefazione da risultati SPT da BH2V

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	33 di 110		

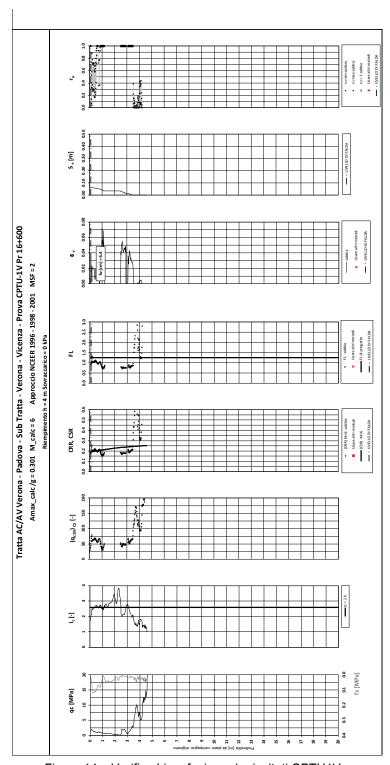


Figura 14 – Verifica Liquefazione da risultati CPTU1V

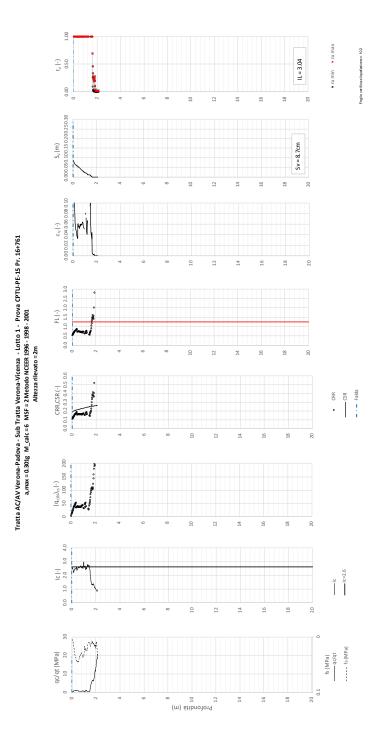


Figura 15 – Verifica Liquefazione da risultati CPTU-PE-35

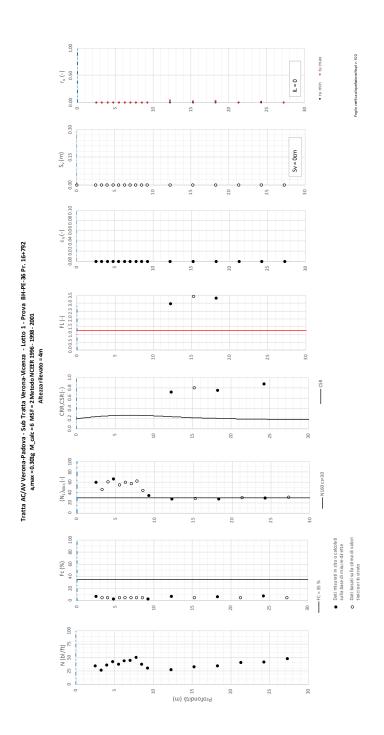


Figura 16 – Verifica Liquefazione da risultati SPT da BH-PE-36

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	36 di 110	

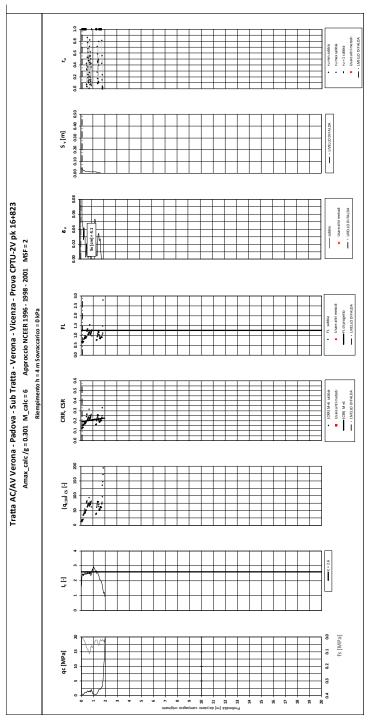


Figura 17 – Verifica Liquefazione da risultati CPTU2V

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	37 di 110

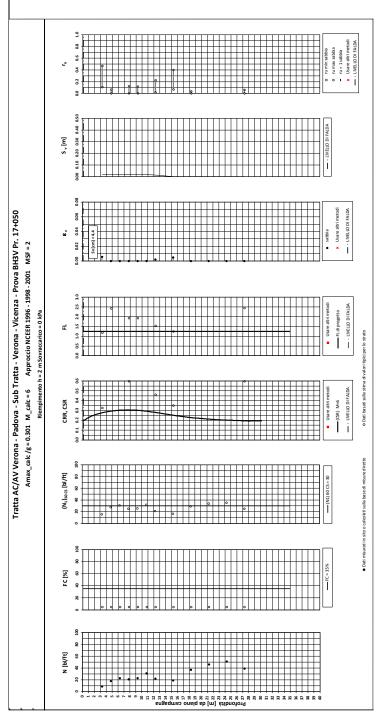


Figura 18 – Verifica Liquefazione da risultati SPT da BH2V

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Pilocate forms darie AV do al. 14 900 00 a. d. 17 244 00	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica	IN17	12	EI2RBRI3000001B	38 di 110

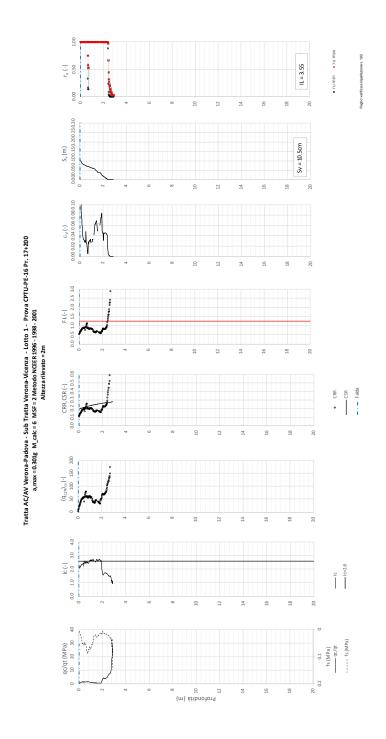


Figura 19 – Verifica Liquefazione da risultati CPTU-PE-15

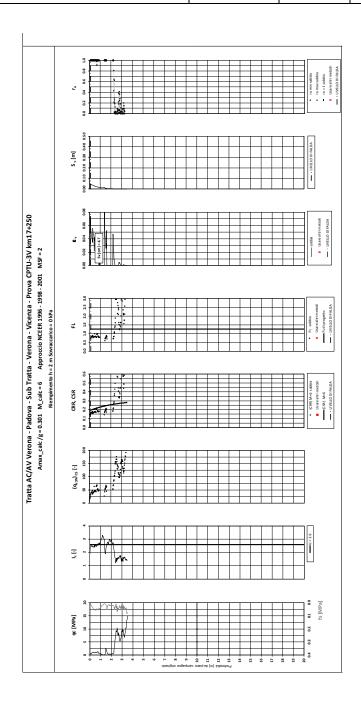


Figura 20 – Verifica Liquefazione da risultati CPTU3V

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica				
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	40 di 110	

12

40 di 110

Soil improvement

5.2.4

Come illustrato al punto precedente, le prove disponibili nell'area evidenziano la presenza di materiali liquefacibili per spessori di circa 2-3 m.

L'area interessata da RI30 è stata identificata come area di stoccaggio di una cava dimessa. Infatti, il terreno risulta composto, per i primi metri, da materiale di problematico smaltimento. Per ovviare a tali problemi di smaltimento, e per la messa in sicurezza del sito contro i problemi di liquefazione evidenziati al 5.2.3, si prescrive la realizzazione di trattamenti con colonne in ghiaia.

Pertanto, lungo l'intera tratta, dalla pk 16+800,00 alla pk 17+266,00, si prescrive:

l'esecuzione di un trattamento di miglioramento delle caratteristiche dei terreni, mediante l'installazione di colonne in ghiaia con diametro D=800 mm, lunghezza L=2.5 m, interasse i=2m, a maglia quadrata.

Per il dimensionamento delle colonne, si è proceduto come segue:

- Si è dimensionata la spaziatura degli interventi sulla base delle indicazioni di Priebe (Doc.Rif.[36]). Il metodo proposto da Priebe consiste nel valutare, in funzione della "densità" del trattamento (i.e., la spaziatura fra le colonne), la diminuzione di azione ciclica sul terreno dovuta alla presenza delle colonne stesse. Nel grafico di Figura 21 Ac è l'area della colonna, mentre A è l'area di pertinenza della colonna stessa. A titolo di esempio, spaziando colonne D=800 mm su maglia quadrata 2x2 m, si ottiene un "area ratio" A/Ac=4/0.5=8, che consente di ridurre l'azione ciclica sul terreno di un fattore (Ps/P nel grafico in ordinate) che può essere stimato pari a 0.6 per colonne realizzate con materiale avente angolo di resistenza al taglio dell'ordine dei 40°.
- Sulla base di tale riduzione, si è rivalutato l'effetto dell'azione ciclica ridotta sui terreni naturali. Nelle figure seguenti si riportano le verifiche di liquefazione eseguite con tale criterio. Come si può notare, per effetto della riduzione della PGA da 0.301 a 0.18 (appunto di un fattore 0.6), il materiale non viene più portato a liquefazione, ma si limita a sviluppare sovrappressioni interstiziali del tutto compatibili con la stabilità del rilevato.

Si noti che il risultato della verifica non si applica ai terreni non trattati. Si noti che il risultato della verifica non si applica i terreni non trattati. Pertanto, quanto riportato nelle figure da Figura 22 a Figura 30, non si applica ai terreni a profondità superiori ai 2.5 m, ove le colonne non sono presenti. Per questi terreni, rimangono valide le verifiche precedenti (Figura 12-Figura 20).

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	41 di 110

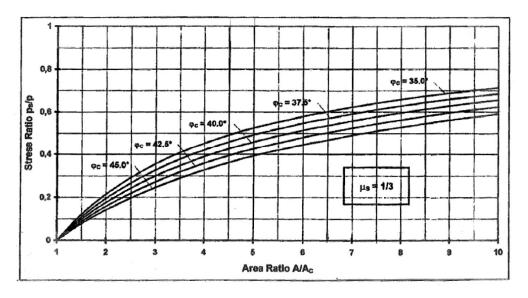


Figura 21 – Riduzione dello stress ratio sismico in funzione dell'area ratio delle colonne di ghiaia (Doc.Rif.[36])

