COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO RILEVATI

Rilevato ferroviario dal km 18+812,65 al km 19+150,00 GENERALE

Relazione Geotecnica

	GENERAL CO	NTRACTOR			DIR	ETTORE LAV	ORI	
	GETTISTA INTEGRATORE	Consorz	io					SCALA
POOC	MALAVENDA	Iricav	Due					-
guð eði Ízernie	MALAVENDA di dicine degli di Venezia n. 4289	Ing. Pac	Carmon	a				
	Dicembre 2021	Data: Die	Cembre 20	21 Date	a:			
СОМ	MESSA LOTTO F.	ASE ENTE	TIPO D	OC. OPER	PA/DISCIPLINA	PROGR.	REV.	FOGLIO
I N	1 7 1 2	E 2	R	В П	3 5 C 0	0 0	1 B	D
						VIS	to consc	DRZIO IRICAV DUE
					F	irma		Data
	-				Luca RANDOLFI			· · · · · · · · · · · · · · · · · ·
	ırıc	AV2			Di			Dicembre 2021
Proge	ttazione:				•		•	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
_	EMISSIONE	M. Conti	Luglio	V. Pastore	l 11 0004	P. Ascari	Luglio	P. Ascari
A	EMISSIONE		2021	- 1380 M.C.				
			V. Pastore	Dicembre	P. Ascari	Dicembre	O TO THE WAY OF	
В	REVISIONE	Uloria Carli	Dicembre 2021	Minisofiles	2021	Porls Asiani	2021	Data: Dicembre 2021
CIO (2277057CD1		ID 1415	0100000	000		IN 11 71 O	E12PPP125C0001P 01

 CIG. 8377957CD1
 CUP: J41E91000000009
 File: IN1712EI2RBRI35C0001B_01

 Cod. origine:
 Cod. origine:

Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI35C0001B
 2 di 96

INDICE

1	INTE	RODUZIONE	4
2	DOC	CUMENTI DI RIFERIMENTO	5
2	2.1	Documentazione di progetto	5
2	2.2	Normativa e standard di riferimento	5
2	2.3	Bibliografia	6
3	INQ	UADRAMENTO DELL'OPERA	7
3	3.1	Premessa	7
3	3.2	Geometria del rilevato	7
4	CAF	RATTERIZZAZIONE GEOTECNICA	10
4	l.1	Indagini disponibili	10
4	1.2	Inquadramento stratigrafico	10
4	1.3	Livello di falda	12
4	1.4	Condizioni geotecniche del sito	13
4	1.5	Sintesi del modello geotecnico di riferimento	
	4.5.		
5	CAF	RATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	28
5	5.1	Sollecitazione sismica di progetto	28
	5.1.	1 Vita Nominale	28
	5.1.2		
	5.1.3	•	
	5.1.4	3	
	5.1.5	. •	
	5.1.6		
5	5.2	Suscettibilità alla liquefazione	
	5.2.	•	
	5.2.2		
6	VER	RIFICA GEOTECNICA DEL RILEVATO	44
6	6.1	Criteri di verifica agli Stati Limite	44
	6.1.	1 Stati limite ultimi (SLU)	44
	6.1.2	2 Stati limite di esercizio (SLE)	46
	6.1.3	Werifiche in condizioni sismiche e post-sismiche	46
6	6.2	Azioni di progetto	46
	6.2.	1 Azioni permanenti	47
	623	2. Azioni variabili	47

GENERAL CONTRACTOR

Rilevato ferroviario dal km 18+812,65 al km 19+150,00
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
Rolling
Silvato ferroviario dal km 18+812,65 al km 19+150,00
IN17
12
El2RBRI35C0001B
3 di 96

6.2.3 Azione sismica	47
6.3 Verifiche e risultati SLU	48
6.3.1 Premessa	48
6.3.2 Verifiche SLU in condizione statiche	48
6.3.3 Verifiche SLU in condizioni sismiche	49
6.4 Verifica e risultati SLE	51
6.4.1 Metodologia di calcolo	51
6.4.2 Schematizzazione e risultati	53
7 CONCLUSIONI E RACCOMANDAZIONI	60
Allegati	61
ALLEGATO 1 - PROFILO STRATIGRAFICO	
ALLEGATO 2 - SONDAGGI	64
ALLEGATO 3 - TABULATI DI SLIDE- ANALISI SLU STATICA	75
ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU SISMICA	82
ALLEGATO 5 - TABULATI DI SETTLE 3D – ANALISI SLE	88
ALLEGATO 6 - versioni software di calcolo utilizzati	96

GENERAL CONTRACTOR Consorzio IricAV Due	Consorzio IricAV Due GRUPPO FERROVIE D		FERR STATO ITALIANE	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	4 di 96

1 INTRODUZIONE

Il presente documento costituisce la Relazione Geotecnica del rilevato RI35C, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato si estende tra il km 18+812,65 e il km 19+150,00.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta. Le verifiche discusse sono state eseguite ai sensi della Normativa vigente (v. capitolo seguente) e gli interventi proposti sono volti a garantire la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

2 DOCUMENTI DI RIFERIMENTO

2.1 Documentazione di progetto

- [1] Sezioni di Progetto Esecutivo
- [2] IN1710EI2RBGE0000002A Relazione Geotecnica (da 10+050 a 21+990)
- [3] IN1710EI2LZGE0000016B Planimetria con ubicazione indagini e profilo geotecnico 5 di 11
- [4] IN1710EI2RHGE0000005A Relazione sulla modellazione sismica del sito e pericolosità sismica di base 1/2
- [5] IN1710EI2P5GE0000001A Planimetrie con classificazione sismica del territorio 1 di 11
- [6] IN1710EI2RHGE0000003A Relazione idrogeologica 1/2
- [7] IN1710EI2RHGE0000007A-8A Relazione di sintesi dei sondaggi e delle prove eseguite
- [8] IN1710EI2PRGE0000001A-2A, Risultati Indagini in sito di Progetto SOCOTEC
- [9] IN1710EI2PRGE0000003A-4A, Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [10] IN1710EI2PRGE0000005A-8A, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC
- [11] IN1710EI2PRGE0000009A-12A, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING - GEOLAVORI
- [12] IN1710El2IGGE0000001A-2A, Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC
- [13] IN1710El2IGGE0000003A-4A, Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING -GEOLAVORI

2.2 Normativa e standard di riferimento

- [14] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [15] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [16] UNI EN 1997-1 : Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [17] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [18] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [19] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [20] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [21] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie

GENERAL CONTRACTOR Consorzio IricAty Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	6 di 96

- [22] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 "Opere in terra e scavi" RFI
- [23] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [24] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

2.3 Bibliografia

- [25] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [26] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [27] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [28] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [29] Rocscience (2017), Slide ver 7.0, 2017
- [30] Rocscience (2009), Settle 3D ver 2.0, 2009
- [31] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [32] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [33] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [34] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.
- [35] Priebe H.J., "Vibroreplacement to prevent earthquake induced liquefaction". Ground Engineering, September 1998.
- [36] Idriss I.M. and Boulanger R.W. (2008), "Soil liquefaction during earthquakes".

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	7 di 96		

3 INQUADRAMENTO DELL'OPERA

3.1 Premessa

Il rilevato ferroviario in esame si estende tra il km 18+812,65 e il km 19+150,00 per una lunghezza totale di 400 m circa. Dalla 16+656 alla 16+775 il rilevato risulta affiancato dal piazzale FA07, su cui è prevista la costruzione di un fabbricato, come mostrato in Figura 2. Tale piazzale impatta sulle verifiche SLE, e di questo si terrà conto nella verifica relativa. Non ha invece impatti sulla verifica SLU, in quanto ha un contributo stabilizzante, e la sua presenza viene quindi omessa.

Per la tratta in esame non si evidenziano altre interferenze con opere principali adiacenti e/o attraversate.

Il presente documento riguarda esclusivamente il dimensionamento degli interventi e le verifiche sul rilevato ferroviario RI35C. Per quanto riguarda il piazzale FA07, il cui progetto verrà sviluppato in altro documento, si sono fatte alcune ipotesi di lavoro, che hanno consentito di procedere con il dimensionamento delle opere del rilevato, ma che dovranno essere necessariamente riviste in sede di progettazione esecutiva del piazzale.

3.2 Geometria del rilevato

Il rilevato presenta una sezione regolare per tutto il tracciato, con scarpate di pendenza 2/3 (V:H). Alla pk 18+912.65, in prossimità della spalla est del VI18 "Viadotto Grena", si riscontra l'altezza massima del rilevato pari a 8.1 m. La sezione citata, denominata Sezione A (Figura 1) è quella ritenuta più significativa per le verifiche SLU del rilevato in esame. Per la verifica SLE si tiene invece conto della geometria di Figura 2, per dimensionare anche gli interventi di soil improvement al di sotto del piazzale.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due		FERR		
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	8 di 96

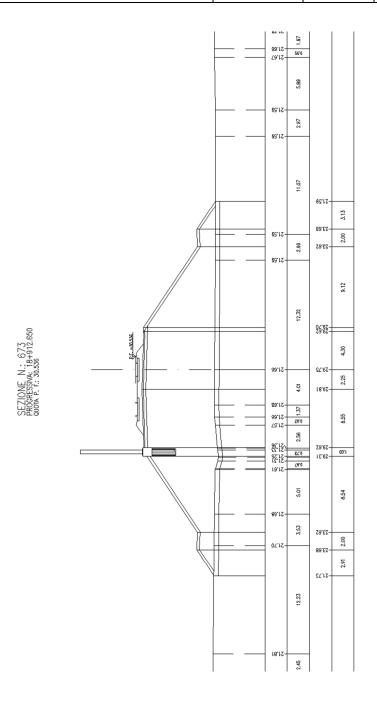
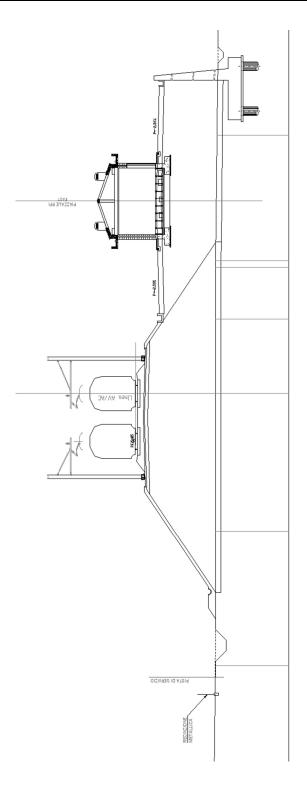



Figura 1 – Sezione di riferimento A (pk 18+912.65, n. 673) estratta da sezioni PE (Doc Rif. [1])

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	9 di 96	

SEZIDNE N. : 811 QT, PRDGETTO : 29,425 DIST,PRDG. : 19100.000 DIST,PREC. : 25,000 DIST,SUCC. : 25,000

Figura 2 – Piazzale A07. Sezione n.811 pk 19+100 estratta da sezioni PD.

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Indagini disponibili

L'ubicazione delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 4, estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [3]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [7] - [13]). Il risultato delle indagini è riportato in ALLEGATO 2.

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Per la caratterizzazione geotecnica si è considerata, tenuta in conto l'omogeneità stratigrafica dell'area, una serie di indagini non solo di stretta competenza del rilevato, ma anche quelle effettuate nell'adiacente area della WBS RI34, al fine di pervenire ad un quadro di riferimento di maggiore dettaglio e attendibilità.

Nel seguente paragrafo si riporta la caratterizzazione geotecnica, ottenuta basandosi sui risultati delle indagini relative all'aera di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2])

Progressiva	ID indagini	Campagna
pk	-	anno
18+720	BH5V	2015
18+893	BH-PZ-PE-38	2020-2021
18+910	CPTU9V	2015
18+940	BH6V+CH2V	2015
19+060	CPTU10V e CPTU10Vbis	2015
19+060	CPTU-PE-21	2020-2021
19+070	CPTU11V	2015
19+142	MASW-PE-08	2020-2021

Tabella 1 - Indagini da pk 18+600 alla pk 19+200

4.2 Inquadramento stratigrafico

Dal punto di vista stratigrafico, l'area del rilevato è interessata dalla presenza di una coltre superficiale di spessore variabile tra 5m e 6m, di terreni a predominate comportamento argilloso (Unità 3b), con presenza di lenti sabbiosi di spessore metrico, posti a diverse profondità.

Al di sotto di questa copertura si riscontra uno strato di ghiaie ben addensate (Unità 6) fino a una profondità di circa

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR		
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	11 di 96	

20 m. Al di sotto delle ghiaie si incontra uno strato di 2m di argille (Unità 2) ed infine il substrato sabbioso (Unità 4) che si estende in profondità.

Da quanto sopra, risulta evidente che il comportamento del rilevato sarà governato principalmente dalle caratteristiche della coltre superficiale soprastante le ghiaie. Pertanto, nei capitoli successivi, si presterà quindi particolare attenzione alle caratteristiche geotecniche di tale strato.

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]).

Nella Figura 3 si riporta il profilo geotecnico specifico per il rilevato RI35C, estratto dalla Planimetria e Profilo Geotecnico Tav. 5 di 11 (Doc. Rif. [3]).

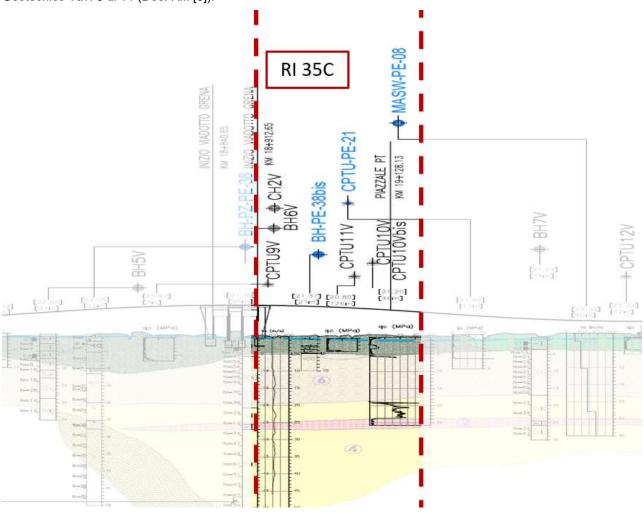


Figura 3 - Profilo Geotecnico Rilevato RI35C, estratto dal Profilo Geotecnico Generale (Doc. Rif. [3])

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	12 di 96

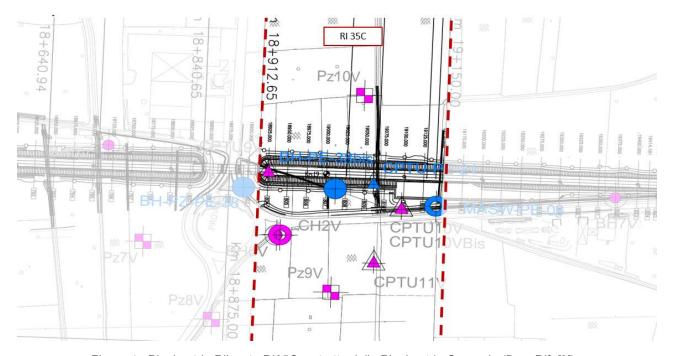


Figura 4 - Planimetria Rilevato RI35C, estratto dalla Planimetria Generale (Doc. Rif. [3])

4.3 Livello di falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Ref. [6]). Quest'ultimi indicano una sostanziale stabilità nelle escursioni stagionali.

