COMMITTENTE:

SORVEGLIANZA:

SCALA

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE **OBIETTIVO N. 443/01**

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

RILEVATI

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 **GENERALE**

Relazione Geotecnica

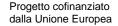
IL PROGETTISTA INTEGRATORE

Ind Giovanni MALAVENDA

GENERAL CONTRACTOR

Consorzio

in gen	overni MALAVENDA Sulfatine degli peri di Venezia n. 4289 Offobre 2021	- //	Due Carmond Journal Jobre 202		a:			-
		ASE ENTE	TIPO D		RA/DISCIPLINA	PROGR.	REV.	FOGLIO
I N	1 7 1 2	E I 2	R	B R I	3 6 E 0	0 0	1 A	D
						VIST	TO CONSC	Drzio Iricav due
					Fi	rma		Data
<	Consorz	zio IricA1	/ Due		Luca F	RANDOLFI	-	Ottobre 2021
Proge	ettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
Α	EMISSIONE	M. Conti	Ottobre	V. Pastore	Ottobre	P. Ascari	Ottobre	P. Ascari
	EIVIIOOIOIVE	Moria Carli	2021	Valericaforthe	2021	Parls Africa	2021	To star March
								Data: Ottobre 2021


DIRETTORE LAVORI

CIG. 8377957CD1

CUP: J41E91000000009

File: IN1712EI2RBRI36E0001A 01

Cod. origine:

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI36E0001A
 2 di 309

INDICE

1 INT	RODUZIONE	5
2 DO	CUMENTI DI RIFERIMENTO	6
2.1	Documentazione di progetto	6
2.2	Normativa e standard di riferimento	
2.3	Bibliografia	8
3 INQ	UADRAMENTO DELL'OPERA	9
3.1	Geometria del rilevato	9
4 CAF	RATTERIZZAZIONE GEOTECNICA	13
4.1	Indagini disponibili	13
4.2	Inquadramento stratigrafico	14
4.3	Livello di falda	16
4.4	Condizioni geotecniche del sito	17
4.4.	1 Tratto da pk 22+748 a pk 23+000	17
4.4.2	2 Tratto da pk 23+000 a pk 23+527	27
4.5	Sintesi del modello geotecnico di riferimento	36
4.6	Materiale da rilevato	37
5 CAF	RATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	38
5.1	Sollecitazione sismica di progetto	38
5.1.	1 Vita Nominale	38
5.1.2	2 Classe d'uso	38
5.1.3	3 Periodo di riferimento per l'azione sismica	39
5.1.4	4 Categorie di Sottosuolo	39
5.1.	5 Condizioni topografiche	39
5.1.6	Accelerazione sismica di riferimento	40
5.2	Suscettibilità alla liquefazione	40
5.2.	1 CRR da correlazione su prove CPT	42
5.2.2	2 CRR da correlazione su prove SPT	44
5.2.3	3 Commento ai risultati delle analisi	48
6 VER	RIFICA GEOTECNICA DEL RILEVATO	62
6.1	Criteri di verifica agli Stati Limite	62
6.1.	1 Stati limite ultimi (SLU)	62
6.1.2	2 Stati limite di esercizio (SLE)	64
6.1.3	3 Verifiche in condizioni sismiche	64
6.2	Azioni di progetto	64
6.2.	1 Azioni permanenti	65

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI36E0001A
 3 di 309

6.2.2 Azioni variabili	65
6.2.3 Azione sismica	65
6.3 Verifiche e risultati SLU	66
6.3.1 Premessa	66
6.3.2 Verifiche SLU in condizione statiche e sismiche	66
6.4 Verifica e risultati SLE – sezioni senza muri	72
6.4.1 Premessa	72
6.4.2 Dettaglio dell'analisi	72
6.5 Verifica e risultati SLE – tratto da pk 23+000 a pk 23+527 con presenza di muri	80
6.5.1 Premessa	80
6.5.2 Metodologia di calcolo	80
6.5.3 Schematizzazione e risultati	82
7 RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI	92
7.1 Introduzione	92
7.2 Analisi agli stati limite	93
7.3 Metodologia di calcolo	95
7.3.1 Portata laterale	96
7.3.1.1 Depositi coesivi	96
7.3.1.2 Depositi incoerenti	97
7.3.2 Portata di base	97
7.3.2.1 Depositi coesivi	97
7.3.2.2 Depositi incoerenti	97
7.3.2.3 Terreni stratificati	98
7.4 Stratigrafia di calcolo e fattori parziali	98
7.5 Risultati	98
7.5.1 PALI D = 1000 mm- tratto da pk 22+748 a pk 23+000	99
7.5.2 PALI D = 800 mm- tratto da pk 23+000 a pk 23+527	103
7.5.3 PALI D = 1000 mm- tratto da pk 23+000 a pk 23+527	107
7.5.4 PALI D = 1200 mm- tratto da pk 23+000 a pk 23+527	111
8 CONCLUSIONI E RACCOMANDAZIONI	115
Allegati	116
ALLEGATO 1 - PROFILO STRATIGRAFICO	117
ALLEGATO 2 - SONDAGGI	
ALLEGATO 3 - TABULATI DI SLIDE – ANALISI SLU STATICA	_
ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU post sisma	
ALLEGATO 5 - TABULATI DI SETTLE 3D – ANALISI SLE	

GENERAL CONTRACTOR	ALTA SORVEGLIANZA					
Consorzio Iric/AV Due	GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	4 di 309		

ALLEGATO 6 - TABULATI DI CALCOLO CAPACITÀ PORTANTE	228
ALLEGATO 7 - TABULATI PLAXIS	279

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	5 di 309	

1 INTRODUZIONE

Il presente documento costituisce la Relazione Geotecnica del rilevato RI36E, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato si estende tra il km 22+748,51 e il km 23+527,15.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato, ricavato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta.

Le verifiche discusse sono state eseguite ai sensi della Normativa vigente (v. capitolo seguente) e gli interventi proposti sono volti a garantire la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	6 di 309

2 DOCUMENTI DI RIFERIMENTO

2.1 Documentazione di progetto

- [1] Sezioni di Progetto Esecutivo
- [2] IN1710EI2RBGE0000003A Relazione Geotecnica (da 21+990 a 33+500)
- [3] IN1710EI2LZGE0000017A Planimetria con ubicazione indagini e profilo geotecnico 7 di 11
- [4] IN1710EI2RHGE0000006B Relazione sulla modellazione sismica del sito e pericolosità sismica di base 2/2
- [5] IN1710El2P5GE0000001A Planimetrie con classificazione sismica del territorio 7 di 11
- [6] IN1710EI2RHGE0000004A Relazione idrogeologica 2/2
- [7] IN1710EI2RHGE0000007A-8A Relazione di sintesi dei sondaggi e delle prove eseguite
- [8] IN1710EI2PRGE0000001A-2A, Risultati Indagini in sito di Progetto SOCOTEC
- [9] IN1710EI2PRGE0000003A-4A, Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [10] IN1710EI2PRGE0000005A-8A, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC
- [11] IN1710EI2PRGE0000009A-12A, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING- GEOLAVORI
- [12] IN1710EI2IGGE0000001A-2A, Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC
- [13] IN1710El2IGGE0000003A-4A, Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING GEOLAVORI

2.2 Normativa e standard di riferimento

- [14] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni",
 G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [15] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [16] UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [17] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [18] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [19] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [20] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	7 di 309	

- [21] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [22] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 "Opere in terra e scavi" RFI
- [23] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [24] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	8 di 309	

2.3 Bibliografia

- [25] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [26] Bentley (2017), PLAXIS 3D, 2017
- [27] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [28] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [29] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [30] Rocscience (2017), Slide ver 7.0, 2017
- [31] Rocscience (2009), Settle 3D ver 2.0, 2009
- [32] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [33] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [34] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [35] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.
- [36] Priebe H.J., "Vibroreplacement to prevent earthquake induced liquefaction". Ground Engineering, September 1998.
- [37] Idriss I.M. and Boulanger R.W. (2008), "Soil liquefaction during earthquakes".

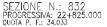
3 INQUADRAMENTO DELL'OPERA

Il rilevato ferroviario in esame si estende tra il km 22+748 e il km 23+527 per una lunghezza totale di ca. 780 m. Tra le pk 22+850 e 22+900 è presente un muro di sostegno su pali in sinistra (indicato nel seguito come "muro 1"), così come tra la pk 23+225 e la pk 23+528 il rilevato corre sostenuto da muri sia in sinistra sia in destra (detti "muro 2" e "muro3"). Si rimanda alle relazioni di calcolo dedicate per maggiori informazioni.

Si segnala da subito che, al fine di limitare ed accelerare i cedimenti del rilevato nella zona in cui questo sarà di altezza elevata, e realizzato su terreni più cedevoli e soggetti allo sviluppo fenomeni di consolidazione nel tempo, dopo la progressiva pk 23+000 saranno realizzate colonne di ghiaia aventi diametroD = 800 m e disposte su una maglia quadrata di lato i= 2.5 m

3.1 Geometria del rilevato

Il rilevato, presenta una sezione che lungo il tracciato varia tra queste tre tipologie:


- doppia scarpata in destre e sinistra con pendenza 2/3
- presenza di un muro (su pali) da un solo lato del rilevato;
- presenza di due muri (su pali) su entrambi i lati del rilevato.

In particolare possono distinguersi le sequenti zone omogenee, ai fini della progettazione:

- zona 1. dalla sezione pk 22+748 alla sezione pk 22+850 il rilevato è privo di muri. La massima altezza del rilevato è pari a 6.9 m (Figura 1
- zona 2. dalla sezione 22+850 alla sez 22+888.805 il rilevato presenta un muro definito nel seguito "muro 1", in sinistra, sul lato del binario dispari. La massima altezza del rilevato è pari a 7.4 m; (Figura 2
- zona 3. dalla sezione pk 22+888.805 alla sezione pk 23+150 il rilevato è privo di muri La massima altezza del rilevato è pari a 7.8 m (Figura 3)
- zona 4. dalla sezione 23+150 alla sez 23+225 il rilevato presenta un muro definito nel seguito "muro 2", in destra, sul lato del binario pari. La massima altezza del rilevato è pari a 6.4 m (Figura 4);
- zona 5. dalla sezione 23+225 alla sez 23+527 il rilevato corre tra due muri, in destra e in sinistra, nel seguito "muro 2" (quello nei pressi del binario pari) e muro 3", in destra, quello nei pressi del binario dispari. La massima altezza del rilevato è pari a 7.0 m (Figura 5

Si riportano nel seguito le sezioni più significative ai fini dell'analisi dell'opera, (da Figura 1 a Figura 5),

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	10 di 309

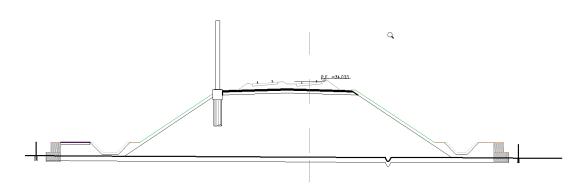


Figura 1 – Sezione di riferimento zona 1 (pk 22+825)

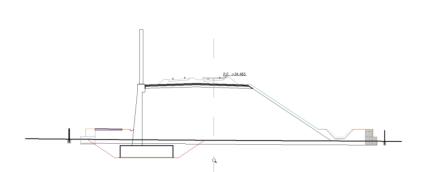



Figura 2 – Sezione di riferimento zona 2 (pk 22+875)

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	11 di 309

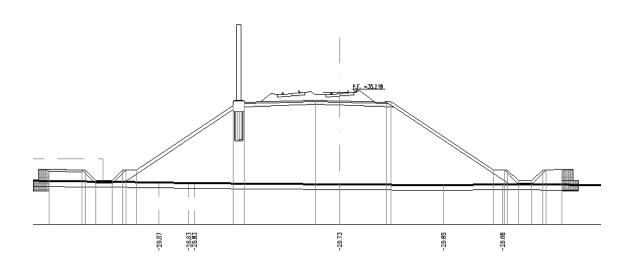


Figura 3 – Sezione di riferimento zona 3 (pk 22+975)

SEZIONE N.: 846 PROGRESSIVA: 23+175.000 QUOTA P. F.: 35.331

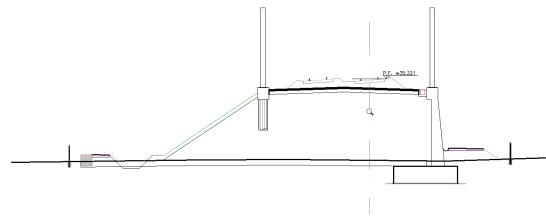


Figura 4 – Sezione di riferimento zona 4 (pk 23+175)

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	12 di 309

SEZIONE N.: 850 PROGRESSIVA: 23+275.000 QUOTA P. F.: 34.702



Figura 5 – Sezione di riferimento zona 5 (pk 23+275)

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	13 di 309	

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Indagini disponibili

L'ubicazione delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 7, estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [3]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [7] - [13]). Il risultato delle indagini è riportato in ALLEGATO 2.

Si segnala che le indagini qui considerate non sono solo quelle di stretta pertinenza del rilevato, ma anche quelle eseguite nelle aree circostanti, e più in generale, in questa tratta del tracciato, che evidenzia una suzione stratigrafica molto omogena. Si ritiene quindi che il dettaglio dell'indagine sia adeguato allo scopo progettuale.

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Sono indicate con diversi colori di sfondo le indagini afferenti alle due aree omogenee dal punto di vista stratigrafico (cfr par 4.4.1 e 4.4.2). Nei seguenti paragrafi si riporterà la caratterizzazione geotecnica, ottenuta basandosi sui risultati delle indagini relative all'aera di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2]).

Progressiva	ID indagini	Campagna
pk	-	anno
22+770	CPTU29Vbis	2015
22+770	BH17	2015
22+900	CPTU30V	2015
23+065	CPTU-PE-24	2020-2021
23+070	CPTU31V	2015
23+175	BH-PE-45	2020-2021
23+200	BH18V	2015
23+250	P14	2015
23+250	P14 bis	2015
23+253	PT-PE-16	2020-2021
23+330	CPTU32V	2015
23+363	BH-PE-46	2020-2021
23+363	CPTU-PE-25	2020-2021
23+470	CPTU33V	2015
23+498	BH-DH-PE-47	2020-2021

4.2 Inquadramento stratigrafico

Dal punto di vista stratigrafico, la situazione dei terreni di fondazione lungo la tratta in esame può essere riferita a due situazioni limite. La prima, del tutto simile a quella della WBS 36D, è caratterizzata dalla presenza di una coltre superficiale di sabbie (nel seguito Unità 4) a densità crescente con la profondità, fino a circa 15.0 m, fatta salva la presenza di uno strato di spessore metrico di terreni limoso/argillosi superficiali (unità 3b) rinvenibile tra i 9 ed i 10 m di profondità dal piano campagna. Gli stessi limi argillosi si ritrovano per uno spessore più rilevante tra i 15 ed i 19 m dal p.c. Al di sotto di tali profondità si rinvengono ancora le sabbie di cui sopra, ancora più addensate, fino ad una profondità di circa 30 m. Da qui in poi si ritrova la base della colonna stratigrafica nell'ambito delle profondità di interesse, costituita dalle argille consistenti denominate "Unità 2". Questa situazione caratterizza la WBS dalla progressiva iniziale, ovvero da pk 22+748, fino all'incirca alla pk 23+000.

Nella seconda parte della WBS, ovvero a partire dalla pk 23+000 e fino alla pk 23+527, i terreni di fondazione del rilevato sono invece caratterizzati dalla presenza di una coltre superficiale di spessore di 8-10 m circa di limi argillosi (unità 3b), sovrastanti uno strato di sabbie (Unità 4) di spessore variabile tra i 10 e i 4 m. Al di sotto di questo strato, si ritrovano ancora, per spessori di 3-4 m limi argillosi (Unità 3b) che sovrastano a loro volta uno spesso strato di

GENERAL CONTRACTOR Consorzio Iric/W Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	15 di 309

sabbie. Queste si ritrovano fino alla massima profondità di interesse per il dimensionamento e la verifica delle opere trattate in questo documento.

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]).

Nella Figura 6 si riporta il profilo geotecnico specifico per il rilevato RI22, estratto dalla Planimetria e Profilo Geotecnico Tav. 4 di 11 (Doc. Rif. [3]).

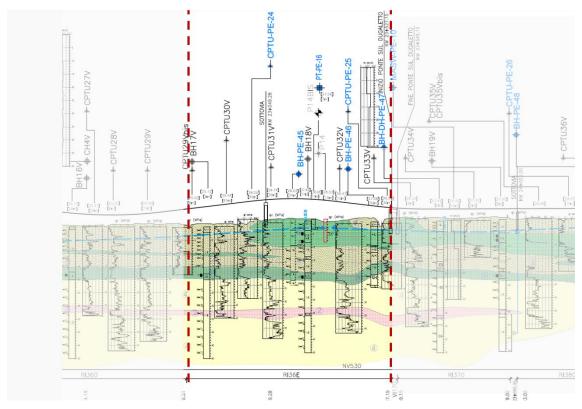


Figura 6 - Profilo Geotecnico Rilevato RI36E, estratto dal Profilo Geotecnico Generale (Doc. Rif. [3])

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	16 di 309	

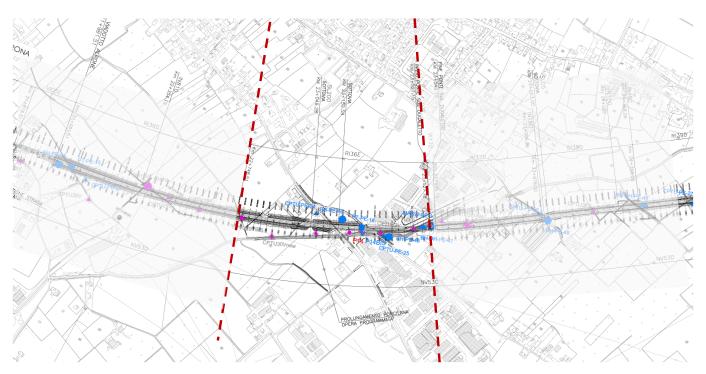


Figura 7 - Planimetria Rilevato RI36E, estratto dalla Planimetria Generale (Doc. Rif. [3])

4.3 Livello di falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Ref. [6]). Quest'ultimi indicano una sostanziale stabilità nelle escursioni stagionali.

Ai fini progettuali si assume perciò una falda di progetto posta a 3.0 m di profondità dal piano campagna.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	17 di 309	

4.4 Condizioni geotecniche del sito

Come definito dalla sezione stratigrafica, il tratto in oggetto può essere caratterizzato da due stratigrafie "di progetto" alle quali si farà riferimento nel seguito del documento.

La WBS sarà pertanto divisa idealmente in due tratti:

- Da pk 22+748 a pk 23+000
- Da pk 23+000 a pk 23+527.

4.4.1 Tratto da pk 22+748 a pk 23+000

Nel primo tratto i terreni di fondazione del rilevato e dei muri sono essenzialmente caratterizzati dalla presenza di materiali granulari in superficie afferenti alla cosiddetta "Unità 4" (vedasi a tal proposito la Relazione Geotecnica Generale) fino a circa 15 m di profondità e poi al di sotto dei 19 m di profondità. Inframmezzati a questi banchi di sabbie sono stati ritrovati strati di materiali a grana più fine, attribuibili all'unità 3b (vedasi anche Figura 7)

Negli strati più superficiali le sabbie si presentano mediamente a molto addensate, caratterizzate da un numero di colpi SPT variabile tra 5 e 20, crescente con la profondità. Negli strati più profondi il numero di colpi aumenta fino a 50. I valori di densità relativa risultano maggiori se si riferisce alle prove CPT, che consentono di individuare con maggiore precisone il livello sabbioso e lue caratteristiche, mentre il risulòtato della prova SPT èpuò essere influenzato dalla presenza di alternanze. Le evidenze sperimentali conducono a stimare valori di densità relativa compresi tra il 50% ed il 70% per gli strati più superficiali, densità a loro volta correlabili ad angoli di attrito maggiori di 34° fino a 4 m di profondità e sicuramente maggiori di 36° al di sotto dei 4.m di profondità.

Le sabbie ancora più profonde esibiscono una resistenza ancora maggiore, descrivibile con angoli di attrito maggiori di 38°.

Per quanto riguarda la valutazione delle resistenze non drenate degli strati a grana fine, le interpretazioni delle prove CPT forniscono valori che collimano con quanto visto nella WBS precedente (RI36D) in cui i livelli argillosi si presentano mediamente compatti, con resistenze al taglio non drenate minime $c_u \approx 50$ kPa negli strati più superficiali e più alte ($c_u \approx 80$ kPa) negli strati più profondi (Figura 14).

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove CH, SPT e infine CPT, conferma la presenza di materiali incoerenti da poco a mediamente addensati fino a 15 m pc. Per queste sabbie superficiali si stimano valori di Vs pari a 180-220 m/s. A profondità maggiori, sempre nelle sabbie, le velocità sono pari a 280 m/s. Sulla base dei valori di Vs, ed osservando anche le interpretazioni delle prove CPT, si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per le sabbie più superficiali si può considerare un valore medio cautelativo pari a 80 MPa, mentre per le sabbie profonde si ottengono valori pari a 120÷160 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E₀) utilizzando da teoria dell'elasticità a

GENERAL CONTRACTOR Consorzio IricAW Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	18 di 309	

partire dal valore del modulo G_0 , ed utilizzando valori di v = 0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

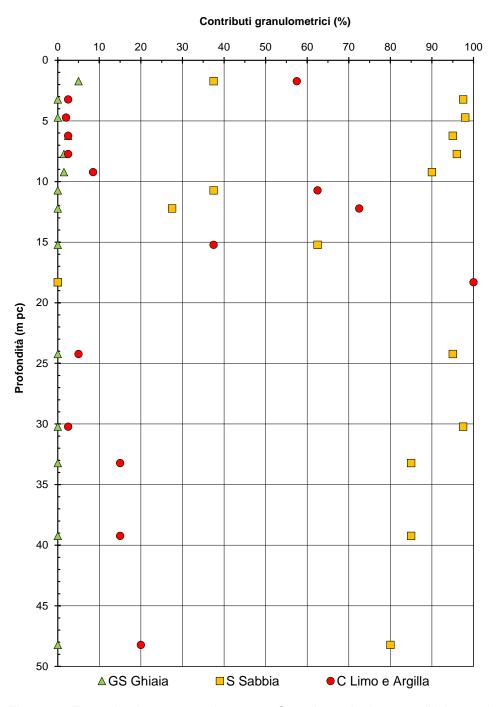


Figura 8 – Tratto da pk 22+748 a pk 23+000. Granulometrie da prove di laboratorio

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Rilevato terroviario Av ad pk 22+746,51 d pk 23+327,13 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	19 di 309	

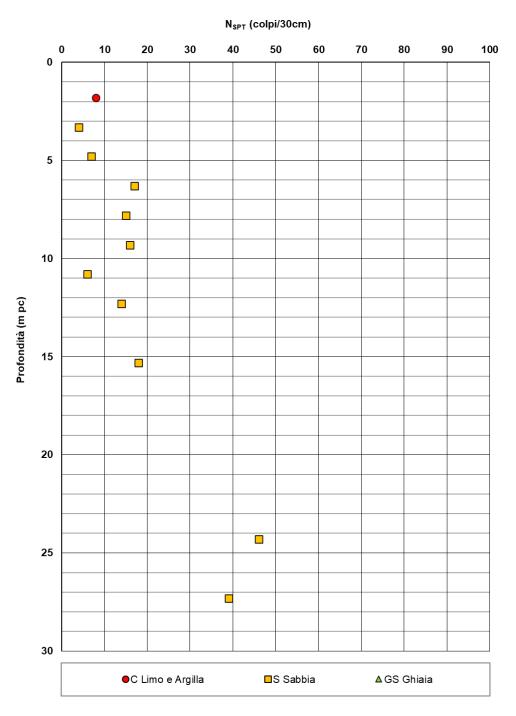


Figura 9 – Tratto da pk 22+748 a pk 23+000. Numero di colpi SPT

GENERAL CONTRACTOR Consorzio Iric/1V Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	20 di 309

Figura 10 – Tratto da pk 22+748 a pk 23+000. Densità relativa da numero di colpi SPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	21 di 309	

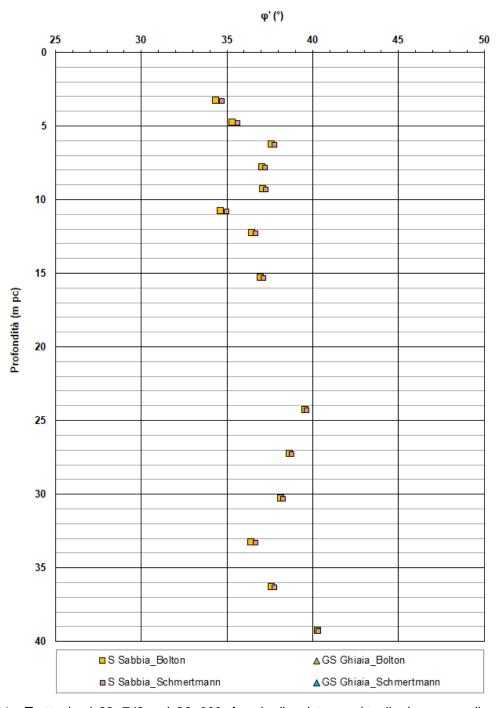


Figura 11 – Tratto da pk 22+748 a pk 23+000. Angolo di resistenza al taglio da numero di colpi SPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	22 di 309	

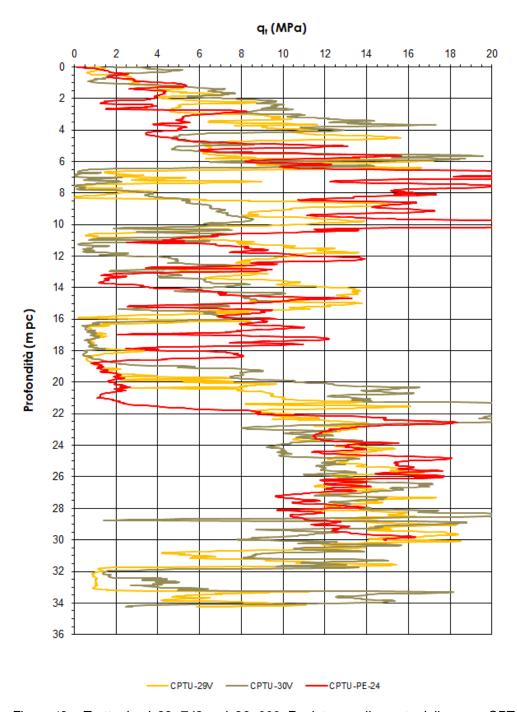
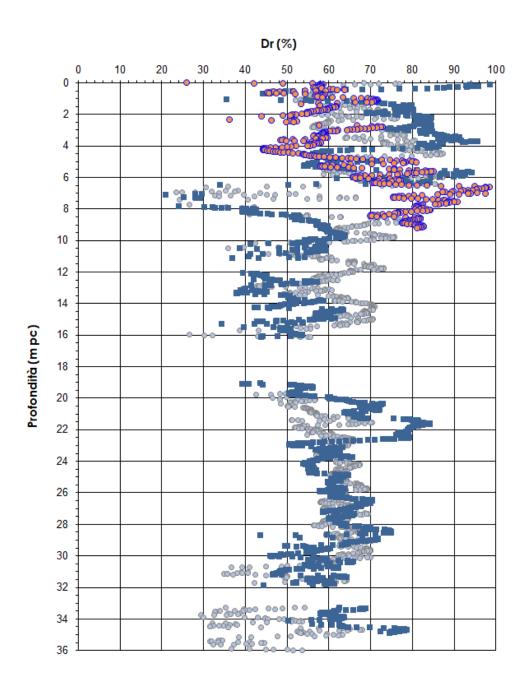



Figura 12 – Tratto da pk 22+748 a pk 23+000. Resistenza alla punta delle prove CPT

GENERAL CONTRACTOR Consorzio IricAv Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	23 di 309

∘ CPTU-29V ■ CPTU-30V • CPTU-PE-24

Figura 13 – Tratto da pk 22+748 a pk 23+000. Densità relativa dedotta prove CPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	24 di 309		

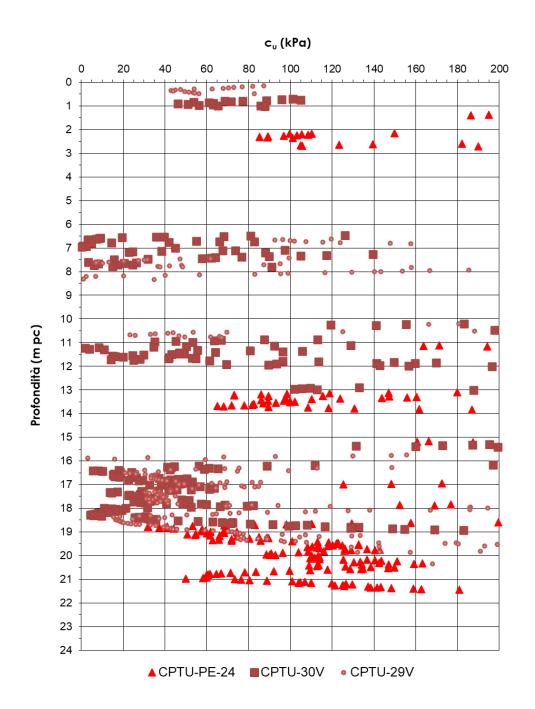


Figura 14 – Resistenze non drenate da prove CPT tra pk 22+748 e pk 23+000

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	25 di 309		

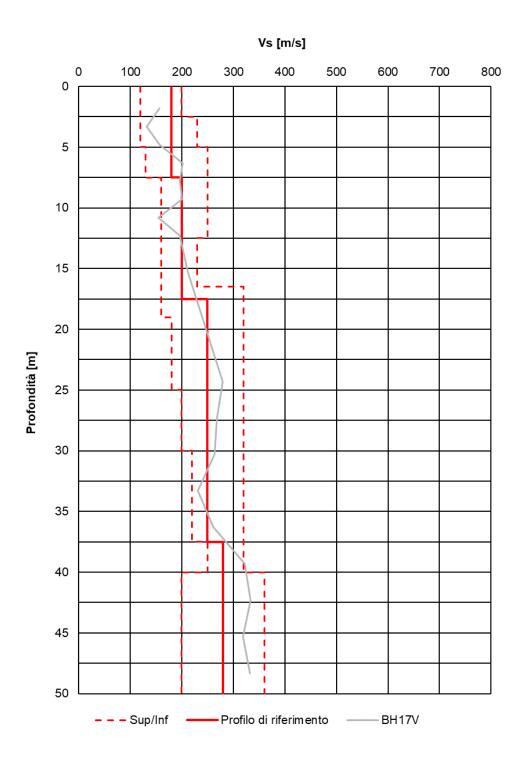


Figura 15 – Profilo di Vs di riferimento, da dati SPT tra pk 22+748 e pk 23+000

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio			
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	26 di 309			

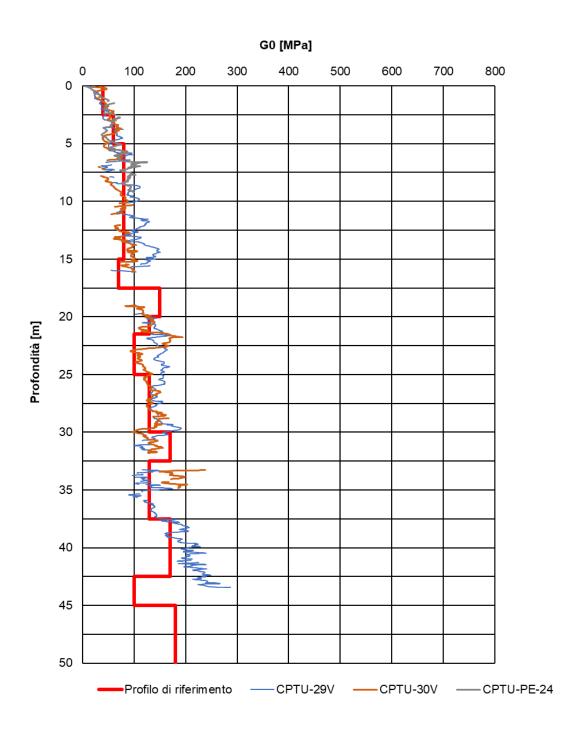


Figura 16 – Modulo di taglio G_0 tra pk 22+748 e pk 23+000

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPROSERRAL CONTRACTOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 27 di 309

4.4.2 Tratto da pk 23+000 a pk 23+527

Nel secondo tratto della WBS i terreni di fondazione del rilevato e dei muri sono essenzialmente caratterizzati dalla presenza di materiali a grana fine afferenti alle unità 3b/3a (ovvero limi sabbiosi e/o argillosi), per i primi 4 m e poi a materiali più schiettamente limo argillosi fino a 18-0 m di profondità. Si alternano poi uno strato di sabbie per uno spessore di circa 8 m, presente quindi fino a 16-18 m di profondità, uno nuovo strato di limi argillosi presente fino a 22.0 m di profondità e un nuovo strato di sabbie che raggiunge la massima profondità di interesse. Questo strato è intercalato a circa 33.0 m da un livello di circa 2.0 m di spessore di argille consistenti (Unità 2)

La *Figura 17* riporta le distribuzioni granulometriche individuate nei campioni prelevati lungo i fori di sondaggio, in funzione della profondità di campionamento.

Gli strati ed i livelli meno spessi di sabbia presente lungo questo tratto risultano mediamente addensati, con densità relative (vedasi *Figura 19*) variabili tra il 40% ed il 70%, valori questi correlabili ad angoli di resistenza al taglio di 36÷38°.

Per quel che invece concerne i materiali a grana fine le prove di laboratorio evidenziano valori dei parametri di compressibilità in condizioni edometriche pari a

Cr = 0.18

RR= 0.02

I valori di resistenza in condizioni non drenate (c_u) possono dedotti da prove CPT e da prove di laboratorio mostrano un primo strato che esibisce resistenze più alte e circa pari a c_u = 90 kPa, cui fa seguito uno strato più tenero fra i 4 e gli 8 m di profondità circa, con cu medie attorno ai 40 kPa, che si incrementano a circa 65 kPa verso la base dello strato. A profondità più elevate, la resistenza non drenata cresce fino a valori di c_u = 80 kPa per lo strato compreso tra i 18 e i 22 m di profondità.

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove disponibili, indica che i materiali a grana fina più superficiali le velocità di propagazione di onde sismiche di taglio oscillano tra 160 e 180 m/s, mentre nei materiali granulari mediamente addensati che si stimano valori di Vs pari a circa 250 m/s per i limi argillosi e paria a circa 280÷300 m/s nelle sabbie.

Sulla base dei valori di Vs, ed osservando anche le interpretazioni delle prove CPT, si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per i limi argillosi più superficiali si può considerare un valore crescente compreso tra 30 MPa e 80 MPa; per le sabbie presenti tra i -10 ed i -18 m dal p.c. e lo strato di limi argillosi più profondi il valore di G₀, raggiunge valori compresi tra 120 e 180 MPa, crescendo con la profondità.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 , ed utilizzando valori di v=0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	28 di 309		

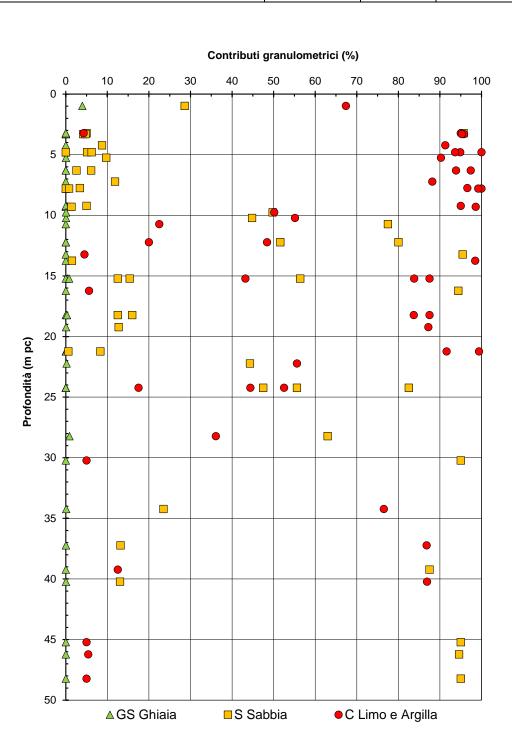


Figura 17 – Tratto da pk 23+000 a pk 23+527. Granulometrie da prove di laboratorio

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	29 di 309		

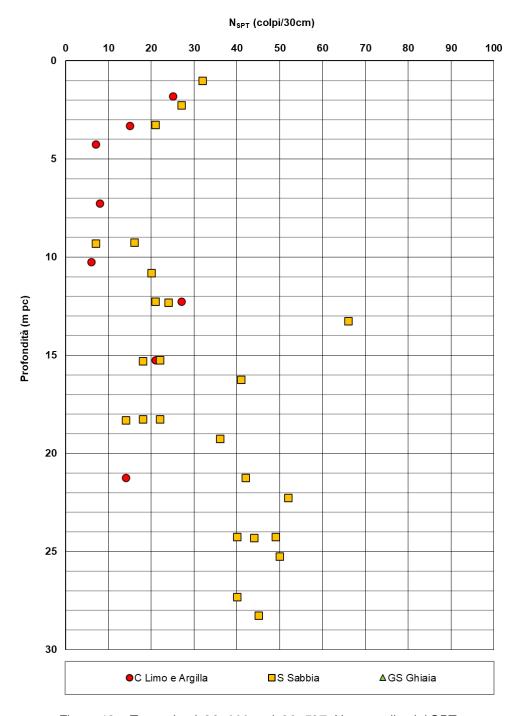


Figura 18 – Tratto da pk 23+000 a pk 23+527. Numero di colpi SPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	30 di 309		

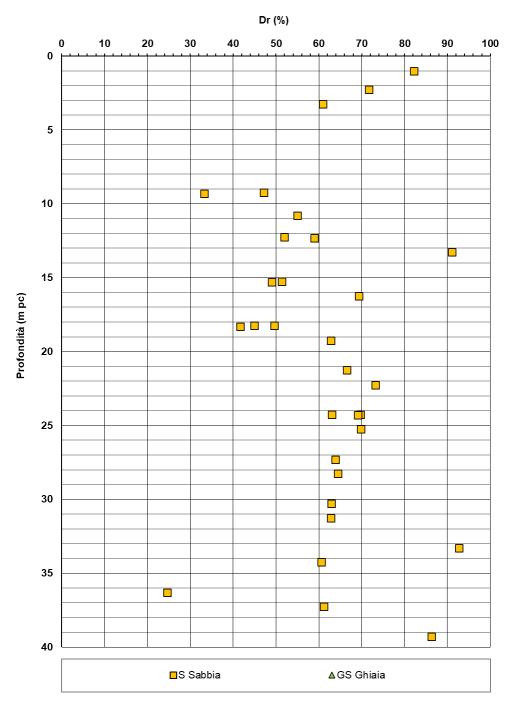


Figura 19 – Tratto da pk 23+000 a pk 23+527. Densità relativa da numero di colpi SPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	31 di 309		

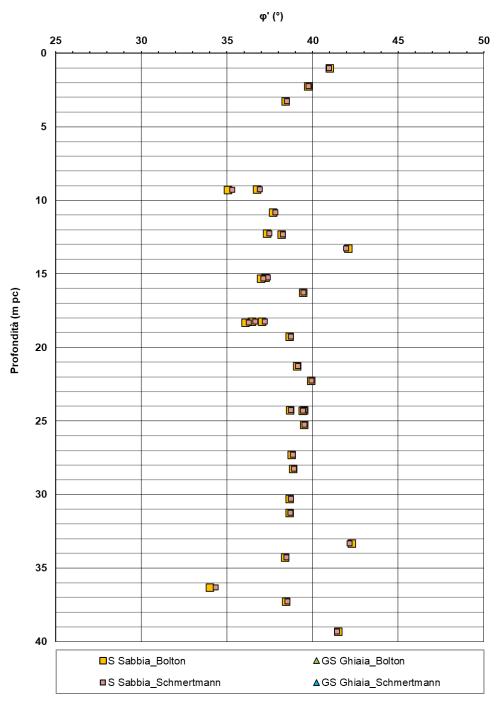


Figura 20 – Tratto da pk 23+000 a pk 23+527. Angolo di resistenza al taglio da numero di colpi SPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	32 di 309		

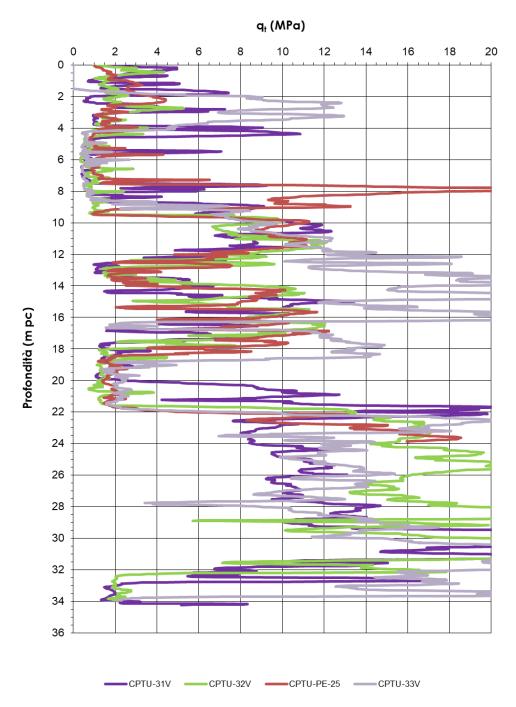


Figura 21 – Tratto da pk 23+000 a pk 23+527. Resistenza alla punta delle prove CPT

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio			
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	33 di 309			

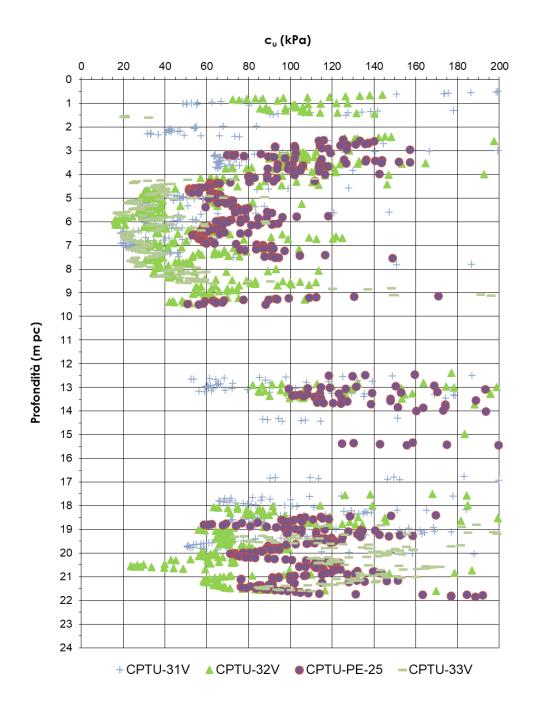


Figura 22 – Tratto da pk 23+000 a pk 23+527. Resistenza non drenata da prove CPT

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	34 di 309		

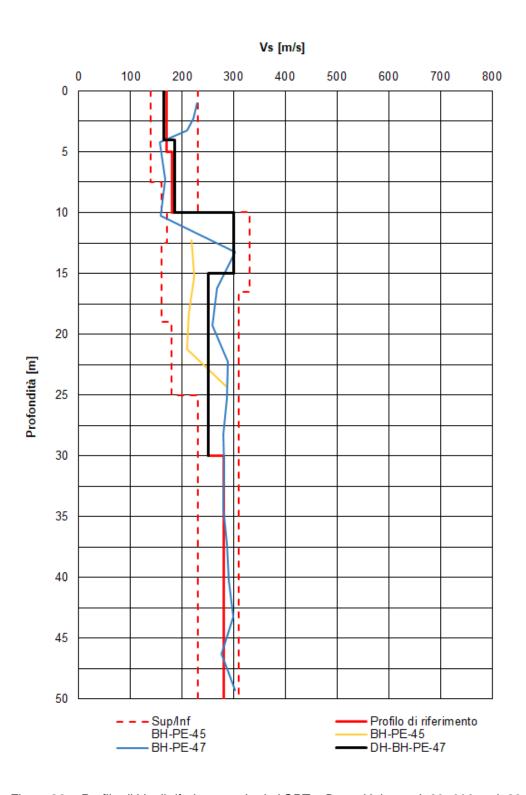


Figura 23 – Profilo di Vs di riferimento, da dati SPT e Down Hole tra pk 23+000 a pk 23+527

AV/AC VERONA VICENZA

pk 20+000 - pk 24+000

G0 (MPa)

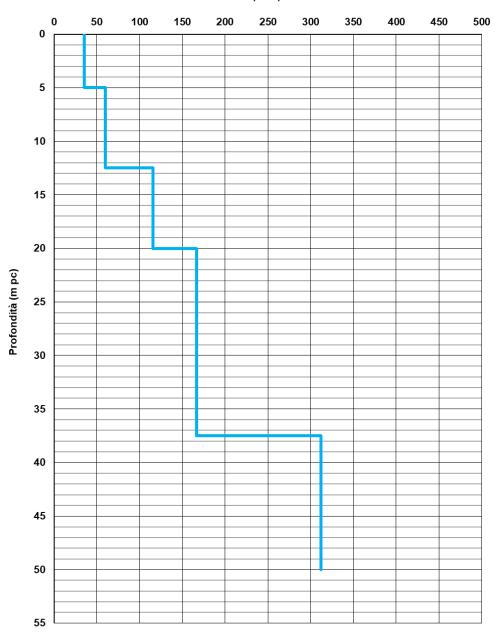


Figura 24 – Modulo di taglio G_0 tra pk 23+000 a pk 23+527

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPROSERRAL CONTRACTOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 36 di 309

4.5 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2 e Tabella 4.

