COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE **OBIETTIVO N. 443/01**

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza **PROGETTO ESECUTIVO**

RILEVATI

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 **GENERALE**

Relazione Geotecnica

GENERAL CONTRACTOR

	GENERAL CO	ONTRACTOR				DIRETTORE LA	VORI	
	OGETTISTA INTEGRATORE	Consorz	io					SCALA
BOOK	MALAVENDA	Iricav	Due					-
/ TSC DOM	allogine degli per di Venezia n. 4289	Ing. Park	Carmon	g .				
122	Dicembre 2021	(Y	Vous					
		ASE ENTE	tembre 20 TIPO D		a: A/DISCIPLINA	A PROGR.	REV.	FOGLIO
COIVI	VILSSA LOTTO T	ASL LIVIL	111 0 0	OC. OILK	Ay DISCII LII VA	r rook.	KLV.	1 OOLIO
I N	1 7 1 2	E I 2	R	B R I	3 6 D	0 0 0	1 B	P
							/ISTO CONSC	DRZIO IRICAV DUE
						Firma		Data
	=				Lu	ica RANDOLFI		
	Ir	ICAV2			Dice			Dicembre 2021
		ICAVZ						
Proge	ttazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
		G.Pepe		V. Pastore		P. Ascari		P. Ascari
Α	EMISSIONE	Golick Type	Ottobre 2021		Ottobre 2021	D . 1 .	Ottobre 2021	1427
		Set ick ye		Villersiafistes		Porls Atraci		2000
_		G.Pepe	Dicembre	V. Pastore	Dicembre	P. Ascari	Dicembre	A STATE OF THE STA
В	REVISIONE	Sofrick Tye	2021	Viliziafille	2021	Porls Hali	2021	Data: Dicembre 2021
CIG. 8	3377957CD1	CL	JP: J41E	91000000	009	Fi	ile: IN1712	EI2RBRI36D0001B

Progetto cofinanziato dalla Unione Europea Cod. origine:

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI36D0001B
 2 di 87

INDICE

1	INTRO	DDUZIONE	4
2	DOCL	JMENTI DI RIFERIMENTO	5
2.	1 [Documentazione di progetto	5
2.2		Normativa e standard di riferimento	
2.3		Bibliografia	
		ADRAMENTO DELL'OPERA	
3.	1 (Geometria del rilevato	7
		TTERIZZAZIONE GEOTECNICA	
4.		ndagini disponibili	
4.2		nguadramento stratigrafico	
4.3		_ivello di falda	
4.4		Condizioni geotecniche del sito	
4.		Sintesi del modello geotecnico di riferimento	
4.6		Materiale da rilevato	
		TTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	
5.	1 5	Sollecitazione sismica di progetto	23
	5.1.1	Vita Nominale	23
	5.1.2	Classe d'uso	23
	5.1.3	Periodo di riferimento per l'azione sismica	24
	5.1.4	Categorie di Sottosuolo	24
	5.1.5	Condizioni topografiche	24
	5.1.6	Accelerazione sismica di riferimento	25
5.2	2 5	Suscettibilità alla liquefazione	25
	5.2.1	CRR da correlazione su prove CPT	27
	5.2.2	CRR da correlazione su prove SPT	29
	5.2.3	Commento ai risultati	32
6	VERIF	FICA GEOTECNICA DEL RILEVATO	42
6.	1 (Criteri di verifica agli Stati Limite	42
	6.1.1	Stati limite ultimi (SLU)	42
	6.1.2	Stati limite di esercizio (SLE)	44
	6.1.3	Verifiche in condizioni sismiche	44
6.2	2 <i>A</i>	Azioni di progetto	44
	6.2.1	Azioni permanenti	45
	6.2.2	Azioni variabili	45

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI36D0001B
 3 di 87

6.2.3 Azione sismica	45
6.3 Verifiche e risultati SLU	46
6.3.1 Premessa	46
6.3.2 Verifiche SLU in condizione statiche	46
6.3.3 Verifiche SLU in condizioni sismiche	47
6.4 Verifica e risultati SLE	49
7 CONCLUSIONI E RACCOMANDAZIONI	54
Allegati	55
ALLEGATO 1 - PROFILO STRATIGRAFICO	56
ALLEGATO 2 - SONDAGGI	58
ALLEGATO 3 - TABULATI DI SLIDE – ANALISI SLU STATICA	63
ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU post sisma	73
ALLEGATO 5 - TABULATI DI SETTLE 3D – ANALISI SLE	
ALLEGATO 6 - Versioni dei software utilizzati	87

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Piloveto forroviario AV da pk 21±001 51 a pk 22±748 51	Progetto	Lotto	Codifica	Foglio

IN17

12

EI2RBRI36D0001B

4 di 87

1 INTRODUZIONE

Relazione Geotecnica

Il presente documento costituisce la Relazione Geotecnica del rilevato RI36D, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato si estende tra il km 21+991,51 e il km 22+748,51.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato, ricavato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta.

Le verifiche discusse sono state eseguite ai sensi della Normativa vigente (v. capitolo seguente) e gli interventi proposti sono volti a garantire la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	5 di 87		

2 **DOCUMENTI DI RIFERIMENTO**

Documentazione di progetto

- Sezioni di Progetto Esecutivo [1]
- IN1710EI2RBGE0000003C Relazione Geotecnica (da 21+991 a 33+500) [2]
- [3] IN1710EI2LZGE0000017B Planimetria con ubicazione indagini e profilo geotecnico
- [4] IN1710EI2RHGE0000006B Relazione sulla modellazione sismica del sito e pericolosità sismica di base 2/2
- [5] IN1710EI2RHGE0000003C Relazione idrogeologica 1/2
- IN1710El2RHGE0000007A-8B Relazione di sintesi dei sondaggi e delle prove eseguite
- IN1710EI2PRGE0000001A-2A, Risultati Indagini in sito di Progetto SOCOTEC [7]
- IN1710El2PRGE0000003A-4A, Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING [8] **GEOLAVORI**
- IN1710EI2PRGE0000005A-8A, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC
- [10] IN1710EI2PRGE0000009A-12A, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING - GEOLAVORI
- [11] IN1710El2IGGE0000001A-2A, Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC
- [12] IN1710El2IGGE0000003A-4A, Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING **GEOLAVORI**
- [13] IN1712EI2RBVI05E0001A, Viadotto Alpone dal km 21+842.666 al km 21+992.666, Relazione Geotecnica

2.2 Normativa e standard di riferimento

- [14] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [15] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [16] UNI EN 1997-1 : Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [17] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [18] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [19] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [20] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	6 di 87		

EI2RBRI36D0001B

6 di 87

- [21] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [22] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 - "Opere in terra e scavi" - RFI
- [23] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [24] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

2.3 Bibliografia

- [25] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [26] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [27] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [28] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [29] Rocscience (2017), Slide ver 7.0, 2017
- [30] Rocscience (2009), Settle 3D ver 2.0, 2009
- [31] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [32] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [33] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [34] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.
- [35] Priebe H.J., "Vibroreplacement to prevent earthquake induced liquefaction". Ground Engineering, September 1998.
- [36] Idriss I.M. and Boulanger R.W. (2008), "Soil liquefaction during earthquakes".

3 INQUADRAMENTO DELL'OPERA

Il rilevato ferroviario in esame si estende tra il km 21+991.51 e il km 22+748.51 per una lunghezza totale di ca. 756\ m. Il rilevato si presenta senza banche, e raggiunge un'altezza massima di poco più di 7.0m rispetto al piano campagna originario.

3.1 Geometria del rilevato

Il rilevato, presenta una sezione regolare per tutto il tracciato, con scarpate di pendenza 2/3 (V:H). Alla pk 22+025, sezione n. 786, si riscontra l'altezza massima del rilevato pari a 7.2 m. La sezione citata, denominata Sezione A (Figura 1), è quella ritenuta più severa per le verifiche del rilevato in esame.

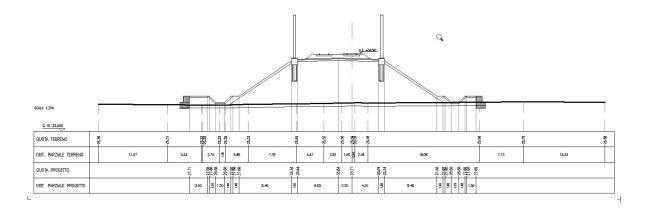


Figura 1 - Sezione di riferimento A (pk 22+025)

IN17

12

EI2RBRI36D0001B

8 di 87

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Indagini disponibili

Relazione Geotecnica

L'ubicazione delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 3, estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [3]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [6] - [12]). Il risultato delle indagini è riportato in ALLEGATO 2.

Nella presente relazione si discuteranno i risultati delle indagini svolte lungo la tratta, che di per sé è sufficientemente estesa. Si segnala inoltre che la determinazione delle caratteristiche fisiche e meccaniche dei terreni interagenti con l'opera è stata svolta considerando anche le indagini eseguite nelle aree circostanti (qui non direttamente commentate e per le quali si rimanda alle relazioni delle opere contigue) ed in generale sulla base di una visione d'insieme ricavabile elaborando tutte le indagini svolte lungo la tratta.

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Nel seguente paragrafo si riporta la caratterizzazione geotecnica, ottenuta basandosi sui risultati delle indagini relative alla zona di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2]).

Tabella 1 - Indagini tra pk 21+991 e pk 22+748

Progressiva	ID indagini	Campagna
pk	-	anno
22+012	BH-PE-44	2020-2021
22+064	PT-PE-15	2020-2021
22+134	CPTU-PE-23	2020-2021
22+170	CPTU26V	2015
22+360	CPTU27V	2015
22+360	BH16V+CH4V	2015
22+470	CPTU28V	2015
22+600	CPTU29V	2015

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Di	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	9 di 87	

4.2 Inquadramento stratigrafico

Dal punto di vista stratigrafico, l'area del rilevato è interessata dalla presenza di una coltre superficiale di sabbie (nel seguito Unità 4) a densità crescente con la profondità, fino a circa 15.0 m, fatta salva la presenza di uno strato di spessore metrico di terreni limoso/argillosi superficiali (unità 3b) rinvenibile tra i 9 ed i 10 m di profondità. Gli stessi limi argillosi si ritrovano per uno spessore più rilevante tra i 15 ed i 19 m dal p.c. Al di sotto di tali profondità si rinvengono ancora le sabbie di cui sopra, ancora più addensate, fino ad una profondità di circa 30 m, alla quale si trova la base della colonna stratigrafica nell'ambito delle profondità di interesse, costituita dalle argille consistenti denominate "Unità 2" nella relazione geotecnica generale.

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]).

Nella Figura 2 si riporta il profilo geotecnico specifico per il rilevato RI36, estratto dalla Planimetria e Profilo Geotecnico Tav. 4 di 11 (Doc. Rif. [3]).

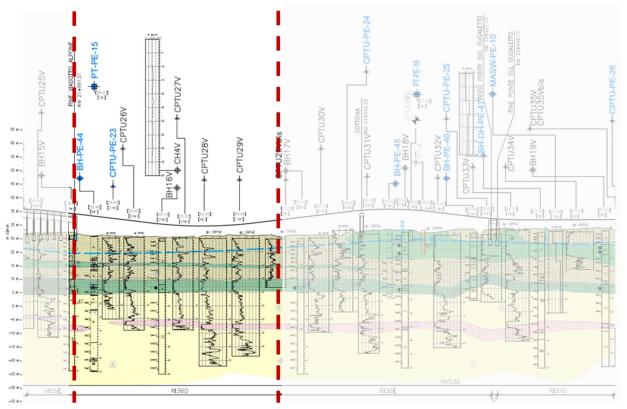


Figura 2 - Profilo Geotecnico Rilevato RI36D, estratto dal Profilo Geotecnico Generale (Doc. Rif. [3])

GENERAL CONTRACTOR	ALTA	ALTA SORVEGLIANZA				
Iricav2	And the second second	TAL!				
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	10 di 87		

Figura 3 - Planimetria Rilevato RI36D, estratto dalla Planimetria Generale (Doc. Rif. [3])

4.3 Livello di falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Ref. [5]). Questi ultimi indicano una sostanziale stabilità nelle escursioni stagionali, ed indicano una falda di lungo termine a 3 m dal p.c., che verrà pertanto considerata come quota di progetto.

_

GENERAL CONTRACTOR Iricav2		SORVEGLIA TAL D FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio

INI 17

12

EI2RBRI36D0001B

11 di 87

4.4 Condizioni geotecniche del sito

Relazione Geotecnica

Come definito dalla sezione stratigrafica, il tratto in oggetto è caratterizzato dalla diffusa presenza di sabbie, localmente intervallate da materiali limo argillosi presenti in spessori dell'ordine del metro, intorno a 10 m di profondità e dell'ordine di 4÷5 m a profondità di circa 15m.

L'andamento stratigrafico presente nell'area è ben illustrato dai risultati delle prove CPTU riportate in Figura 4, ove emerge chiaramente la predominanza dei materiali sabbiosi dell'Unità 4, con qualche intercalazione di materiale più fine fra gli 8 e i 10 m di profondità, e una, più marcata, fra i 16 e i 20 m circa da p.c.

La Figura 5 sintetizza il contenuto di ghiaie, sabbie e limi/argille nei campioni indisturbati e rimaneggiati prelevati lungo i sondaggi, compresi quelli estratti dal campionatore delle prove SPT. Si nota appunto che l'unica zona in cui sono preponderanti i materiali fini è quella a cavallo dei 16÷20 m metri di profondità.

La Figura 6 mostra i risultati delle prove SPT eseguite nel tratto interessato dal rilevato in esame.

La Figura 7 e la Figura 8 mostrano i valori di densità relativa ricavabili dalle prove SPT e PTU per l'Unità 4. Come si vede, i valori risultano mediamente più alti per le prove CPTU. Si ritiene che i valori di SPT siano più influenzati dalla presenza di sottili intercalazioni limose presenti nei primi metri.

Per quanto riguarda i valori dell'angolo di resistenza al taglio, questi risultano compresi tra 34 e 37° (vedasi Figura 9). Le descrizioni dei materiali dei sondaggi, e le caratteristiche granulometriche stimabili dalle prove CPT indicano che tali coltri sono costituite, in predominanza, da sabbie, (Unità 4).

I livelli argillosi si presentano mediamente compatti, con resistenze al taglio non drenate minime c_u≈50 kPa negli strati più superficiali e più alte (cu ≈80 kPa) negli strati più profondi (Figura 10).

Tra 32 e 34 m di profondità, si incontra una formazione di argille limose (Unità 2). Tali materiali sono sovraconsolidati, con valori di di resistenza non drenata cu=100-140 kPa.(Figura 10).

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove CH, SPT e infine CPT, conferma la presenza di materiali incoerenti da poco a mediamente addensati fino a 15 m pc, per le sabbie superficiali si stimano valori di Vs pari a 180-220 m/s. A profondità maggiori, sempre nelle sabbie, le velocità sono pari a 280 m/s. Sulla base dei valori di Vs, ed osservando anche le interpretazioni delle prove CPT, si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per le sabbie più superficiali si può considerare un valore medio cautelativo pari a 80 MPa, mentre per le sabbie profonde si ottengono valori pari a 120÷160 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 , ed utilizzando valori di v = 0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51

IN17

12

EI2RBRI36D0001B

12 di 87

La Tabella 2 nel prossimo paragrafo riepilogherà le caratteristiche fisiche e meccaniche dei terreni, funzionali anche alle analisi riportate nel cap. 6 di questa relazione

Le seguenti figure riportano i risultati delle principali prove di sito e dei parametri geotecnici dei terreni, interpretati alla luce di quanto riferito in [2] e [4].