Ai fini progettuali si assume perciò una falda di progetto a piano campagna.

4.4 Condizioni geotecniche del sito

Come definito dalla sezione stratigrafica, il tratto in oggetto è caratterizzato da una copertura superficiale di prevalenti limi argillosi (Unità 3b) per uno spessore di circa 5-6 m.

Si tratta principalmente di limi argillosi, localmente intervallati di livelli sabbiosi di spessore metrico (si veda al proposito anche le stratigrafie dei sondaggi, riportati in Appendice).

Le figure da Figura 5 a Figura 8 illustrano i risultati delle prove di laboratorio sui campioni della copertura superficiali, dalle quali si osserva che:

- Si tratta di limi con argilla/argillosi, da sabbiosi a debolmente sabbiosi,
- Si tratta generalmente di materiali a plasticità medio alta, con valori del LL nel campo 40-75, e valori di IP nel range 20-50. Si tratta pertanto di limi inorganici di plasticità da media ad alta.
- I contenuti d'acqua sono più vicini al LP rispetto all'LL, ad indicazione comunque di una relativamente buona consistenza del materiale, come risulta dal grafico della Figura 6

Per quanto la resistenza al taglio non drenata e la tensione di preconsolidazione di questi materiali, la Figura 9 e la Figura 10 riportano i dati ricavati dall'interpretazione delle prove CPTU, e dai dati di laboratorio.

Sulla base di tali dati si osserva quanto segue:

- Vi è una sottile crosta essiccata di 1-2 m di spessore, attribuibile ad oscillazioni del livello di falda, con valori dell'ordine dei 50-70 kPa,
- I valori decrescono poi con la profondità, ed oscillano nel campo 35-45 kPa.
- I valori di tensione di preconsolidazione, sia da prove CPTU che EDO, presentano lo stesso andamento.
- Vi sono comunque presenti orizzonti sabbiosi che portano ad un incremento localizzato di resistenza al taglio, su praticamente tutte le verticali indagate.

Sulla base dei dati edometrici disponibili nell'area, si sono considerati i seguenti parametri di compressibilità in condizioni edometriche:

Alle intercalazioni sabbiose presenti tra 3.5 e 4.5 m circa (Unità 3a) sono attribuibili angoli caratteristici di resistenza al taglio pari a $\phi k=34^{\circ}$.

Procedendo con la profondità si incontra uno strato di ghiaie e ghiaie sabbiose ben addensate (Unità 6), che si estende fino anche 20 m pc. All'interno del deposito incoerente le percentuali di materiale a grana fine sono generalmente inferiori a 20% e si registrano valori di N_{SPT} mediamente pari a 40 colpi/30cm con valori anche di 60 colpi/30cm. La densità relativa delle ghiaie risulta pari al 50% e quindi il deposito risulta mediamente addensato.

Sotto lo strato di ghiaie si individua incontra un deposito di sabbia limosa mediamente addensata (Unità 4), a partire dalla profondità di 20 m pc fino alla quota di fine sondaggi. In questo deposito le percentuali di materiale fino sono

inferiori al 10%, i valori medi di N_{SPT} sono pari a 30 colpi/30cm. La densità relativa delle sabbie risulta generalmente attorno a 60%.

Tale deposito è interrotto, tra 20-22 m p.c., da una lente di materiale argilloso (Unità 2) caratterizzato da una resistenza al taglio non drenata c_u =120 kPa.

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove DH, MASW e infine SPT, conferma la presenza di materiali incoerenti da mediamente a molto addensati. Fino a 20 m pc, per le ghiaie superficiali si stimano valori di Vs pari a 320-350 m/s. A profondità maggiori, nelle sabbie, le velocità sono pari a 370 m/s. Sulla base dei valori di Vs si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per le ghiaie si considera un valore di 250 MPa, mentre per le sabbie profonde si ottengono valori pari a 320 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 , ed utilizzando valori di v = 0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

Ai fini della caratterizzazione geotecnica degli strati sottostanti la coltre superficiali, le seguenti figure riportano i risultati delle principali prove di sito e dei parametri geotecnici dei terreni, interpretati alla luce di quanto riferito in [2]e [4].

- Valori Nspt da prove SPT (v. Figura 11);
- Densità relativa stimata da prove SPT (v. Figura 12);
- Angolo di attrito stimato da prove SPT (v. Figura 13);
- Velocità delle onde di taglio stimata da prove in sito (v. Figura 14);
- Modulo di taglio alle piccole deformazioni valutati a partire dai valori stimati di Vs (v. Figura 15).

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	15 di 96	

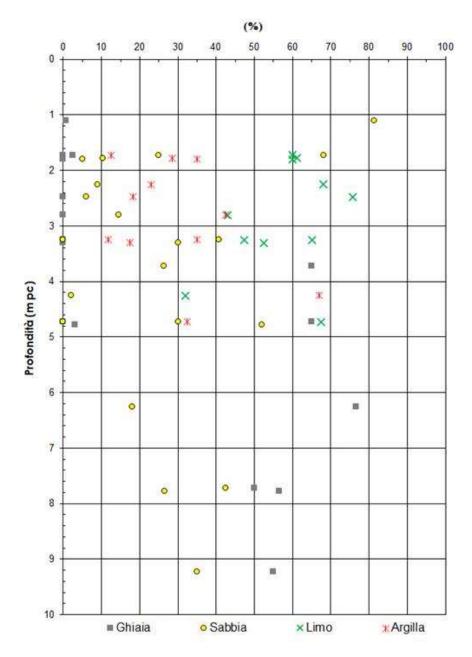


Figura 5 – Determinazioni granulometriche delle coperture superficiali da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Rilevato terroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	16 di 96

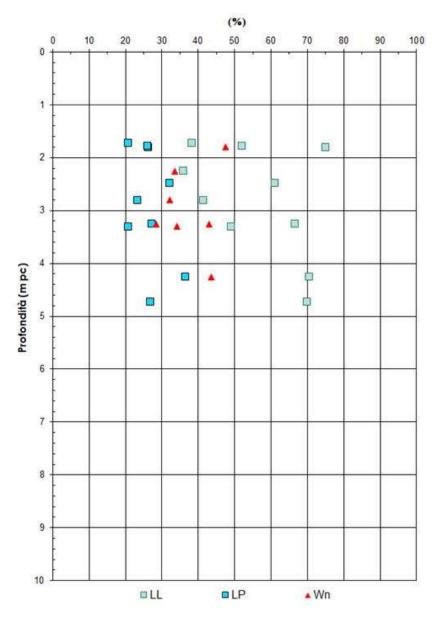


Figura 6 – LL, LP e contenuti d'acqua naturali delle coperture superficiali da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	17 di 96

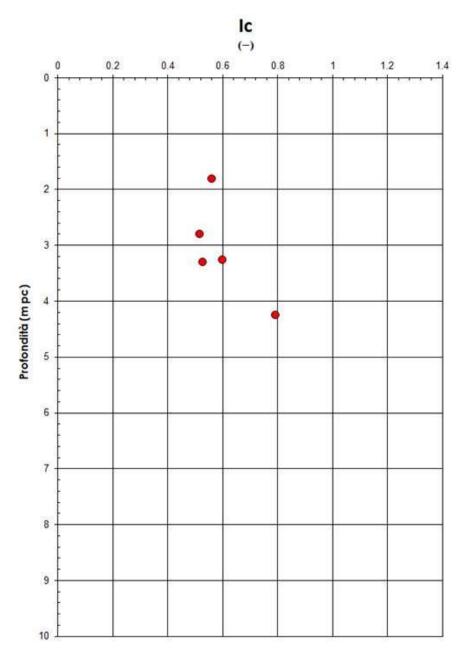


Figura 7 – Indice di consistenza Ic delle coperture superficiali da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAty Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	18 di 96

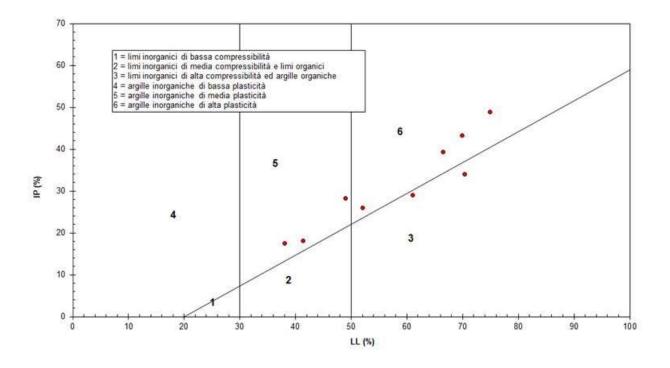


Figura 8 – Carta di plasticità di Casagrande delle coperture superficiali da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	19 di 96

Resistenza al taglio non drenata c_{u} (kPa)

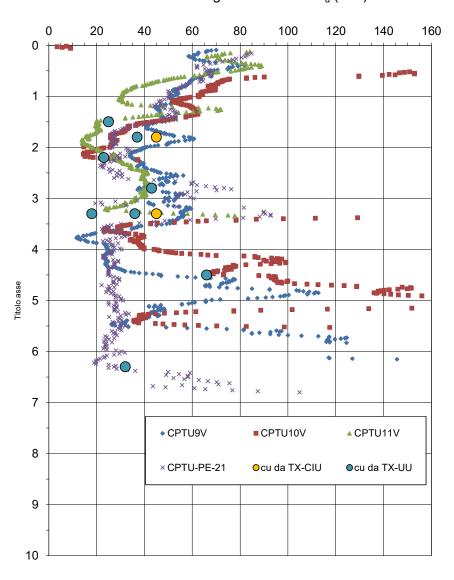


Figura 9 – Valori di cu da prove CPTU e di laboratorio da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Piloveto forceviscio del las 19 912 65 el las 10 150 00	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	20 di 96

Tensione di preconsolidazione (kPa)

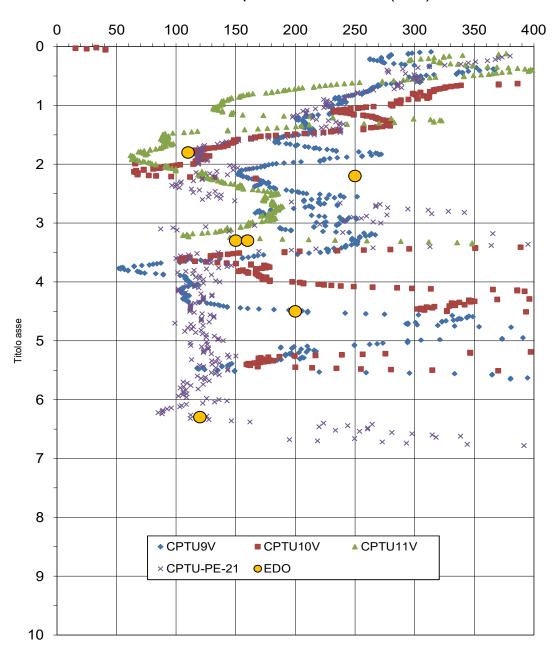


Figura 10 – Valori di tensione di preconsolidazione da prove CPTU e da edometri da pk 18+600 alla pk 19+200



Figura 11 – Esito delle prove SPT da pk 18+600 alla pk 19+200

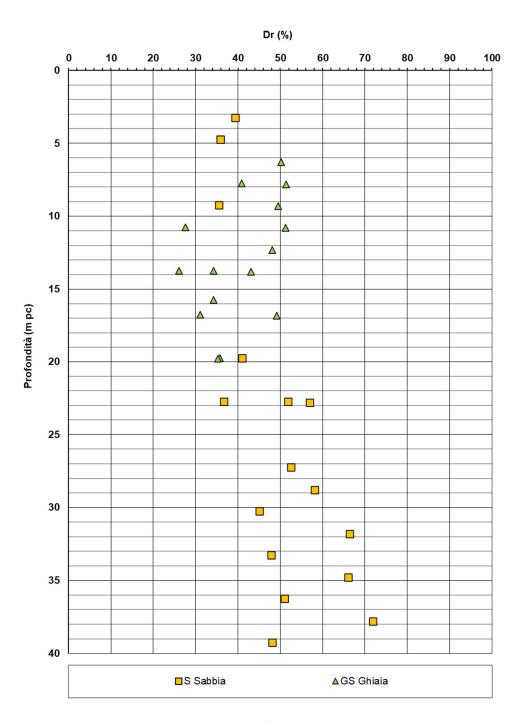


Figura 12 – Densità relativa da prove SPT da pk 18+600 alla pk 19+200

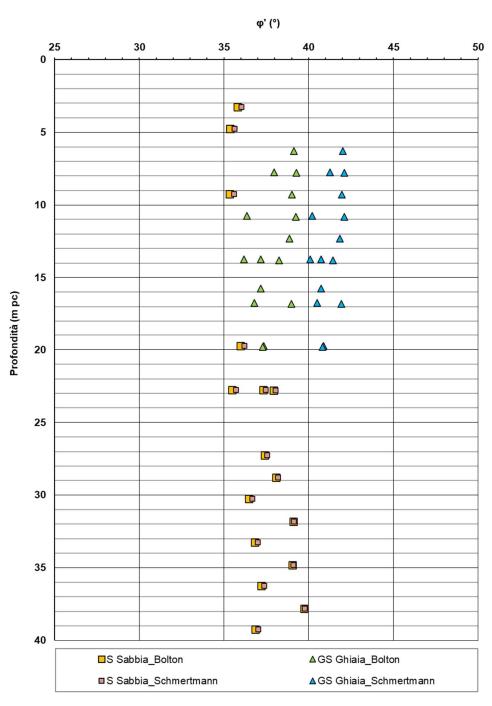


Figura 13 – Angoli di attrito da prove SPT da pk 18+600 alla pk 19+200

GENERAL CONTRACTOR Consorzio IricAty Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Rilevato terroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	24 di 96

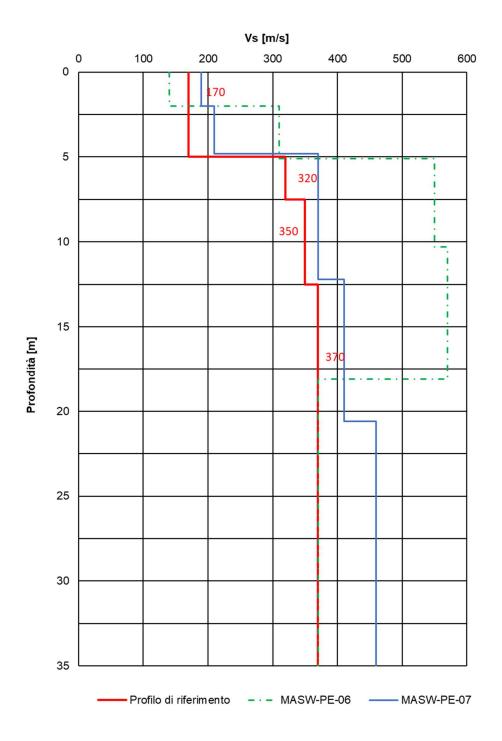


Figura 14 – Profilo di Vs di riferimento, a confronto con dati di correlazioni con SPT e prove geofisiche tipo MASW da pk 18+600 alla pk 19+200

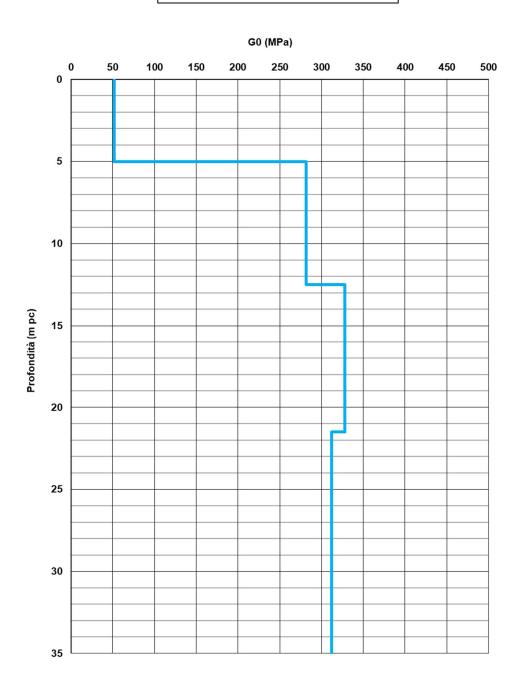


Figura 15 – Modulo di taglio G₀ da pk 18+600 alla pk 19+200

4.5 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2.