Tabella 2 – Modello geotecnico di riferimento tra pk 22+748 e pk 23+000

	da	а	γ	ϕ_{k}	C _k '	$\mathbf{C}_{\mathbf{u},\mathbf{k}}$	E'op
	m pc*	m pc*	kN/m³	٥	kPa	kPa	MPa
4	0	2	19	34	0		20
4	2	9	19	36	0		50
3b	9	10	18.5		-	50	8
4	10	15	19	36	0		60
3b	15	19	18.5			85	15
4	19	32	19	38	0		100
2	32	34	19			120	25
2-6	>34		19	-	-		150

^{*} quota piano campagna = 26.3 m s.l.m.

Tabella 3 – Modello geotecnico di riferimento tra pk 23+000e pk 23+527

	da	а	γ	φk	C _k '	C _{u,k}	RR	CR	σ'p	E'op
	m pc*	m pc*	kN/m³	0	kPa	kPa				MPa
3b/3a	0	4	18.5		-	90	-	-		20
3b	4	8	18.5		-	40	0.02	0.18	160	
3b	8	10	18.5		-	65	-	-	300	
4	10	18	19	34	0		-	-	-	40
3b	18	22	18.5			80				15
4	22	33	19	38	0		-	-	-	60
2	33	35	19		-	120				25
4	>35		16	32	0	90	-	-	-	100

^{*} quota piano campagna = 28.4 m s.l.m.

Per la falda si fa riferimento a quanto riportato in 4.3.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	37 di 309

4.6 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. rif. [19]) e sono di seguito riassunte:

Tabella 4 - Caratteristiche materiale da rilevato

	Y kN/m³	φ .	c' kPa
Materiale da rilevato	20	38-40	0

Ai fini del soddisfacimento delle verifiche di stabilità del rilevato (cfr par 6.3 e cap 8), nei tratti in cui l'opera non corre sostenuta da entrambi i lati da muri di sostegno, è opportuno e necessario che il materiale venga messo in opera con modalità e procedure tali da conferire un angolo di resistenza al taglio minimo di 40° o parametri di resistenza c' e φ ' equivalenti. Per tale motivo, si dovranno impiegare materiali tipo A1 o, in subordine, A2.-4.

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP (Doc. rif. [18] e [19]), l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 5 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	V_N = 50 anni
Altre opere nuove a velocità V < 250 km/h	V _N = 75 anni
Altre opere nuove a velocità V ≥ 250 km/h	$V_N = 100 anni$
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Il Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi consequenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

Tabella 6 – Valori del coefficiente di uso Cu

Classe d'uso	I	II	III	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

Il periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica (Doc. rif. [4]) e nelle Planimetrie con classificazione sismica dei terreni (Doc. rif. [5]), i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media i > 15°.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	40 di 309

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

a _g (g) (SLV)	0.218
Coefficiente di amplificazione stratigrafica Ss	1.382
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
a_{max} (g) ($a_{max} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g}$)	0.301

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa vigente (Doc. rif. [14]). Le analisi di liquefazione sono descritte in dettaglio nelle Relazioni sulla modellazione sismica del sito e pericolosità sismica di base (Doc. rif. [4]), alla quale si rimanda per maggiori dettagli.

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, V_R = 150 anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [4] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.0.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	41 di 309

(CRR) così definiti:

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_l}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma'_{vo}} = 0.65 \frac{\tau_{\text{max}}}{\sigma'_{vo}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{vo}}{\sigma'_{vo}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

τ_c valore rappresentativo dello sforzo di taglio ciclico

 σ_{v_0} tensione verticale alla profondità in esame, in termini di tensioni totali

 σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

rd coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 \cdot z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 \cdot z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per M ≠ 7.5 è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M=7.5}} = \left(\frac{N_{M=7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto,

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPOGENTAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 42 di 309

mentre (CSR)_{M=7.5} e $N_{M=7.5}$ sono riferiti all'evento con M=7.5.

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e Idriss e Boulanger (2004) si è assunto per M = 6.0 - MSF = 2.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 25: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per
$$(q_{c1N})_{cs} < 50$$
 $CRR_{7.5} = 0.833 \left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$

per 50 \le (q_{c1N})_{cs} < 160
$$CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$$

In Figura 25, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = [(3.47 - \log Q)^2 + (1.22 + \log F)^2]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

GENERAL CONTRACTOR

Foglio

43 di 309

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica

Progetto
Lotto
Codifica
IN17
12
EI2RBRI36E0001A

$$F = \frac{f_s}{q_c - \sigma_{vo}} x 100$$

Tanto maggiore è il valore di I_c , tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore I_c = 2.6 è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e I_c sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se I_c così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di n e I_c sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove K_c è definito dalle seguenti equazioni (Robertson & Wride, 1998):

per $lc \le 1.64$ $K_c = 1.0$

per lc > 1.64 $K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	44 di 309

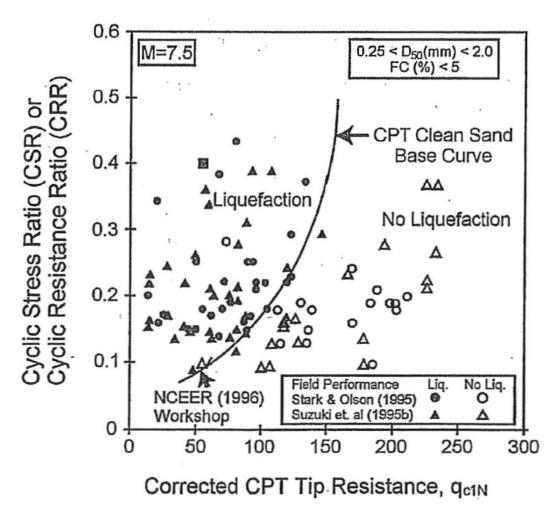


Figura 25: Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 26, originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 26, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti $N_{1(60)}$, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT}C_NC_EC_BC_RC_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPROSERRAL CONTRACTOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 45 di 309

proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 26, viene riportato il valore di CSR calcolato ed i corrispondenti valori di $N_{1(60)}$ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

Si può osservare dalla

Figura 26 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - \left(N_{1}\right)_{60}} + \frac{\left(N_{1}\right)_{60}}{135} + \frac{50}{\left[10 \cdot \left(N_{1}\right)_{60} + 45\right]^{2}} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	46 di 309

di $N_{1(60)}$ ai valori corrispondenti per sabbia pulita $N_{1(60)\text{cs}}$:

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

 α = 0 per FC < 5%

 α = exp [1.76 – (190/FC2)] per 5% < FC < 35%

 α = 5 per FC \geq 35%

 β = 1 per FC < 5%

 β = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

β = 1.2 per FC \ge 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il seguente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

pa = pressione atmosferica di riferimento

f = fattore che dipende dalla densità relative del materiale in sito.

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR < 60% f = 0.7÷0.8

60% < DR < 80% f = $0.6 \div 0.7$

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

FL = (CRR_{7.5}/CSR) MSF k_{σ}

GENERAL CONTRACTOR Consorzio Iric/tV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	47 di 309

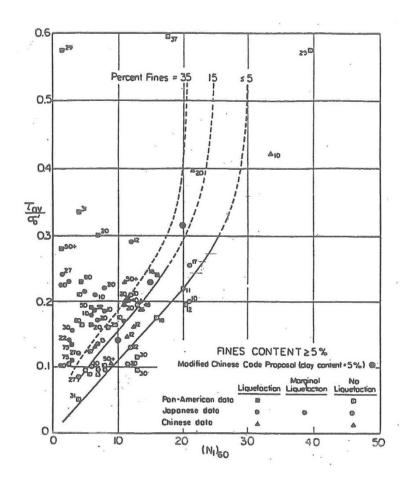


Figura 26: Relazione tra sforzo di taglio ciclico a liquefazione e N1(60) – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI PERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	48 di 309

5.2.3 Commento ai risultati delle analisi

Osservando i risultati delle analisi riportate nel seguito appare chiaro che lungo tutta la WBS in esame non vi è il rischio di sviluppo di fenomeni di liquefazione che conducano a potenziali instabilità del rilevato. Questa considerazione deriva in primo luogo dalla visione d'insieme dei risultati delle analisi che mostrano come lungo le verticali esaminate il coefficiente di sicurezza FL sia generalmente superiore al limite minimo fissato (pari a 1.25). Inoltre le sovrapressioni neutre stimate raramente, e solo per strati di spessore molto ridotto, raggiungano valori prossimi alla tensione media litostatica in sito (ru ≈1). Ciò avviene peraltro nella stragrande maggioranza dei casi in tratti in cui sia i sondaggi, sia le prove in sito (si veda a tal proposito il fatto che il valore assunto dal parametro Ic sia maggiore di 1.26) hanno evidenziato la presenza di terreni ad elevato contenuto di fini e a comportamento coesivo, per i quali i rischi di mobilità ciclica sono per definizione nulli.

In questo quadro complessivo si inseriscono anche le evidenze delle prove CPTU 30V e CPTU PE 24, che a una profondità di circa 4.0 m dal p.c. e per spessori di 1÷1.5 m mostrano valori attesi di r_u prossimi all'unità per terreni limo-sabbiosi

Si ritiene pertanto che i dati non disponibili non indichino la possibilità di formazioni di superfici di rottura riconducibili ad un SLU. Si osserva che eventuali sovrapressioni saranno di gran lunga ridotte dalla presenza delle colonne di ghiaia, installate a fini diversi (riduzione dei cedimenti), ma comunque in grado di ridurre lo sforzo ciclico agente sul terreno.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL PERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	49 di 309

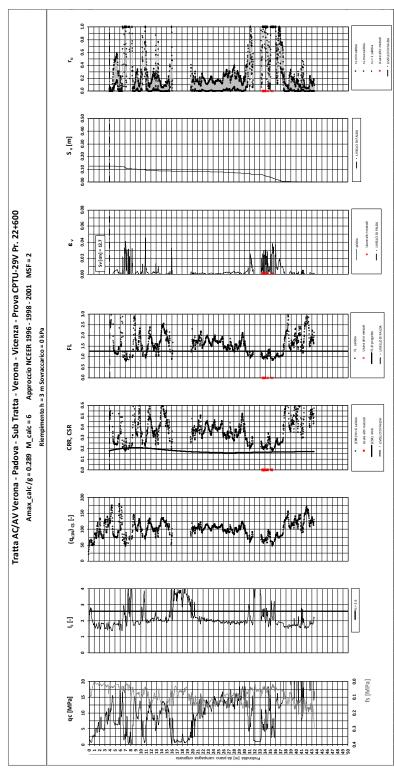


Figura 27 – Verifica Liquefazione da risultati CPTU29V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	50 di 309



Figura 28 – Verifica Liquefazione da risultati CPTU29V-bis

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	51 di 309

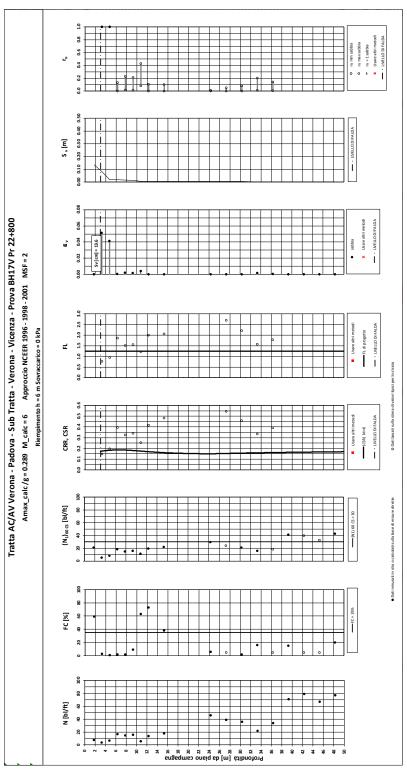


Figura 29 – Verifica Liquefazione da risultati SPT BH 17

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	52 di 309

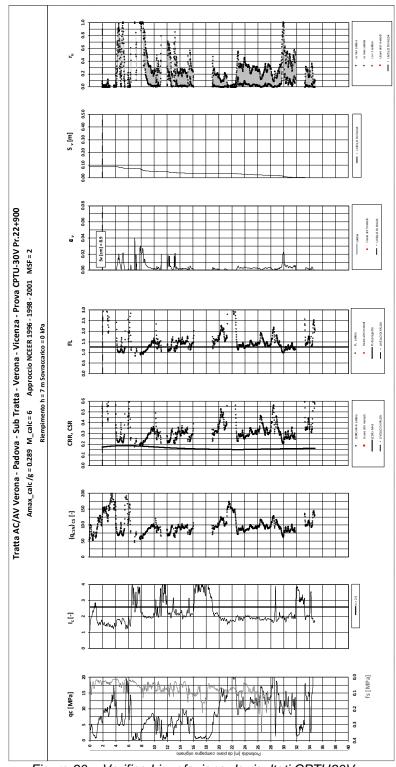


Figura 30 – Verifica Liquefazione da risultati CPTU30V

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto Lotto Codifica Foglio	1
Relazione Geotecnica	IN17 12 EI2RBRI36E0001A 53 di 309	

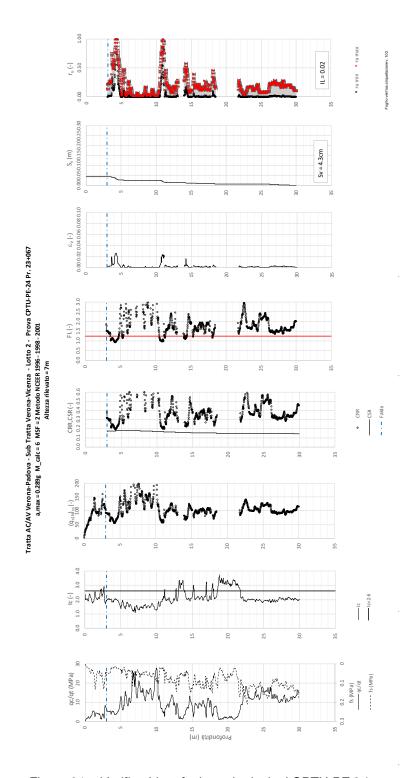


Figura 31 – Verifica Liquefazione da risultati CPTU PE 24

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	54 di 309

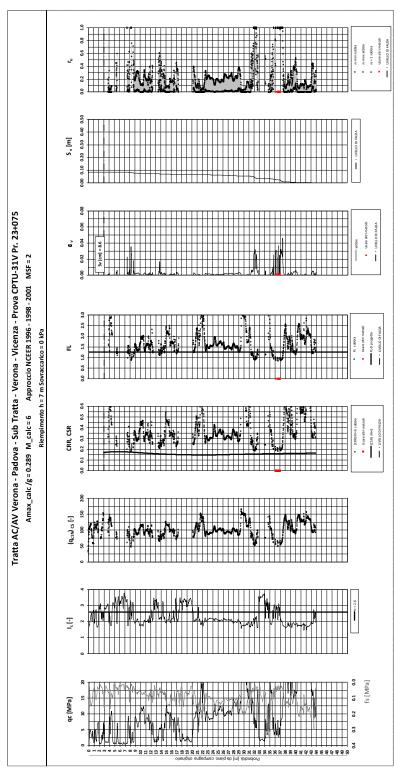


Figura 32 – Verifica Liquefazione da risultati CPTU31V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR		Ī
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	ì
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	55 di 309	ì

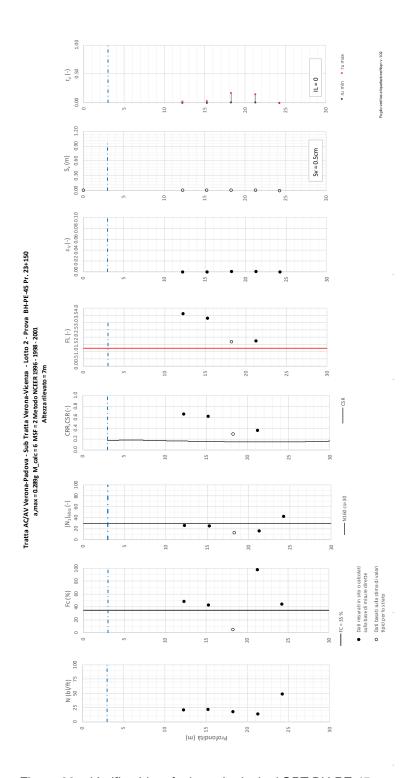


Figura 33 – Verifica Liquefazione da risultati SPT BH PE 45

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S'	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	56 di 309

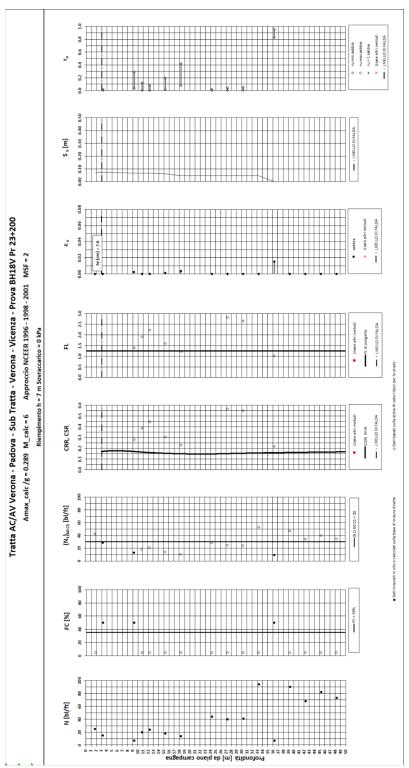


Figura 34 – Verifica Liquefazione da risultati SPT BH 18V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	57 di 309

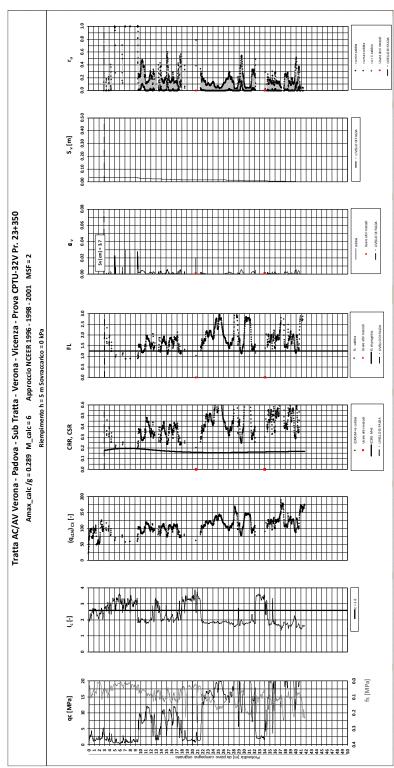


Figura 35 – Verifica Liquefazione da risultati CPTU32V

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	58 di 309

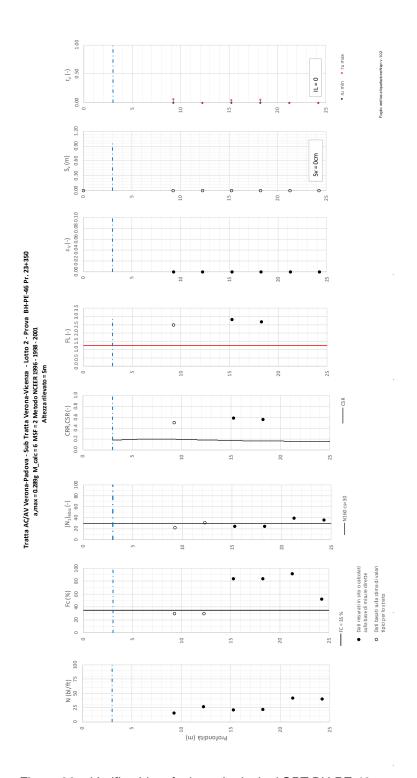


Figura 36 – Verifica Liquefazione da risultati SPT BH PE 46

GENERAL CONTRACTOR Consorzio IricAv Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	ì	
Relazione Geotecnica	IN17	12	El2RBRI36E0001A	59 di 309	ì	

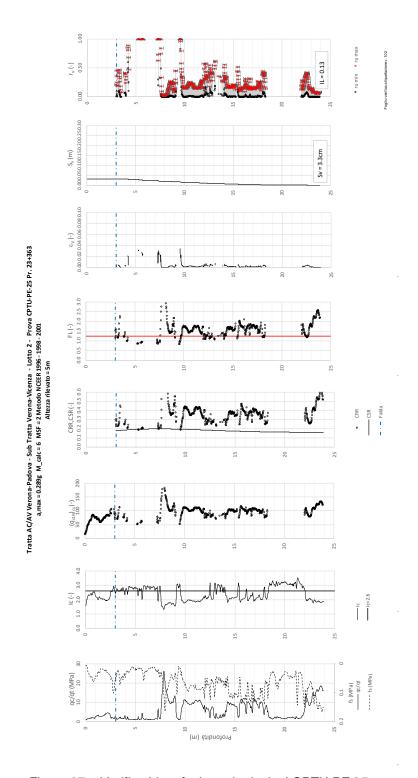


Figura 37 – Verifica Liquefazione da risultati CPTU PE 25

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA I TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	60 di 309

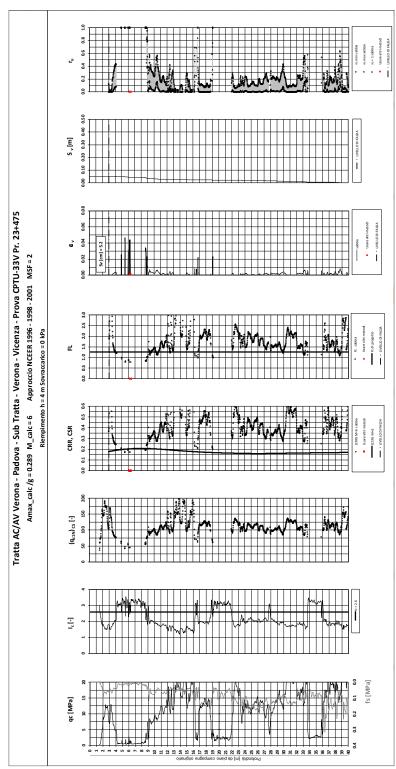


Figura 38 – Verifica Liquefazione da risultati CPTU 33V

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto Lotto Codifica Foglio
Relazione Geotecnica	IN17 12 EI2RBRI36E0001A 61 di 309

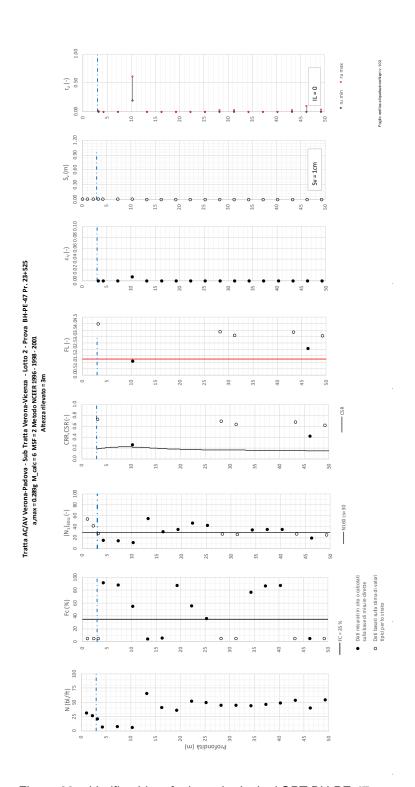


Figura 39 – Verifica Liquefazione da risultati SPT BH PE 47

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPOGENTAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 12 EI2RBRI36E0001A 62 di 309

6 VERIFICA GEOTECNICA DEL RILEVATO

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa vigente richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [14]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [14])

dove:

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [14]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove:

Ed valore di progetto dell'effetto dell'azione;

C_d valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale).

La verifica della condizione $E_d \le C_d$ deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

Le verifiche vengono condotte con analisi statiche o pseudostatiche e, in accordo al MDP ITALFERR, il coefficiente di incremento dinamico delle azioni derivanti dal passaggio del treno è assunto pari all'unità.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [14]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio 1N17 12 EI2RBRI36E0001A 63 di 309

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [15]), calcolata sulla base delle azioni di progetto, dei parametri di progetto e della geometria di progetto $R = R\left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_m}; a_d\right]$.

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [14]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 7 – Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	le y _{G1}	0,9	1,0	1,0
remanenti	Sfavorevole		1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
remanenti non strutturan	Sfavorevole γ_{G2}	YG2	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
v ai laoili	Sfavorevole	$\gamma_{ m Qi}$	1,5	1,5	1,3

dove:

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 8 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [14])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ _{c′}	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 9 - Coefficienti parziali per verifiche di stabilità globale

Coefficiente	R2
$\gamma_{ m R}$	1.1

Si segnala da subito che le verifiche in condizioni SLU e SLE verranno condotte con analisi statiche o pseudostatiche e, in accordo al MDP ITALFERR, il coefficiente di incremento dinamico delle azioni derivanti dal passaggio del treno

sarà assunto pari all'unità.

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [14]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del ballast, e per la durata della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [19] e [23]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [23]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 10 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	160 < V ≤ 300 km/h
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	10 < ΔH ≤ 15 4 < SCARTXL ≤ 8
3° livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ 8 < SCARTXL \le 12

⁽¹⁾ il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche

La stabilità globale in condizioni sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [19]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [18]) e nelle NTC (Doc. rif. [14]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

GENERAL CONTRACTOR Consorzio Iric/W Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Consorzio Iric/W Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica

6.2.1 Azioni permanenti

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³ Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, qui determinati sulla base dello schema di carico più gravoso tra quelli previsti dalle NTC 2008, dalle Norme Europee e, conseguentemente, dal Manuale di Progettazione di RFI. In particolare, tale carico tiene conto della diffusione a partire dalla traversa e fino al piano di posa del ballast, secondo le prescrizioni di NTC e MdP. Nello specifico, è stato considerato il caso peggiore tra i tre modelli di carico previsti, ossia LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71), da applicarsi su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m² in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (k_h) e verticale (k_v) :

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove

 $\beta_{\text{\tiny S}}$ coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 11)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 11 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[14])

	Categoria di sottosuolo				
	A B, C, D, E				
	β_{s} β_{s}				
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28			
$0.1 < a_{\rm g}(g) \le 0.2$	0,27	0,24			
$a_{\rm g}(g) \leq 0,1$	0,20	0,20			

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	66 di 309

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 7.0 (Doc. Rif. [30]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 8 della presente relazione.

Come da NTC 2008 (Doc. Rif. [14]), la verifica SLU di stabilità globale è soddisfatta se la relazione:

$$FS \ge R2 = 1.1$$
.

è verificata sia in condizioni statiche che sismiche.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 3. La verifica è stata condotta facendo ricorso al metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2.

6.3.2 Verifiche SLU in condizione statiche e sismiche

Il carico da traffico ferroviario (q) assunto pari a 61.4 kPa (cfr. par. 6.2.2) è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile/sfavorevole e, pertanto, il coefficiente parziale sulle azioni A2 è pari a 1.3.

Per quanto riguarda la falda, è stata considerata la condizione a lungo termine e quindi è stato preso un livello coincidente a piano campagna, come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria. Vista la diversità di configurazioni che si incontrano lungo il tracciato della WBS sono state esaminate le condizioni più critiche in termini di geometria dell'opera e di stratigrafia.

In particolare

- per il tratto da pk 22+748 a pk 23+000 è stata esaminata la geometria della cosiddetta
 - o zona 2 (si veda par 3.1)
- per il tratto da pk 23+000 a pk 23+527 sono state esaminate le geometrie delle sezioni:
 - zona 3 (si veda par 3.1. Data l'altezza del rilevato e la presenza di terreni meno resistenti nell'ambito delle profondità di sviluppo delle superfici di scivolamento, la verifica di questa zona ricomprende automaticamente anche quella della zona 1);
 - o zona 4 (si veda par 3.1);
 - o zona 5 (si veda par 3.1).

Nelle verifiche effettuate in corrispondenza delle sezioni con muri su pali, le resistenze al taglio di questi ultimi sono state considerate calcolando la resistenza al taglio di un elemento di calcestruzzo a sezione circolare D= 800 mm non armato. In questo caso la resistenza a taglio del calcestruzzo vale

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	67 di 309

$$\tau_{cls} = 0.21 \ f_{c,tk}$$

Nel caso dei pali in questione pertanto la resistenza vale

Td= 126 kN

Dalla Figura 40 Figura 43 sono riportate le superfici di rottura critica per la combinazione DA1C2 in tutte le sezioni. Il valore minimo di FS è pari a:

la verifica di stabilità globale in campo statico risulta soddisfatta.

Per quanto riguarda la falda è stato preso un livello pari a -3.0 m da p.c., come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

Dalla Figura 44 alla Figura 47 sono riportate le superfici di rottura critiche in condizioni sismiche. Il fattore di sicurezza FS è pari a:

la verifica di stabilità globale risulta soddisfatta.

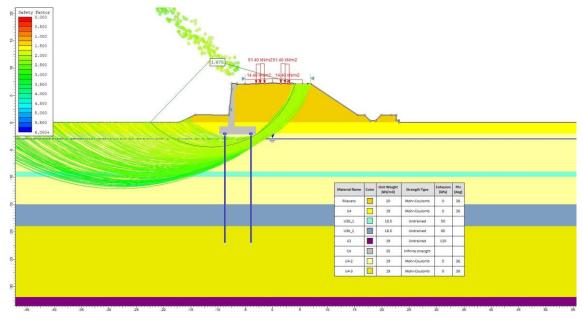


Figura 40 - Rilevato RI36E-zona 2 - Analisi SLU in campo statico DA1C2

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	68 di 309

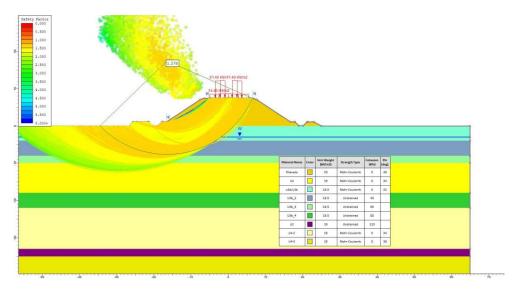


Figura 41 - Rilevato RI36E-zona 3 - Analisi SLU in campo statico DA1C2

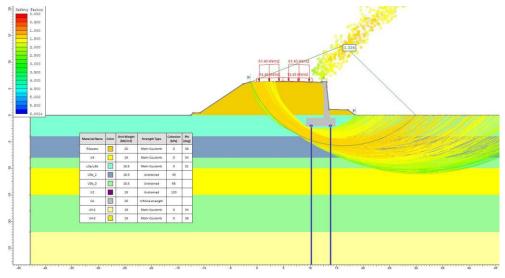


Figura 42 - Rilevato RI36E-zona 4 - Analisi SLU in campo statico DA1C2

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	69 di 309

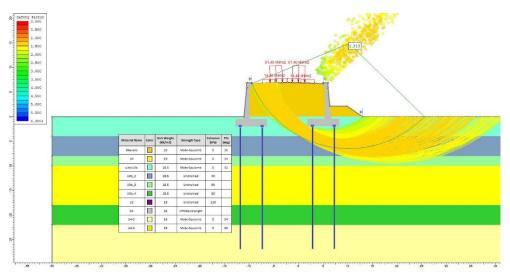


Figura 43 - Rilevato RI36E-zona 5 - Analisi SLU in campo statico DA1C2

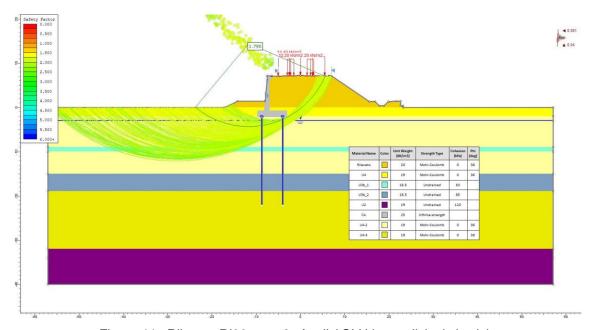


Figura 44 - Rilevato RI36 zona 2- Analisi SLU in condizioni sismiche

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	70 di 309

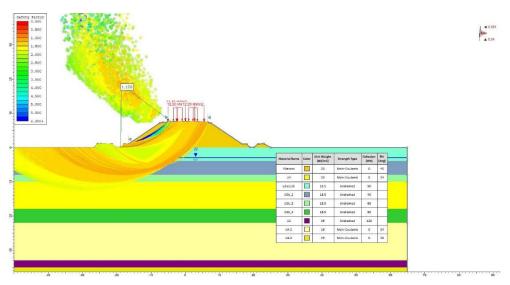


Figura 45 - Rilevato RI36 zona 3- Analisi SLU in condizioni sismiche

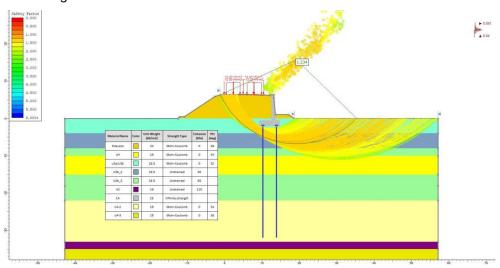


Figura 46 - Rilevato RI36 zona 4- Analisi SLU in condizioni sismiche

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	71 di 309

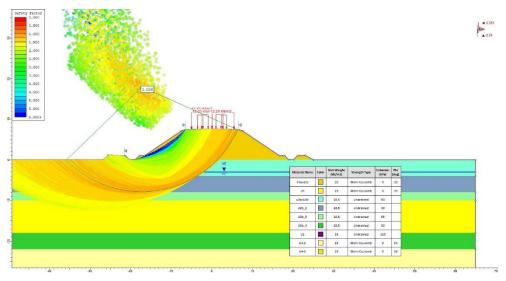


Figura 47 - Rilevato RI36 zona 5- Analisi SLU in condizioni sismiche

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	72 di 309

6.4 Verifica e risultati SLE – sezioni senza muri

6.4.1 Premessa

Già in sede di PD, per questa sezione di rilevato era stata individuata la necessità di ricorrere ad interventi di miglioramento delle caratteristiche dei terreni, al fine di ridurre i cedimenti.

In tale fase progettuale, si è deciso di confermare tale intervento, e sempre a tale fine (le verifiche SLU sono infatti soddisfatte in assenza di interventi), sulla base delle seguenti considerazioni:

- Le indagini hanno confermato la presenza di terreni potenzialmente compressibili, di spessore relativamente elevato e che, in presenza di un rilevato di altezza elevata (oltre 6-7m), possono essere portati nel campo della NC, con conseguente sviluppo di cedimenti differiti nel tempo, sia di consolidazione che viscosi, di entità non trascurabile
- I pali dei muri di fondazione, posti di fianco al rilevato, sarebbero stato oggetto di elevate pressioni orizzontali
 e di spostamenti, con generazione di momenti "parassiti" di difficile quantificazione, aventi lo stesso segno
 di quelli agenti permanentemente e dovuti al carico dei muri. Si è pertanto deciso di ridurre tali cedimenti
 entro valori contenuti.

6.4.2 Dettaglio dell'analisi

La determinazione del campo di spostamenti è stata svolta per i tratti in cui non sono presenti muri mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [31]) che permette di valutare l'andamento dei cedimenti nel tempo sotto diverse ipotesi di carico. Il programma discretizza l'area analizzata in un numero finito di aree di carico e valuta gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti. A partire dagli incrementi tensionali vengono poi calcolati i cedimenti.

La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta all'interno del codice di calcolo con riferimento a soluzioni basate sulle seguenti ipotesi semplificative:

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di Boussinesq);
- l'area di carico è posta sulla superficie del semispazio ed è ipotizzata avere rigidezza nulla.

Per una generica condizione di carico viene quindi eseguita una discretizzazione in un numero finito di aree di carico sulle quali è applicata una pressione uniforme o variabile linearmente.

Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti.

Il calcolo dell'incremento delle tensioni normali indotte da un'area di carico nastriforme, soggetta a un carico uniformemente distribuito (parte centrale del rilevato), viene eseguita sulla base delle formule di Jumikis (1971).

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 73 di 309

$$\begin{split} &\Delta\sigma_z = \frac{q}{\pi} \cdot \left[\tan^{-1}\!\!\left(\frac{x+B}{z}\right) - \tan^{-1}\!\!\left(\frac{x-B}{z}\right) - \frac{z\cdot(x-B)}{(x-B)^2+z^2} + \frac{z\cdot(x+B)}{(x+B)^2+z^2} \right] \\ &\Delta\sigma_x = \frac{q}{\pi} \cdot \left[\tan^{-1}\!\!\left(\frac{x+B}{z}\right) - \tan^{-1}\!\!\left(\frac{x-B}{z}\right) + \frac{z\cdot(x-B)}{(x-B)^2+z^2} - \frac{z\cdot(x+B)}{(x+B)^2+z^2} \right] \\ &\Delta\sigma_v = \upsilon\cdot\left(\Delta\sigma_z + \Delta\sigma_x\right) \end{split}$$

dove:

 $\Delta\sigma$ z, $\Delta\sigma$ x, $\Delta\sigma$ y = incremento delle tensioni normali verticali e orizzontali

q = carico applicato

u = coefficiente di Poisson

B = semilarghezza dell'area di carico in direzione x

x, y, z = coordinate geometriche di riferimento come indicato nella figura seguente.

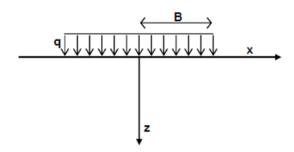


Figura 48 - Modello di calcolo Settle 3D - carico uniforme

Nel caso di un'area di carico nastriforme soggetta a un carico linearmente crescente (bordo del rilevato), le formule di Jumikis da applicare sono le seguenti:

$$\begin{split} \Delta\sigma_{z} &= \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(\tan^{-1} \left(\frac{x - A}{z} \right) - \tan^{-1} \left(\frac{x}{z} \right) \right) + \frac{A \cdot z \cdot x}{x^{2} + z^{2}} \right] \\ \Delta\sigma_{x} &= \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(\tan^{-1} \left(\frac{x - A}{z} \right) - \tan^{-1} \left(\frac{x}{z} \right) \right) + z \cdot \ln \left(\frac{x^{2} + z^{2}}{(x - A)^{2} + z^{2}} \right) - \frac{A \cdot z \cdot x}{x^{2} + z^{2}} \right] \\ \Delta\sigma_{x} &= \upsilon \cdot \left(\Delta\sigma_{x} + \Delta\sigma_{x} \right) \end{split}$$

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto Lotto Codifica Foglio 74 di 309

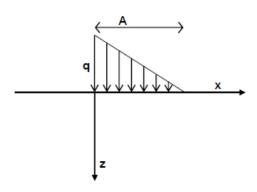


Figura 49 - Modello di calcolo Settle 3D - carico linearmente crescente

Il calcolo della deformazione verticale per ogni singolo sublayer viene valutato sulla base dell'incremento di sforzo verticale, utilizzando la seguente espressione:

$$\varepsilon_z = \frac{\Delta \sigma_z}{E}$$

Il cedimento verticale totale viene quindi calcolato come sommatoria dei cedimenti dei diversi strati.

Il calcolo dei cedimenti indotti dalla realizzazione del rilevato ferroviario è stato svolto modellando la successione stratigrafica in sito tenendo conto delle diverse caratteristiche di deformabilità degli strati, in accordo alla stratigrafia di progetto riportata in Tabella 2. Si sono assunti i valori caratteristici sia sulle azioni che sui materiali.

Si osserva come, in accordo con la stratigrafia e i parametri di progetto riportati nel Capitolo 4, i moduli elastici risultano di fatto indipendenti dallo stato tensionale ed il valore della quota della falda non ha alcuna influenza sull'esito del calcolo. Pertanto, nel calcolo la falda è stata rappresentata ad una quota convenzionale praticamente coincidente con il p.c.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente diseguaglianza:

$$E_d \le C_d$$
 (Eq. 6.2.7 del Doc. Rif. [14])

dove

E_d è il valore di progetto dell'effetto dell'azione, e C_d è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

La verifica è stata condotta con riferimento alle sezioni descritte al par 3.1 per :

- zona 1;
- zona 3

I modelli di calcolo sono riportati in Figura 50 e Figura 51. Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2 (per la zona 1) e Tabella 3 (per la zona 3).

Per quanto concerne la deformabilità dello strato trattato con colonne di ghiaia nella zona 3, si può valutare un modulo equivalente come media pesata fra l'area delle colonne e quella del terreno naturale.

Assumendo per le colonne un valore del modulo E'=60 MPa, ed un'area di competenza di ciascuna colonna D=800

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 RELEXANDRE ALTA SORVEGLIANZA Foglio Foglio IN17 12 EI2RBRI36E0001A 75 di 309

mm pari a 6.25 m² (maglia 2.5x2.5 m), si ottiene un modulo equivalente:

per lo strato più superficiale (U 3a/3b):

E'eq = $(20*5.7+60*0.5) / 6.25 \approx 23.2 \text{ MPa}$.

per lo strato inferiore (U3b):

E'eq = $(6*5.7+60*0.5) / 6.25 \approx 10.3 \text{ MPa}.$

Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza dell'impronta del rilevato ferroviario.

I cedimenti sono stati calcolati al centro del nuovo rilevato, i valori calcolati sono riportati

- per la zona 1 nella Figura 52 ed in Figura 54;
- per la zona 3 nella Figura 53 e nella Figura 55

Il cedimento calcolato in corrispondenza del centro del nuovo rilevato è pari a

Per la zona 1: w = 10.0 cm Per la zona 3 : w = 18.5 cm.

In entrambi i casi questi cedimenti si svilupperanno nell'arco di tempo della costruzione del rilevato: nel caso della zona 1 perché i materiali che costituiscono i terreni di fondazione del rilevato sono per lo più a grana grossa, nel caso della zona 3 perché le colonne di ghiaia agiranno (anche) da dreni, riducendo il percorso di drenaggio a 1 metro circa, con cedimenti per consolidazione che si esauriscono quindi nell'ordine dei poche settimane, e da considerarsi, all'atto pratico, come contestuali all'applicazione del carico.

La maggior parte dei cedimenti è inoltre dovuta, in ragione del maggior carico, alla realizzazione del corpo del rilevato, mentre quelli derivanti dalla realizzazione del ballast sono di fatto trascurabili.

Il cedimento per consolidazione dovuto alla compressione dei materiali argillosi nei primi 10 m (Figura 55), risulta essere dell'ordine dei 12 cm. Considerando un cedimento viscoso come percentuale del primario, stimabile attorno al 10-15%, si stima un cedimento viscoso dell'ordine dei 2 cm. Considerando che anche una parte di questa componente viscosa avverrà prima della posa in opera del ballast (tenendo in conto i tempi molto rapidi necessari all'esaurimento della consolidazione primaria), si può perciò affermare che in assoluto i cedimenti per effetto della costruzione del rilevato e del ballast nell'arco della vita utile dell'opera (100 anni), sono da considerare trascurabili.