- Risultati delle prove CPTU nel tratto in esame (Figura 4)
- Distribuzione delle granulometrie da analisi di laboratorio (v. Figura 5);
- Valori N_{SPT} da prove SPT (v. Figura 6);

Relazione Geotecnica

- Densità relativa stimata da prove SPT (v. Figura 8);
- Angolo di resistenza al taglio stimato da prove SPT (v. Figura 9);
- Resistenza al taglio non drenata da CPTU per unità 3b (v. Figura 10);
- Velocità delle onde di taglio stimata da prove in sito (v. Figura 11);
- . Modulo di taglio alle piccole deformazioni valutati a partire dai valori stimati di Vs da prove CPT (v. Figura 12)

GENERAL CONTRACTOR IFICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	13 di 87

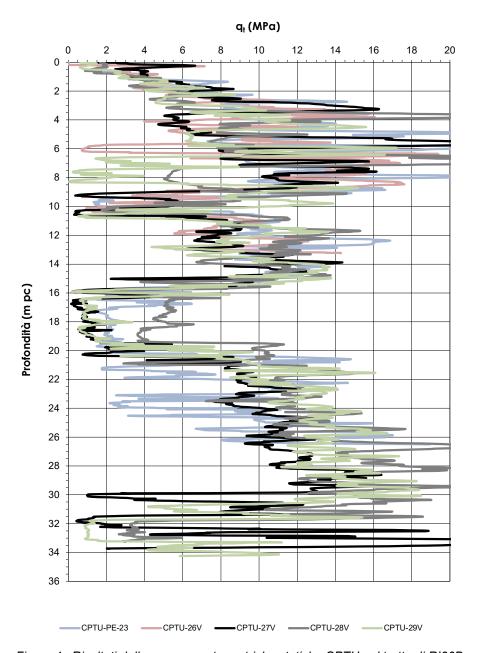


Figura 4 –Risultati delle prove penetrometriche statiche CPTU nel tratto di RI36D

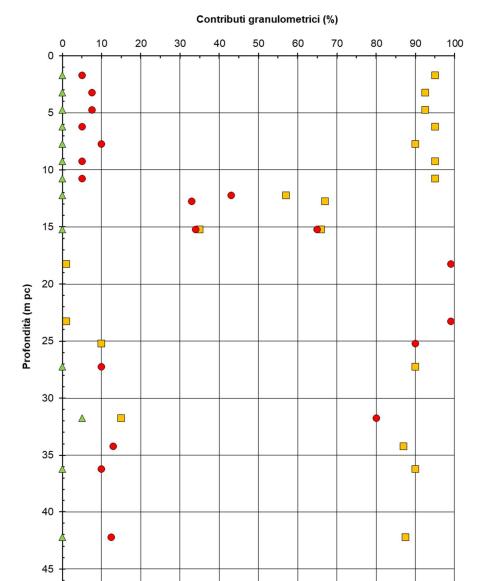


Figura 5 – Contenuti granulometrici da prove di laboratorio, rilevato RI36D

■S Sabbia

50

▲ GS Ghiaia

● C Limo e Argilla

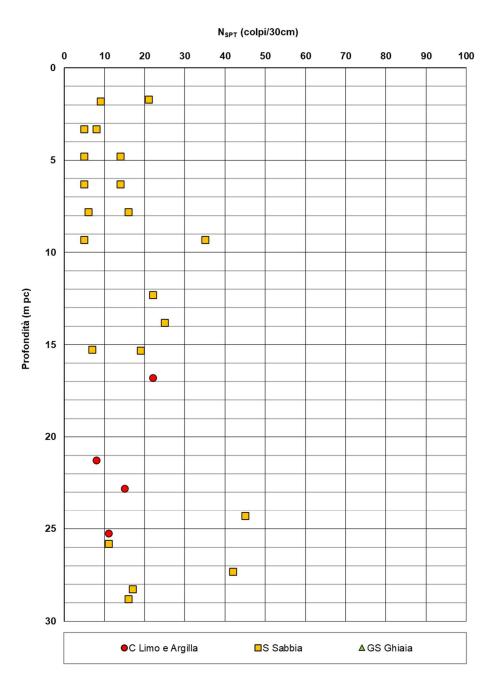


Figura 6 – Esito delle prove SPT , Rilevato RI36D

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	16 di 87	

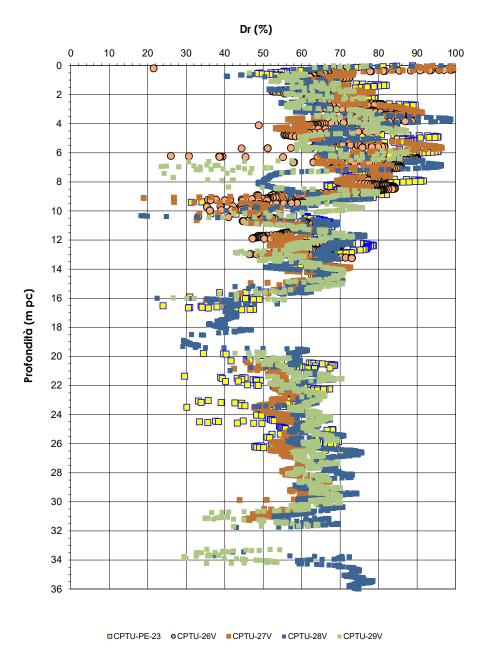


Figura 7 – Densità relativa da prove CPTU Rilevato RI36D

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	17 di 87

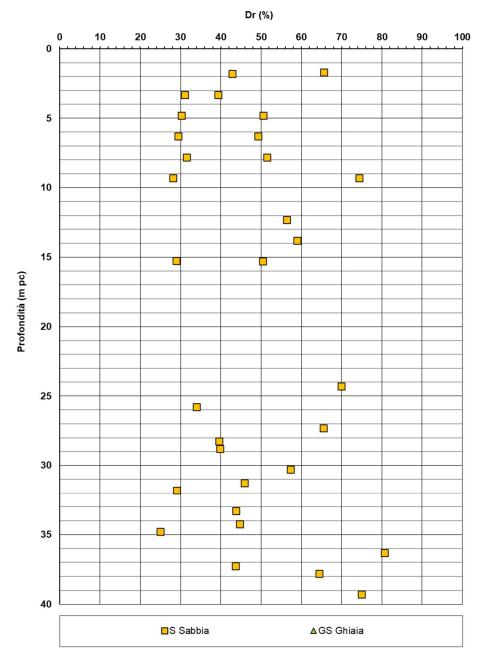


Figura 8 – Densità relativa da prove SPT, Rilevato RI36D

GENERAL CONTRACTOR		SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	18 di 87

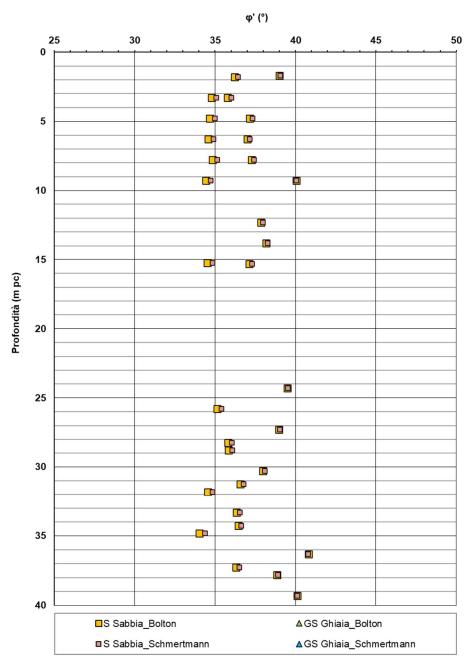


Figura 9 – Angoli di resistenza al taglio da prove SPT, Rilevato RI36D

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	19 di 87

RI36D

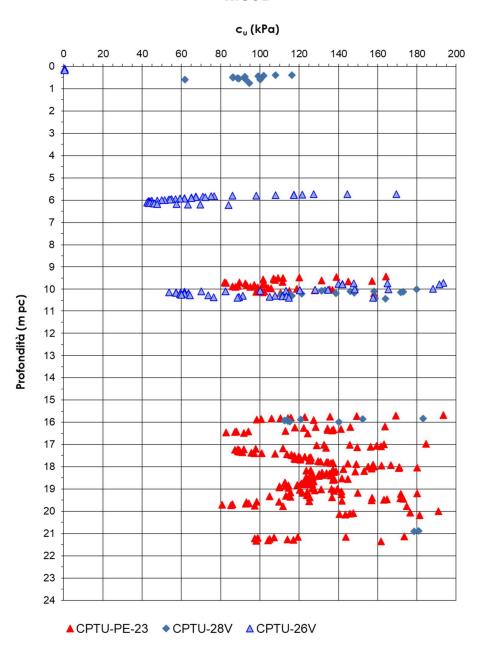


Figura 10 – Resistenza al taglio non drenata da prova CPTU-PE-23, CPTU 28 V e CPTU 26V

GENERAL CONTRACTOR	ALTA	SORVEGLIA	NZA	
Iricav2	Section and the section of the secti	FERROVIE DELLO ST		
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	20 di 87

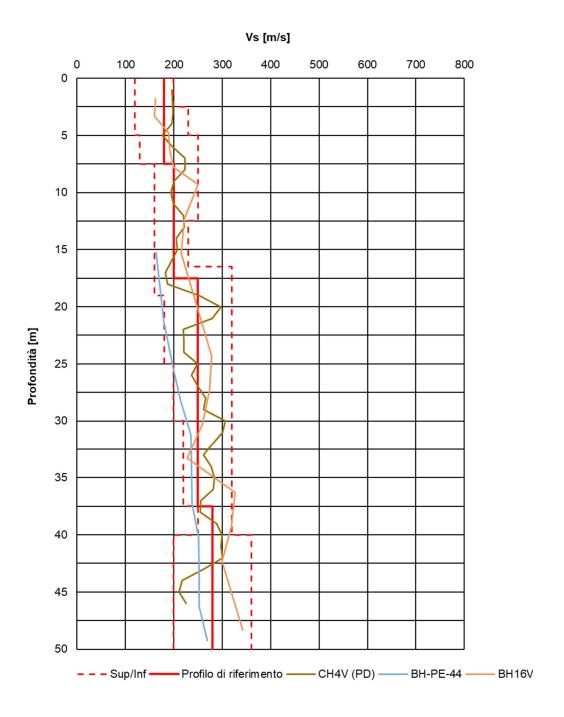


Figura 11 – Profilo di Vs di riferimento, a confronto con dati di correlazioni con SPT, prove geofisiche tra pk 21+991 e pk 22+748

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	21 di 87

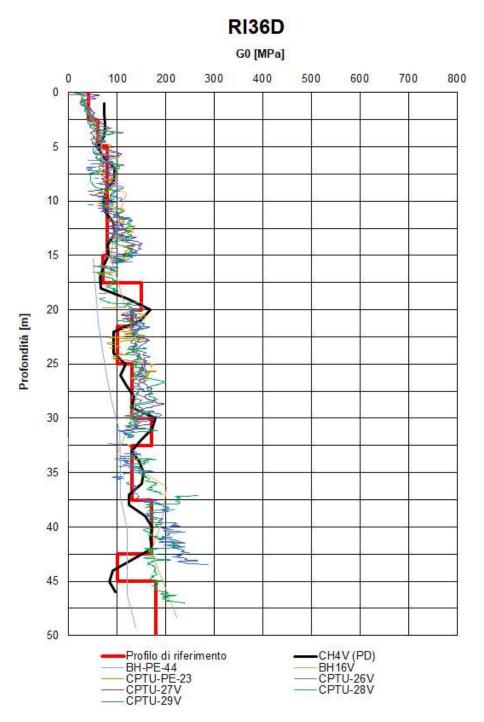


Figura $12 - Modulo di taglio G_0 tra pk 21+991 e pk 22+748$

4.5 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2.

Tabella 2 – Modello geotecnico di riferimento

	da	а	γ	ϕ_{k}	C _k '	$C_{u,k}$	E'op
	m pc*	m pc*	kN/m³	0	kPa	kPa	MPa
4	0	2	19	34	0	-	20
4	2	9	19	36	0	-	50
3b	9	10	18.5	-	-	50	8
4	10	15	19	36	0	-	60
3b	15	19	18.5	-	-	85	15
4	19	32	19	38	0	-	100
2	32	34	19	-		120	25
2-6	>34	-	19	-	-	120	150

^{*} quota piano campagna = 26.6 m s.l.m.

La falda è stata posta a 3 m dal p.c. (v.4.3)

4.6 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. rif. [19]) e sono di seguito riassunte:

Tabella 3 - Caratteristiche materiale da rilevato

	Υ kN/m³	φ .	c' kPa
Materiale da rilevato	20	38	0

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP (Doc. rif. [18] e [19]), l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 4 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	V _N = 50 anni
Altre opere nuove a velocità V < 250 km/h	$V_N = 75 anni$
Altre opere nuove a velocità V ≥ 250 km/h	V_N = 100 anni
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- II Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio	
IN17	12	EI2RBRI36D0001B	24 di 87	

Tabella 5 – Valori del coefficiente di uso Cu

Classe d'uso	I	II	III	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

II periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica (Doc. rif. [4]) e nelle Planimetrie con classificazione sismica dei terreni (Doc. rif. [5], i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media i > 15°.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	25 di 87

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

a _g (g) (SLV)	0.218
Coefficiente di amplificazione stratigrafica Ss	1.382
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
a_{max} (g) ($a_{\text{max}} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g}$)	0.301

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa vigente (Doc. rif. [14]). Le analisi di liquefazione sono descritte in dettaglio nelle Relazioni sulla modellazione sismica del sito e pericolosità sismica di base (Doc. rif. [4]), alla quale si rimanda per maggiori dettagli.

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, $V_R = 150$ anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [4] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.0.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	26 di 87

(CRR) così definiti:

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_I}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma'_{vo}} = 0.65 \frac{\tau_{\text{max}}}{\sigma'_{vo}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{vo}}{\sigma'_{vo}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

 au_c valore rappresentativo dello sforzo di taglio ciclico

 σ_{vo} tensione verticale alla profondità in esame, in termini di tensioni totali

σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

r_d coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 \cdot z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 \cdot z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per $M \neq 7.5$ è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M=7.5}} = \left(\frac{N_{M=7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto,

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51

IN17

12

EI2RBRI36D0001B

27 di 87

mentre (CSR)_{M=7.5} e N_{M=7.5} sono riferiti all'evento con M=7.5.

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e Idriss e Boulanger (2004) si è assunto per M = 6.0 - MSF = 2.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Relazione Geotecnica

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 13: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per (q_{c1N})_{cs} < 50
$$CRR_{7.5} = 0.833 \left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$$

per 50
$$\leq$$
 (q_{c1N})_{cs} $<$ 160 $CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$

In Figura 13, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = [(3.47 - \log Q)^2 + (1.22 + \log F)^2]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	28 di 87

$$F = \frac{f_s}{q_c - \sigma_{vo}} \times 100$$

Tanto maggiore è il valore di I_c , tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore I_c = 2.6 è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e I_c sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se I_c così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di n e I_c sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove K_cè definito dalle seguenti equazioni (Robertson & Wride, 1998):

per
$$Ic \le 1.64$$
 $K_c = 1.0$

per lc > 1.64
$$K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$$

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	29 di 87

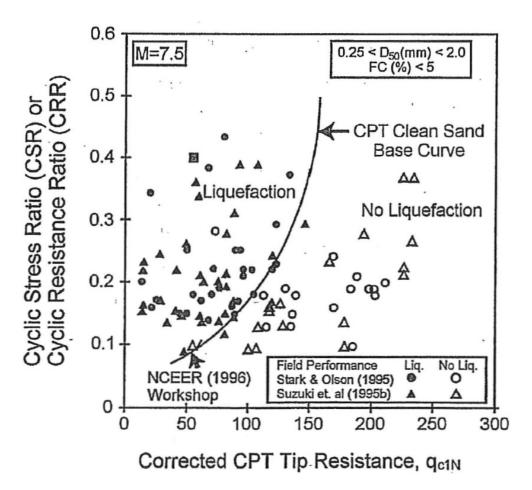


Figura 13: Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 14, originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 14, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti $N_{1(60)}$, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT} C_N C_E C_B C_R C_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 ALTA SORVEGLIANZA Frogetto ALTA SORVEGLIANZA Frogetto Codifica Foglio

IN17

12

EI2RBRI36D0001B

30 di 87

proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

Relazione Geotecnica

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 14, viene riportato il valore di CSR calcolato ed i corrispondenti valori di N₁₍₆₀₎ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

Si può osservare dalla

Figura 14 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{[10 \cdot (N_1)_{60} + 45]^2} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51
Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio	
IN17	12	EI2RBRI36D0001B	31 di 87	

di $N_{1(60)}$ ai valori corrispondenti per sabbia pulita $N_{1(60)\text{cs}}$:

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

$$\alpha$$
 = 0 per FC < 5%

$$\alpha$$
 = exp [1.76 – (190/FC2)] per 5% < FC < 35%

$$\alpha$$
 = 5 per FC \geq 35%

$$\beta$$
 = 1 per FC < 5%

$$\beta$$
 = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

$$β$$
 = 1.2 per FC \ge 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il seguente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

pa = pressione atmosferica di riferimento

f = fattore che dipende dalla densità relative del materiale in sito.