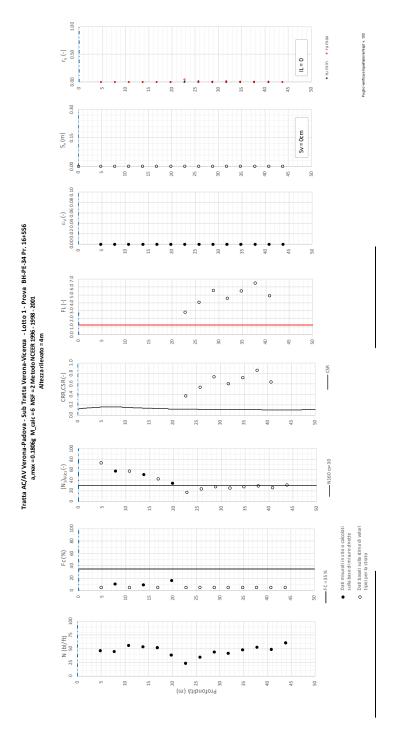


Figura 22 – Verifica Liquefazione da risultati BH-PE-34 dopo soil improvement

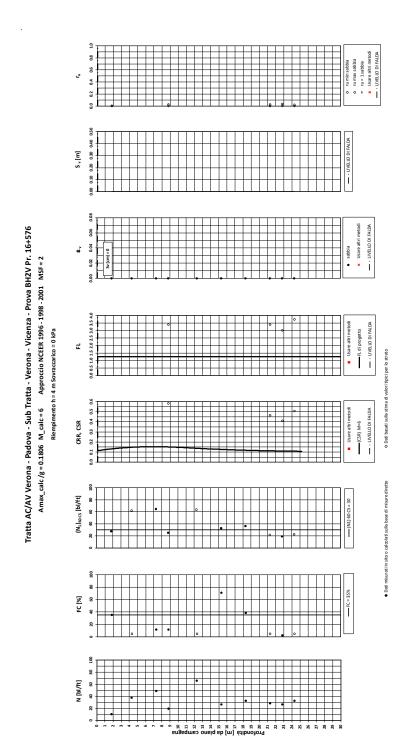


Figura 23 – Verifica Liquefazione da risultati SPT da BH2V dopo soil improvement

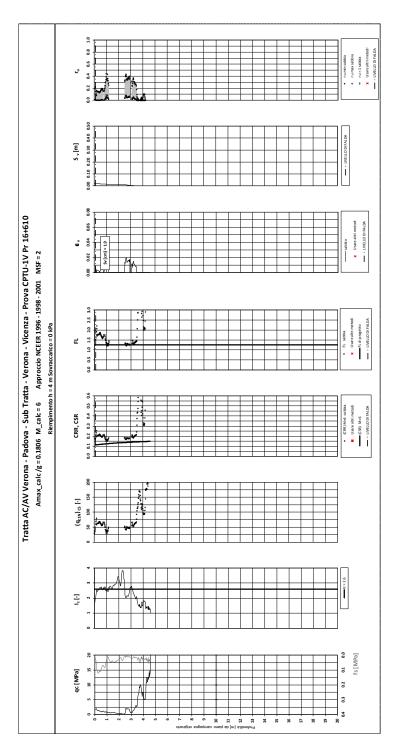


Figura 24 – Verifica Liquefazione da risultati CPTU1V dopo soil improvement

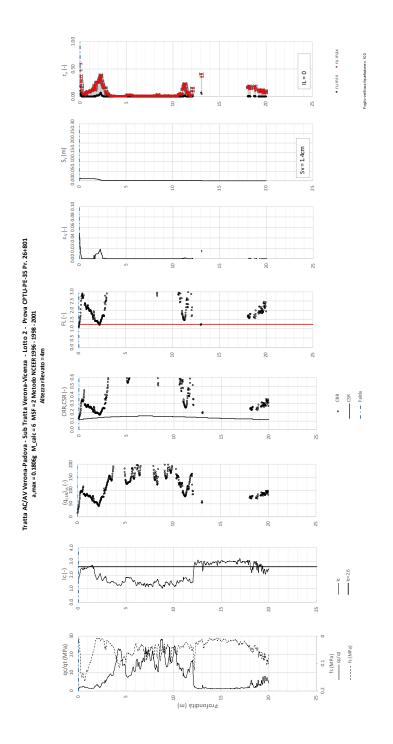


Figura 25 – Verifica Liquefazione da risultati CPTU-PE-35 dopo soil improvement

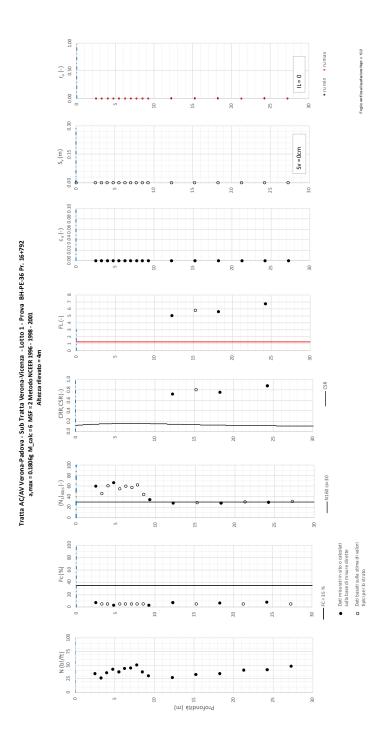


Figura 26 – Verifica Liquefazione da risultati SPT da BH-PE-36 dopo soil improvement

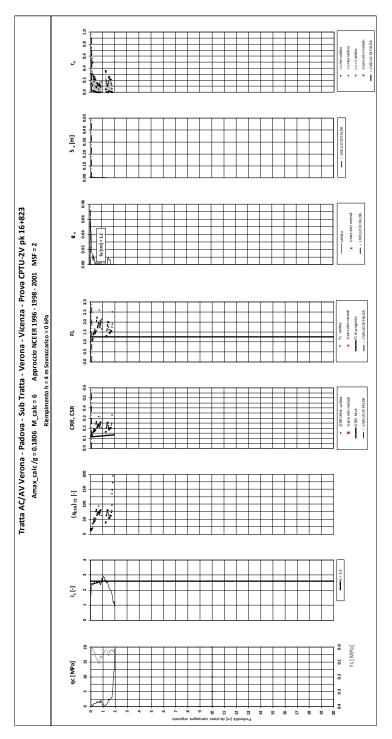


Figura 27 – Verifica Liquefazione da risultati CPTU2V dopo soil improvement

Figura 28 – Verifica Liquefazione da risultati SPT da BH2V dopo soil improvement

GENERAL CONTRACTOR IFICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	49 di 110

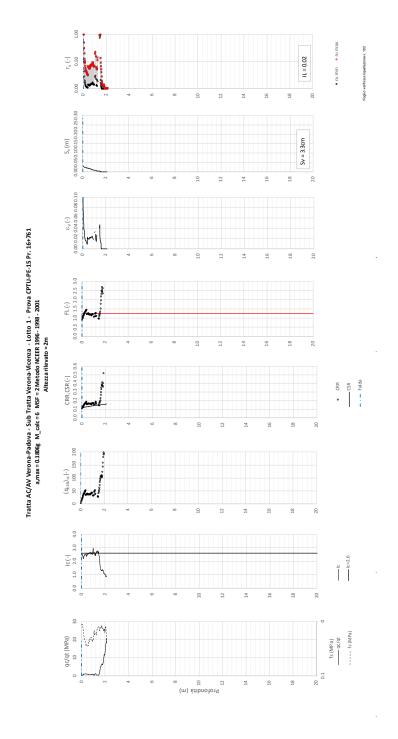


Figura 29 – Verifica Liquefazione da risultati CPTU-PE-15 dopo soil improvement

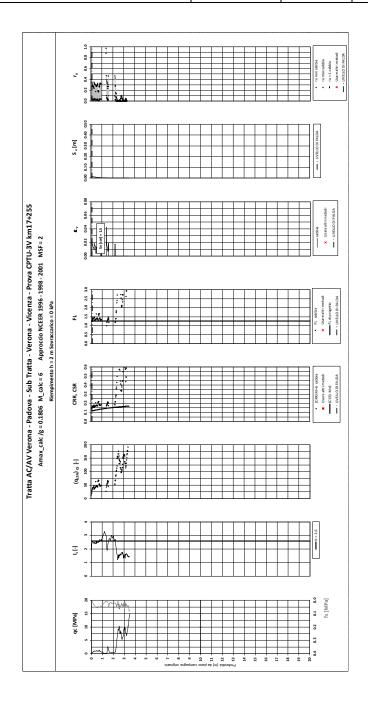


Figura 30 – Verifica Liquefazione da risultati CPTU3V dopo soil improvement

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica RILA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 51 di 110

6 VERIFICA GEOTECNICA DEL RILEVATO

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa vigente richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [15]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [15])

dove:

Ed valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [15]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [15])

dove:

E_d valore di progetto dell'effetto dell'azione;

C_d valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale).

La verifica della condizione $E_d \le C_d$ deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [15]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [16]), calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto $R = R\left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_m}; a_d\right]$.

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 52 di 110

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [15]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 6 – Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale γ _E (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	γ _{G1}	0,9	1,0	1,0
Permanenti	Sfavorevole		1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	γ _{G2}	0,0	0,0	0,0
Permanenti non strutturali	Sfavorevole		1,5	1,5	1,3
Variabili Favorevole you	0,0	0,0	0,0		
v arrabili	Sfavorevole	γ_{Qi}	1,5	1,5	1,3

dove:

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 7 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [15])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		5.50
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ _c	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γγ	1,0	1,0

Tabella 8 – Coefficienti parziali per verifiche di stabilità globale

Coefficiente	R2
γ_{R}	1.1

Si segnala da subito che le verifiche in condizioni SLU e SLE verranno condotte con analisi statiche o pseudostatiche e, in accordo al MDP ITALFERR, il coefficiente di incremento dinamico delle azioni derivanti dal passaggio del treno sarà assunto pari all'unità.

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [15]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del ballast, e per la durata della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [20] e [24]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [24]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 9 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	$160 < V \le 300 \text{ km/h}$
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	$10 < \Delta H \le 15$ $4 < SCARTXL \le 8$
3° livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ $8 < SCARTXL \le 12$

il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche e post-sismiche

La stabilità globale in condizioni sismiche e post-sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [20]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [19]) e nelle NTC (Doc. rif. [15]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

6.2.1 Azioni permanenti

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³ Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, valutati nel rispetto delle normative di riferimento e considerando il caso peggiore tra i tre modelli di carico previsti: LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71) ed applicata su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (k_h) e verticale (k_v):

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove

β_s coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 10)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 10 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[15])

	Categoria di sottosuolo			
	A	B, C, D, E		
	$\beta_{\rm s}$	$eta_{ m s}$		
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28		
$0,1 < a_{\rm g}(g) \le 0,2$	0,27	0,24		
$a_{\rm g}(g) \leq 0,1$	0,20	0,20		

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 7.0 (Doc. Rif. [30]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 7 della presente relazione.

Come da NTC 2008 (Doc. Rif. [15]), la verifica SLU di stabilità globale è soddisfatta se la relazione:

è verificata sia in condizioni statiche che sismiche.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1, secondo il metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2.

6.3.2 Verifiche SLU in condizione statiche

Il carico da traffico ferroviario (q), assunto pari a 61.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile- sfavorevole, pertanto, in accordo al coefficiente parziale sulle azioni A2 riportato e pari a 1.3. Per quanto riguarda la falda, è stata considerata la condizione a lungo termine e quindi è stato preso un livello coincidente a piano campagna, come riportato nel paragrafo 4.4. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 31 sono riportate le superfici di rottura critica per la combinazione DA1C2. Il valore minimo di FS è pari a:

la verifica di stabilità globale in campo statico risulta soddisfatta.

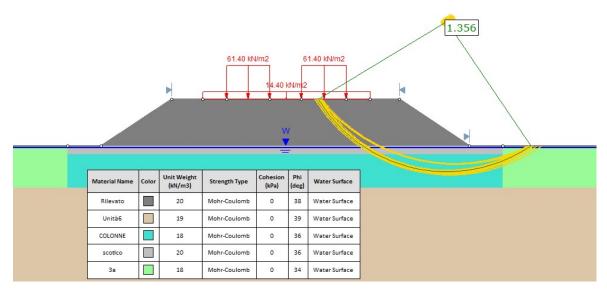


Figura 31 – Sezione A - Analisi SLU in campo statico DA1C2

6.3.1 Verifiche SLU in condizioni sismiche

In accordo a quanto riportato precedentemente, la azione sismica è stata definita attraverso i seguenti coefficienti sismici:

K_H= + 0.083 (concorde alla direzione di scivolamento)

 $K_V = \pm 0.042$ (verificando la più cautelativa tra negativo e positivo)

Per quanto riguarda la falda è stato preso un livello coincidente a p.c., come riportato nel paragrafo 4.4. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che interessano la sede ferroviaria.

Per i parametri di resistenza al taglio degli strati interessati dall'intervento con colonne, si veda quanto riportato al punto 4.6.

In Figura 32 sono riportate le superfici di rottura critiche. Il fattore di sicurezza FS è pari a:

FS_{MIN}=1.161>R2=1.1

la verifica di stabilità globale in campo sismico risulta soddisfatta.

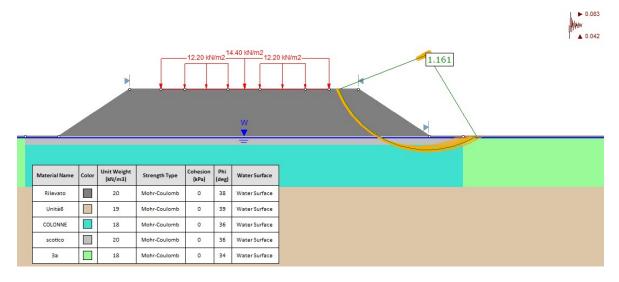


Figura 32 - Sezione A - Analisi SLU in campo sismico

6.3.2 Verifiche SLU in condizioni post sismiche

Nel caso di analisi di stabilità su terreno liquefatto, si è considerata la liquefazione come l'evento terminale, prodotto dall'intero ciclo di carichi dovuto al sisma. Pertanto, a liquefazione avvenuta, il sisma non è più presente e la verifica viene intesa come post-sismica. In sostanza, nelle verifiche post sismiche non è stata applicata l'accelerazione, ma si esamina la stabilità del rilevato a seguito dell'effetto prodotto dall'intero carico ciclico.

La resistenza al taglio degli strati liquefatti è stata posta convenzionalmente pari a 0.1 σ'v (Rif.Doc[37]), che è stata modellata nelle analisi con un terreno avente angolo di resistenza al taglio pari a 5.7° (arctg. 0.1).

Per quanto riguarda la falda è stato preso un livello coincidente a p.c., come riportato nel paragrafo 4.4. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che interessano la sede ferroviaria.

Per i parametri di resistenza al taglio degli strati interessati dall'intervento con colonne, si veda quanto riportato al punto 4.6.

In Figura 33 sono riportate le superfici di rottura critiche. Il fattore di sicurezza FS è pari a:

FS_{MIN}=1.397>R2=1.1

la verifica di stabilità globale post liquefazione risulta soddisfatta.

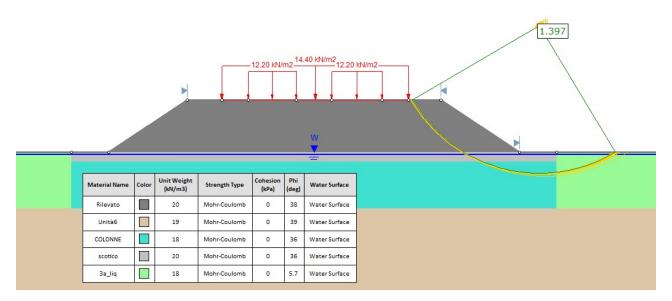


Figura 33 - Sezione A - Analisi SLU in post sisma

6.4 Verifica e risultati SLE

La determinazione del campo di spostamenti è stata svolta mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [31]) che permette di valutare l'andamento dei cedimenti nel tempo sotto diverse ipotesi di carico. Il programma discretizza l'area analizzata in un numero finito di aree di carico e valuta gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti. A partire dagli incrementi tensionali vengono poi calcolati i cedimenti.

La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta all'interno del codice di calcolo con riferimento a soluzioni basate sulle seguenti ipotesi semplificative:

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di Boussinesq);
- l'area di carico è posta sulla superficie del semispazio ed è ipotizzata avere rigidezza nulla.

Per una generica condizione di carico viene quindi eseguita una discretizzazione in un numero finito di aree di carico sulle quali è applicata una pressione uniforme o variabile linearmente.

Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti.