La verifica SLE è quindi da considerarsi soddisfatta.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	76 di 309

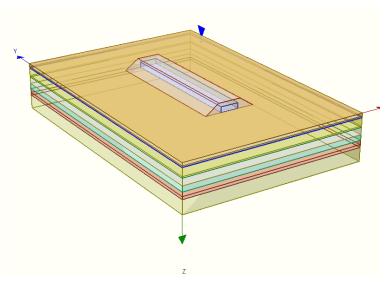


Figura 50 - Rilevato Ri36E Sezione 1 - Analisi SLE – Modello di calcolo

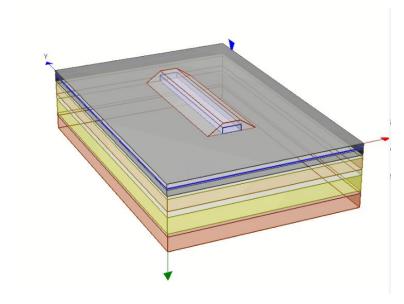


Figura 51 - Rilevato Ri36E Sezione 3 - Analisi SLE – Modello di calcolo

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	77 di 309	

Ri36 sezione 1: Cedimento del rilevato ferrroviario linea AV

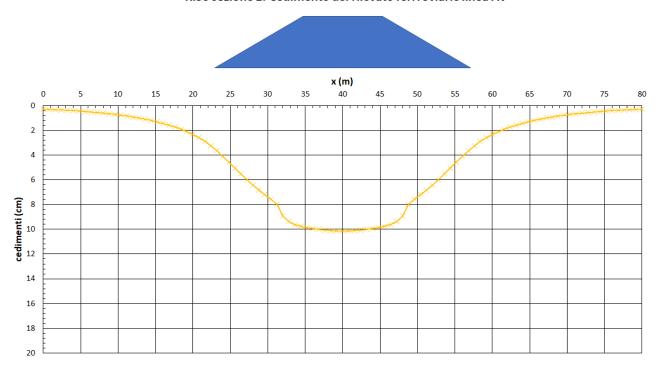


Figura 52 - Analisi SLE Sezione 1- Risultato Cedimenti

Ri36 sezione 2: Cedimento del rilevato ferrroviario linea AV

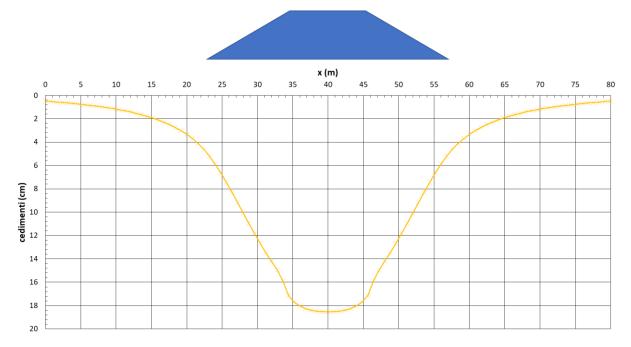


Figura 53 - Analisi SLE Sezione 2- Risultato Cedimenti

Ri36E-sezione 1: cedimento al centro del rilevato AV

Total Settlement (cm)

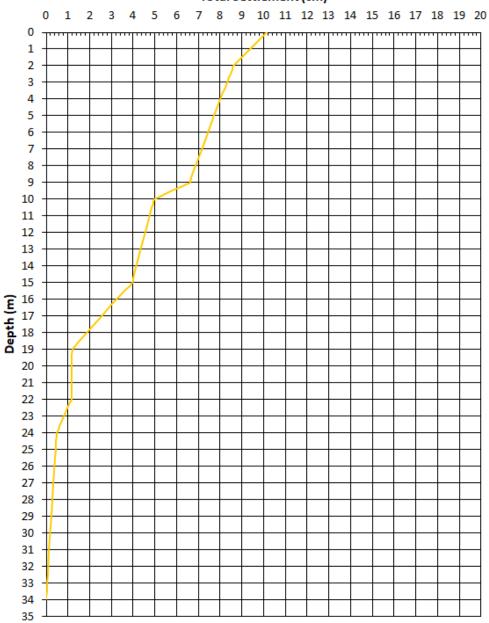


Figura 54 - Analisi SLE sezione 1- Risultato cedimenti in profondità al centro del rilevato

Ri36E sezione 2: cedimento al centro del rilevato AV

Total Settlement (cm)

Figura 55 - Analisi SLE sezione 2- Risultato cedimenti in profondità al centro del rilevato

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric-AV Due Consorzio Iric-AV Due Consorzio Iric-AV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica

6.5 Verifica e risultati SLE – tratto da pk 23+000 a pk 23+527 con presenza di muri

6.5.1 Premessa

La presenza dei consolidamenti al di sotto di una certa area del rilevato, in concomitanza coi muri di sostegno fondati su pali, rende necessario l'utilizzo di un approccio di calcolo che possa tenere in conto, pur in maniera ragionevolmente semplificata, della variabilità di rigidezza lungo la sezione trasversale esaminata.

Al fine di valutare in maniera affidabile il comportamento dell'insieme muro-consolidamenti-rilevati nel tratto dove sono presenti le colonne di ghiaia utilizzate come riduttori di cedimento, si è provveduto ad utilizzare un metodo di calcolo ad elementi finiti in condizioni di deformazioni piane.

6.5.2 Metodologia di calcolo

Considerata la complessità della soluzione adottata, la determinazione del campo di spostamenti e delle azioni agenti sugli elementi costituenti l'opera è stata svolta mediante analisi agli elementi finiti utilizzando il codice di calcolo Plaxis (Doc. Rif. [26]). Il software ha permesso di valutare lo stato tensionale e deformativo del terreno durante ed in seguito alla costruzione del rilevato e di eseguire una modellazione di dettaglio delle inclusioni rigide e dell'interazione tra esse ed il terreno circostante.

Le unità geotecniche descritte nel capitolo 4, sono state rappresentate per mezzo di cluster il cui comportamento è definito dai seguenti modelli costitutivi, scelti sulla base della natura dei terreni esaminati e delle informazioni a disposizione.

Per i materiali a grana grossa (ghiaia e materiale da rilevato), situati in profondità e dotati di buone proprietà meccaniche e la cui risposta ai carichi previsti è descrivibile in condizioni drenate, si è fatto riferimento ad un modello costitutivo alla Mohr-Coulomb. Per maggiori informazioni circa i parametri deformativi e di resistenza impiegati si faccia riferimento al punto 4.4.1 e al punto 4.4.2.

Per i depositi coesivi è stato impiegato il modello costitutivo denominato Hardening Soil (HS) Model, appartenente alla famiglia dei modelli di tipo Cam-Clay. Il modello HS ha consentito di riprodurre la risposta esibita dai campioni indisturbati nel corso delle prove di laboratorio prese in esame per la caratterizzazione (v. capitolo 4). Ciò ha permesso di impiegare materiali aventi rigidezze dipendenti dal livello tensionale, differenti in condizioni di compressione vergine e di scarico e ricarico e funzione della pressione di pre-consolidazione stimata. Si forniscono di seguito alcuni richiami teorici del modello costitutivo.

Il modello HS prevede una relazione tra gli indici di compressione o ricompressione ed il modulo edometrico:

$$E_{oed}^{ref} = \frac{p^{ref}}{\lambda^*} \qquad \qquad \lambda^* = \frac{\lambda}{(1 + e_0)} \qquad \qquad \text{compressione vergine,}$$

$$E_{ur}^{ref} \approx \frac{2p^{ref}}{\kappa^*} \qquad \qquad \kappa^* = \frac{\kappa}{(1 + e_0)} \qquad \qquad \text{scarico-ricarico,}$$

dove:

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	81 di 309	

- λ indice di compressione in fase di primo carico;
- k indice di rigonfiamento in fase di scarico-ricarico;
- e₀ indice dei vuoti iniziale;
- pref pressione di riferimento.

Il dominio di elasticità è individuato da due funzioni f e f_c: la prima, relativa alle deformazioni irreversibili generate dall'applicazione di uno sforzo deviatorico e la seconda, che riguarda le deformazioni plastiche dovute all'applicazione di carichi isotropi e edometrici:

$$f = \overline{f} - \gamma^{p} \qquad \qquad \overline{f} = \frac{2}{E_{i}} \frac{q}{1 - q/q_{a}} - \frac{2q}{E_{ur}} \qquad \qquad \gamma^{p} = -(2\varepsilon_{1}^{p} - \varepsilon_{\nu}^{p}) \approx -2\varepsilon_{1}^{p}$$

$$f^{c} = \frac{\widetilde{q}^{2}}{\alpha^{2}} + p^{2} - \rho_{p}^{2} \qquad \varepsilon_{v}^{pc} = \frac{\beta}{1 - m} \left(\frac{p_{p}}{p^{ref}}\right)^{1 - m}$$

dove:

Εi

rigidezza iniziale, pari a $E_i = \frac{2E_{50}}{2 - R_f}$, con E₅₀ rigidezza relativa al 50% dello sforzo deviatorico ultimo;

Eur rigidezza di scarico-ricarico;

q sforzo deviatorico;

qa 90% dello sforzo deviatorico ultimo;

sforzo deviatorico misurato con una procedura speciali (si faccia riferimento al Manuale di Plaxis);

p' sforzo medio;

pp sforzo di pre-consolidazione isotropa;

p_{ref} sforzo di riferimento;

 $\varepsilon^{p_{V}}$ deformazioni volumetriche plastiche;

ε^p₁ deformazioni deviatoriche plastiche;

m costante che esprime la dipendenza della rigidezza dallo stato tensionale;

α, β parametri di forma, rispettivamente funzione di K₀nc e modulo edometrico.

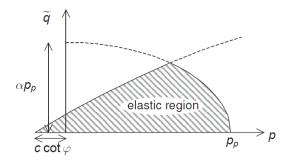


Figura 56 – Superficie di snervamento del modello Hardening Soil nel piano q-p'

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	82 di 309

La definizione del modello costitutivo richiede quindi la determinazione dei seguenti parametri geotecnici, per i quali si rimanda alla Tabella 2 e alla Tabella 3: e₀, CR, RR, c_u. Per maggiori dettagli si rimanda al Manuale di Plaxis.

Le colonne di ghiaia sono state modellate come un "cluster" di terreno aventi la stessa resistenza del terreno originario e deformabilità equivalente pari a:

per lo strato più superficiale (U 3a/3b):

E'eq = $(20*5.7+60*0.5) / 6.25 \approx 23.2 \text{ MPa}.$

per lo strato inferiore (U3b):

E'eq = $(6*5.7+60*0.5) / 6.25 \approx 10.3 \text{ MPa}.$

6.5.3 Schematizzazione e risultati

Il modello di calcolo è riportato in Figura 57 e Figura 58. La geometria è quella anticipata al paragrafo 3.1 per una descrizione dettagliata si faccia riferimento alle tavole di progetto.

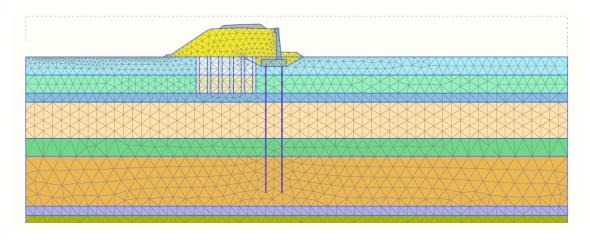


Figura 57 – RI36 E sezione 4: modello agli elementi finiti

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	83 di 309

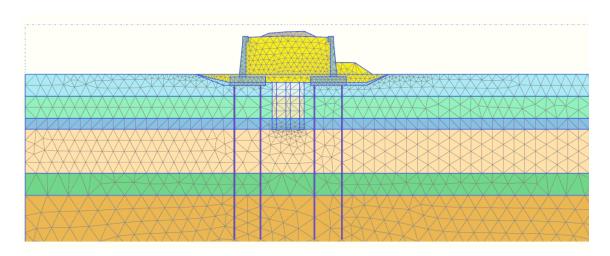


Figura 58 – RI36 E sezione 5: modello agli elementi finiti

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	84 di 309	

L'analisi numerica è stata condotta con riferimento alla sequenza costruttiva prevista per i rilevati ferroviari in presenza di consolidamenti:

- Fase 1: inizializzazione degli sforzi;
- Fase 2 Scotico/scavo per raggiungimento quota di realizzazione dei consolidamenti e dei pali di fondazione;
- Fase 3: realizzazione dei consolidamenti e dei pali di fondazione dei muri;
- Fase 4: Costruzione dei muri di sostegno laterali:
- Fase 5: posa e costruzione del rilevato:
- Fase 6: posa in opera del ballast e dell'armamento ferroviario.

Queste fasi sono illustrate nelle figure seguenti.

Tenendo conto che la presenza di colonne di ghiaia riduce a meno di 1 m il massimo percorso di drenaggio, l'analisi è stata fatta in condizioni drenate. Quindi ogni cedimento calcolato è da considerarsi come il cedimento totale dovuto ai carichi applicati.

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	85 di 309	

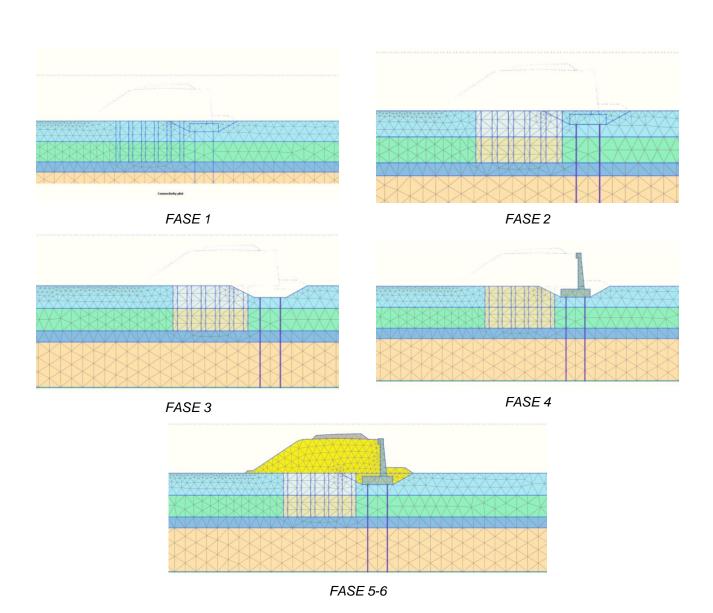


Figura 59 – RI36E: fasi della modellazione a elementi finiti- sezione 4

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	86 di 309	

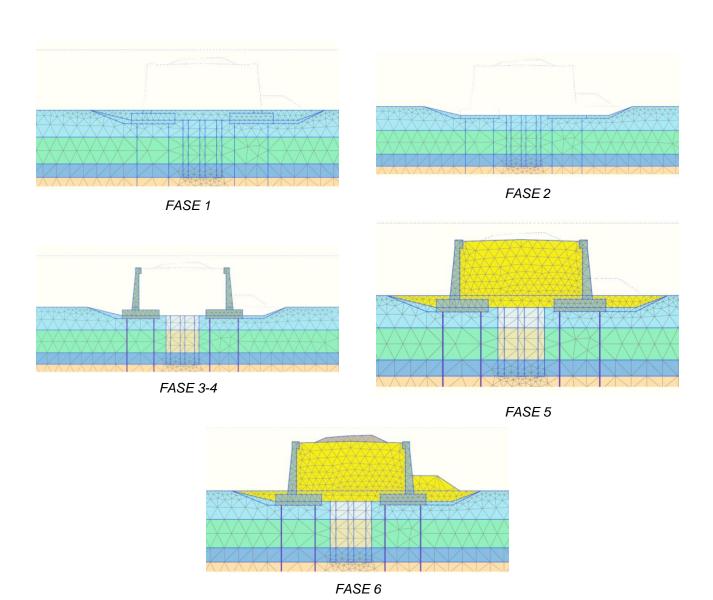


Figura 60 – RI36E: fasi della modellazione a elementi finiti- sezione 5

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	87 di 309

I risultati dell'analisi sono riportati in Figura 61, Figura 63, Figura 64, Figura 65, Figura 66

Anche per queste sezioni e per queste analisi possono valere le considerazioni svolte nel paragrafo precedente. Le colonne di ghiaia accelerano i cedimenti che si sviluppano durante la costruzione del corpo del rilevato, evitando che questi cedimenti influenzino le rotaie durante l'esercizio della linea. Allo stesso modo e per lo stesso motivo, i cedimenti indotti dalla realizzazione del ballast, accelerati dalla presenza delle colonne di ghiaia, e comunque compresi tra 1 cm e 2.5 cm non influiranno direttamente sull'operatività dell'opera, dal momento che si svilupperanno praticamente durante la posa del ballast stesso. Pur considerando infine un cedimento viscoso, qui non esplicitamente preso in conto nei calcoli, pari al 10% del cedimento totale si giunge perciò a valutare che il cedimento effettivo dei binari nel corso della loro vita utile non sarà comunque mai superiore a 1÷2 cm.

Il cedimento a ridosso dei pali, per entrambe le condizioni esaminate, risulta essere notevolmente ridotto dalla presenza delle colonne, e si presenta generalmente ben distribuito con la profondità, e viene valutato compatibile con l'integrità dell'opera.

La verifica SLE è quindi da considerarsi soddisfatta.

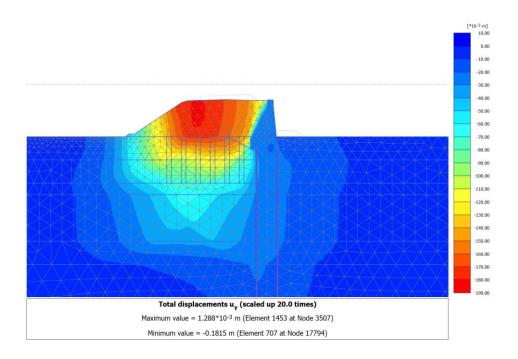


Figura 61 – RI36 E sezione 4: Cedimenti totali al termine della costruzione del rilevato ferroviario AV

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	88 di 309

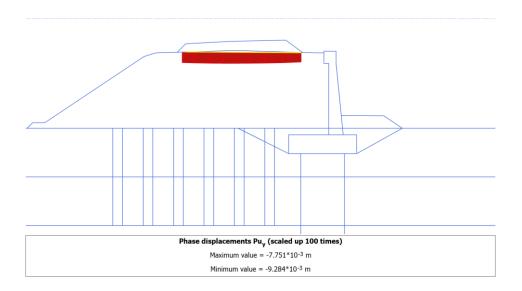


Figura 62 – RI36 E sezione 4: Cedimenti causati dalla posa del ballast

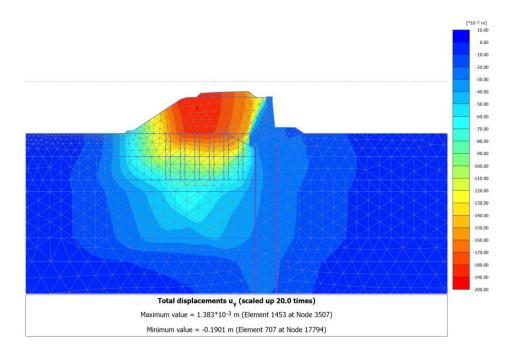


Figura 63 – RI36 E sezione 4: Cedimenti totali (rilevato+ballast)

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	89 di 309	

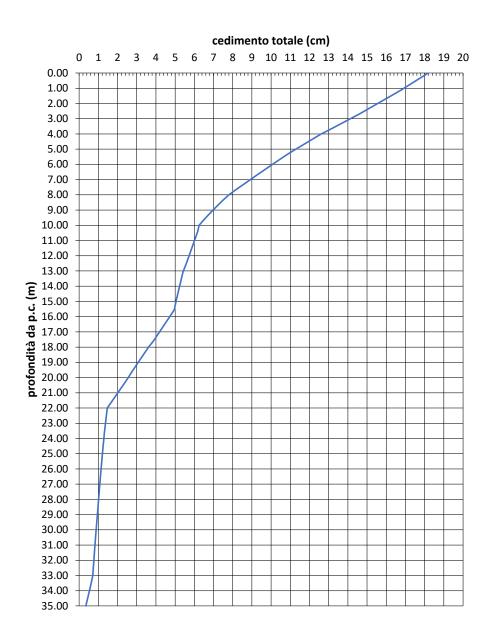


Figura 64 – RI36 E sezione 4: Cedimenti con la profondità sulla verticale di cedimento massimo

GENERAL CONTRACTOR Consorzio Iric/W Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	90 di 309

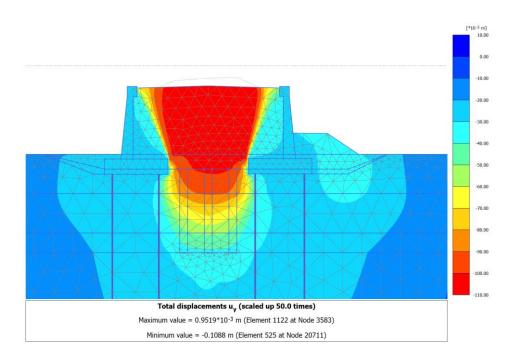


Figura 65 – RI36 E sezione 5: Cedimenti totali al termine della costruzione del rilevato ferroviario AV

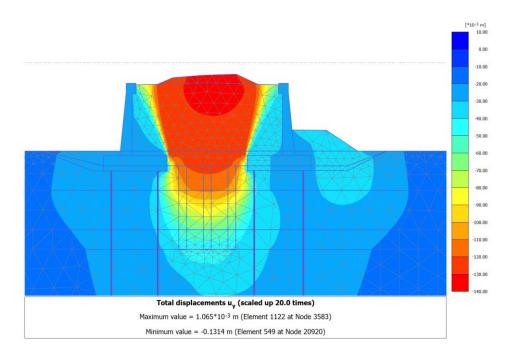


Figura 66 – RI36 E sezione 5: Cedimenti totali (rilevato+ballast)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	91 di 309

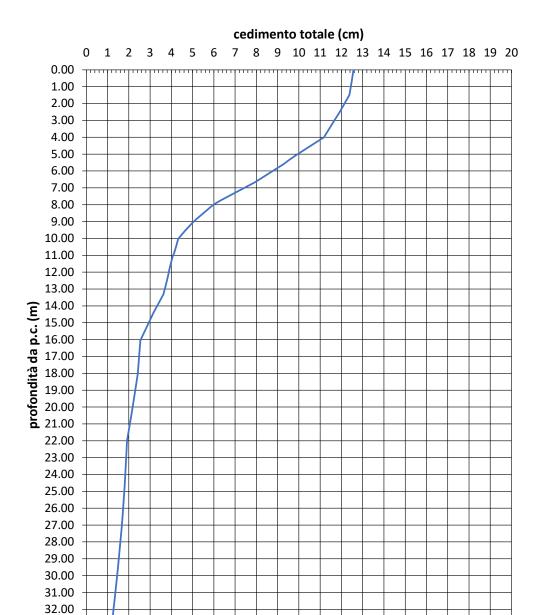


Figura 67 – RI36 E sezione 5: Cedimento con la profondità sulla verticale di massimo cedimento

33.00 34.00 35.00

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	92 di 309

7 RESISTENZA DEI PALI SOGGETTI A CARICHI ASSIALI

7.1 Introduzione

Il muro di sostegno e mitigazione presente lungo il rilevato sarà fondato su pali in ca. Il calcolo del muro e le relative verifiche sono contenuti nel documento di progetto del muro di sostegno.

Di seguito si riportano i calcoli di dimensionamento dei pali sotto carico assiale, condotti per il diametro D = 800 mm. I calcoli sono stati svolti in accordo alle NTC 2008, seguendo i dettami validi per i pali trivellati. I calcoli sono anche da ritenere validi nel caso di impiego di pali CFA.

Per quanto concerne il comportamento dei pali sotto carichi orizzontali, i calcoli di verifica e dimensionamento sono contenuti nel documento relativo al calcolo del muro.

Il calcolo è stato condotto in accordo all'approccio elastico di Matlock e Reese (1960) utilizzando i seguenti valori di molle orizzontali:

E_h = k_h*z, con z profondità da p.c. per terreni granulari e

 $E_h = 400 * c_u$ per terreni coesivi:

Per le due stratigrafie di calcolo ci si riferirà alle seguenti tabelle

Tabella 12. Caratterizzazione dei terreni per l'interazione Palo- Terreno da pk 22+748 a pk 23+000

da	а	Unità	γ	φ' _k	qbcri	nh	Eh
(m da	(m da p.c.)		(kN/m³)	(°)	(kPa)	(kN/m³)	(kPa)
0	2	4	19	34		15000	-
2	9	4	19	36		15000	-
9	10	3b	18.5				20000
10	15	4	19	36	2000	15000	
15	19	3b	18.5				34000
19	32	4	19	38	2500	15000	
32	34	2	19				48000
>34		2-6			3500		48000

Tabella 13. Caratterizzazione dei terreni per l'interazione Palo- Terreno da pk 23+000 a pk 23+527

da	а	Unità	γ	ф'к	qbcri	nh	Eh
(m da	a p.c.)		(kN/m³)	(°)	(kPa)	(kN/m³)	(kPa)
0	4	3b/3a	18.5	32			36000
4	8	3b	18.5				16000
8	10	3b	18.5				26000
10	18	4	19	34	2000	15000	
18	22	3b	18.5				32000
22	33	4	19	38	2500	15000	
33	35	2	19				48000
>35		4	16		3500		·

7.2 Analisi agli stati limite

Le verifiche di capacità portante dei pali sono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente (DM 2008). La verifica della capacità portante dei pali è soddisfatta se:

 $F_{cd} < R_{cd}$

essendo:

 $R_{cd} = R_k / \gamma_R$

dove:

F_{cd} carico assiale di compressione di progetto;

Rcd capacità portante di progetto nei confronti dei carichi assiali;

Rk valore caratteristico della capacità portante limite del palo;

γ_R coefficiente di sicurezza sulle resistenze

In particolare, le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) sono condotte con riferimento ad almeno uno dei due approcci:

Approccio 1:

Combinazione 1: A1 + M1 + R1Combinazione 2: A2 + M1 + R2

Approccio 2:

Combinazione 1: A1 + M1 + R3,

tenendo conto dei coefficienti parziali riportati in Tab. 5.2.V (ponti ferroviari), e Tab. 6.4.II delle NTC 2008 (Doc. Rif. [14])e riportati nelle seguenti

Tabella 7-14 e Tabella 7-15.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIProgetto Lotto Codifica Foglio RIN17 12 EI2RBRI36E0001A 94 di 309

Il peso del palo, in accordo con quanto riportato al paragrafo 6.4.3 delle NTC2008, deve essere incluso tra le azioni permanenti di cui alla

Tabella 7-14.

La resistenza di progetto a compressione $R_{c,d}$ è calcolata applicando al valore caratteristico della resistenza $R_{c,k}$ i coefficienti parziali γ_R riportati in tabella seguente, relativi alla condizione di pali trivellati.

Il valore caratteristico della resistenza $R_{c,k}$ a compressione ed a trazione $R_{t,k}$ è ottenuto applicando i fattori di correlazione ξ_3 e ξ_4 (Tabella 7-16) alle resistenze di calcolo R_{cal} ; tali fattori sono funzione del numero di verticali d'indagine rappresentative:

$$R_{c,k} = min \left\{ \frac{\left(R_{c;cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c;cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = min \left\{ \frac{\left(R_{t;cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t;cal}\right)_{min}}{\xi_4} \right\}.$$

I valori di ξ_3 e ξ_4 da utilizzare nelle analisi sono funzione dal numero di sondaggi che sono stati considerati per valutare la resistenza del palo per ogni area omogenea o struttura/opera.

Tabella 7-14 - Tab. 5.2. V, NTC 2008

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γ₽	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Tabella 7-15 - Tab. 6.4.II, NTC 2008

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIPROSERIA SORVEGLIANZA Progetto Lotto Codifica Foglio N17 12 EI2RBRI36E0001A 95 di 309

Tabella 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche.

Resistenza	Simbolo	I	Pali infissi		Pali trivellati			Pali ad elica continua		
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γъ	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in	γ_{s}	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione										
Totale (*)	γ_{t}	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in	γ _{st}	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25
trazione										

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tabella 7-16 – Tab. 6.4.IV NTC 2008 - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

In conclusione, sulla base di quanto prescritto dalle NTC al paragrafo 7.11.5.3, in condizioni sismiche le curve di capacità portante sono da calcolarsi con riferimento all'Approccio 2. Risultano, quindi, pressoché coincidenti con quelle calcolate agli SLU, utilizzando il medesimo approccio: le differenze si riducono ad un diverso fattore parziale applicato ad una frazione del peso del palo. Pertanto, nel caso in esame la stima è eseguita cautelativamente assumendo la combinazione A1+M1+R3, sia per le combinazioni statiche che per quelle sismiche. Per le verifiche in condizioni sismiche i coefficienti delle azioni A1 sono assunti unitari, come da §7.11.5.3-NTC2008.

7.3 Metodologia di calcolo

La portata di progetto di un palo trivellato (eseguito con completa asportazione del terreno) "Q_{tot_c,d}" in compressione è espressa dalla seguente relazione:

$$Q_{tot_c,d} = Q_{II} / F_{SL,C} + Q_{bI} / F_{SB} - W'_{p-s} = Q_{I_c,d} + Q_{b,d} - W_{p-s,d}$$

dove:

Q_{II} valore di calcolo della portata laterale,

Q_{bl} valore di calcolo della portata di base,

Q_{I_c,d} valore di progetto della portata laterale,

F_{SL,C} fattore di sicurezza per la portata laterale in compressione (= $\xi \cdot \gamma s$),

F_{SB} fattore di sicurezza per la portata di base (= $\xi \cdot \gamma b$),

Q_{b,d} valore di progetto della portata di base,

W_{p-s} valore di progetto del peso del palo, al netto del peso del terreno asportato.

Diversamente, la portata di progetto a trazione "Qtot_tr,d" è espressa dalla seguente relazione:

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	
Relazione Geotecnica	

Progetto	Lotto	Codifica	Foglio
-			
IN17	12	EI2RBRI36E0001A	96 di 309
	_		

$$Q_{tot_tr,d} = Q_{LL,Tr} / F_{SL} + W'_P = Q_{l_tr,d} + W'_p$$

dove:

QLL valore di calcolo della portata laterale,

W'P peso efficace del palo, alleggerito se sotto falda,

 $F_{SL,Tr}$ fattore di sicurezza per la portata laterale in trazione (= $\gamma_{st} \cdot \xi$).

In particolar modo, considerata la suscettibilità di liquefazione dello strato di depositi sciolti più superficiale, in condizioni di post-sisma il contributo di tale strato nel calcolo della capacità portante risulta essere trascurabile. A favore di sicurezza, la portata del palo fino a 4 m pc (v. capitolo 4.5) è stata considerata nulla sia per le combinazioni di calcolo post-sisma, che per le altre combinazioni eccezionali e per quelle agli SLU e SLV.

7.3.1 Portata laterale

La portata laterale limite è valutata con la seguente relazione:

$$Q_{II} = \pi \cdot D \cdot \Sigma_i (\tau_i \cdot h_i)$$

dove:

D diametro palo,

τ_i tensione di adesione laterale limite nello strato i-esimo,

hi altezza dello strato i-esimo.

7.3.1.1 Depositi coesivi

Per i terreni coesivi la tensione di adesione laterale limite è valutata con la seguente espressione:

$$\tau_{\text{lim}} (kPa) = \alpha \cdot c_u \le \tau_{\text{us,max}}$$

dove:

cu resistenza al taglio non drenata.

α coefficiente empirico, determinato in accordo a quanto indicato nel manuale FHWA 2010:

 $\alpha = 0.55$

per $(c_u/p_a) \le 1.5$;

 $\alpha = 0.55 - 0.1 \cdot (cu/p_a - 1.5)$ per $1.5 \le (c_u/p_a) \le 2.5$

Inoltre, per la resistenza laterale si impongono anche le seguenti condizioni:

$$\tau_{\text{lim}}$$
 (kPa) $\geq 0.23 \cdot \sigma'_{\text{v0}}$

 $\tau_{us,max}$ = 100 kPa (resistenza laterale massima in terreno coesivo),

dove:

 σ'_{v0} tensione verticale efficace alla quota di riferimento.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio

7.3.1.2 Depositi incoerenti

Relazione Geotecnica

Per i terreni incoerenti la tensione di aderenza laterale limite è valutata mediante metodo β con la seguente espressione (Reese & O'Neill, 1999, recepito nel manuale FHWA del 2010):

$$\tau_{\text{lim}} (kPa) = \beta \cdot \sigma'_{v0} \leq \tau_{us,max}$$

dove:

 $\beta = 1.5 - 0.245 \cdot z^{0.50}$ (0.25 $\leq \beta \leq 1.20$) per sabbie;

 $\beta = 2.0 - 0.147 \cdot z^{0.75}$

 $(0.25 \le \beta \le 1.80)$ per sabbie ghiaiose;

IN17

12

EI2RBRI36E0001A

97 di 309

 σ'_{v0} tensione verticale efficace alla quota di riferimento.

τ_{us,max} = 150 kPa (resistenza laterale massima in terreno incoerente)

7.3.2 Portata di base

Per la valutazione della portata di base limite si utilizzano le seguenti relazioni:

$$Q_{bl} = A_p \cdot q_{bl}$$

dove:

A_p area della base del palo,

qы portata limite specifica di base.

7.3.2.1 Depositi coesivi

La portata di base limite nei terreni coesivi è valutata con la seguente relazione:

$$q_{b,ult}(kPa) = 9 \cdot c_{u,k}$$

dove cu,k indica il valore caratteristico della resistenza a taglio non drenata.

7.3.2.2 Depositi incoerenti

Il valore della portata di base allo stato critico (q_{bcr}) è stato valutato, considerando un rapporto fra il cedimento della base del palo ed il diametro del palo pari al 10%.

Generalmente sono disponibili dati di prove SPT, da cui si possono utilizzare le indicazioni di Reese e O'Neill, 1988, Fioravante et al., 1995:

$$q_{bcr, 0.1} = 75 \text{ N}_{SPT} < 4000 \text{ kPa}.$$

Quando sono disponibili dati penetrometrici, si può considerare la seguente espressione (Salgado 2006, Ghionna et al., 1994):

$$q_{bcr \ 0.1} \cong 0.10 \div 0.16 \ q_c$$

dove l'estremo inferiore può essere assunto per sabbie molto addensate e l'estremo superiore per sabbie mediamente addensate.

7.3.2.3 Terreni stratificati

Nel caso di terreni stratificati, costituiti da alternanze di strati di limi e argille e di sabbie e ghiaie, i criteri di valutazione delle portate laterali limite sono analoghi a quelli descritti precedentemente. Tuttavia, in accordo a quanto discusso in Meyerhof (1976), la portata di base negli strati sabbioso-ghiaiosi si riduce rispetto a quella caratteristica dello strato supposto omogeneo (v. figura seguente). Pertanto, nel caso di terreno stratificato, la mobilitazione dell'intera resistenza di base disponibile è subordinata alla condizione che il palo penetri nello strato portante per almeno 3 diametri. Viceversa, con l'avvicinarsi della base del palo ad uno strato inferiore di minore resistenza, la portata si riduce linearmente fino all'interfaccia tra gli strati, laddove eguaglia il valore di rottura dell'unità più debole (vedasi Figura 68

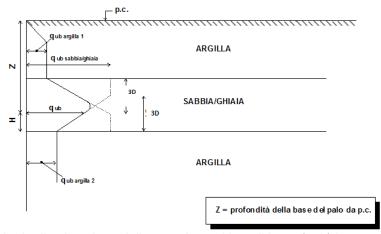


Figura 68- Criterio di valutazione della pressione ultima di base (qub) in terreni stratificati

7.4 Stratigrafia di calcolo e fattori parziali

I calcoli sono stati eseguiti con riferimento alla stratigrafia riportata nel paragrafo 4.5.

La testa pali è stata considerata a 1.6 m dal p.c.

Il livello di falda è stato considerato alle quote indicate al par 4.3.

Tenuto conto delle indagini a disposizione, e del fatto che la stratigrafia è da considerarsi come ragionevolmente cautelativa rispetto alle condizioni medie del sito, si è considerato un valore di $\xi_4 = 1.48$

7.5 Risultati

Si riportano di seguito le curve di capacità portante del palo singolo, calcolate sulla base della metodologia di calcolo discussa nei capitoli precedenti, per pali D = 800 mm, D = 1000 mm; D = 1200 mm.

I tabulati di calcolo sono riportati in ALLEGATO 6.

Si noti che le curve di portanza riportate con la dicitura "muro 2" valgono anche per il "muro 3".

GENERAL CONTRACTOR Consorzio IricAV Due	5	SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	99 di 309

7.5.1 PALI D = 1000 mm- tratto da pk 22+748 a pk 23+000

RI36E - MU	RO 1 - Curve	e di capacità	portante
Pali trivellati Φ	1000		
Numero verticali inda	gate 3		
ξ_4	1.48		

	CARICO LIM	ITE ULTIM	10	CURVE SLU				
Lpalo	Q _p lim	Q _b ,cr	Q _{TOT,lim}	Q _{I_c,d}	Q _{l_tr,d}	Q _{b,d}	Q _{tot_c,d}	Q _{tot_tr,d}
m 0.00	kN 0	1170	4N	kN 0	kN 0	kN	kN	kN
0.50	76	1178 1178	1178 1252	45	41	590 590	590 632	0 43
1.00	166	1178	1339	98	90	590	680	95
1.50	264	1178	1435	155	143	590	735	150
2.00	367	1178	1535	216	198	590	793	207
2.50	473	1178	1640	278	256	590	851	268
3.00	584	1178	1748	343	316	590	914	330
3.50	698	1178	1859	410	377	590	978	393
4.00	815	1178	1974	479	441	590	1043	460
4.50	935	1041	1954	549	505	521	1042	526
5.00	1058	903	1938 1924	622	572	452	1041 1044	596
5.50 6.00	1184 1312	766	1924	696 771	640 709	383 314	1044	666 737
6.50	1442	628 491	1912	847	709 779	246	1047	810
7.00	1552	353	1873	912	839	177	1031	872
7.50	1618	353	1936	951	875	177	1080	910
8.00	1684	353	2000	989	910	177	1115	948
8.50	1798	556	2314	1056	972	278	1281	1012
9.00	1936	759	2653	1137	1046	380	1461	1088
9.50	2075	962	2993	1219	1122	481	1640	1167
10.00	2216	1165	3333	1302	1198	583	1822	1245
10.50	2357	1233	3540	1385	1274	617	1936	1323
11.00	2498	1300	3747	1468	1350	651	2048	1402
11.50	2640	1125	3711	1551	1427	563	2041	1481
12.00	2783	951	3677	1635	1504	476	2034	1561
12.50 13.00	2925	776	3642	1719	1581 1649	388	2027	1640
	3050	601 601	3590	1792 1845		301 301	2010	1710 1762
13.50 14.00	3141 3214	601	3678 3749	1888	1698 1737	301	2060 2100	1803
14.50	3288	601	3820	1932	1777	301	2141	1845
15.00	3361	601	3891	1975	1817	301	2180	1888
15.50	3435	601	3963	2018	1857	301	2220	1930
16.00	3508	601	4034	2061	1896	301	2261	1971
16.50	3582	601	4105	2105	1936	301	2300	2014
17.00	3670	601	4191	2156	1984	301	2349	2064
17.50	3789	828	4535	2226	2048	414	2530	2130
18.00	3922	1055	4892	2304	2120	528	2718	2205
18.50	4053	1282	5248	2381	2191	642	2906	2278
19.00	4182	1509	5602	2457	2261	755	3091	2351
19.50	4309	1736	5954	2532	2329	869	3276	2421
20.00 20.50	4434	1963	6304	2605	2397	982	3461	2491
21.00	4558 4679	1963 1963	6425 6543	2678 2749	2464 2529	982 982	3530 3598	2561 2628
21.50	4797	1963	6659	2818	2593	982	3665	2694
22.00	4913	1963	6773	2887	2656	982	3729	2760
22.50	5026	1963	6884	2953	2717	982	3792	2823
23.00	5137	1963	6992	3018	2777	982	3855	2885
23.50	5244	1963	7097	3081	2835	982	3914	2946
24.00	5349	1963	7199	3143	2891	982	3973	3004
24.50	5453	1963	7301	3204	2948	982	4031	3063
25.00	5558	1963	7404	3266	3004	982	4089	3122
25.50	5665	1963	7508	3328	3062	982	4149	3182
26.00	5774	1963	7615	3392	3121	982	4209	3244
26.50	5885	1963	7723	3458	3181	982	4271	3306
27.00	5997	1963	7833	3524	3242	982	4335	3369
27.50	6111	1778	7759	3590	3303	890	4305	3433
28.00 28.50	6227 6345	1592 1406	7687 7616	3659 3728	3366 3430	797 704	4277 4251	3498 3564
29.00	6464	1220	7548	3728 3798	3494	611	4251	3631
29.50	6586	1034	7481	3870	3560	518	4199	3699
30.00	6706	848	7413	3940	3625	424	4174	3766
30.50	6823	848	7528	4009	3688	424	4239	3832
31.00	6940	848	7642	4078	3751	424	4305	3897
31.50	7057	848	7757	4146	3815	424	4371	3963
32.00	7179	848	7877	4218	3881	424	4439	4032
32.50	7308	1165	8320	4294	3950	583	4670	4103
33.00	7441	1482	8768	4372	4022	742	4903	4178

Figura 69- – Riassunto curve di carico limite ultimo e di resistenza di progetto SLU per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	100 di 309

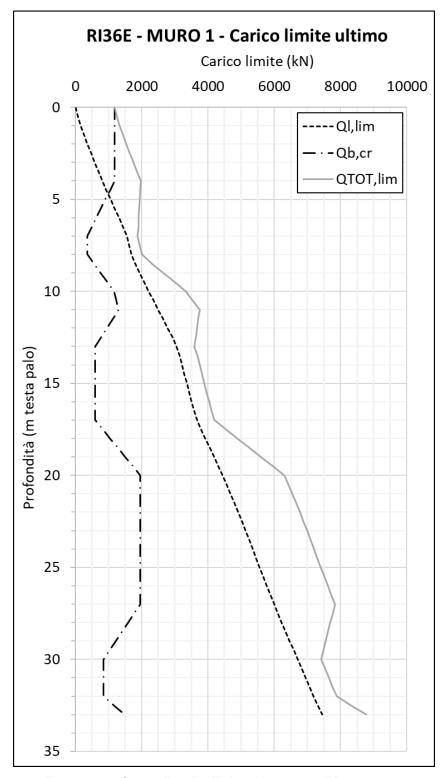


Figura 70- – Curve di carico limite ultimo per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	101 di 309

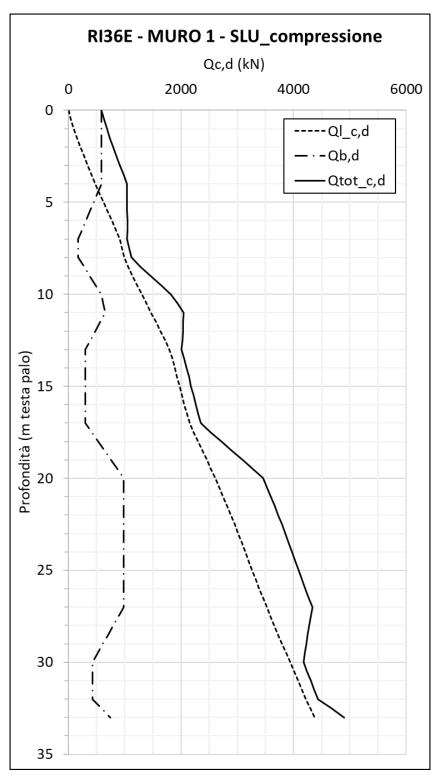


Figura 71– Curve di resistenza di progetto SLU, compressione per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	102 di 309

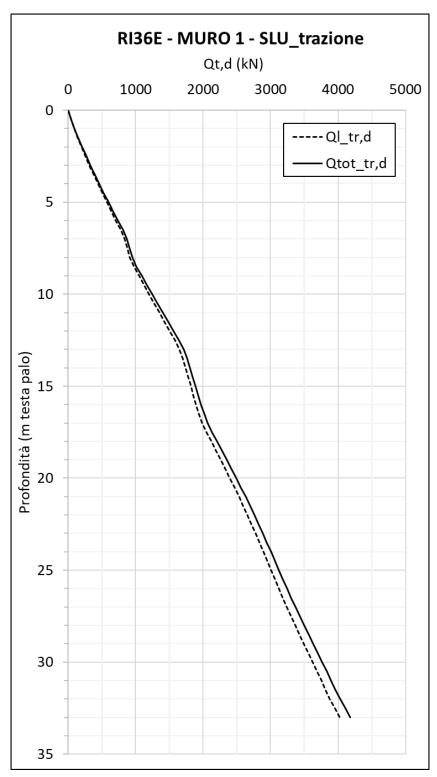


Figura 72- Curve di resistenza di progetto SLU, trazione per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	103 di 309

7.5.2 PALI D = 800 mm- tratto da pk 23+000 a pk 23+527

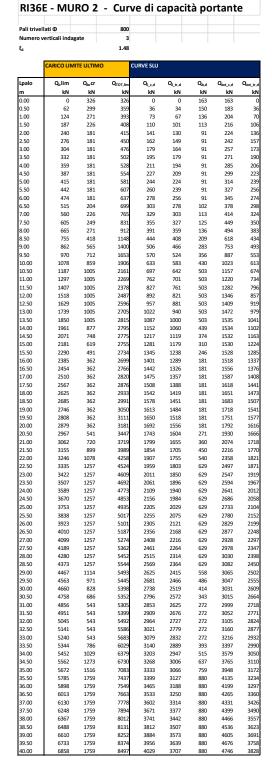


Figura 73- - Riassunto curve di carico limite ultimo e di resistenza di progetto SLU per pali D=800 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	104 di 309

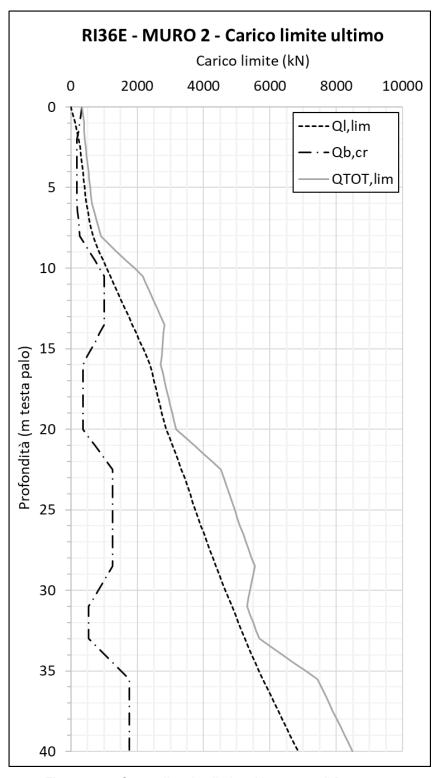


Figura 74- – Curve di carico limite ultimo per pali D=800 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	105 di 309

Figura 75– Curve di resistenza di progetto SLU, compressione per pali D=800 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	106 di 309