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR <60% f = 0.7÷0.8

60% < DR <80% f = 0.6÷0.7

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

GENERAL CONTRACTOR ILICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Piloveto forcovigrio AV de al 21 1001 51 a al 22 1740 51	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	32 di 87

FL = (CRR_{7.5}/CSR) MSF k_{σ}

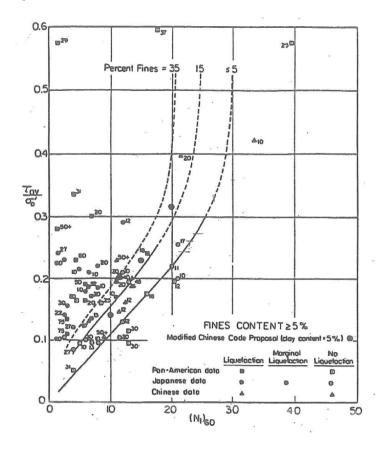


Figura 14: Relazione tra sforzo di taglio ciclico a liquefazione e N₁₍₆₀₎ – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

5.2.3 Commento ai risultati

Osservando i risultati delle analisi (Figura 16 - Figura 22) appare chiaro che lungo la WBS in esame non vi è il rischio di sviluppo di fenomeni di liquefazione che conducano a potenziali instabilità del rilevato. Questa considerazione deriva in primo luogo dalla visione d'insieme dei risultati delle analisi che mostrano come lungo le verticali esaminate il coefficiente di sicurezza FL sia generalmente superiore al limite minimo fissato (pari a 1.25) ed inoltre dall'evidenza che le sovrapressioni neutre rarissimamente, e solo per strati di spessore molto ridotto, raggiungano valori prossimi alla tensione media litostatica in sito ($r_u \approx 1$). Ciò avviene peraltro nella stragrande maggioranza dei casi in tratti in cui sia i sondaggi, sia le prove in sito (si veda a tal proposito il fatto che il valore assunto dal parametro lc sia maggiore di 1.26) hanno evidenziato la presenza di terreni ad elevato contenuto di fini e a comportamento coesivo, per i quali i rischi di mobilità ciclica sono per definizione nulli.

In tale quadro si può anche iscrivere quanto registrato nella prova CPTU 28V, per la quale ad una profondità di circa

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

33 di 87

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51

Relazione Geotecnica

8 m e per uno spessore di 2 m, in corrispondenza del sisma di progetto, l'interpretazione della prova conduce ad una valutazione di valori di ru prossimi all'unità. La mancanza di continuità laterale di tale strato, e la sua profondità, fanno sì che non siano possibili condizioni riconducibili ad un SLU dell'opera a causa di rotture nel terreno, e che eventuali cedimenti in fase post-sisma sarebbero comunque contenuti, attenuati dallo spessore di terreno sovrastante e dallo spessore stesso del rilevato.

Facendo riferimento a quanto mostrato nella relazione del viadotto Alpone VI05 (Doc.Rif:[13]), attorno alle pile del viadotto sono stati realizzati degli interventi di soil improvement. Fino alla pk 21+800 le indagini mostrano infatti potenziali rischi di liquefazione negli strati superficiali del terreno (si veda Figura 15).

In seguito al sisma, la differenza di rigidezza tra fondazioni su pali su terreno trattato con colonne di ghiaia (spalla del viadotto) e terreno naturale (RI36D) potrebbe portare a cedimenti differenziali non ammissibili, in particolare per la funzionalità dell'opera.

Per scongiurare questa possibilità, si prescrive un intervento di soil improvement nei primi metri della tratta di RI36D, avente funzione di sezione di transizione fra il viadotto e il rilevato su terreno naturale

Questa prescrizione segue gli interventi già definiti in fase di PD, ora limitati al tratto precedente la CPTU-PE-23 che permette di escludere la possibilità di liquefazione nella restante parte di RI36D, come già descritto.

Pertanto, per evitare problemi di cedimenti differenziali in seguito a sisma nel passaggio tra viadotto e rilevato, si prescrive:

 dalla pk 21+991 alla pk 22+040: installazione di colonne in ghiaia aventi diametro D=800 mm, lunghezza L=10m, interasse i=2m, a maglia quadrata.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Dilaceta (amazimia AV da al. 21 001 E1 a al. 22 740 E1	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	34 di 87	

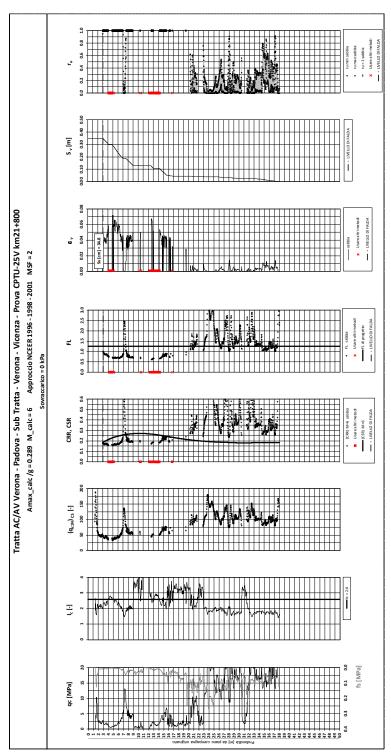


Figura 15 – Verifica Liquefazione da risultati CPTU25V (pk 21+800, competenza VI05)

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Pil . (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	35 di 87

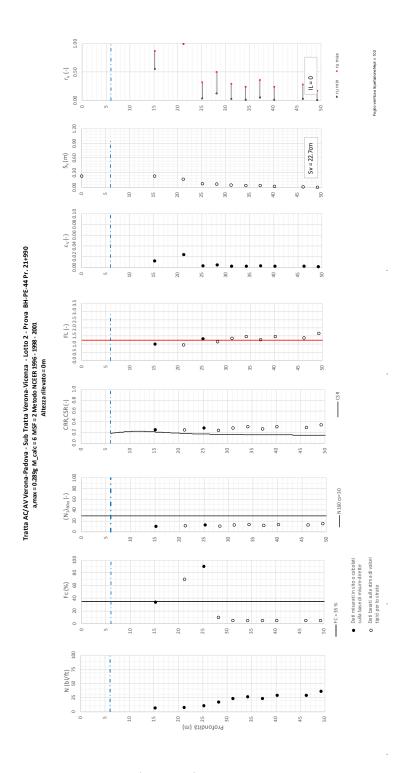


Figura 16 – Verifica Liquefazione da risultati BH-PE-44

GENERAL CONTRACTOR	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
II ICAV Z	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	36 di 87	

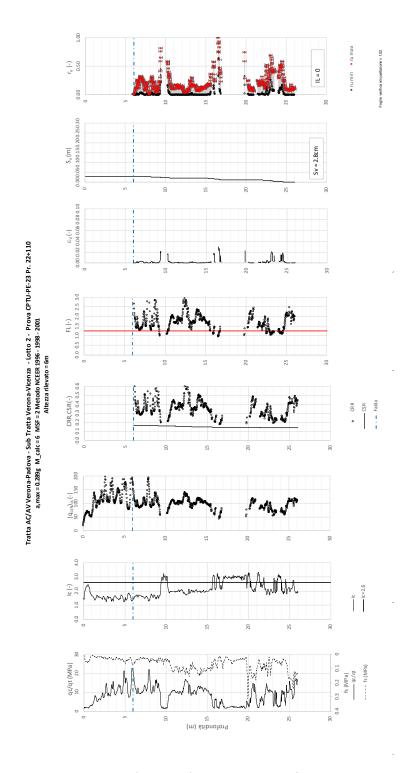


Figura 17 – Verifica Liquefazione da risultati CPTU PE 23

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	37 di 87

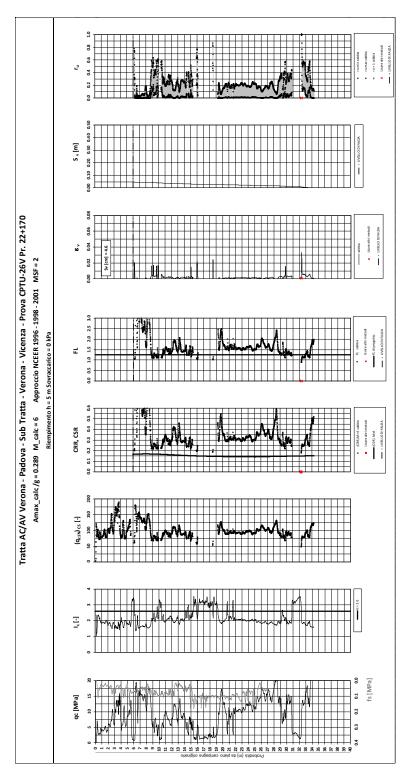


Figura 18 – Verifica Liquefazione da risultati CPTU-26V

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	38 di 87

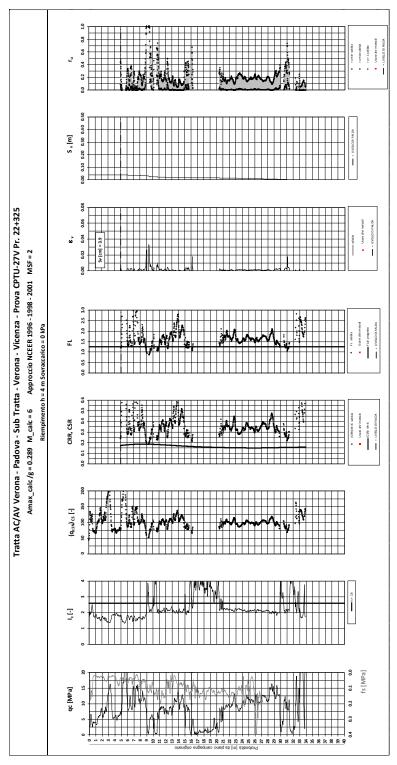


Figura 19 – Verifica Liquefazione da risultati CPTU-27V

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	39 di 87

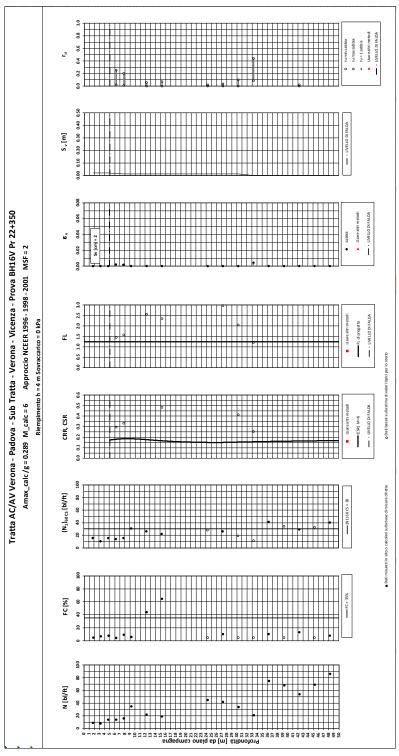


Figura 20 – Verifica Liquefazione da risultati BH16V

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	40 di 87

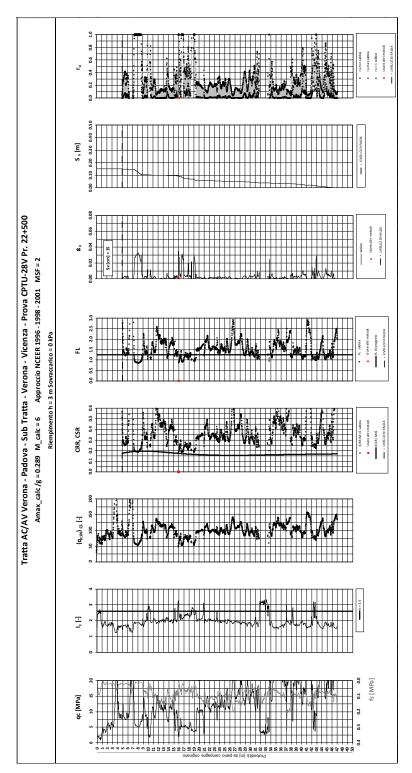


Figura 21 – Verifica Liquefazione da risultati CPTU-28V

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	41 di 87

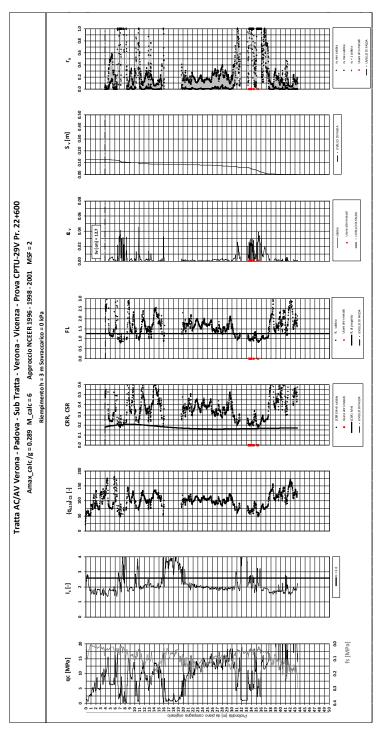


Figura 22 – Verifica Liquefazione da risultati CPTU-29V

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

42 di 87

6 VERIFICA GEOTECNICA DEL RILEVATO

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa vigente richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [14]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [14])

dove:

Relazione Geotecnica

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [14]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove:

E_d valore di progetto dell'effetto dell'azione;

C_d valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale).

La verifica della condizione $E_d \le C_d$ deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

Le verifiche vengono condotte con analisi statiche o pseudostatiche e, in accordo al MDP ITALFERR, il coefficiente di incremento dinamico delle azioni derivanti dal passaggio del treno è assunto pari all'unità.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [14]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

43 di 87

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [15]), calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto $R = R\left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_m}; a_d\right]$.

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [14]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 6 – Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	γ _{G1}	0,9	1,0	1,0
Sfavore	Sfavorevole		1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	γ _{G2}	0,0	0,0	0,0
Sfa	Sfavorevole		1,5	1,5	1,3
Variabili Favorevole Sfavorevole		0,0	0,0	0,0	
	Sfavorevole	γ _{Qi}	1,5	1,5	1,3

dove:

Relazione Geotecnica

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 7 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [14])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		1/20 81
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ _c ′	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 8 – Coefficienti parziali per verifiche di stabilità globale

Coefficiente	R2
γR	1.1

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [14]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del ballast, e per la durata della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [19] e [23]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [23]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 9 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	$160 < V \le 300 \text{ km/h}$
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	$10 < \Delta H \le 15$ $4 < SCARTXL \le 8$
3º livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ 8 < SCARTXL \le 12

⁽¹⁾ il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche

La stabilità globale in condizioni sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [19]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [18]) e nelle NTC (Doc. rif. [14]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

45 di 87

6.2.1 Azioni permanenti

Relazione Geotecnica

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³ Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, qui determinati sulla base dello schema di carico più gravoso tra quelli previsti dalle NTC 2008, dalle Norme Europee e, conseguentemente, dal Manuale di Progettazione di RFI. In particolare, tale carico tiene conto della diffusione a partire dalla traversa e fino al piano di posa del ballast, secondo le prescrizioni di NTC e MdP. Nello specifico, è stato considerato il caso peggiore tra i tre modelli di carico previsti, ossia LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71), da applicarsi su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m² in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (kh) e verticale (kv):

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove

 β_s coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 10)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 10 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[14])

	Categoria di sottosuolo		
	A	B, C, D, E	
	$\beta_{\rm s}$	$eta_{ m s}$	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0,1 < a_g(g) \le 0,2$	0,27	0,24	
$a_{\rm g}(g) \leq 0.1$	0,20	0,20	

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

46 di 87

Si trova nel presente caso:

 $a_g = 0.207 g$

Relazione Geotecnica

S = 1.397

 $a_{max} = 0.289 g$

 $k_h = 0.081$

 $k_v = \pm 0.040$

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 7.0 (Doc. Rif. [29]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 7 della presente relazione.

Come da NTC 2008 (Doc. Rif. [14]), la verifica SLU di stabilità globale è soddisfatta se la relazione:

è verificata sia in condizioni statiche che sismiche.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1. La verifica è stata condotta facendo ricorso al metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2.

6.3.2 Verifiche SLU in condizione statiche

Il carico da traffico ferroviario (q) assunto pari a 61.4 kPa (cfr. par. 6.2.2) è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile/sfavorevole e, pertanto, il coefficiente parziale sulle azioni A2 è pari a 1.3.

Per quanto riguarda la falda, è stata considerata la condizione a lungo termine e quindi è stato preso un livello coincidente a piano campagna, come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 23 sono riportate le superfici di rottura critica per la combinazione DA1C2. Il valore minimo di FS è pari a:

FS_{MIN} (DA1C2) =1.54>R2=1.1

la verifica di stabilità globale in campo statico risulta soddisfatta.

6.3.3 Verifiche SLU in condizioni sismiche

Le verifiche di stabilità in condizioni sismiche sono state svolte in accordo alla trattazione riportata in precedenza

In Figura 24 sono riportate le superfici di rottura critiche. Il fattore di sicurezza FS è pari a:

FS_{MIN}=1.43>R2=1.1

la verifica di stabilità globale in condizioni sismiche risulta soddisfatta.