Tabella 2 – Modello geotecnico di riferimento

Unità	da	а	γ	φk	C _{u,k}	σ' _P	RR	CR	G₀	E'op
Offica	m pc*	m pc*	kN/m³	0	kPa	kPa	-	-	MPa	MPa
3b	0.5	1	18	-	60	240	0.02	0.18	-	6(10.3)**
3b	1	2	18	-	50	240	0.02	0.18	-	6(10.3)**
3b	2	3.5	18	-	35[45]**	150[180]	0.02	0.18	-	3.5(8.0)**
3a	3.5	4.5	18	34	-	-	-	-	-	15(18.6)**
3b	4.5	5.5	18	-	45	150	0.02	0.018	-	6(10.3)**
6	5.5	12	19	39	-	-	-	-	200	90
6	12	20	19	39	-	-	-	-	250	100
2	20	22	19	-	120	-	-	-	-	25
4	22	30	19	38	-	-	-	-	350	100
4	30	-	19	38	-	-	-	-	350	200

^{*} quota piano campagna = 22.0 m s.l.m.

Considerando le condizioni geotecniche del sito, e le caratteristiche dell'opera, è necessario prescrivere un intervento di soil improvement con colonne in ghiaia, come già fatto nel PD. Questo a causa:

- dell'altezza del rilevato nella tratta in esame;
- della stratigrafia che presenta in superficie 5-6m di materiali argillosi molto compressibili, e di scarsa resistenza al taglio.

Pertanto, dalla pk 18+604,94 alla pk 18+840,65, si prescrive la realizzazione di colonne in ghiaia D=800mm, i=2.5m, L=5.5m. Per la descrizione delle fasi realizzative e per la geometria del trattamento, si faccia riferimento agli elaborati di progetto.

Per quanto riguarda i trattamenti di soil improvement al di sotto del piazzale A07, si prescrive la realizzazione di colonne in ghiaia D=800mm, i=2.6 m, L=5.5m.. Per le colonne, si prescrive che debbano essere costituite da materiale granulare avente angolo di resistenza al taglio φ'≥43°

Tali trattamenti, sulla base delle ipotesi progettuali, si sono rilevati idonei a soddisfare le ipotesi di progetto, che sono definite nel dettaglio al punto 6.4

^{**} i valori tra parentesi () si riferiscono alle caratteristiche del terreno trattato con colonne in ghiaia

^{**} i valori tra parentesi [] sono stati adottati nelle verifiche SLU sismiche

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Piloveto forrovigrio del km 18±812.65 el km 10±150.00	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	27 di 96

Tenuto conto di quanto sopra, si precisa quanto segue:

- I valori dei parametri indicati fra parentesi sono quelli del terreno migliorato con le colonne di ghiaia. In particolare: I moduli E' del terreno naturale sono stati impiegati per ricavare le caratteristiche del terreno migliorato con colonne di ghiaia, secondo quanto riportato al punto 6.4.
- I moduli E' degli strati argillosi sono stati stimati valutando gli effetti dell'incremento di tensione verticali $\Delta\sigma_V$ efficace, dovuta al rilevato (dell'ordine massimo dei 140-160 kPa), e calcolando il valore della deformazioni assiale ϵ_V con i parametri di deformazione edometrica RR e CR, e tenendo conto del valore della tensione di preconsolidazione. Sulla base delle deformazioni assiali calcolate, si è quindi valutato il modulo di deformazione edometrica M_{ed} come M_{ed} = $\Delta\sigma_V$ / ϵ_V , e da quello il modulo di Young mediante la correlazione elastica fra M ed E' (dalla quale E' \approx 0.74 M_{ed})
- Si è considerato che, nello strato fra 2.5 e 3.5 m di profondità, la tensione verticale efficace a fine consolidazione sia dell'ordine dei 180 kPa. In virtù di tale livello tensionale efficace, si è considerato, per le verifiche sismiche, un valore di resistenza al taglio non drenata incrementato rispetto al livello iniziale, e pari a cu = 0..25 σ'v= 0.25*180 = 45 kPa.

Per la falda si fa riferimento a quanto riportato in 4.3.

4.5.1 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. rif. [19]) e sono di seguito riassunte:

Tabella 3 - Caratteristiche materiale da rilevato

	Y	φ	c'
	kN/m³	•	kPa
Materiale da rilevato	20	38	0

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP (Doc. rif. [18] e [19]), l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 4 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	$V_N = 50 \ anni$
Altre opere nuove a velocità V < 250 km/h	$V_N = 75 anni$
Altre opere nuove a velocità V ≥ 250 km/h	V_N = 100 anni
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- II Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

Tabella 5 – Valori del coefficiente di uso Cu

Classe d'uso	I	П	III	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

II periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica (Doc. rif. [4]) e nelle Planimetrie con classificazione sismica dei terreni (Doc. rif. [5]), i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media i > 15°.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Dilaceta famoriada dallar 10 : 012 45 allar 10 : 150 00	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	30 di 96

a _g (g) (SLV)	0.218
Coefficiente di amplificazione stratigrafica Ss	1.382
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
$a_{max} \left(g \right) \left(\begin{smallmatrix} a_{max} & = & S \cdot a_{g} \\ \end{smallmatrix} = \begin{smallmatrix} S \cdot S_{g} \cdot S_{T} \cdot a_{g} \\ \end{smallmatrix} \right)$	0.301

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa vigente (Doc. rif. [14]). Le analisi di liquefazione sono descritte in dettaglio nelle Relazioni sulla modellazione sismica del sito e pericolosità sismica di base (Doc. rif. [4]), alla quale si rimanda per maggiori dettagli.

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, $V_R = 150$ anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 (riportato in Figura 1), alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [4] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.0.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico (CRR) così definiti:

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 31 di 96

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_l}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma_{vo}^{\mathsf{I}}} = 0.65 \frac{\tau_{\max}}{\sigma_{vo}^{\mathsf{I}}} = 0.65 \frac{a_{\max}}{g} \frac{\sigma_{vo}}{\sigma_{vo}^{\mathsf{I}}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

τ_c valore rappresentativo dello sforzo di taglio ciclico

σ_{vo} tensione verticale alla profondità in esame, in termini di tensioni totali

 σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

r_d coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 \cdot z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 \cdot z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per M \neq 7.5 è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M=7.5}} = \left(\frac{N_{M=7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto, mentre $(CSR)_{M=7.5}$ e $N_{M=7.5}$ sono riferiti all'evento con M=7.5.

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e

GENERAL CONTRACTOR Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 El2RBRI35C0001B 32 di 96

Idriss e Boulanger (2004) si è assunto per M = 6.0 - MSF = 2.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 16: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per
$$(q_{c1N})_{cs} < 50$$
 $CRR_{7.5} = 0.833 \left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$

per 50
$$\leq$$
 (q_{c1N})_{cs} $<$ 160 $CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$

In Figura 16, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = [(3.47 - \log Q)^2 + (1.22 + \log F)^2]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

$$F = \frac{f_s}{q_c - \sigma_{vo}} x 100$$

Tanto maggiore è il valore di I_c , tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore $I_c = 2.6$ è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile

a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e I_c sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se I_c così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di $n \in I_c$ sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove Kcè definito dalle seguenti equazioni (Robertson & Wride, 1998):

per $Ic \le 1.64$ $K_c = 1.0$

per Ic > 1.64 $K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$

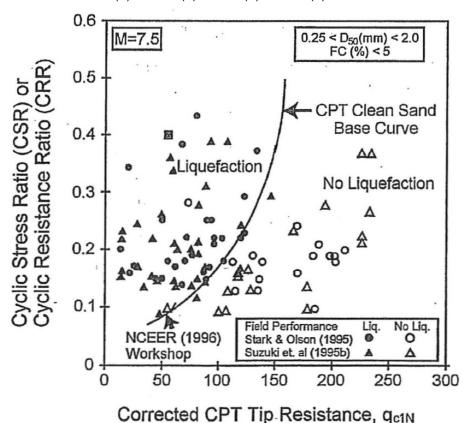


Figura 16 - Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 17, originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 17, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti $N_{1(60)}$, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT} C_N C_E C_B C_R C_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 17, viene riportato il valore di CSR calcolato ed i corrispondenti valori di N₁₍₆₀₎ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAty Due Consorzio IricAty Due Consorzio IricAty Due

Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	35 di 96

Si può osservare dalla Figura 17 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{[10 \cdot (N_1)_{60} + 45]^2} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori di $N_{1(60)cs}$:

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

 α = 0 per FC < 5%

 α = exp [1.76 – (190/FC2)] per 5% < FC < 35%

 α = 5 per FC \geq 35%

 β = 1 per FC < 5%

 β = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

β = 1.2 per FC \ge 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il seguente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

p_a = pressione atmosferica di riferimento

f = fattore che dipende dalla densità relative del materiale in sito.

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR <60% f = 0.7÷0.8

60% < DR < 80% f = 0.6÷0.7

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

FL = (CRR_{7.5}/CSR) MSF k_{σ}

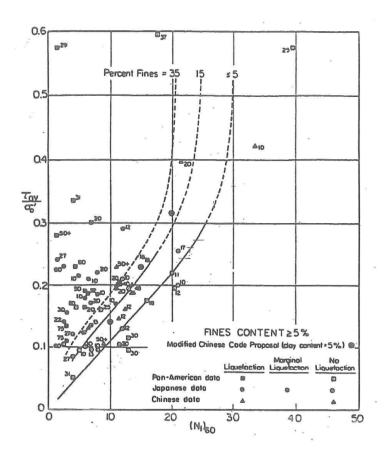


Figura 17 - Relazione tra sforzo di taglio ciclico a liquefazione e $N_{1(60)}$ – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

I risultati (cfr. Figura 20 - Figura 21) non indicano rischi di potenziale liquefazione nella porzione di tracciato interessata dal rilevato RI35C.

GENERAL CONTRACTOR Consorzio IricAv Due		SORVEGLIA TAL PERROVIE DELLO S'	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	37 di 96

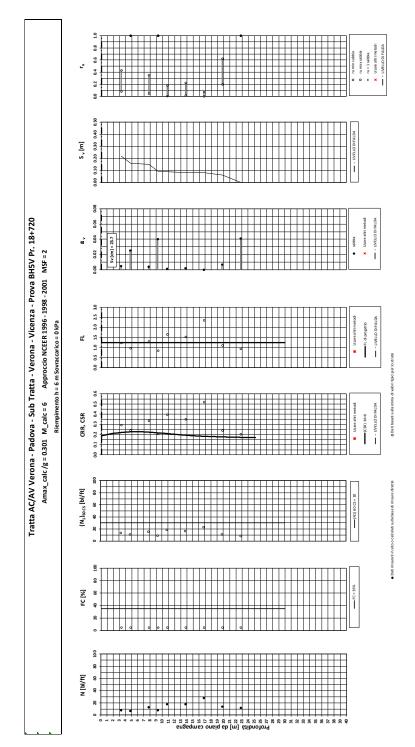


Figura 18 – Verifica Liquefazione da risultati BH5V

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	38 di 96

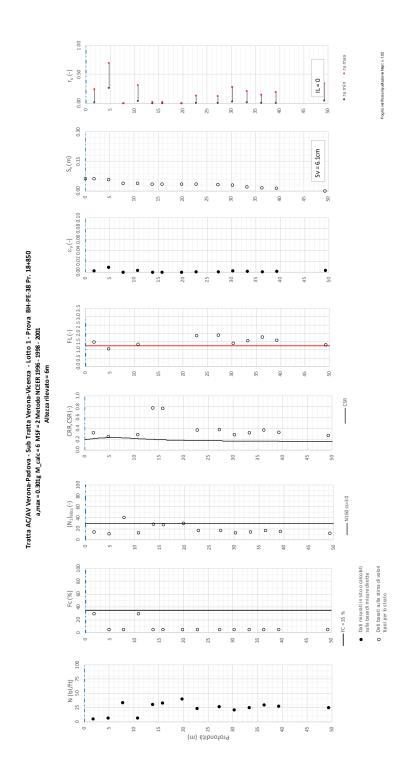


Figura 19 – Verifica Liquefazione da risultati BH-PE-38

GENERAL CONTRACTOR Consorzio Iric/4V Due		SORVEGLIA TAL PERROVIE DELLO S'	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	39 di 96

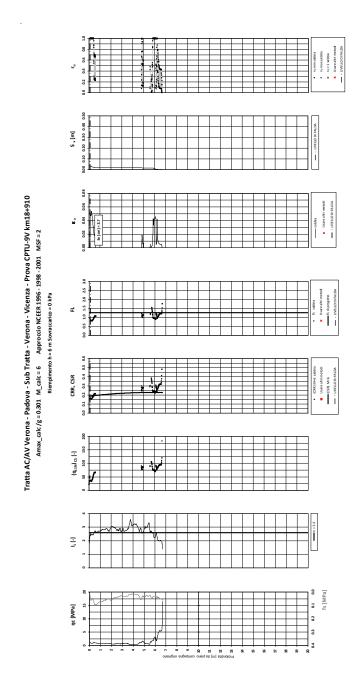


Figura 20 – Verifica Liquefazione da risultati CPTU9V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	40 di 96

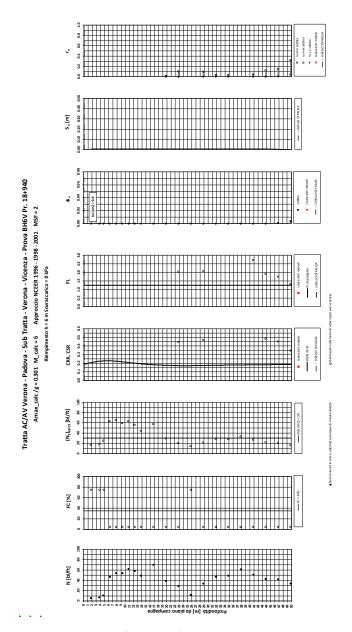


Figura 21 – Verifica Liquefazione da risultati BH6V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	41 di 96