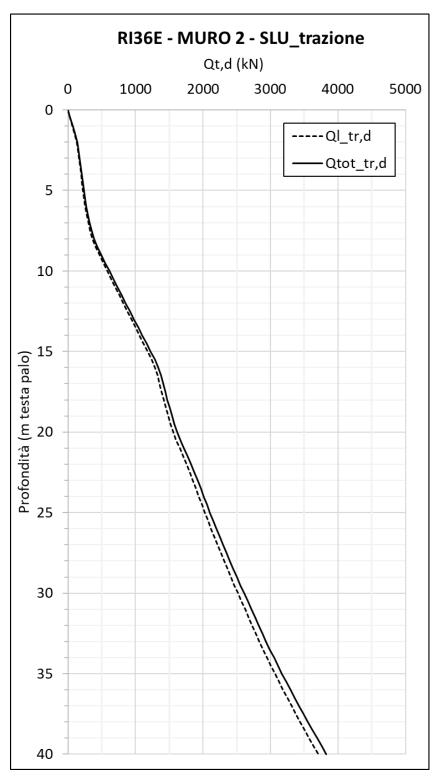


Figura 76– Curve di resistenza di progetto SLU, trazione per pali D=800 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	107 di 309

7.5.3 PALI D = 1000 mm- tratto da pk 23+000 a pk 23+527

MISO	E - MU	NO Z		ırve d	ii cap	acıta	porta	iiic
Pali trive			1000					
Numero ξ ₄	verticali inda	gate	3 1.48					
	CARICO LIM	ITE ULTIN	10	CURVE SLU	J			
Lpalo	Q _e lim	Q _b ,cr	Q _{TOT.lim}	Q _{I_c,d}	Q _{l_tr,d}	Q _{b,d}	Q _{tot_c,d}	Q _{tot_tr}
m	kN	kN	kN	رة kN	kN	kN	kN	α _{ω(t}
0.00	0	479	479	0	0	240		
0.50	78	440	515	46	42	220		4
1.00	156 233	401 342	551 568	92 137	84 126	201 171	286	1
2.00	300	283	574	176	162	142		1
2.50	346	283	617	203	187	142	329	19
3.00	380	283	649	223	205	142	346	2
3.50	415	283	681	244	224	142		2
4.00	449	283	713	264	243	142		2
4.50	484	283	745	284	262	142	398	2
5.00	518	283 283	778	304	280 299	142		3
5.50 6.00	553 593	283 283	810 848	325 348	299 321	142		3
6.50	644	312	926	378	348	156		3
7.00	700	342	1009	411	378	171	538	4
7.50	756	371	1092	444	409	186		4
8.00	831	401	1194	488	449	201	638	4
8.50	944	596	1500	555	510	298		5
9.00	1078	791	1826	633	583	396		6
9.50	1212	986	2153	712	655	493		7
10.00	1348	1181	2481	792 872	729	591	1320	7
10.50 11.00	1484 1621	1376 1571	2810 3140	872 952	802 876	689 786		8
11.00	1621	1571	3140 3276	1033	876 951	786 786		10
12.00	1897	1571	3411	1115	1025	786		10
12.50	2036	1571	3548	1196	1101	786		11
13.00	2174	1571	3684	1277	1175	786	1981	12
13.50	2313	1403	3652	1359	1250	702	1975	13
14.00	2451	1236	3621	1440	1325	619	1970	13
14.50	2589	1068	3588	1521	1399	535	1964	14
15.00	2726	901	3556	1602	1474	451		15
15.50 16.00	2862 2982	733 565	3522	1682 1752	1547 1612	367 283	1950 1934	16 16
16.00 16.50	2982 3067	565 565	3472 3555	1/52	1612	283		16
17.00	3137	565	3623	1843	1696	283		17
17.50	3209	565	3692	1885	1735	283		18
18.00	3282	565	3762	1928	1774	283	2096	18
18.50	3356	565	3834	1972	1814	283	2137	19
19.00	3432	565	3908	2016	1855	283	2178	19
19.50	3510	565	3983	2062	1897	283		19
20.00	3599	565	4070	2115	1945	283		20
20.50	3709 3828	798	4411 4760	2179 2249	2005 2069	399		21
21.00 21.50	3944	1031 1264	4760 5107	2249	2132	516 633		21
22.00	4058	1497	5452	2317	2194	749		22
22.50	4169	1730	5794	2449	2254	866		23
23.00	4278	1963	6133	2514	2312	982	3350	24
23.50	4383	1963	6236	2575	2369	982	3408	24
24.00	4486	1963	6336	2636	2425	982		25
24.50	4588	1963	6436	2696	2480	982		25
25.00	4692	1963	6537	2757	2536	982	3580	26
25.50	4797	1963	6640	2818	2593	982		27
26.00 26.50	4904 5013	1963 1963	6745 6852	2881 2945	2651 2710	982 982		27 28
26.50 27.00	5013	1963	6852 6960	2945 3011	2710	982		28
27.50	5236	1963	7070	3076	2830	982		29
28.00	5350	1963	7182	3143	2892	982	3948	30
28.50	5466	1778	7109	3212	2955	890	3921	30
29.00	5584	1592	7039	3281	3018	797	3893	31
29.50	5703	1406	6970	3351	3083	704		32
30.00	5825	1220	6903	3422	3149	611	3843	32
30.50 31.00	5948 6070	1034 848	6838 6772	3495 3566	3215 3281	518 424		33
31.00	6189	848	6888	3566 3636	3281	424		34
32.00	6307	848	7004	3706	3409	424	3926	39
32.50	6426	848	7121	3776	3474	424	3993	36
33.00	6550	848	7242	3848	3541	424	4062	36
33.50	6680	1165	7687	3925	3611	583	4295	37
34.00	6815	1482	8137	4004				
34.50	6952	1799	8588	4085				
35.00	7091	2115	9041	4166				
35.50	7231	2432	9496			1217		
36.00 36.50	7373 7517	2749	9952	4332 4417		1376		
36.50 37.00	7517 7662	2749 2749	10094	4417 4502	4063 4142			
37.00 37.50	7810	2749	10237 10382	4502 4589	4142			
38.00	7959	2749	10582	4569	4302			
38.50	8110	2749	10677	4765	4384			
39.00	8262	2749	10827	4854				
39.50	8417	2749	10980	4945	4550			
40.00	8573	2749	11133	5037				48
40.50	8725	2749	11282.5	5126	4716	1376	6245	49
41.00	8878	2749	11433.6	5216	4799	1376	6332	49

Figura 77- – Riassunto curve di carico limite ultimo e di resistenza di progetto SLU per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	108 di 309

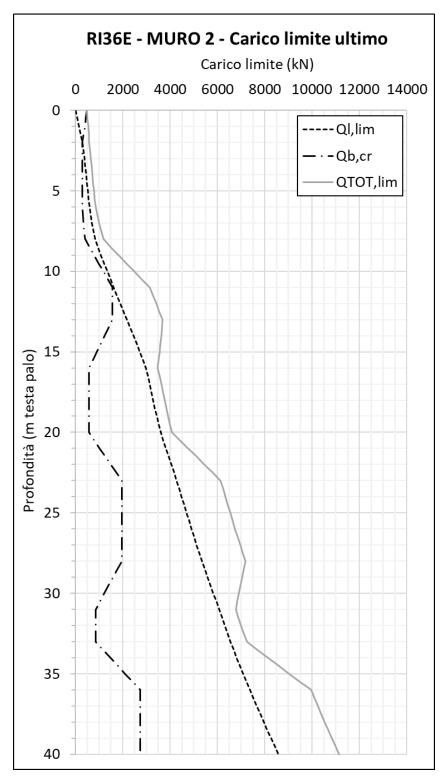


Figura 78- - Curve di carico limite ultimo per pali D=1000 mm

GENERAL CONTRACTOR Consorzio Iric/tV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	109 di 309		

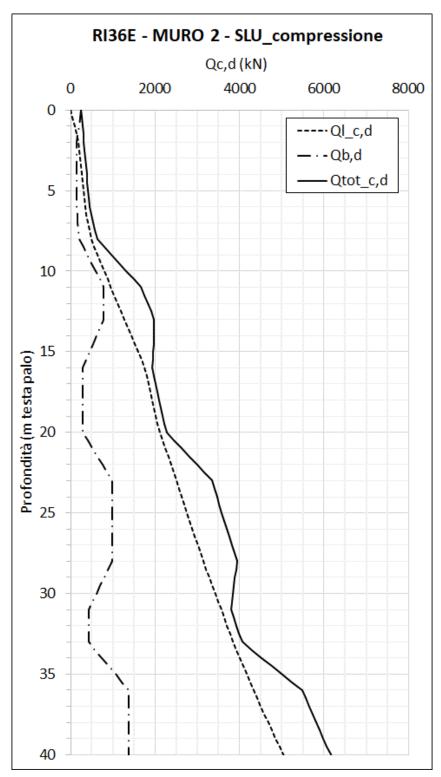


Figura 79– Curve di resistenza di progetto SLU, compressione per pali D=1000 mm

GENERAL CONTRACTOR Consorzio Iric/tV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	110 di 309		

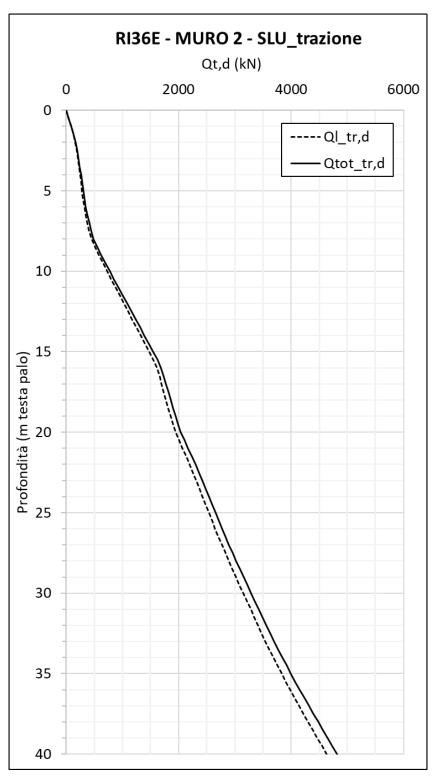


Figura 80– Curve di resistenza di progetto SLU, trazione per pali D=1000 mm

GENERAL CONTRACTOR Consorzio IricAv Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	111 di 309		

7.5.4 PALI D = 1200 mm- tratto da pk 23+000 a pk 23+527

Pali trive	llati Φ		1200					
Numero ξ ₄	verticali inda	agate	3 1.48					
54	CARICO LIN	ALTE LILTING		CURVE SLU				
Lpalo m	Q _b lim kN	Q _b ,cr kN	Q _{TOT,lim} kN	Q _{I_c,d} kN	Q _{l_tr,d} kN	Q _{b,d} kN	Q _{tot_c,d} kN	Q _{tot_t}
0.00	0	656	656	0	0	328	328	
0.50 1.00	93 187	604 553	694 732	55 110	50 101	302 277	353 377	1
1.50	280	480	750	165	151	240	391	1
2.00	360	407	754	212	195	204	396	2
2.50	415 456	407 407	805 843	244 268	224	204	425 445	2
3.00 3.50	456	407	843 881	208	246	204	445	2
4.00	539	407	919	317	291	204	484	3
4.50	581	407	957	341	314	204	503	3
5.00	622	407	995	365	336	204	523	3
5.50 5.00	664 712	407 407	1033 1078	390 418	359 385	204 204	544 567	3
5.50	773	444	1172	454	418	204	617	4
7.00	840	480	1273	494	454	240	669	5
7.50	908	516	1373	533	491	258	723	5
8.00 8.50	997 1133	553 797	1496 1872	586 666	539 612	277 399	790 986	5 6
8.50 9.00	1133 1293	797 1041	1872 2273	666 760	612 699	399 521	986 1198	7
9.50	1454	1285	2675	854	786	643	1411	8
10.00	1617	1529	3079	950	874	765	1624	9
10.50	1781	1774	3483	1046	963	888	1838	10
11.00 11.50	1946 2111	2018 2262	3889 4295	1143 1240	1052 1141	1010 1132	2052 2267	11 12
12.00	22111	2262	4457	1338	1231	1132	2361	13
12.50	2443	2262	4620	1435	1321	1132	2453	14
13.00	2609	2055	4576	1533	1410	1029	2443	14
13.50	2775	1848	4532	1630	1500	925	2431	15
14.00 14.50	2941 3106	1642 1435	4488 4443	1728 1825	1590 1679	822 718	2422 2411	16 17
15.00	3271	1228	4397	1922	1768	615	2399	18
15.50	3435	1021	4351	2018	1857	511	2387	19
16.00	3578	814	4284	2102	1934	407	2362	20
16.50 17.00	3681 3765	814 814	4383 4464	2163 2212	1990 2035	407 407	2419 2464	21 21
17.50	3850	814	4546	2212	2033	407	2509	22
18.00	3938	814	4630	2314	2129	407	2556	22
18.50	4027	814	4716	2366	2177	407	2603	23
19.00	4118	814	4804	2420	2226	407	2653	23
19.50 20.00	4211 4319	814 814	4893 4998	2474 2538	2276 2335	407 407	2703 2761	24 24
20.50	4451	1102	5414	2615	2406	552	2979	25
21.00	4593	1389	5840	2699	2483	695	3201	26
21.50	4733	1677	6264	2781	2558	839	3423	27
22.00 22.50	4870 5003	1965 2252	6685 7103	2861 2939	2632 2704	983 1127	3644 3860	27 28
22.50	5133	2540	7517	2939 3016	2704	1271	4077	28
23.50	5260	2827	7928	3090	2843	1415	4291	30
24.00	5383	2827	8048	3163	2910	1415	4358	30
24.50	5506	2827	8167	3235	2976	1415	4426	31
25.00	5630	2827	8288	3308	3043	1415	4493	32
25.50 26.00	5756 5885	2827 2827	8411 8536	3382 3458	3111 3181	1415 1415	4563 4635	32 33
26.50	6016	2827	8663	3535	3252	1415	4707	34
27.00	6148	2827	8792	3612	3323	1415	4780	35
27.50	6283	2827	8924	3692	3396	1415	4854	35
28.00 28.50	6420 6559	2598 2369	8828 8734	3772 3854	3470 3545	1300 1186	4816 4779	36 37
28.50 29.00	6701	2139	8/34 8643	3854 3937	3545 3622	1071	4779 4742	38
29.50	6844	1910	8553	4021	3699	956	4707	38
30.00	6989	1680	8466	4106	3778	841	4672	39
30.50	7137	1451		4193	3858	726	4640	40
31.00 31.50	7284 7426		8295 8434	4280 4363		611 611		41 42
32.00	7568				4014			
32.50	7711		8712	4531				
33.00	7860	1221	8857	4618		611	4927	
33.50	8016							
34.00 34.50	8178 8342			4805 4901				
34.50 35.00	8342 8509							
35.50	8677							
36.00	8847	3567	12171	5198	4782	1785	6654	50
36.50	9020							
37.00	9195							
37.50 38.00	9372 9551			5506 5612				
38.00 38.50	9551 9732							54 55
39.00	9915			5825	5359	1981		56
39.50	10100	3958	13791	5934	5459	1981	7553	57
10.00	10288	3958		6045	5561	1981	7660	58

Figura 81- – Riassunto curve di carico limite ultimo e di resistenza di progetto SLU per pali D=1200 mm

GENERAL CONTRACTOR Consorzio Iric/AV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	112 di 309		

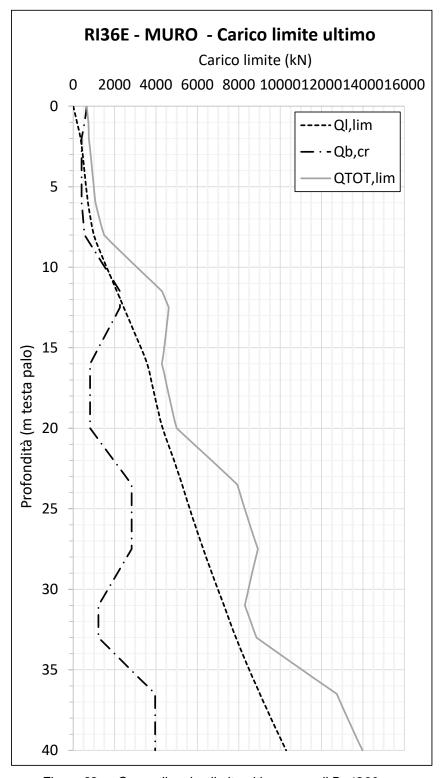


Figura 82- - Curve di carico limite ultimo per pali D=1200 mm

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	113 di 309		

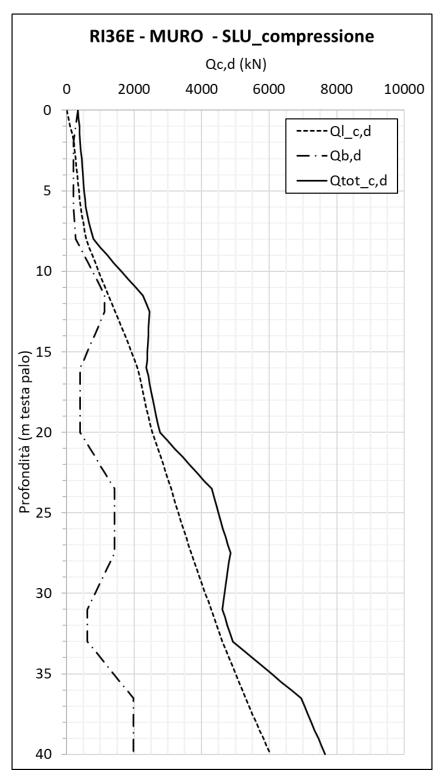


Figura 83– Curve di resistenza di progetto SLU, compressione per pali D=1200 mm

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	114 di 309		

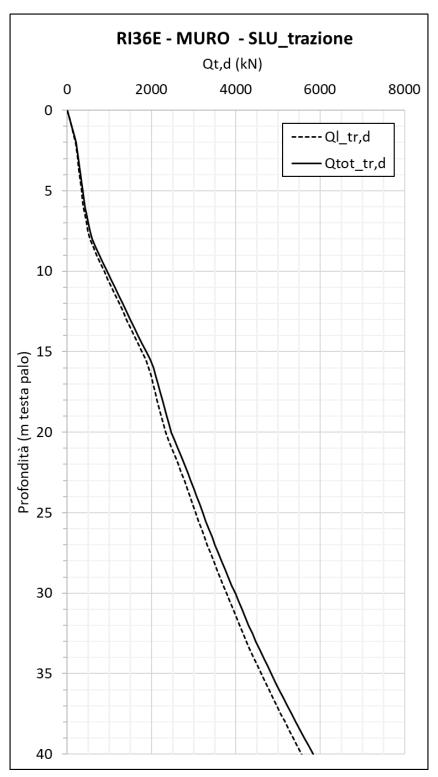
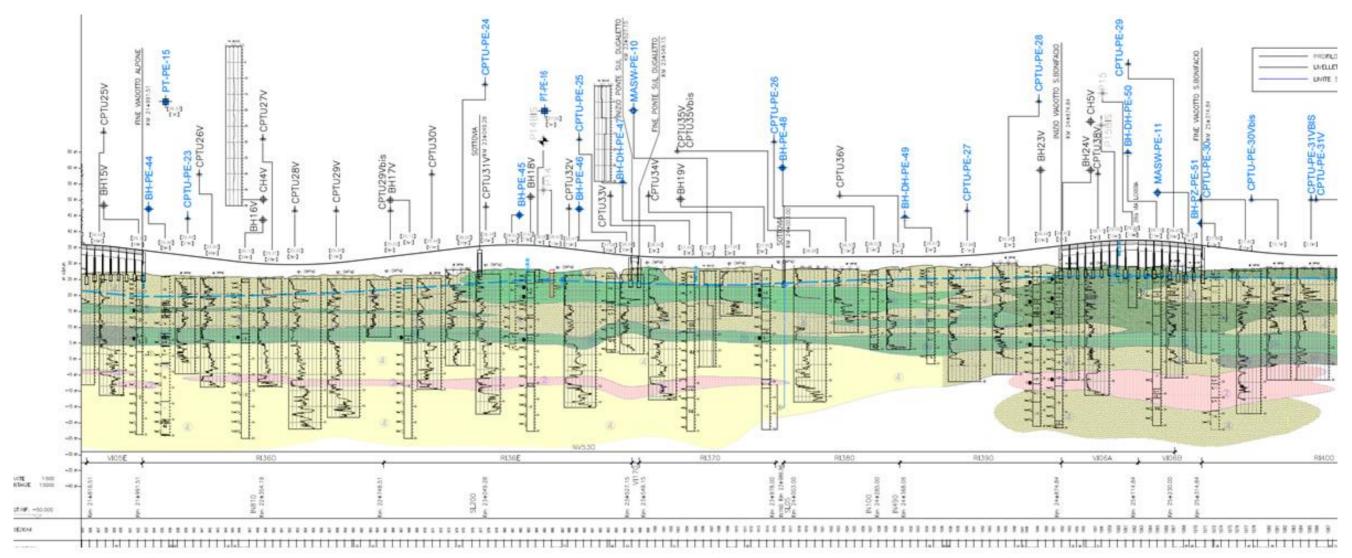


Figura 84– Curve di resistenza di progetto SLU, trazione per pali D=1200 mm

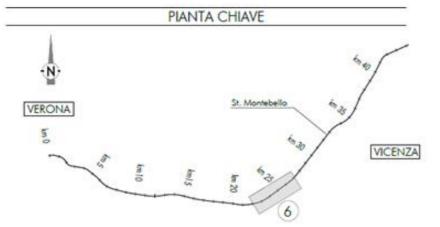
GENERAL CONTRACTOR Consorzio Iric/4V Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
DI . (Progetto	Lotto	Codifica	Foglio			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	115 di			

8 CONCLUSIONI E RACCOMANDAZIONI

In conclusione, il rilevato oggetto di questa analisi risulta stabile e i cedimenti attesi sono limitati e non differiti nel tempo.


Nei tratti in cui l'opera non corre sostenuta da entrambi i lati da muri di sostegno, è opportuno e necessario che il materiale venga messo in opera con modalità e procedure tali da conferire un angolo di resistenza al taglio minimo di 40° o parametri di resistenza c' e φ ' equivalenti. Per tale motivo, si dovranno impiegare materiali tipo A1 o, in subordine, A2.-4.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	116 di 309


ALLEGATI

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	117 di 309		

ALLEGATO 1 - PROFILO STRATIGRAFICO

Campagna indegini integrative PE

LEGENDA

Files - Popels reportion

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	119 di 309	

ALLEGATO 2 - SONDAGGI

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	120 di 309		

	001155451			_					7 -	П сен	DIONE:	200405-00	GGIATO					nts to a co	maria tri					NOTE
G ∈@lavori	SCHEDA DI S	SON	IDAGG	Ю	CC	OMM. cm	017/15			□ CAM □ CAM				DA S.F	э.т.				CQUA IN FOR					NOTE
indagini geognostiche prove geotecniche in sito	SECONDO RACCOMAN				PA	G. 1	DI	3		☑ CAM	PIONE	RIMANE	GGIATO		NE TEST			(m DA P.C.)	PROF. RIVES (m DA P.C.)		eta Tubo H (m)	Da Plano Data	Campagne H (m)	ATTREZZATURA PER MAGLIO "NENZI" A
Rev 0 Data 31/12/2008	CERTIFICATO cerstr017cm01715	Diretto Dott, In	RE ng. Davide Spien	dore						SPE	ZZONE	DI CARC	TA							1	T		T	MAGLIO "NENZI" A SGANCIAMENTO AUT
COMMITTENTE Irica	av Due	,	, in the second						1	CAM	PIONE	NDISTU	RBATO F	PARET	SOTTIL	l								PESO MAGLIO 63
	AC VR-PD Varlante dl San Bonifa	aclo								CAM	PIONE I	NDISTU	RBATO A	A PIST	DNE									ALTEZZA CADUTA DIAMETRO ASTE
PERFORAZIONE N, BH17V	DATA INIZIO 09/03/2015	5			E _11/03	/2015				CAM	PIONE I	NDISTU	RBATO F	ROTAT	1vo									PESO ASTE 7.2 PUNTA Ray
COORDINATE GB; Nord	Est Est	anti-order!	Quota	s.l.m.m	·		,			PROVE	П.	DEDM	B, LEFR	ANC	D 1/4	NE TES	т Т	DEFECTO	METRO MENA	VDD E	PERA	EAD !!	ICEON	PUNTA CONICA CHIU:
RESPONSABILE Dott, Frison	OPERATORE Sig. Ve	numnt	ATTR	CAMP	URA Mu:		, T	S,P,T,	1 }	IN FORO	T.C.R.	S.C.R.	R,Q,D,	_	VESIONE		ROVE		ENTAZIONE	inu g	2 PERK	ILAD, EC	NOLUN	MATERIALE RIPOSTO
1		ž.	40 □			ETEK		1	1	금유	%	%	%		PEZZONI			-		- ¥	200	5		CASSETTE CATALOGA E FOTOGRAFATO
DESCRIZIO	NE STRATIGRAFICA	SOFONDITO da fontale	108	98	DAD THE	TRO!	n N	і н		DVRA				E	5 E	88	ROFONDITA'			ORA	ORAZ	ME.		AGGOTTAMENTO IDR
		PRO E	STRATIORAFI TPO	NUMERO	PROFONDITA' m & p.c. POCKET	PENETRON Kgiom ² TORVANE	Kalo			MANOVRA DI CAROTAGGIO				5 5	5-10 cm	TIPO	PRO E			METODO DI PERFORAZION	ATTREZZO DI PERFORAZIONI	RIVESTIMENT	DATA	
Limo sabbloso marrone nocciola Ilmosa marrone nocciola con ver	fino a =0.40 m da p.c. quindi sabbla auture ocracee.	2.00		1 -	1.50 1.95 3,00		3 3 5	1.5 1.6 1.8 1.3 3.0 3.1	2															
Sabbla da fine a media marrone a grossa, calcarea e rari ciottoli i	noodola, scioits; rara ghlala da media zakzarel sub-arrotondad.	9,10	0	3 - 4 - 5 - 6 - 7	3,45 4.50 4.95 5.00 5,50 6,00 6,45 7,50 7,95 9,00 9,45		3 225 598 478 47	3.4 4.6 4.8 4.8 6.0 6.1 7.8 7.6 7.8 7.8 9.0 9.1												UO A SECCO	E Ø 101 mm			
Babble fine e media grigia da de Da +10.60 m da p.c. livelil centin	ebolmente llimosa a llimosa. Il limo sabbloso			9 -	10,50 10,95 12.00 12,45 13,00 13,50		9 324 559 5711	9.4 10.5 10.6 10.5 12.1 12.3 12.4	5 18 18 18 18 18 18 18 18 18 18 18 18 18		100									CAROTAGGIO CONTINUO A SECCO	CAROTIERE SEMPLICE Ø	Ø 127 mn	09/03/2015	
Limo argilloso e debolmente arg	Illoso da grigio a grigio scuro.	17,60			18.60	0.9 0.1.6 0.1.4 0.1.8 0.1.6 0.			12 12 12 12 12 12 12 12 12 12 12 12 12 1											20,00	20,00	20,00	20,00	

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 121 di

F	Tellavori indagini geognostiche prove geotecniche in sito				ЭЮ	L	COMM, cm017	/15		- 5	CAMP		IMANEG		DA S.P	т.				CQUA IN FOR					NOTE
F		SECONDO RACCOMAN					PAG. 2	DI 3		, i				GIATO D					(m DA P.C.)	PROF. RIVES. (m DA P.C.)		th Tubo			
	ev 0 Data 31/12/2008	CERTIFICATO cerstr017cm01715	DIRETTO	RE g. Davide Spi	ondore						SPEZ	ZONE D	CARO	TA							Date	11 (11)	Data	11 (31)	MAGLIO "NENZI" A SGANCIAMENTO AUTO
	COMMITTENTE Irica		Dott. In	g. Davide Spi	erroore						CAMP	IONE IN	NDISTUR	RBATO P.	ARETI	SOTTILI									PESO MAGLIO 63
			a a la						_	. ا	•			RBATO A											ALTEZZA CADUTA 7
	PERFORAZIONE N. BH17V	AC VR-PD Variante di San Bonifa DATA INIZIO 09/03/2015	acio 5		TMAZE	NE11/	03/2015			-															DIAMETRO ASTE 5 PESO ASTE 7,2
	COORDINATE GB; Nord	Est Using Data NIZIO Using Zons	-		ta s.l.m		V-2010		_	4	-		NUISTUR	RBATO R	OTATI										PUNTA Ray PUNTA CONICA CHIUS
	RESPONSABILE Dott. Frison		nturini				Mustang A66			P IN	ROVE I FORO	P	ERMEA	B. LEFRA	ANC	VA	NE TES	Т	PRESSIO	METRO MENA	ARD	PERM	IEAB. LU	GEON	GATA CONICA CHIUS
	Dam 20.00 Am 40.00 Pro	ofonshià Finale m 50.00 PAG.3 DI 6		á		/PIONI	H	5	I.P.T.			T.C.R.	S.C.R.	R.Q.D.	DIM	ESIONE EZZONI	Р	ROVE	STRUM	ENTAZ I ONE	¥	E E	0		
		INE STRATIGRAFICA	PROFONDITA m da fondale	STRATIORARI	TPO	PROFONDITA' m ds p.c.	POCKET PENETROMET Kg/cm² TORVANE Kg/cm²	N	н		MANOVRA DI CAROTAGGIO			,	\vdash	E 0 4	TPO	PROFONDITA' m da p.o.			METODO DI PERFORAZIONE	ATTREZZO DI PERFORAZION	RIVESTIMENTO	DATA	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	idem c.s. Sabbla da fine a grossa grigio se	cura, sciolta.	20.30		12 12 13 14 14 15 15	21.00 21.50 24.00 24.45 27.00 27.45		11 18 21	24,00 24,15 24,45 24,45 27,00 27,15 27,30 27,45 30,00 30,15 30,15 30,45			100									CAROTAGGIO CONTINUO A SECCO	CAROTIERE SEMPLICE Ø 101 mm	Ø 127 mm	\$102/20/60 24.00	
39	Sabbla fine e medja da Ilmosa a	u risholmenta limosa	33,00		≥ 16	33,00 33,45 33,00 33,50		4 6 16	33,00 33,15 33,30 33,45	30											Co	5		10/03	
2	move the selection of t	The second secon	37,00		Z 18	36.00 36.45		9 16 18	36.00 36.15 36.30 36.45	2															
2 2 2	Sabbla da fine a grossa grigio so	cura.	40.00		□ 19 ≥ 20	38,00 38,50 39,00 39,45		22 35 36	39.00 39.15 39.30 39.45	3											40,00	40.00	40,00	40,00	

309

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALA FERROVIE DELLO ST	ERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	122 di 309

G ∈@lavori	SCHEDA DI S	ONDAGG	Ю	COMM.	cm017/15				IMANEG IMANEG	GIATO GIATO DA	S,P,T					CQUA IN FOR					NOT
indagini geognostiche prove geoteoniche in sito	SECONDO RACCOMAN			PAG. 3	DI	3	☑ CAM	PIONE R	MANEG	GIATO DA					(m DA P.C.)	(m DA P.C.)	Da Te	H (m)	Da Plano Data	H (m)	ATTREZZATURA MAGLIO "NENZI"
ev 0 Data 31/12/2008	CERTIFICATO cerstr017cm01715	Dott. Ing. Davide Spier	ndore						CAROT												SGANCIAMENTO
COMMITTENTE Irleav	Due									BATO PAI											PESO MAGLIO ALTEZZA CADU
	C VR-PD Variante di San Bonifa	iclo		4 4 20 0 20 0 ° -						BATO A P											DIAMETRO AST PESO ASTE
PERFORAZIONE N, BH17V COORDINATE GB; Nord	DATA [N]ZIO _09/03/2015		MAZIONE _ a s.l.m.m	11/03/2015			_		IDISTUR	BATO RO											PUNTA PUNTA CONICA
RESPONSABILE Dott, Frison	OPERATORE Slg. Ver	nturini ATTF	REZZATURA	Mustang A	A66		PROVE IN FORO	_		LEFRAN	IC.	VAN				METRO MEN	ARD	PERM	MEAB, LU	GEON	FORTA CONICA
Da m 40.00 A m 50.00 Profo	ndità Finale m 50.00 PAG. 5 DI 6	* 5	CAMPION	Ĕ	-	S.P.T.	_0	T.C.R.	S.C.R.	R.Q.D. %	DIMES	SIONE	P	ROVE	STRUM	ENTAZIONE	¥	- #	2		
DESCRIZION	E STRATIGRAFICA	PROFONDITA m da fondale SIMBOLOGIA STRATIGRAFIO	NUMERO	POCKET PENETROME Kgióm ²	TORVANE Kgitm ²	н	MANOVRA DI CAROTAGGIO				65 cm	2-10 cm	TPO	PROFONDITA m de p.c.			METODO DI PERFORAZIONE	ATTREZZO DI PERFORAZIONI	RIVESTIMENTO	DATA	
Sabble da fine a grossa grigio scuta +42.50 m e -43.00 m da p.c	ura; presenti livelli centimetrici limosi		21 42.0 42.4 42.8 22 43.0 23 44.6 24 45.4	000000000000000000000000000000000000000	26 39 40 23 34 33	42.00 =42.15 =42.30 42.45 45.00 =45.15 =45.30 45.45	41 42 44	100									CAROTAGGIO CONTINUO A SECCO	CAROTIERE SEMPLICE Ø 101 mm	Ø 127 mm	46.50	
		50,00	25 48.0 48.4 26 48.5	0 5 0 0	25 35 42	48,00 =48,15 =48,30 48,45	4												50,00	11/03/2015	
FINE SONDAGGIO							П														1

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI36E0001A

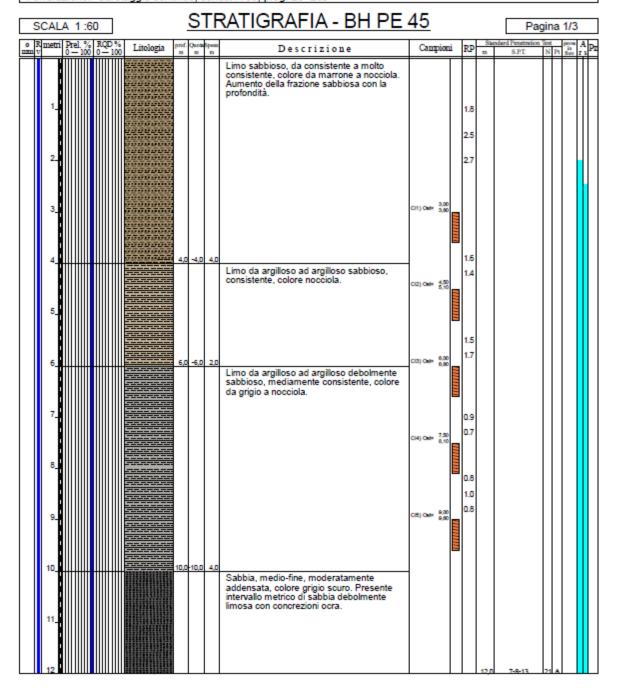
123 di 309

Relazione Geotecnica

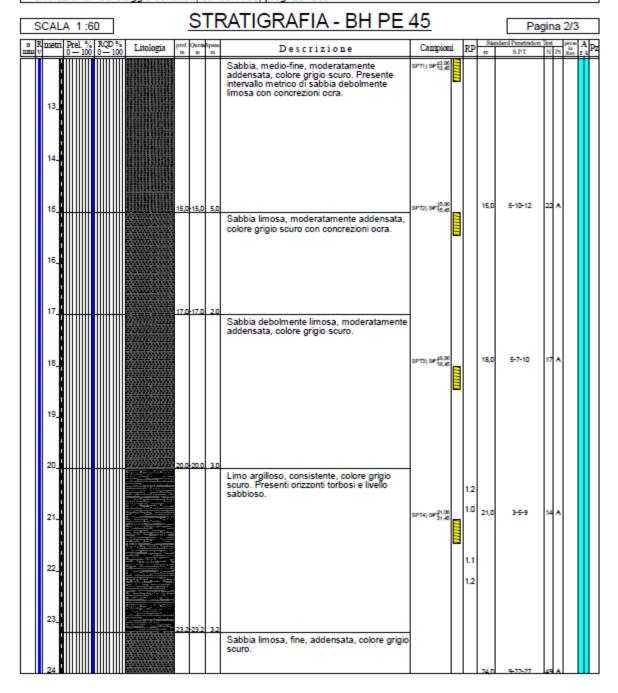
G∈⊕lavori	SCHEDA DI S	ON	IDAGG	io		сомм	. cm017	/15			☐ CAME		IMANEG IMANEG		A S.P.T				RILIEVO ACQUA IN						NO
indagini geognostiche prove geotecniche in sito	SECONDO RACCOMAN					PAG.	1	DI 3			☑ CAME	MONE R	IMANEG	GIATO D					PROF. FORO PROF. F (m DA P.C.) (m DA	MES. D.	Testa T	ubo Da	Data	ampagna H (m)	ATTREZZATURA MAGLIO "NENZ
v 0 Data 31/12/2008	CERTIFICATO cerstr018cm01715	Dott. In	ore ng. Davide Spie	ndore									CAROT												SGANCIAMENT
COMMITTENTEIrica											=			BATO PA											PESO MAGLIO ALTEZZA CADU
	AC VR-PD Varlante di San Bonifa	aclo									-			BATO A F											DIAMETRO AST PESO ASTE
PERFORAZIONE N, BH18V COORDINATE GB; Nord	DATA INIZIO 18/03/2015			[MAZ]C ta s.l.m	NE 24/	03/2015					CAME	PIONE IN	IDISTUR	BATO RO	TATIV	0									PUNTA
RESPONSABILE Dott, Frison	OPERATORE Sig. Venta	urini	ATT	REZZA	TURA	Mustan	g A65				PROVE IN FORO	P	ERMEAR	LEFRA	NC	VAN	E TEST		PRESSIOMETRO N	IENARD		PERMEA	AB. LUG	GEON	PUNTA CONICA MATERIALE RIA
Na m 0.00 A m 20.00 Pro	fonsità Finale m 50.00 PAG. 1 DI 6		CA	CAN	PION	TER			S.P.T.			T.C.R. %	S.C.R.	R.Q.D. %	DME	SIONE	PR	OVE	STRUMENTAZIONI	_	¥ .	E E	9		CASSETTE CAT E FOTOGRAFA
DESCRIZIO	NE STRATIGRAFICA	PROFONDITY m de fondale	SINBOLOGIA	TPO	PROFONDITY m de p.c.	POCKET PENETROME Kgiom?	TORVANE Kgiom?	N	н		MANOVRA DI CAROTAGGIO				< 5 cm	-10 cm	NUMERO	PROFONDITY III da p.c.	PIEZOMETRO	WETODO D	PERFORAZIO	PERFORAZION	RIVESTIMENTO	DATA	AGGOTTAMEN
L¦mo sabbloso marrone fino a -1 aumento della frazione sabblosa	,50 m da p.c., quindi marrone nocdola; con la profondità.	3.60		1 2	1.50 1.95 3.00 3.45			15	1,50 1,65 1,80 1,95 3,00 3,15 3,30	2									CEMENTA DOPPIO TI N PVC 8	done BO					POZZETTO IN C CON CHIUSING IN GHISA DIM.
Limo argilloso grigio nocciola co	n zonature ocracee.	6,00		A	4.50 5.10	1.8 1.3 1.4 1.7	0.80 0.70 0.65 0.70		3,45	,															
Argilia ilmosa grigia; presenti livi Ine grigia.	illi millimetricie e centimetrici di sabbia	3,20		3 B	6,00 6,50 7,50 3,10	0.6 0.8 0,7 0,8 1.1 0,7	0.25 0.30 0.35 0.40 0.50 0.45			,											3	mm			
Sabbia ilmosa grigia. Presenti livelli decimetrici di limo srgilloso grigio tra -9.60 m e -10.	sabbloso grigio e di un livelio di limo 20 m da p.c	10.20		4	9.00 9.45	0.9	0.40 0.35	5 3 4	9.00 9.15 9.30 9.45	,											CANOLAGGIO CON INCO A SECCO	101	Ø 127 mm	3/03/2015	
Sabbla fine e media debolmente	Ilmosa grigio scura.		3 3	5	10.50 10.95 12.00			6 3 12	10.65 10.80 10.95 12.00	12											avolveelow.	CAROTIERE SEMPLICE	Ø	2	
		13,50			12.45			15	±12,30 12.45	,,											٥				
Limo da debolmente sabbioso a	sabbloso, grigio,	14,60		7	13,50 14,00					14															
				3	15,00 15,45			4 8 10	15,00 15,15 15,30 15,45	15															
Sabbla fine e media limosa e de	bolmente ilmosa, grigia,			9	18,00			3 5 9	18,00 = 18,15 = 13,30 18,45	17															
Limo argilloso grigio; presenti ilv	elli centimetrici organici.	-18:88-		10	19.00 19.50					20									20.00	20.	00 2	0,00 2	20,00	20,00	

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RILTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 124 di

									_															
G ∈⊕lavori	SCHEDA DI S	OS	IDAGG	10	co	мм. cm01	7/15			☐ CAME	YONE RI			ASP					CQUA IN FOR					NOTE
indagini geognostiche	SECONDO RACCOMAI	NDAZJON	II A.G.J. (1977)		PA	.G. 2	DI 3						GIATO D					PROF. FORCE	PROF. RIVES. (m DA P.C.)		H (m)	Da Plano : Data	Campagna H (m)	THE PERSON NAMED IN
Rev 0 Data 31/12/2008	CERTIFICATO cerstr018cm01715		RE ng. Davide Spier		-		101 0			_	ZONE DI							,	,	Diese	rr (m)	Dist	ri (m)	MAGLIO "NENZI" A SGANCIAMENTO AUT
COMMITTENTE Irlca		Dott.	ig, Davide Splei	nuore				-		CAME	N SNOP	DISTUR	BATO PA	RETI:	OTTILI									PESO MAGLIO 63
	AC VR-PD Varlante di San Bonifa	aclo						-		CAME	YONE IN	DISTUR	BATO A	PISTO	٧E									ALTEZZA CADUTA DIAMETRO ASTE
PERFORAZIONE N. BH18V	DATA [N Z]O 18/03/2015		ULTI	MAZION	E 24/03	/2015			- 1				BATO RO											PESO ASTE 7,3
COORDINATE GB; Nord	Est		Quot	a s.l.m.m	1				-	PROVE	_		, LEFRA		VA		т			6	PERM			PUNTA Ray PUNTA CONICA CHIU
RESPONSABILE Dott, Frison Dam 20.00 Am 40.00 Pro	OPERATORE Sig. Verifon: Stip Finale m 50.00 PAG. 3 DI 6	nturini	ATTE	CAMP	URA Mus	stang A65	Т -	S.P.T.	\vdash	N FORO	T.C.R.	S.C.R.	R.Q.D.	_	_		ROVE		METRO MENA ENTAZIONE	KD E	PERM	EAB. LU	GEON	
54 20.00 A.III 40.00 P70	PMS.3 DI 6	ž.	45 A	- CAMPI	×	ETE	Η,	T		- S	%	%	%	SPE	SIONE	m				ONE	ONE	OF N		
DESCRIZIO	NE STRATIGRAFICA	PROFONDITA m da fontale	STRATIORAFI	NUMERO		FENETRON Kg/cm² TORVANE Kg/cm²	N	н		MANOVRA DI CAROTAGGIO				e 5 cm	5-10 cm > 10 cm	TIPO	PROFONDITA' m fle p.c.		OMETRO GRANDE	METODO DI PERFORAZION	ATTREZZO DI PERFORAZIONI	RIVESTIMENTO	DATA	
"Limo argilloso grigio: presenti liv sabbla da fine a media debolme media grigia passanti a sabbla n	inte limosa grigia e sabbla da fine a	21,70			21.00 21.60	2.0 0.65 1.5 0.55 1.0 0.50 1.5 0.55			21										DOPPIO TUBO IN PVC Ø 1/2*				18/03/2015	
20 20 20			, ,		24.00 24.45		7 19 25	24.00 =24.15 =24.30 24.45	22 24														24.00	
31			, , ,		27.00 27.45		10 18 22	27.00 27.15 27.30 27.45	27											A SECCO	Ø 101 mm			
a a a a a a a a a a a a a a a a a a a			,		30.00		8 18 23	30.00 30.15 30.30 30.45	30		100									CAROT, CONTINUO A SECCO	CAROT SEMPLICE	Ø 127 mm	015	
300					33.00 33.43		19 44 50	33,00 33,15 33,30 33,43	39 34														23/03/2015	
Presente un livello di limo debol millimetrici di sabbia fine e conci -36.00 m da p.c	mente argilloso griglo verdastro con livel rezioni carbonatiche da -34.90 m a droa	34,90 36,00		15	35,00 35,50 36,00 36,45		1 2 5	36.00 36.15 36.30 36.45	26 26															
3 2 2		40,00		17	39.00 39.45 40.00 40.50		31 43 47	39.00 39.15 39.30 39.45	26 26										40,00	40,00	40,00	40,00	40,00	