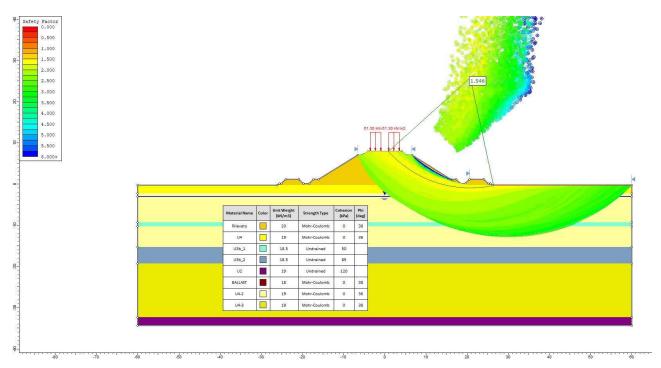


Figura 23 - Rilevato RI36D - Analisi SLU in campo statico DA1C2

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	48 di 87

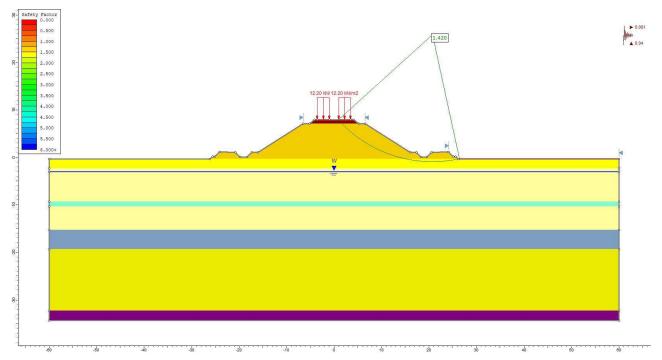


Figura 24 - Rilevato RI36D - Analisi SLU in condizioni sismiche

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 21 +991 51 a pk 22+748 51	Progetto	Lotto	Codifica	Foglio	

IN17

12

EI2RBRI36D0001B

49 di 87

6.4 Verifica e risultati SLE

Relazione Geotecnica

La determinazione del campo di spostamenti è stata svolta mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [30]) che permette di valutare l'andamento dei cedimenti nel tempo sotto diverse ipotesi di carico. Il programma discretizza l'area analizzata in un numero finito di aree di carico e valuta gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti. A partire dagli incrementi tensionali vengono poi calcolati i cedimenti.

La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta all'interno del codice di calcolo con riferimento a soluzioni basate sulle seguenti ipotesi semplificative:

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di Boussinesg);
- l'area di carico è posta sulla superficie del semispazio ed è ipotizzata avere rigidezza nulla.

Per una generica condizione di carico viene quindi eseguita una discretizzazione in un numero finito di aree di carico sulle quali è applicata una pressione uniforme o variabile linearmente.

Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti.

Il calcolo dell'incremento delle tensioni normali indotte da un'area di carico nastriforme, soggetta a un carico uniformemente distribuito (parte centrale del rilevato), viene eseguita sulla base delle formule di Jumikis (1971).

$$\begin{split} \Delta\sigma_z &= \frac{q}{\pi} \cdot \left[\tan^{-1} \left(\frac{x+B}{z} \right) - \tan^{-1} \left(\frac{x-B}{z} \right) - \frac{z \cdot (x-B)}{(x-B)^2 + z^2} + \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_x &= \frac{q}{\pi} \cdot \left[\tan^{-1} \left(\frac{x+B}{z} \right) - \tan^{-1} \left(\frac{x-B}{z} \right) + \frac{z \cdot (x-B)}{(x-B)^2 + z^2} - \frac{z \cdot (x+B)}{(x+B)^2 + z^2} \right] \\ \Delta\sigma_y &= \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

dove:

 $\Delta \sigma z$, $\Delta \sigma x$, $\Delta \sigma y$ = incremento delle tensioni normali verticali e orizzontali

q = carico applicato

u = coefficiente di Poisson

B = semilarghezza dell'area di carico in direzione x

x, y, z = coordinate geometriche di riferimento come indicato nella figura seguente.

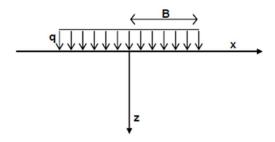


Figura 25 - Modello di calcolo Settle 3D - carico uniforme

Nel caso di un'area di carico nastriforme soggetta a un carico linearmente crescente (bordo del rilevato), le formule di Jumikis da applicare sono le seguenti:

$$\Delta \sigma_{z} = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(\tan^{-1} \left(\frac{x - A}{z} \right) - \tan^{-1} \left(\frac{x}{z} \right) \right) + \frac{A \cdot z \cdot x}{x^{2} + z^{2}} \right]$$

$$\Delta \sigma_{x} = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(\tan^{-1} \left(\frac{x - A}{z} \right) - \tan^{-1} \left(\frac{x}{z} \right) \right) + z \cdot \ln \left(\frac{x^{2} + z^{2}}{(x - A)^{2} + z^{2}} \right) - \frac{A \cdot z \cdot x}{x^{2} + z^{2}} \right]$$

$$\Delta \sigma_{y} = \upsilon \cdot \left(\Delta \sigma_{z} + \Delta \sigma_{x} \right)$$

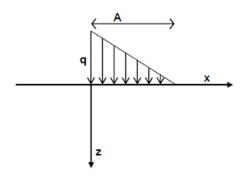


Figura 26 - Modello di calcolo Settle 3D – carico linearmente crescente

Il calcolo della deformazione verticale per ogni singolo sublayer viene valutato sulla base dell'incremento di sforzo verticale, utilizzando la seguente espressione:

$$\varepsilon_z = \frac{\Delta \sigma_z}{F}$$

Il cedimento verticale totale viene quindi calcolato come sommatoria dei cedimenti dei diversi strati.

Il calcolo dei cedimenti indotti dalla realizzazione del rilevato ferroviario è stato svolto modellando la successione

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51

IN17

12

EI2RBRI36D0001B

51 di 87

stratigrafica in sito tenendo conto delle diverse caratteristiche di deformabilità degli strati, in accordo alla stratigrafia di progetto riportata in Tabella 2. Si sono assunti i valori caratteristici sia sulle azioni che sui materiali.

Si osserva come, in accordo con la stratigrafia e i parametri di progetto riportati nel Capitolo 4, i moduli elastici risultano di fatto indipendenti dallo stato tensionale ed il valore della quota della falda non ha alcuna influenza sull'esito del calcolo. Pertanto, nel calcolo la falda è stata rappresentata ad una quota convenzionale praticamente coincidente con il p.c.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente disequaglianza:

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove:

Relazione Geotecnica

Ed è il valore di progetto dell'effetto dell'azione, e Cd è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1. Il modello di calcolo implementato per il rilevato tipologico con altezza pari a 7.80 m è riportato in Figura 27. La larghezza del rilevato è pari a 36 m, con pendenza delle scarpate è 2V:3H. Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2.

Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza dell'impronta del rilevato ferroviario.

I cedimenti sono stati calcolati al centro del nuovo rilevato, i valori calcolati sono riportati nella Figura 28.

Il cedimento calcolato in corrispondenza del centro del nuovo rilevato è di circa 11.5 cm. Tenendo conto che:

- la stratigrafia è caratterizzata per lo più da materiali granulari, con permeabilità medio-alta, con decorso dei cedimenti praticamente contemporaneo all'applicazione dei carichi
- che i percorsi di consolidazione degli strati a grana fine sono comunque molto limitati (max 2 m) e relativi a strati in cui l'incremento di tensione è al disotto della tensione di preconsolidazione, con sviluppo pertanto di sovrappressioni interstiziali modeste. Inoltre, i valori operativi di cv nel ramo di ricarico sono attesi elevati (cv > 5+10⁻⁷m²/s). Tenendo inoltre conto della presenza di intercalazioni sabbiose, così come evidenziato dalle prove CPTU, si considera che anche tali cedimenti si esauriranno praticamente all'atto dell'applicazione dei carichi,

si ritiene non necessario procedere con necessarie dettagliate analisi di consolidazione.

I cedimenti di lungo termine, e più in particolare quelli a far data dal termine dell'applicazione del carico del ballast e fino alla fine di vita utile dell'opera (100 anni), sono pertanto da considerare trascurabili.

GENERAL CONTRACTOR	ALTA SORVEGLIANZA							
Iricav2	GRUPPO FERROVIE DELLO STATO ITALIANE							
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio				
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	52 di 87				

La verifica SLE è quindi da considerarsi soddisfatta.

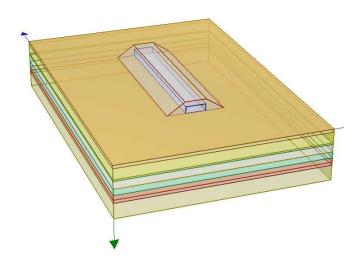


Figura 27 - Rilevato RI36D H=7.80 m - Analisi SLE – Modello di calcolo

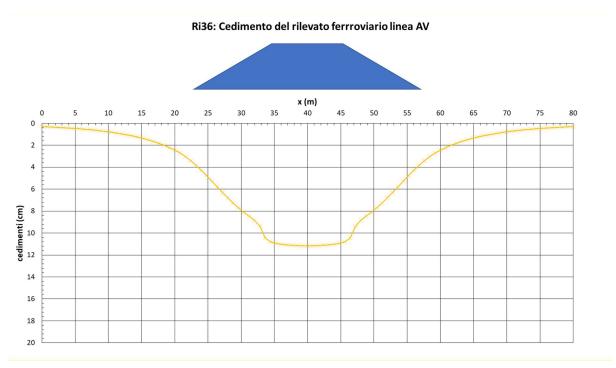


Figura 28 - Analisi SLE RI36D - Risultato Cedimenti

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE							
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio				
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	53 di 87				

Ri36D: cedimento al centro del rilevato AV

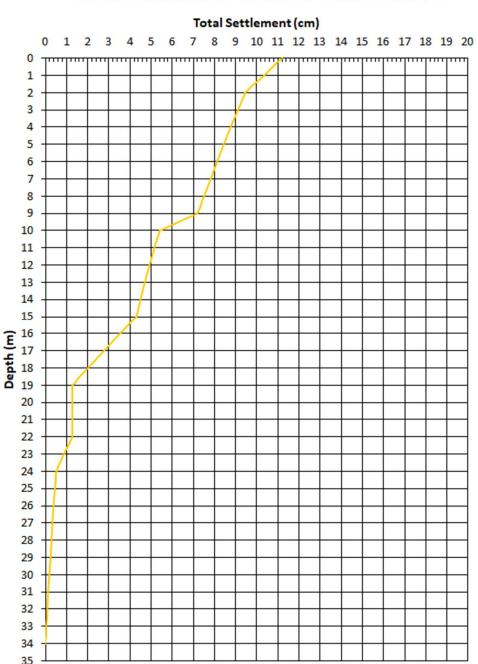
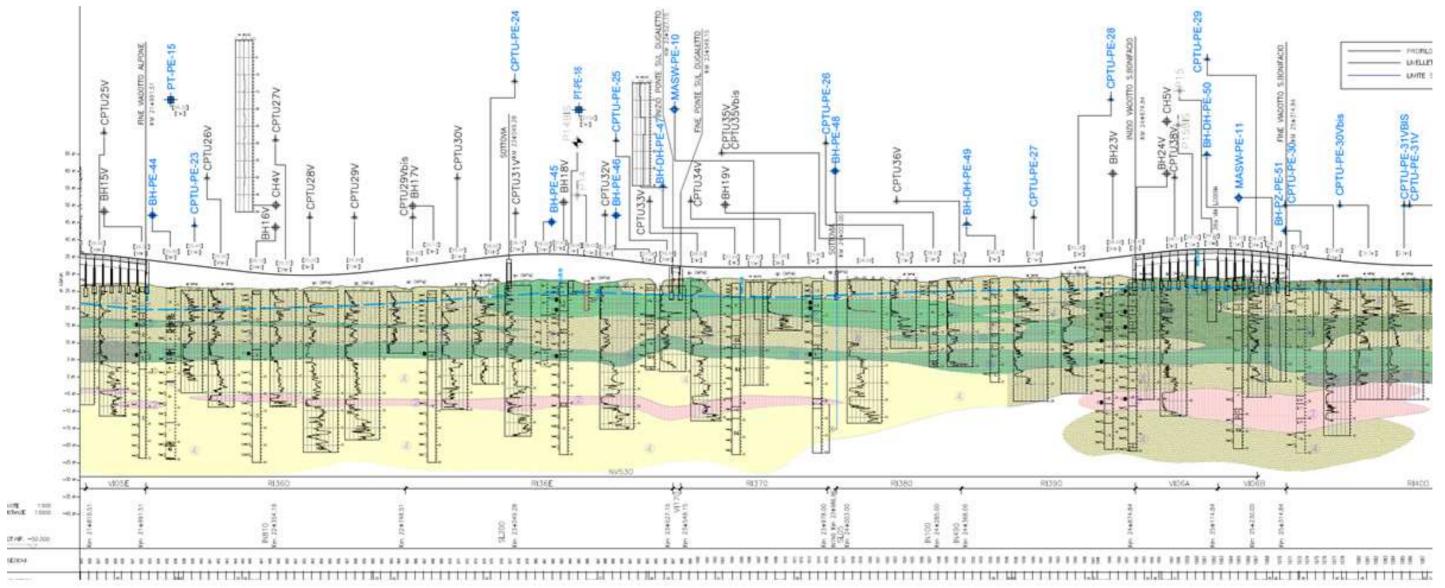


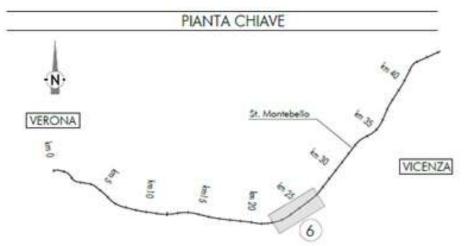
Figura 29 - Analisi SLE RI36D - Risultato cedimenti in profondità al centro del rilevato

7 CONCLUSIONI E RACCOMANDAZIONI

In conclusione, il rilevato oggetto di questa analisi risulta stabile e i cedimenti attesi sono limitati e non differiti nel tempo. Non si evidenziano criticità di tipo geotecnico e pertanto non è previsto un monitoraggio.

Per evitare problemi di cedimenti differenziali in seguito a sisma nella zona di transizione tra viadotto e rilevato, si prescrive:


 dalla pk 21+991 alla pk 22+040: installazione di colonne in ghiaia aventi diametro D=800 mm, lunghezza L=10m, interasse i=2m, a maglia quadrata.


GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL D FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	55 di 87

ALLEGATI

GENERAL CONTRACTOR Iricav2		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	56 di 87

ALLEGATO 1 - PROFILO STRATIGRAFICO

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
R11.9	Progetto	Lotto	Codifica	
Relazione Geotecnica	IN17	11	EI2GERI 1 9000 1	А

ALLEGATO 2 - SONDAGGI

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio

IN17

12

EI2RBRI36D0001B

59 di 87

Relazione Geotecnica

G	@lavori	SCHEDA DI	SON	DAG	31	0		сомм.	cm017	/15		
-	indagini geognostiche prove geotecniche in sito	SECONDO RACCOMA)			PAG. 1		DI	3	
Rev 0	Data 31/12/2008	CERTIFICATO cerstr016cm01715 DIRETTORE Dott. Ing. Davide Splendore										
COM	MITTENTE Irlca	av Due				,						
		AC VR-PD Variante di San Bonif										
		DATA INIZIO _11/03/201	5	UL7				3/03/2015	5		4.90	_
	DINATE GB: Nord DNSABILE _ Dott. Frison	Est Est OPERATORE Sig. Ve	enturini			3.l.m.r		Mustang	A65	- 28	- 3	
Da m 0.0		ofondità Finale m 50.00 PAG. 1 DI 6		5799		CAMP					S.P.1	г.
	DESCRIZIO	NE STRATIGRAFICA	PROFONDITA' m da fondale	SIMBOLOGIA STRATIGRAFICA	TIPO	NUMERO	PROFONDITA' m da p.c.	POCKET PENETROMETER Kg/cm²	TORVANE Kg/cm ²	N		1
Llmo s	abbloso marrone nocciola	ì.	0.90						4	28		
					Z	1	1.50 1.95			3 3 6	#	1 1 1
						2	3.00 3.45			2 3 5		03 03 03 03
Sabbla da fine a media da grigio nocciola a marrone nocciola; da -7.50 m da p.c. presenti rari clasti sub-arrotondati in prevalenza calcarel (Ømax=2 cm).						3	4.50 4.95			5 7 7		4
					×	4	6.00 6.45			4 6 8		- 6
				, q .•		5	7.50 7.95			6 7 9	#	
			9.00			6	9.00 9.45			10 17 18	#	
	a da fine a media grigio so sub-arrotondati (Ømax=3	cura; presenti rari clasti di ghlala fine e 3 cm).	11.10		H	7	10.50					
						8	12.00 12.45			8 10 12	#	12 12 12 12
Sabbla	a Ilmosa grigia.					9	15.00 15.45			6 7 12	#	15 15 15 15
			17.10			^	18.00	0.9 1.3 1.5 1.9	0.50 0.60 0.65 0.75			
	la argilloso a debolmente nti livelli centimetrici orgar		20.00			A	18,60	1.0 0.9 3.0 1.1 0.8 0.7	0.30 0.50 0.85 0.35 0.20 0.20			

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI36D0001B
 60 di 87

	Ge@lavori	SCHEDA	DI S	SON	IDAGG	ilO		сомм.	cm017	/15	
	indagini geognostiche prove geotecniche in sito	SECONDO RAC	CCOMAN					PAG. 2		DI 3	
R	ev 0 Data 31/12/2008	CERTIFICATO cerstr016cm	01715	Dott. In	RE ig. Davide Spie	ndore					
	COMMITTENTElrica	av Due									
	CANTIERE Linea AV/					200	-00				
	PERFORAZIONE N. BH16V		1/03/2015	<u> </u>		MAZIO a s.l.m		3/03/2015	5		
	COORDINATE GB: Nord RESPONSABILEDott. Frison	Est OPERATORE	Slg. Vei	nturini				Mustang	A65		
		ofondItá Finale m 50.00 PAG. 3	DI 6		88		PIONI			S.	.P.T.
	DESCRIZIO	ONE STRATIGRAFICA		PROFONDITA' m da fondale	SIMBOLOGIA STRATIGRAFICA	NUMERO	PROFONDITA' m da p.c.	POCKET PENETROMETER Kg/cm ²	TORVANE Kg/cm ²	N	н
21 22 23 24 25 26 27 28	sabbia da fine a media debolme	grigia, passante a -22,80 m da p., ente limosa grigia. o da -30.00 m a -30.20 m da p.c		d. E		10	24.00 24.45 27.00 27.45 30.00 30.45	0.0.2	ΕĀ	14 19 26 26 5 14 20 5	24.00 24.15 24.30 24.45 27.00 27.15 27.30 27.45 30.00 30.15 30.30 30.45
32	Limo debolmente argilloso grigi di sabbia fine, consistente.	o verdastro con livelli millimetrici		31,40		13	31.50 32.00	2.4 2.8	0.85 >1		
34						₫ 14	33,00 33,45			4 - 7 - 14	33.00 33.15 33.30 33.45
38 37	sabbioso grigio tra -32,00 m e -	sciolta. Presenti livelii centimetrici 33.00 m da p.c	dl llmo) 	15	36.00 36.45	_		19 <u>-</u> 36 <u>-</u> 39 <u>-</u>	36.00 36.15 36.30 36.45
39				40.00		16	38.00 38.50 39.00 39.45	-		29 = 34 = 34	39,00 39,15 39,30 39,45

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36D0001B 61 di 87

4	[€@lavori	SC	HEDA	נט ג	SON	DAGG	ilO		сомм.	cm017	7/15	
	indagini geognostiche prove geotecniche in sito SECONDO RACCOMANDAZIONI A.G.I. (1977)		SECONDO RACCOMANDAZIONI A.G.I. (1977)				PAG. 3	3	DI 3			
Rev 0	Data 31/12/2008	CERTIFICATO	cerstr016cr	m01715	DIRETTO Dott. In	RE ig. Davlde Sple	ndore		5.		0.5	
co	MMITTENTE Irlca	av Due		30	200 20	•	5757		9	000 8	ž.	30
	NTIERE Linea AV/	AC VR-PD Var	iante di Sa	n Bonif	acio							
Sept. 10 10 10 10 10 10 10 10 10 10 10 10 10		DA	(2)(2)	0.0		ULT	MAZIC	NE _13	3/03/2015	5	9	88
COO	RDINATE GB: Nord	Est		-00		Quo	a s.l.m	.m			X	- 30
RES	PONSABILE Dott. Frison	OP	ERATORE _	Slg. Ve	nturini	ATT	REZZA	TURA .	Mustang	A65		- 12
Da m	40.00 A m 50.00 Pro	ofondità Finale m 50.00	PAG. 5	DI 6	-	5	CAN	IPIONI	띮		S.	P.T.
	DESCRIZIO	ONE STRATIGRAFICA			PROFONDITA' m da fondale	SIMBOLOGIA STRATIGRAFICA	IIPO	PROFONDITA' m da p.c.	POCKET PENETROMETER Kg/cm ²	TORVANE Kg/cm ²	N	,
	obia da fine a media grigia, s bloso griglo da -32.00 m a -3		elli centimetrio	ci di limo		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 19 20 21 22 23	42.00 42.45 42.45 44.00 44.50 45.45 47.00 47.50 48.00 48.45			15 - 25 - 29 - 20 - 38 - 31 -	422 422 422 423 453 4545 4545 4545 4848 4848 4848
, FIN	E SONDAGGIO				50.00	\$						

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto Lotto Codifica IN17 12 EI2RBRI36D0001B

Foglio

62 di 87

G e⊕lavori	SCHEDA DI S	ONI	DAGG	10		сомм.	cm107/1	8	
indagini geognostiche prove geotecniche in sito	SECONDO RACCOMAND	AZIONI	A.G.I. (1977)			PAG. 1		DI 1	\dashv
Rev 0 Data 31/12/2008 CERTIFICATO cerstr001cm10718							RE g. Davide		
COMMITTENTE		CAV	DUE					opien	ore
		R	vi						-
PERFORAZIONE N. BH- P		04/		MAZIO		29/0	1 /2	0	_
COORDINATE GB: Nord	CCON OPERATORE A. FO	RTE		la s.l.m RF77A	m TURA _	CVH	MF 1	200	
Do = 000	rotondità Finale m PAG. 1 DI	Ť			PIONI			S.F	
		.¥ L	SIMBOLOGIA STRATIGRAFICA		OITA'	POCKET PENETROMETER Kg/cm²	_		<u>"-</u> -
DESCRIZ	ONE STRATIGRAFICA	PROFONDITA'	BOLO	TIPO	PROFONDI m da p.c.	XET ETRO	TORVANE Kg/cm²	N	н
TERRENO VEGETAL	E (0.0 - 0,1 m)	A E		ž Ž	P. E.	S M S	5 g		
SABBIA FINE LIHOSA	PARATI RADICALI NOCCIOLA CON RARI FRAMMENTO D	0,1	\$200 12/X						
SABBIA HEDIA E GROSS	A GRIGIA E NOCCIOLA DA	.0,5	~~~~						
(20-30 cm) E CON	A GRIGIA E NOCCIOLA DA INTERVALLI DECIDETRICI OCCASIONALE CHIATA ETERO		~~~~				1		
HINETRI CA POU GENICA	SUBARROTO NOATA E		*****	11					
SUBANGO LA RE ALTERNA NZE DECIN	ETRICHE (~20 cm) DI JABBIA	8,5		11	1				
HMEDIA E FINE LIME	SA DEBOLHENTE CHILIOSA		200		1	1			
B GHIAIA MEDIA E FI	DE BOLME NTE CHÍAIDS A.		3 5 202						
COLOIZE GRICIO NO	SSA NOCCIOLA CON RARA	9.0	2222		1				
" CHI ALA MEDIA 6 F	THE ARROTOUDATA POLICENTER	110 6	0. 0	#1					1
GRIGIA, GHILIA MEL	E LIMOSA DEBOLMENTE CHIAIOSI DIA E FINE SOBARILOTONDATA	1	かん	111					1
POLI GENICA		11,0	1 40						
TE AREILLOSO E SAB	rici (~10cm) di LIMO DEBOLHI BIA FINE CON LINO GRIGIA	<	222.22			1			
SABBITA FINE CON L	ino Galeta	11,4	2 2 2 2	11 1	42.50	1,9	0,14		1
	OLMENTE AREILLOSO GRIEFO	13.0	32.2	T CI	13.00	,	,,,,,	. 2	15.0
SABBIA FINE CON LING	S GILL GI A		2 2.3	SP	T1 15.00			3 4	15.4
LIHO CON ARGILLA GI	il ei g	17,9	2-2-2	la ai	2 15.00	0,3	0,16		
LIMO TORBOSO GRIG	io BRUNO	18,9	22122	71 I	18.50	0,5	0,14		
TORBA BRONA AREI		19,1	-~ ~ ~ ~	411		1,1	0,24		1
ARGILLA LI MOSA GI	l G A	- 19,3 - 19,5	1===~~	11.1		2,5	0,44		1
TO . C T. METOICI . D.C.	GIO CON RANI MIVELLI I METRICI E NODULI DI TORBI		33.000 ×	TI	21.	1, 1	0,44	3	21.
BRONA E CON OCC	ASIO MALI PUNTI NERI DI SOSTA TALE	Į.	222	A ST	4 21.4	5 0,7	0, 18	4 4	21.4
LINC SABBIOSO GRI	610	- 22,1				1,2	0,27	1	1
LINE ARGILLOSO DE	HO GRIGIA BOLHENTE SABBIOSO GRIGIO	- 21,9	24 2 12	3 1				1	1
SABBIA FINE CON LIN	o Grigia	- 22, 2 - 22, 3	2 2 2	ااان		1,8	0,57		
LIMO ARGILLOSO ENI	GIC CON RARI NOPULI E LIVELLI L) DI TORBA BRUNA AL TETTO	12,.	202 W	紃		4,0	0,39	1	
Line SABBIOSO ENTE		23.9	2222	A ci	3 23	50 1,6	0,38	1	1
SABBIA FINE E MED	iA cow Lino Griel A	24.	2 2 2	111:		1	1		1
SABBIA PIPE DA LING	A A CON LIND ENIGIA	25.0	2222	≚ILI .	7 , 25.0	1,7	0,22	. 4	25.0
16-	A C FIPE GRIETO CON VECI H	27.	11 ~	-111	25.		1	. 2	25.
DI SOSTALIZA DE GANICA	JEGETALE	27.4	1 A /	ᆀ			1	١.	
D 2 WALL DEEL HETAL	LINDSA CRIGIA LEN RARE		~		74 28.			8 9	18.1
	LMENTS CHIAIUSO (15-70 CA).		2000		1			1	
B CHILL			^^^	- 15/50	75 31.			11 2	724 4
			والمساسم	2 50	16 34.	c		1 1	
			2000		34.			13 1	34.
		35.7	22345	16 24	77 37.			21	3 = 37
	C:	-							

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	63 di 87

ALLEGATO 3- TABULATI DI SLIDE – ANALISI SLU STATICA

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36D0001B 64 di 87

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 9

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

36d stat.slim File Name:

Slide Modeler Version: 7.038
Project Title: SLIDE - An Interactive Slope Stability Program

01/10/2021, 10:19:13

General Settings

Units of Measurement: Metric Units Time Units: Permeability Units: days meters/second Left to Right Standard Failure Direction: Data Output: Maximum Material Properties: 20 Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)

A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type:

Analysis Methods Used

Bishop simplified

50 0.005 Number of slices: Tolerance: Maximum number of iterations: Check malpha < 0.2: Yes
Create Interslice boundaries at intersections with water tables and piezos: Yes Initial trial value of FS: Steffensen Iteration: Yes

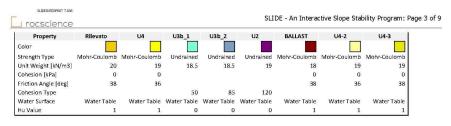
01/10/2021, 10:19:13 36d stat.slim

GENERAL	CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	65 di 87

Li rocscience	SLIDE - An Interactive Slope Stability Program: Page 2 of
Groundwater Analysis	
Groundwater Method: Water Surfaces	
Pore Fluid Unit Weight [kN/m3]: 9.81	
Use negative pore pressure cutoff: Yes	
Maximum negative pore pressure [kPa]: 0	
Advanced Groundwater Method: None	
Random Numbers	
Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3	
Surface Options	
and the state of t	
Surface Type: Circular Search Method: Slope Search	
Number of Surfaces: 5000 Upper Angle: Not Defined	
Lower Angle: Not Defined	
Composite Surfaces: Disabled	
Reverse Curvature: Invalid Surfaces	
Minimum Elevation: Not Defined	
Minimum Depth [m]: 0	
Minimum Area [m2]: 30	
Minimum Weight: Not Defined	
Seismic	
Advanced seismic analysis: No Staged pseudostatic analysis: No Loading	
2 Distributed Loads present	
Distributed Load 1	
Distribution: Constant	
Magnitude [kPa]: 61.3	
Orientation: Vertical	
Load Action: Variable	
Distributed Load 2	
Distribution: Constant Magnitude [kPa]: 61.3	
Orientation: Vertical	
Load Action: Variable	
MITMON.	
Material Properties	
1	


GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio	١
IN17	12	EI2RBRI36D0001B	66 di 87	

Global Minimums

Method: bishop simplified

FS	1.545690
Center:	20.720, 25.820
Radius:	26.714
Left Slip Surface Endpoint:	0.882, 7.929
Right Slip Surface Endpoint:	26.384, -0.286
Resisting Moment:	21256.9 kN-m
Driving Moment:	13752.3 kN-m
Total Slice Area:	57.5924 m2
Surface Horizontal Width:	25.5016 m
Surface Average Height:	2.25838 m

Method: janbu simplified

FS	1.428010
Center:	20.720, 25.820
Radius:	26.714
Left Slip Surface Endpoint:	0.882, 7.929
Right Slip Surface Endpoint:	26.384, -0.286
Resisting Horizontal Force:	692.299 kN
Driving Horizontal Force:	484.801 kN
Total Slice Area:	57.5924 m2
Surface Horizontal Width:	25.5016 m
Surface Average Height:	2.25838 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4601 Number of Invalid Surfaces: 399

Error Codes

Error Code -113 reported for 389 surfaces Error Code -128 reported for 10 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4601 Number of Invalid Surfaces: 399

Error Codes

Error Code -113 reported for 389 surfaces Error Code -128 reported for 10 surfaces

Error Codes

The following errors were encountered during the computation:

-113 = Surface intersects outside slope limits. -128 = Surface volume below minimum volume.

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio

IN17

12

EI2RBRI36D0001B

67 di 87

SLIDE INTERPRET 7.038	
rocscience	SLIDE - An Interactive Slope Stability Program: Page 4 of 9