Il calcolo dell'incremento delle tensioni normali indotte da un'area di carico nastriforme, soggetta a un carico uniformemente distribuito (parte centrale del rilevato), viene eseguita sulla base delle formule di Jumikis (1971).

$$\begin{split} \Delta\sigma_z &= \frac{q}{\pi} \cdot \left[\tan^{-1} \! \left(\frac{x+B}{z} \right) - \tan^{-1} \! \left(\frac{x-B}{z} \right) - \frac{z \cdot (x-B)}{(x-B)^2 + z^2} + \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_x &= \frac{q}{\pi} \cdot \left[\tan^{-1} \! \left(\frac{x+B}{z} \right) - \tan^{-1} \! \left(\frac{x-B}{z} \right) + \frac{z \cdot (x-B)}{(x-B)^2 + z^2} - \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_y &= \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

dove:

 $\Delta \sigma z$, $\Delta \sigma x$, $\Delta \sigma y$ = incremento delle tensioni normali verticali e orizzontali

q = carico applicato

υ = coefficiente di Poisson

B = semilarghezza dell'area di carico in direzione x

x, y, z = coordinate geometriche di riferimento come indicato nella figura seguente.

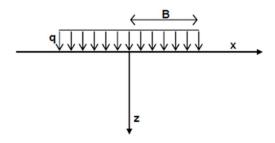


Figura 34 - Modello di calcolo Settle 3D - carico uniforme

Nel caso di un'area di carico nastriforme soggetta a un carico linearmente crescente (bordo del rilevato), le formule di Jumikis da applicare sono le seguenti:

$$\begin{split} & \Delta\sigma_z = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \middle| \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_x = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + z \cdot ln \left(\frac{x^2 + z^2}{(x - A)^2 + z^2} \right) - \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_y = \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

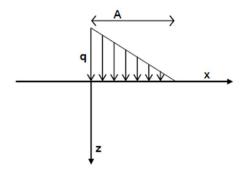


Figura 35 - Modello di calcolo Settle 3D - carico linearmente crescente

Il calcolo della deformazione verticale per ogni singolo sublayer viene valutato sulla base dell'incremento di sforzo verticale, utilizzando la seguente espressione:

$$\varepsilon_z = \frac{\Delta \sigma_z}{E}$$

Il cedimento verticale totale viene quindi calcolato come sommatoria dei cedimenti dei diversi strati.

Il calcolo dei cedimenti indotti dalla realizzazione del rilevato ferroviario è stato svolto modellando la successione stratigrafica in sito tenendo conto delle diverse caratteristiche di deformabilità degli strati, in accordo alla stratigrafia

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI3000001B
 60 di 110

di progetto riportata in Tabella 2. Si sono assunti i valori caratteristici sia sulle azioni che sui materiali.

Si osserva come, in accordo con la stratigrafia e i parametri di progetto riportati nel Capitolo 4, i moduli elastici risultano di fatto indipendenti dallo stato tensionale ed il valore della quota della falda non ha alcuna influenza sull'esito del calcolo. Pertanto, nel calcolo la falda è stata rappresentata ad una quota convenzionale praticamente coincidente con il p.c.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente diseguaglianza:

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [15])

dove

Ed è il valore di progetto dell'effetto dell'azione, e Cd è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1. Il modello di calcolo implementato per il rilevato tipologico con altezza pari a 2.7 m, è riportato in Figura 36. La larghezza del rilevato è pari a 22 m, con pendenza delle scarpate è 2V:3H. Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2.

Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un ccarico distribuito applicato in corrispondenza dell'impronta del rilevato ferroviario.

I cedimenti sono stati calcolati al centro del nuovo rilevato, i valori calcolati sono riportati nella Figura 37.

Il cedimento calcolato in corrispondenza del centro del nuovo rilevato è di circa 3.2 cm.

Considerando la natura per lo più granulare dei terreni, nonché la presenza delle colone di ghiaia, se ne deduce che i massimi percorsi di drenaggio saranno inferiori al metro. In tali condizioni di drenaggio, i cedimenti si esauriranno praticamente all'atto dell'applicazione dei carichi, e quindi non risultano essere necessarie dettagliate analisi di consolidazione. Inoltre, considerata la natura dei terreni i cedimenti secondari sono trascurabili.

I cedimenti di lungo termine, e più in particolare quelli a far data dal termine dell'applicazione del carico del ballast e fino alla fine di vita utile dell'opera (100 anni), sono pertanto da considerare trascurabili.

Per quanto concerne la deformabilità del terreno trattato con colone di ghiaia, si può valutare un modulo equivalente dello strato trattato con colonne come media pesata fra l'area delle colonne e quella del terreno naturale.

Assumendo per le colonne un valore del modulo E'=60 MPa, ed un'area di competenza di ciascuna colonna D=800 mm pari a 4 m² (maglia 2x2), si ottiene un modulo equivalente pari a:

E'eq = $(5*3.5+60*0.5) / 4 \approx 12 \text{ MPa}$.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	61 di 110

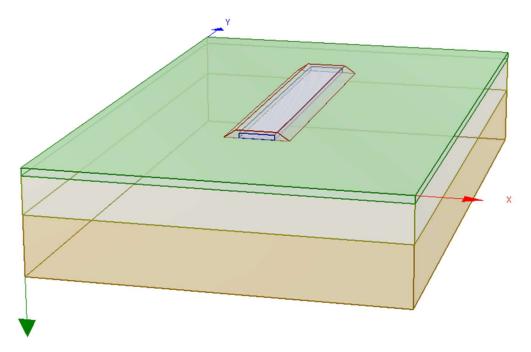


Figura 36 – Rilevato RI30 H=2.70 m - Analisi SLE – Modello di calcolo

Ri30: Cedimento del rilevato ferrroviario linea AV

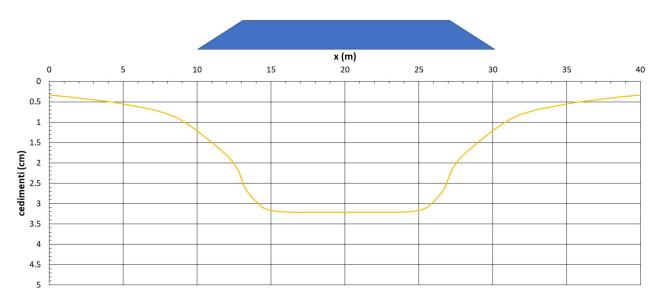


Figura 37 - Rilevato RI30 - Analisi SLE - Risultato Cedimenti

Ri30: Cedimento al centro del rilevato ferrroviario

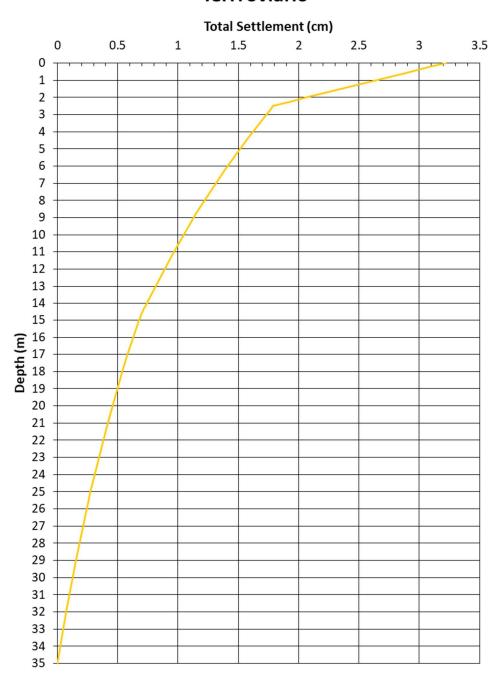
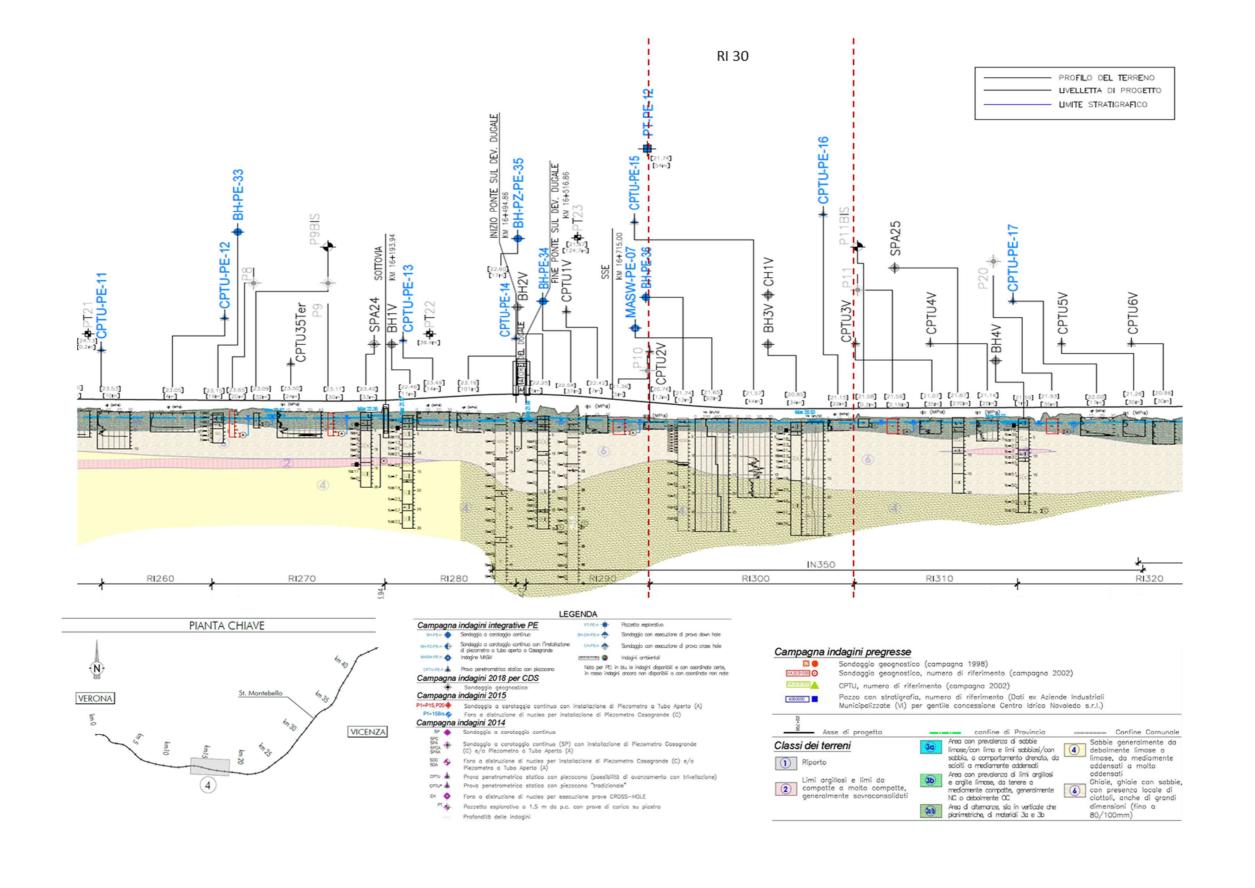


Figura 38 - Rilevato RI30 - Analisi SLE – Risultato cedimenti in profondità al centro del rilevato

7 CONCLUSIONI E RACCOMANDAZIONI


In conclusione, il rilevato oggetto di questa analisi risulta stabile e i cedimenti attesi sono limitati e non differiti nel tempo. Non si evidenziano criticità di tipo geotecnico e pertanto non è previsto un monitoraggio.

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica RILA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 64 di 110

ALLEGATI

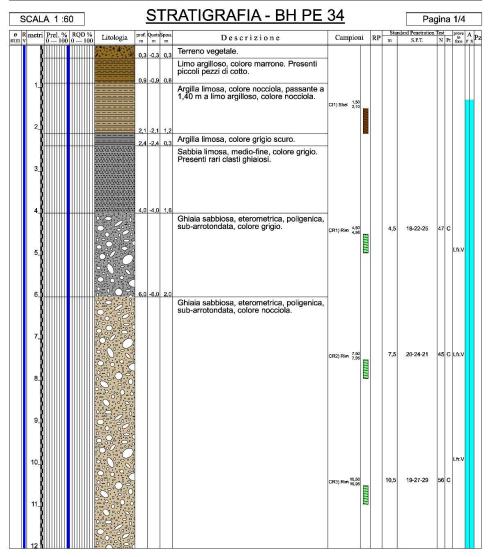
GENERAL CONTRACTOR IFICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	65 di 110	

ALLEGATO 1 - PROFILO STRATIGRAFICO

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	67 di 110

ALLEGATO 2 – INDAGINI GEOGNOSTICHE

GENERAL CONTRACTOR



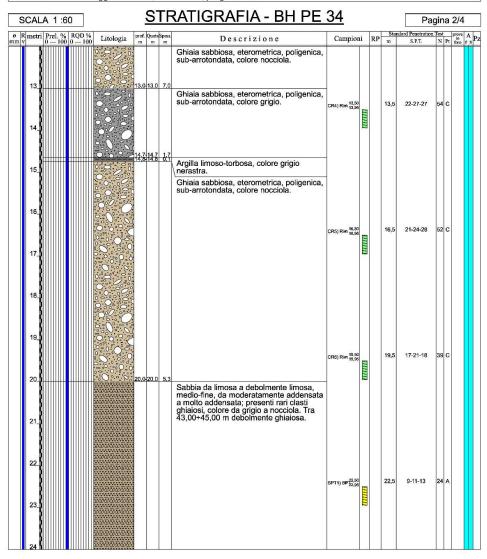
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	68 di 110

Committente: IricAV Due	Sondaggio: BH PE 34
Riferimento: Linea AV/AC Verona-Padova 1° Lotto Verona-Bivio Vicenza	Data: 18/12/2020 - 21/12/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A65, prog. 16+490	