309

Г	G ∈@lavori	SCHEDA DI S	301	IDAGG	:10			1, cm01	7/46			□ CAM									RILIEVO	CQUA IN FOR	O DURA	NTE LA	PERFOR	AZIONE	NOTE
	indagini geognostiche	• • • • • • • • • • • • • • • • • • • •					_		T			CAM ✓ CAM									PROF. FOR	PROF, RIVES		rtn Tubo	Da Plano	Campagna	ATTREZZATURA PER
	Prove geotecniche in sito Rev 0 Data 31/12/2008	SECONDO RACCOMAN CERTIFICATO cerstr018cm01715		NI A.G.I. (1977) ORE Ing. Davide Spie			PAG.	3	DI 3				ZZONE D			JA VA	NE IE	31			(m DA P.C.	(m DA P.C.)	Data	H (m)	Data	H (m)	MAGLIO "NENZI" A
- F			Dott, I	ng, Davide Sple	ndore						- 1	_	PIONE IN			ARETI	LSOT	TILL									SGANCIAMENTO AUTO PESO MAGLIO 63
	COMMITTENTE Inca	AC VR-PD Variante di San Bonifa										=	PIONE IN														ALTEZZA CADUTA
	PERFORAZIONE N. BH18V	DATA INIZIO _18/03/2015	ICIO 5	ULT	MAZIC	ONE 2	24/03/20	15				-	PIONE IN														DIAMETRO ASTE 5
	COORDINATE GB; Nord	Est		Quot	ta s.l.m	ı.m					H	PROVE								m					<u> </u>		PUNTA Ray PUNTA CONICA CHIU
F	RESPONSABILE Dott, Frison Da m 40.00 A m 50.00 Pro	OPERATORE SIg. Ver	nturini	ATTI		ATURA	Mustan	g A65	_	S.P.T.	↓	IN FORO	T.C.R.	S.C.R.	R.O.D.			_	E TEST	OVE		METRO MENA ENTAZIONE	RD	PERA	MEAB, LU	IGEON	
	Da m 40.00 A m 50.00 Pro	fondita Hinale m 50.00 PAG. 5 DI 6	3.	45	T		- Ĕ		\vdash	1	1	-8	%	%	%	SP	VESION PEZZON	NE NI	PR				ONE	D D	5		
	DESCRIZIO	NE STRATIGRAFICA	PROFONDITA m da fondale	STRATIONAFIC	NUMERO	PROFONDITA' m de p.c.	POCKET PENETRON Kalom ²	TORVANE Kg/cm ²	N	н		MANOVRA DI CAROTAGGIO				< 5 cm	5-10 cm	10 cm	NUMERO	PROFONDITA' m da p.c.	CASA	OMETRO GRANDE	METODO DI PERFORAZIONE	ATTREZZO DI PERFORAZION	RIVESTIMENTO	DATA	
GEOLAVORI S.1 35042 ESTE (PD) - VIA CALLIDO n. 7 - TEL. 0429/601478 - FAX 0429/5639	Sabblis da fine a media debolmin a media grigia passante a sabbl	nie linosa grigia e sabbla da fine a medio grossa grigia.	50,00		20 21 22	42.00 42.45	5	FX	47	42.0 42.1 42.3 42.4 45.0 45.0 45.1 48.0 48.1 48.4 48.4	44 66	2	100						2		MASS A STATE OF THE STATE OF TH	CEMENTAZIONE DOPPIO TUBO IN PVC & 1/2* 46,00 TAPPO IMPERIOR IN BENTONITE 48,00 GHINA FINE CELLA POROSA COSSIGNANCE S0,00	CAROTAGGIO CONTINUO A SECCO	CAROTIERE SEMPLICE Ø 101 mm	00.00 Ø 127 mm	24/03/2015 60.23/03/2016	
GEOLAVORI S.T.L - 366	FINE SONDAGGIO										20 AS																


GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	126 di 309

Committente: IricAV Due	Sondaggio: BH PE 45
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 16/11/2020 - 17/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+260	

GENERAL CONTRACTOR Consorzio Iric/IV Due		SORVEGLIA TAL	FERR	
Dil . (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	127 di

Committente: IricAV Due	Sondaggio: BH PE 45
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 16/11/2020 - 17/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+260	

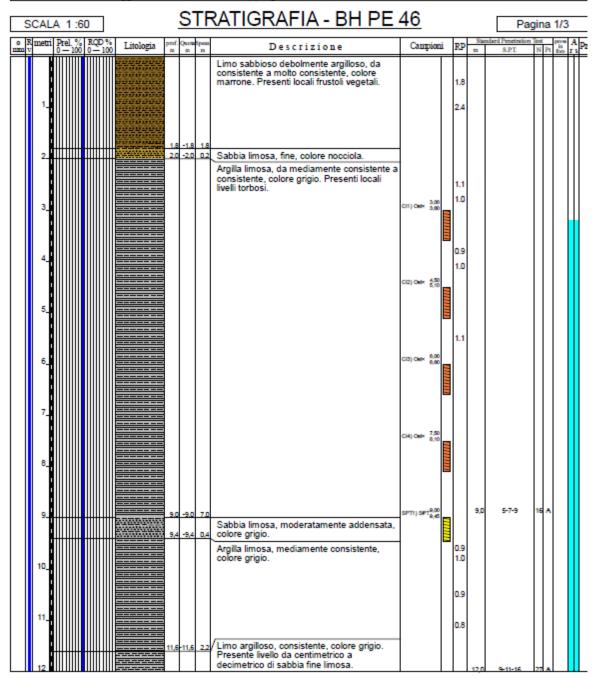
prove geotecniche in sito

Committente: IricAV Due	Sondaggio: BH PE 45
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 16/11/2020 - 17/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+260	

SCALA 1:60	STRATIGRAFIA - BH PE 45				Pag	gina 3	3/3
o R metri Prel. % RQD % Litologia P	rof. QuotaSpess m m m	Descrizione	-	RP n	andard Penetration S.P.T.	N Pt	in A p
10.1 25	5.0-25.0 1.8	Sabbia limosa, fine, addensata, colore grigio scuro.	SPTS) SP\$4,00				

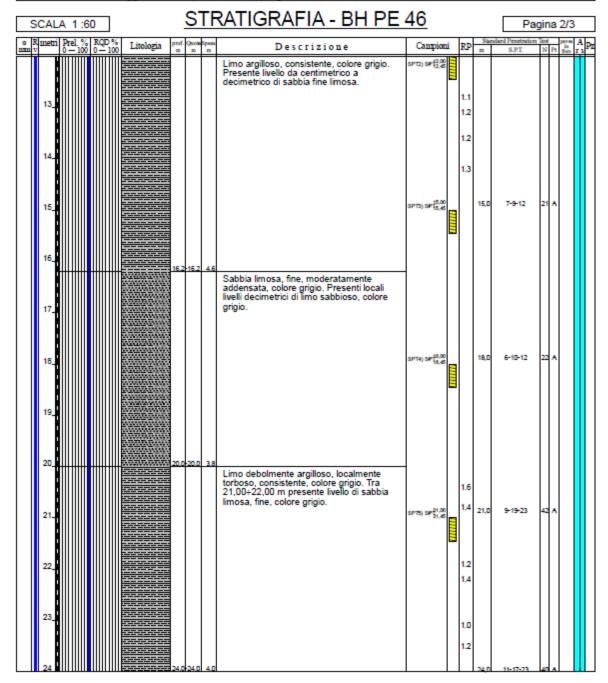
Utilizzato carotiere semplice

Prelevati n. 5 campioni indisturbati. Prelevati n. 5 campioni rimaneggiati SPT. Eseguite n. 5 prove SPT.


GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 RELEZEBRI36E0001A RILEVATOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI36E0001A 129 di

p. e. e. geeteen nene n. ene

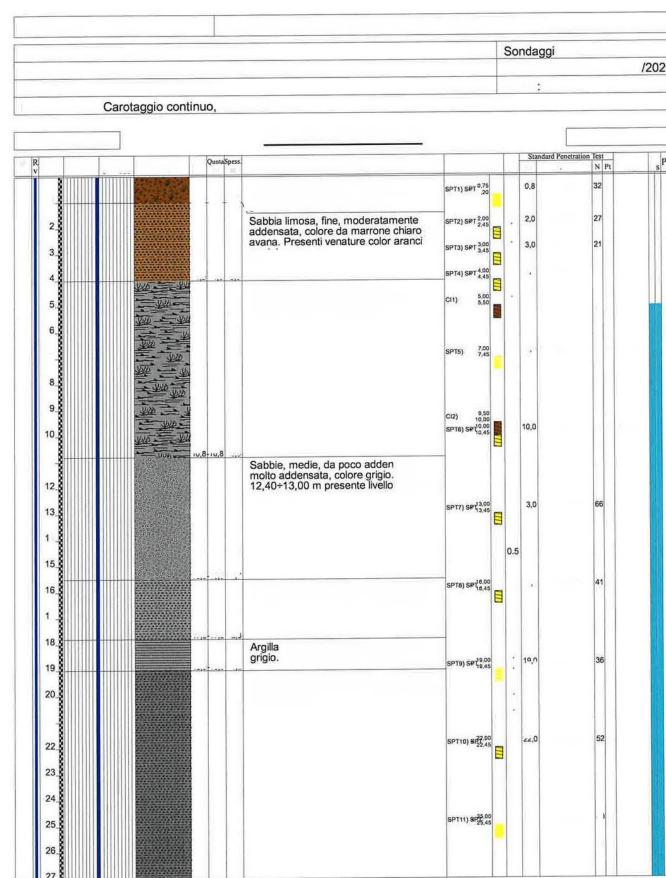
Committente: IricAV Due	Sondaggio: BH PE 46
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 17/11/2020 - 18/11/2020
Coordinate:	Quota:


309

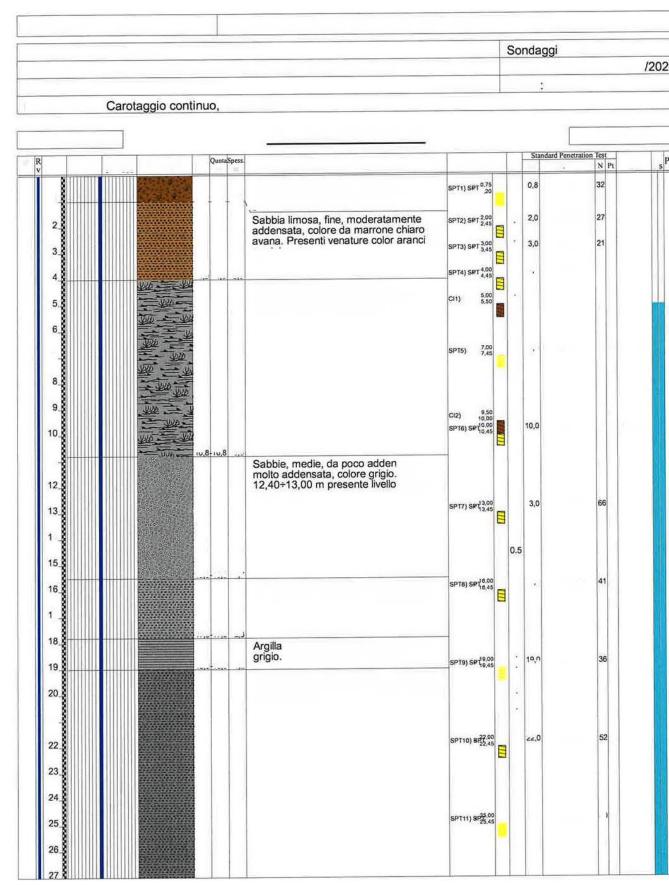
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+350

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR		
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	130 di 309	

Committente: IricAV Due	Sondaggio: BH PE 46			
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 17/11/2020 - 18/11/2020			
Coordinate:	Quota:			
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+350				



Committente: IricAV Due	Sondaggio: BH PE 46
Riferimento: Linea AV/AC Verona-Padova 1º Lotto Verona-Bivio Vicenza	Data: 17/11/2020 - 18/11/2020
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: A 65, prog. 23+350	


SCALA 1:60 STRATIGRAFIA - BH PE 46 Pagina						jina	3/3		
o R metri Prel. % RQD % Litologia P	of. QuotaSpess n m m	Descrizione	Campioni	RP	Sta	ndard Penetration ' S.P.T.	N Pt	prove in Soro	A rs
10.1 25	50-25.0 1.0	Sabbia limosa, fine, addensata, colore grigio.	SPT6) SP 34,45						

Utilizzato carotiere semplice. Prelevati n. 4 campioni indisturbati. Prelevati n. 6 campioni rimaneggiati SPT. Eseguite n. 6 prove SPT.

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Dil (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	134 di

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	135 di 309

ALLEGATO 3- TABULATI DI SLIDE – ANALISI SLU STATICA

SLEENTERPRET 7.03

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 11

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 1.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 04/10/2021, 10:34:10

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Right to Left
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)

Name: A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified

Bishop simplified

Number of slices: 50

Tolerance: 0.005

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1

Steffensen Iteration: Yes

GENERAL CONTRACTOR

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	137 di 309

Groundwater Analysis

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 5000
Upper Angle: Not Defined
Lower Angle: Not Defined
Composite Surfaces: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area [m2]: 50
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1

Distribution: Constant
Magnitude (kPa): 14.4
Orientation: Vertical
Load Action: Variable

Distributed Load 2

Distribution: Constant
Magnitude (kPa): 61.4
Orientation: Vertical
Load Action: Variable

Distributed Load 3

Distribution: Constant
Magnitude (kPa): 61.4
Orientation: Vertical
Load Action: Variable

Material Properties

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 RELIZEBRI36E0001A RELIZEBRI36E0001A RELIZEBRI36E0001A

309

SLIDE - An Interactive Slope Stability Program: Page 3 of 11 rocscience U3b_1 U3b_2 Property Color Strength Type Undrained Mohr-Coulomb Mohr-Coulomb Undrained Undrained Infinite strength -Coulomb Unit Weight [kN/m3] 18.5 19 25 19 20 19 18.5 19 Cohesion [kPa] 0 0 0 0 Friction Angle [deg] 38 38 36 36 Cohesion Type 50 85 120 Water Surface Water Table WaterTable WaterTable WaterTable WaterTable Water Table Water Table Water Table Hu Value 1 1 0 0 0 0 1

Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 4.5 m Pile Shear Strength: 12.6 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: bishop simplified

FS	1.974900
Center:	-11.272, 11.573
Radius:	16.045
Left Slip Surface Endpoint:	-22.443, 0.055
Right Slip Surface Endpoint:	4.144, 7.126
Resisting Moment:	34652.7 kN-m
Driving Moment:	17546.6 kN-m
Passive Support Moment:	767.301 kN-m
Total Slice Area:	152.975 m2
Surface Horizontal Width:	26.5872 m
Surface Average Height:	5.75371 m

Method: janbu simplified

FS	1.623300
Center:	-10.053, 9.852
Radius:	13.982
Left Slip Surface Endpoint:	-20.029, 0.055
Right Slip Surface Endpoint:	3.664, 7.140
Resisting Horizontal Force:	1674.82 kN
Driving Horizontal Force:	1031.73 kN
Passive Horizontal Support Force:	50.9091 kN
Total Slice Area:	139.483 m2
Surface Horizontal Width:	23.6929 m
Surface Average Height:	5.88712 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 305 Number of Invalid Surfaces: 4695

Error Codes

Error Code -99 reported for 4296 surfaces Error Code -113 reported for 86 surfaces Error Code -114 reported for 313 surfaces

Method: janbu simplified

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TALI PERROVIE DELLO S	FERR	
	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	139 di 309

SLIDE - An Interactive Slope Stability Program: Page 4 of 11

Number of Valid Surfaces: 305 Number of Invalid Surfaces: 4695

Error Code -99 reported for 4296 surfaces Error Code -113 reported for 86 surfaces Error Code -114 reported for 313 surfaces

Error Codes

The following errors were encountered during the computation:

- -99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal. -113 = Surface intersects outside slope limits.
- -114 = Surface with Reverse Curvature.

Slice Data

Global Minimum Query (bishop simplified) -	- Safety Factor: 1.9749	

04/10/2021, 10:34:10 36 E STAT-tratto 1.slim

SLEGNTRAKET 7.000

rocscience

SLIDE - An Interactive Slope Stability Program: Page 5 of 11

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.505376	2.25415	-42.8931	U4	0	30.1666	1.80648	3.56761	6.13799	0	6.13799	4.45971	4.45971
2	0.505376	6.57878	-40.4751	U4	0	30.1666	5.11545	10.1025	17.3811	0	17.3811	13.0159	13.0159
3	0.505376	10.5546	-38.1414	U4	0	30.1666	7.99316	15.7857	27.159	0	27.159	20.8822	20.8822
4	0.505376	14.215	-35.8803	U4	0	30.1666	10.5162	20.7685	35.7316	0	35.7316	28.1247	28.1247
5	0.505376	17.5872	-33.6821	U4	0	30.1666	12.7401	25.1604	43.2879	0	43.2879	34.797	34.797
6	0.482458	19.6931	-31.5864	U4-2	0	30.1666	14.6663	28.9645	49.8328	0	49.8328	40.8148	40.8148
7	0.482458	22.3081	-29.5845	U4-2	0	30.1666	16.3371	32.2642	55.5098	0	55.5098	46.2349	46.2349
8	0.482458	24.7206	-27.6216	U4-2	0	30.1666	17.824	35.2007	60.5621	0	60.5621	51.2353	51.2353
9	0.482458	26.9416	-25.6934	U4-2	0	30.1666	19.1449	37.8092	65.0499	0	65.0499	55.8388	55.8388
	0.559512		-23.6467	U4-2	0		19.9904	39.4791	69.1246	1.20167	67.9229	60.3716	59.1699
	0.559512		-21.4825	U4-2	0	30.1666	20.5562	40.5965	73.3287	3.48342	69.8453	65.2386	61.7552
	0.559512		-19.35	U4-2	0		22.3575	44.1539	81.493	5.52726	75.9657	73.6416	68.1143
	0.559512		-17.245	U4-2	0		24.3593	48.1072	90.1102	7.34292	82.7673	82.5488	75.2058
	0.559512		-15.1638	U4-2	0		26.2545	51.85	98.1453	8.9386	89.2067	91.0299	82.0913
	0.559512		-13.103	U4-2	0		28.0496	55.3951	105.627	10.3212	95.306	99.0983	88.7771
	0.559512		-11.0593	U4-2	0	30.1666	29.7154	58.6849	112.462	11.4964	100.966	106.634	95.158
	0.559512		-9.02972	U4-2	0	30.1666	30.1787	59.6	115.009	12.4689	102.54	110.214	97.7446
	0.559512			U4-2	0		30.0496	59.3449	115.344	13.2426	102.102	111.648	98.4058
	0.559512		-5.00211	U4-2	0	30.1666	29.872	58.9942	115.318	13.8203	101.498	112.704	98.8836
20	0.559512	63.44	-2.99882	U4-2	0	30.1666	29.6468	58.5494	114.937	14.2043	100.733	113.384	99.1798
21	0.559512	63.6119	0.999201	U4-2	0	30.1666	29.3746	58.0118	114.204	14.3959	99.8081	113.692	99.2958
	0.559512			U4-2	0	30.1666	29.056	57.3826	113.121	14.3959	98.7253	113.628	99.2321
	0.559512		2.99882	U4-2	0	30.2000	28.6912	56.6622	111.69	14.2043	97.4861	113.193	98.9892
	0.559512		5.00211	U4-2	0	30.1666	28.9794	57.2314	112.286	13.8203	98.4655	114.822	101.002
	0.559512		7.01156	U4-2	0		30.2949	59.8294	116.178	13.2426	102.935	119.904	106.661
	0.559512		9.02972	U4-2	0		29.7673	58.7874	113.611	12.4689	101.142	118.342	105.873
	0.559512		11.0593	U4-2	0		31.2075	61.6317	117.532	11.4964	106.036	123.632	112.136
	0.559512		13.103	U4-2	0		58.6485	115.825	209.595	10.3212	199.274	223.247	212.925
	0.559512		15.1638	U4-2	0		67.5882	133.48	238.587	8.9386	229.649	256.905	247.966
	0.559512		17.245	U4-2	0		58.4916	115.515	206.084	7.34292	198.741	224.241	216.898
	0.559512		19.35	U4-2	0	30.1666	56.617	111.813	197.899	5.52726	192.372	217.781	212.254
	0.559512	119.82	21.4825	U4-2	0		55.5679	109.741	192.29	3.48342	188.807	214.16	210.676
	0.559512		23.6467 25.6934	U4-2		30.1666	58.687 57.8996	115.901	200.607	1.20167	199.405	226.304	225.102
	0.482458		27.6216	U4-2	0	30.1666	56.177	110.944	196.73 190.877	0	196.73 190.877	224.587	224.587 220.273
	0.482458		29.5845	U4-2		30.1666		107.355	184.702	0	184.702	215.563	215.563
	0.482458		31.5864	U4-2			66.0084	130.36	224.281		224.281	264.869	264.869
_	0.505376		33.6821	U4-2	0		67.8779	134.052	230.633	0	230.633	275.871	275.871
	0.505376		35.8803	114	0		65.3952	129.149	222.199	0	222 199	269 503	269.503
	0.505376		38.1414	114			48.9245	96.621	166.234	0	166.234	204.652	204.652
-	0.505376	79.039	40.4751	U4			41.1984	81.3627	139.983	0	139.983	175.139	175,139
	0.505376		42.8931	U4		30.1666	38.57	76.1719	131.052	0	131.052	166.885	166.885
	0.530683		45,4763	Rilevato			37.6232	74.302	118.878	0	118.878	157.132	157.132
	0.530683		48.2508	Rilevato	0		33.9903	67.1274	107.399	0	107.399	145.483	145,483
	0.530683		51.1858	Rilevato			30.1219	59.4878	95.1761	0	95.1761	132.621	132.621
	0.530683	52.841	54.3226	Rilevato			43.1435	85.204	136.32	0	136.32	196.411	196,411
	0.530683		57.722	Rilevato			38.3876	75.8116	121.293	0	121.293	182.068	182.068
	0.530683		61.4816	Rilevato	0		30.8704	60.9659	97.5408	0	97.5408	154.353	154.353
	0.530683	22.869	65.7766	Rilevato	0	32.0066	11.4878	22.6873	36.2981	0	36.2981	61.8317	61.8317
							5.65745	11.1729	17.8758	0	17.8758	34.3042	34.3042

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 141 di 309

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 11

rocs	science)									,		-3
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.49407		-44.1101	U4	0		2.49523	4.05051	6.96881	0	6.96881	4.54991	4.54991
2	0.49407	6.5371	-41.3515	U4	0	30.1666	6.91714	11.2286	19.3185	0	19.3185	13.2307	13.2307
3	0.49407	10.4363	-38.7055	U4	0	30.1666	10.6061	17.2169	29.6213	0	29.6213	21.1225	21.1225
4	0.49407	13.989	-36.1544	U4	0	30.1666	13.7296	22.2873	38.3447	0	38.3447	28.313	28.313
5	0.49407	17.229	-33.6839	U4	0	30.1666	16.3995	26.6213	45.8013	0	45.8013	34.8709	34.8709
6	0.499636	20.4327	-31.2695	U4-2	0	30.1666	18.7111	30.3737	52.2572	0	52.2572	40.8943	40.8943
7	0.499636	24.5527	-28.9023	U4-2	0	30.1666	21.9301	35.5991	61.2474	0	61.2474	49.1402	49.1402
8	0.499636	29.454	-26.5881	U4-2	0	30.1666	25.7159	41.7447	71.8208	0	71.8208	58.9499	58.9499
9	0.499636	34.1177	-24.3198	U4-2	0	30.1666	29.1698	47.3514	81.467	0	81.467	68.2842	68.2842
10	0.458945	35.2586	-22.1808	U4-2	0	30.1666	31.8247	51.6611	89.7994	0.917787	88.8816	76.8244	75.9066
11	0.458945	38.8385	-20.1635	U4-2	0	30.1666	33.7899	54.8512	97.0324	2.6622	94.3702	84.6246	81.9624
12	0.458945	42.2593	-18.172	U4-2	0	30.1666	35.6449	57.8623	103.778	4.22774	99.5507	92.0784	87.8506
13	0.458945	44.5042	-16.203	U4-2	0	30.1666	36,5065	59.261	107.578	5.62079	101.957	96.9698	91.349
14	0.458945	45.5699	-14.2535	U4-2	0	30.1666	36.4127	59.1087	108.542	6.84679	101.695	99.292	92.4452
15	0.458945	46.4912	-12.3207	U4-2	0	30.1666	36.2756	58.8862	109.223	7.91032	101.312	101.3	93.3892
16	0.458945	47.2715	-10.4021	U4-2	0	30.1666	36.096	58.5947	109.626	8.81524	100.811	103	94.1845
17	0.458945	47.9136	-8.49519	U4-2	0	30.1666	35.8748	58.2355	109.758	9.56472	100.193	104.399	94.8344
18	0.458945	48.4199	-6.59775	U4-2	0	30.1666	35.6123	57.8095	109.621	10.1613	99.4601	105.502	95.341
19	0.458945	48.792	-4.70756	U4-2	0	30.1666	35.3094	57.3177	109.221	10.6071	98.6137	106.313	95.706
20	0.458945	49.0314	-2.8225	U4-2	0	30.1666	34.9662	56,7606	108,559	10.9034	97.6554	106.835	95.9315
21	0.458945	49.1388	0.940495	U4-2	0	30.1666	34.5831	56.1387	107.637	11.0514	96.5854	107.069	96.0176
22	0.458945	50.4753	0.940495	U4-2	0	30.1666	35.2155	57.1654	109.403	11.0514	98.3518	109.981	98.9299
23	0.458945	52.952	2.8225	U4-2	0	30.1666	36.7589	59.6707	113.565	10.9034	102.662	115.378	104.474
24	0.458945	52.6645	4.70756	U4-2	0	30.1666	36.2216	58,7985	111.769	10.6071	101.162	114.751	104.144
25	0.458945	52,2581	6.59775	U4-2	0	30.1666	35,6556	57.8797	109.742	10.1613	99.5807	113.866	103,705
26	0.458945	64.9268	8.49519	U4-2	0	30.1666	44.832	72,7758	134.774	9.56472	125.209	141.47	131.906
27	0.458945	111.648	10.4021	U4-2	0	30.1666	78.7716	127.87	228.812	8.81524	219.997	243.273	234.457
28	0.458945	117 567	12.3207	U4-2	0	30 1666	82.4432	133.83	238 162	7.91032	230 252	256 169	248.258
29	0.458945	103.107	14.2535	U4-2	0	30.1666	71.4877	116.046	206.502	6.84679	199.655	224.662	217.815
30	0.458945	99 9754	16.203	U4-2	0	30.1666	68.8252	111.724	197.839	5.62079	192.219	217.839	212.218
	0.458945		18.172	U4-2	0		67.6652	109.841	193.206	4.22774	188.978	215.416	211.189
1	0.458945		20.1635	U4-2			66.9488	108.678	189.64	2.6622	186 978	214.224	211.562
	0.458945		22.1808	U4-2			71.0399	115.319	199.322	0.917787	198.404	228.285	227.367
1	0.499636		24.3198	U4-2			69.2343	112.388	193,361	0.527707	193.361	224.65	224.65
	0.499636		26.5881	U4-2	0		66.9316	108.65	186.93	0	186.93	220,429	220,429
	0.499636		28.9023	U4-2		30.1666	64.4958	104.696	180.126	0	180.126	215.733	215.733
37	0.499636		31.2695	U4-2		30.1666	80.7799	131.13	225.606	0	225.606	274.662	274.662
38	0.49407		33.6839	U4	0	30.1666	79.7764	129.501	222.802	0	222.802	275.974	275.974
39	0.49407		36.1544	04			76.5465	124.258	213.784	0	213.784	269.714	269.714
40	0.49407		38.7055	U4			54.5162	88.4961	152.255	0	152.255	195.94	195.94
41	0.49407		41.3515	04			47.7453	77.5049	133.345	0	133.345	175.367	175.367
41		73.2461	44.1101	U4 U4	0		44.3834	72.0476	123.956	0	123.956	166.982	166.982
	0.49407		46.9229	Rilevato	0		42.9614	69.7392	111.578	0	111.578	157.524	157.524
	0.467553		49.8103	Rilevato	0		38.8041	62.9907	100.781	0	100.781	137.324	146.716
	0.467553		52.8826	Rilevato			34.3805	55.8099		0	89.2916		
-	0.467553		52.8826 56.1922		0		34.3805 41.8048		89.2916	0		134.722	134.722
1				Rilevato	_			67.8617	108.574	_	108.574	171.003	171.003
		40.7926	59.8201	Rilevato	0	32.0066	43.0504	69.8837	111.809	0	111.809	185.836	185.836
	0.467553		63.9044	Rilevato	0		36.2098	58.7794	94.0427	0	94.0427	167.97	167.97
	0.467553		68.7237	Rilevato	0	32.0066	22.513	36.5454	58.47	0	58.47	116.283	116.283
50	0.467553	8.27585	75.0904	Rilevato	0	32.0066	5.73444	9.30871	14.8933	0	14.8933	36.4304	36.4304

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.9749	
	- 1

SLIDE - An Interactive Slope Stability Program: Page 7 of 11

rocs	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	-22.4428	0.0551314	0	0	0
2	-21.9374	-0.41438	3.79445	0	١
3	-21.93/4	-0.41438	13.8743	0	٥
4	-20.9266	-0.843631	28.6905	0	8
,	-20.9266	-1.60805	47.0654	0	0
1					
7	-19.9159	-1.94487	68.0815	0	0
1	-19.4334	-2.24152	89.9376	_	- 1
8 9	-18.951 -18.4685	-2.51542 -2.76788	113.021 136.906	0	0
1				_	- 1
10	-17.986	-3 -3.24499	161.239	0	0
11	-17.4265		189.354		0
12	-16.867	-3.46519	216.998	0	0
13	-16.3075	-3.66167	245.515	0	0
14	-15.748	-3.83535	274.789	0	0
15	-15.1885	-3.98699	304.356	0	0
16	-14.629	-4.11722	333.8	0	0
17	-14.0695	-4.22658	362.718	0	0
18	-13.5099	-4.3155	389.823	0	0
19	-12.9504	-4.38431	414.567	0	0
20	-12.3909	-4.43328	436.922	0	0
21	-11.8314	-4.4626	456.872	0	0
22	-11.2719	-4.47235	474.416	0	0
23	-10.7124	-4.4626	489.563	0	0
24	-10.1529	-4.43328	502.336	0	0
25	-9.59336	-4.38431	513.045	0	0
26	-9.03385	-4.3155	521.994	0	0
27	-8.47434	-4.22658	541.43	0	0
28	-7.91483	-4.11722	546.032	0	0
29	-7.35532	-3.98699	551.537	0	0
30	-6.79581	-3.83535	553.16	0	0
31	-6.23629	-3.66167	550.082	0	0
32	-5.67678	-3.46519	542.863	0	0
33	-5.11727	-3.24499	531.6	0	0
34	-4.55776	-3	515.277	0	0
35	-4.0753	-2.76788	497.535	0	0
36	-3.59284	-2.51542	489.329	0	0
37	-3.11038	-2.24152	464.936	0	0
38	-2.62793	-1.94487	430.256	0	0
39	-2.12255	-1.60805	386.866	0	0
40	-1.61717	-1.24249	338.674	0	0
41	-1.1118	-0.845631	297.419	0	0
42	-0.606423	-0.41438	257.864	0	0
43	-0.101048	0.0551314	215.818	0	0
44	0.429635	0.594711	171.632	0	0
45	0.960317	1.18931	125.804	0	0
46	1.491	1.84901	78.9956	0	0
47	2.02168	2.58815	1.12305	0	0
48	2.55237	3.42832	-80.4201	0	0
49	3.08305	4.40497	-159.307	0	0
50	3.61373	5.5845	-196.028	0	0
51	4.14441	7.12552	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.6233

SLIDE - An Interactive Slope Stability Program: Page 8 of 11

rocs	science				
Slice	X	Y	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
	[m]	[m]	[kN]	[kN]	[degrees]
1	-20.0288	0.0551314	0	0	0
2	-19.5347	-0.423825	4.57048	0	0
3	-19.0407	-0.858662	16.3882	0	0
4	-18.5466	-1.25456	33.3552	0	0
5	-18.0525	-1.61557	53.9806	0	0
6	-17.5585	-1.94487	77.165	0	0
7	-17.0588	-2.24829	102.369	0	0
8	-16.5592	-2.52413	130.22	0	0
9	-16.0596	-2.7742	161.028	0	0
10	-15.5599	-3	193.996	0	0
11	-15.101	-3.18711	225.404	0	0
12	-14.642	-3.35564	257.263	0	0
13	-14.1831	-3.50628	289.254	0	0
14	-13.7241	-3.63965	320.354	0	0
15	-13.2652	-3.75623	349.719	0	0
16	-12.8062	-3.85647	377.315	0	0
17	-12.3473	-3.94072	403.116	0	0
18	-11.8884	-4.00927	427.103	0	0
19	-11.4294	-4.06236	449.265	0	0
20	-10.9705	-4.10015	469.597	0	0
21	-10.5115	-4.12278	488.099	0	0
22	-10.0526	-4.13031	504.781	0	0
23	-9.59364	-4.12278	520.118	0	0
24	-9.13469	-4.10015	534.417	0	0
25	-8.67575	-4.06236	562.496	0	0
26	-8.2168	-4.00927	573.033	0	0
27	-7.75786	-3.94072	584.369	0	0
28	-7.29891	-3.85647	601.24	0	0
29	-6.83997	-3.75623	615.201	0	0
30	-6.38102	-3.63965	623.933	0	0
31	-5.92208	-3.50628	629.133	0	0
32	-5.46313	-3.35564	631.08	0	0
33	-5.00419	-3.18711	629.844	0	0
34	-4.54524	-3	625.149	0	0
35	-4.04561	-2.7742	616.078	0	0
36	-3.54597	-2.52413	618.452	0	0
37	-3.04633	-2.24829	600.988	0	0
38	-2.5467	-1.94487	572.892	0	0
39	-2.05263	-1.61557	538.934	0	0
40	-1.55856	-1.25456	499.575		0
41	-1.06449	-0.858662	466.23	0	0
42	-0.570417	-0.423825	431.834	0	0
43	-0.0763477	0.0551314	394.391	0	0
44	0.391205	0.555169	358.684	0	0
45	0.858758	1.10864	321.046	0	0
46	1.32631	1.72647	281.953	0	0
47	1.79386	2.42469	225.689	0	0
48	2.26142	3.22867	155.923	0	0
49	2.72897	4.18325	83.0808		0
50	3.19652	5.38393	23.4027		0
51	3.66407	7.13993	25.4027		0
- 51	3.00407	7-13993			U

List Of Coordinates

Water Table

X Y -57.095 -3 57.095 -3

Distributed Load

GENERAL CONTRACTOR Consorzio Iric/4V Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	144 di 309

SLIDE - An Interactive Slope Stability Program: Page 9 of 11

X Y -5.04252 7.09858 -2.99733 7.15994 -1.47827 7.20551 0 7.24986 1.50275 7.20477 3.02173 7.15921 5.46625 7.08587

Distributed Load

X	Y
1.50275	7.20477
3.02173	7.15921

Distributed Load

X	Y
-2.99733	7.15994
-1.47827	7.20551

External Boundary

GENERAL CONTRACTOR Consorzio Iric/IV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	145 di 309

SLIDE - An Interactive Slope Stability Program: Page 10 of 11

ocscie	nce
X	Y
57.095	-33.9449
57.095	-31.9449
57.095	-18.9449
57.095	-14.9449
57.095	-9.94487
57.095	-8.94487
57.095	-1.94487
57.095	0.0551314
23.1431	0.0551314
23.1431	0.422211
22.6431	0.422211
22.6431	1.42221
21.6431	1.40721
19.8603	1.39221
18.8603	0.392211
17.8603	0.392211
16.8603	1.39221
15.5774	1 39221
6.97	7.13336
6.47	7.13336
6.47	7.05576
5.46625	7.08587
3.02173	7.15921
1.50275	7.20477
0	7.24986
-1.47827	7.20551
-2.99733	7.15994
-5.04252	7.09858
-6.55	7.05336
-6.55003	7.17286
-7.55003	7.17286
-7.55003	6.17286
-8.025	1.4231
-14.1822	1.45828
-17.095	0.0551314
-57.095	0.0551314
-57.095	-1.94487
-57.095	-8.94487
-57.095	-9.94487
-57.095	-14.9449
-57.095	-18.9449
-57.095	-31.9449
-57.095	-33.9449
-57.095	-39.9449
57.095	-39.9449

Material Boundary

X	Y
-3.00003	-1.94487
57.095	-1.94487

Material Boundary

X	Y
-57.095	-8.94487
57.095	-8.94487

Material Boundary

X	Y
-57.095	-9.94487
57.095	-9.94487

Material Boundary

36 E STAT-tratto 1.slim 04/10/2021, 10:34:10

GENERAL CONTRACTOR Consorzio IricAV Due	5	SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	146 di 309

SLIDE - An Interactive Slope Stability Program: Page 11 of 11

_	00000	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	X	Y
	-57.095	-14.9449
	57.095	-14 9449

Material Boundary

X	Y
-57.095	-18.9449
57.095	-18.9449

Material Boundary

X	Y
-57.095	-31.9449
57.095	-31.9449

Material Boundary

X	Y
-57.095	-33.9449
57.095	-22 9449

Material Boundary

X	Y
-57.095	-1.94487
-9.75003	-1.94487

Material Boundary

X	Y
-8.025	1.4231
-8.1618	0.0551314
-8.23834	-0.710289
-9.75003	-0.710289
-9.75003	-1.94487
-9.75003	-2.16029
-8.75003	-2.16029
-4.00003	-2.16029
-3.00003	-2.16029
-3.00003	-1.94487
-3.00003	-0.710289
-6.95003	-0.710289
-6.95003	0.0551314
-6.95003	6.17286
-6.55003	6.17286
-6.55	7.05336

Material Boundary

X	Y
-6.95003	0.0551314
23.1431	0.0551314

Material Boundary

X	Y
-17.095	0.0551314
-8.1618	0.0551314

36 E STAT-tratto 1.slim 04/10/2021, 10:34:10

SLEGNTRPRET 7.08

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 10

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 2.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 04/10/2021, 11:09:02

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Right to Left
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: User Defined 2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified

Janbu simplified

Number of slices: 50

Tolerance: 0.005

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1

Steffensen Iteration: Yes

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 148 di

SLEGISTRAST 7.0

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 10

309

Groundwater Analysis

 Groundwater Method:
 Water Surfaces

 Pore Fluid Unit Weight [kN/m3]:
 9.81

 Use negative pore pressure cutoff:
 Yes

 Maximum negative pore pressure [kPa]:
 0

 Advanced Groundwater Method:
 None

Random Numbers

Pseudo-random Seed: 10116
Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 3000
Upper Angle: Not Defined
Lower Angle: Not Defined
Composite Surfaces: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area [m2]: 20
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1

Distribution: Constant
Magnitude (kPa): 14.4
Orientation: Vertical
Load Action: Dead

Distributed Load 2

Distribution: Constant
Magnitude [kPa]: 61.4
Orientation: Vertical
Load Action: Live

Distributed Load 3

Distribution: Constant
Magnitude (kPa): 61.4
Orientation: Vertical
Load Action: Live

Material Properties

IN17

12

EI2RBRI36E0001A

149 di

309

SLIDE - An Interactive Slope Stability Program: Page 3 of 10 rocscience U3b_2 u3a/u3b Property Color Strength Type Unit Weight [kN/m3] 20 19 185 18.5 18.5 18.5 19 19 Cohesion (kPa) 0 0 0 0 Friction Angle [deg] 40 34 32 34 Cohesion Type 40 65 80 120 Water Surface Water Table Water Table WaterTable WaterTable WaterTable WaterTable Hu Value 1 0 0 0 0

Global Minimums

Relazione Geotecnica

Method: bishop simplified

FS 1.276020 -16,498, 17,445 Center: Radius: 25.070 Left Slip Surface Endpoint: -34.504, 0.000 Right Slip Surface Endpoint: 6.484, 7.427 Resisting Moment: 50235.8 kN-m Driving Moment 39369 kN-m Total Slice Area: 323.25 m2 Surface Horizontal Width: 40.9872 m Surface Average Height:

Method: janbu simplified

FS 1.156710 -16.006, 14.960 Center: 21.476 Radius: Left Slip Surface Endpoint: -31.415, 0.000 Right Slip Surface Endpoint: 4.132, 7.498 Resisting Horizontal Force: 1470.99 kN Driving Horizontal Force: 1271.7 kN Total Slice Area: 255.906 m2 Surface Horizontal Width: 35.5468 m Surface Average Height: 7.19914 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4676 Number of Invalid Surfaces: 324

Error Codes

Error Code -109 reported for 1 surface Error Code -113 reported for 204 surfaces Error Code -114 reported for 96 surfaces Error Code -128 reported for 23 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4676 Number of Invalid Surfaces: 324

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	150 di 309

SLIDE - An Interactive Slope Stability Program: Page 4 of 10

Error Codes:

Error Code -109 reported for 1 surface Error Code -113 reported for 204 surfaces Error Code -114 reported for 96 surfaces Error Code -128 reported for 23 surfaces

Error Codes

The following errors were encountered during the computation:

- -109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region. -113 = Surface intersects outside slope limits.
- -114 = Surface with Reverse Curvature.
- -128 = Surface volume below minimum volume.