Slice Data

Relazione Geotecnica

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.387946	1.4699	-47.3394	BALLAST	0	32.0066	18.5795	28.7181	45.9468	0	45.9468	66.109	66.10
2	0.387946	4.3486	-46.1252	BALLAST	0	32.0066	25.8802	40.0028	64.0016	0	64.0016	90.9187	90.918
3	0.515297	10.2782	-44.7468	Rilevato	0	32.0066	28.7677	44.466	71.1423	0	71.1423	99.6569	99.656
4	0.515297	15.4025	-43.2105	Rilevato	0	32.0066	32.1189	49.6458	79.4296	0	79.4296	109.602	109.60
5	0.515297	20.2616	-41.712	Rilevato	0	32.0066	35.3808	54.6878	87.4966	0	87.4966	119.033	119.03
6	0.515297	24.874	-40.2477	Rilevato	0	32.0066	27.7587	42.9063	68.647	0	68.647	92.1445	92.144
7	0.515297	29.1578	-38.8144	Rilevato	0	32.0066	17.268	26.691	42.7036	0	42.7036	56.5945	56.594
8	0.515297	30.6771	-37.4094	Rilevato	0	32.0066	18.39	28.4252	45.4782	0	45.4782	59.5432	59.543
9	0.515297	30.9189	-36.0304	Rilevato	0	32.0066	18.7518	28.9844	46.3729	0	46.3729	60.012	60.01
10	0.515297	33.371	-34.6751	Rilevato	0	32.0066	20.4662	31.6344	50.6128	0	50.6128	64.7711	64.771
11	0.515297	36.9549	-33.3416	Rilevato	0	32.0066	22.9093	35.4106	56.6543	0	56.6543	71.7267	71.726
12	0.515297	39.9333	-32.0283	Rilevato	0	32.0066	25.014	38.6639	61.8594	0	61.8594	77.507	77.50
13	0.515297	40.2383	-30.7335	Rilevato	0	32.0066	25.4596	39.3527	62.9615	0	62.9615	78.0985	78.098
14	0.515297	39.9761	-29.456	Rilevato	0	32.0066	25.5417	39.4795	63.1644	0	63.1644	77.5892	77.589
15	0.515297	39.5587	-28.1943	Rilevato	0	32.0066	25.5159	39.4396	63.1004	0	63.1004	76.7786	76.778
16	0.515297	38.9915	-26.9474	Rilevato	0	32.0066	25.3836	39.2351	62.7732	0	62.7732	75.6774	75.677
17	0.515297	38.2796	-25.7141	Rilevato	0	32.0066	25.146	38.8679	62.1857	0	62.1857	74.2953	74.29
18	0.515297	37.4276	-24.4935	Rilevato	0	32.0066	24.8043	38.3397	61.3408	0	61.3408	72.6413	72.641
19	0.515297	36.4396	-23.2846	Rilevato	0	32.0066	24.3593	37.6519	60.2404	0	60.2404	70.7234	70.723
20	0.515297	35.3193	-22.0866	Rilevato	0	32.0066	23.8118	36.8056	58.8863	0	58.8863	68.5488	68.548
21	0.515297	34.0702	-20.8987	Rilevato	0	32.0066	23.1622	35.8016	57.28	0	57.28	66.1241	66.124
22	0.515297	32.6954	-19.7201	Rilevato	0	32.0066	22.4111	34.6406	55.4223	0	55.4223	63.4555	63.455
23	0.515297	31.1978	-18.5502	Rilevato	0	32.0066	21.5586	33.3229	53.3143	0	53.3143	60.5487	60.548
24	0.515297	29.5799	-17.3882	Rilevato	0	32.0066	20.6049	31.8488	50.9558	0	50.9558	57.4083	57.408
25	0.515297	27.8441	-16.2335	Rilevato	0	32.0066	19.55	30.2182	48.3469	0	48.3469	54.0391	54.039
26	0.515297	25.9925	-15.0856	Rilevato	0	32.0066	18.3937	28.4309	45.4874	0	45.4874	50.4454	50.445
27	0.515297	24.027	-13.9439	Rilevato	0	32.0066	17.1356	26.4863	42.3762	0	42.3762	46.6307	46.630
28	0.515297	21.9495	-12.8078	Rilevato	0	32.0066	15.7753	24.3837	39.012	0	39.012	42.5983	42.598
29	0.514908	19.72	-11.6772	U4	0	30.1666	13.3636	20.656	35.5381	0	35.5381	38.3	38
30	0.514908	17.3928	-10.5516	U4	0	30.1666	11.871	18.3489	31.5689	0	31.5689	33.7802	33.780
31	0.514908	16.9455	-9.43019	U4	0	30.1666	11.6483	18.0046	30.9764	0	30.9764	32.911	32.91
32	0.514908	17.7318	-8.31236	U4	0	30.1666	12.2756	18.9742	32.6447	0	32.6447	34.4382	34.438
33	0.514908	17.4186	-7.19772	U4	0	30.1666	12.1444	18.7715	32.2959	0	32.2959	33.8296	33.829
34	0.514908	13.0977	-6.08581	U4	0	30.1666	9.19673	14.2153	24.4572	0	24.4572	25.4378	25.43
35	0.514908	9.47973	-4.97619	U4	0	30.1666	6.70367	10.3618	17.8273	0	17.8273	18.4109	18.41
36	0.514908	9.58386	-3.86845	U4	0	30.1666	6.82562	10.5503	18.1515	0	18.1515	18.6131	18.613
37	0.514908	10.0338	-2.76215	U4	0	30.1666	7.19717	11.1246	19.1397	0	19.1313	19.4869	19.486
38	0.514908	14.0165	-1.65688	U4	0	30.1666	10.1261	15.6518	26.9287	0	26.9287	27.2216	27.22
39	0.514908	19.1762	0.552224	U4	0	30.1666	13.9538	21.5682	37.1076	0	37.1076	37.2421	37.242
40	0.514908	20 5015	0.552224	U4	0	30.1666	15.0266	23.2264	39.9606	0	39.9606	39.8158	39.815
41	0.514908	20.3013	1.65688	U4	0	30.1666	15.0288	23.3371	40.1509	0	40.1509	39.7142	39.71
42	0.514908	20.4434	2.76215	U4	0	30.1666	15.0988	23.3371	40.1525	0	40.1505	39.424	39.42
43	0.514908	20.0532	3.86845	U4	0	30.1666	15.0266	23.2265	39.9605	0	39.9605	38.9444	38.94
44	0.514908	19.7086	4.97619	U4	0	30.1666	14.88	22.9998	39.5708	0	39.5708	38.2752	38.27
45	0.514908	19.7086	6.08581	U4	0		14.6569	22.6551	38.9775	0	38.9775	37.4148	37.41
46	0.514908	18.2041	7.19772	U4	0	30.1666 30.1666	13.9567	21.5727	37.1154	0	37.1154	35.3528	35.35
47	0.514908	13.0508	8.31236	U4	0	30.1666	10.0846	15.5877	26.8183	0	26.8183	25.3449	25.34
48	0.514908	7.62191	9.43019	U4 U4	0	30.1666	5.93677	9.1764	15.7878	0	15.7878	14.8017	14.80
				U4	0					0			
49	0.514908		10.5516	114	0	30.1666	4.30676 0.931351	6.65692 1.43958	11.4531 2.47677	0	11.4531 2.47677	10.6509 2.78478	2 284

9	Global Minimum Query (janbu simplified) - Safety Factor: 1.42801							
Π								
- 1								

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	68 di 87	

rocscience						
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degree			
- 1	0.207046	1 4600	47.22			

SLIDE - An Interactive Slope Stability Program: Page 5 of 9

rocs	science	9										,	
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.387946	1.4699	-47.3394	BALLAST	0	32.0066	19.6204	28.0181	44.827	0	44.827	66.1187	66.1187
2	0.387946	4.3486	-46.1252	BALLAST	0	32.0066	27.3497	39.0557	62.4862	0	62.4862	90.9318	90.9318
3	0.515297	10.2782	-44.7468	Rilevato	0	32.0066	30.4253	43.4477	69.5131	0	69.5131	99.6707	99.6707
4	0.515297	15.4025	-43.2105	Rilevato	0	32.0066	33.9991	48.551	77.678	0	77.678	109.617	109.617
5	0.515297	20.2616	-41.712	Rilevato	0	32.0066	37.4831	53.5262	85.6381	0	85.6381	119.048	119.048
6	0.515297	24.874	-40.2477	Rilevato	0	32.0066	29.4314	42.0284	67.2423	0	67.2423	92.1558	92.1558
7	0.515297	29.1578	-38.8144	Rilevato	0	32.0066	18.3226	26.1649	41.8619	0	41.8619	56.6013	56.6013
8	0.515297	30.6771	-37.4094	Rilevato	0	32.0066	19.5276	27.8856	44.6149	0	44.6149	59.55	59.55
9	0.515297	30.9189	-36.0304	Rilevato	0	32.0066	19.9261	28.4547	45.5254	0	45.5254	60.0187	60.0187
10	0.515297	33.371	-34.6751	Rilevato	0	32.0066	21.7632	31.078	49.7225	0	49.7225	64.7781	64.7781
11	0.515297	36.9549	-33.3416	Rilevato	0	32.0066	24.3776	34.8114	55.6957	0	55.6957	71.7341	71.7341
12	0.515297	39.9333	-32.0283	Rilevato	0	32.0066	26.635	38.035	60.8531	0	60.8531	77.5148	77.5148
13	0.515297	40.2383	-30.7335	Rilevato	0	32.0066	27.1271	38.7378	61.9777	0	61.9777	78.1061	78.1061
14	0.515297	39.9761	-29.456	Rilevato	0	32.0066	27.2319	38.8874	62.2169	0	62.2169	77.5964	77.5964
15	0.515297	39.5587	-28.1943	Rilevato	0	32.0066	27.2214	38.8724		0		76.7855	76.7855
									62.193		62.193		
16	0.515297	38.9915	-26.9474	Rilevato	0	32.0066	27.0969	38.6946	61.9086	0	61.9086	75.6838	75.6838
17	0.515297	38.2796	-25.7141	Rilevato	0	32.0066	26.8597	38.3559	61.3666	0	61.3666	74.3014	74.3014
18	0.515297	37.4276	-24.4935	Rilevato	0	32.0066	26.5106	37.8574	60.569	0	60.569	72.647	72.647
19	0.515297	36.4396	-23.2846	Rilevato	0	32.0066	26.0504	37.2003	59.5177	0	59.5177	70.7285	70.7285
20	0.515297	35.3193	-22.0866	Rilevato	0	32.0066	25.4799	36.3855	58.2141	0	58.2141	68.5535	68.5535
21	0.515297	34.0702	-20.8987	Rilevato	0	32.0066	24.7993	35.4136	56.6592	0	56.6592	66.1285	66.1285
22	0.515297	32.6954	-19.7201	Rilevato	0	32.0066	24.009	34.2851	54.8536	0	54.8536	63.4596	63.4596
23	0.515297	31.1978	-18.5502	Rilevato	0	32.0066	23.1091	33	52.7975	0	52.7975	60.5522	60.5522
24	0.515297	29.5799	-17.3882	Rilevato	0	32.0066	22.0995	31.5583	50.4909	0	50.4909	57.4115	57.4115
25	0.515297	27.8441	-16.2335	Rilevato	0	32.0066	20.9801	29.9598	47.9334	0	47.9334	54.042	54.042
26	0.515297	25.9925	-15.0856	Rilevato	0	32.0066	19.7504	28.2038	45.1241	0	45.1241	50.4478	50.4478
27	0.515297	24.027	-13.9439	Rilevato	0	32.0066	18.4101	26.2898	42.0618	0	42.0618	46.6328	46.6328
28	0.515297	21.9495	-12.8078	Rilevato	0	32.0066	16.9584	24.2167	38.745	0	38.745	42.6003	42.6003
29	0.514908	19.72	-11.6772	U4	0	30.1666	14.3799	20.5347	35.3295	0	35.3295	38.3015	38.3015
30	0.514908	17.3928	-10.5516	U4	0	30.1666	12.7808	18.2511	31.4005	0	31.4005	33.7812	33.7812
31	0.514908	16.9455	-9.43019	U4	0	30.1666	12.5477	17.9183	30.8281	0	30.8281	32.9122	32.9122
32	0.514908	17.7318	-8.31236	U4	0	30.1666	13.2307	18.8936	32.506	0	32.506	34.439	34.439
33	0.514908	17.4186	-7.19772	U4	0	30.1666	13.0965	18.702	32.1764	0	32.1764	33.8304	33.8304
34	0.514908	13.0977	-6.08581	U4	0	30.1666	9.92332	14.1706	24.3802	0	24.3802	25.4382	25.4382
35	0.514908	9.47973	-4.97619	U4	0	30.1666	7.23734	10.335	17.7811	0	17.7811	18.4112	18.4112
36	0.514908	9.58386	-3.86845	U4	0		7.37313	10.5289	18.1147	0	18.1147	18.6133	18.6133
37	0.514908	10.0338	-2.76215	U4	0	30.1666	7.77894	11.1084	19.1118	0	19.1118	19.4871	19.4871
38	0.514908	14.0165	-1.65688	U4	0	30.1666	10.9509	15.638	26.9048	0	26.9048	27.2216	27.2216
	0.514908	19.1762	0.552224	U4	0		15.0992	21.5618	37.0967	0	37.0967	37.2423	37.2423
40	0.514908	20.5015	0.552224	U4	0	30.1666	16.2697	23.2333	39.9724	0	39.9724	39.8156	39.8156
41	0.514908	20.4494	1.65688	U4	0	30.1666	16.3572	23.3582	40.1872	0	40.1872	39.7141	39.7141
42	0.514908	20.4434	2.76215	U4	0	30.1666	16.3572	23.3734	40.1872	0	40.2134	39.4237	39.4237
43	0.514908	20.0532	3.86845	U4	0	30.1666	16.2997	23.2762	40.0462	0	40.0462	38.944	38.944
44	0.514908	19.7086	4.97619	U4	0		16.151	23.0638	39.6807	0	39.6807	38.2744	38.2744
	0.514908	19.7086	6.08581	U4	0	30.1666 30.1666	15.9192	23.0638	39.0807	0	39.0807		37.4141
45												37.4141	
46	0.514908	18.2041	7.19772	U4	0	30.1666	15.1688	21.6612	37.2676	0	37.2676	35.3519	35.3519
47	0.514908	13.0508	8.31236	U4	0	30.1666	10.9679	15.6623	26.9465	0	26.9465	25.3441	25.3441
48	0.514908	7.62191	9.43019	U4	0	30.1666	6.46125	9.22673	15.8744	0	15.8744	14.8012	14.8012
49	0.514908	5.48451	10.5516	U4	0		4.69061	6.69824	11.5242	0	11.5242	10.6504	10.6504
50	0.514908	1.17627	11.6772	U4	0	30.1666	1.01511	1.44959	2.49398	0	2.49398	2.28418	2.28418

Interslice Data

Global Minimum Query (bishop simplified) - Safety	Factor: 1.54569	

01/10/2021, 10:19:13 36d stat.slim

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL D FERROVIE DELLO S'	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio

IN17

12

EI2RBRI36D0001B

69 di 87

SLIDE INTERPRET 7.038	
rocscience	SLIDE - An Interactive Slope Stability Program: Page 6 of 9

Relazione Geotecnica

l	x	Υ	Interslice	Interslice	Interslice
Slice Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[m]	[m]	[kN]	[kN]	[degrees]
1	0.882487	7.92934	0	0	0
2	1.27043	7.50834	12.1407	0	0
3	1.65838	7.10485	27.9318	0	0
4	2.17368	6.59409	49.4554	0	0
5	2.68897	6.11002	71.3664	0	0
6	3.20427	5.65071	93.3356	0	0
7	3.71957	5.21452	108.985	0	0
8	4.23486	4.8	117.795	0	0
9	4.75016	4.40589	126.249	0	0
10	5.26545	4.03109	133.974	0	0
11	5.78075	3.67461	141.478	0	0
12	6.29605	3.33559	148.888	0	0
13	6.81134	3.01324	155.948	0	0
14	7.32664	2.70687	162.128	0	0
15	7.84194	2.41585	167.358	0	0
16	8.35723	2.13962	171.65	0	0
17	8.87253	1.87766	175.023	0	0
18	9.38783	1.62951	177.506	0	0
19	9.90312	1.39474	179.135	0	0
20	10.4184	1.17299	179.95	0	0
21	10.9337	0.963885	180.002	0	0
22	11.449	0.767126	179.346	0	0
23	11.9643	0.582419	178.043	0	0
24	12.4796	0.409502	176.161	0	0
25	12.9949	0.248134	173.773	0	0
26	13.5102	0.0980998	170.96	0	0
27	14.0255	-0.0407993	167.807	0	0
28	14.5408	-0.168741	164.405	0	0
29	15.0561	-0.285888	160.852	0	0
30	15.571	-0.392307	157.758	0	0
31	16.0859	-0.488219	154.678	0	0
32	16.6008	-0.573741	151,334	0	0
33	17.1157	-0.648971	147.473	0	0
34	17.6306	-0.713998	143.325	0	0
35	18.1455	-0.768897	139.935	0	0
36	18.6604	-0.81373	137.285	0	0
37	19.1754	-0.848548	134.405	0	0
38	19.6903	-0.87339	131.177	0	0
39	20.2052	-0.888285	126.368	0	0
40	20.7201	-0.893248	119.373	0	0
41	21.235	-0.888285	111.443	0	0
42	21.7499	-0.87339	103.076	0	0
43	22.2648	-0.848548	94.3097	0	0
44	22.7797	-0.81373	85.1866	0	0
45	23.2946	-0.768897	75.7563	0	0
45	23.8095	-0.713998	66.0749	0	0
46	24.3244	-0.713998	56.4802	0	0
47	24.8393	-0.573741	49.2737	0	0
	25.3543		49.2737	0	
49		-0.488219			0
50 51	25.8692	-0.392307 -0.285888	41.5544	0	0
51	26.3841	-0.285888	U	U	U