Il Geologo di Cantiere dott.geol. Gabriele Sprocatti

GENERAL CONTRACTOR



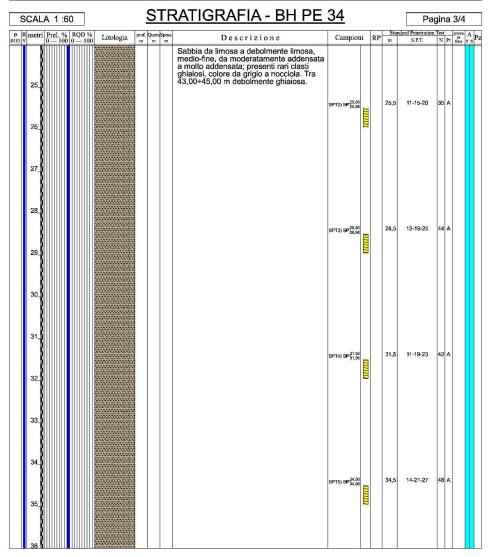
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	69 di 110

Committente: IricAV Due	Sondaggio: BH PE 34
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 18/12/2020 - 21/12/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A65, prog. 16+490	**

Il Geologo di Cantiere dott.geol. Gabriele Sprocatti

GENERAL CONTRACTOR ALTA SORVEGLIANZA ITICAV2 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE



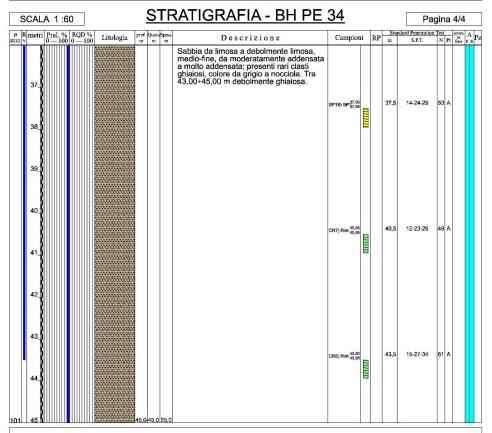
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00

Relazione Geotecnica

Committente: IricAV Due	Sondaggio: BH PE 34
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 18/12/2020 - 21/12/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A65, prog. 16+490	20

Il Geologo di Cantiere dott.geol. Gabriele Sprocatti

GENERAL CONTRACTOR

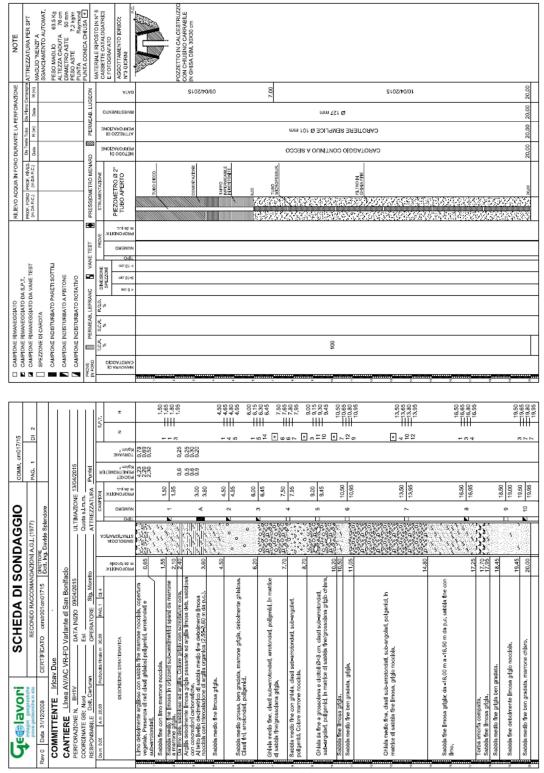

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto Lotto Codifica IN17 EI2RBRI3000001B 12

Foglio 71 di 110

Committente: IricAV Due	Sondaggio: BH PE 34
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 18/12/2020 - 21/12/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A65, prog. 16+490	320

Utilizzato carotiere semplice.
Prelevato n. 1 campione indisturbato.
Prelevati n. 8 campioni rimaneggiati.
Prelevati n. 6 campioni rimaneggiati SPT.
Eseguite n. 14 prove SPT.


GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

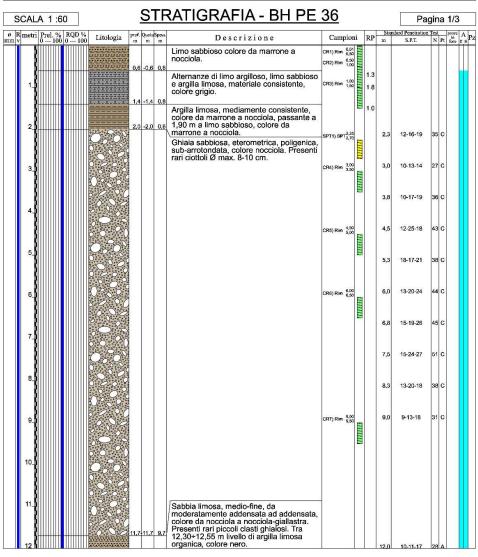
 IN17
 12
 El2RBRI3000001B
 72 di 110

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica Progetto IN17 Lotto 12 Codifica
EI2RBRI3000001B

Foglio 73 di 110

	CAMPIONE RIMANEGGIATO DA S.P.T. CAMPIONE RIMANEGGIATO DA VANE TEST SPEZZONE DI CAROTA	DA S.P DA VA!	F = E	TS.			PROF FORO (m DA P.C.)	O PROF.	PROF. RNES. (m DA P.C.)	Da Testa Deta	H (m)	NLEVO ANGOR IN FORM DUMAN IE LA PERFUMAÇIONE (INDA P.C.) (INDA P.C.) Data H(III) Data H(III) Data H(III)	Campagna H (m)	ATTREZZATURA PER SPT MAGLIO "NENZI" A
ONE	II CAROTA		5											SGANCIAMENTO AUTOMAT
JONE II	CAMPIONE INDISTURBATO PAREIT SOTILL CAMPIONE INDISTURBATO A PISTONE	PARETI	SOT	=										PESO MAGLIO 63.5 Kg ALTEZZA CADUTA 76 cm DIAMETRO ASTE 50 mm
PIONE	CAMPIONE INDISTURBATO ROTATIVO	ROTAT	8											PESO ASTE 7.2 kg/m PUNTA Raymon
	PERMEAB, LEFRANC	ANC	25	\AN	VANE TEST	40 2	PRESSIOMETRO MENARD	METRO	MENAR	CZZZ		PERMEAB, LUGEON		PUNTA CONICA CHIUSA
O. %	S.C.R. R.D.D.	⊢	DIMESIONE	ų,	Æ.	1 1	Ц	STRUMENTAZIONE	32	ЗN	3N	٥		
			m> 01-8	mo 01 <	CABIAUN	PROFONDITA m de p.c.	PIEZOMETRO Ø 2* TUBO APERTO	APERT	0 0	NETOGO CI	ATTREZZO DI	RİVESTİMENT	ATAG	
								TUBO	ssur.	00	w		202/40/01 S	
100							# # # # # # # # # # # # # # # # # # #	PETRON STANATE	_#	CAROTAGGIO CONTINUO A SEC	CAROTIERE SEMPLICE Ø 101 m	mm TSf @	13/04/2016	
								90'06		30,00	30,00	30,00	30,00	

SCHEDA DI SONDAGGIO	SECONDO RACCOMANI	Data 31/12/2008 CERTIFICATO cerstr001cm01715 Datl, Ing. Davide Splendore	Irlcav Due	TIERE Linea AV/AC VR-PD Variante di San Bonifacio	12	Nord Dott Carturan	Control of the City of the Control of the CANTON of the Canton of the Ca	ACTIVITY OF STATE OF	Sabble medio fine ben gradata marrone chlaro.	11 22.80	12 23 88 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 800 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20 80 20	Lino argillisos sabeless con intercalazioni centimetriche oil sabela fine. 24.50 1.60 0.55 1.60 0.55 Colora grigio, grigio-azzurognolo. Abbondanti concrezioni carbonaliche. 24.50 0.55 1.50 0.55	25.25		* 0	Sabble medio fire nocidia, 28.95		DAVIDE SPLENORE STATE OF THE SPLENORE SEARCH OF SEARCH O
Selav Selav	prove geotecni	Rev 0 Data 31/12/20	COMMITTENTE	CANTIERE	PERFORAZIONE N.		RESPONSABILE	Dam 20,00 Am 30,00	». Sabbla medlo fine b	Sabbla fine Ilmosa n	Argilla grigio scura c	Limo argilloso sabbl Colore griglo, griglo	Limo argilloso nocciola	8 h s	Sabbla fine Ilmosa n	8 1	FINE SONDAGGIO	



Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

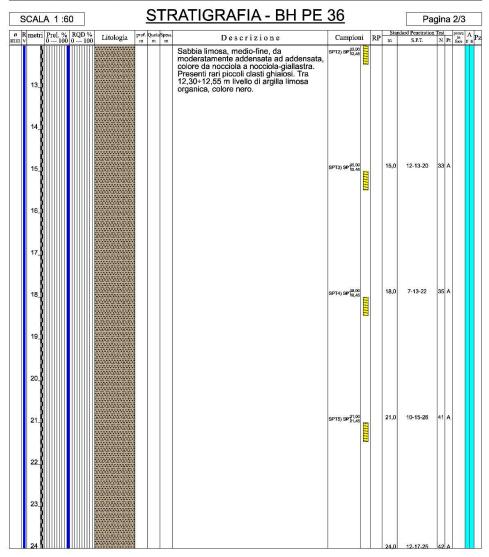
Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	74 di 110

Committente: IricAV Due	Sondaggio: BH PE 36
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 25/11/2020 - 26/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 66, prog. 16+760	*

Il Geologo di Cantiere dott.geol. Gabriele Sprocatti

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica

IN17


12

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00

Relazione Geotecnica

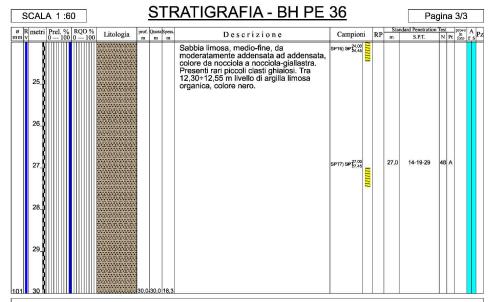
Committente: IricAV Due	Sondaggio: BH PE 36
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 25/11/2020 - 26/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 66, prog. 16+760	30

Il Geologo di Cantiere dott.geol. Gabriele Sprocatti

Foglio

75 di 110

EI2RBRI3000001B

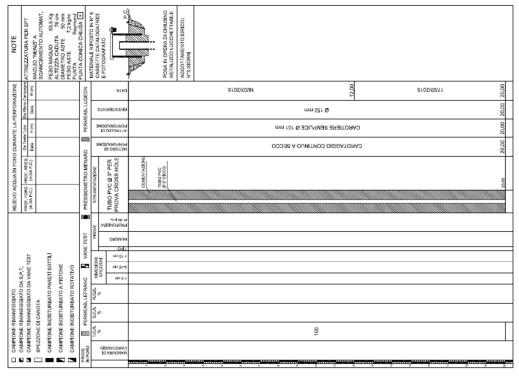


Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	76 di 110

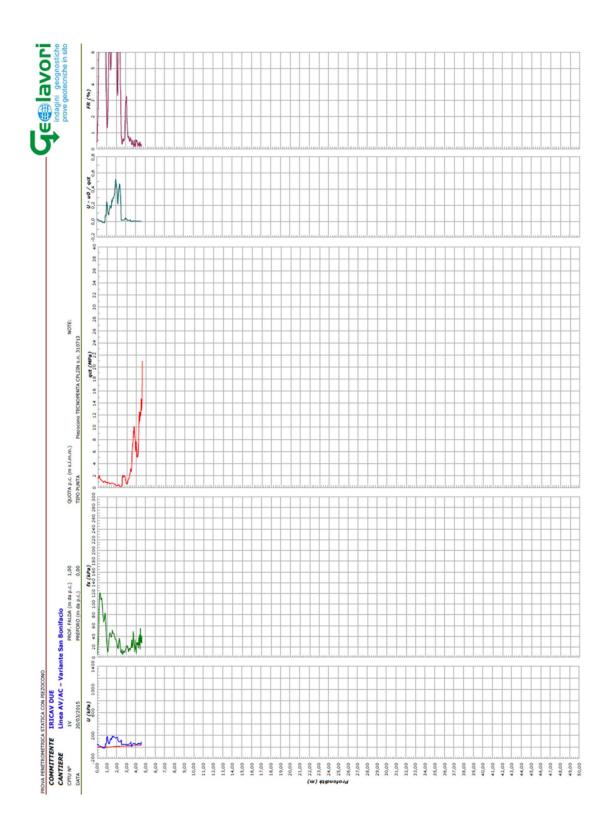
Committente: IricAV Due	Sondaggio: BH PE 36
Riferimento: Linea AV/AC Verona-Padova 1° Lotto Verona-Bivio Vicenza	Data: 25/11/2020 - 26/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 66, prog. 16+760	

Utilizzato carotiere semplice. Prelevati n. 7 campioni rimaneggiati. Prelevati n. 7 campioni rimaneggiati SPT. Eseguite n. 16 prove SPT.