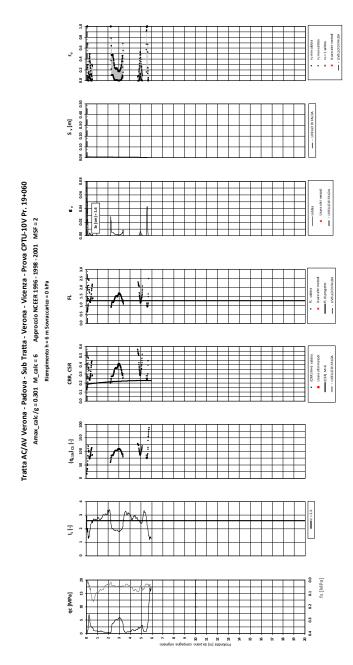


Figura 22 – Verifica Liquefazione da risultati CPTU10V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	42 di 96

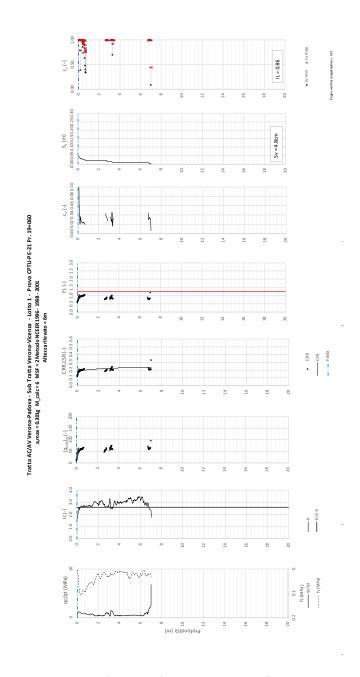


Figura 23 – Verifica Liquefazione da risultati CPTU-PE-21

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	43 di 96

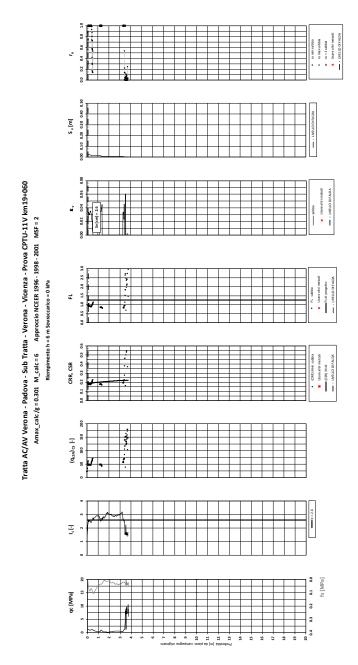


Figura 24 – Verifica Liquefazione da risultati CPTU11V

GENERAL CONTRACTOR Consorzio Iric-AV Due Consorzio Iric-AV Due Consorzio Iric-AV Due Consorzio Iric-AV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 44 di 96

6 VERIFICA GEOTECNICA DEL RILEVATO

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa vigente richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [14]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [14])

dove:

Ed valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che, per quanto concerne le azioni di progetto E_d , tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [14]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove:

E_d valore di progetto dell'effetto dell'azione;

C_d valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale).

La verifica della condizione $E_d \le C_d$ deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [14]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [15]), calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto $R = R\left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_m}; a_d\right]$.

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 45 di 96

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [14]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 6 - Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale γ _E (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	Service of the Servic	0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	$\gamma_{ m G2}$	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
v arrabili	Sfavorevole	γ_{Qi}	1,5	1,5	1,3

dove:

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 7 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [14])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γe	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 8 – Coefficienti parziali per verifiche di stabilità globale

1	
Coefficiente	R2
Ϋ́R	1.1

Si segnala che le verifiche in condizioni SLU e SLE verranno condotte con analisi statiche o pseudostatiche e, in accordo al MDP ITALFERR, il coefficiente di incremento dinamico delle azioni derivanti dal passaggio del treno sarà assunto pari all'unità.

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [14]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del ballast, e per la durata della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [19] e [23]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [23]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 9 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	$160 < V \le 300 \text{ km/h}$
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	10 < ΔH ≤ 15 4 < SCARTXL ≤ 8
3° livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ 8 < SCARTXL \le 12

il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche e post-sismiche

La stabilità globale in condizioni sismiche e post-sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [19]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [18]) e nelle NTC (Doc. rif. [14]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

GENERAL CONTRACTOR Consorzio IricAY Due Progetto Lotto Codifica Foglio Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica IN17 12 EI2RBRI35C0001B 47 di 96

6.2.1 Azioni permanenti

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³ Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, valutati nel rispetto delle normative di riferimento e considerando il caso peggiore tra i tre modelli di carico previsti: LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71) ed applicata su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (kh) e verticale (ky):

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0, 5 \cdot k_{\rm h}$$

dove

 β_s coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 10)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 10 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[14])

	Categoria	di sottosuolo
	A	B, C, D, E
	eta_{s}	$\beta_{\rm s}$
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28
$0.1 < a_{\rm g}(g) \le 0.2$	0,27	0,24
$a_{g}(g) \leq 0,1$	0,20	0,20

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 7.0 (Doc. Rif. [29]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 7 della presente relazione.

Come da NTC 2008 (Doc. Rif. [14]), la verifica SLU di stabilità globale è soddisfatta se la relazione:

è verificata sia in condizioni statiche che sismiche.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1, secondo il metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2. Nelle verifiche di stabilità, la presenza di colonne è stata considerata mediante elementi verticali considerati continui nel piano, e costituiti da materiali granulare con ∮≥43°, e di spessore pari a:

B= $A_c/i = (\pi^*D^2/4)/i$, dove i è l'interasse fra le colonne (maglia quadrata).

Si ha quindi che lo spessore dei "pannelli" di ghiaia è pari a :

B= 0.5/2.5= 0.2 m

6.3.2 Verifiche SLU in condizione statiche

Il carico da traffico ferroviario (q), assunto pari a 61.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile- sfavorevole, pertanto, in accordo al coefficiente parziale sulle azioni A2 riportato e pari a 1.3. Per quanto riguarda la falda, è stata considerata la condizione a lungo termine e quindi è stato preso un livello coincidente a piano campagna, come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 25 sono riportate le superfici di rottura critica per la combinazione DA1C2. Il valore minimo di FS è pari a: FS_{MIN} (DA1C2) =1.199>R2=1.1

la verifica di stabilità globale in campo statico risulta soddisfatta.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	49 di 96

6.3.3 Verifiche SLU in condizioni sismiche

In accordo a quanto riportato precedentemente, l'azione sismica è stata definita attraverso i seguenti coefficienti sismici:

K_H= + 0.084 (concorde alla direzione di scivolamento)

K_V= ± 0.042 (verificando la più cautelativa tra negativo e positivo)

Per quanto riguarda la falda è stato preso un livello coincidente a p.c., come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che interessano la sede ferroviaria.

Per i parametri di resistenza al taglio degli strati interessati dall'intervento con colonne, si veda quanto riportato al punto 4.5.

In Figura 26 sono riportate le superfici di rottura critiche. Il fattore di sicurezza FS è pari a:

FS_{MIN} =1.110>R2=1.1

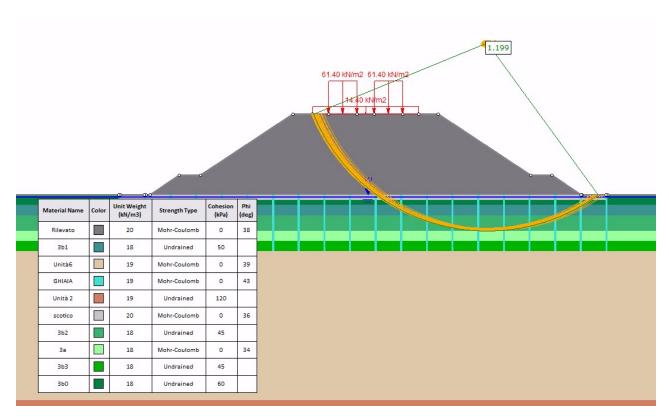


Figura 25 – Sezione A - Analisi SLU in campo statico DA1C2

GENERAL CONTRACTOR Consorzio Iric/AV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	50 di 96

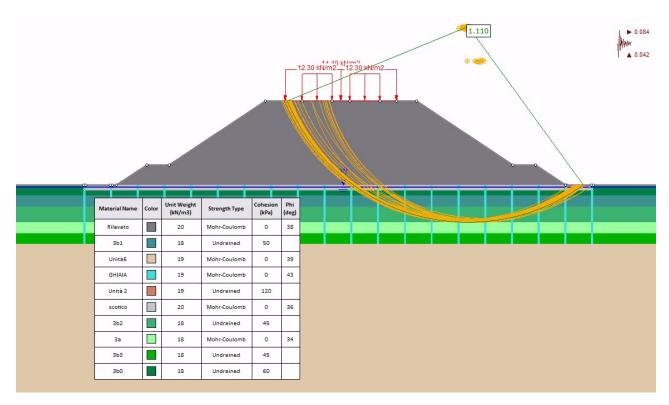


Figura 26 – Sezione A - Analisi SLU in campo sismico

6.4 Verifica e risultati SLE

6.4.1 Metodologia di calcolo

La determinazione del campo di spostamenti è stata svolta mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [30]) che permette di valutare l'andamento dei cedimenti nel tempo sotto diverse ipotesi di carico. Il programma discretizza l'area analizzata in un numero finito di aree di carico e valuta gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti. A partire dagli incrementi tensionali vengono poi calcolati i cedimenti.

La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta all'interno del codice di calcolo con riferimento a soluzioni basate sulle seguenti ipotesi semplificative:

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di Boussinesq);
- l'area di carico è posta sulla superficie del semispazio ed è ipotizzata avere rigidezza nulla.

Per una generica condizione di carico viene quindi eseguita una discretizzazione in un numero finito di aree di carico sulle quali è applicata una pressione uniforme o variabile linearmente.

Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti.

Il calcolo dell'incremento delle tensioni normali indotte da un'area di carico nastriforme, soggetta a un carico uniformemente distribuito (parte centrale del rilevato), viene eseguita sulla base delle formule di Jumikis (1971).

$$\begin{split} \Delta\sigma_z &= \frac{q}{\pi} \cdot \left[\tan^{-1} \! \left(\frac{x+B}{z} \right) - \tan^{-1} \! \left(\frac{x-B}{z} \right) - \frac{z \cdot (x-B)}{(x-B)^2 + z^2} + \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_x &= \frac{q}{\pi} \cdot \left[\tan^{-1} \! \left(\frac{x+B}{z} \right) - \tan^{-1} \! \left(\frac{x-B}{z} \right) + \frac{z \cdot (x-B)}{(x-B)^2 + z^2} - \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_y &= \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

dove:

 $\Delta \sigma z$, $\Delta \sigma x$, $\Delta \sigma y$ = incremento delle tensioni normali verticali e orizzontali

q = carico applicato

u = coefficiente di Poisson

B = semi-larghezza dell'area di carico in direzione x

x, y, z = coordinate geometriche di riferimento come indicato nella figura seguente.

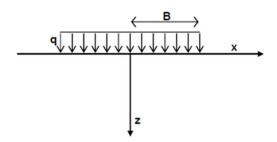


Figura 27 – Modello di calcolo Settle 3D – carico uniforme

Nel caso di un'area di carico nastriforme soggetta a un carico linearmente crescente (bordo del rilevato), le formule di Jumikis da applicare sono le seguenti:

$$\begin{split} & \Delta\sigma_z = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \middle| \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_x = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + z \cdot ln \left(\frac{x^2 + z^2}{(x - A)^2 + z^2} \right) - \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_y = \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

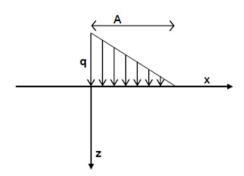


Figura 28 - Modello di calcolo Settle 3D - carico linearmente crescente

Il calcolo della deformazione verticale per ogni singolo sublayer viene valutato sulla base dell'incremento di sforzo verticale, utilizzando la seguente espressione:

$$\varepsilon_z = \frac{\Delta \sigma_z}{E}$$

Il cedimento verticale totale viene quindi calcolato come sommatoria dei cedimenti dei diversi strati.

Il calcolo dei cedimenti indotti dalla realizzazione del rilevato ferroviario è stato svolto modellando la successione stratigrafica in sito tenendo conto delle diverse caratteristiche di deformabilità degli strati, in accordo alla stratigrafia

di progetto riportata in Tabella 2. Si sono assunti i valori caratteristici sia sulle azioni che sui materiali.

Si osserva come, in accordo con la stratigrafia e i parametri di progetto riportati nel Capitolo 4, i moduli elastici risultano di fatto indipendenti dallo stato tensionale ed il valore della quota della falda non ha alcuna influenza sull'esito del calcolo. Pertanto, nel calcolo la falda è stata rappresentata ad una quota convenzionale praticamente coincidente con il p.c.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente diseguaglianza:

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove

Ed è il valore di progetto dell'effetto dell'azione, e Cd è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

6.4.2 Schematizzazione e risultati

La verifica è stata condotta con riferimento alla già citata sezione di riferimento riportata in Figura 2. Il modello di calcolo, implementato per il rilevato tipologico con altezza pari a 8.1 m, è riportato in Figura 29. La larghezza del rilevato della linea AV è pari a 36 m, con pendenza delle scarpate è 2V:3H, il piazzale in affiancamento è largo 24m e di altezza 6m. Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un carico distribuito.

Per la definizione degli interventi sotto il piazzale si è considerato quanto segue:

- Il piazzale, di notevole estensione ed altezza, può esibire dei cedimenti rilevanti e protratti nel tempo. Questo avrebbe ripercussioni sui cedimenti indotti sulla linea AV posta a fianco.
- Si è quindi deciso di intervenire con la medesima metodologia prevista per il rilevato AV, utilizzando quindi colonne di ghiaia.
- Per il dimensionamento delle colonne, si è ipotizzato che il piazzale venga realizzato praticamente
 contestualmente alla linea AV, e quindi abbia un decorso dei cedimenti nel tempo simile a quello della linea,
 vale a dire pressoché contemporanei all'applicazione dei carichi (di questo tema si tratterà anche
 successivamente in sed di commento dei cedimenti ottenuti).
- Si è quindi ipotizzato che, in fase di esercizio della linea, il capannone posto nel piazzale venga caricato con un carico nastriforme, della stessa larghezza del capannone, e pari a 60 kPa. Contestualmente, si è immaginato che il piazzale abbia un carico "operativo" uniformemente distribuito pari a 10 kPa, su tutta l'area.
- La spaziatura degli interventi è stata scelta sulla base dei seguenti criteri:
 - Il cedimento della struttura del capannone, in esercizio, deve essere inferiore ai 25 mm (1"), limite abitualmente di riferimento nella letteratura internazionale come cedimento assoluto ammissibile per strutture.
 - Il cedimento indotto sulla linea deve essere nei limiti di quanto previsto dal manuale di progettazione
 RFI:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric/AV Due Consorzio Iric/AV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica RIP Progetto IN17 12 EI2RBRI35C0001B 54 di 96

È stata quindi prevista la realizzazione di colonne in ghiaia D=800 mmm, L=5.5m ad interasse i=2.5m sotto il rilevato ferroviario e i=2.6 m sotto il piazzale FA07. Le verifiche SLE perciò riguardano:

- Cedimenti del rilevato AV, dopo il completamento della sede ferroviaria e dopo la costruzione del piazzale FA07;
- 2. Cedimenti del rilevato AV, dopo la costruzione del fabbricato e l'applicazione die carichi di esercizio. L'opera è stata schematizzata nei calcoli come un carico nastriforme di 60 kPa distribuito su una larghezza B=6.7m, su tutta l'area del piazzale è stato inoltre applicato un carico "di lavoro" di 10 kPa;
- 3. Cedimenti del fabbricato, ovvero verificare che il trattamento di soil improvement sotto il piazzale garantisca cedimenti ammissibili per l'opera.