Global Minimum Query (janbu simplified) - Safety Factor: 1.42801

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI36D0001B
70 di 87

- I rocscience

SLIDE - An Interactive Slope Stability Program: Page 7 of 9

rocs	science					
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]	
1	0.882487	7.92934	0	0	0	
2	1.27043	7.50834	11.2689	0	0	
3	1.65838	7.10485	25.8833	0	0	
4	2.17368	6.59409	45.7278	0	0	
5	2.68897	6.11002	65.8301	0	0	
6	3.20427	5.65071	85.8712	0	0	
7	3.71957	5.21452	100.053	0	0	
8	4.23486	4.8	107.975	0	0	
9	4.75016	4.40589	115.507	0	0	
10	5.26545	4.03109	122.314	0	0	
11	5.78075	3.67461	128.838	0	0	
12	6.29605	3.33559	135.172	0	0	
13	6.81134	3.01324	141.079	0	0	
14	7.32664	2.70687	146.104	0	0	
15	7.84194	2.41585	150.194	0	0	
16	8.35723	2.13962	153.363	0	0	
17	8.87253	1.87766	155.634	0	0	
18	9.38783	1.62951	157.037	0	0	
19	9.90312	1.39474	157.611	0	0	
20	10.4184	1.17299	157.401	0	0	
21	10.9337	0.963885	156.459	0	0	
22	11.449	0.767126	154.843	0	0	
23	11.9643	0.582419	152.617	0	0	
24	12.4796	0.409502	149.852	0	0	
25	12.9949	0.248134	146.625	0	0	
26	13.5102	0.0980998	143.018	0	0	
27	14.0255	-0.0407993	139.12	0	0	
28	14.5408	-0.168741	135.026	0	0	
29	15.0561	-0.285888	130.836	0	0	
30	15.571	-0.392307	127.2	0	0	
31	16.0859	-0.488219	123.638	0	0	
32	16.6008	-0.573741	119.821	0	0	
33	17.1157	-0.648971	115.462	0	0	
34	17.6306	-0.713998	110.818	0	0	
35	18.1455	-0.768897	107.053	0	0	
36	18.6604	-0.81373	104.128	0	0	
37	19.1754	-0.848548	100.966	0	0	
38	19.6903	-0.87339	97.4401	0	0	
39	20.2052	-0.888285	92.2085	0	0	
40	20.7201	-0.893248	84.6268	0	0	
41	21.235	-0.888285	76.0606	0	0	
42	21.7499	-0.87339	67.0492	0	0	
43	22.2648	-0.848548	57.6319	0	0	
44	22.7797	-0.81373	47.8543	0	0	
45	23.2946	-0.768897	37.7685	0	0	
46	23.8095	-0.713998	27.4337	0	0	
47	24.3244	-0.648971	17.2087	0	0	
48	24.8393	-0.573741	9.54049	0	0	
49	25.3543	-0.488219	4.85974	0	0	
50	25.8692	-0.392307	1.34195	0	0	
51	26.3841	-0.285888	0	0	0	

List Of Coordinates

Water Table

-60 -3

Distributed Load

GENERAL CONTRACTOR ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36D0001B

71 di 87

SLIDE - An Interactive Slope Stability Program: Page 8 of 9

X Y -3.51039 7.92934 -0.972567 7.92934

Distributed Load

Relazione Geotecnica

X Y 0.967118 7.92934 3.48785 7.92934

Focus Search Line

X Y 26.1571 -0.285888 60 -0.285888

External Boundary

-34.2859 60 -34.2859 60 -32.2859 60 -19.2859 60 -15.2859 60 -10.2859 60 -9.28589 60 -2.28589 60 -0.285888 26.1571 -0.285888 25.5973 0.156761 25.0973 0.156761 24.0973 1.15676 20.5645 1.12676 19.5645 0.126761 18.3145 0.126761 17.3145 1.12676 16.0317 1.12676 6.55 7.09089 5.18066 7.09089 4.1175 -4.1175 7.92934 -5.18066 -6.55 -16.0317 7.13197 7.09089 1.12676 -17.3145 1.12676 -18.3145 0.126761 -19.8145 0.126761 -20.8145 1.12676 -24.0973 1.15676 -25.0973 0.156761 -25.5973 0.156761 -26.1571 -0.285888 -60 -0.285888 -60 -2.28589 -60 -9.28589 -60 -10.2859 -60 -15.2859 -60 -19.2859 -60 -32.2859

Material Boundary

X Y -60 -2.28589 60 -2.28589

Material Boundary

GENERAL	CONTRACTOR

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	72 di 87

rocscience

SLIDE - An Interactive Slope Stability Program: Page 9 of 9

Material Boundary

X Y -60 -9.28589 60 -9.28589

X	Υ
-60	-10.2859
60	-10.2859

Material Boundary

х	Υ
-60	-15.2859
60	-15.2859

Material Boundary

Х	Υ
-60	-19.2859
60	-19 2859

Material Boundary

Ī	х	Y
١	-60	-32.2859
-	60	-32 2859

Material Boundary

х	Y
-5.18066	7.13197
E 19055	7 00000

Material Boundary

X Y
-26.1571 -0.285888
26.1571 -0.285888

GENERAL CONTRACTOR Iricav2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	73 di 87

ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU POST SISMA

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36D0001B 74 di 87

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 9

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

36d sis.slim File Name:

File Name: Sou Security
Slide Modeler Version: 7.038
Project Title: SLIDE - An Interactive Slope Stability Program

01/10/2021, 10:19:13

General Settings

Units of Measurement: Time Units: Permeability Units: days meters/second Failure Direction: Data Output: Left to Right Standard Maximum Material Properties: 20 Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined) A2+M2+R2 (SIS)

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used

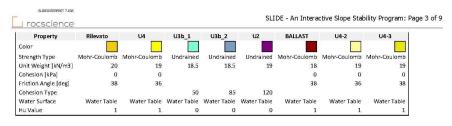
Bishop simplified Janbu simplified

Number of slices: Tolerance: 0.005 Maximum number of iterations: Check malpha < 0.2: Yes Create Interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: Steffensen Iteration:

01/10/2021, 10:19:13 36d sis.slim

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	Foglio		
IN17	12	EI2RBRI36D0001B	75 di 87		


rocscience	SLIDE - An Interactive Slope Stability Program: Page 2 of
Groundwater Analysis	
Groundwater Method: Water Surfaces Pore Fluid Unit Weight [kN/m3]: 9.81	
Use negative pore pressure cutoff: Yes	
Maximum negative pore pressure [kPa]: 0	
Advanced Groundwater Method: None	
Random Numbers	
Author/Authocis	
Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3	
Random Number Generation Method: Park and Miner V.5	
Surface Options	
Surface Type: Circular	
Search Method: Slope Search	
Number of Surfaces: 5000	
Upper Angle: Not Defined	
Lower Angle: Not Defined	
Composite Surfaces: Disabled	
Reverse Curvature: Invalid Surfaces	
Minimum Elevation: Not Defined	
Minimum Depth [m]: -5	
Minimum Area [m2]: 50 Minimum Weight: Not Defined	
Minimum weight: Not befined	
Seismic	
Advanced seismic analysis: No Staged pseudostatic analysis: No	
Loading	
Seismic Load Coefficient (Horizontal): 0.081 Seismic Load Coefficient (Vertical): -0.04 2 Distributed Loads present	
Distributed Load 1	
Distribution: Constant	
Magnitude [kPa]: 12.2 Orientation: Vertical	
Load Action: Variable	
Distributed Load 2	
Distribution: Constant	
Magnítude [kPa]: 12.2	
Orientation: Vertical	
Load Action: Variable	
Material Properties	
I .	

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	76 di 87

Global Minimums

Method: bishop simplified

FS	1.419920
Center:	20.720, 25.820
Radius:	26.714
Left Slip Surface Endpoint:	0.882, 7.929
Right Slip Surface Endpoint:	26.384, -0.286
Resisting Moment:	17504.4 kN-m
Driving Moment:	12327.7 kN-m
Total Slice Area:	57.5924 m2
Surface Horizontal Width:	25.5016 m
Surface Average Height:	2.25838 m

Method: janbu simplified

FS	1.327370
Center:	20.877, 23.022
Radius:	24.045
Left Slip Surface Endpoint:	2.158, 7.929
Right Slip Surface Endpoint:	26.786, -0.286
Resisting Horizontal Force:	526.781 kN
Driving Horizontal Force:	396.859 kN
Total Slice Area:	52.421 m2
Surface Horizontal Width:	24.6281 m
Surface Average Height:	2.12851 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4520 Number of Invalid Surfaces: 480

Error Codes

Error Code -113 reported for 389 surfaces Error Code -128 reported for 91 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4520 Number of Invalid Surfaces: 480

Error Codes:

Error Code -113 reported for 389 surfaces Error Code -128 reported for 91 surfaces

Error Codes

The following errors were encountered during the computation:

-113 = Surface intersects outside slope limits. -128 = Surface volume below minimum volume.

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
1N17
12
EI2RBRI36D0001B
77 di 87

sideinterffeet 7,038
rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 9

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.41992

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.387946	1.4699	-47.3394	BALLAST	0		3.92812	5.57761	8.92377	0	8.92377	13.1865	13.1865
2	0.387946	4.3486	-46.1252	BALLAST	0	32.0066	6.93839	9.85196	15.7624	0	15.7624	22.9788	22.9788
3	0.515297	10.2782	-44.7468	Rilevato	0	32.0066	9.61456	13.6519	21.8421	0	21.8421	31.372	31.372
4	0.515297	15.4025	-43.2105	Rilevato	0	32.0066	12.7445	18.0961	28.9524	0	28.9524	40.9246	40.9246
5	0.515297	20.2616	-41.712	Rilevato	0	32.0066	15.8017	22.4371	35.8977	0	35.8977	49.9824	49.9824
6	0.515297	24.874	-40.2477	Rilevato	0	32.0066	17.0255	24.1749	38.6781	0	38.6781	53.0901	53.0901
7	0.515297	29.1578	-38.8144	Rilevato	0	32.0066	17.6699	25.0899	40.1421	0	40.1421	54.3564	54.3564
8	0.515297	30.6771	-37.4094	Rilevato	0	32.0066	18.8328	26.741	42.7837	0	42.7837	57.1873	57.1873
9	0.515297	30.9189	-36.0304	Rilevato	0	32.0066	19.2179	27.2879	43.6586	0	43.6586	57.6368	57.6368
10	0.515297	33.371	-34.6751	Rilevato	0	32.0066	20.9905	29.8048	47.6855	0	47.6855	62.2065	62.2065
11	0.515297	36.9549	-33.3416	Rilevato	0	32.0066	23.5129	33.3865	53.4159	0	53.4159	68.8855	68.8855
12	0.515297	39.9333	-32.0283	Rilevato	0	32.0066	25.6912	36.4795	58.3645	0	58.3645	74.4359	74.4359
13	0.515297	40.2383	-30.7335	Rilevato	0	32.0066	26.1669	37.1549	59.4452	0	59.4452	75.0027	75.0027
14	0.515297	39.9761	-29.456	Rilevato	0	32.0066	26.2689	37.2998	59.6768	0	59.6768	74.5125	74.5125
15	0.515297	39.5587	-28.1943	Rilevato	0	32.0066	26.2597	37.2867	59.656	0	59.656	73.733	73.733
16	0.515297	38.9915	-26.9474	Rilevato	0	32.0066	26.1406	37.1175	59.3853	0	59.3853	72.6744	72.6744
17	0.515297	38.2796	-25.7141	Rilevato	0	32.0066	25.9126	36.7938	58.8673	0	58.8673	71.3461	71.3461
18	0.515297	37.4276	-24.4935	Rilevato	0	32.0066	25.5767	36.3168	58.1043	0	58.1043	69.7567	69.7567
19	0.515297	36.4396	-23.2846	Rilevato	0	32.0066	25.1336	35.6877	57.0977	0	57.0977	67.9139	67.9139
20	0.515297		-22.0866	Rilevato	0	32.0066	24.5839	34.9072	55.8489	0	55.8489	65.8247	65.8247
21	0.515297	34.0702	-20.8987	Rilevato	0	32.0066	23.928	33.9759	54.3591	0	54.3591	63.4957	63.4957
22	0.515297	32.6954	-19.7201	Rilevato	0	32.0066	23.1663	32.8943	52.6284	0	52.6284	60.9323	60.9323
23	0.515297	31.1978	-18.5502	Rilevato	0	32.0066	22.2987	31.6624	50.6574	0	50.6574	58.1402	58.1402
24	0.515297	29.5799	-17.3882	Rilevato	0	32.0066	21.3252	30.2801	48.446	0	48.446	55.1241	55.1241
25	0.515297		-16.2335	Rilevato	0	32.0066	20.2456	28.7472	45.9934	0	45.9934	51.8882	51.8882
26	0.515297	25.9925	-15.0856	Rilevato	0	32.0066	19.0597	27.0633	43.2992	0	43.2992	48.4368	48.4368
27	0.515297	24.027	-13.9439	Rilevato	0	32.0066	17.7668	25.2275	40.3622	0	40.3622	44.7735	44.7735
28	0.515297	21.9495	-12.8078	Rilevato	0	32.0066	16.3663	23.2389	37.1806	0	37.1806	40.9013	40.9013
29	0.514908	19.72	-11.6772	U4	0	30.1666	13.8787	19.7067	33.905	0	33.905	36.7733	36.7733
30	0.514908	17.3928	-10.5516	U4	0	30.1666	12.3356	17.5156	30.1353	0	30.1353	32.433	32.433
31	0.514908	16.9455	-9.43019	U4	0	30.1666	12.1111	17.1968	29.5868	0	29.5868	31.5984	31.5984
32	0.514908	17.7318	-8.31236	U4	0	30.1666	12.7707	18.1334	31.1981	0	31.1981	33.0639	33.0639
33	0.514908	17.4186	-7.19772	U4	0	30.1666	12.6416	17.9501	30.8828	0	30.8828	32.4793	32.4793
34	0.514908	13.0977	-6.08581	U4	0		9.57892	13.6013	23.4007	0	23.4007	24.422	24.422
35	0.514908	9.47973	-4.97619	U4	0	30.1666	6.98637	9.92009	17.0673	0	17.0673	17.6756	17.6756
36	0.514908	9.58386	-3.86845	U4	0	30.1666	7.11772	10.1066	17.3881	0	17.3881	17.8694	17.8694
37	0.514908	10.0338	-2.76215	U4	0	30.1666		10.6632	18.3458	0	18.3458	18.7081	18.7081
38	0.514908	14.0165	-1.65688	U4	0	30.1666	10.5723	15.0118	25.8274	0	25.8274	26.1332	26.1332
39	0.514908	19.1762	0.552224	U4	0	30.1666	14.5776	20.699	35.6123	0	35.6123	35.7528	35.7528
40	0.514908	20.5015	0.552224	U4	0	30.1666	15.7082	22.3044	38.3742	0	38.3742	38.2228	38.2228
41	0.514908	20.3013	1.65688	U4	0	30.1666	15.7931	22.3044	38.5818	0	38.5818	38.125	38.125
41	0.514908	20.4494	2.76215	U4	0	30.1666	15.804	22.4404	38.6082	0	38.6082	37.8457	37.8457
42	0.514908	20.0532	3.86845	U4	0	30.1666	15.7388	22.4404	38.449	0	38.449	37.3847	37.3847
44	0.514908	19.7086	4.97619	U4	0	30.1666	15.5957	22.3479	38.0996	0	38.0996	36.7416	36.7416
44	0.514908	19.2658	6.08581	U4	0	30.1666	15.3726	21.8278	37.5543	0	37.5543	35.9153	35.9153
45	0.514908	18.2041	7.19772	U4	U	30.1666	14.6484	20.7996	35./853	U	35.7853	33.9354	33.9354
47	0.514908	13.0508	8.31236	U4	0	30.1666	10.5921	15.0399	25.8758	0	25.8758	24.3282	24.3282
48	0.514908	7.62191	9.43019	U4	0	30.1666	6.24011	8.86045	15.2442	0	15.2442	14.2078	14.2078
48	0.514908	5.48451	10.5516	U4 U4	0		4.53026			0		10.2233	10.2233
2000				U4	0	30.1666		6.4326	11.0671	0	11.0671		
50	0.514908	1.1/62/	11.6772	U4	U	30.1666	0.98045	1.39216	2.39517	U	2.39517	2.19254	2.19254

Global Minimum (lobal Minimum Query (janbu simplified) - Safety Factor: 1.32737						

GENERAL CONTRACTOR IFICAV2		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	78 di 87