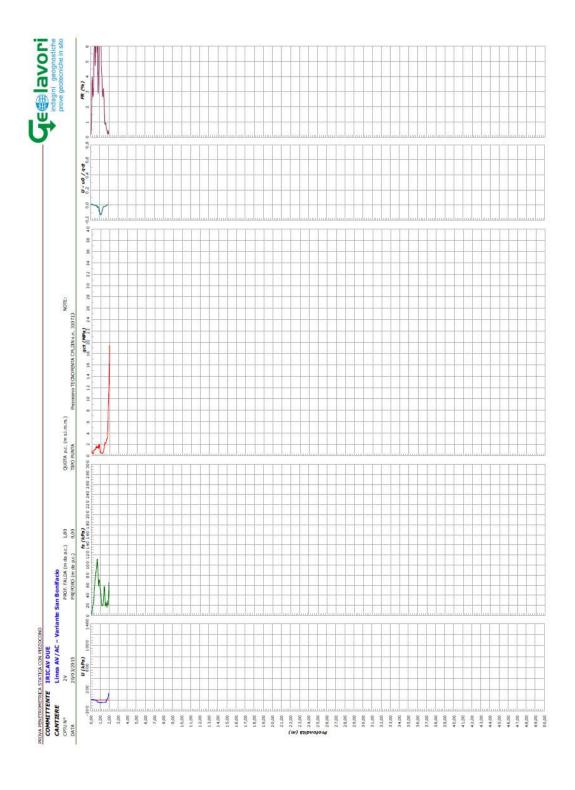


Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

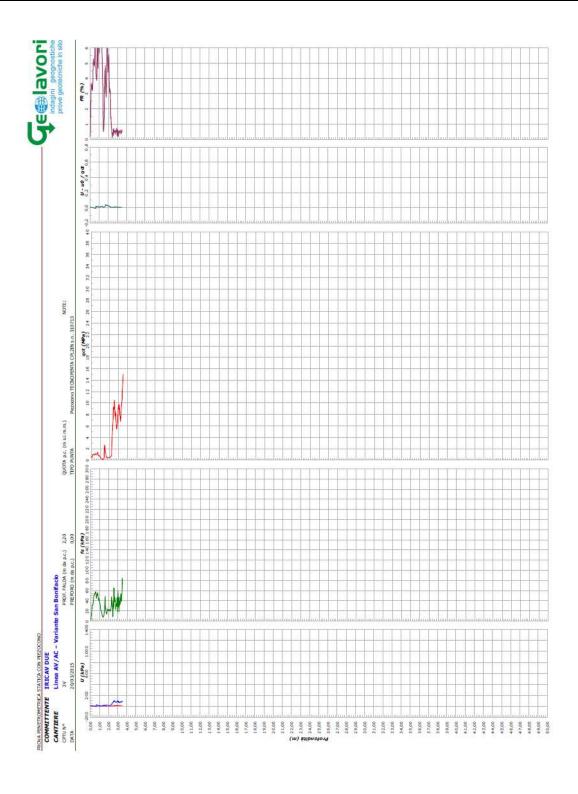
Progetto Lotto
IN17 12


Codifica
EI2RBRI3000001B

Foglio 77 di 110



Programming responsible in the programming responsible in th	CRETIFICATO Centification ACT Centification ACT Centification Ce	Dott. Ing	DAZIONI A.G.I. (1977) DRETTORE Dolf Ing Dayles Splendore			PAG. 1		0	,
Data 31/12/2008 MMITTENTE Ileas 11/12/2008 MTIERE Ileas 11/12/2008 MTIERE MTIER	IPICATO ceretodoxencit15 2-PD Variante di San Bonifa 2-PD Variante di San Bonifa DATA NIZIO 16032015 Est Est Decentrole Sigue Venimento no presento de monte in a consentrole no conse	Dott. Ing	E Payde Sol						
COMMITTENTE - LINB CANTIFEE LINB CANTIFEE LINB CONTINEN HISTORY HISTOR	2-PD Variante di San Bonila DAYA INIZO 160x2015. Esta Principale di San Bonila DAYA INIZO 160x2015. Esta Principale Sig. Ventu Inden 200 post 1 or a NATRANCO 100 of a original di serial clo	Davido sept	endore						
리위 [종] [종 [종등왕] 등 [종 등왕]	3-PD Variante di San Bonita DATA NUZIO 1 ESCAZZOTIS Est OPERATORE SIQ. Voenitaden 3000 Poot 1 31 x NUSIONALE SIG. VOENITADEN 3000 Poot 1 31 x NUSIONALE SIG. SIG. SIG. SIG. SIG. SIG. SIG. SIG.	oclo							
PERFORMATION IN BEST OF SERVINATE GIB. Nov. The acts of the acts o	DATA NIZIO 1809/2015 Est Est Sig. Venta Loden 3000 [No.1] of 4 NIZIONALO NIZIONALO ANDRONICA e of angillia on lino debolinente e of angillia on lino debolinente	-							
Terreno con copertura vegatale, mario asservacione del controlore	PPERATORE SIg. Venta Inden 3300 PAG.1 G14 NIDRAHICA NIDRAHICA NI dead albotrol formed da		- E	ULTIMAZIONE	ULTIMAZIONE 18/03/2015	33/2015			
DESCRIPTION OF STREET OF STREET, STREE	Indean 30.00 PAG. 1 Ct & AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENATOR AVIDENAT	lulu	AT	ATTREZZATURA	ı 'I	Punte		Ш	
DESCRIPTION OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY REPORT OF THE PROPERTY OF THE PROPERT	ATRIBATICA e di argilia con limo debolmente ori di clasti allocioni formati da		¥3	CA	CAMPION	ы		Ш	S.P.T.
Terreno con conceptura vegable, matic asteliciosa mercore. Numerces beformas resul al latedita del pulha politicata, sulta- drilla incosa declaramento asteliciosa. Argilla decedimente lincosa gripia con so declarente asteliciosa. Sababa medi dire ben gratica mercor- decimento a. 2,80 m da p. c. passante ciandi annocondali, polipendici, medio ful- ciandi annocondali, polipendici, medio ful-	e di argilia con limo debolmente oni di ciasti alloctoni formati da	VATIONOTORIA electrol et m	SINBOLOGIA STARCITARAFIC	TIPO	PROFONDITA'	PENETROMETI PENETROMETI POCKET	TORVANE Kglom²	z	I
Argilla declarante saccosa variante saccosa variante debit con se debotrante limosa grigla con se debotrante sattices. Sabbia medio fine ben gradiata marron decimetrico a a.2,80 m da p.c., passante clast amotomortal. poligenid. medio film	arrotondata da tine a grossa.	1.00				4.60	0.56		
Sabbia medio fine ben gradata, marror decimetico a 42,80 m da p.c. passante ciasti arrotondati, poligenici, medio fini.	rezisture ocra passante ad argilla	2.40	S S S S S S S S S S S	<	1.80	4.0	0.26		
	e grigia con ortzzonte organico a sabbla medio fine ghialosa,	3.45)))	- N	3,00			64	3,30
Ghlala da fine a grossolana, sub-arrotondata e arrotondata, poligenica in scarsa matrice di sabble limosa ammona chiaro.	ndata e arrotondata, poligenica,		00000000000000000000000000000000000000	8	4.50			രരവ 🗷 വ	3.45 8.65 8.85 8.85 8.85 8.85 8.85 8.85 8.8
	a -5.10 m da p.c., clasti In matrice di sabbia medio fine		00000000000000000000000000000000000000	е п	6.00			130 €	8.8 8.3 8.3 8.3 8.3
		7.80	050000 050000 050000 050000	4	7,50			• ~ 0	7.50
Sabbla medio fine debolmente limosa, debolmente ghialo medio fini, sub-arrotondati, poligenici, color marrone ocra	debolmente ghislosa, clasti color marrone ocra,	3,95			7.95			£ 12 €	
			4000 4000 5000 4000 4000	ιο	9.00			125	9.9 9.45 9.45
Ghlata da fine a grossolama, dissil sub-arrotondati, arrotondati, poligenkl In matthe of sabbla finnses, nocidela, Presenza di clottoli Grnavas cm.	arrotondati, arrotondati, poligenici resenza di clottoli Ømax≕8 cm.		1,001,00 1,001,00 1,001,00	9	10.50			£ 55 £	20.00 20.00
		Ç	0.00q000q00 0.00q000q00 0.00q000q00		12.00			825	22.27 22.33 25.83 58 58.83 58 58 58 58 58 58 58 58 58 58 58 58 58
Ghiala da fine agrossolana sub-arroton sabbia medio grossa, grigia,	sub-arrotondata, poligenica, in matrice d								,
Ghlala medio fine, clasti sub c amotondati, amotondati poligenici, in scrasa matrice di sabbia medio fine.	il, arrotondati poligenici, in scrasa	15.60	000 000 000 000	10	15,00			± 0 0 €	15.33
				6	16.50				2
Sabbla medlo fine grigia.				9	13,45			8113	8.5.5.5. 2.8.3.5.6. 3.5.8.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6
		20.00							


GENERAL CONTRACTOR		SORVEGLIA		
Iricav2		FERROVIE DELLO ST		
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	78 di 110

GENERAL CONTRACTOR ICLAN2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	79 di 110

GENERAL CONTRACTOR IFICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	80 di 110

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	81 di 110

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - Uni En 85 9001-3006 - Uni En 160 14001-3004 - Bis OHSAS 18001-3011

FERRARA DEPARTMENT Via Annibale Zucchini, 69 – 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119

SOCOTEC ITALIA Srl - P.Iva 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM)

Linea Alta Velocità Verona-Vicenza

PROVA N°: CPTU 15 PROF, FALDA (m da p.c.): 0.80 PUNTA: Tecnopenta G1-CPLZIN (matr. 121114)[a = 0.66]

DATA: 13/11/20 PREFORO (m da p.c.): Lat.: 45,391972° Long.: 11.219667°

COMMESSA: 22036AV/20 C. SITO N°: SF210080 - 25/01/21 OPERATORE: L. Formisano QUOTA s.l.m: 21.573 Dissipazione $q_c(MPa)$ 0 3 6 9 12 15 18 21 24 27 30 0 **f**_s (kPa) 100 200 300 0 f_s/q_c (%) 4 6 **U** (kPa) 300 600 900 1200 0 10 0 3 Profondità

10

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	82 di 110

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNIEN ISO 9001-2008 - UNIEN ISO 14001-2004 - BIS OHSAS 18001-2011

FERRARA DEPARTMENT
Via Annibale Zucchini, 69 – 44122 Ferrara (FE)
Tel.: +39 0532 56771 - Fax.: +39 0532 56119

SOCOTEC ITALIA Srl – P. Iva 01872430848 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM)

CANTIERE: Linea Alta Velocità Verona-Vicenza

PROVA N°: CPTU 16 PROF. FALDA (m da p.c.): 1.00 PUNTA: Tecnopenta G1-CPL2IN (matr. 121114)[a = 0.66]

DATA: 13/11/20 PREFORO (m da p.c.): Lat.: 45° 23' 28.08" Long.: 11° 13' 30.68"

COMMESSA: 22036AV/20 C. SITO N°: SF210081 - 25/01/21 OPERATORE: L. Formisano QUOTA s.l.m: 21.149

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL PERROVIE DELLO S'	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	83 di 110

ALLEGATO 3 - TABULATI DI SLIDE – ANALISI SLU STATICA

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI3000001B
 84 di 110

SLIDEINTERPRET 7,038

SLIDE - An Interactive Slope Stability Program: Page 1 of 7

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: RI30_stat Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 17/03/2021, 17:14:01

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second

Pailure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used
Bishop simplified

Number of slices: 50
Tolerance: 0.005
Maximum number of iterations: 75
Check malpha < 0.2: Yes
Create Interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1
Steffensen Iteration: Yes

Groundwater Analysis

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI3000001B
 85 di 110

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 7 $\,$

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 10
Circles per division: 10
Number of iterations: 10
Divisions to use in next iteration: 50%
Composite Surfaces: Disabled
Minimum Elevation: Not Defined

Minimum Depth [m]: 2
Minimum Area: Not Defined
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary Load Action: Permanent

Distributed Load 2

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distributed Load 3

Distribution: Constant
Magnitude [kPa]: 61.4

Orientation: Normal to boundary Load Action: Variable

Material Properties

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	86 di 110

SLIDEINTERPRET 7.038

____ rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 7

Property	Rilevato	Unità6	Unità4	COLONNE	scotico	3a
Color						
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	19	18	20	18
Cohesion [kPa]	0	0	0	0	0	0
Friction Angle [deg]	38	39	38	36	36	34
Water Surface	Water Table					
Hu Value	1	1	1	1	1	1

Global Minimums

Method: bishop simplified

 FS
 1.355770

 Center:
 40.620, 29.010

 Radfus:
 8.955

 Left Slip Surface Endpoint:
 32.947, 24.393

 Right Slip Surface Endpoint:
 45.648, 21.600

 Resisting Moment:
 3182.46 kN-m

 Driving Moment:
 2347.34 kN-m

 Total Slice Area:
 26.7162 m2

 Surface Horizontal Width:
 12.7006 m

 Surface Average Height:
 2.10354 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1595 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.35577

GENERAL CONTRACTOR ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica IN17 12 EI2RBRI3000001B 87 di 110