Per quanto concerne la deformabilità del terreno trattato con colone di ghiaia, si può valutare un modulo equivalente dello strato trattato con colonne come media pesata fra l'area delle colonne ($A_C = \pi^* D^2 / 4 = 0.5 \text{ m}^2$) e quella del terreno naturale ($A_{Soil} = A_{TOT} - A_C = 6.25 - 0.5 = 5.75 \text{ m}^2$). Assumendo un modulo pari a E= 60 Mpa per la ghiaia, il modulo equivalente sarà dato da $E_{eq} = (0.5*60+5.75*E'_{OP}) / 6.25$.

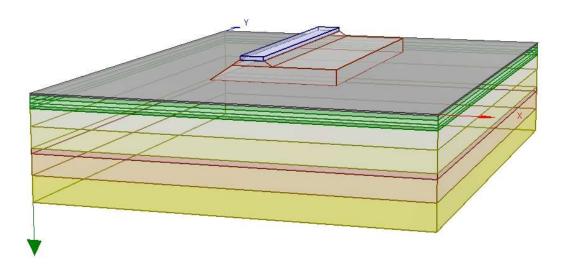
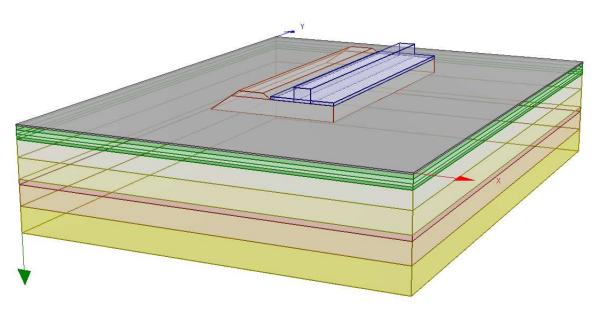

I valori ottenuti sono riportati in Tabella 11.

Tabella 11 – Moduli equivalenti del terreno trattato con colonne in ghiaia


Unità	da m pc	a m pc	E' _{OP} MPa	E _{eq i=2.5m} MPa	E _{eq i=2.6m} MPa
scotico	0	0.5	20	23.2	23
3b1	0.5	2	6	10.3	10
3b2	2	3.5	3.5	8.0	7.7
3a	3.5	4.5	15	18.6	18.3
3b3	4.5	5.5	6	10.3	10

Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2 (terreno trattato con colonne i=2.5 m) per le verifiche al punto 1. Per le verifiche ai punti 2 e 3, sono stati utilizzati i moduli riportati nell'ultima colonna di Tabella 11, corrispondenti al trattamento con colonne i=2.6 m.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	55 di 96

a) Completamento sede ferroviaria + piazzale A07

b) costruzione fabbricato del piazzale A07

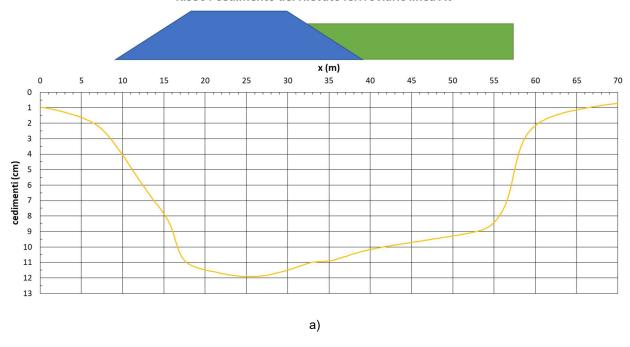
Figura 29 – Rilevato RI35C - Analisi SLE – Modello di calcolo

I risultati sono riportati nelle Figura 30, Figura 31 e Figura 32. In particolare:

- La Figura 30 riporta il valore del cedimento sotto tutta l'area interessata dal carico. Il cedimento calcolato in corrispondenza del centro del nuovo rilevato è di circa 12 cm (v. Figura 30a), quello indotto dal carico di esercizio, sempre sul rilevato della linea AV, (60 kPa +10 kPa distribuiti in esercizio) inferiore a 0.5 cm (v. Figura 30b).
- La Figura 31 riporta il valore del cedimento con la profondità, in asse rilevato
- Il cedimento del fabbricato, dovuto ai 60 kPa di carico di esercizio, alla quota delle fondazioni del fabbricato, è dell'ordine dei 25 mm. (Figura 32).

Considerando che i percorsi di drenaggio sono inferiori al metro, e che le colonne agiscono in pratica come dreni verticali di diametro 80 cm, se ne conclude che i cedimenti per consolidazione saranno praticamente contestuali all'applicazione del carico.

Si conclude che tali cedimenti si esauriranno praticamente all'atto dell'applicazione dei carichi, e quindi non risultano essere necessarie dettagliate analisi di consolidazione.


Il fatto che qualche livello argilloso venga portato nel ramo della NC potrà indurre cedimenti viscosi stimabili come una frazione del primario (10-20%) e quindi dell'ordine di 1-2 cm.

In ogni caso, anche in questo caso un gran parte di questo cedimento avverrà nella fase di maturazione del rilevato. Si considera quindi che il cedimento massimo in esercizio (dopo la posa in opera del ballast, per la vita utile dell'opera = 100 anni), sarà dell'ordine massimo del centimetro, e quindi largamente inferiore al limite tollerabile dei 5 cm.

La verifica SLE è quindi da considerarsi soddisfatta.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	57 di 96

Ri35c: Cedimento del rilevato ferrroviario linea AV

Ri35c: Cedimento in seguito alla costruzione del fabbricato

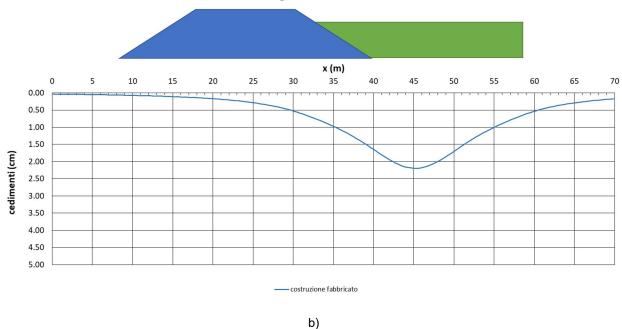


Figura 30 - Rilevato RI35C - Analisi SLE – Cedimenti

Ri35c : Cedimento al centro del rilevato ferrroviario

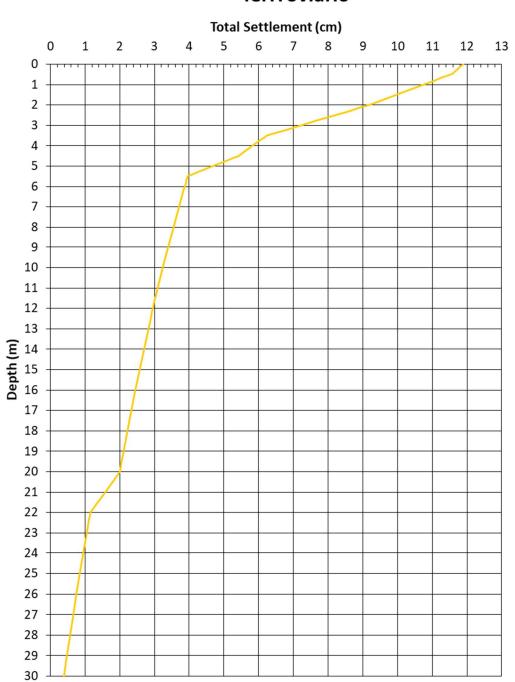


Figura 31 - Rilevato RI35C - Analisi SLE - Risultato cedimenti in profondità al centro del rilevato

CEDIMENTI DI FONDAZIONI SUPERFICIALI RETTANGOLARI. TERRENO STRATIFICATO

Lè la lunghezza della fondazione in m

B è la larghezza della fondazione in m

P è l'incremento di carico verticale in kPa

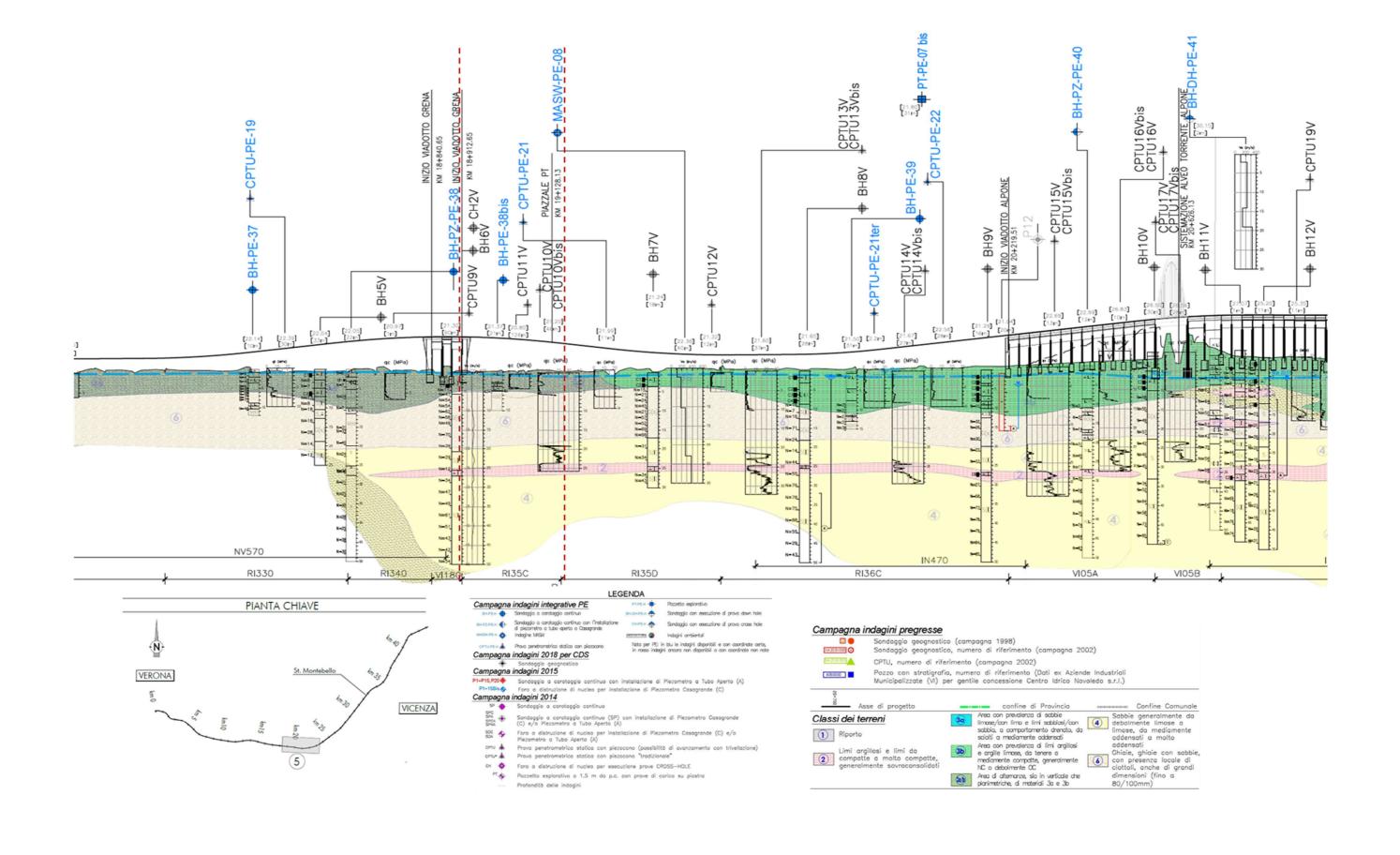
L/2= 335 P= 60 (kPa) B= 6.7 m
B/2= 3.35 L/B= 100
gamma 19 (kN/m3)
quota falda 6 (m) % del delta sigma inter. Calca 0.1

Terreno	da	а	Prof. media(m)	s	s'v0	Delta P	sigma' f	Delta/ s'v	E	Delta s
	(m)	(m)	(m)	(cm)	(kPa)	(kPa)	(kPa)	(-)	(MPa)	(cm)
rilevato	0	1.00	0.5	100	10	60	69	6.31	30	0.20
rilevato	1.00	2.00	1.5	100	29	58	87	2.04	30	0.19
rilevato	2.00	3.00	2.5	100	48	54	101	1.13	30	0.18
rilevato	3.00	4.00	3.5	100	67	48	115	0.73	30	0.16
rilevato	4.00	5.00	4.5	100	86	43	128	0.50	30	0.14
rilevato	5.00	6.00	5.5	100	105	38	142	0.36	30	0.13
scotico	6.00	6.50	6.25	50	116	35	151	0.30	23.0	0.08
3b1	6.50	8.00	7.25	150	125	31	157	0.25	10.0	0.47
3b2	8.00	9.50	8.75	150	139	27	166	0.19	7.7	0.52
3a	9.50	10.50	10	100	151	24	175	0.16	18.3	0.13
3b3	10.50	11.50	11	100	160	22	182	0.14	10.0	0.22
u6	11.50	12.50	12	100	169	20	189	0.12	90.00	0.02
u6	12.50	13.50	13	100	178	19	197	0.11	90.00	0.02
Ce dimento totale (cm)								2.46		

Figura 32 – Fabbricato FA07 - Risultato del calcolo dei cedimenti a quota imposta delle fondazioni del fabbricato