Slice Data

	Global Minimum Query (bishop	simplified) - Safety Factor: 1.2760	2	
l de la companya de				
	l			

SLIDE - An Interactive Slope Stability Program: Page 5 of 10

rocs	science	1											
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base	Base Material	Base Cohesion [kPa]	Base Friction Angle	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress	Pore Pressure [kPa]	Normal Stress	Base Vertical Stress	Effective Vertical Stress
			[degrees]		[KFG]	[degrees]	[KFG]	[KFG]	[kPa]	[kraj	[kPa]	[kPa]	[kPa]
_	0.873969		-44.5057	u3a/u3b	0		5.06117	6.45815	12.919	0	12.919	7.94441	7.94441
_	0.873969			u3a/u3b	0	26.5603	13.9242	17.7675	35.5425	0	35.5425	23.1077	23.1077
_	0.873969		-39.1393		0	26.5603	21.2248	27.0833	54.1779	0	54.1779	36.9048	36.9048
	0.873969		-36.6074	u3a/u3b	0	26.5603	27.3461	34.8942	69.8029	0	69.8029	49.4884	49.4884
	0.761748			u3a/u3b	0		32.2438	41.1437	82.3045	0	82.3045	60.3016	60.3016
1	0.761748			u3a/u3b	0		36.1833	46.1706	92.3606	0	92.3606	69.5515	69.5515
	0.811629		-30.1251 -28.0022	U3b_2 U3b_2	28.5714 28.5714	0	22.391	28.5714	91.3452 98.608	0	91.3452 98.608	78.3525 86.7014	78.3525 86.7014
	0.811629		-25.9205	U3b_2	28.5714	0	22.391	28.5714	105.225	0	105.225	94,3427	94.3427
	0.811629		-23.8749	U3b_2	28.5714	0	22.391	28.5714	112.692	0	112.692	102.781	102.781
	0.811629		-21.8613	U3b 2	28.5714	0	22.391	28.5714	133.3	0	133.3	124.316	124.316
	0.811629		-19.8757	U3b 2	28.5714	0	22.391	28.5714	143.793		143.793	135.699	135.699
1	0.811629		-17.9147	U3b 2	28.5714	0	22.391	28.5714	147.997	0	147.997	140.758	140.758
	0.811629		-15.9751	U3b 2	28.5714	0	22.391	28.5714	151.583		151.583	145.173	145.173
	0.811629		-14.0543	U3b 2	28.5714	0	22.391	28.5714	154,645	0	154.645	149.039	149.039
16	0.811629	123.677	-12.1494	U3b 2	28.5714	0	22.391	28.5714	157.201	0	157.201	152.38	152.38
17	0.811629	120.009	-10.2581	U3b 2	28.5714	0	22.391	28.5714	151.913	0	151.913	147.861	147.861
18	0.811629	112.321	-8.37803	U3b 2	28.5714	0	22.391	28.5714	141.686	0	141.686	138.388	138.388
19	0.811629	113.42	-6.50702	U3b 2	28.5714	0	22.391	28.5714	142.297	0	142.297	139.743	139.743
20	0.811629	119.69	-4.64296	U3b_2	28.5714	0	22.391	28.5714	149.288	0	149.288	147.469	147.469
21	0.811629	130.809	-2.78382	U3b 2	28.5714	0	22.391	28.5714	162.257	0	162.257	161.168	161.168
22	0.811629	132.048	0.927617	U3b_2	28.5714	0	22.391	28.5714	163.057	0	163.057	162.694	162.694
23	0.811629	136.998	0.927617	U3b_2	28.5714	0	22.391	28.5714	168.432	0	168.432	168.794	168.794
24	0.811629	145.391	2.78382	U3b_2	28.5714	0	22.391	28.5714	178.046	0	178.046	179.135	179.135
25	0.811629	153.387	4.64296	U3b_2	28.5714	0	22.391	28.5714	187.169	0	187.169	188.988	188.988
26	0.811629	160.985	6.50702	U3b_2	28.5714	0	22.391	28.5714	195.795	0	195.795	198.349	198.349
	0.811629	168.18	8.37803	U3b_2	28.5714	0	22.391	28.5714	203.917	0	203.917	207.214	207.214
28	0.811629	174.968	10.2581	U3b_2	28.5714	0	22.391	28.5714	211.525	0	211.525	215.578	215.578
	0.811629		12.1494	U3b_2	28.5714	0	22.391	28.5714	218.61	0	218.61	223.43	223.43
	0.811629		14.0543	U3b_2	28.5714	0	22.391	28.5714	225.156	0	225.156	230.761	230.761
	0.811629		15.9751	U3b_2	28.5714	0	22.391	28.5714	231.15	0	231.15	237.56	237.56
1	0.811629		17.9147	U3b_2	28.5714	0	22.391	28.5714	236.573	0	236.573	243.811	243.811
	0.811629		19.8757	U3b_2	28.5714	0	22.391	28.5714	241.403	0	241.403	249.498	249.498
	0.811629		21.8613	U3b_2 U3b_2	28.5714 28.5714	0	22.391	28.5714 28.5714	243.114 239.77	0	243.114	252.097 249.681	252.097 249.681
	0.811629		25.9205	U3b_2	28.5714	0	22.391	28.5714	232.526	0	239.77	249.681	249.681
	0.811629		28.0022	U3b_2	28.5714		22.391	28.5714	236.363		236.363	248.27	248.27
	0.811629		30.1251	U3b_2	28.5714	0	22.391	28.5714	229.807	0	229.807	248.27	242.8
	0.761748			u3a/u3b	20.3/14		97.0753	123.87	247.791		247.791	308.985	308.985
1	0.761748		34.3093	u3a/u3b	0		94.4531	120.524	241.098		241.098	305.552	305.552
	0.873969			u3a/u3b	0		89.5872	114.315	228.679		228.679	295.23	295.23
	0.873969			u3a/u3b	0		66.6794	85.0843	170.204		170.204	224,469	224.469
	0.873969	153.27	41.7661	u3a/u3b	0		55.0826	70.2865	140.602	ō	140.602	189.793	189.793
	0.873969		44.5057	u3a/u3b	0		62.1203	79.2667	158.567	0	158.567	219.624	219.624
45	0.82939		47.3039	Rilevato	0		79.2636	101 142	150.67	0	150.67	236.579	236.579
46	0.82939	101.895	50.1819	Rilevato	0	33.8726	70.0382	89.3702	133.134	0	133.134	217.143	217.143
47	0.82939	84.0205	53.2462	Rilevato	0	33.8726	49.2433	62.8354	93.6053	0	93.6053	159.541	159.541
48	0.82939	63.9846	56.5499	Rilevato	0	33.8726	26.816	34.2177	50.9739	0	50.9739	91.5651	91.5651
49	0.82939	41.16	60.1756	Rilevato	0	33.8726	16.8192	21.4616	31.9711	0	31.9711	61.31	61.31
50	0.82939	14.4771	64.2647	Rilevato	0	33.8726	4.39142	5.60354	8.34753	0	8.34753	17.4579	17.4579

Global Minimum Query (janbu simplified) - Safety Factor: 1.13671

SLIDE - An Interactive Slope Stability Program: Page 6 of 10

L	rocs	science)												_
	Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]	
	1	0.726568	4.79669	-44.4886	u3a/u3b	0	26.5603	4.94282	5.71741	11.4372	0	11.4372	6.58184	6.58184	
	2	0.726568	13.9638	-41.8291	u3a/u3b	0	26.5603	13.51	15.6271	31.2607	0	31.2607	19.1691	19.1691	
	3	0.726568	22.3277	-39.2762	u3a/u3b	0	26.5603	20.494	23.7056	47.4212	0	47.4212	30.6613	30.6613	
	4	0.726568	29.9758	-36.8133	u3a/u3b	0	26.5603	26.3028	30.4247	60.8622	0	60.8622	41.1757	41.1757	
	5	0.726568	36.9776	-34.4275	u3a/u3b	0	26.5603	31.198	36.087	72.1891	0	72.1891	50.8054	50.8054	
	6	0.844323	50.9685	-31.9253	u3a/u3b	0	26.5603	35.6476	41.2339	82.4851	0	82.4851	60.2746	60.2746	
	7	0.844323	61.3042	-29.3065	u3a/u3b	0	26,5603	41.3742	47.858	95.7361	0	95.7361	72,5118	72.5118	
	8	0.695674	66.5836	-26.9735	U3b 2	28.5714	0	24.7006	28.5714	108.23	0	108.23	95.6591	95.6591	
	9	0.695674	73.6443	-24.9089	U3b 2	28.5714	0	24.7006	28.5714	117.283	0	117.283	105.813	105.813	
	10	0.695674	77.5748	-22.8784	U3b 2	28.5714	0	24.7006	28.5714	121.89	0	121.89	111.467	111.467	
	11	0.695674	81.0753	-20.8779	U3b 2	28.5714	0	24,7006	28.5714	125,925	0	125.925	116,503	116.503	
	12	0.695674	84.219	-18.9037	U3b 2	28.5714	0	24.7006	28.5714	129,485	0	129,485	121.026	121.026	
	13	0.695674	87.0198	-16.9525	U3b 2	28.5714	0	24,7006	28.5714	132,585	0	132,585	125.056	125.056	
	14	0.695674	89.3823	-15.0215	U3b 2	28.5714	0	24.7006	28.5714	135.084	0	135.084	128,456	128,456	
	15	0.695674	85.3615	-13.1077	U3b 2	28.5714	0	24.7006	28.5714	128.431	0	128,431	122.68	122.68	
		0.695674		-11.2088	U3b 2	28.5714	0	24,7006	28.5714	120,059	0	120.059	115,164	115.164	
		0.695674	81.377	-9.32225	U3b 2	28.5714	0	24.7006	28.5714	121.014	0	121.014	116,959	116,959	
		0.695674		-7.44587	U3b 2	28.5714	0	24,7006	28.5714	124.311	0	124.311	121.082	121.082	
		0.695674		-5.5775	U3b 2	28.5714	0	24.7006	28.5714	137,452		137,452	135.04	135.04	
		0.693674		-3.71506	U3b 2	28.5714	0	24.7006	28.5714	142,986	0	142,986	141.382	141.382	
		0.695674		-1.85655	U3b 2	28.5714	0	24.7006	28.5714	143.186		143.186	142.385	142.385	
		0.693674		0	U3b 2	28.5714	0	24.7006	28.5714	149,497		149.497	149.497	149.497	
		0.693674		1.85655	U3b 2	28.5714	0	24.7006	28.5714	157.771		157.771	158.572	158.572	
		0.693674		3.71506	U3b 2	28.5714	0	24.7006	28.5714	165.625	0	165.625	167.229	167.229	
		0.695674		5.5775	U3b 2	28.5714	0	24.7006	28.5714	173.054		173.054	175,466	175.466	
		0.693674		7.44587	U3b 2	28.5714	0	24.7006	28.5714	180.052		180.052	183,281	183.281	
		0.695674		9.32225	U3b 2	28.5714	0	24.7006	28.5714	186,612		186.612	190.667	190.667	
		0.695674		11.2088	U3b 2	28.5714	0	24.7006	28.5714	192.725	0	192.725	197.62	197.62	
		0.693674		13.1077	U3b 2	28.5714	0	24.7006	28.5714	198.379	0	198.379	204.13	204.13	
		0.693674		15.0215	U3b 2	28.5714	0	24.7006	28.5714	203.56	0	203.56	210.189	210.189	
		0.693674		16.9525	U3b_2	28.5714	0	24.7006	28.5714	208.255		208.255	215.784	215.784	
		0.695674		18.9037	U3b 2	28.5714	0	24.7006	28.5714	212.445	0	212.445	220.903	220.903	
		0.693674		20.8779	U3b_2	28.5714	0	24.7006	28.5714	216.107	0	216.107	225.529	225.529	
					_		0	24.7006							
		0.695674		22.8784	U3b_2 U3b_2	28.5714 28.5714	0	24.7006	28.5714 28.5714	219.016 217.815	0	219.016 217.815	229.438	229.438	
					_										
		0.695674		26.9735	U3b_2	28.5714		24.7006 76.1256	28.5714 88.0552	213.336	0	213.336 176.148	225.907	225.907	
					u3a/u3b					176.148				218.879	
		0.844323			u3a/u3b	0	26.5603	76.031	87.9458	175.928		175.928	223.3	223.3	
		0.726568			u3a/u3b	0		71.8719	83.1349	166.305	0	166.305	215.567	215.567	
		0.726568			u3a/u3b	0		91.9608	106.372	212.789	0	212.789	281.618	281.618	
		0.726568			u3a/u3b	0		88.2027	102.025	204.094	0	204.094	276.226	276.226	
		0.726568			u3a/u3b	0		82.6314	95.5806	191.201	0	191.201	265.157	265.157	
		0.726568			u3a/u3b	0		67.2103	77.7428	155.518	0	155.518	221.539	221.539	
		0.675607		47.1732	Rilevato	0		56.9578	65.8837	98.1465	0	98.1465	159.598	159.598	
		0.675607		49.8983	Rilevato	0		49.5536	57.3192	85.388	0	85.388	144.231	144.231	
		0.675607	75.842	52.7879	Rilevato	0		58.0907	67.1941	100.099	0	100.099	176.597	176.597	
		0.675607		55.8854	Rilevato	0		58.6377	67.8268	101.041	0	101.041	187.601	187.601	
		0.675607		59.2557	Rilevato	0		48.7152	56.3494	83.9435	0	83.9435	165.845	165.845	
		0.675607		63.0048	Rilevato	0		38.1943	44.1797	65.8142	0	65.8142	140.79	140.79	
	50	0.675607	11.0644	67.3295	Rilevato	0	33.8726	12.2363	14.1538	21.0848	0	21.0848	50.3789	50.3789	П

Interslice Data

	ied) - Safety Fi		

SLIDE - An Interactive Slope Stability Program: Page 7 of 10

309

rocs	science				
1	x	Y	Interslice	Interslice	Interslice
Slice	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[m]	[m]	[kN]	[kN]	[degrees]
1	-34.5036	7.53771e-017	0	0	0
2	-33.6297	-0.859017	15.5196	0	0
3	-32.7557	-1.63951	55.4258	0	0
4	-31.8817	-2.35076	112.504	0	0
5	-31.0077	-3	181.716	0	0
6	-30.246	-3.51981	249.053	0	0
7	-29.4843	-4	320.958	0	0
8	-28.6726	-4.47096	382.145	0	0
9	-27.861	-4.90255	442.871	0	0
10	-27.0494	-5.29701	502.547	0	0
11	-26.2377	-5.65625	561.198	0	0
12	-25.4261	-5.98189	622.773	0	0
13	-24.6145	-6.27531	683.132	0	0
14	-23.8028	-6.53768	740.131	0	0
15	-22.9912	-6.77003	793.519	0	0
16	-22.1796	-6.97321	843.107	0	0
17	-21.368	-7.14794	888.743	0	0
18	-20.5563	-7.29483	929.224	0	0
19	-19.7447	-7.41436	964.328	0	0
20	-18.9331	-7.50694	995.669	0	0
21	-18.1214	-7.57285	1023.68	0	0
22	-17.3098	-7.61232	1048.25	0	0
23	-16.4982	-7.62546	1068.56	0	0
24	-15.6866	-7.61232	1084.51	0	0
25	-14.8749	-7.57285	1095.65	0	0
26	-14.0633	-7.50694	1101.49	0	0
27	-13.2517	-7.41436	1101.53	0	0
28	-12.44	-7.29483	1095.32	0	0
29	-11.6284	-7.14794	1082.42	0	0
30	-10.8168	-6.97321	1062.39	0	0
31	-10.0052	-6.77003	1034.81	0	0
32	-9.19353	-6.53768	999.269	0	0
33	-8.3819	-6.27531	955.366	0	0
34	-7.57027	-5.98189	902.702	0	0
35	-6.75864	-5.65625	841.703	0	0
36	-5.94701	-5.29701	773.736	0	0
37	-5.13538	-4.90255	700.18	0	0
38	-4.32375	-4.47096	616.336	0	0
39	-3.51213	-4	526.274	0	0
40	-2.75038	-3.51981	481.212	0	0
41	-1.98863	-3	427.814	0	0
42	-1.11466	-2.35076	357.619	0	0
43	-0.240693	-1.63951	294.82	0	0
44	0.633276	-0.859017	233.207	0	0
45	1.50725	-3.55271e-015	151.271	0	0
46	2.33664	0.898925	81.5504	0	0
47	3.16603	1.89375	7.17668	0	0
48	3.99542	3.00429	-55.9456	0	0
49	4.82481	4.25973	-97.7064	0	0
50	5.6542	5.7065	-130.016	0	0
51	6.48359	7.42713	0	0	0

	- Safety Fact		_

SLEGNTRAKET 7.00

SLIDE - An Interactive Slope Stability Program: Page 8 of 10

	Lross	cionco				9
	TOCS	science				
ı	Slice	X	Υ	Interslice	Interslice	Interslice
ı	Number	coordinate [m]	coordinate - Bottom [m]	Normal Force [kN]	Shear Force [kN]	Force Angle [degrees]
ı	1	-31.4149	8.49439e-017	[KIN]	[KN]	[degrees]
ı	2	-30.6883	-0.713714	11.7394	0	0
ı	3	-29.9617	-0./13/14	41.8434	0	0
ı	4	-29.961/	-1.364 -1.95819	41.8434 84.8493	0	0
ı	;	-29.2352	-2.502	136,979	0	0
ı	6	-27.782	-3	195.503	0	0
ı	7		-3.52606		0	- 1
ı	,	-26.9377 -26.0934	-3.52606	268.869 349.032	0	0
ı	9	-25.3977	-4.35406	404.464	0	0
ı	10	-24.702	-4.57406 -4.67711	459,466	0	0
ı					0	- 1
ı	11	-24.0064	-4.97067	512.36	•	0
ı	12	-23.3107	-5.23601 -5.47424	562.886	0	0
ı	13	-22.615		610.846	0	0
ı	14 15	-21.9193 -21.2237	-5.6863	656.075	0	0
ı			-5.87299	698.406	•	•
ı	16 17	-20.528 -19.8323	-6.03497 -6.17283	736.323 769.987	0	0
ı	18			800.919	0	0
ı	18	-19.1367 -18.441	-6.28703 -6.37795	800.919 829.334	0	0
ı	20				0	0
ı		-17.7453 -17.0496	-6.44588 -6.49106	855.785	0	- 1
ı	21			879.356	0	0
ı	22	-16.354	-6.51361	899.698	0	0
ı		-15.6583	-6.51361	916.811	_	- 1
ı	24 25	-14.9626 -14.2669	-6.49106 -6.44588	930.366 939.997	0	0
ı						- 1
ı	26	-13.5713	-6.37795	945.353	0	0
ı	27	-12.8756	-6.28703	946.096	0	0
ı	28	-12.1799	-6.17283	941.898	0	0
ı	29	-11.4842	-6.03497	932.442	•	0
ı	30	-10.7886	-5.87299	917.42	0	0
ı	31	-10.0929	-5.6863	896.531	0	- 1
ı	32	-9.39721	-5.47424	869.481	0	0
ı		-8.70154	-5.23601	835.983	_	
ı	34	-8.00587	-4.97067	795.753	0	0
ı	35	-7.31019	-4.67711	748.572	0	0
ı	36	-6.61452	-4.35406	695.32	0	0
ı	37	-5.91884	-4	636.899	0	0
ı	38 39	-5.07452 -4.2302	-3.52606 -3	617.426 588.807	0	0
ı	-		_		_	- 1
ı	40	-3.50363	-2.502	557.991	0	0
ı	41	-2.77706	-1.95819	508.816	0	0
ı	42	-2.05049	-1.364	451.368	0	0
ı	43	-1.32392	-0.713714	386.822	0	0
ı	44	-0.597356	-1.95399e-014	324.458	•	
ı	45	0.0782507	0.728906	291.241	0	0
ı	46	0.753858	1.53117	256.079	0	0
ı	47	1.42946	2.42086	206.107	0	0
ı	48	2.10507	3.41818	144.789	0	0
ı	49	2.78068	4.55403	82.2189	0	0
ı	50	3.45629	5.88026	20.6324	0	0
L	51	4.13189	7.49768	0	0	0

List Of Coordinates

Water Table

X Y -58.8401 -3 64.9119 -3

Distributed Load

SLEGISTRAST 7.02

rocscience

SLIDE - An Interactive Slope Stability Program: Page 9 of 10

X Y -5.00065 7.46919 0.0405669 7.62042 5.49691 7.45673

Distributed Load

X Y -3.46101 7.51538 -0.883091 7.59271

Distributed Load

X Y 1.00969 7.59135 3.62105 7.51301

External Boundary

X -58.8401 -58.8401 -58.8401 -58.8401 -58.8401 -18 -58.8401 -22 -58.8401 -33 -58.8401 -35 -58.8401 -40 64,9119 -40 64,9119 -35 64,9119 -33 64.9119 -22 64,9119 -18 64.9119 -10 64.9119 -8 64.9119 -4 64.9119 0 24.9786 22.9482 1.1011 21.4482 21.1653 20.1653 0.0860992 18.9153 0.0860992 17.9153 1.0861 17.6325 1.0861 1.0861 16.6325 7.59057 7.11706 6.59057 7.42392 0.0405669 7.62042 -6.50943 7.42392 -7.50943 7.11706 16.5514 1.0861 -17.5514 1.0861 -17.8342 1.0861 -18.8342 0.0860992 -20.3342 0.0860992 -21.3342 -21.617 1.0861 -24.617 1.1161 -25.617 1.1161 -26.5538 1e-016

Material Boundary

GENERAL CONTRACTOR Consorzio Iric/IV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	156 di 309

SLIDE - An Interactive Slope Stability Program: Page 10 of 10

SLEENTENPET 7.000			
rocscience			
x	Υ		
-26.5538	1e-016		
24.9786	0		

Material Boundary

X	Y
-58.8401	-4
64.9119	-4

Material Boundary

X	Y
-58.8401	-8
64.9119	-8

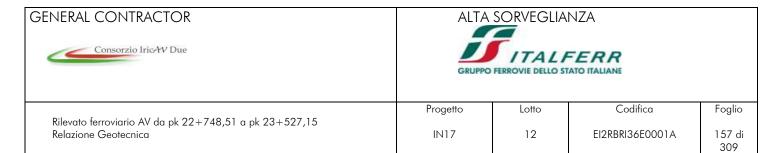
Material Boundary

×	Y
-58.84	401 -10
64.93	119 -10

Material Boundary

x	Y
-58.8401	-18
64.9119	-18

Material Boundary


X	γ
-58.8401	-22
64.9119	-22

Material Boundary

X	Y
-58.8401	-33
64.9119	-33

Material Boundary

SLIDE - An Interactive Slope Stability Program: Page 1 of 10

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 2-1 muro.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/10/2021, 14:46:13

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)

Name: A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Steffensen Iteration:

Slices Type: Vertical

Analysis Methods Used

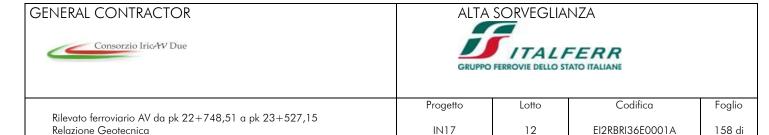
Bishop simplified

Bishop simplified

Bishop simplified

Number of slices: 50

Tolerance: 0.005


Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections with water tables and piezos:

Initial trial value of F5: 1

Yes

SCENE HOPET /

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 10

309

Groundwater Analysis

 Groundwater Method:
 Water Surfaces

 Pore Fluid Unit Weight [kN/m3]:
 9.81

 Use negative pore pressure cutoff:
 Yes

 Maximum negative pore pressure [kPa]:
 0

 Advanced Groundwater Method:
 None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 5000
Upper Angle: Not Defined
Lower Angle: Not Defined
Composite Surfaces: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area [m2]: 20
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

3 Distributed Loads present

Distributed Load 1
Distribution: Constant
Magnitude [kPa]: 14.4
Orientation: Vertical
Load Action: Variable

Distribution: Constant Magnitude (kPa): 61.4 Orientation: Vertical

Distributed Load 2

Distributed Load 3
Distribution: Constant
Magnitude [kPa]: 61.4

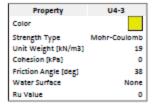
Vertical

Variable

Orientation:

Load Action:

Material Properties


GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 159 di

SLEGNTRAST 7.09

SLIDE - An Interactive Slope Stability Program: Page 3 of 10

309

rocscience Sube - An Interactive Stope Stability Program: P								
Property	Rilevato	U4	u3a/u3b	U3b_2	U3b_3	U2	CA	U4-2
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Undrained	Infinite strength	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	18.5	18.5	18.5	19	25	19
Cohesion (kPa)	0	0	0					0
Friction Angle [deg]	38	34	32					34
Cohesion Type				40	65	120		
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

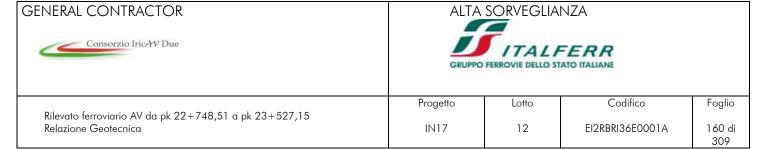
Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 2.4 m Pile Shear Strength: 127 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: bishop simplified


FS	1.326190
Center:	16.347, 13.179
Radius:	18.950
Left Slip Surface Endpoint:	-1.285, 6.237
Right Slip Surface Endpoint:	29.963, 0.000
Resisting Moment:	33056.6 kN-m
Driving Moment	24926.1 kN-m
Passive Support Moment:	1766.46 kN-m
Total Slice Area:	194.129 m2
Surface Horizontal Width:	31.2481 m
Surface Average Height:	6.2125 m

Method: janbu simplified

FS	1.207840
Center:	16.575, 11.845
Radius:	17.002
Left Slip Surface Endpoint:	0.517, 6.257
Right Slip Surface Endpoint:	28.771, 0.000
Resisting Horizontal Force:	1422.54 kN
Driving Horizontal Force:	1177.75 kN
Passive Horizontal Support Force:	96.2121 kN
Total Slice Area:	161.87 m2
Surface Horizontal Width:	28.254 m
Surface Average Height:	5.7291 m

Valid / Invalid Surfaces

Method: bishop simplified

SLEENTERPART 7.009

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 10

Number of Valid Surfaces: 573 Number of Invalid Surfaces: 4427

Error Codes:

Error Code -99 reported for 4251 surfaces Error Code -114 reported for 176 surfaces

Method: janbu simplified

Number of Valid Surfaces: 573 Number of Invalid Surfaces: 4427

Error Codes:

Error Code -99 reported for 4251 surfaces Error Code -114 reported for 176 surfaces

Error Codes

The following errors were encountered during the computation:

-99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.
-114 = Surface with Reverse Curvature.

Slice Data

Slobal Minimum Query (bishop simplified) - Safety Factor: 1.32619	

SLIDE - An Interactive Slope Stability Program: Page 5 of 10

309

Sicic Width Weight Single Base Base Base Single Base Single Base Single Sing	rocs	science)											
2 0.669962 123777 - 61.412 Niewsto 0 32.0066 12373 16.1437 23228 0 23.2288 41.567 41.5			-	of Slice Base [degrees]		Cohesion	Friction Angle [degrees]	Stress [kPa]	Strength	Normal Stress	Pressure	Normal Stress	Vertical Stress	Vertical Stress
3 0.669952 481453 -57.4173 Rilevato 0 31.0066 33.8242 44.5945 71.8919 0 71.8919 124.506 124.505 4 0.669952 87.5265 69.5913 Rilevato 0 31.0066 67.785 69.9732 111.892 0 71.8919 124.505 124.104 124.104 125.104	1	0.669362	10.0716	-66.0176	Rilevato	0	32.0066	3.44423	4.5677	7.308	0	7.308	15.0503	15.0503
4 0.66982 77.2008 -32.8233 Rilevato 0 32.006 87.728 68.732 111.932 0 111.932 134.104 134.104 2 0.0088 12.0088 13.0088 13.0088 101.735	2	0.669362	28.3777	-61.412	Rilevato	0	32.0066	12.173	16.1437	25.8288	0	25.8288	48.1667	48.1667
\$\ 0.869962 \ \text{\$9.0551} \ \text{-0.517} \ \text{ Rilevatio} \ 0 \ \text{\$12,0066} \ \text{ \$60.4936} \ \text{ \$80.226} \ \text{ \$128,356} \ 0 \ \text{ \$128,356} \ \text{ \$20.1725} \ \text{ \$20.1725} \ \text{ \$60.68982} \ \text{ \$79.8899} \ \text{ \$47.4283} \ \text{ \$81.694} \ \text{ \$16.8563} \ \text{ \$20.5844} \ \text{ \$20.5944} \ \text{ \$80.8764} \ \text{ \$40.0725} \ \text{ \$128,316} \ \text{ \$20.5944} \ \text{ \$80.8764} \ \text{ \$40.0725} \ \text{ \$20.5944} \ \text{ \$80.8764} \ \text{ \$40.0725} \ \text{ \$20.5944} \ \text{ \$80.8764} \ \text{ \$80.8764} \ \text{ \$40.0725} \ \text{ \$20.5944} \ \text{ \$80.8764}	3	0.669362	43.8145		Rilevato	0	32.0066	33.8824	44.9345	71.8919	0	71.8919	124.908	124.908
6 0.669362 79.8399 -47.4293 Rilevato 0 32.0066 67.782 89.8276 143.213 0 143.813 217.298 217.595 7 0.824228 82.6214 -44.6076 U39/U39 0 26.5603 66.143 83.614 168.364 0 168.364 22.0564 20.0564 8 0.624228 89.6604 -42.0113 U39/U39 0 26.5603 85.1439 83.988 130.3386 0 180.3386 24.228 624.236 63 0 0.624228 101.981 -39.2177 U38/U39 0 26.5603 53.4079 70.833 141.696 0 143.946 182.006 182.106 11 0.624228 101.981 -22.0066 U38/U39 0 26.5603 53.4079 70.833 141.696 0 143.946 182.006 182.106 11 0.624228 111.5764 -30.2973 U38/U39 0 26.5603 87.731 17.718 21.5481 0 21.5481 25.216 12.106 13.00.82428 111.5764 -30.2973 U38/U39 0 26.5603 87.731 116.364 232.778 0 232.778 28.4045 14 0.624228 111.5764 -30.2973 U38/U39 0 26.5603 87.731 116.364 232.778 0 232.778 28.4045 14 0.624228 11.9564 -228.1339 U38/U39 0 26.5603 87.731 116.364 232.778 0 232.778 28.4045 14 0.624228 11.9564 -228.1339 U38/U39 0 26.5603 87.731 116.364 232.778 0 232.778 28.4045 28.9465 16 0.61188 124.265 -23.9453 U39/U39 0 26.5603 94.1306 124.837 28.9723 0 29.1049 30.0617 300.617 71 70.61188 130.657 12.9322 U39/2 2.28.5714 0 21.544 28.5714 28.51049 0 291.049 30.0617 300.617 170.61188 130.657 1-7.9561 U39/2 2.28.5714 0 21.544 28.5714 28.5168 0 26.568 28.956 29.856	4	0.669362	57.2208	-53.8233	Rilevato	0	32.0066	52.7626	69.9732	111.952	0	111.952	184.104	184.104
To 0.824281 89.6604	5	0.669362	69.0551	-50.517	Rilevato	0	32.0066	60.4936	80.226	128.356	0	128.356	201.785	201.785
\$ 0.6242E1 89.6604 -42.0113 U3a/U3D	6	0.669362	79.6399	-47.4293	Rilevato	0	32.0066	67.7788	89.8876	143.813	0	143.813	217.598	217.598
9 0.6242E1 08.113 -39.5177 U38/U3D	7	0.624281	82.6234	-44.6076	u3a/u3b	0	26.5603	63.4633	84.1644	168.364	0	168.364	230.964	230.964
10 0.624281 101981 -37.1106 U3a/U3D	8	0.624281	89.6604	-42.0115	u3a/u3b	0	26.5603	68.1643	90.3988	180.836	0	180.836	242.236	242.236
11 0.624281 107.027 -34.778 U39/U30 0 26.5603 56.817 73.3501 150.731 0 150.731 190.187 190.187 12 0.624281 113.94 -32.998 U39/U30 0 26.5608 81.237 107.18 213.481 0 213.481 267.246 267.246 13 0.624281 113.964 -32.893 U39/U30 0 26.5608 87.741 116.364 233.778 0 33.2778 224.043 14 0.624281 113.964 -28.1339 U39/U30 0 26.5608 91.071 120.706 244.463 0 241.463 290.131 290.131 13 0.624281 133.071 -26.0134 U39/U30 0 26.5608 91.071 120.706 244.463 0 241.463 290.51 290.51 15 0.615188 124.285 -23.9452 U30_2 28.5714 0 21.544 28.5714 291.049 0 291.049 300.617 300.617 17 0.615188 136.043 -21.9322 U30_2 28.5714 0 21.544 28.5714 291.049 0 291.049 300.617 300.617 17 0.615188 135.671 -17.9661 U30_2 28.5714 0 21.544 28.5714 291.049 0 291.049 300.617 300.617 19 0.615188 135.671 -17.9661 U30_2 28.5714 0 21.544 28.5714 221.798 0 221.779 22.385 22.9854 229.854 20 0.615188 139.671 -17.9661 U30_2 28.5714 0 21.544 28.5714 221.798 0 221.179 22.385 22.9854 229.854 229.554 229.65188 139.671 -1.60207 U30_2 28.5714 0 21.544 28.5714 221.799 0 221.179 22.385 22.795					u3a/u3b	0		54.2595		143.946	0	143.946	188.703	188.703
12 0.624281 111.594 -32.5096 U3a,Vu3b	10	0.624281	101.981	-37.1106	u3a/u3b	0	26.5603	53,4109	70.833	141.696	0	141.696	182.106	182.106
13 0.624281 115.764 -30.2973 U38/U30						_								
14 0.624281 119.564 -28.1339 U3b/U3b						0	26.5603		107.718	215.481	0	215.481	267.246	267.246
15 0.614281 123.017 -26.0134 U3e/U3b					u3a/u3b	0				232.778	0	232.778	284.045	284.045
16 0.615188 124.285 -23.9455 U3b 2 28.5714	1					_					0			
17 0.615188 130.451 -21.9252 U30 2 28.5714														
18 0.615188 135.672 -19.9332 U30_2 28.5714	16	0.615188	124.285	-23.9455	U3b_2	28.5714	0	21.544	28.5714	291.049	0	291.049	300.617	300.617
19 0.615188 137.871 -17.9661 U3b 2 28.5714 0 21.544 28.5714 222.868 0 222.868 229.854 229.854 229.854 20 0.615188 139.871 -16.0207 U3b 2 28.5714 0 21.544 28.5714 221.779 0 221.779 227.365 227.365 227.365 22 0.615188 10.61518 10.					U3b_2					301.968	0			
20 0.615188 139.871 -16.0207					_		0			261.968	0		269.781	
21 0.615188 141.618 -14.0941 U3b 1 28.5714 0 21.544 28.5714 240.285 0 240.285 230.205 230.205 230.205 22 0.615188 150.681 -12.1837 U3b 2 28.5714 0 21.544 28.5714 240.285 0 240.285 244.937 244.937 244.937 249.937 23 0.615188 162.423 -10.2869 U3b 2 28.5714 0 21.544 28.5714 154.071 0 154.071 157.233 157.253 25 0.615188 96.7334 -8.40148 U3b 2 28.5714 0 21.544 28.5714 134.071 0 154.071 157.233 157.253 25 0.615188 83.2772 -6.25519 U3b 2 28.5714 0 21.544 28.5714 132.905 0 132.905 135.37 135.37 26 0.615188 81.1105 -4.6559 U3b 2 28.5714 0 21.544 28.5714 132.905 0 132.905 135.37 135.37 27 0.615188 78.099 -2.79157 U3b 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.952 126.952 28 0.615188 78.2051 0.930195 U3b 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.952 126.952 29 0.615188 78.2051 0.930195 U3b 2 28.5714 0 21.544 28.5714 126.873 0 126.873 127.22														
22 0.615188 130.681 -121837					_									
23 0.615188 162.423 -10.2869 U30 2 28.5714 0 21.544 28.5714 154.071 0 154.071 177.253 157.253 25 0.615188 86.3354 -8.4048 U30 2 28.5714 0 21.544 28.5714 134.071 0 154.071 177.253 157.253 25 0.615188 83.2772 -6.52519 U30 2 28.5714 0 21.544 28.5714 130.093 0 130.093 131.847 131.847 27 0.615188 81.103 -4.6559 U30 2 28.5714 0 21.544 28.5714 130.093 0 130.093 131.847 131.847 27 0.615188 78.099 -2.79157 U30 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.952 126.952 28.0615188 78.2658 0.930195 U30 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.952 126.952 29 0.615188 78.2051 0.930195 U30 2 28.5714 0 21.544 28.5714 127.473 0 127.473 127.124 127.124 30 0.615188 76.2042 2.79157 U30 2 28.5714 0 21.544 28.5714 127.473 0 127.473 127.124 127.124 30 0.615188 76.2042 2.79157 U30 2 28.5714 0 21.544 28.5714 127.473 0 127.473 127.124 127.124 32 0.615188 76.2042 2.79157 U30 2 28.5714 0 21.544 28.5714 12.921 0 124.921 123.871 123.871 31 0.615188 65.3338 6.52519 U30 2 28.5714 0 21.544 28.5714 108.668 0 108.668 106.203 106.203 33 0.615188 65.3338 6.52519 U30 2 28.5714 0 21.544 28.5714 108.668 0 108.668 106.203 106.203 34 0.615188 60.7849 12.1837 U30 2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U30 2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 57.126 10.2869 U30 2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36.015188 57.266 10.0207 U30 2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36.015188 57.266 10.0207 U30 2 28.5714 0 21.544 28.5714 109.576 0 101.556 96.1469 96.1469 37 0.615188 57.266 10.0207 U30 2 28.5714 0 21.544 28.5714 90.511 0 0.556 0 101.556 96.1469 96.1469 38.8047 38.8					_									
24 0.615188 96.7394 -8.40148 U3b 2 28.5714 0 21.544 28.5714 154.071 0 154.071 157.253 157.253 25 0.615188 83.2772 -6.52519 U3b 2 28.5714 0 21.544 28.5714 132.095 0 132.905 135.37 135.37 26 0.615188 81.1105 -4.6559 U3b 2 28.5714 0 21.544 28.5714 132.095 0 120.093 131.847 131.847 27 0.615188 78.099 -2.79157 U3b 2 28.5714 0 21.544 28.5714 125.901 0 122.901 126.952 126.952 28 0.615188 78.2658 0.930195 U3b 2 28.5714 0 21.544 28.5714 127.901 0 122.901 126.952 126.952 29 0.615188 78.2031 0.930195 U3b 2 28.5714 0 21.544 28.5714 127.473 0 127.473 127.124 127.124 130.0615188 76.2042 2.79157 U3b 2 28.5714 0 21.544 28.5714 126.873 0 126.873 127.223 1	22	0.615188	150.681	-12.1837	U3b_2	28.5714	0	21.544		240.285	0	240.285	244.937	244.937
25 0.615188 83.2772 -6.52519 U3b 2 28.5714 0 21.544 28.5714 132.905 0 132.905 135.37 135.37 26 0.615188 81.1105 -4.6559 U3b 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.592 126.592 28 0.615188 78.2658 0.930195 U3b 2 28.5714 0 21.544 28.5714 125.901 0 125.901 126.692 126.592 29 0.615188 78.2051 0.930195 U3b 2 28.5714 0 21.544 28.5714 126.873 0 126.873 127.223 127.223 29 0.615188 78.2051 0.930195 U3b 2 28.5714 0 21.544 28.5714 126.873 0 127.473 127.124 127.124 30 0.615188 76.2042 2.79157 U3b 2 28.5714 0 21.544 28.5714 124.921 0 124.921 123.871 123.871 123.871 131.045188 76.2042 2.79157 U3b 2 28.5714 0 21.544 28.5714 124.921 0 124.921 123.871 123.871 125.042 125.048 125.048 126.048 12					_									
26 0.615188 81.1105					_									
27 0.615188 78.099 -2.79157 U3b_2 28.5714					_									
28 0.615188 78.2658					_									
29 0.615188 78.2051 0.930195	27	0.615188	78.099	-2.79157	U3b_2	28.5714	0	21.544	28.5714	125.901	0	125.901	126.952	126.952
30 0.615188 76.2042 2.79157 U3b 2 28.5714 0 21.544 28.5714 124.921 0 124.921 123.871 123.871 31 0.615188 70.773 4.6559 U3b 2 28.5714 0 21.544 28.5714 116.797 0 116.797 115.042 115.042 32 0.615188 65.3338 6.52519 U3b 2 28.5714 0 21.544 28.5714 108.668 0 108.668 106.203 106.203 33 0.615188 63.3285 8.40148 U3b 2 28.5714 0 21.544 28.5714 106.122 0 106.122 102.94 102.94 34 0.615188 62.1761 10.2869 U3b 2 28.5714 0 21.544 28.5714 106.122 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U3b 2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 88.6043 89.6043 39 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 86.09 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 37.518 34.778 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 46 0.624281 37.5118 34.778 u3a/u3b 0 26.5603 28.4875 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4875 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 37.5118 34.778 u3a/u3b 0 26.5603 28.4815 34.905 68.1154 0 68.1154 51.7522 51.7522 46.0624281 16.5799 37.1106 u3a/u3b 0 26.5603 18.8171 24.995 49.9205 0 49.9205 33.6838 35.6838 48.0624281 16.5799 37.1106 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49.0624281 10.3591 42.0115 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 2					_		-							
31 0.615188 70.773 4.6559 U3b 2 28.5714 0 21.544 28.5714 116.797 0 116.797 115.042 115.042 32 0.615188 65.3358 6.52519 U3b 2 28.5714 0 21.544 28.5714 108.668 0 108.668 106.203 106.203 33 0.615188 63.3285 8.40148 U3b 2 28.5714 0 21.544 28.5714 106.122 0 106.122 102.94 102.94 34 0.615188 62.1761 10.2869 U3b 2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U3b 2 28.5714 0 21.544 28.5714 101.556 0 103.456 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 55.1256 17.9661 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.088 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 U3a/U3b 0 26.5603 32.8763 43.6002 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 U3a/U3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 U3a/U3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0624281 27.5118 34.778 U3a/U3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0624481 22.2809 37.1106 U3a/U3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0624481 22.2809 37.1106 U3a/U3b 0 26.5603 12.4981 29.8368 59.686 0 59.686 44.0622 44.0624481 22.2809 37.1106 U3a/U3b 0 26.5603 12.4981 29.8368 59.686 0 59.686 44.0622 44.0624481 22.2809 37.1106 U3a/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 16.5799 39.5177 U3a/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 16.5799 39.5177 U3a/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 16.5799 39.5177 U3a/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 16.5799 39.5177 U3a/U3b 0 26.560					_									
32 0.615188 65.3358 6.52519 U3b 2 28.5714 0 21.544 28.5714 108.668 0 108.668 106.203 106.203 33 0.615188 63.3285 8.40148 U3b 2 28.5714 0 21.544 28.5714 106.122 0 106.122 102.94 102.94 34 0.615188 62.1761 10.2869 U3b 2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U3b 2 28.5714 0 21.544 28.5714 103.436 0 103.436 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 55.1256 17.9661 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 81.3405 41 0.					_									
33 0.615188 63.3285 8.40148 U3b 2 28.5714 0 21.544 28.5714 106.122 0 106.122 102.94 102.94 34 0.615188 62.1761 10.2869 U3b 2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U3b 2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 83.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7305 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.002 75.4162 0 75.4162 58.8064 58.8064 46 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.002 75.4162 0 75.4162 58.8064 58.8064 48 0.624281 16.5799 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 37.1106 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526					_									
34 0.615188 62.1761 10.2869 U3b_2 28.5714 0 21.544 28.5714 104.977 0 104.977 101.066 101.066 35 0.615188 60.7849 12.1837 U3b_2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b_2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b_2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 57.266 16.0207 U3b_2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b_2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b_2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b_2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b_2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 48 0.624281 32.509 37.1106 u3a/u3b 0 26.5603 28.4275 37.7002 75.6162 0 59.686 0 59.686 44.0622 44.0622 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 28.4275 37.5002 49.9205 0 49.9205 33.6838 35.6838 48 0.624281 16.5799 37.1106 u3a/u3b 0 26.5603 28.4275 17.5					U3b_2						0			
35 0.615188 60.7849 12.1837 U3b 2 28.5714 0 21.544 28.5714 103.456 0 103.456 98.8047 98.8047 36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 55.1256 17.9661 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 U3b/U3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 U3b/U3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 U3b/U3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 U3b/U3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 U3b/U3b 0 26.5603 22.4981 29.3868 59.686 0 59.686 40.624281 27.5118 34.778 U3b/U3b 0 26.5603 22.4981 29.3868 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 U3b/U3b 0 26.5603 18.8171 24.995 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 2					_									
36 0.615188 59.1501 14.0941 U3b 2 28.5714 0 21.544 28.5714 101.556 0 101.556 96.1469 96.1469 37 0.615188 57.266 16.0207 U3b 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 55.1256 17.9661 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 22.6981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 22.6981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.995 49.9205 0 49.9205 33.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.015 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0					_									
37 0.615188 57.266 16.0207 U3o 2 28.5714 0 21.544 28.5714 99.2699 0 99.2699 93.0839 93.0839 38 0.615188 55.1256 17.9661 U3o 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3o 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3o 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3o 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 U3o/u3o 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 U3o/u3o 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 U3o/u3o 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 U3o/u3o 0 26.5603 22.4821 29.8368 59.686 0 59.886 44.0622 44.0622 46 0.624281 27.5118 34.778 U3o/u3o 0 26.5603 22.4881 29.8368 59.686 0 59.886 44.0622 44.0622 47 0.624281 22.2809 37.1106 U3o/u3o 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 U3o/u3o 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_						-			
38 0.615188 55.1256 17.9661 U3b 2 28.5714 0 21.544 28.5714 96.5903 0 96.5903 89.6043 89.6043 39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 22.4785 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4881 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 22.4881 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_									
39 0.615188 52.7209 19.9332 U3b 2 28.5714 0 21.544 28.5714 93.508 0 93.508 85.6951 85.6951 40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 77.002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 25.6755 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4881 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 22.4881 29.8368 59.686 0 59.686 44.0622 44.					_									
40 0.615188 50.0423 21.9252 U3b 2 28.5714 0 21.544 28.5714 90.0121 0 90.0121 81.3405 81.3405 41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 U3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 U3b/U3b 0 26.5603 30.8127 40.8655 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 U3b/U3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 U3b/U3b 0 26.5603 25.6755 37.0056 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 U3b/U3b 0 26.5603 25.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 U3b/U3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 33.6838 33.6838 48 0.624281 16.5799 39.5177 U3b/U3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 U3b/U3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_									
41 0.615188 47.0786 23.9455 U3b 2 28.5714 0 21.544 28.5714 86.09 0 86.09 76.5225 76.5225 42 0.624281 44.4375 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 38.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 25.6755 36.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_						-			
42 0.624281 44.4373 26.0134 u3a/u3b 0 26.5603 32.8763 43.6002 87.2186 0 87.2186 71.1743 71.1743 43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 22.6973 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 33.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_		_							
43 0.624281 40.7505 28.1339 u3a/u3b 0 26.5603 30.8127 40.8635 81.7441 0 81.7441 65.2682 65.2682 44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 25.6755 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896					_									
44 0.624281 36.7166 30.2973 u3a/u3b 0 26.5603 28.4275 37.7002 75.4162 0 75.4162 58.8064 58.8064 45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 25.6755 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896														
45 0.624281 32.3128 32.5096 u3a/u3b 0 26.5603 25.6755 34.0506 68.1154 0 68.1154 51.7522 51.7522 46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896						_								
46 0.624281 27.5118 34.778 u3a/u3b 0 26.5603 22.4981 29.8368 59.686 0 59.686 44.0622 44.0622 47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.955 49.9205 0 49.9205 35.6838 35.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896														
47 0.624281 22.2809 37.1106 u3a/u3b 0 26.5603 18.8171 24.935 49.9205 0 49.9205 33.6838 33.6838 48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896						_								
48 0.624281 16.5799 39.5177 u3a/u3b 0 26.5603 14.5249 19.2628 38.5336 0 38.5336 26.5526 26.5526 49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896														
49 0.624281 10.3591 42.0115 u3a/u3b 0 26.5603 9.46802 12.5564 25.1181 0 25.1181 16.5896 16.5896											0			
						_								
50 0.624281 3.55592 44.6076 u3a/u3b 0 26.5603 3.41692 4.53148 9.06485 0 9.06485 5.69442 5.69442	1					_								
	50	0.624281	3.55592	44.6076	u3a/u3b	0	26.5603	3.41692	4.53148	9.06485	0	9.06485	5.69442	5.69442

Global Minimum Query (janbu simplified) - Safety Factor: 1.20784

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE						
	Progetto	Lotto	Codifica	Foglio				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	162 di				