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.26445	1.09311	-57.3902	Rilevato	0	32.0066	26.3831	35.7694	57.2283	0	57.2283	98.4668	98.466
2	0.26445	3.1619	-54.3678	Rilevato	0	32.0066	29.8213	40.4308	64.6863	0	64.6863	106.291	106.29
3	0.26445	5.01848	-51.5546	Rilevato	0	32.0066	33.0473	44.8045	71.684	0	71.684	113.311	113.31
4	0.26445	6.70124	-48.9066	Rilevato	0	32.0066	36.0929	48.9337	78.2902	0	78.2902	119.674	119.67
5	0.26445	8.23729	-46.3926	Rilevato	0	32.0066	38.9818	52.8504	84.5567	0	84.5567	125.481	125.48
6	0.26445	9.64658	-43.9899	Rilevato	0	32.0066	41.7322	56.5792	90.5224	0	90.5224	130.808	130.8
7	0.26445	10.9444	-41.681	Rilevato	0	32.0066	27.3141	37.0316	59.2479	0	59.2479	83.5676	83.56
8	0.26445	12.1426	-39.4524	Rilevato	0	32.0066	20.1738	27.3511	43.7599	0	43.7599	60.3618	60.36
9	0.26445	13.2507	-37.2932	Rilevato	0	32.0066	22.026	29.8622	47.7775	0	47.7775	64.5527	64.55
10	0.26445	14.2765	-35.1944		0	32.0066	23.8073	32.2772	51.6411	0	51.6411	68.4318	68.43
11	0.150623	8.56301	-33.5806	Rilevato scotico	0	30.1666	23.7926	32.2573	55.498	0	55.498	71.2941	71.29
12	0.22655	13.4286	-32.1462	scotico	0	30.1666	24.6602	33.4336	58.2199	0.69832	57.5216	73.717	73.01
13	0.22655	14.0529	-30.4494	scotico	0	30.1666	22.0279	29.8647	53.4314	2.04988	51.3815	66.3806	64.33
	0.22655	14.6365	-28.7817	scotico	0	30.1666	21.2793	28.8498	52.9491	3.31356	49.6355	64.6386	61.3
14	0.260081				0								62.50
15	0.260081	17.437	-27.0207		0	30.1666	21.9876	29.8101	55.8621	4.57458	51.2875	67.0753	
16		18.0335	-25.1673	COLONNE		30.1666	22.6741	30.7409	58.7134	5.82457	52.8889	69.3673	63.54
17	0.260081	18.5823	-23.3417	COLONNE	0	30.1666	23.3353	31.6373	61.4057	6.97448	54.4312	71.4756	64.50
18	0.260081	19.0853	-21.5409	COLONNE	0	30.1666	23.9722	32.5008	63.9455	8.02854	55.9169	73.4081	65.37
19	0.260081	19.5443	-19.7622		0	30.1666	24.5857	33.3325	66.3384	8.99044	57.348	75.1715	66.1
20	0.260081	19.681	-18.0031		0	30.1666	24.7714	33.5843	67.6443	9.86334	57.781	75.6945	65.83
21	0.260081	19.1744	-16.2614		0	30.1666	24.0425	32.5961	66.7309	10.65	56.0809	73.7439	63.09
22	0.260081	18.6074	-14.5351		0	30.1666	23.23	31.4945	65.5385	11.3529	54.1856	71.5613	60.20
23	0.260081	18.0015	-12.8222		0	30.1666	22.3637	30.32	64.1388	11.974	52.1648	69.2288	57.25
24	0.260081	17.3574	-11.1208	COLONNE	0	30.1666	21.444	29.0731	62.5346	12.5151	50.0195	66.7498	54.23
25	0.260081	16.6758	-9.42934	COLONNE	0	30.1666	20.4708	27.7537	60.7275	12.9777	47.7498	64.1272	51.14
26	0.260081	15.9574	-7.74614	COLONNE	0	30.1666	19.4441	26.3617	58.7177	13.3631	45.3546	61.3626	47.99
27	0.260081	15.2026	-6.06963	COLONNE	0	30.1666	18.3633	24.8964	56.5061	13.6723	42.8338	58.4587	44.78
28	0.260081	14.4118	-4.39834	COLONNE	0	30.1666	17.2278	23.357	54.091	13.9061	40.1849	55.4161	41
29	0.260081	13.5853	-2.73079	COLONNE	0	30.1666	16.0368	21.7422	51.472	14.065	37.407	52.2369	38.17
30	0.260081	12.7233	-1.06555	COLONNE	0	30.1666	14.7891	20.0506	48.6464	14.1496	34.4968	48.9215	34.77
31	0.260081	11.8259	0.598788	COLONNE	0	30.1666	13.4833	18.2802	45.6106	14.16	31.4506	45.4697	31.30
32	0.260081	10.8931	2.26363	COLONNE	0	30.1666	12.1175	16.4286	42.3614	14.0962	28.2652	41.8824	27.78
33	0.260081	9.92491	3.93039	COLONNE	0	30.1666	10.6899	14.4931	38.8935	13.9582	24.9353	38.159	24.20
34	0.260081	8.92104	5.60049	COLONNE	0	30.1666	9.19802	12.4704	35.2005	13.7454	21.4551	34.2985	20.5
35	0.260081	7.88128	7.27538	COLONNE	0	30.1666	7.63891	10.3566	31.2757	13.4575	17.8182	30.3005	16.8
36	0.260081	7.02001	8.95656	COLONNE	0	30.1666	6.38877	8.6617	27.9958	13.0935	14.9023	26.9889	13.89
37	0.260081	6.76625	10.6455	COLONNE	0	30.1666	6.22961	8.44592	27.1837	12.6527	14.531	26.0127	13
38	0.260081	6.5186	12.344	COLONNE	0	30.1666	6.1154	8.29108	26.3983	12.1337	14.2646	25.06	12.92
39	0.260081	6.23298	14.0535	COLONNE	0	30.1666	5.96769	8.09081	25.4553	11.5352	13.9201	23.9614	12.42
40	0.260081	5.9086	15.7759	COLONNE	0	30.1666	5.7844	7.84232	24.348	10.8555	13.4925	22.7138	11.85
41	0.260081	5.54452	17.513	COLONNE	0	30.1666	5.56318	7.54239	23.0691	10.0925	12.9766	21.3136	11.22
42	0.260081	5.13962	19.267	COLONNE	0	30.1666	5.30122	7.18723	21.6095	9.24408	12.3655	19.7565	10.51
43	0.260081	4.69264	21.04	COLONNE	0	30.1666	4.99526	6.77242	19.9592	8.30744	11.6518	18.0377	9.730
44	0.255471	3.87684	22.8182	3a	0	28.3516	3.76779	5.10825	16.7561	7.28951	9.46663	15.1709	7.881
45	0.255471	3.36073	24.6039	3a	0	28.3516	3.38863	4.5942	14.7025	6.18848	8.51399	13.1508	6.962
	0.255471	2.79997	26.4154	3a	0	28.3516	2.95855	4.01112	12.4256	4.99222	7.43341	10.956	5.963
46													
47	0.255471	2.1925	28.2559	3a	0	28.3516	2.47195	3.35139	9.90709	3.69628	6.21081	8.57853	4.882
48	0.255471	1.53591	30.1289	3a	0	28.3516	1.9219	2.60566	7.12439	2.29558	4.82881	6.00901	3.713
49	0.255471	0.827432	32.038	3a	0	28.3516	1.29984	1.76229	4.05006	0.784172	3.26588	3.23662	2.452
50	0.150623	0.13556	33.5806	3a	0	28.3516	0.486375	0.659412	1.22202	0	1.22202	0.899115	0.899

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.35577	Global Minimum Query (bishop simplified) - Safety Factor: 1.35577				

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto
IN17

Lotto 12 Codifica
EI2RBRI3000001B

Foglio 88 di 110

SLIDEINTERPRET 7,038

SLIDE - An Interactive Slope Stability Program: Page 5 of 7

rocs	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	32.947	24.3925	0	0	0
2	33.2114	23.9792	16.6977	0	0
3	33.4759	23.6102	32.6986	0	0
4	33.7403	23.2771	47.8619	0	0
5	34.0048	22.9739	62.0822	0	0
6	34.2692	22.6963	75.2771	0	0
7	34.5337	22.441	87.3805	0	0
8	34.7981	22.2055	94.1276	0	0
9	35.0626	21.9879	98.3306	0	0
10	35.327	21.7865	102.145	0	0
11	35.5915	21.6	105.498	0	0
12	35.7421	21.5	107.474	0	0
13	35.9687	21.3576	110.191	0	0
14	36.1952	21.2245	112.33	0	0
15	36.4218	21.1	114.112	0	0
16	36.6818	20.9674	115.819	0	0
17	36.9419	20.8452	117.113	0	0
18	37.202	20.7329	117.952	0	0
19	37.4621	20.6303	118.299	0	0
20	37.7222	20.5368	118.121	0	0
21	37.9822	20.4523	117.414	0	0
22	38.2423	20.3764	116.24	0	0
23	38.5024	20.309	114.635	0	0
24	38.7625	20,2498	112.631	0	0
25	39.0226	20.1987	110.266	0	0
26	39.2827	20.1555	107.58	0	0
27	39.5427	20,1201	104.614	0	0
28	39.8028	20.0925	101.414	0	0
29	40.0629	20.0725	98.0275	0	0
30	40.323	20.0601	94.5067	0	0
31	40.5831	20.0552	90,9062	0	0
32	40.8431	20.0579	87.2851	0	0
33	41.1032	20.0682	83.7067	0	0
34	41.3633	20.0861	80.2391	0	0
35	41.6234	20.1116	76.9557	0	0
36	41.8835	20,1448	73.936	0	0
37	42.1435	20.1858	71.1314	0	0
38	42.4036	20.2347	68.1867	0	0
39	42.6637	20.2916	65.0981	0	0
40	42.9238	20.3567	61.893	0	0
41	43.1839	20.4302	58.6037	0	0
42	43.4439	20.5122	55.2676	0	0
43	43.704	20.6031	51.9281	0	0
44	43.9641	20.7032	48.6357	0	0
45	44.2196	20.8107	45.8747	0	0
46	44,4751	20.9277	43.2914	0	0
47	44.7305	21.0546	40.9608	0	ő
48	44.986	21.1919	38.9708	0	0
49	45.2415	21.3401	37.4249	0	0
50	45.4969	21.5	36.4462	0	o
51	45.6476	21.6	0	0	0
	15.5.70	21.0			•

List Of Coordinates

Water Table

X Y -1 21.5 63 21.5

Distributed Load

х	Y
36.0366	24.3925
26.0669	24.3925

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	89 di 110

SLIDEINTERPRET 7,038

SLIDE - An Interactive Slope Stability Program: Page 6 of 7

Distributed Load

х	Y 24.3925 24.3925
30.0511	24.3925
27.4749	24.3925

Distributed Load

х	Y 24.3925 24.3925
34.6255	24.3925
31.9502	24.3925

External Boundary

х	Y
61.9641	0
61.9641	6.6
61.9641	19.1
61.9641	21.6
43.9641	21.6
41.9641	21.6
37.7774	24.3925
24.1867	24.3925
20	21.6
18	21.6
0	21.6
0	19.1
0	6.6
0	0

Material Boundary

Х	Υ
18	19.1
18	21.1
43.9641	21.1
43.9641	21.6

Material Boundary

١	X	Υ
	18	21.1
ı	18	21.6

Material Boundary

Х	Υ
43.9641	19.1
43.9641	21.1

Material Boundary

х	Υ
0	19.1
18	19.1
43.9641	19.1
61.9641	19.1

Material Boundary

х	Υ
0	6.6
61.9641	6.6

Material Boundary

х	Υ
20 41.9641	21.6
41.9641	21.6

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica RIPROSPERAL CONTRACTOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 90 di 110

SLIDEINTERPRET 7.039

SLIDE - An Interactive Slope Stability Program: Page 7 of 7

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	E12RBRI3000001B	91 di 110

ALLEGATO 4- TABULATI DI SLIDE – ANALISI SLU IN CAMPO SISMICO

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI3000001B
 92 di 110

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 1 of 7

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: RI30_sism.slim Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 17/03/2021, 17:14:01

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_SISMA+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Number of slices: 50
Tolerance: 0.005
Maximum number of iterations: 75
Check malpha < 0.2: Yes
Create Interslice boundaries at intersections:

Analysis Methods Used

Create Interslice boundaries at intersections with water tables and piezos:
Initial trial value of FS: 1
Steffensen Iteration: Yes

Groundwater Analysis

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto Lotto IN17 12

Codifica Foglio EI2RBRI3000001B

93 di 110

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 7

Groundwater Method: Water Surfaces Pore Fluid Unit Weight [kN/m3]: 9.81 Use negative pore pressure cutoff: Maximum negative pore pressure [kPa]: 0 Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 10 Circles per division: 10 Number of iterations: 10 Divisions to use in next iteration: 50% Composite Surfaces: Disabled Minimum Elevation: Not Defined Minimum Depth [m]: Minimum Area: Not Defined Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.083 Seismic Load Coefficient (Vertical):

3 Distributed Loads present

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

Distributed Load 2

Distribution: Constant Magnitude [kPa]: 12.2

Orientation: Normal to boundary

Load Action: Live

Distributed Load 3

Distribution: Constant Magnitude [kPa]: 12.2

Orientation: Normal to boundary

Load Action:

Material Properties

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	94 di 110

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 3 of 7 $\,$

Property	Rilevato	Unità6	Unità4	COLONNE	scotico	3a
Color						
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	19	18	20	18
Cohesion [kPa]	0	0	0	0	0	c
Friction Angle [deg]	38	39	38	36	36	34
Water Surface	Water Table					
Hu Value	1	1	1	1	1	1

Global Minimums

Method: bishop simplified

FS	1.161190
Center:	41.889, 26.451
Radius:	5.655
Left Slip Surface Endpoint:	36.621, 24.393
Right Slip Surface Endpoint:	44.797, 21.600
Resisting Moment:	509.473 kN-m
Driving Moment:	438.749 kN-m
Total Slice Area:	9.7331 m2
Surface Horizontal Width:	8.17529 m
Surface Average Height:	1.19055 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 985 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (bishop simp	lified) - Safety Factor: 1.16119			
<u> </u>		<u> </u>	<u> </u>	