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	60 di 96

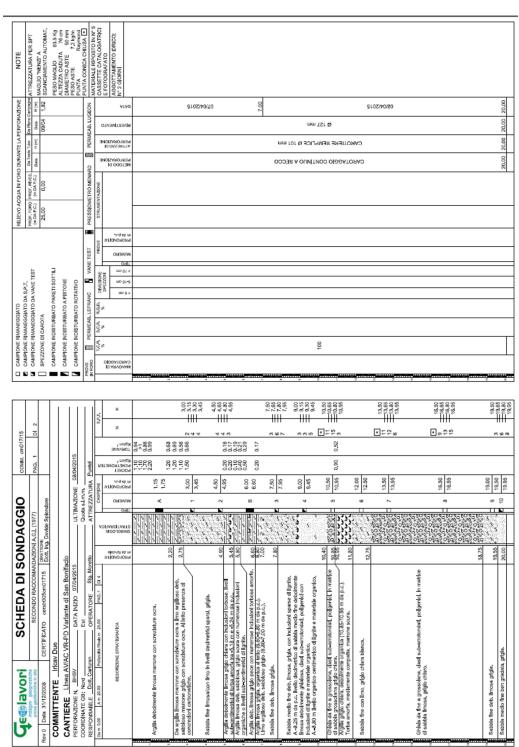
7 CONCLUSIONI E RACCOMANDAZIONI

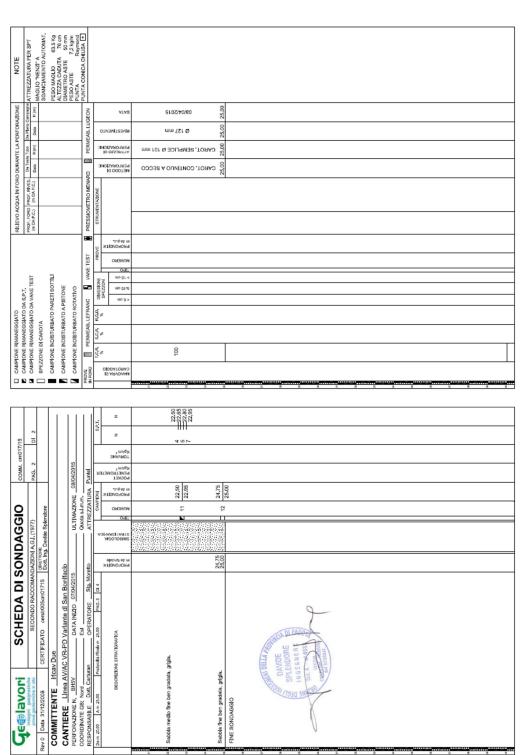

In conclusione, il rilevato oggetto di questa analisi risulta stabile e i cedimenti attesi sono limitati e non differiti nel tempo.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	61 di 96

ALLEGATI

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	62 di 96

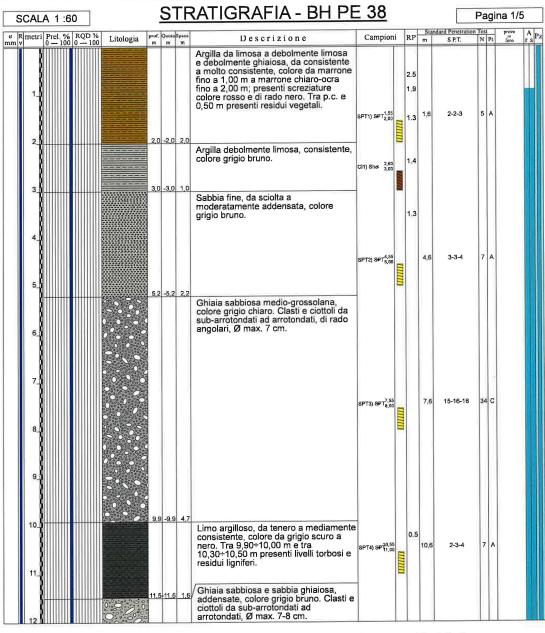

ALLEGATO 1 - PROFILO STRATIGRAFICO


GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	64 di 96

ALLEGATO 2 - SONDAGGI

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 65 di 96

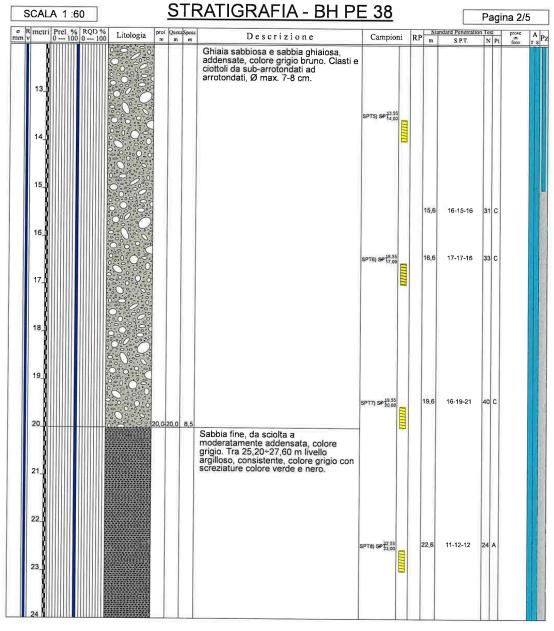
GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 66 di 96



GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	67 di 96

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Via Collemeroni, 3 - San Vittore del Lazio (FR)

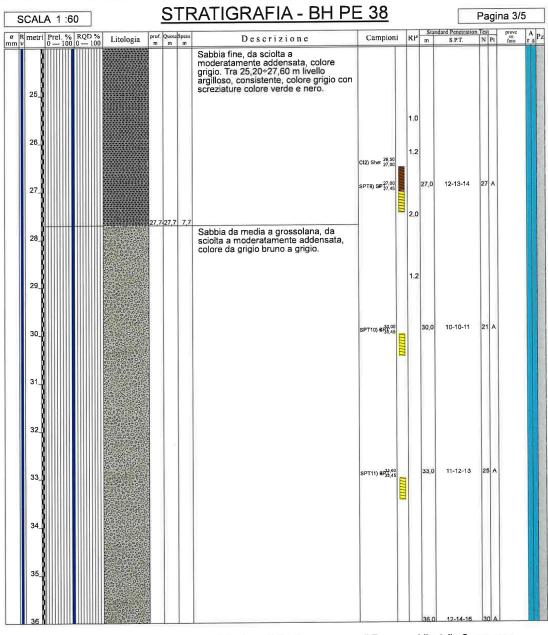
Certificato n° del	Acceptance note n° V5845 del 29/10/20	20
Committente: IricAV Due		Sondaggio: BH PE 38
Riferimento: Linea AV/AC V	erona-Padova 1° Lotto Verona-Bivio Vicenza	Data: 26/11/2020 - 29/11/2020
Coordinate:		Quota:
	ontinuo, sonda: NENZI, prog. 18+850	



GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	68 di 96

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@denserving it

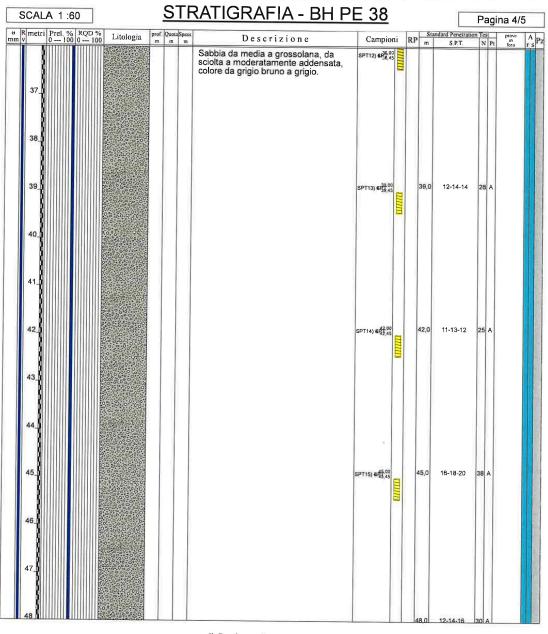
Certificato n° del Acceptance note n° V5845 del 29/10/2020								
Committente: IricAV Due		Sondaggio: BH PE 38						
Riferimento: Linea AV/AC V	Data: 26/11/2020 - 29/11/2020							
Coordinate:	Quota:							
Perforazione: Carotaggio co	ontinuo, sonda: NENZI, prog. 18+850	**						



GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI D FERROVIE DELLO S	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	69 di 96

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Certificato n° del	Acceptance note n° V5845 del 29/10/20	020
Committente: IricAV Due		Sondaggio: BH PE 38
	erona-Padova 1° Lotto Verona-Bivio Vicenza	Data: 26/11/2020 - 29/11/2020
Coordinate:	Quota:	
Perforazione: Carotaggio co	ontinuo, sonda: NENZI, prog. 18+850	



GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	70 di 96

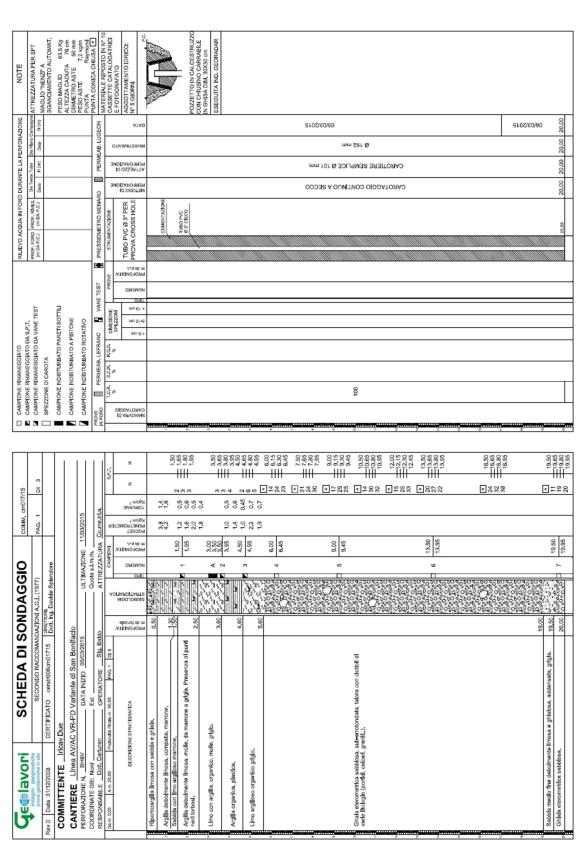
Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it

Certificato n° del	Acceptance note n° V5845 del 29/10/20	020
Committente: IricAV Due		Sondaggio: BH PE 38
Riferimento: Linea AV/AC V	Data: 26/11/2020 - 29/11/2020	
Coordinate:	Quota:	
Perforazione: Carotaggio co	ontinuo, sonda: NENZI, prog. 18+850	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica IN17 12 EI2RBRI35C0001B 71 di 96

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@yeoserving.it

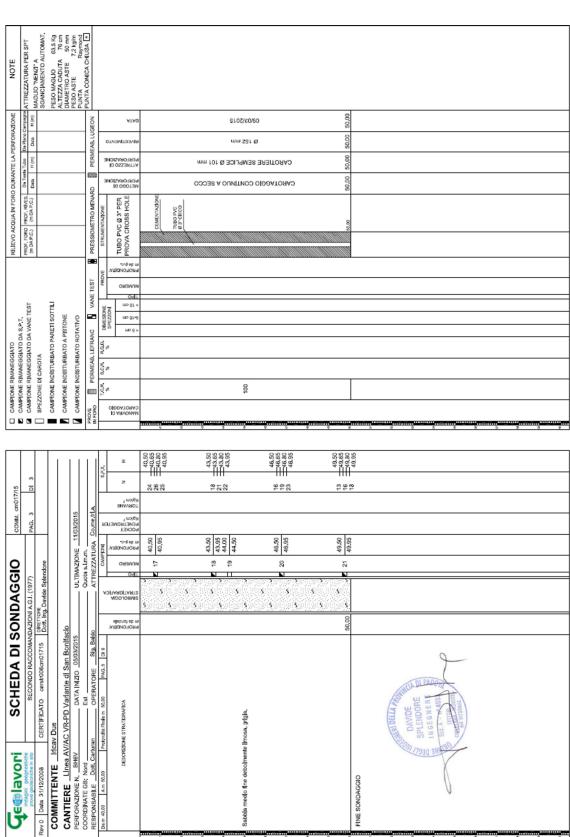
Certificato n° del	Certificato n° del Acceptance note n° V5845 del 29/10/2020							
Committente: IricAV Due		Sondaggio: BH PE 38						
	/erona-Padova 1° Lotto Verona-Bivio Vicenza	Data: 26/11/2020 - 29/11/2020						
Coordinate:	Quota:							
Perforazione: Carotaggio c	ontinuo, sonda: NENZI, prog. 18+850							


	SCAL	A 1:6	0			<u>S</u>	TF	RATIGRAFIA - BH P	E 38				Pá	agi	na 5/5	5
ø mm	R metri	Prel. % 0 100	RQD % 0 100	Litologia	prof.	Quota	Spess	Descrizione	Campioni	F	RP n	Standard Penetrati n S.P.T.		Pt	prove in foro	A r s
101	49 50				50.0	0.50,0	22,3	Sabbia da media a grossolana, da sciolta a moderatamente addensata, colore da grigio bruno a grigio.	SPT16) 6/45,45							

Utilizzato carotiere semplice.

Prelevati n. 2 campioni indisturbati.
Prelevati n. 16 campioni rimaneggiati S.P.T.

Eseguite n. 16 prove S.P.T.
Installato tubo piezometrico a tubo aperto da 2" fino a 15,00 m da p.c.
Installato pozzetto carrabile in pvc.
Approvvigionamento e trasporto di acqua necessaria per la perforazione.



GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	75 di 96

ALLEGATO 3 - TABULATI DI SLIDE- ANALISI SLU STATICA

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica RIPHODE RIPHOD

SLIDEINTERPRET 7,038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 25

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: ri35c_2.5stat43

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 17/03/2021, 17:14:01

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used Bishop simplified 50 Somplified 50 S

ri35c 2.5stat43.slim 17/03/2021. 17:14:01

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica RIA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 77 di 96

SLIDEINTERPRET 7.038

___ rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 25

Groundwater Analysis

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Auto Refine Search

Not Defined

Divisions along slope: 10
Circles per division: 10
Number of iterations: 10
Divisions to use in next iteration: 50%
Composite Surfaces: Disabled
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Mrea: Not Defined

Seismic

Minimum Weight:

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Permanent

Distributed Load 2

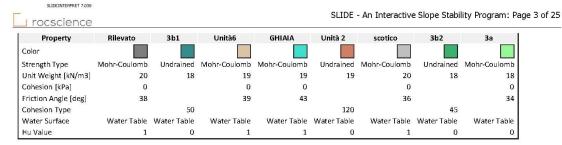
Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distributed Load 3

Distribution: Constant Magnitude [kPa]: 61.4


Orientation: Normal to boundary

Load Action: Variable

Material Properties

ri35c 2.5stat43.slim 17/03/2021. 17:14:01

Property	3b3	3b0
Color		
Strength Type	Undrained	Undrained
Unit Weight [kN/m3]	18	18
Cohesion Type	45	60
Water Surface	Water Table	Water Table
Hu Value	0	0

Global Minimums

Method: bishop simplified

FS	1.199190
Center:	52.643, 36.815
Radius:	18.318
Left Slip Surface Endpoint:	35.688, 29.882
Right Slip Surface Endpoint:	63.416, 22.000
Resisting Moment:	26655.5 kN-m
Driving Moment:	22228 kN-m
Total Slice Area:	177.807 m2
Surface Horizontal Width:	27.728 m
Surface Average Height:	6.41255 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1676 Number of Invalid Surfaces: 0

Slice Data

Global Minimum Query (bishop simplifi	ed) - Safety Factor: 1.19919	
•		·

ri35c 2.5stat43.slim 17/03/2021, 17:14:01

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 4 of 25

	science								_				
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.68686	10.2095	-65.1986	Rilevato	0	32.0066	7.16991	8.59809	13.7563	0	13.7563	29.2724	29.2724
2	0.68686	28.7433	-60.4577	Rilevato	0	32.0066	15.2759	18.3187	29.3085	0	29.3085	56.2621	56.2621
3	0.68686	44.1523	-56.3401	Rilevato	0	32.0066	44.3689	53.2068	85.1269	0	85.1269	151.756	151.756
4	0.68686	57.4146	-52.6314	Rilevato	0	32.0066	55.0949	66.0693	105.706	0	105.706	177.849	177.849
5	0.68686	69.061	-49.2165	Rilevato	0	32.0066	63.2938	75.9013	121.437	0	121.437	194.806	194.806
6	0.68686	79.4193	-46.0244	Rilevato	0	32.0066	71.0269	85.1747	136.273	0	136.273	209.887	209.887
7	0.68686	88.7095	-43.008	Rilevato	0	32.0066	54.8748	65.8053	105.284	0	105.284	156.469	156.469
8	0.68686	97.0875	-40.1336	Rilevato	0	32.0066	56.4057	67.6412	108.221	0	108.221	155.776	155.776
9	0.68686	104.669	-37.3765	Rilevato	0	32.0066	75.169	90.1419	144.221	0	144.221	201.643	201.643
10	0.280537	44.7834	-35.4858	scotico	0	30.1666	91.4559	109.673	188.689	0	188.689	253.89	253.89
11	0.442927	72.9212	-34.1103	scotico	0	30.1666	93.9309	112.641	195.268	1.4715	193.796	258.888	257.417
12	0.806764	138.872	-31.789	3b0	42.8571	0	35.7384	42.8571	244.218	0	244.218	266.367	266.367
13	0.748523	135.006	-28.9662	3b1	35.7143	0	29.782	35.7143	258.107	0	258.107	274.593	274.593
14	0.2	37.0973	-27.2762	GHIAIA	0	36.7234	125.913	150.994	214.82	12.4185	202.401	279.742	267.323
15	0.513935	96.7266	-26.0297	3b1	35.7143	0	29.782	35.7143	191.424	0	191.424	205.969	205.969
16	0.513935	98.9585	-24.2535	3b1	35.7143	0	29.782	35.7143	193.54	0	193.54	206.958	206.958
17	0.636065	125.293	-22.2967	3 b2	32.1429	0	26.8038	32.1429	198.644	0	198.644	209.635	209.635
18	0.636065	128.124	-20.1617	3b2	32.1429	0	26.8038	32.1429	191.595	0	191.595	201.437	201.437
19	0.2	41.1347	-18.7715	GHIAIA	0	36.7234	93.8967	112.6	173.778	22.8412	150.937	205.691	182.85
20	0.766667	158.616	-17.186	3b2	32.1429	0	26.8038	32.1429	198.605	0	198.605	206.895	206.895
21	0.766667	159.645	-14.6912	3b2	32.1429	0	26.8038	32.1429	201.209	0	201.209	208.237	208.237
22	0.766667	154.66	-12.2246	3 b2	32.1429	0	26.8038	32.1429	195.926	0	195.926	201.733	201.733
23	0.2	39.8604	-10.6793	GHIAIA	0	36.7234	94.6664	113.523	181.46	29.287	152.173	199.312	170.025
24	0.766667	147.291	-9.14643	3b2	32.1429	0	26.8038	32.1429	187.806	0	187.806	192.122	192.122
25	0.766667	140.926	-6.72443	3b2	32.1429	0	26.8038	32.1429	180.658	0	180.658	183.818	183.818
26	0.766667	134.108	-4.31447	3b2	32.1429	0	26.8038	32.1429	172.902	0	172.902	174.924	174.924
27	0.2	34.313	-2.79877	GHIAIA	0	36.7234	84.1501	100.912	167.454	32.1851	135.268	171.567	139.382
28	0.464635	76.6031	-1.75857	3b2	32.1429	0	26.8038	32.1429	164.045	0	164.045	164.868	164.868
29	0.659535	103.875	0	3b2	32.1429	0	26.8038	32.1429	157.497	0	157.497	157.497	157.497
30	0.587915	87.5975	1.95159	3b2	32.1429	0	26.8038	32.1429	149.91	0	149.91	148.996	148.996
31	0.587915	82.6743	3.79317	3b2	32.1429	0	26.8038	32.1429	142.399	0	142.399	140.622	140.622
32	0.2	27.4581	5.02871	GHIAIA	0	36.7234	69.4842	83.3248	143.401	31.7078	111.694	137.287	105.579
33	0.766667	97.7194	6.54971	3b2	32.1429	0	26.8038	32.1429	130.536	0	130.536	127.458	127.458
34	0.766667	88.436	8.97068	3b2	32.1429	0	26.8038	32.1429	119.58	0	119.58	115.349	115.349
35	0.766667	78.6925	11.408	3b2	32.1429	0	26.8038	32.1429	108.048	0	108.048	102.639	102.639
36	0.700007	19.2872	12.9522	GHIAIA	0	36.7234	49.8028	59.723	107.884	27.8275	80.0565	96.4299	68.6024
37	0.575	52.6531	14.2008	3b2	32.1429	0.7234	26.8038	32.1429	98.3498	0	98.3498	91.567	91.567
38	0.575	51.0433	16.0643	3b2	32.1429	0	26.8038	32.1429	96.4852	0	96.4852	88.7667	88.7667
39	0.575	49.2227	17.9455	3b2	32.1429	0	26.8038	32.1429	94.2809	0	94.2809	85.6	85.6
40	0.575	46.8382	19.8469	3b2	32.1429	0	26.8038	32.1429	91.1273	0	91.1273	81.4525	81.4525
	0.575												56.074
41	0.560935	15.2783 37.7322	21.1384	GHIAIA	0 32.1429	36.7234 0	45.9308 26.8038	55.0798 32.1429	94.1405	20.3079 0	73.8326 78.321	76.3819 67.3607	
42			22.4228	3b2					78.321			67.2607	67.2607
43	0.579688	32.0061	24.3672	3b1	35.7143	0	29.782	35.7143	68.6943	0	68.6943	55.2052	55.2052
44	0.579688	24.6538	26.3745	3b1	35.7143		29.782	35.7143	57.289		57.289	42.5215	42.5215
45	0.579688	17.035	28.4174	3b1	35.7143	0	29.782	35.7143	45.4925	0	45.4925	29.3778	29.3778
46	0.2	4.15828	29.8088	GHIAIA	0	36.7234	11.7579	14.1	27.524	8.62346	18.9006	20.7878	12.1643
47	0.037327	0.716521	30.2368	3b1	35.7143	0	29.782	35.7143	36.5456	0	36.5456	19.1864	19.1864
48	0.806764	11.6981	31.789	3b0	42.8571	0	35.7384	42.8571	36.6372	0	36.6372	14.488	14.488
49	0.442927	3.10049	34.1103	scotico	0	30.1666	3.98814	4.78254	9.69975	1.4715	8.22825	6.99853	5.52703
50	0.280537	0.561074	35.4858	scotico	0	30.1666	1.48077	1.77573	3.05509	0	3.05509	1.99942	1.99942

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor:	1.19919
	2
1	

ri35c 2.5stat43.slim 17/03/2021.17:14:01

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 5 of 25

rocs	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	35.6877	29.8817	0	0	0
2	36.3746	28.3953	15.5254	0	0
3	37.0614	27.1834	40.5587	0	0
4	37.7483	26.1519	97.9054	0	0
5	38.4351	25.2525	155.155	0	0
6	39.122	24.4563	208.392	0	0
7	39.8088	23.7445	256.642	0	0
8	40.4957	23.1038	286.425	0	0
9	41.1826	22.5247	310.372	0	0
10	41.8694	22	334.441	0	0
11	42.15	21.8	346.536	0	0
12	42.5929	21.5	363.535	0	0
13	43.3997	21	456.827	0	0
14	44.1482	20.5857	541.489	0	0
15	44.3482	20.4825	538.473	0	0
16	44.8621	20.2315	571.221	0	0
17	45.376	20	600.737	0	0
18	46.0121	19.7392	635.509	0	0
19	46.6482	19.5056	663.215	0	0
20	46.8482	19.4377	656.259	0	0
21	47.6148	19.2005	682.813	0	0
22	48.3815	18.9995	702.718	0	0
23	49.1482	18.8334	714.724	0	0
24	49.3482	18.7957	702.645	0	0
25	50.1148	18.6723	705.289	0	0
26	50.8815	18.5819	701.081	0	0
27	51.6482	18.524	690.543	0	0
28	51.8482	18.5143	675.359	0	0
29	52.3128	18.5	665.252	0	0
30	52.9723	18.5	647.584	0	0
31	53.5603	18.52	628.831	0	0
32	54.1482	18.559	607.53	0	0
33	54.3482	18.5766	591.117	0	0
34	55.1148	18.6646	559.089	0	0
35	55.8815	18.7857	524.078	0	0
36	56.6482	18.9404	486.824	0	0
37	56.8482	18.9864	471.907	0	0
38	57.4232	19.1319	442.193	0	0
39	57.9982	19.2974	410.813	0	0
40	58.5732	19.4837	377.852	0	0
41	59.1482	19.6912	343.535	0	0
42	59.3482	19.7685	327.074	0	0
43	59.9091	20	293.919	0	0
44	60.4888	20.2626	258.627	0	0
45	61.0685	20.55	224.905	0	0
46	61.6482	20.8637	193.381	0	0
47	61.8482	20.9782	187.877	0	0
48	61.8855	21	185.971	0	0
49	62.6923	21.5	138.835	0	0
50	63.1352	21.8	134.16	0	0
51	63.4157	22	0	0	0

List Of Coordinates

Water Table

X Y
-1 21.8
83 21.8

Distributed Load

ri35c 2.5stat43.slim 17/03/2021. 17:14:01

GENERAL CONTRACTOR Consorzio IricAY Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	81 di 96

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 25

X Y 45.9347 29.8817 44.3698 29.8817 41.5698 29.8817 39.9198 29.8817 37.1198 29.8817 35.5548 29.8817

Distributed Load

Distributed Load

Х	Y
44.3698	29.8817
41.5698	29.8817

External Boundary

х	Υ
33.6548	29.8817
24.6593	23.8817
22.5694	23.8817
19.7482	22
19.3482	22
19.1482	22
16.8482	22
16.6482	22
0	22
0	21
0	20
0	18.5
0	17.5
0	16.5
0	2
0	0
81.7414	0
81.7414	2
81.7414	16.5
81.7414	17.5
81.7414	18.5
81.7414	20
81.7414	21
81.7414	21.5
81.7414	22
64.3482	22
64.1482	22
61.8482	22
61./414	22
58.9202	23.8817
56.8302	23.8817
47.8347	29.8817
45.9347	29.8817
	29.8817
41.5698	29.8817
39.9198	29.8817
37.1198	29.8817
35.5548	29.8817

Material Boundary

х	Υ
0	2
81.7414	2

ri35c 2.5stat43.slim 17/03/2021. 17:14:01

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio			
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	82 di 96			

ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU SISMICA

SLIDEINTERPRET 7,038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 25

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: ri35c_2.5sism43

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 17/03/2021, 17:14:01

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_SISMA+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used
Bishop simplified

Number of slices: 50
Tolerance: 0.005
Maximum number of iterations: 75
Check malpha < 0.2: Yes
Create Interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1
Steffensen Iteration: Yes

ri35c 2.5sism43.slim 17/03/2021. 17:14:01

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica IN17 12 EI2RBRI35C0001B 84 di 96

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 25

Groundwater Analysis

Groundwater Method: Water Surfaces Pore Fluid Unit Weight [kN/m3]: 9.81 Use negative pore pressure cutoff: Yes

Maximum negative pore pressure [kPa]: 0 Advanced Groundwater Method: None

Random Numbers

10116 Pseudo-random Seed:

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 10 Circles per division: 10 Number of iterations: 10 Divisions to use in next iteration: 50% Composite Surfaces: Disabled Not Defined Minimum Elevation: Minimum Depth [m]: 4

Minimum Area: Not Defined

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.084 Seismic Load Coefficient (Vertical):

3 Distributed Loads present

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

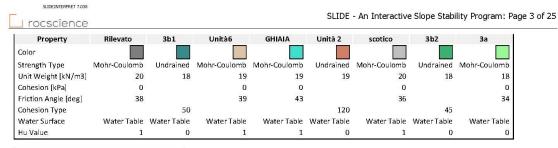
Distributed Load 2

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary Load Action:

Distributed Load 3

Distribution: Constant Magnitude [kPa]: 12.3


Orientation: Normal to boundary

Load Action: Live

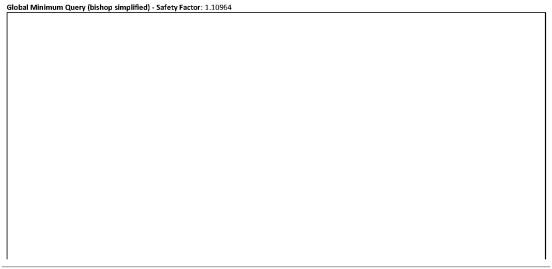
Material Properties

ri35c 2.5sism43.slim 17/03/2021, 17:14:01

Property	3b3	3b0
Color		
Strength Type	Undrained	Undrained
Unit Weight [kN/m3]	18	18
Cohesion Type	45	60
Water Surface	Water Table	Water Table
Hu Value	0	0

Global Minimums

Method: bishop simplified


FS	1.109640
Center:	52.640, 36.817
Radius:	18.322
Left Slip Surface Endpoint:	35.682, 29.882
Right Slip Surface Endpoint:	63.418, 22.000
Resisting Moment:	23051.6 kN-m
Driving Moment:	20774 kN-m
Total Slice Area:	177.91 m2
Surface Horizontal Width:	27.7363 m
Surface Average Height:	6.41434 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 1668 Number of Invalid Surfaces: 0