SLIDE - An Interactive Slope Stability Program: Page 6 of 10

rocs	science	2							. ,	ideare Sie	pc sasiii,	. rogrami	1 age 0 0, 10
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
	0.551489			Rilevato	0		25.3114	30.5721	48.9132	0	48.9132	112.514	112.514
_	0.551489		-63.6881	Rilevato	0	32.0066	34.8558	42.1002	67.3572	0	67.3572	137.846	137.846
_	0.551489		-59.7464	Rilevato	0	32.0066	43.5374	52.5862	84.1341	0	84.1341	158.778	158.778
	0.551489		-56.2297	Rilevato	0		51.5789	62.299	99.6739	0	99.6739	176.808	176.808
	0.551489		-53.013	Rilevato	0	32.0066	59.11	71.3954	114.228	0	114.228	192.706	192.706
	0.551489		-50.0218	Rilevato	0		66.2167	79.9792	127.961	0	127.961	206.936	206.936
1	0.551489		-47.2073	Rilevato	0		59.8257	72.2599	115.611	0	115.611	180.233	180.233
	0.548363		-44.5427	u3a/u3b	0	26.5603	44.4878	53.7342	107.491	0	107.491	151.274	151.274
1 -	0.548363	77.937	-42.0027		0		48.4797	58.5557	117.136	0	117.136	160.791	160.791
	0.548363			u3a/u3b	0		56.3024	68.0043	136.037		136.037	182.549	182.549
	0.548363		-37.2018	u3a/u3b u3a/u3b	0		80.8629 84.7182	97.6694 102.326	195.379 204.695	0	195.379 204.695	256.761 263.828	256.761 263.828
1	0.548363			u3a/u3b	0		88.3925	106.764	213.573	0	213.573	270.298	270.298
	0.548363			u3a/u3b			91.8979	110.998	222.043		222.043	276.217	276.217
	0.548363		-28.3962		0		95.2461	115.042	230.133		230.133	281.624	281.624
	0.548363		-28.3962 -26.3149	u3a/u3b	0		98.9113	119,469	238.988	0	238.988	287.905	281.624
	0.548363		-24.2704	u3a/u3b	0	26,5603	102.649	123.983	248.018	0	248.018	294.302	294.302
	0.548363		-24.2704	u3a/u3b	0	26,5603	79.4181	95.9243	191.889	0	191.889	224.393	294.302
	0.587122		-20.2057		28.5714	26.3603	23.655	28.5714		0	201.704	210.41	210.41
	0.587122		-20.2057	U3b_2 U3b_2	28.5714	0	23.655	28.5714	201.704	0	206.239	213.976	213.976
			-16.0401	_		0				0			
	0.587122		-18.0401	U3b_2 U3b_2	28.5714 28.5714	0	23.655	28.5714 28.5714	210.723	0	210.723	217.524	217.524
	0.587122		-11.9602	_		0		28.5714		0	237.509	242.52	
	0.587122		-9.94442	U3b_2 U3b_2	28.5714 28.5714	0	23.655	28.5714	237.509 132.553	0	132,553	136.701	242.52 136.701
	0.587122		-7.94104	U3b_2	28.5714	0	23,655	28.5714	119.968	0	119.968	123.268	123.268
	0.587122		-5.9474	U3b 2	28.5714	0	23.655	28.5714	117.445	0	117,445	119.909	119.909
	0.587122		-3.96097	U3b 2	28.5714	0	23,655	28.5714	113.634	0	113.634	115.272	115.272
	0.587122		-1.9793	U3b 2	28.5714	0	23,655	28.5714	114.925		114.925	115.742	115.742
	0.587122		-1.9/93	U3b 2	28.5714	0	23,655	28.5714	115.837	0	115.837	115.837	115.742
	0.587122		1.9793	U3b 2	28.5714	0	23.655	28.5714	114.685		114.685	113.868	113.868
	0.587122		3.96097	U3b 2	28.5714	0	23,655	28.5714	107.556	0	107.556	105.918	105.918
	0.587122		5.9474	U3b 2	28.5714	0	23.655	28.5714	99.6222	0	99.6222	97.1579	97.1579
	0.587122		7.94104	U3b 2	28.5714	0	23,655	28.5714	95.6464		95.6464	92.3468	92.3468
	0.587122		9.94442	U3b_2	28.5714	0	23.655	28.5714	94.7855		94.7855	90.6382	90.6382
	0.587122		11.9602	U3b_2	28.5714	0	23,655	28.5714	93.5476	0	93.5476	88.5368	88.5368
	0.587122		13.9911	U3b 2	28.5714	0	23.655	28.5714	91.9285	0	91.9285	86.0346	86.0346
	0.587122		16.0401	U3b 2	28.5714	0	23,655	28.5714	89.9221	0	89.9221	83.1212	83.1212
	0.587122		18.1105	U3b_2	28.5714	0	23.655	28.5714	87.5215		87.5215	79.7851	79.7851
	0.587122		20.2057	U3b 2	28.5714	0	23,655	28.5714	84.7174	0	84.7174	76.0114	76.0114
	0.548363		22.2584	_	0.3/14	26,5603	35.849	43.2998	86.6177		86.6177	71.9454	71.9454
	0.548363		24.2704	u3a/u3b	0		34.3886	41.5359	83.0892	0	83.0892	67.5835	67.5835
	0.548363		26.3149		0		32.6748	39.4659	78.9483		78.9483	62.7888	62.7888
	0.548363			u3a/u3b	0		30.6779	37.054	74.1235	0	74.1235	57.5386	57.5386
	0.548363			u3a/u3b	0	26,5603	28.361	34.2555	68.5253		68.5253	51.8065	51,8065
	0.548363			u3a/u3b	0		25.6762	31.0127	62.0384	0	62.0384	45.5609	45.5609
	0.548363		34.9148		0	26,5603	22.561	27.2501	54.5117	0	54.5117	38.7642	38.7642
-	0.548363		37.2018	,	0		18.9316	22.8663	45.742	0	45.742	31.3712	31.3712
	0.548363			u3a/u3b	0		14.6706	17.7197	35,4469	0	35,4469	23.3274	23.3274
-	0.548363		42.0027		0		9.60897	11.6061	23.2171	0	23.2171	14.5643	14.5643
	0.548363		44.5427	u3a/u3b	0		3.48951	4.21477	8.43129	0	8.43129	4.99704	4.99704
30	J.J46365	2.73743	44.342/	use/us0	0	26.3605	3.48531	4.22477	0.43129	0	0.43125	4.99704	4.55/04

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.32619	_
1	

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	163 di 309

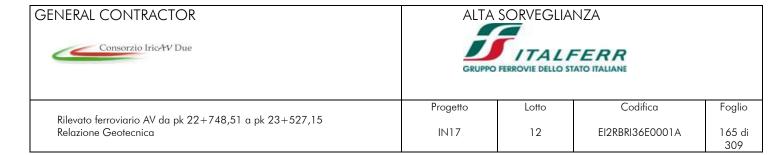
SLEGNTRANT 7.000

SLIDE - An Interactive Slope Stability Program: Page 7 of 10

Γ	rocs	science				9
-		¥	v	Interslice	Interslice	Interslice
	Slice	coordinate	coordinate - Bottom	Normal Force	Shear Force	
	Number	[m]	[m]	[kN]	[kN]	[degrees]
	1	-1.28543	6.23682	0	0	0
	2	-0.616063	4.73217	8.69167	0	0
	3	0.0532983	3.50386	32.273	0	0
	4	0.72266	2,45651	84.9001	0	0
	5	1.39202	1.54117	152.074	0	0
	6	2.06138	0.728674	215.89	0	0
	7	2.73075	0	275.336	0	0
	8	3.35503	-0.615787	339.412	0	0
	9	3.97931	-1.17812	398.568	0	0
	10	4.60359	-1.69306	438.835	0	0
	11	5.22787	-2.16538	472.433	0	0
	12	5.85215	-2.59891	502.327	0	0
	13	6.47643	-2.99677	537.376	0	0
	14	7.10071	-3.36153	567.533	0	0
	15	7.72499	-3.69534	591.343	0	0
	16	8.34927	-4	608.688	0	0
	17	8.96446	-4.2732	674.955	0	0
	18	9.57965	-4.52082	736.48	0	0
	19	10.1948	-4.74392	781.678	0	0
	20	10.81	-4.9434	776.615	0	0
	21	11.4252	-5.12004	802.438	0	0
	22	12.0404	-5.2745	823.912	0	0
	23	12.6556	-5.40733	842.581	0	0
	24	13.2708	-5.51898	858.376	0	0
	25	13.886	-5.60984	822.853	0	0
	26	14.5012	-5.68021	818.958	0	0
	27	15.1163	-5.73031	812.229	0	0
	28	15.7315	-5.7603	802.758	0	0
	29	16.3467	-5.77029	790.778	0	0
	30	16.9619	-5.7603	776.257	0	0
	31	17.5771	-5.73031	759.263	0	0
	32	18.1923	-5.68021	740.164	0	0
	33	18.8075	-5.60984	719.27	0	0
	34	19.4227	-5.51898	696.38	0	0
	35	20.0379	-5.40733	671.412	0	0
	36	20.653	-5.2745	644.423	0	0
	37	21.2682	-5.12004	615.49	0	0
	38	21.8834	-4.9434	584.707	0	0
	39	22,4986	-4.74392	552.191	0	0
	40 41	23.1138	-4.52082 -4.2732	518.083 482.547	0	0
					_	
	42 43	24.3442	-4 -3.69534	445.78 398.693	0	0
	44	24.9685			0	0
	44	25.5927 26.217	-3.36153 -2.99677	352.18 306.932	0	0
	45 46		-2.99677 -2.59891		0	
	46	26.8413 27.4656	-2.59891 -2.16538	263.811 223.897	0	0
	48	28.0899	-2.16338 -1.69306	188.577	0	0
	49	28.7141	-1.17812	159.671	0	0
	50	29.3384	-0.615787	139.638	0	0
	51	29.9627	6.34592e-016	135.636	0	0
	51	23.302/	0.543926-016	0	0	U

Global Minimum Query (janbu simplified) - Safety Factor: 1.20784				

SLIDE - An Interactive Slope Stability Program: Page 8 of 10


	I rocs	science					
	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interstice Shear Force [kN]	Interslice Force Angle [degrees]	Ī
ı							l
ı	1	0.51731	6.25692	0	0	0	l
ı	2	1.0688	4.87117	53.8023	0	0	l
ı	3	1.62029	3.7559	109.673	0	0	l
ı	4	2.17178	2.81038	165.178	0	0	l
ı	5	2.72327	1.98565	218.895	0	0	l
ı	6	3.27475	1.25345	269.886	0	0	l
ı	7	3.82624	0.595705	317.481	0	0	l
ı	8	4.37773	-1.77636e-015	353.309	0	0	l
ı	9	4.92609	-0.539679	386.889	0	0	l
ı	10	5.47446	-1.03347	418.107	0	0	l
ı	11	6.02282	-1.48648	448.814	0	0	l
ı	12	6.57118	-1.90274	485.735	0	0	l
ı	13	7.11955	-2.2855	517.559	0	0	l
ı	14	7.66791	-2.6374	344.174	0	0	l
ı	15	8.21627	-2.96066	565.485	0	0	l
ı	16	8.76463	-3.25712	581.403	0	0	l
ı	17	9.313	-3.52831	591.897	0	0	l
ı	18	9.86136	-3.77557	596.849	0	0	l
ı	19	10.4097	-4	556.474	0	0	l
ı	20	10.9968	-4.21608	586.151	0	0	l
ı	21	11.584	-4.4081	611.844	0	0	l
ı	22	12.1711	-4.5769	633.506	0	0	l
ı	23	12.7582	-4.72319	653.688	0	0	l
ı	24	13.3453	-4.84756	669.318	0	0	l
ı	25	13.9325	-4.9505	629.226	0	0	l
ı	26	14.5196	-5.0324	625.143	0	0	l
ı	27	15.1067	-5.09356	618.418	0	0	l
ı	28	15.6938	-5.13422	609.129	0	0	l
ı	29	16.2809	-5.15451	597.552	0	0	l
ı	30	16.8681	-5.15451	583.643	0	0	l
ı	31	17.4552	-5.13422	567.408	0	0	l
ı	32	18.0423	-5.09356	549.126	0	0	l
ı	33	18.6294	-5.0324	529.124	0	0	l
ı	34	19.2165	-4.9505	507.383	0	0	l
ı	35	19.8037	-4.84756	483.717	0	0	l
ı	36	20.3908	-4.72319	458.174	0	0	l
ı	37	20.9779	-4.5769	430.817	0	0	l
ı	38	21.565	-4.4081	401.73	0	0	l
ı	39	22.1522	-4.21608	371.015	0	0	l
ı	40	22.7393	-4	338.8	0	0	l
ı	41	23.2876	-3.77557	299.673	0	0	l
I	42	23.836	-3.52831	260.244	0	0	l
I	43	24.3844	-3.25712	220.89	0	0	ı
I	44	24.9327	-2.96066	182.069	0	0	ı
	45	25.4811	-2.6374	144.342	0	0	l
	46	26.0295	-2.2855	108.41	0	0	l
	47	26.5778	-1.90274	75.1561	0	0	l
I	48	27.1262	-1.48648	45.7191	0	0	l
I	49	27.6745	-1.03347	21.6047	0	0	l
I	50	28.2229	-0.539679	4.86333	0	0	l
	51	28.7713	6.62413e-016	0	0	0	ı

List Of Coordinates

Distributed Load

X Y 10.3833 6.22326 4.88932 6.38808 -0.1526 6.23682

Distributed Load

SLIDE - An Interactive Slope Stability Program: Page 9 of 10

rocscience

X Y 4.10433 6.36453 0.381534 6.25285

Distributed Load

X Y 9.81471 6.24032 5.93126 6.35682

External Boundary

13.1393 6.33018 12.1393 6.33018 12.1393 6.19158 10.3833 6.22326 4.88932 6.38808 -0.1526 6.23682 -1.309 6.23682 -2.66068 5.88472 -10.802 0.454492 -12.0848 0.454492 -12.5393 0 -42.8607 0 -42.8607 -42.8607 -8 -42.8607 -10 -42.8607 -15 -42.8607 -18 -42.8607 -22 -42.8607 -42.8607 -35 -42.8607 -40 57.1393 -40 57.1393 -35 57.1393 -33 57.1393 -22 57.1393 -18 57.1393 -15 57.1393 -10 57.1393 -8 57.1393 -4 57.1393 0 18.5965 9e-016 17.0673 1.01997 13.5675 1.04805 13.1393 5.33018

Material Boundary

X Y -12.5393 0 12.5393 0

Material Boundary

X Y -42.8607 -4 57.1393 -4

Material Boundary

X Y -42.8607 -8 57.1393 -8

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TAL PERROVIE DELLO S	FERR	
Dil (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	166 di 309

SLEGNTERPRET 7.000

SLIDE - An Interactive Slope Stability Program: Page 10 of 10

Material Boundary

X	Y
-42.8607	-10
57.1393	-10

Material Boundary

X	Υ
-42.8607	-15
57.1393	-15

Material Boundary

X	Y
-42.8607	-22
57.1393	-22

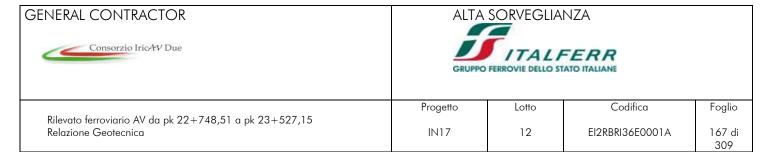
Material Boundary

X	Y
-42.8607	-33
57.1393	-33

Material Boundary

X	Υ
-42.8607	-35
57.1393	-35

Material Boundary


X	Y
12.5393	-0.535483
9.23928	-0.535483
9.23928	-2.08548
10.2393	-2.08548
13.8393	-2.08548
14.8393	-2.08548
14.8393	-0.535483
13.7259	-0.535483
13.6723	0
13.5675	1.04805

Material Boundary

X	Y
12.1393	6.19158
12.1393	5.33018
12.5393	5.33018
12.5393	0
12.5393	-0.535483

Material Boundary

X	Y
13.6723	0
18.5965	0

SLEENTRACT 7.000

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 11

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 2-2 muri.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/10/2021, 10:18:46

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)

Name: A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

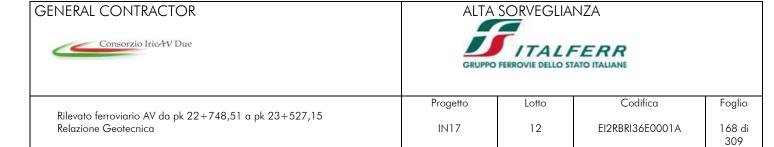
Slices Type:	Vertical

Analysis Methods Used

Bishop simplified Janbu simplified Janbu simplified Janbu simplified

Number of slices: 50

Tolerance: 0.005


Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create Interslice boundaries at intersections with water tables and piezos:

Initial trial value of F5: 1

Steffensen Iteration: Yes

SLIDE - An Interactive Slope Stability Program: Page 2 of 11

Groundwater Analysis

 Groundwater Method:
 Water Surfaces

 Pore Fluid Unit Weight (kN/m3):
 9.81

 Use negative pore pressure cutoff:
 Yes

 Maximum negative pore pressure (kPa):
 0

 Advanced Groundwater Method:
 None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 5000
Upper Angle: Not Defined
Lower Angle: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Meight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

4 Distributed Loads present

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 169 di

SLEGNTRAST 7.000 rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 11

309

Distributed Load 1

Distribution: Constant Magnitude (kPa): 14.4

Orientation: Normal to boundary
Load Action: Variable

Distributed Load 2 Distribution: Constant

Magnitude [kPa]: 14.4

Orientation: Normal to boundary
Load Action: Variable

Distributed Load 3
Distribution: Constant Magnitude (kPa): 61.4

Orientation: Normal to boundary Load Action: Variable

Distributed Load 4 Distribution: Constant

Magnitude (kPa): 61.4

Orientation: Normal to boundary

Load Action: Variable

Material Properties

Property	Rilevato	U4	u3a/u3b	U3b_2	U3b_3	U3b_4	U2	CA
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Undrained	Undrained	Infinite strength
Unit Weight (kN/m3)	20	19	18.5	18.5	18.5	18.5	19	25
Cohesion (kPa)	0	0	0					
Friction Angle [deg]	38	34	32					
Cohesion Type				40	65	80	120	
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

Property	U4-2	U4-3
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	19	19
Cohesion (kPa)	0	0
Friction Angle [deg]	34	38
Water Surface	None	None
Ru Value	0	0

Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 2.4 m Pile Shear Strength: 127 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: hishon simplified

SLEGISTRAGT 7.0

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 11

FS 1.312600 Center: 10.259, 14.829 21.324 Radius: Left Slip Surface Endpoint: -9,469, 6.735 Right Slip Surface Endpoint: 25.582, -0.000 38107.1 kN-m 29031.8 kN-m Resisting Moment: Driving Moment Passive Support Moment: 1977.51 kN-m Total Slice Area: 242.62 m2 Surface Horizontal Width: 35.0503 m Surface Average Height: 6.92204 m

Method: janbu simplified

FS	1.198570
Center:	11.087, 12.148
Radius:	17.464
Left Slip Surface Endpoint:	-5.555, 6.852
Right Slip Surface Endpoint:	23.634, -0.000
Resisting Horizontal Force:	1382.07 kN
Driving Horizontal Force:	1153.09 kN
Passive Horizontal Support Force:	96.2121 kN
Total Slice Area:	171.987 m2
Surface Horizontal Width:	29.1886 m
Surface Average Height:	5.89227 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 689 Number of Invalid Surfaces: 4311

Error Codes:

Error Code -99 reported for 4107 surfaces Error Code -114 reported for 204 surfaces

Method: janbu simplified

Number of Valid Surfaces: 689 Number of Invalid Surfaces: 4311

Error Codes:

Error Code -99 reported for 4107 surfaces Error Code -114 reported for 204 surfaces

Error Code:

The following errors were encountered during the computation:

-99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.
-114 = Surface with Reverse Curvature.

Slice Data

G	Global Minimum Query (bishop simplified) - Safety Factor: 1.3126

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 171 di

rocscience

SLIDE - An Interactive Slope Stability Program: Page 5 of 11

309

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle (degrees)	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.734111	11.8937	-65.328	Rilevato	0		3.78855	4.97285	7.95618	0	7.95618	16.2037	16.2037
2	0.734111	33.645	-60.934	Rilevato	0	32.0066	11.7554	15.4301	24.687	0	24.687	45.8367	45.8367
3	0.734111	51.991	-57.088	Rilevato	0	32.0066	19.8533	26.0595	41.6933	0	41.6933	72.3678	72.3678
4	0.734111	67.9532	-53.6099	Rilevato	0	32.0066	32.1954	42.2597	67.6125	0	67.6125	111.297	111.297
5	0.734111	82.1033	-50.3998	Rilevato	0	32.0066	39,4618	51.7976	82.8724	0	82.8724	130.573	130.573
6	0.734111	94.8007	-47.3952	Rilevato	0	32.0066	69.7494	91.5531	146.479	0	146.479	222.318	222.318
7	0.664377	95.4153	-44.6826	u3a/u3b	0	26.5603	66.9963	87.9394	175.915	0	175.915	242.174	242.174
8	0.664377	103.423	-42.2218	u3a/u3b	0	26.5603	71.954	94.4468	188.933	0	188.933	254.227	254.227
	0.664377		-39.8536	u3a/u3b	0	26.5603	71.2782	93.5597	187.159	0	187.159	246.659	246.659
10	0.664377	117.615	-37.5647	u3a/u3b	0	26.5603	57.6639	75.6897	151.411	0	151.411	195.762	195.762
	0.664377	123.76	-35.3443	u3a/u3b	0	26.5603	61.4739	80.6906	161.415	0	161.415	205.012	205.012
	0.664377		-33.1834	u3a/u3b	0	26.5603	70.4845	92.5179	185.074	0	185.074	231.169	231.169
	0.664377		-31.0746	u3a/u3b	0	26.5603	92.975	122.039	244.13	0	244.13	300.16	300.16
	0.664377		-29.0117	u3a/u3b	0	26.5603	96.4909	126.654	253.36	0	253.36	306.872	306.872
	0.714844		-26.9139	U3b_2	28.5714	0	21.767	28.5714	302.162	0	302.162	313.212	313.212
	0.714844	157.73	-24.779	U3b_2	28.5714	0	21.767	28.5714	265.946	0	265.946	275.994	275.994
	0.714844		-22.6802	U3b_2	28.5714	0	21.767	28.5714	243.352	0	243.352	252,448	252.448
	0.714844		-20.6131	U3b_2	28.5714	0	21.767	28.5714	251.468	0	251.468	259.655	259.655
	0.714844		-18.5738	U3b_2	28.5714	0	21.767	28.5714	241.399	0	241.399	248.714	248.714
	0.714844		-16.5586	U3b_2	28.5714	0	21.767	28.5714	242.502	0	242.502	248.973	248.973
	0.714844		-14.5643	U3b_2	28.5714	0	21.767	28.5714	249.519	0	249.519	255.174	255.174
22	0.714844	206.811	-12.5879	U3b_2	28.5714	0	21.767	28.5714	284,449	0	284,449	289.31	289.31
	0.714844		-10.6266	U3b_2	28.5714	0	21.767	28.5714	202.049	0	202.049	206.133	206.133
	0.714844		-8.67785	U3b_2	28.5714	0	21.767	28.5714	165.134	0	165.134	168.456	168.456
	0.714844		-6.73918	U3b_2	28.5714	0	21.767	28.5714	167.531	0	167.531	170.103	170.103
	0.714844	117.12		U3b_2	28.5714	0	21.767	28.5714	162.009	0	162.009	163.84	163.84
27	0.714844	115.783	-2.88278	U3b_2	28.5714	0	21.767	28.5714	160.873	0	160.873	161.969	161.969
28	0.714844	115.03	0.960565	U3b_2	28.5714	0	21.767	28.5714	160.551	0	160.551	160.916	160.916
29	0.714844	108.933	0.960565	U3b_2	28.5714	0	21.767	28.5714	152.752	0	152.752	152.387	152.387
30	0.714844	101.799	2.88278	U3b_2	28.5714	0	21.767	28.5714	143.504	0	143.504	142.408	142.408
	0.714844		4.80825	U3b_2	28.5714	0	21.767	28.5714	133.813	0	133.813	131.982	131.982
32	0.714844	86.6133	6.73918	U3b_2	28.5714	0	21.767	28.5714	123.735	0	123.735	121.163	121.163
33	0.714844	82.6176	8.67785	U3b_2	28.5714	0	21.767	28.5714	118.896	0	118.896	115.573	115.573
	0.714844		10.6266	U3b_2	28.5714	0	21.767	28.5714	117.407	0	117.407	113.323	113.323
	0.714844	79.067	12.5879	U3b_2	28.5714	0	21.767	28.5714	115.467	0	115.467	110.606	110.606
	0.714844		14.5643	U3b_2	28.5714	0	21.767	28.5714	113.067	0	113.067	107.411	107.411
	0.714844	. 4.2422	16.5586	U3b_2	28.5714	0	21.767	28.5714	110.199	0	110.199	103.727	103.727
	0.714844		18.5738	U3b_2	28.5714	0	21.767	28.5714	106.853	0	106.853	99.5389	99.5389
	0.714844		20.6131	U3b_2	28.5714	0	21.767	28.5714	103.017	0	103.017	94.8295	94.8295
-	0.714844		22.6802	U3b_2	28.5714	0	21.767	28.5714	98.6754	0	98.6754	89.5789	89.5789
	0.714844		24.779	U3b_2	28.5714	0	21.767	28.5714	93.811	0	93.811	83.7629	83.7629
	0.714844	55.298	26.9139	U3b_2	28.5714	0	21.767	28.5714	88.4033	0	88.4033	77.3537	77.3537
	0.664377		29.0117	u3a/u3b	0	26.5603	34.0806	44.7342	89.487	0	89.487	70.5868	70.5868
-	0.664377		31.0746	u3a/u3b	0	26.5603	31.375	41.1828	82.3828	0	82.3828	63.4752	63.4752
	0.664377		33.1834	u3a/u3b	0		28.2753	37.1142	74.244	0	74.244	55.7528	55.7528
-	0.664377		35.3443	u3a/u3b	0	26.5603	24.7193	32.4466	64.9067	0	64.9067	47.3758	47.3758
	0.664377		37.5647	u3a/u3b	0		20.6241	27.0712	54.1536	0	54.1536	38.2912	38.2912
		18.8941	39.8536	u3a/u3b	0		15.8768	20.8399	41.6886	0	41.6886	28.4354	28.4354
		11.7809	42.2218	u3a/u3b	0	26.5603	10.3181	13.5435	27.0927	0	27.0927	17.7297	17.7297
50	0.664377	4.03794	44.6826	u3a/u3b	0	26.5603	3.71269	4.87328	9.74859	0	9.74859	6.0768	6.0768

Global Minimum Query (janbu simplified) - Safety Factor: 1.19857

SLIDE - An Interactive Slope Stability Program: Page 6 of 11

rocs	science)											-3
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
	0.584981		-69.5955	Rilevato	0		24.8217	29.7506	47.5988	0	47.5988	114.327	114.327
	0.584981		-64.604	Rilevato	0	32.0066	35.4651	42.5074	68.0087	0	68.0087	142.712	142.712
	0.584981		-60.4215	Rilevato	0	32.0066	45.0288	53.9702	86.3484	0	86.3484	165.683	165.683
	0.584981		-56.7277	Rilevato	0		53.3793	63.9788	102.362	0	102.362	183.709	183.709
	0.584981		-53.3698	Rilevato	0		37.5827	45.0455	72.0695	0	72.0695	122.619	122.619
6	0.584981	69.7286	-50.2601	Rilevato	0	32.0066	44.1692	52.9399	84.7	0	84.7	137.827	137.827
7	0.584981		-47.3426	Rilevato	0		50.2863	60.2716	96.4301	0	96.4301	151.006	151.006
8	0.589533	84.7444	-44.5687	u3a/u3b	0	26.5603	62.3412	74.7203	149,472	0	149.472	210.882	210.882
	0.589533		-41.9115	u3a/u3b	0	26.5603	76,4988	91.6892	183,417	0	183.417	252.083	252.083
10	0.589533	95.9024	-39.3609	u3a/u3b	0	26.5603	81.1399	97.2518	194.544	0	194.544	261.1	261.1
11	0.589533	100.745	-36.9006	u3a/u3b	0	26.5603	85.5394	102.525	205.093	0	205.093	269.319	269.319
12	0.589533	105.161	-34.5174	u3a/u3b	0	26.5603	81.2175	97.3449	194.73	0	194.73	250.586	250.586
13	0.589533	111.477	-32.2007	u3a/u3b	0	26.5603	68.6199	82.2458	164.526	0	164.526	207.739	207.739
14	0.589533	118.795	-29.9417	u3a/u3b	0	26.5603	74.0352	88.7364	177.51	0	177.51	220.154	220.154
15	0.589533	122.129	-27.7329	u3a/u3b	0	26.5603	77.1104	92.4222	184.883	0	184.883	225.423	225.423
16	0.589533	125.148	-25.5682	u3a/u3b	0	26.5603	73.789	88.4413	176.92	0	176.92	212.224	212.224
17	0.589533	127.872	-23.4419	u3a/u3b	0	26.5603	76.5904	91.7989	183.637	0	183.637	216.847	216.847
18	0.578394	127.944	-21.3689	U3b_2	28.5714	0	23.8379	28.5714	211.862	0	211.862	221.189	221.189
19	0.578394	140.976	-19.3444	U3b 2	28.5714	0	23.8379	28.5714	235.353	0	235.353	243.722	243.722
20	0.578394	147.618	-17.3447	U3b 2	28.5714	0	23.8379	28.5714	247.762	0	247.762	255.207	255.207
21	0.578394	90.6388	-15.3666	U3b 2	28.5714	0	23.8379	28.5714	150.145	0	150.145	156.696	156.696
22	0.578394	82.3536	-13.4072	U3b 2	28.5714	0	23.8379	28.5714	136.691	0	136.691	142.373	142.373
23	0.578394	83.6518	-11.4636	U3b 2	28.5714	0	23.8379	28.5714	139.785	0	139.785	144.619	144.619
24	0.578394	82.8773	-9.53328	U3b 2	28.5714	0	23.8379	28.5714	139.278	0	139.278	143.282	143.282
25	0.578394	79.7713	-7.61386	U3b 2	28.5714	0	23.8379	28.5714	134.727	0	134.727	137.913	137.913
26	0.578394	80.427	-5.70301	U3b 2	28.5714	0	23.8379	28.5714	136.667	0	136.667	139.048	139.048
27	0.578394	80.0964	-3.79851	U3b 2	28.5714	0	23.8379	28.5714	136.895	0	136.895	138.478	138.478
28	0.578394	76.3021	-1.89821	U3b 2	28.5714	0	23.8379	28.5714	131.129	0	131.129	131.919	131.919
29	0.578394	71.9418	0	U3b 2	28.5714	0	23.8379	28.5714	124.382	0	124.382	124.382	124.382
30	0.578394	67.3765	1.89821	U3b 2	28.5714	0	23.8379	28.5714	117.28	0	117.28	116.49	116.49
31	0.578394	62.6057	3.79851	U3b 2	28.5714	0	23.8379	28.5714	109.826	0	109.826	108.243	108.243
32	0.578394	57.6609	5.70301	U3b 2	28,5714	0	23.8379	28.5714	102.076	0	102.076	99.6954	99.6954
33	0.578394	55.2126	7.61386	U3b 2	28.5714	0	23.8379	28.5714	98.6504	0	98.6504	95.4639	95.4639
	0.578394		9 53328	U3b 2	28.5714	0	23.8379	28.5714	97.855	0	97.855	93.8517	93.8517
	0.578394		11.4636	U3b 2	28.5714	0	23.8379	28.5714	96.7037		96.7037	91.8696	91.8696
		51.7669	13.4072	U3b 2	28.5714	0	23.8379	28.5714	95.193	0	95.193	89.5109	89.5109
	0.578394		15.3666	U3b 2	28.5714	0	23.8379	28.5714	93.3179	0	93.3179	86.7668	86.7668
	0.578394	48.362	17.3447	U3b 2	28.5714	0	23.8379	28.5714	91.072	0	91.072	83.627	83.627
	0.578394		19.3444	U3b 2	28.5714	0	23.8379	28.5714	88.4481	0	88.4481	80.0794	80.0794
	0.578394	44.012	21.3689	U3b 2	28.5714	0	23.8379	28.5714	85,4364	0	85.4364	76.1094	76.1094
	0.589533		23.4419	u3a/u3b	0	26.5603	36.4875	43.7328	87,484	0	87,484	71.6627	71.6627
	0.589533			u3a/u3b	0		34.7491	41.6492	83.3158	0	83.3158	66.6906	66.6906
1	0.589533		27.7329	u3a/u3b	0	26.5603	32,7025	39.1962	78.4087	0	78.4087	61.2155	61.2155
	0.589533		29.9417		0		30.3066	36.3246	72.6644		72.6644	55.208	55.208
	0.589533	28.653	32,2007	u3a/u3b	0	20.3003	27.5089	35.3246	65,9564	0	65.9564	48.6327	48.6327
	0.589533		34.5174		0	26.5603	24.2393	29.0525	58.1172	0	58.1172	48.6327	41.4471
	0.589533		34.5174	u3a/u3b	0		24.2393	29.0525	58.1172 48.9194	0	58.1172 48.9194	41.4471 33.6	
				u3a/u3b						-			33.6
	0.589533		39.3609	u3a/u3b	0		15.8672	19.018	38.0438	0	38.0438	25.0284	25.0284
	0.589533		41.9115	u3a/u3b	0	26.5603	10.436	12.5083	25.0218	0	25.0218	15.6543	15.6543
50	0.589533	3.16679	44.5687	u3a/u3b	0	26.5603	3.80731	4.56333	9.12856	0	9.12856	5.37815	5.37815

Interslice Data

Global Minimum Query (bishop simplified) -	Safety Factor: 1.3126	

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 173 di

SLEENTERPRET 7.0

SLIDE - An Interactive Slope Stability Program: Page 7 of 11

309

Г	Lrocs	science				9
	11000					
	Slice	X	γ	Interslice Normal Force	Interslice	Interslice
	Number	coordinate [m]	coordinate - Bottom [m]	[kN]	[kN]	[degrees]
	1	-9.46864	6.73482	0	0	0
	2	-8.73453	5.13669	9.93453	0	ő
	-	-8.00042	3.81591	33.9132	0	0
	4	-7.26631	2.68167	66,6666	0	ŏ
	5	-6.53219	1.68559	110.798	0	0
	6	-5.79808	0.798206	155.788	0	0
	7	-5.06397	-1.77636e-015	223.569	0	0
	8	-4.3996	-0.657058	296.621	0	0
	9	-3.73522	-1.25994	364.697	0	0
	10	-3.07084	-1.81453	422.743	0	0
	11	-2.40647	-2.32552	462 185	0	0
	12	-1.74209	-2.7967	497.212	0	0
	13	-1.07771	-3.23118	530.072	0	0
	14	-0.413334	-3.63155	564.098	0	0
	15	0.251044	-4	591.395	0	0
	16	0.965888	-4.36288	683.374	0	0
	17	1.68073	-4.69287	754.39	0	0
	18	2.39558	-4.9916	811.13	0	0
	19	3.11042	-5.26048	826.138	0	0
	20	3.82527	-5.50069	868.493	0	0
	21	4.54011	-5.71323	904,479	0	0
	22	5.25495	-5.89896	935.265	0	0
	23	5.9698	-6.05858	965.115	0	0
	24	6.68464	-6.19271	976.659	0	0
	25	7.39949	-6.30181	942,47	0	0
	26	8.11433	-6.38628	941.066	0	0
	27	8.82918	-6.44641	935.251	0	0
	28	9.54402	-6.48241	925.487	0	0
	29	10.2589	-6.4944	911.855	0	0
	30	10.9737	-6.48241	894.468	0	0
	31	11.6886	-6.44641	873.747	0	0
	32	12,4034	-6.38628	850.144	0	0
	33	13.1182	-6.30181	824.137	0	0
	34	13.8331	-6.19271	795.609	0	0
	35	14.5479	-6.05858	764.306	0	0
	36	15.2628	-5.89896	730.318	0	0
	37	15.9776	-5.71323	693.763	0	0
	38	16.6925	-5.50069	654.785	0	0
	39	17,4073	-5.26048	613.562	0	ő
	40	18.1222	-4.9916	570.307	0	0
	41	18.837	-4.69287	525.273	0	0
	42	19,5518	-4.36288	478.761	0	0
	43	20.2667	-4	431.126	0	0
	44	20.9311	-3.63155	375.518	0	0
	45	21.5954	-3.23118	321.695	0	0
	46	22.2598	-2.7967	270.657	0	0
	47	22.9242	-2.32552	223.655	0	0
	48	23.5886	-1.81453	182 285	0	0
	49	24.253	-1.25994	148.62	0	0
	50	24.9173	-0.657058	125.433	0	0
	51	25.5817	-5.28556e-016	0	0	0
						-

G	Global Minimum Query (janbu simplified) - Safety Factor: 1.19857				
l					
l					

SLIDE - An Interactive Slope Stability Program: Page 8 of 11

L LOCS	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interstice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	-5.55487	6.85223	0	0	0
2	-4.96989	5.27964	62.0375	0	0
3	-4.38491	4.04745	126.784	0	0
4	-3.79993	3.01679	191 123	0	0
,	-3.21495	2.12531	252,799	0	0
6	-2.62997	1.3385	287.81	0	0
7	-2.04499	0.634883	321.621	0	0
8	-1.46001	1.77636e-015	353.047	0	0
9	-0.870478	-0.580723	401.845	0	0
10	-0.280945	-1.10989	451 984	0	0
11	0.308588	-1.59347	496.401	0	0
12	0.898121	-2.03611	534.926	0	0
13	1.48765	-2.44155	564.636	0	0
14	2.07719	-2.81281	584.863	0	0
15	2.66672	-3.15238	601.087	0	0
16	3.25625	-3.46232	572.393	0	0
17	3.84578	-3.74437	578.718	0	ő
18	4.43532	-4	580.43	0	0
19	5.01371	-4.22631	614.364	0	ő
20	5.59211	-4.42936	648 542	0	0
21	6.1705	-4.61001	679.488	0	ő
22	6.74889	-4.76896	689.542	0	0
23	7.32729	-4.90683	634.44	0	ő
24	7.90568	-5.02412	657.025	0	0
25	8.48408	-5.12126	656.742	0	ő
26	9.06247	-5.19857	653.347	0	0
27	9.64087	-5.25634	647.43	0	ő
28	10.2193	-5.29474	638.876	0	0
29	10.7977	-5.31391	627.578	0	ő
30	11.3761	-5.31391	613.766		0
31	11.9544	-5.29474	597.707	0	0
32	12.5328	-5.25634	579.678	0	0
33	13.1112	-5.19857	559.97	0	ő
34	13.6896	-5.12126	538.531	0	0
35	14.268	-5.02412	313.213	0	ő
36	14.8464	-4.90683	490.06	0	0
37	15,4248	-4.76896	463.125	0	0
38	16.0032	-4.61001	434.48	0	0
39	16.5816	-4.42936	404.217	0	ő
40	17.16	-4.22631	372.446	0	0
41	17.7384	-4	339.299	0	0
42	18.3279	-3.74437	295.388	0	0
43	18.9175	-3.46232	251.368	0	0
44	19.507	-3.15238	207.753	0	0
45	20.0965	-2.81281	165.181	0	0
46	20.6861	-2.44155	124,449	0	0
46	21.2756	-2.44155 -2.03611	86.5716	0	0
48	21.2/36	-1.59347	52.8686	0	0
49	22,4547	-1.10989	25.1012	0	0
50	23.0442	-0.580723	5.69746	0	0
51	23.6337	-5.70722e-016	3.63/46	0	0
31	43.033/	-5./0/226-016			U

List Of Coordinates

Distributed Load

X Y -2.25 6.95138 -7.32661 6.79908

Distributed Load

SLIDE - An Interactive Slope Stability Program: Page 9 of 11

Distributed Load

X	Y
1.29387	6.84506
-1.22883	6.92074

Distributed Load

X	Y
-3.22626	6.92209
-5.74861	6.84642

External Boundary

	,
X	Y
-11.0893	0
-50	0
-50	-4
-50	-8
-50	-10
-50	-18
-50	-22
-50	-33
-50	-35
-50	-40
50	-40
50	-35
50	-33
50	-22
50	-18
50	-10
50	-8
50	-4
50	0
13.0415	-Be-016
9.87509	2.11198
6.37459	2.14699
5.99999	5.89298
5.99999	6.89298
4.99999	6.89298
4.99999	6.73388
3.24403	6.78655
-2.25	6.95138
-9.50003	6.73387
-9.50003	6.89298
-10.5	6.89298
-10.5	5.89298

Material Boundary

Material Boundary

X	Y
-50	-4
50	-4

Material Boundary

GENERAL CONTRACTOR Consorzio IricAV Due	5	SORVEGLIA ITALI FERROVIE DELLO ST	FERR	
Dil (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	176 di 309

SLIDE - An Interactive Slope Stability Program: Page 10 of 11

X Y -50 -8 50 -8

Material Boundary

X Y -50 -10 50 -10

Material Boundary

X Y -50 -18 50 -18

Material Boundary

X Y -50 -22 50 -22

Material Boundary

X Y -50 -33 50 -33

Material Boundary

X Y -50 -35 50 -35

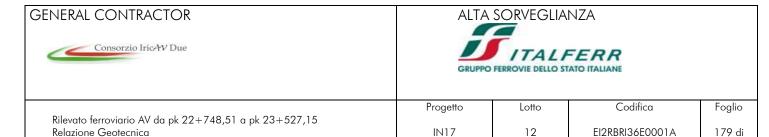
Material Boundary

X Y 6.58929 -8e-016 13.0415 -8e-016

Material Boundary

X Y
-11.0893 0
-11.0893 -0.481777
-12.8 -0.481777
-12.8 -2.03178
-6.35003 -2.03178
-6.35003 -0.481777
-9.90003 -0.481777
-9.90003 0.990003
-9.90003 5.89298
-9.50003 5.89298
-9.50003 6.73387

Material Boundary


GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	177 di 309

SLIDE - An Interactive Slope Stability Program: Page 11 of 1

X	Y
4.99999	6.73388
4.99999	5.89298
5.39999	5.89298
5.39999	0
5.39999	-0.440029
1.84998	-0.440029
1.84998	-1.99003
2.84998	-1.99003
7.29998	-1.99003
8.29998	-1.99003
8.29998	-0.440029
6.63329	-0.440029
6.58929	0
6.37459	2.14699

GENERAL CONTRACTOR Consorzio Iric/IV Due	5	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	178 di 309

ALLEGATO 4 - TABULATI DI SLIDE – ANALISI SLU POST SISMA

DLLUC - AN Interactive Diope Diability Programs Page 1 or 11

309

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 1-muro-sis.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 04/10/2021, 10:34:10

General Settings

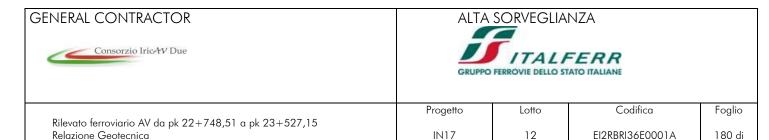
Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Right to Left
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: A2+M2+R2 (SIS)

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options


Slices Type: Vertical

Analysis Methods Used

Bishop simplified Janbu simplified

Number of sices: 50
Tolerance: 0.005
Maximum number of iterations: 75
Check malpha < 0.2: Yes
Create intersice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1
Steffensen iteration: Yes

36 E STAT-tratto 1-muro-sis.slim 04/10/2021, 10:34:10

SLEGNTRPRET 7.0

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 11

309

Groundwater Analysis

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight (kN/m3): 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure (kPa): 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 3000
Upper Angle: Not Defined
Lower Angle: Not Defined
Composite Surfaces: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area [m2]: 50
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.081 Seismic Load Coefficient (Vertical): -0.04

3 Distributed Loads present

Distributed Load 1
Distribution: Constant
Magnitude [kPa]: 14.4
Orientation: Vertical
Load Action: Live

Distributed Load 2

Distribution: Constant
Magnitude [kPa]: 12.2
Orientation: Vertical
Load Action: Live

Distributed Load 3

Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Live

Material Properties

36 E STAT-tratto 1-muro-sis.slim 04/10/2021, 10:34:10

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica Foglio

IN17

rocscience

Relazione Geotecnica

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

SLIDE - An Interactive Slope Stability Program: Page 3 of 11

EI2RBRI36E0001A

181 di 309

12

Property	Rilevato	U4	U3b_1	U3b_2	U2	CA	U4-2	U4-3
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Undrained	Infinite strength	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	18.5	18.5	19	25	19	19
Cohesion (kPa)	0	0					0	0
Friction Angle [deg]	38	36					36	38
Cohesion Type			50	85	120			
Water Surface	Water Table	Water Table	Water Table	WaterTable	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	0	0	0	0	1	1

Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 4.5 m Pile Shear Strength: 126 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: bishop simplified

FS	1.790490
Center:	-11.743, 14.457
Radius:	18.779
Left Slip Surface Endpoint:	-23.794, 0.055
Right Slip Surface Endpoint:	5.528, 7.084
Resisting Moment:	37336.5 kN-m
Driving Moment	20852.7 kN-m
Passive Support Moment:	907.24 kN-m
Total Slice Area:	162.004 m2
Surface Horizontal Width:	29.3217 m
Surface Average Height:	5.52504 m

Method: janbu simplified

FS	1.488750
Center:	-11.658, 11.095
Radius:	15.881
Left Slip Surface Endpoint:	-23.074, 0.055
Right Slip Surface Endpoint:	3.722, 7.138
Resisting Horizontal Force:	1629.32 kN
Driving Horizontal Force:	1094,42 kN
Passive Horizontal Support Force:	50.9091 kN
Total Slice Area:	157.502 m2
Surface Horizontal Width:	26.796 m
Surface Average Height:	5.87782 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 305 Number of Invalid Surfaces: 4695

Error Codes:

Error Code -99 reported for 4296 surfaces Error Code -113 reported for 86 surfaces Error Code -114 reported for 313 surfaces

Method: janbu simplified

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 11

Number of Valid Surfaces: 305 Number of Invalid Surfaces: 4695

Error Codes:

Error Code -99 reported for 4296 surfaces Error Code -113 reported for 86 surfaces Error Code -114 reported for 313 surfaces

Error Codes

The following errors were encountered during the computation:

- -99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.
- -113 = Surface intersects outside slope limits.
- -114 = Surface with Reverse Curvature.