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto IN17

Lotto 12 Codifica
EI2RBRI3000001B

Foglio 95 di 110

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 7

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.168572	0.65399	-66.5146	Rilevato	0	32.0066	0.893885	1.03797	1.66067	0	1.66067	3.7179	3.7179
2	0.168572	1.85433	-62.5205	Rilevato	0	32.0066	2.7884	3.23786	5.18033	0	5.18033	10.5415	10.5415
3	0.168572	2.87382	-59.0109	Rilevato	0	32.0066	4.6374	5.3849	8.61545	0	8.61545	16.3367	16.3367
4	0.168572	3.76559	-55.8316	Rilevato	0	32.0066	6.42617	7.462	11.9387	0	11.9387	21.4057	21.4057
5	0.168572	4.55989	-52.8955	Rilevato	0	32.0066	8.15154	9.46549	15.1441	0	15.1441	25.9206	25.9206
6	0.168572	5.27599	-50.1472	Rilevato	0	32.0066	9.81433	11.3963	18.2333	0	18.2333	29.9908	29.9908
7	0.168572	5.9233	-47.5493	Rilevato	0	32.0066	11.4096	13.2487	21.197	0	21.197	33.6699	33.6699
8	0.168572	6.28151	-45.0748	Rilevato	0	32.0066	12.4826	14.4947	23.1904	0	23.1904	35.7057	35.7057
9	0.168572	6.45282	-42,7035	Rilevato	0	32.0066	13.1905	15.3167	24.5056	0	24.5056	36.679	36.679
10	0.168572	6.58123	-40.4198	Rilevato	0	32.0066	13.8065	16.032	25.65	0	25.65	37.4085	37.4085
11	0.168572	6.67109	-38.2113	Rilevato	0	32.0066	14.3357	16.6465	26.6332	0	26.6332	37.9189	37.9189
12	0.168572	6.72592	-36.068	Rilevato	0	32.0066	14.7825	17.1653	27.4633	0	27.4633	38.2302	38.2302
	0.168572	6.74858	-33.9817	Rilevato	0	32.0066	15.1503	17.5924	28.1466	0	28.1466	38.3586	38.3586
14	0.168572	6.74146	-31.9455	Rilevato	0	32.0066	15.4422	17.9313	28.6888	0	28.6888	38.3178	38.3178
15	0.173739	6.91115	-29.9237	scotico	0	30.1666	14.8107	17.198	29.5887	0	29.5887	38.1134	38.1134
	0.180524	7.11099	-27.8737	scotico	0	30.1666	14.7517	17.1295		0.468312	29.4709	37.7411	37.2728
17	0.180524	7.01001	-25.8232	scotico	0	30.1666	14.4415	16.7693	30.2163	1.36512	28.8511	37.2048	35.8396
18	0.180524	6.88046	-23.8232	scotico	0	30.1666	14.0764	16.3454	30.3061	2.1843	28.1218	36.5168	34.3325
	0.180524	6.7237	-23.8077		0	30.1666	13.6579	15.8594		2.92955	27.2858	35.6845	32.7549
19	0.180524	6.54091	-21.8231	scotico	0			15.3127	30.2153 29.9493	3.60406		34.714	31.109
20				scotico	0	30.1666	13.1871				26.3452		
21	0.159242	5.59019	-18.0449	COLONNE		30.1666	12.6764	14.7197	29.5034	4.17846	25.3249	33.6332	29.454
	0.159242	5.39612	-16.3558	COLONNE	0	30.1666	12.1344	14.0903	28.9042	4.66216	24.242	32.4653	27.803
23	0.159242	5.18749	-14.6812	COLONNE	0	30.1666	11.5558	13.4185	28.1823	5.09603	23.0862	31.2098	26.1138
24	0.159242	4.96466	-13.0193	COLONNE	0	30.1666	10.9409	12.7045	27.3392	5.48127	21.8579	29.869	24.387
	0.159242	4.72791	-11.3686	COLONNE	0	30.1666	10.2896	11.9482	26.3756	5.81892	20.5567	28.4445	22.625
	0.159242	4.47752	-9.72733	COLONNE	0	30.1666	9.60153	11.1492	25.2919	6.10987	19.182	26.9378	20.827
	0.159242	4.2137	-8.09412		0	30.1666	8.87641	10.3072	24.0881	6.35485	17.7333	25.3505	18.995
28	0.159242	3.93663	-6.4675	COLONNE	0	30.1666	8.1135	9.42131	22.7637	6.55447	16.2092	23.6834	17.128
29	0.159242	3.64645	-4.8461	COLONNE	0	30.1666	7.31219	8.49084	21.3175	6.70924	14.6083	21.9375	15.228
30	0.159242	3.34328	-3.22859	COLONNE	0	30.1666	6.47153	7.51468	19.7483	6.81952	12.9288	20.1134	13.293
31	0.159242	3.02718	-1.61365	COLONNE	0	30.1666	5.59043	6.49155	18.0542	6.88558	11.1686	18.2117	11.326
32	0.159242	2.69821	0	COLONNE	0	30.1666	4.66757	5.41993	16.2324	6.90759	9.32484	16.2324	9.3248
33	0.159242	2.46431	1.61365	COLONNE	0	30.1666	4.03105	4.68081	14.9388	6.88558	8.05326	14.8253	7.939
34	0.159242	2.43845	3.22859	COLONNE	0	30.1666	4.04353	4.69531	14.8977	6.81952	8.0782	14.6696	7.8501
35	0.159242	2.40623	4.8461	COLONNE	0	30.1666	4.05978	4.71418	14.8199	6.70924	8.11064	14.4757	7.7664
36	0.159242	2.36101	6.4675	COLONNE	0	30.1666	4.05908	4.71336	14.6637	6.55447	8.10924	14.2036	7.649
37	0.159242	2.30268	8.09412	COLONNE	0	30.1666	4.04063	4.69194	14.4272	6.35485	8.07236	13.8526	7.4977
38	0.159242	2.2311	9.72733	COLONNE	0	30.1666	4.00357	4.64891	14.1082	6.10987	7.99836	13.4219	7.3120
39	0.159242	2.14609	11.3686	COLONNE	0	30.1666	3.94687	4.58307	13.704	5.81892	7.88507	12.9104	7.0914
40	0.159242	2.04743	13.0193	COLONNE	0	30.1666	3.86938	4.49308	13.2115	5.48127	7.73023	12.3168	6.8355
41	0.159242	1.93487	14.6812	COLONNE	0	30.1666	3.76975	4.3774	12.6272	5.09603	7.53122	11.6396	6.5435
42	0.159242	1.8081	16.3558	COLONNE	0	30.1666	3.64645	4.23422	11.947	4.66216	7.28486	10.8769	6.2147
43	0.159242	1.66677	18.0449	COLONNE	0	30.1666	3.49766	4.06145	11.1661	4.17846	6.98764	10.0266	5.8481
44	0.139916	1.32928	19.6458	scotico	0	30.1666	3.30432	3.83694	10.2804	3.679	6.6014	9.1008	5.4218
45	0.139916	1.18362	21.1584	scotico	0	30.1666	3.06383	3.55769	9.28932	3.16839	6.12093	8.1035	4.9351
	0.155697	1.01793	22.7738	3a	0	28.3516	2.12494	2.46746	7.15486	2.58215	4.57271	6.26276	3.6806
47	0.155697		24.496	3a	0	28.3516	1.87114	2.17275	5.94012	1.91356	4.02656	5.08756	3.174
48	0.155697	0.619963	26.242	3a	0	28.3516	1.58235	1.83741	4.5942	1.18911	3.40509	3.81414	2.62503
49	0.155697	0.396332	28.0148	3a	0	28.3516	1.25435	1.45654	3.10558	0.406316	2.69927	2.43822	2.0230
	0.173739	0.156365	29.9237	3a	0	28.3516	0.546841	0.634986	1.17676	0.400310	1.17676	0.862009	0.86200

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.16119

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	96 di 110

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 5 of 7

roc	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	36.6212	24.3925	0	0	0
2	36.7898	24.0046	0.547963	0	ő
3	36.9584	23.6805	1.9111	0	ő
4	37.127	23.3998	3.78648	0	ő
5	37.2955	23.1515	5.98127	0	ő
6	37.4641	22.9286	8.36139	0	ő
7	37.6327	22.7267	10.8281	0	ő
8	37.8012	22.5424	13.3037	0	0
9	37.9698	22.3734	15.6417	0	ő
10	38.1384	22.2178	17.7675	0	0
11	38.307	22.0742	19.6702	0	100
12	38.4755	22.0742	21.3432	0	0
	38.6441			0	0
13		21.8187	22.783		
14	38.8127	21.7051	23.9889	0	0
15	38.9812	21.6	24.9625	0	0
16	39.155	21.5	25.9233	0	0
17	39.3355	21.4045	26.7106	0	0
18	39.516	21.3172	27.3267	0	0
19	39.6966	21.2375	27.772	0	0
20	39.8771	21.1652	28.0502	0	0
21	40.0576	21.1	28.1675	0	0
22	40.2168	21.0481	28.1447	0	0
23	40.3761	21.0014	28.0122	0	0
24	40.5353	20.9597	27.7795	0	0
25	40.6946	20.9228	27.457	0	0
26	40.8538	20.8908	27.0564	0	0
27	41.0131	20.8635	26.5904	0	0
28	41.1723	20.8409	26.073	0	0
29	41.3315	20.8228	25.5195	0	0
30	41.4908	20.8093	24.9463	0	0
31	41.65	20.8003	24.3712	0	0
32	41.8093	20.7959	23.8138	0	0
33	41.9685	20.7959	23.2949	0	0
34	42.1278	20.8003	22.7909	0	0
35	42.287	20.8093	22.216	0	0
36	42.4462	20.8228	21.5695	0	0
37	42.6055	20.8409	20.8548	0	0
38	42.7647	20.8635	20.0761	0	0
39	42.924	20.8908	19.2391	0	0
40	43.0832	20.9228	18.3503	0	0
41	43.2424	20.9597	17.418	0	0
42	43.4017	21.0014	16.4518	0	0
43	43.5609	21.0481	15.4632	0	0
44	43.7202	21.1	14.4657	0	0
45	43.8601	21.1499	13.6005	0	0
46	44	21.2041	12.7672	0	0
47	44.1557	21.2695	12.0534	0	0
48	44.3114	21.3404	11.4095	0	0
49	44.4671	21.4172	10.8621	0	0
50	44.6228	21.5	10.4426	0	0
51	44.7965	21.6	0	0	ŏ
	205	21.0			

List Of Coordinates

Water Table

X Y -1 21.5 63 21.5

Distributed Load

х	Y 24.3925 24.3925
36.0366	24.3925
26.0669	24.3925

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	97 di 110

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 7

Distributed Load

Х	Y
30.0511	24.3925
27.4749	24.3925

Distributed Load

х	Υ
34.6255	24.3925
31.9502	24.3925

External Boundary

Y 0 6.6
6.6
18.6
21.6
21.6
21.6
24.3925
24.3925
21.6
21.6
21.6
18.6
6.6
0

Material Boundary

х	Υ
18	18.6
18	21.1
44	21.1
44	21.6

Material Boundary

х	Υ
18	21.1
18	21.6

Material Boundary

Х	Υ
44	18.6
44	21.1

Material Boundary

х	Υ
0	18.6
18	18.6
44	18.6
61.9641	18.6

Material Boundary

х	Υ
0	6.6
61.9641	6.6

Material Boundary

Х	Υ
20	21.6
42	21.6

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica RIN17 12 EI2RBRI3000001B 98 di 110

SLIDEINTERPRET 7,038

SLIDE - An Interactive Slope Stability Program: Page 7 of 7

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	99 di 110

ALLEGATO 5 - TABULATI DI SLIDE – ANALISI SLU POST SISMA

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI3000001B
 100 di 110

SLIDEINTERPRET 7.038

TOCSCIENCE

SLIDE - An Interactive Slope Stability Program: Page 1 of 6

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: RI30_post Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 17/03/2021, 17:14:01

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second

Permeability Units: meters/secon Failure Direction: Left to Right Data Output: Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_SISMA+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used
Bishop simplified

 Number of slices:
 50

 Tolerance:
 0.005

 Maximum number of iterations:
 75

 Check malpha < 0.2:</td>
 Yes

 Create Interslice boundaries at intersections with water tables and piezos:
 Yes

 Initial trial value of FS:
 1

 Steffensen Iteration:
 Yes

Groundwater Analysis

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 EI2RBRI3000001B 12 101 di 110

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 6 $\,$

Groundwater Method: Water Surfaces Pore Fluid Unit Weight [kN/m3]: 9.81 Use negative pore pressure cutoff: Yes Maximum negative pore pressure [kPa]: $\,$ 0 Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Auto Refine Search Search Method:

Divisions along slope: 10

Circles per division: 10 Number of iterations: 10 Divisions to use in next iteration: 50% Composite Surfaces: Disabled Minimum Elevation: Not Defined Minimum Depth [m]: Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1 Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action:

Distributed Load 2 Distribution: Constant Magnitude [kPa]: 12.2

Orientation: Normal to boundary

Load Action: Live

> Distributed Load 3 Constant

Distribution: Magnitude [kPa]: 12.2 Orientation: Normal to boundary

Load Action: Live

Material Properties

Property	Rilevato	Unità6	Unità4	COLONNE	scotico	3a_liq
Color						
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	19	18	20	18
Cohesion [kPa]	0	0	0	0	0	c
Friction Angle [deg]	38	39	38	36	36	5.7
Water Surface	Water Table					
Hu Value	1	1	1	1	1	

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI3000001B
 102 di 110

	SLIDEINTERPRET 7.038
[] r	ocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 6 $\,$

Global Minimums

Method: bishop simplified

1.396610
43.040, 28.369
7.895
36.220, 24.393
47.103, 21.600
838.607 kN-m
600.46 kN-m
13.1762 m2
10.8829 m
1.21073 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 958 Number of Invalid Surfaces: 0

Slice Data

obal Minimum Query (bishop simpli	fied) - Safety Factor: 1.39661		

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica Progetto Lotto Codifica Foglio IN17 12 EI2RBRI3000001B 103 di 110