Slice Data

ri35c 2.5sism43.slim 17/03/2021. 17:14:01

SLIDEINTERPRET 7.038

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.686782	10.207	-65.1982	Rilevato	0	32.0066	7.27014	8.06724	12.907	0	12.907	28.6397	28.639
2	0.686782	28.7368	-60.4589	Rilevato	0	32.0066	15.3927	17.0804	27.3274	0	27.3274	54.4885	54.488.
3	0.686782	44.1434	-56.3425	Rilevato	0	32.0066	26.585	29.4998	47.1975	0	47.1975	87.1241	87.124
4	0.686782	57.4041	-52.6348	Rilevato	0	32.0066	34.613	38.408	61.4499	0	61.4499	106.779	106.77
5	0.686782	69.0494	-49.2208	Rilevato	0	32.0066	41.9203	46.5164	74.4228	0	74.4228	123.024	123.02
6	0.686782	79.4071	-46.0296	Rilevato	0	32.0066	48.8886	54.2487	86.7939	0	86.7939	137.472	137.47
7	0.686782	88.697	-43.0139	Rilevato	0	32.0066	51.779	57.456	91.9255	0	91.9255	140.234	140.23
8	0.686782	97.075	-40.1403	Rilevato	0	32.0066	57.212	63.4847	101.571	0	101.571	149.817	149.81
9	0.686782	104.657	-37.3838	Rilevato	0	32.0066	65.2258	72.3772	115.799	0	115.799	165.639	165.63
10	0.280455	44.7704	-35.4937	scotico	0	30.1666	68.5047	76.0156	130.783	0	130.783	179.636	179.63
11	0.442/86	/2.898	-34.118/	scotico	Ü	30.1666	/0./304	/8.4853	136.504	1.4/15	135.032	184.426	182.95
12	0.806462	138.82	-31.7986	3b0	42.8571	0	38.6225	42.8571	167.662	0	167.662	191.608	191.60
13	0.75582	136.35	-28.9639	3b1	35.7143	0	32.1855	35.7143	181.711	0	181.711	199.525	199.52
14	0.2	37.1124	-27.2612	GHIAIA	0	36.7234	95.8788	106.391	155.07	12.4574	142.612	204.474	192.0
15	0.509743	95.964	-26.0225	3b1	35.7143	0	32.1855	35.7143	179.561	0	179.561	195.275	195.2
16	0.509743	98.1598	-24.2612	3b1	35.7143	0	32.1855	35.7143	184.374	0	184.374	198.88	198
17	0.640257	126.13	-22.3048	3b2	32.1429	0	28.967	32.1429	189.596	0	189.596	201.479	201.4
18	0.640257	128.997	-20.1562	3b2	32.1429	0	28.967	32.1429	182.385	0	182.385	193.017	193.0
19	0.2	41.1471	-18.7594	GHIAIA	0	36.7234	95.358	105.813	164.711	22.8733	141.838	197.098	174.2
20	0.766667	158.66	-17.1744	3b2	32.1429	0	28.967	32.1429	189.305	0	189.305	198.257	198.2
21	0.766667	159.686	-14.6803	3b2	32.1429	0	28.967	32.1429	191.951	0	191.951	199.54	199.
22	0.766667	154.699	-12.2143	3b2	32.1429	0	28.967	32.1429	187.037	0	187.037	193.307	193.3
23	0.700007	39.8709	-10.6695	GHIAIA	0	36.7234	96.4709	107.048	172.808	29.3141	143.494	190.984	161.6
24	0.766667	147.328	-9.13704	3b2	32.1429	0	28.967	32.1429	179.438	23.3141	179.438	184.097	184.0
25	0.766667	140.961	-6.71566	3b2	32.1429	0	28.967	32.1429	172.73	0	172.73	176.141	176.1
26	0.766667	134.141	-4.3063	3b2	32.1429	0	28.967	32.1429	165.438	0	165.438	167.619	167.6
27	0.700007	34.322	-2.79097	GHIAIA	0	36.7234	86.0541	95.4891	160.208	32.2084	127.999	164.403	132.1
28	0.354657	58.7391	-1.92301	3b2	32.1429	0	28.967	32.1429	157.694	0	157.694	158.666	158.6
29	0.874922	137.825	0	3b2	32.1429	0	28.967	32.1429	150.912	0	150.912	150.912	150.9
30	0.574322	79.1774	2.20565	3b2	32.1429	0	28.967	32.1429	142.839	0	142.839	141.723	141.7
31	0.535211	75.0819	3.88196	3 b 2	32.1429	0	28.967	32.1429	136.358	0	136.358	134.393	134.3
32	0.333211	27.466		GHIAIA	0	36.7234	71.3436	79.1657	137.847	31.7281	106.118		99.83
33	0.766667	97.7473	5.0347 6.55537	3b2	32.1429	0.7234	28.967	32.1429	125.47	0	125.47	131.561 122.141	122.1
34	0.766667	88.4628	8.97581	3 b 2	32.1429	0	28.967	32.1429	115.115	0	115.115	110.54	110.
							28.967			0			
35 36	0.766667 0.2	78.7185 19.2942	11.4125 12.9565	3b2 GHIAIA	32.1429 0	0 36.7234	51.3553	32.1429 56.9859	104.211	27.8455	104.211 76.3875	98.3632	98.36 64.57
37	0.575	52.6719	14.2048	3b2	32.1429	30.7234	28.967	32.1429	104.233 95.0874	27.6433	95.0874	92.4178 87.7551	87.75
						0				0			
38	0.575	51.0616	16.0679	3 b 2	32.1429		28.967	32.1429	93.4155		93.4155	85.0722	85.07
39	0.575	49.2406	17.9487	3b2	32.1429	0	28.967 28.967	32.1429	91.4214	0	91.4214	82.0382	82.03
40	0.575	46.8558	19.8497	3b2	32.1429	0		32.1429	88.5216		88.5216	78.0645	78.06
41	0.2	15.2846	21.1409	GHIAIA	0	36.7234	48.0466	53.3144	91.7904	20.3244	71.466	73.2113	52.88
42	0.564749	37.9829	22.4315	3b2	32.1429	0	28.967	32.1429	76.3881	0	76.3881	64.4302	64.43
43	0.578417	31.9135	24.3799	3b1	35.7143	0	32.1855	35.7143	67.4412	0	67.4412	52.8548	52.85
44	0.578417	24.5922	26.3825	3b1	35.7143	0	32.1855	35.7143	56.6937	0	56.6937	40.7289	40.72
45	0.578417	17.006	28.4205	3b1	35.7143	0	32.1855	35.7143	45.5816	0	45.5816	28.1641	28.16
46	0.2	4.16435	29.8093	GHIAIA	0	36.7234	12.3644	13.72	27.0302	8.63913	18.3911	19.9464	11.30
	0.0400563	0.769489	30.2423	3b1	35.7143	0	32.1855	35.7143	37.1653	0	37.1653	18.4011	18.40
48	0.806462	11.6937	31.7986	3b0	42.8571	0	38.6225	42.8571	37.8339	0	37.8339	13.8883	13.88
49	0.442786 0.280455	3.0995 0.560911	34.1187 35.4937	scotico scotico	0		4.24995 1.60192	4.71591 1.77755	9.58512 3.05823	1.4715 0	8.11362 3.05823	6.70567 1.91586	5.234 1.915

Interslice Data

Global Milnimu	Global Minimum Query (bisnop simplified) - Safety Factor: 1.10964				
l					

ri35c 2.5sism43.slim 17/03/2021, 17:14:01

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 5 of 25

SLI	IDEINTERPRET 7.038				
rocs	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	35.6816	29.8817	0	0	0
2	36.3684	28.3955	15.0475	0	0
3	37.0552	27.1837	40.008	0	0
4	37.742	26.1522	74.1415	0	0
5	38.4287	25.2528	110.463	0	0
6	39.1155	24.4566	146.734	0	0
7	39.8023	23.7447	181.623	0	0
8	40.4891	23.1039	212.417	0	0
9	41.1759	22.5248	240.109	0	0
10	41.8627	22	264.878	0	0
11	42.1431	21.8	275.585	0	0
12	42.5859	21.5	291.345	0	0
13	43.3924	21	355.692	0	0
14	44.1482	20.5817	418.838	0	0
15	44.3482	20.4786	418.763	0	0
16	44.8579	20.2297	455.107	0	0
17	45.3677	20	489.306	0	0
18	46.0079	19.7373	531.155	0	0
19	46.6482	19.5023	566.309	0	0
20	46.8482	19.4344	561.884	0	0
21	47.6148	19.1975	597.862	0	0
22	48.3815	18.9966	627.623	0	0
23	49.1482	18.8307	649.453	0	0
24	49.3482	18.793	640.022	0	0
25	50.1148	18.6697	652.318	0	0
26	50.8815	18.5794	657.547	0	0
27	51.6482	18.5217	656.16	0	0
28	51.8482	18.5119	643.396	0	0
29	52.2028	18.5	639.936	0	0
30	53.0778	18.5	626.172	0	0
31	53.613	18.5206	614.377	0	0
32	54.1482	18.5569	600.23	0	0
33	54.3482	18.5746	585.842	0	0
34	55.1148	18.6627	560.793	0	0
35	55.8815	18.7837	532.079	0	0
36	56.6482	18.9385	500.358	0	0
37	56.8482	18.9845	486.912	0	0
38	57.4232	19.1301	460.843	0	0
39	57.9982	19.2957	433.007	0	0
40	58.5732	19.4819	403.461	0	0
41	59.1482	19.6895	372.368	0	0
42	59.3482	19.7669	356.945	0	0
43	59.9129	20	325.969	0	0
44	60.4913	20.2621	292.357	0	0
45	61.0698	20.549	259.542	0	0
46	61.6482	20.8621	228.088	0	0
47	61.8482	20.9766	222.868	0	0
48	61.8882	21	220.776	0	0
49	62.6947	21.5	171.697	0	0
50	63.1375	21.8	167.2	0	0
51	63.4179	22	0	0	0

List Of Coordinates

Water Table

X Y -1 21.8 83 21.8

Distributed Load

ri35c 2.5sism43.slim 17/03/2021. 17:14:01

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	88 di 96	

ALLEGATO 5- TABULATI DI SETTLE 3D – ANALISI SLE

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric/AV Due Consorzio Iric/AV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 89 di 96

Page 1 of 4

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri35c_2.6m_fabbricato.s3z Project Title: Rilevato Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq

Stage Settings

Stage #	Name
1	Stage 1
2	Stage 2
3	Stage 3

Results

Time taken to compute: 10.4833 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.107981
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.107981
Loading Stress [kPa]	0.01644	189.425
Total Stress [kPa]	0.01644	797.032
Total Strain	7.23554e-007	0.0200888
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.516642	796.854
Over-consolidation Ratio	1	11.9248
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Stage: Stage 2

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.116847
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.116847
Loading Stress [kPa]	0.0164403	189.38
Total Stress [kPa]	0.0164403	828.427
Total Strain	7.23565e-007	0.0200884
Degree of Consolidation [%]	0	0

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica RIPTO Lotto Codifica Foglio IN17 12 EI2RBRI35C0001B 90 di 96

Page 2 of 4

Pre-consolidation Stress [kPa]	0.516642	828.253
Over-consolidation Ratio	1	11.9248
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Stage: Stage 3

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.120397
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.120397
Loading Stress [kPa]	0.189335	189.38
Total Stress [kPa]	0.189335	834.84
Total Strain	1.08287e-005	0.0201532
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.74906	834.668
Over-consolidation Ratio	1	11.58
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 25 m Width: 100 m

Rotation angle: 0 degrees Load Type: Flexible Area of Load: 2500 m²

Load: 10 kPa Depth: -6 m

Installation Stage: Stage 3

Coordinates

X [m]	Y [m]
12.5	-50
37.5	-50
37.5	50
12.5	50

2. Rectangular Load

Length: 6.7 m Width: 100 m

Rotation angle: 0 degrees Load Type: Flexible Area of Load: 670 m² Load: 50 kPa Depth: -6 m Installation Stage: Stage 3

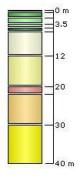
Coordinates

X [m]	Y [m]
21.8471	-50

Page 3 of 4

28.5471 -50 28.5471 50 21.8471 50

Embankments


1. Embankment

Center Line: (0, -50) to (0, 50) Number of Layers: 2 Near End Angle: 90 degrees Far End Angle: 90 degrees Base Width: 25

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	34	6	20	90	0
2	Stage 1	0	34	2.1	20	34	0


Soil Layers

Layer#	Type	Thickness [m]	Depth [m]
1	scotico	0.5	0
2	3b1-t	1.5	0.5
3	3b2-t	1.5	2
4	3a-tratt	1	3.5
5	3b3-t	1	4.5
6	u6	6.5	5.5
7	u6-2	8	12
8	u2	2	20
9	u4-1	8	22
10	u4-2	10	30

Soil Properties

Property	3a-tratt	u6	u2	u4-1	u4-2	3b1-t	3b2-t	3b3-t	scotico	u6-2
----------	----------	----	----	------	------	-------	-------	-------	---------	------

Query Points

Point #	(X,Y) Location	Number of Divisions
1	0.00303833, 4.9738e-014	Auto: 85

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-20, 0	50, 0	200	Auto: 65

Page 1 of 3

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri35c_2.5m_piazzale Project Title: Rilevato Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq

Stage Settings

Stage #	Name
1	Stage 1
2	Stage 2

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.110305
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.110305
Loading Stress [kPa]	0.01644	192.987
Total Stress [kPa]	0.01644	798.6
Total Strain	9.19234e-007	0.0200578
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.521326	798.422
Over-consolidation Ratio	1	11.9138
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Stage: Stage 2

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.119157
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.119157
Loading Stress [kPa]	0.0164403	192.942
Total Stress [kPa]	0.0164403	829.89
Total Strain	9.19245e-007	0.0199744
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	0.521326	829.717

Ri35c 2.5m piazzale.s3z 08/06/2021.14:59:10

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario dal km 18+812,65 al km 19+150,00 Relazione Geotecnica IN17 EI2RBRI35C0001B

Page 2 of 3

94 di 96

12

Over-consolidation Ratio	1	11.9139
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 9.3 m Width: 100 m

Rotation angle: 0 degrees Load Type: Flexible Area of Load: 930 m² Load: 14.4 kPa Depth: -8.1 m Installation Stage: Stage 1

Coordinates

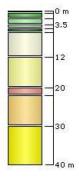
X [m]	Y [m]
-0.260852	-50
9.03915	-50
9.03915	50
-0.260852	50

Embankments

1. Embankment

Center Line: (0, -50) to (0, 50) Number of Layers: 2 Near End Angle: 90 degrees Far End Angle: 90 degrees Base Width: 25

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	34	6	20	90	0
2	Stage 1	0	34	2.1	20	34	0


Soil Layers

Layer#	Туре	Thickness [m]	Depth [m]
1	scotico	0.5	0
2	3b1-t	1.5	0.5
3	3b2-t	1.5	2
4	3a-tratt	1	3.5
5	3b3-t	1	4.5
6	u6	6.5	5.5
7	u6-2	8	12
8	u2	2	20

Ri35c 2.5m piazzale.s3z 08/06/2021.14:59:10

Soil Properties

Property	3a-tratt	u6	u2	u4-1	u4-2	3b1-t	3b2-t	3b3-t	scotico	u6-2
Color										
Unit Weight [kN/m ³]	18	19	19	19	19	18	18	18	20	19
Immediate Settlement	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Es [kPa]	18600	90000	25000	100000	200000	10300	8000	10300	23200	100000
Esur [kPa]	18600	90000	25000	100000	200000	10300	8000	10300	23200	100000

Query Points

Point #	(X,Y) Location	Number of Divisions
1	4.38915, 4.9738e-014	Auto: 85

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-20, 0	50, 0	200	Auto: 65

Ri35c 2.5m piazzale.s3z 08/06/2021.14:59:10

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario dal km 18+812,65 al km 19+150,00	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI35C0001B	96 di 96		

ALLEGATO 6- VERSIONI SOFTWARE DI CALCOLO UTILIZZATI

- 1) SLIDE ver 7.0
- 2) Settle 3D ver 2.003