SLIDE INTERPRET 7.038
rocscience

SLIDE - An Interactive Slope Stability Program: Page 5 of 9

rocscience SLIDE - All The active slope stability Program: Page 5 of S													
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1		5.22474	-49.8279	BALLAST	0	32.0066	5.8541	7.77056	12.4323	0	12.4323	19.3666	19.3666
2	0.484374	9.80541	-47.6777	Rilevato	0	32.0066	9.81949	13.0341	20.8537	0	20.8537	31.6367	31.6367
3	0.484374	14.8087	-45.99	Rilevato	0	32.0066	10.4503	13.8714	22.1933	0	22.1933	33.0111	33.0111
4	0.484374	19.2625	-44.3523	Rilevato	0	32.0066	12.311	16.3412	26.1447	0	26.1447	38.1805	38.1805
5	0.484374	20.9923	-42.7592	Rilevato	0	32.0066	13.6495	18.118	28.9874	0	28.9874	41.6089	41.6089
6	0.484374	21.954	-41.2061	Rilevato	0	32.0066	14.5083	19.2579	30.8113	0	30.8113	43.5151	43.5151
7	0.484374	24.9033	-39.6891	Rilevato	0	32.0066	16.7121	22.1831	35.4914	0	35.4914	49.3606	49.3606
8	0.484374	28.6969	-38.2047	Rilevato	0	32.0066	19.5413	25.9385	41.4997	0	41.4997	56.8798	56.8798
9	0.484374	32.0843	-36.75	Rilevato	0	32.0066	22.1548	29.4076	47.05	0	47.05	63.5938	63.5938
10	0.484374	33.1177	-35.3225	Rilevato	0	32.0066	23.1759	30.763	49.2187	0	49.2187	65.6418	65.6418
11	0.484374	33.4064	-33.9197	Rilevato	0	32.0066	23.6802	31.4324	50.2895	0	50.2895	66.2138	66.2138
12	0.484374	33.5295	-32.5397	Rilevato	0	32.0066	24.0638	31.9415	51.104	0	51.104	66.4578	66.4578
13	0.484374	33.4947	-31.1806	Rilevato	0	32.0066	24.3284	32.2928	51.6661	0	51.6661	66.3886	66.3886
14	0.484374	33.3089	-29.8407	Rilevato	0	32.0066	24.4759	32.4886	51.9794	0	51.9794	66.02	66.02
15	0.484374	32.978	-28.5186	Rilevato	0	32.0066	24.5079	32.531	52.0471	0	52.0471	65.3642	65.3642
16	0.484374	32.5078	-27.2129	Rilevato	0	32.0066	24.4254	32.4215	51.8721	0	51.8721	64.432	64.432
17	0.484374	31.903	-25.9223	Rilevato	0	32.0066	24.2296	32.1616	51.4563	0	51.4563	63.2332	63.2332
18	0.484374	31.1682	-24.6458	Rilevato	0	32.0066	23.9213	31.7524	50.8015	0	50.8015	61.7766	61.7766
19	0.484374	30.3075	-23.3821	Rilevato	0	32.0066	23.5011	31.1947	49.9094	0	49.9094	60.0705	60.0705
20	0.484374	29.3245	-22.1304	Rilevato	0	32.0066	22.9697	30.4893	48.7808	0	48.7808	58.122	58.122
21	0.484374	28.2225	-20.8897	Rilevato	0	32.0066	22.3272	29.6365	47.4163	0	47.4163	55.9376	55.9376
22	0.484374	27.0045	-19.6591	Rilevato	0	32.0066	21.5738	28.6364	45.8161	0	45.8161	53.5233	53.5233
23	0.484374	25.6733	-18.438	Rilevato	0	32.0066	20.7094	27.489	43.9804	0	43.9804	50.8847	50.8847
24	0.484374	24.2313	-17.2255	Rilevato	0	32.0066	19.7338	26.194	41.9084	0	41.9084	48.0266	48.0266
25	0.484374	22.6808	-16.0209	Rilevato	0	32.0066	18.6464	24.7507	39.5994	0	39.5994	44.9535	44.9535
26	0.484374	21.0238	-14.8235	Rilevato	0	32.0066	17.4469	23.1585	37.052	0	37.052	41.6693	41.6693
27	0.492444	19.5379	-13.6228	U4	0	30.1666	15.0786	20.0149	34.4351	0	34.4351	38.0893	38.0893
28	0.492444	17.5528	-12.4184	U4	0	30.1666	13.6663	18.1403	31.2099	0	31.2099	34.2192	34.2192
29	0.492444	16.5406	-11.2195	U4	0	30.1666	12.9916	17.2446	29.6691	0	29.6691	32.246	32.246
30	0.492444	17.3654	-10.0255	U4	0	30.1666	13.7589	18.2632	31.4214	0	31.4214	33.8538	33.8538
31	0.492444	17.9978	-8.83595	U4	0	30.1666	14.3848	19.0939	32.8505	0	32.8505	35.0866	35.0866
32	0.492444	15.2376	-7.65022	U4	0	30.1666	12.285	16.3068	28.0554	0	28.0554	29.7056	29.7056
33	0.492444	11.0586	-6.46777	U4	0	30.1666	8.99372	11.938	20.539	0	20.539	21.5586	21.5586
34	0.492444	9.9945	-5.28808	U4	0	30.1666	8.19945	10.8837	18.7252	0	18.7252	19.4841	19.4841
35	0.492444	10.3733	-4.11064	U4	0	30.1666	8.58495	11.3954	19.6055	0	19.6055	20.2225	20.2225
36	0.492444	11.7298	-2.93494	U4	0	30.1666	9.7932	12.9992	22.3649	0	22.3649	22.8669	22.8669
37	0.492444	16.4968	-1.76047	U4	0	30.1666	13.8953	18.4442	31.7328	0	31.7328	32.1599	32.1599
38		20.4734	0.586741	U4	0	30.1666	17.3988	23.0947	39.734	0	39.734	39.9122	39.9122
39	0.492444	20.8359	0.586741	U4	0	30.1666	17.8664	23.7153	40.8017	0	40.8017	40.6187	40.6187
40	0.492444	20.7827	1.76047	U4	0	30.1666	17.9829	23.8699	41.0675	0	41.0675	40.5148	40.5148
41	0.492444	20.6349	2.93494	U4	0	30.1666	18.0192	23.9181	41.1507	0	41.1507	40.2268	40.2268
42	0.492444	20.3924	4.11064	U4	0	30.1666	17.9732	23.8571	41.0456	0	41.0456	39.7539	39.7539
43	0.492444	20.0548	5.28808	U4	0	30.1666	17.8425	23.6836	40.7471	0	40.7471	39.0956	39.0956
44	0.492444	19.6216	6.46777	U4	0	30.1666	17.6244	23.3941	40.2489	0	40.7471	38.2509	38.2509
0.20					0								
45	0.492444	18.574	7.65022	U4		30.1666	16.8459	22.3608	38.4713	0	38.4713	36.2086	36.2086
46	0.492444	13.7686	8.83595	U4	0	30.1666	12.6116	16.7403	28.8014	0	28.8014	26.8409	26.8409
47	0.492444	8.60087	10.0255	U4	0	30.1666	7.95792	10.5631	18.1735	0	18.1735	16.7666	16.7666
48	0.492444	6.61861	11.2195	U4	0	30.1666	6.18714	8.21263	14.1296	0	14.1296	12.9024	12.9024
49	0.492444	2.62472	12.4184	U4	0	30.1666	2.47957	3.29131	5.66263	0	5.66263	5.11662	5.11662
50	0.492444	0.55831	13.6228	U4	0	30.1666	0.533157	0.707697	1.21758	0	1.21758	1.08837	1.08837

Interslice Data

GENERAL CONTRACTOR IFICAV2		A SORVEGLIA TAL O FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio

IN17

SLIDEDHTERPRET 7.038

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 6 of 9

12

EI2RBRI36D0001B

79 di 87

rocs	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	0.882487	7.92934	0	0	0
2	1.27043	7.50834	2.35579	0	0
3	1.65838	7.10485	6.38296	0	0
4	2.17368	6.59409	13.4295	0	0
5	2.68897	6.11002	22.1413	0	0
6	3.20427	5.65071	32.1482	0	0
7	3.71957	5.21452	42.2827	0	0
8	4.23486	4.8	52.2016	0	0
9	4.75016	4.40589	61.8675	0	0
10	5.26545	4.03109	70.8569	0	0
11	5.78075	3.67461	79.7692	0	0
12	6.29605	3.33559	88.7857	0	0
13	6.81134	3.01324	97.6282	0	0
14	7.32664	2.70687	105.649	0	0
15	7.84194	2.41585	112.752	0	0
16	8.35723	2.13962	118.937	0	0
17	8.87253	1.87766	124.215	0	0
18	9.38783	1.62951	128.604	0	0
19	9.90312	1.39474	132.13	0	0
20	10.4184	1.17299	134.824	0	0
21	10.9337	0.963885	136.726	0	0
22	11.449	0.767126	137.882	0	0
23	11.9643	0.582419	138.344	0	0
24	12.4796	0.409502	138.168	0	0
25	12.4796	0.409302	137.42	0	0
26	13.5102	0.0980998	136.17	0	0
26	14.0255	-0.0407993		0	0
28	14.5408	-0.0407993	134.492 132.47	0	0
				-	
29	15.0561	-0.285888	130.191	0	0
30	15.571	-0.392307	128.268	0	0
31	16.0859	-0.488219	126.231	0	0
32	16.6008	-0.573741	123.913	0	0
33	17.1157	-0.648971	121.137	0	0
34	17.6306	-0.713998	118.063		
35	18.1455	-0.768897	115.488	0	0
36	18.6604	-0.81373	113.433	0	0
37	19.1754	-0.848548	111.159	0	0
38	19.6903	-0.87339	108.57	0	0
39	20.2052	-0.888285	104.66	0	0
40	20.7201	-0.893248	98.9025	0	0
41	21.235	-0.888285	92.3044	0	0
42	21.7499	-0.87339	85.2743	0	0
43	22.2648	-0.848548	77.8421	0	0
44	22.7797	-0.81373	70.0437	0	0
45	23.2946	-0.768897	61.9215	0	0
46	23.8095	-0.713998	53.5245	0	0
47	24.3244	-0.648971	45.1482	0	0
48	24.8393	-0.573741	38.8182	0	0
49	25.3543	-0.488219	34.9268	0	0
50	25.8692	-0.392307	31.9826	0	0
51	26.3841	-0.285888	0	0	0

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica Progetto IN17 Lotto 12 Codifica
EI2RBRI36D0001B

Foglio 80 di 87

- I rocscience

SLIDE - An Interactive Slope Stability Program: Page 7 of 9

Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	2.15817	7.92934	0	0	(
2	2.85824	7.1001	6.63546	0	
3	3.34262	6.56819	13.7669	0	3
4	3.82699	6.06678	21.0338	0	(
5	4.31137	5.59324	29.0133	0	10
6	4.79574	5.14534	37.0874	0	(
7	5.28012	4.72122	44.9081	0	
8	5.76449	4.31924	53.0994	0	
9	6.24886	3.93801	61.7821	0	
10	6.73324	3.57631	70.6707	0	
11	7.21761	3.23307	79.0245	0	
12	7.70199	2.90734	86.6442	0	(
13	8.18636	2.59828	93.5014	0	(
14	8.67074	2.30516	99.5783	0	
15	9.15511	2.0273	104.867	0	
16	9.63948	1.7641	109.369	0	(
17	10.1239	1.51503	113.095	0	
18	10.6082	1.2796	116.061	0	j
19	11.0926	1.05736	118.291	0	1
20	11.577	0.847936	119.818	0	1
21	12.0614	0.650953	120.68	0	i i
22	12.5457	0.466089	120.92	0	
23	13.0301	0.293047	120.588	0	9
24	13.5145	0.13156	119.742	0	
25	13.9989	-0.0186148	118.442	0	
26	14.4832	-0.157698	116.758	0	
27	14.9676	-0.285888	114.762	0	
28	15.46	-0.40523	113.031	0	
29	15.9525	-0.513667	111.109	0	
30	16.4449	-0.611347	108.951	0	
31	16.9374	-0.698404	106.319	0	
32	17.4298	-0.774955	103.21	0	
33	17.9223	-0.8411	100.252	0	
34	18.4147	-0.896927	97.8669	0	
35	18.9072	-0.942506	95.4933	0	
36	19.3996	-0.977897	92.801	0	
37	19.892	-1.00314	89.4945	0	
38	20.3845	-1.01828	84.4703	0	
39	20.8769	-1.02332	77.7635	0	
40	21.3694	-1.01828	70.4497	0	
41	21.8618	-1.00314	62.6584	0	
42	22.3543	-0.977897	54.42	0	
43	22.8467	-0.942506	45.7708	0	
44	23.3391	-0.896927	36.7541	0	
45	23.8316	-0.8411	27.4199	0	
46	24.324	-0.774955	18.0863	0	
47	24.8165	-0.698404	10.788	0	
48	25.3089	-0.611347	5.98483	0	
49	25.8014	-0.513667	2.09478	0	
50	26.2938	-0.40523	0.472638	0	
51	26.7863	-0.285888	0.472030	0	

List Of Coordinates

Water Table

-60 -3

Distributed Load

X Y
-3.51039 7.92934
-0.972567 7.92934

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	81 di 87

SLIDEDMERSRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 8 of 9

Distributed Load

х	Υ
0.967118	
3.48785	7.92934

Focus Search Line

Х	Y
26.1571	-0.285888
60	-0.285888

External Boundary

Х	Y
-60	-34.2859
60	-34.2859
60	-32.2859
60	-19.2859
60	-15.2859
60	-10.2859
60	-9.28589
60	-2.28589
60	-0.285888
26.1571	-0.285888
25.5973	0.156761
25.0973	0.156761
24.0973	1.15676
20.5645	1.12676
19.5645	0.126761
18.3145	0.126761
17.3145	1.12676
16.0317	1.12676
6.55	7.09089
5.18066	7.09089
4.1175	7.92934
-4.1175	7.92934
-5.18066	7.13197
-6.55	7.09089
-16.0317	1.12676
-17.3145	1.12676
-18.3145	0.126761
-19.8145	0.126761
-20.8145	1.12676
-24.0973	1.15676
-25.0973	0.156761
-25.5973	0.156761
-26.1571	-0.285888
-60	-0.285888
-60	-2.28589
-60	-9.28589
-60	-10.2859
-60	-15.2859
-60	-19.2859
-60	-32.2859

Material Boundary

Х	Y
-60	-2.28589
60	-2.28589

Material Boundary

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	82 di 87

x y
-60 -9.28589
60 -9.28589

SLIDE - An Interactive Slope Stability Program: Page 9 of 9

Material Boundary

Х	Y
-60	-10.2859
60	-10.2859

Material Boundary

х	Y
-60	-15.2859
60	-15.2859

Material Boundary

ì	Х	Y
	-60	-19.2859
١	60	-19.2859

Material Boundary

Х	Υ
-60	-32.2859
60	-32.2859

Material Boundary

Х	Y
-5.18066	7.13197
E 100CC	7 00000

Material Boundary

х	Υ
-26.1571	-0.285888
26.1571	-0.285888

GENERAL CONTRACTOR Iricav2		SORVEGLIA TALI FERROVIE DELLO ST	ERR	
Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36D0001B	83 di 87

ALLEGATO 5 - TABULATI DI SETTLE 3D - ANALISI SLE

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36D0001B	84 di 87

Page 1 of 3

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri36d.s3z Project Title: Rilevato Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq Groundwater method: Water Table Water Unit Weight: 9.81 kN/m³ Depth to water table: 3 [m]

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.111757
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.111757
Loading Stress [kPa]	0	234.776
Effective Stress [kPa]	-0	376.658
Total Stress [kPa]	0	680.768
Total Strain	-0	0.0182939
Pore Water Pressure [kPa]	0	304.11
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	1.9	376.595
Over-consolidation Ratio	1	1.26248
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 13 m Width: 100 m Rotation angle: 0 degrees Load Type: Flexible

Ri36d.s3z 08/06/2021, 14:59:10

Rilevato ferroviario AV da pk 21+991,51 a pk 22+748,51 Relazione Geotecnica

Progetto	Lotto	Codifica
IN17	12	EI2RBRI36D0001B

SETTLE30 2.003

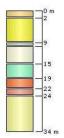
Page 2 of 3

Foglio

85 di 87

X [m]	Y [m]
-6.49696	-50
6.50304	-50
6.50304	50
-6.49696	50

Embankments


1. Embankment

Center Line: (0, -50) to (0, 50) Number of Layers: 1 Near End Angle: 90 degrees Far End Angle: 90 degrees Base Width: 37

L	ayer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m³)	Right Angle (deg)	Right Bench Width (m)
	1	Stage 1	0	34	7.8	20	34	0

Soil Layers

Layer#	Туре	Thickness [m]	Depth [m]
1	u4	2	0
2	U4-2	7	2
3	3b-1	1	9
4	U4-3	5	10
5	3b-2	4	15
6	U4-4	3	19
7	u2	2	22
8	U2-6	10	24

Soil Properties

Property	3b-1	u2	u4	3b-2	U4-3	U4-2	U4-4	U2-6
Color								

Ri36d.s3z 08/06/2021, 14:59:10

 Progetto
 Lotto
 Codifica

 IN17
 12
 EI2RBRI36D0001B

Foglio 86 di 87

Page 3 of 3

Unit Weight [kN/m ³]	18	18	19	18	18	18	19	19
Immediate Settlement	Enabled							
Es [kPa]	8000	25000	20000	15000	60000	50000	1e+006	150000
Esur [kPa]	6000	25000	20000	15000	60000	50000	100000	150000

Query Points

Point #	(X,Y) Location	Number of Divisions
1	0.00303833, 4.9738e-014	Auto: 81

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-40.0	40.0	100	Auto: 57

Ri36d.s3z 08/06/2021, 14:59:10

ALLEGATO 6- VERSIONI DEI SOFTWARE UTILIZZATI

- 1) SLIDE
- 2) SETTLE 3D VER 200.3