SI INCINITEDODET 2 000

____ rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 6 $\,$

Slice lumber	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.229765	0.850628	-58.1753	Rilevato	0	32.0066	0.962946	1.34486	2.15169	0	2.15169	3.70326	3.703
2	0.229765	2.459	-55.1352	Rilevato	0	32.0066	2.9171	4.07405	6.51818	0	6.51818	10.7052	10.70
3	0.229765	3.90011	-52.3125	Rilevato	0	32.0066	4.81134	6.71956	10.7508	0	10.7508	16.9788	16.97
4	0.229765	5.20509	-49.6604	Rilevato	0	32.0066	6.64117	9.27512	14.8395	0	14.8395	22.6596	22.65
5	0.229765	6.39575	-47.1462	Rilevato	0	32.0066	8.40571	11.7395	18.7823	0	18.7823	27.8425	27.84
6	0.229765	7.48805	-44.7462	Rilevato	0	32.0066	10.1056	14.1136	22.5807	0	22.5807	32.5972	32.59
7	0.229765	8.47667	-42.4422	Rilevato	0	32.0066	11.7183	16.3659	26.1842	0	26.1842	36.9004	36.90
8	0.229765	8.91458	-40.2203	Rilevato	0	32.0066	12.5989	17.5957	28.1518	0	28.1518	38.8063	38.80
9	0.229765	9.07027	-38.0691	Rilevato	0	32.0066	13.084	18.2732	29.2358	0	29.2358	39.4836	39.4
10	0.229765	9.16277	-35.9796	Rilevato	0	32.0066	13.4728	18.8162	30.1046	0	30.1046	39.8858	39.8
11	0.229765	9.19713	-33.9441	Rilevato	0	32.0066	13.7693	19.2303	30.7671	0	30.7671	40.035	40.
12	0.229765	9.17755	-31.9562	Rilevato	n	32.0066	13.9767	19.52	31.2306	0	31.2306	39.9494	39.9
13	0.171451	6.80666	-30.2532	scotico	0	30.1666	13.2969	18.5706	31.9503	0	31.9503	39.7059	39.7
14	0.202787	7.97242	-28.694	scotico	0	30.1666	13.1432	18.3559	32.1254	0.544432	31.5809	39.3193	38.7
15	0.202787	7.85871	-28.694	scotico	0	30.1666	12.7572	17.8169	32.1254	1.59631	30.6535	38.7581	37.1
	0.202787	7.71509	-27.0269		0	30.1666	12.7372		32.2496	2.5758	29.6228	38.0494	
16	0.202787			scotico	0			17.2178				37.1992	35.4
17		7.54279	-23.7695	scotico	0	30.1666	11.8573	16.56	31.9771	3.48593	28.4911		33.7
18	0.222456	8.02286	-22.0941			30.1666	11.2865	15.7629	31.4866	4.36694	27.1197	36.0683	31.7
19	0.222456	7.7088	-20.3618	COLONNE	0	30.1666	10.6133	14.8227	30.717	5.21484	25.5022	34.656	29.4
20	0.222456	7.36426	-18.6487	COLONNE	0	30.1666	9.89618	13.8211	29.767	5.98805	23.7789	33.1068	27.1
21	0.222456	6.99018		COLONNE	0	30.1666	9.13548	12.7587	28.6401	6.6889	21.9512	31.4248	24.7
22	0.222456	6.5874	-15.2719	COLONNE	0	30.1666	8.3316	11.636	27.339	7.31944	20.0195	29.6138	22.2
23	0.222456	6.15664		COLONNE	0	30.1666	7.48462	10.4531	25.8658	7.88144	17.9843	27.6771	19.7
24	0.222456	5.69853	-11.9487	COLONNE	0	30.1666	6.59451	9.20996	24.2219	8.37641	15.8455	25.6175	17.2
25	0.222456	5.2136	-10.3031	COLONNE	0	30.1666	5.66103	7.90625	22.4082	8.80568	13.6025	23.4373	14.6
26	0.222456	4.70229	-8.66594	COLONNE	0	30.1666	4.6838	6.54144	20.4247	9.17034	11.2544	21.1386	11.9
27	0.222456	4.48886	-7.03593	COLONNE	0	30.1666	4.23858	5.91965	19.6559	9.47131	10.1846	20.1791	10.7
28	0.222456	4.58599	-5.41163	COLONNE	0	30.1666	4.36675	6.09865	20.202	9.70935	10.4926	20.6156	10.9
29	0.222456	4.6577	-3.79168	COLONNE	0	30.1666	4.47645	6.25186	20.6412	9.88503	10.7562	20.9379	11.0
30	0.222456	4.70413	-2.17477	COLONNE	0	30.1666	4.56722	6.37863	20.9731	9.99878	10.9743	21.1465	11.1
31	0.222456	4.7254	-0.559585	COLONNE	0	30.1666	4.63861	6.47833	21.1967	10.0509	11.1458	21.242	11.1
32	0.222456	4.72154	1.05515	COLONNE	0	30.1666	4.6901	6.55024	21.311	10.0414	11.2696	21.2246	11.1
33	0.222456	4.69256	2.67073	COLONNE	٥	30.1666	4.7211	6.59353	21.3145	9.97044	11.344	21.0942	11.1
34	0.222456	4.63839	4.28844	COLONNE	0	30.1666	4.73093	6.60726	21.2054	9.83772	11.3677	20.8506	11.0
35	0.222456	4.55889	5.90958	COLONNE	0	30.1666	4.71885	6.5904	20.9816	9.64295	11.3386	20.4931	10.8
36	0.21196	4.0347	7.49699	3a_liq	0	4.56541	0.555455	0.775754	19.1083	9.39319	9.71509	19.0352	9.
37	0.21196	3.91707	9.05171	3a_liq	0	4.56541	0.541773	0.756646	18.5665	9.09075	9.47576	18.4802	9.38
38	0.21196	3.77689	10.6132	3a_liq	0	4.56541	0.52526	0.733584	17.9173	8.7303	9.18697	17.8188	9.08
39	0.21196	3.61383	12.1827	3a_liq	0		0.505864	0.706495	17.1588	8.31103	8.84773	17.0495	8.73
40	0.21196	3.42751	13.7615	3a_liq	0		0.483522	0.675292	16.2889	7.83195	8.45695	16.1705	8.33
41	0.21196	3.21748	15.3511	3a_liq	0		0.458165	0.639878	15.3054	7.29191	8.01346	15.1796	7.88
42	0.21196	2.98322	16.9529	3a_liq	0		0.429711	0.600139	14.2054	6.68958	7.51577	14.0744	7.38
43	0.21196	2.72413	18.5684	3a_liq	0		0.398069	0.555947	12.9858	6.02341	6.96235	12.852	6.82
44	0.21196	2.43954	20.1995	3a_liq	0		0.363134	0.507156	11.643	5.29165	6.35132	11.5094	6.21
45	0.21196	2.12866	21.8478	3a_liq	0		0.324784	0.453597	10.1729	4,4923	5.68055	10.0426	5.55
46	0.21196	1.7906	23.5154		0		0.282886	0.395082	8.57081	3.62306	4.94775	8.44772	4.82
46	0.21196	1.42435	25.2043	3a_liq 3a_liq	0		0.282886	0.395082	6.83151	2.68135	4.94775	6.71983	4.82
47	0.21196	1.02876			0				4.94882				3.18
		0.602499	26.9171	3a_liq	0		0.187798	0.262281		1.66418	3.28464	4.85347	
49 50		0.602499	28.6564 30.2532	3a_liq 3a_liq	0		0.134226 0.053231	0.187461	2.91582 0.931023	0.56817 0	2.34765 0.931023	2.84246 0.899976	2.27 0.899

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.39661	

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica	IN17	12	EI2RBRI3000001B	104 di 110

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 5 of 6 $\,$

Slice X		Y coordinate - Bottom	Interslice Normal Force	Interslice Shear Force	Interslice Force Angle
Number	coordinate [m]	[m]	[kN]	[kN]	[degrees]
1	36.2201	24.3925	0	0	[20]
2	36.4499	24.0223	0.575494	0	C
3	36.6797	23.6925	2.05537	0	C
4	36.9094	23,3951	4.14814	0	C
5	37.1392	23.1246	6.63815	0	(
6	37.369	22.8769	9.35976	0	(
7	37.5987	22.6492	12.182	0	(
8	37.8285	22,4391	14.9932	0	(
9	38.0582	22.2448	17.5705	0	
10	38.288	22.0648	19.8277	0	(
11	38.5178	21.898	21.756	0	,
12	38.7475	21.7433	23.3528	0	(
13	38.9773	21.6	24.6199	0	ò
14	39.1488	21.5	25.5368	0	(
15	39.3515	21.389	26.4392	0	(
16	39.5543	21.2856	27.1904	0	(
17	39.7571	21.1893	27.791	0	(
18	39.9599	21.1	28.2441	0	
19	40.1824	21.0097	28.5785	0	(
20	40,4048	20,9271	28,7552	0	(
21	40.6273	20.8521	28.7901	0	(
22	40.8497	20.7842	28.7014	0	
23	41.0722	20.7235	28.5098	0	·
24	41.2946	20.6697	28.2385	0	
25	41.5171	20.6226	27.9129	0	(
26	41.7396	20.5822	27.5606	0	(
27	41.962	20.5483	27.2119	0	(
28	42.1845	20.5208	26.8094	0	
29	42.4069	20.4997	26.2644	0	(
30	42.6294	20.485	25.5736	0	
31	42.8518	20,4765	24.7355	0	
32	43.0743	20,4744	23.7504	0	
33	43.2967	20.4785	22.6205	0	
34	43.5192	20.4888	21.3498	0	,
35	43.7417	20.5055	19.9444	0	
36	43.9641	20.5285	18.4123	0	(
37	44.1761	20.5564	17.7616	0	
38	44.388	20.5902	17.0199	0	
39	44.6	20.6299	16.1971	0	Ì
40	44.812	20.6757	15.3047	0	·
41	45.0239	20.7276	14.3567	0	Ì
42	45.2359	20.7858	13.3691	0	(
43	45.4478	20.8504	12.3602	0	(
44	45.6598	20.9216	11.3513	0	(
45	45.8717	20.9996	10.3664	0	(
46	46.0837	21.0846	9.43311	0	(
47	46.2957	21.1768	8.5827	0	,
48	46.5076	21.2766	7.85093	0	(
49	46.7196	21.3842	7.27859	0	(
50	46.9315	21.5	6.91241	0	(
51	47.103	21.6	0.51241	0	(

List Of Coordinates

Water Table

X Y -1 21.5 63 21.5

Distributed Load

 X
 Y

 36.0366
 24.3925

 26.0669
 24.3925

Distributed Load

Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	105 di 110

9.IDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 6

Х	Υ
30.0511	24.3925
27.4749	24.3925

Distributed Load

х	Υ
34.6255	24.3925
31.9502	24.3925

External Boundary

х	γ
61.9641	. 0
61.9641	6.6
61.9641	18.6
61.9641	21.6
43.9641	21.6
41.9641	21.6
37.7774	24.3925
24.1867	24.3925
20	21.6
18	21.6
0	21.6
0	18.6
0	6.6
0	0

Material Boundary

Х	Υ
18	18.6
18	21.1
43.9641	21.1
43.9641	21.6

Material Boundary

v	٧
18	21.1
18	21.6

Material Boundary

х	Υ
43.9641	18.6
43.9641	21.1

Material Boundary

х	Υ
0	18.6
18	18.6
43.9641	18.6
61.9641	18.6

Material Boundary

х	Υ
0	6.6
61.9641	6.6

Material Boundary

х	Υ
20	21.6
41.9641	21.6

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI3000001B	106 di 110

ALLEGATO 6 - TABULATI DI SETTLE 3D - ANALISI SLE

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica IN17 12 EI2RBRI3000001B 107 di

Page 1 of 3

110

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri30 Project Title: Rilevato Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0.612665 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.032174
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.032174
Loading Stress [kPa]	0	85.5126
Total Stress [kPa]	0	681.177
Total Strain	-0	0.00706367
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	50.3999	680.808
Over-consolidation Ratio	1	59.9998
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 11.85 m Width: 100 m Rotation angle: 0 degrees Load Type: Flexible

Area of Load: 1185 m²
Load: 12.75 kPa
Depth: 0 m
Installation Stage: Stage 1

Coordinates

Ri30.s3z 08/06/2021, 14:59:10

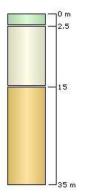
Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI3000001B	108 di 110

Page 2 of 3

X [m]	Y [m]
-5.92196	-50
5.92804	-50
5.92804	50
-5.92196	50

Embankments


1. Embankment

Center Line: (0, -50) to (0, 50) Number of Layers: 1 Near End Angle: 90 degrees Far End Angle: 90 degrees Base Width: 22

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	34	2.7	20	34	0

Soil Layers

Layer#	Туре	Thickness [m]	Depth [m]
1	COLONNE	2.5	0
2	u6	12.5	2.5
3	u4	20	15

Soil Properties

Property	COLONNE	u6	u4
Color			
Unit Weight [kN/m ³]	18	19	19
Immediate Settlement	Enabled	Enabled	Enabled
Es [kPa]	12000	60000	80000

Ri30.s3z 08/06/2021, 14:59:10

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 16+800,00 a pk 17+266,00 Relazione Geotecnica IN17 12 EI2RBRI3000001B 109 di

110

SETTLE30 2.003				Page 3 of 3
l Esur [kPa]	12000	60000	annon I	

Query Points

Point #	(X,Y) Location	Number of Divisions
1	0.00303833, 4.9738e-014	Auto: 43

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-20, 0	20, 0	100	Auto: 35

Ri30.s3z 08/06/2021, 14:59:10

ALLEGATO 7- VERSIONE SOFTWARE DI CALCOLO UTILIZZATI

- 1) SLIDE ver 7.0
- 2) Settle 3D ver 2.003