Slice Data

Global Minimum Query (bishop simplified) - Safety	Factor: 1.79049	

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 183 di

SUDDINTERPRET 7.0

SLIDE - An Interactive Slope Stability Program: Page 5 of 11

309

Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.581343	2.57985	-38.7832	U4	0	30.1666	1.86961	3.34752	5.75934	0	5.75934	4.25703	4.25703
2	0.581343	7.53902	-36.5415	U4	0	30.1666	5.31806	9.52194	16.3823	0	16.3823	12.4412	12.4412
3	0.581343	12.1137	-34.3631	U4	0	30.1666	8.34129	14.935	25.6953	0	25.6953	19.9917	19.9917
4	0.581343	16.334	-32.2401	U4	0	30.1666	11.0044	19.7032	33.8988	0	33.8988	26.9583	26.9583
5	0.581343	20.225	-30.1657	U4	0	30.1666	13.3566	23.9149	41.145	0	41.145	33.382	33.382
6	0.555976	22.7002	-28.1776	U4-2	0	30.1666	15.3956	27.5656	47.4259	0	47.4259	39.1786	39.1786
7	0.555976	25.7226	-26.2695	U4-2	0	30.1666	17.1621	30.7285	52.8678	0	52.8678	44.3971	44.3971
8	0.555976	28.5036	-24.3922	U4-2	0	30.1666	18.7279	33.5321	57.6911	0	57.6911	49.1988	49.1988
_	0.555976		-22.5425	U4-2	0	30.1666	20.1106	36.0079	61.9508	0	61.9508	53.6032	53.6032
10	0.601764	36.2269	-20.6431	U4-2	0	30.1666	20.9576	37.5243	65.6717	1.11199	64.5597	57.7763	56.6643
11	0.601764	38.6869	-18.6929	U4-2	0	30.1666	21.3261	38.1842	68.9177	3.22264	65.6951	61.7022	58.4796
12	0.601764	41.1574	-16.7649	U4-2	0	30.1666	21.7809	38.9984	72.2063	5.1105	67.0958	65.6449	60.5344
13	0.601764	45.9536	-14.8562	U4-2	0	30.1666	23.6265	42.303	79.564	6.78264	72.7814	73.2968	66.5142
14	0.601764	51.1468	-12.9643	U4-2	0	30.1666	25.7298	46.069	87.5058	8.2451	79.2607	81.5824	73.3373
15	0.601764	56.1016	-11.0867	U4-2	0	30.1666	27.7288	49.6481	94.9214	9.503	85.4184	89.4879	79.9849
16	0.601764	60.8229	-9.22115	U4-2	0	30.1666	29.6285	53.0496	101.831	10.5606	91.2706	97.0211	86.4605
17	0.601764	64.7749	-7.36538	U4-2	0	30.1666	31.1416	55.7587	107.353	11.4213	95.9316	103.327	91.9061
18	0.601764	65.863	-5.51735	U4-2	0	30.1666	31.1597	55.7912	108.075	12.0879	95.9875	105.066	92.9776
19	0.601764	66.3749	-3.67507	U4-2	0	30.1666	30.9395	55.3968	107.872	12.5626	95.3089	105.884	93.3217
20	0.601764	66.6648	-1.83659	U4-2	0	30.1666	30.6722	54.9182	107.332	12.8469	94.4855	106.349	93.502
21	0.601764	66.7337	0	U4-2	0	30.1666	30.3586	54.3567	105.461	12.9415	93.5195	106.461	93.5195
22	0.601764	66.582	1.83659	U4-2	0	30.1666	29.9991	53.7131	105.259	12.8469	92.4122	106.221	93.3741
23	0.601764	66.2094	3.67507	U4-2	0	30.1666	29.5942	52.9882	103.728	12.5626	91.165	105.628	93.0659
24	0.601764	66.598	5.51735	U4-2	0	30.1666	29.638	53.0665	103.388	12.0879	91.2998	106.251	94.1627
25	0.601764	70.0317	7.36538	U4-2	0	30.1666	31.2514	55.9554	107.691	11.4213	96.2699	111.731	100.31
26	0.601764	68.9872	9.22115	U4-2	0	30.1666	30.6848	54.9408	105.085	10.5606	94.5244	110.067	99.5059
27	0.601764	75.867	11.0867	U4-2	0	30.1666	34.0438	60.955	114.375	9.503	104.872	121.046	111.543
28	0.601764	142.659	12.9643	U4-2	0	30.1666	66.2612	118.64	212.363	8.2451	204.118	227.617	219.372
29	0.601764	146.592	14.8562	U4-2	0	30.1666	67.8814	121.541	215.892	6.78264	209.109	233.898	227.116
30	0.601764	131.008	16.7649	U4-2	0	30.1666	60.3019	107.97	190.871	5.1105	185.761	209.037	203.926
31	0.601764	128,446	18.6929	U4-2	0	30.1666	59.0056	105.649	184.989	3.22264	181.767	204.953	201.731
	0.601764		20.6431	U4-2	0	30.1666	59,448	106.441	184.242	1.11199	183.13	206.638	205.526
33	0.555976	114.377	22.5425	U4-2	0	30.1666	60.6348	108.566	186.785	0	186.785	211.954	211.954
	0.555976		24.3922	U4-2	0	30.1666	58.8219	105.32	181.201	0	181.201	207.874	207.874
	0.555976		26.2695	U4-2	0	30.1666	56.9084	101.894	175.307	0	175.307	203.395	203.395
	0.555976	103.09	28.1776	U4-2	0	30.1666	55.6443	99.6305	171.412	0	171.412	201.221	201.221
	0.581343		30.1657	U4	0	30.1666	53.7689	96.2727	165.634	0	165.634	196.886	196.886
	0.581343		32.2401	U4	0		51.1738	91.6262	157.641	0	157.641	189.917	189.917
	0.581343		34.3631	U4	0	30.1666	45.6811	81.7915	140.72	0	140.72	171.956	171.956
	0.581343		36.5415	U4	0	30.1666	43.1072	77.1831	132.792	0	132.792	164.738	164.738
41	0.581343	86.181	38.7832	U4	0	30.1666	40.3679	72.2784	124.353	0	124.353	156.791	156.791
	0.579985		41.0951	Rilevato	0	32.0066	39.4497	70.6343	113.01	0	113.01	147.418	147.418
	0.579985		43.4889	Rilevato	0	32.0066	35.913	64.3018	102.878	0	102.878	136.945	136.945
	0.579985	67.1142	45.9819	Rilevato	0	32.0066	35.1427	62.9227	100.672	0	100.672	137.04	137.04
45	0.579985	59.6166	48.5932	Rilevato	0	32.0066	31.352	56.1354	89.8125	0	89.8125	125.366	125.366
-	0.579985		51.3478	Rilevato	0	32.0066	26.206	46.9216	75.0712	0	75.0712	107.838	107.838
47	0.579985	42.3086	54.2802	Rilevato	0	32.0066	19.8565	35.5529	56.8819	0	56.8819	84.4951	84.4951
48	0.579985	32.1609	57.4402	Rilevato	0	32.0066	15.2775	27.3543	43.7648	0	43.7648	67.6906	67.6906
49	0.579985	20.6464	60.9044	Rilevato	0	32.0066	10.43	18.6748	29.8782	0	29.8782	48.6206	48.6206
50	0.579985	7.25038	64.803	Rilevato	0	32.0066	4.99116	8.93663	14.2979	0	14.2979	24.9061	24.9061

GI	lobal Minimum Query (janbu simplified) - Safety Factor: 1.48875

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 184 di

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 11

309

rocs	science)											-
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.587903	3.2235	-44.4718	U4	0	30.1666	3.3322	4.96082	8.53497	0	8.53497	5.26364	5.26364
2	0.587903	9.35891	-41.5678	U4	0	30.1666	9.12631	13.5868	23.3758	0	23.3758	15.2822	15.2822
3	0.587903	14.9098	-38.7895	U4	0	30.1666	13.8517	20.6217	35.4792	0	35.4792	24.3463	24.3463
4	0.587903	19.9446	-36.1158	U4	0	30.1666	17.7798	26.4697	45.5405	0	45.5405	32.5677	32.5677
5	0.582638	24.2782	-33.5418	U4-2	0	30.1666	21.0713	31.3699	53.9713	0	53.9713	40.0024	40.0024
6	0.582638	28.3579	-31.0538	U4-2	0	30.1666	23.8485	35.5045	61.0847	0	61.0847	46.7245	46.7245
7	0.582638	32.0602	-28.6293	U4-2	0	30.1666	26.2095	39.0194	67.132	0	67.132	52.8247	52.8247
8	0.522593	31.622	-26.3795	U4-2	0	30.1666	27.5093	40.9545	71.7325	1.2713	70.4612	58.0891	56.8178
9	0.522593	34.0798	-24.2928	U4-2	0	30.1666	27.9169	41.5613	75.2048	3.69959	71.5052	62.604	58.9044
10	0.522593	36.3117	-22.2399	U4-2	0	30.1666	28.2466	42.0521	78.2543	5.90474	72.3496	66.7041	60.7994
11	0.522593	38.5419	-20.2168	U4-2	0	30.1666	28.6827	42.7014	81.3636	7.89687	73.4667	70.8009	62.904
12	0.522593	42.5137	-18.2196	U4-2	0	30.1666	30.6481	45.6274	88.1854	9.68458	78.5008	78.0972	68.4126
13	0.522593	46.7549	-16.2451	U4-2	0	30.1666	32.8695	48.9344	95.4658	11.2752	84.1906	85.8882	74.613
14	0.522593	50.8028	-14.2903	U4-2	0	30.1666	34.9639	52.0525	102.23	12.6751	89.5551	93.3244	80.6493
15	0.522593	54.663	-12.3524	U4-2	0	30.1666	36.9396	54.9938	108.505	13.8893	94.6156	100.415	86.5261
16	0.522593	58.3398	-10.4287	U4-2	0	30.1666	38.8032	57.7683	114.312	14.9225	99.389	107.17	92.2472
17	0.522593	60.9216	-8.51685	U4-2	0	30.1666	39.8631	59.3462	117.882	15.7781	102.104	111.912	96.1343
18	0.522593	61.6185	-6.61452	U4-2	0	30.1666	39.5573	58.891	117.78	16.4592	101.321	113.193	96.7336
19	0.522593	62.1024	-4.7195	U4-2	0	30.1666	39.1776	58.3256	117.316	16.9681	100.348	114.082	97.1135
20	0.522593	62.4136	-2.82965	U4-2	0	30.1666	38.7538	57.6947	116.569	17.3064	99.2624	114.653	97.3469
21	0.522593	62.5533	0.942875	U4-2	0	30.1666	38.2863	56.9987	115.54	17.4753	98.0649	114.91	97.4348
22	0.522593	62.5221	0.942875	U4-2	0	30.1666	37.7752	56.2378	114.231	17.4753	96.7557	114.853	97.3774
23	0.522593	62.32	2.82965	U4-2	0	30.1666	37.2206	55.4121	112.642	17.3064	95.3354	114.482	97.1751
24	0.522593	61.9463	4.7195	U4-2	0	30.1666	36.6225	54.5218	110.772	16.9681	93.8035	113.795	96.827
25	0.522593	62.9831	6.61452	U4-2	0	30.1666	37.0671	55.1836	111.401	16.4592	94.9422	115.7	99.2405
26	0.522593	65.226	8.51685	U4-2	0	30.1666	38.3761	57.1324	114.073	15.7781	98.2949	119.82	104.042
27	0.522593		10.4287	U4-2	0		37.6079	55.9888	111.25	14.9225	96.3273	118.172	103.249
	0.522593		12.3524	U4-2	0		37.8728	56.3831	110.895	13.8893	97.0058	119.189	105.3
	0.522593		14.2903	U4-2	0		64.9742	96.7303	179.097	12.6751	166.422	195.647	182.972
30	0.522593	141.686	16.2451	U4-2	0	30.1666	87.2846	129.945	234.843	11.2752	223.568	260.276	249.001
	0.522593		18.2196	U4-2	0	30.1666	73.551	109.499	198.075	9.68458	188.39	222.285	212.6
32	0.522593	116.138	20.2168	U4-2	0	30.1666	70.128	104.403	187.519	7.89687	179.622	213.345	205.448
	0.522593		22.2399	U4-2	0		68.6932	102.267	181.852	5.90474	175.948	209.942	204.037
	0.522593		24.2928	U4-2	0		68.8228	102.46	179.979	3.69959	176.279	211.043	207.344
	0.522593		26.3795	U4-2	0		70.3442	104.725	181.448	1.2713	180.177	216.336	215.064
	0.582638		28.6293	U4-2	0		68.0316	101.282	174.253	0	174.253	211.39	211.39
	0.582638		31.0538	U4-2	0		64.9992	96.7676	166.487	0	166.487	205.625	205.625
	0.582638		33.5418	U4-2	0	30.1666		93.2073	160.361	0	160.361	201.866	201.866
	0.587903		36.1158	U4	0		59.5548	88.6622	152.541	0	152.541	195.994	195.994
	0.587903		38.7895	U4	0	30.1666	55.532	82.6732	142.238	0	142.238	186.87	186.87
	0.587903		41.5678	U4	0		48.4835	72.1798	124.184	0	124.184	167.181	167.181
	0.587903		44.4718	. U4	0		44.4529	66.1793	113.86	0	113.86	157.501	157.501
	0.495542		47.2757	Rilevato	0		42.5218	63.3044	101.282	0	101.282	147.324	147.324
	0.495542		49.9837	Rilevato	0		38.1448	56.788	90.8567	0	90.8567	136.29	136.29
	0.495542		52.8546	Rilevato	0		33.5115	49.8903	79.8209	0	79.8209	124.058	124.058
	0.495542		55.9311	Rilevato	0		30.1225	44.8448	71.7484	0	71.7484	116.291	116.291
1	0.495542		59.277	Rilevato	0		26.4087	39.3159	62.9025	0	62.9025	107.339	107.339
48	0.495542		62.9961	Rilevato	0		20.6516	30.745	49.1897	0	49.1897	89.7139	89.7139
	0.495542		67.2804	Rilevato	0	32.0066	13.353	19.8793	31.8055	0	31.8055	63.6962	63.6962
50	0.495542	7.90158	72.5833	Rilevato	0	32.0066	5.33505	7.94255	12.7075	0	12.7075	29.7143	29.7143

Interslice Data

Global Minimum Query (bish	hop simplified] - Safety Factor: 1.7	9049	

36 E STAT-tratto 1-muro-sis.slim

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 185 di

rocscience

SLIDE - An Interactive Slope Stability Program: Page 7 of 11

309

roc	science					_
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interstice Normal Force [kN]	Interstice Shear Force [kN]	Interslice Force Angle [degrees]	
1		0.0551314	0	0	0	l
2		-0.411999	3,56596	0	0	l
1 -				_	_	l
3	-22.6314	-0.842821	13.0982	0	0	l
4		-1.24033	27.1698	0	0	l
5	-21.4687	-1.60699	44.6597	0	0	l
6	-20.8874	-1.94487	64.6719	0	0	l
7	-20.3314	-2.2427	85,4995	0	0	l
8	-19.7754	-2.51711	107.445	0	0	l
9	-19.2194	-2.76922	130.071	0	0	l
10		-3	153.009	0	0	l
11	-18.0617	-3.2267	177.548	0	0	l
12		-3.43031	201.252	0	0	l
13	-16.8582	-3.61159	224.087	0	0	l
14	20.2304	-3.77121	247.252	0	0	l
15	-15.6546	-3.90975	270.682	0	0	l
16	-15.0529	-4.02766	293.981	0	0	l
17	-14.4511	-4.12536	316.794	0	0	l
18	-13.8494	-4.20314	338.598	0	0	l
19	-13.2476	-4.26127	358.256	0	0	l
20	-12.6458	-4.29992	375.628	0	0	l
21	-12.0441	-4.31922	390.717	0	0	l
22	-11.4423	-4.31922	403.541	0	0	l
23	-10.8405	-4.29992	414.131	0	0	l
24	-10.2388	-4.26127	422.53	0	0	l
25	-9.63701	-4.20314	428.923	0	0	l
26	-9.03524	-4.12536	433.639	0	0	l
27	-8.43348	-4.02766	450.427	0	0	l
28	-7.83171	-3.90975	451.238	0	0	l
29	-7.22995	-3.77121	450.052	0	0	l
30	-6.62818	-3.61159	444.478	0	0	l
31	-6.02642	-3.43031	435.476	0	0	l
32	-5.42466	-3.2267	422.839	0	0	l
33	-4.82289	-3	406.546	0	0	l
34	-4.26692	-2.76922	387.815	0	0	l
35	-3.71094	-2.51711	379.91	0	0	l
36	-3.15496	-2.2427	354.514	0	0	l
37	-2.59899	-1.94487	325.982	0	0	l
38	-2.01764	-1.60699	292.86	0	0	l
39	-1.4363	-1.24033	256.695	0	0	l
40	-0.854958	-0.842821	219.534	0	0	l
41	-0.273615	-0.411999	179.96	0	0	l
42	0.307728	0.0551314	138.308	0	0	l
43	0.887714	0.560997	97.466	0	0	l
44	1.4677	1.11117	55.657	0	0	l
45	2.04768	1.71138	10.1351	0	0	l
46	2.62767	2.36909	-35.6192	0	0	l
47	3.20766	3.09427	-79.0555	0	0	l
48	3.78764	3.90082	-116.869	0	0	l
49	4.36763	4.80912	-150.383	0	0	l
50	4.94761	5.85133	-177.159	0	0	l
51	5.5276	7.08403	0	0	0	l

Global Minimum Query (janbu simplified) - Safety Factor: 1.48875

SLEGNTRANET 7.0

SLIDE - An Interactive Slope Stability Program: Page 8 of 11

I rocs	science				
Slice	X	Υ	Interslice	Interslice	Interslice
Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
	[m]	[m]	[kN]	[kN]	[degrees]
1	-23.0743	0.0551314	0	0	0
2	-22.4864	-0.52203	6.62393	0	0
3	-21.8985	-1.0434	23.4187	0	0
4	-21.3106	-1.51591	47.1185	0	0
5	-20.7227	-1.94487	75.4904	0	0
6	-20.14	-2.33112	106.647	0	0
7	-19.5574	-2.68195	139.675	0	0
8	-18.9747	-3	173.7	0	0
9	-18.4522	-3.25918	204.106	0	0
10	-17.9296	-3.49506	233.674	0	0
11	-17.407	-3.70876	262.216	0	0
12	-16.8844	-3.90121	289.742	0	0
13	-16.3618	-4.07322	317.484	0	0
14	-15.8392	-4.2255	345.411	0	0
15	-15.3166	-4.35861	373.176	0	0
16	-14.794	-4.47306	400.47	0	0
17	-14.2714	-4.56924	427.017	0	0
18	-13.7488	-4.6475	452.14	0	0
19	-13.2262	-4.7081	474.958	0	0
20	-12.7036	-4.75124	495.463	0	0
21	-12.181	-4.77707	513.67	0	0
22	-11.6584	-4.78567	529.605	0	0
23	-11.1358	-4.77707	543.299	0	0
24	-10.6133	-4.75124	554.792	0	0
25	-10.0907	-4.7081	564.134	0	0
26	-9.56807	-4.6475	571.652	0	0
27	-9.04548	-4.56924	577.496	0	0
28	-8.52288	-4.47306	598.336	0	0
29	-8.00029	-4.35861	600.181	0	0
30	-7.A777	-4.2255	601.668	0	0
31	-6.9551	-4.07322	600.045	0	0
32	-6.43251	-3.90121	594.607	0	0
33	-5.90992	-3.70876	585.759	0	0
34	-5.38733	-3.49506	573.54	0	0
35	-4.86473	-3.25918	557.962	0	0
36	-4.34214	-3	538.791	0	0
37	-3.7595	-2.68195	530.42	0	0
38	-3.17686	-2.33112	500.482	0	0
39	-2.59423	-1.94487	466.219	0	0
40	-2.00632	-1.51591	427.395	0	0
41	-1.41842	-1.0434	384.823	_	- 1
42	-0.830516	-0.52203	341.001	0	0
43 44	-0.242613 0.25293	0.0551314 0.591689	294.321 255.491	0	0
44	0.25293		255.491	_	- 1
	1.24401	1.18191		0	0
46 47	1.73956	1.83606	175.478	0	0
47	1.73956 2.2351	2.56883 3.40265	133.813 91.0748	0	0
				_	•
49 50	2.73064 3.22618	4.37505 5.55854	50.8382 18.0525	0	0
			18.0525	0	- 1
51	3.72173	7.13821	0	0	0

List Of Coordinates

Water Table

X Y -57.095 -3 57.095 -3

Distributed Load

GENERAL CONTRACTOR Consorzio Iric/IV Due		SORVEGLIA TALI FERROVIE DELLO ST	EERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	187 di 309

SLEGNTRPRET 7.000

rocscience

SLIDE - An Interactive Slope Stability Program: Page 9 of 11

X Y
-5.04252 7.09858
-2.99733 7.15994
-1.47827 7.20551
0 7.24986
1.50275 7.20477
3.02173 7.15921
5.46625 7.08587

Distributed Load

X Y 1.50275 7.20477 3.02173 7.15921

Distributed Load

X Y
-2.99733 7.15994
-1.47827 7.20551

External Boundary

N.EXINTERPART 7.03

SLIDE - An Interactive Slope Stability Program: Page 10 of 11

r	ocscie	nce	
ı	X	Y	ı
- 1		-33.9449	
- 1	57.095	-31.9449	
- 1	57.095	-18.9449	
- 1	57.095	-14.9449	
- 1	57.095	-9.94487	
- 1	57.095	-8.94487	
- 1	57.095	-1.94487	
- 1	57.095	0.0551314	
- 1		0.0551314	
- 1	23.1431	0.422211	
- 1		0.422211	
- 1	22.6431	1.42221	
- 1	21.6431		
- 1	19.8603	1.39221	
- 1		0.392211	
- 1	17.8603		
- 1	16.8603	1.39221	
- 1	15.5774	1.39221	
- 1	6.97	7.13336	
- 1	6.47	7.13336	
- 1	6.47	7.05576	
- 1	5.46625	7.08587	
- 1	3.02173	7.15921	
- 1	1.50275	7.20477	
- 1	0	7.24986	
- 1	-1.47827	7.20551	
- 1	-2.99733	7.15994	
- 1	-5.04252	7.09858	
- 1	-6.55	7.05336	
- 1			
- 1	-6.55003	7.17286	
- 1	-7.55003		
- 1	-7.55003	6.17286	
- 1	-8.025	1.4231	
- 1	-14.1822	1.45828	
- 1		0.0551314	
- 1	-57.095	0.0551314	
- 1	-57.095	-1.94487	
- 1	-57.095	-8.94487	
	-57.095	-9.94487	
	-57.095	-14.9449	
	-57.095	-18.9449	
- 1	-57.095	-31.9449	
	-57.095	-33.9449	
		-39.9449	
l	57.095	-39.9449	l

Material Boundary

X	Y	
-3.00003	-1.94487	
57.095	-1.94487	

Material Boundary

X	Y
-57.095	-8.94487
57.095	-8.94487

Material Boundary

X	Y
-57.095	-9.94487
57.095	-9.94487

Material Boundary

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 189 di 309

SLIDE - An Interactive Slope Stability Program: Page 11 of 11

X	Y
-57.095	-14.9449
57.095	-14 9449

Material Boundary

X	Y
-57.095	-18.9449
57.095	-18.9449

Material Boundary

X	Y
-57.095	-31.9449
7.00	24 0440

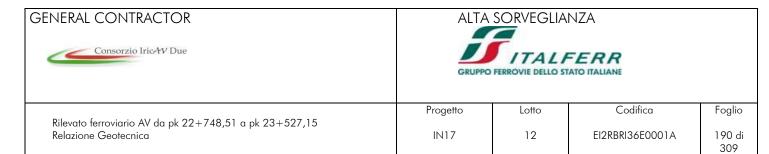
Material Boundary

X	Y
-57.095	-33.9449
57.095	-33 9449

Material Boundary

X	Y	
-57.095	-1.94487	
-9.75003	-1.94487	

Material Boundary


X	Y
-8.025	1.4231
-8.1618	0.0551314
-8.23834	-0.710289
-9.75003	-0.710289
-9.75003	-1.94487
-9.75003	-2.16029
-8.75003	-2.16029
-4.00003	-2.16029
-3.00003	-2.16029
-3.00003	-1.94487
-3.00003	-0.710289
-6.95003	-0.710289
-6.95003	0.0551314
-6.95003	6.17286
-6.55003	6.17286
-6.55	7.05336

Material Boundary

X	Y
-6.95003	0.0551314
23 1431	0.0551314

Material Boundary

X	Y
-17.095	0.0551314
-8.1618	0.0551314

SLEGNTERPRET 7.000

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 10

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E SISM-tratto 2_prova stab interna.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 04/10/2021, 11:09:02

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Right to Left
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: A2+M2+R2 (SIS)

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.23
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified Janbu simplified

 Number of slices:
 50

 Tolerance:
 0.005

 Maximum number of iterations:
 75

 Check: malpha < 0.2:</td>
 Yes

 Create intersice bundaries at intersections with water tables and piezos:
 Yes

 Initial trial value of FS:
 1

 Steffensen Iteration:
 Yes

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI36E0001A
191 di
309

SLEGNTRPRIT 7.0

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 10

Groundwater Analysis

 Groundwater Method:
 Water Surfaces

 Pore Fluid Unit Weight [kN/m3]:
 9.81

 Use negative pore pressure cutoff:
 Yes

 Maximum negative pore pressure [kPa]:
 0

 Advanced Groundwater Method:
 None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular

Search Method: Slope Search
Number of Surfaces: 3000

Upper Angle: Not Defined
Lower Angle: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area (mz): 30

Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.081 Seismic Load Coefficient (Vertical): -0.04

3 Distributed Loads present

Distributed Load 1

Distribution: Constant
Magnitude [kPa]: 14.4
Orientation: Vertical
Load Action: Variable

Distributed Load 2

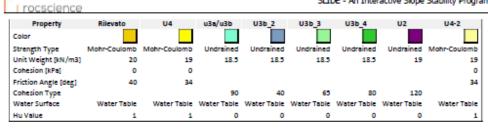
Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Variable

Distributed Load 3

Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Variable

Material Properties

GENERAL CONTRACTOR




Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI36E0001A	192 di 309

SLEENTERPART 7.000

SLIDE - An Interactive Slope Stability Program: Page 3 of 10

Global Minimums

Method: bishop simplified

FS	1.149710
Center:	-18.658, 18.359
Radius:	18.263
Left Slip Surface Endpoint:	-18.823, 0.097
Right Slip Surface Endpoint:	-3.974, 7.500
Resisting Moment:	6654.25 kN-m
Driving Moment:	5787.76 kN-m
Total Slice Area:	31.1382 m2
Surface Horizontal Width:	14.8493 m
Surface Average Height:	2.09694 m

Method: janbu simplified

FS	1.063360
Center:	-16.797, 17.705
Radius:	25.440
Left Slip Surface Endpoint:	-35.065, 0.000
Right Slip Surface Endpoint:	6.475, 7.427
Resisting Horizontal Force:	1582.57 kN
Driving Horizontal Force:	1488.27 kN
Total Slice Area:	328.583 m2
Surface Horizontal Width:	41.5395 m
Surface Average Height:	7.91013 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 4633 Number of Invalid Surfaces: 367

Error Codes:

Error Code -109 reported for 1 surface Error Code -113 reported for 195 surfaces Error Code -114 reported for 92 surfaces Error Code -128 reported for 79 surfaces

Method: janbu simplified

Number of Valid Surfaces: 4630 Number of Invalid Surfaces: 370

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Frogetto Lotto Codifica Foglio

IN17

SLEXUSTRAPET 7.0

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 4 of 10

EI2RBRI36E0001A

193 di 309

12

Error Codes:

Error Code -109 reported for 1 surface Error Code -112 reported for 3 surfaces Error Code -113 reported for 195 surfaces Error Code -114 reported for 92 surfaces Error Code -128 reported for 79 surfaces

Error Codes

The following errors were encountered during the computation:

- -109 = Soiltype for slice base not located. This error should occur very rarely, if at all. It may occur if a very low number of slices is combined with certain soil geometries, such that the midpoint of a slice base is actually outside the soil region, even though the slip surface is wholly within the soil region.
 -112 = The coefficient M-Alpha = cos(alpha)(1+tan(alpha)tan(phi)/F) < 0.2 for the final iteration of the safety factor calculation. This screens out some slip surfaces which may not be valid in the context of the analysis, in particular, deep seated slip surfaces with many high negative base angle slices in the native zone.
- -113 = Surface intersects outside slope limits.
- -114 = Surface with Reverse Curvature.
- -128 = Surface volume below minimum volume.

Slice Data

Global Minimum Quer	ry (bishop simplified) - Safety Facto	r: 1.14971		
I				I

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 5 of 10

EI2RBRI36E0001A

194 di 309

12

FOC:	science)									,	-	,
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.296986	0.882835	0.0537298	Rilevato	0	33.8726	1.66712	1.91671	2.8553	0	2.8553	2.85374	2.85374
2	0.296986	2.63416	0.87806	Rilevato	0	33.8726	4.9275	5.6652	8.4394	0	8.4394	8.51492	8.51492
3	0.296986	4.35678	1.81008	Rilevato	0	33.8726	8.07389	9.28263	13.8283	0	13.8283	14.0834	14.0834
4	0.296986	5.65487	2.74259	Rilevato	0	33.8726	10.3825	11.9369	17.7823	0	17.7823	18.2797	18.2797
5	0.296986	5.65207	3.67582	Rilevato	0	33.8726	10.282	11.8213	17.6102	0	17.6102	18.2707	18.2707
6	0.296986	5.52428	4.61002	Rilevato	0	33.8726	9.95782	11.4486	17.0548	0	17.0548	17.8578	17.8578
7	0.296986	5.36753	5.54546	Rilevato	0	33.8726	9.58737	11.0227	16.4204	0	16.4204	17.3512	17.3512
8	0.296986	5.25389	6.48239	Rilevato	0	33.8726	9.29948	10.6917	15.9273	0	15.9273	16.984	16.984
9	0.296986	5.96711	7.42105	Rilevato	0	33.8726	10.4666	12.0336	17.9264	0	17.9264	19.2897	19.2897
10	0.296986	6.89918	8.36173	Rilevato	0	33.8726	11.9928	13.7882	20.5402	0	20.5402	22.3029	22.3029
11	0.296986	7.80163	9.30468	Rilevato	0	33.8726	13.4397	15,4518	23.0185	0	23.0185	25.2204	25.2204
12	0.296986	8.67422	10.2502	Rilevato	0	33.8726	14.809	17.026	25.3635	0	25.3635	28.0415	28.0415
13	0.296986	9.51671	11.1985	Rilevato	0	33.8726	16.1016	18.5122	27.5775	0	27.5775	30.7652	30.7652
14	0.296986	10.3288	12.15	Rilevato	0	33.8726	17.3188	19.9116	29.6621	0	29.6621	33.3908	33.3908
15	0.296986	11.1102	13.1048	Rilevato	0	33.8726	18.4615	21.2254	31.6193	0	31.6193	35.917	35.917
16	0.296986	11.8605	14.0634	Rilevato	0	33.8726	19.5307	22,4546	33.4505	0	33.4505	38.343	38.343
17	0.296986	12.5794	15.0261	Rilevato	0	33.8726	20.5271	23.6002	35.157	0	35.157	40.6673	40.6673
18	0.296986	13.2664	15.993	Rilevato	0	33.8726	21,4515	24.663	36.7403	0	36.7403	42.8886	42.8886
19	0.296986	13.9212	16.9647	Rilevato	0	33.8726	22.3046	25.6438	38.2013	0	38.2013	45.0054	45.0054
20	0.296986	14.5431	17.9415	Rilevato	0	33.8726	23.087	26.5433	39.5414	0	39.5414	47.0168	47.0168
21	0.296986	15.1317	18.9236	Rilevato	0	33.8726	23.799	27.3619	40.7606	0	40.7606	48.9198	48.9198
22	0.296986	15.6865	19.9116	Rilevato	0	33.8726	24,441	28.1001	41.8604	0	41.8604	50.7135	50.7135
23	0.296986	16.2067	20.9058	Rilevato	0	33.8726	25.0136	28.7584	42.841	0	42.841	52.3957	52.3957
24	0.296986	16.6917	21.9066	Rilevato	0	33.8726	25.5169	29.337	43.703	0	43.703	53.9641	53.9641
25	0.296986	17.1408	22.9145	Rilevato	0	33.8726	25,951	29.8361	44,4465	0	44.4465	55,4164	55,4164
26	0.296986	17.5531	23.93	Rilevato	0	33.8726	26.316	30.2558	45.0717	0	45.0717	56.7499	56.7499
27	0.296986	17.9279	24,9535	Rilevato	0	33.8726	26.6121	30.5962	45.5789	0	45.5789	57.962	57.962
28	0.296986	18.2642	25,9856	Rilevato	0	33.8726	26.839	30.8571	45.9676	0	45.9676	59.0495	59.0495
29	0.296986	18.5609	27.0268	Rilevato	0	33.8726	26.9969	31.0386	46.2379	0	46.2379	60.0095	60.0095
30	0.296986	18.8171	28.0778	Rilevato	0	33.8726	27.0853	31.1402	46.3893	0	46.3893	60.8381	60.8381
31	0.296986	19.0315	29.1392	Rilevato	0	33.8726	27.104	31.1617	46,4215	0	46.4215	61.5317	61.5317
32	0.296986	19.2028	30.2117	Rilevato	0	33.8726	27.0526	31.1027	46.3334	0	46.3334	62.0858	62.0858
33	0.296986	19.3296	31.296	Rilevato	0	33.8726	26.9308	30.9626	46.1247	0	46.1247	62.4963	62.4963
34	0.296986	19.4104	32.3929	Rilevato	0	33.8726	26.738	30.7409	45.7945	0	45.7945	62.7582	62.7582
	0.296986	19.4436	33.5033	Rilevato	0	33.8726	26.4734	30.4367	45.3413	0	45.3413	62.8658	62.8658
36	0.296986	19.4272	34.6282	Rilevato	0	33.8726	26.1363	30.0492	44.7641	0	44.7641	62.8133	62.8133
37	0.296986	19.3593	35.7685	Rilevato	0	33.8726	25.7261	29.5776	44.0616	0	44.0616	62.5944	62.5944
38	0.296986	19.2377	36.9254	Rilevato	0	33.8726	25.2418	29.0207	43.232	0	43.232	62.2015	62.2015
39	0.296986	18.7999	38.1002	Rilevato	0	33.8726	24.3455	27.9903	41.6969	0	41.6969	60.7864	60.7864
40	0.296986	17.9307	39.2942	Rilevato	0	33.8726	22.9062	26.3355	39.2317	0	39.2317	57.9764	57.9764
41	0.296986	16.9967	40.5089	Rilevato	0	33.8726	21.4084	24.6135	36.6666	0	36.6666	54.9569	54.9569
42	0.296986	15.9268	41.7461	Rilevato	0	33.8726	19.7679	22.7274	33.8568	0	33.8568	51.4979	51.4979
43	0.296986	14.4221	43.0075	Rilevato	0	33.8726	17.6275	20.2665	30.1908	0	30.1908	46.633	46.633
44	0.296986	12.7917	44.2955	Rilevato	0	33.8726	15.3851	17.6884	26.3504	0	26.3504	41.3617	41.3617
	0.296986	11.083	45.6124		0	33.8726	13.1063	15.0685	22,4474	0	22.4474	35.8369	35.8369
46	0.296986	9.29031	46.961	Rilevato	0	33.8726	10.7919	12.4075	18.4834	0	18.4834	30.0405	30.0405
47	0.296986	7.40719	48.3445	Rilevato	0	33.8726	10.766	12.3778	18.4391	0	18.4391	30.5416	30.5416
48	0.296986	5.42613	49.7667	Rilevato	0	33.8726	11.0401	12.6929	18.9086	0	18.9086	31.9574	31.9574
49	0.296986	3.33831	51.232	Rilevato	0	33.8726	8.52178	9.79758	14.5954	0	14.5954	25.2065	25.2065
50	0.296986	1.13326	52.7456	Rilevato	0	33.8726	5.97058	6.86444	10.2259	0	10.2259	18.0764	18.0764

Global Minimum Query (janbu simplified) - Safety Factor: 1.06336						

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Foglio Progetto Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 6 of 10

EI2RBRI36E0001A

195 di 309

12

rocs	science)											
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.871626	6.91089	-44.5206	u3a/u3b	64.2857	0	60.4553	64.2857	67.0179	0	67.0179	7.566	7.566
2	0.871626	20.1109	-41.8265	u3a/u3b	64.2857	0	60.4553	64.2857	76.212	0	76.212	22.1085	22.1085
3	0.871626	32.1401	-39.2417	u3a/u3b	64.2857	0	60.4553	64.2857	84.7403	0	84.7403	35.3609	35.3609
4	0.871626	43.1277	-36.7492	u3a/u3b	64.2857	0	60.4553	64.2857	92.6086	0	92.6086	47.4659	47.4659
5	0.755922	45.5852	-34.4912	u3a/u3b	64.2857	0	60.4553	64.2857	99.3961	0	99.3961	57.86	57.86
6	0.755922	52.5775	-32.4495	u3a/u3b	64.2857	0	60.4553	64.2857	105.182	0	105.182	66.7425	66.7425
7	0.829362	65.0994	-30.3583	U3b_2	28.5714	0	26.869	28.5714	91.0793	0	91.0793	75.3416	75.3416
8	0.829362	72.2399	-28.2159	U3b_2	28.5714	0	26.869	28.5714	98.0245	0	98.0245	83.6079	83.6079
9	0.829362	78.7729	-26.1158	U3b_2	28.5714	0	26.869	28.5714	104.343	0	104.343	91.1708	91.1708
10	0.829362	84.7319	-24.0528	U3b_2	28.5714	0	26.869	28.5714	110.062	0	110.062	98.0693	98.0693
	0.829362		-22.0224	U3b_2	28.5714	0	26.869	28.5714	120.751	0	120.751	109.883	109.883
	0.829362		-20.0209	U3b_2	28.5714	0	26.869	28.5714	139.956	0	139.956	130.165	130.165
13	0.829362		-18.0445	U3b_2	28.5714	0	26.869	28.5714	145.251	0	145.251	136.498	136.498
14	0.829362		-16.0901	U3b_2	28.5714	0	26.869	28.5714	148.638	0	148.638	140.888	140.888
15	0.829362		-14.1548	U3b_2	28.5714	0	26.869	28.5714	151.489	0	151.489	144.712	144.712
16	0.829362		-12.2358	U3b_2	28.5714	0	26.869	28.5714	153.834	0	153.834	148.007	148.007
17	0.829362		-10.3308	U3b_2	28.5714	0	26.869	28.5714	153.972	0	153.972	149.074	149.074
18	0.829362		-8.43716	U3b_2	28.5714	0	26.869	28.5714	142.357	0	142.357	138.371	138.371
	0.829362		-6.55281	U3b_2	28.5714	0	26.869	28.5714	139.1	0	139.1	136.014	136.014
	0.829362		-4.67557	U3b_2	28.5714	0	26.869	28.5714	141.32	0	141.32	139.123	139.123
21	0.829362	132.318	-2.80334	U3b_2	28.5714	0	26.869	28.5714	154.475	0	154.475	153.159	153.159
	0.829362		0.934116	U3b_2	28.5714	0	26.869	28.5714	158.545	0	158.545	158.107	158.107
23	0.829362	138.867	0.934116	U3b_2	28.5714	0	26.869	28.5714	160.303	0	160.303	160.741	160.741
24	0.829362	147.226	2.80334	U3b_2	28.5714	0	26.869	28.5714	169.102	0	169.102	170.418	170.418
	0.829362	155.57	4.67557	U3b_2	28.5714	0	26.869	28.5714	177.879	0	177.879	180.077	180.077
26	0.829362	163,495	6.55281	U3b_2	28.5714	0	26.869	28.5714	186.164	0	186.164	189.251	189.251
27	0.829362		8.43716	U3b_2	28.5714	0	26.869	28.5714	193.948	0	193.948	197.933	197.933
28	0.829362		10.3308	U3b_2	28.5714	0	26.869	28.5714	201.223	0	201.223	206.121	206.121
29	0.829362		12.2358	U3b_2	28.5714	0	26.869	28.5714	207.976	0	207.976	213.803	213.803
30	0.829362		14.1548	U3b_2	28.5714	0	26.869	28.5714	214.194	0	214.194	220.971	220.971
		196.632	16.0901	U3b_2	28.5714	0	26.869	28.5714	219.86	0	219.86	227.611	227.611
	0.829362	201.9	18.0445	U3b_2	28.5714	0	26.869	28.5714	224.955	0	224.955	233.708	233.708
33	0.829362		20.0209	U3b_2	28.5714	0	26.869	28.5714	229.457	0	229.457	239.248	239.248
34	0.829362		22.0224	U3b_2	28.5714	0	26.869	28.5714	231.495	0	231.495	242.363	242.363
35	0.829362		24.0528	U3b_2	28.5714	0	26.869	28.5714	228.321	0	228.321	240.313	240.313
36	0.829362		26.1158	U3b_2	28.5714	0	26.869	28.5714	221.082	0	221.082	234.254	234.254
	0.829362		28.2159	U3b_2	28.5714	0	26.869	28.5714	223.947	0	223.947	238.364	238.364
	0.829362	189.52	30.3583	U3b_2	28.5714	0	26.869	28.5714	218.053	0	218.053	233.79	233.79
39	0.755922	166.34	32.4495	u3a/u3b	64.2857	0	60.4553	64.2857	198.386	0	198.386	236.825	236.825
	0.755922	159.69	34.4912		64.2857	0	60.4553	64.2857	187.911	0	187.911	229.447	229.447
	0.871626		36.7492		64.2857	0	60.4553	64.2857	174.383	0	174.383	219.526	219.526
1	0.871626		39.2417	u3a/u3b	64.2857	0	60.4553	64.2857	149.99	0	149.99	199.37	199.37
	0.871626		41.8265		64.2857	0	60.4553	64.2857	128.671		128.671	182.775	182.775
	0.871626		44.5206	u3a/u3b	64.2857	0	60.4553	64.2857	114.817	0	114.817	174.269	174.269
45	0.833877	118.635	47.2817	Rilevato	0	33.8726	61.206	65.084	96.9555	0	96.9555	163.241	163.241
	0.833877	102.362	50.1311	Rilevato	0		51.9537	55.2455	82.2988	0	82.2988	144.503	144.503
	0.833877		53.1625	Rilevato	0		40.6281	43.2023	64.3582	0	64.3582	118.593	118.593
48	0.833877	64.1603 41.2204	56.4273 60.0043	Rilevato	0		28.5703 17.9104	30.3805 19.0452	45.2576	0	45.2576	88.3039	88.3039 59.3986
1				Rilevato	0				28.3714	0	28.3714	59.3986	
30	0.833877	14.4829	64.0277	Rilevato	0	35.8/26	4.58651	4.87711	7.26541	0	7.26541	16.6807	16.6807

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.14	971

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

SLEENTRPART 7.0

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 7 of 10

EI2RBRI36E0001A

196 di 309

12

Г	rocs	science				
ı	100					
	Slice	X	γ	Interslice	Interslice	Interslice
	Number	coordinate [m]	coordinate - Bottom [m]	Normal Force [kN]	Shear Force [kN]	Force Angle [degrees]
	1	-18.8232	0.0971034	0	[KM]	[degrees]
	2	-18.5262	0.0968249	0.423977		0
	3	-18.2292	0.101377	1.63435	0	ő
	4	-17.9322	0.110762	3.54746	0	0
	,	-17.6353	0.124989	5.91727	0	ő
	6	-17.3383	0.144068	8.17448	0	0
	7	-17.0413	0.168015	10.2734	0	0
	s é	-16.7443	0.19685	12.2101	0	0
	9	-16.4473	0.230595	14.0065		0
	10	-16.1503	0.269277	15,9355	0	0
	11	-15.8533	0.31293	18.0387	0	0
	12	-15.5563	0.361588	20.2748	0	0
	13	-15.2594	0.415293	22,6043	0	0
	14	-14.9624	0.47409	24,9899	0	0
	15	-14.6654	0.538029	27.3957	0	0
	16	-14.3684	0.607166	29.7879	0	ő
	17	-14.0714	0.681563	32.134	0	0
	18	-13.7744	0.761285	34.4034	0	0
	19	-13.4774	0.846405	36,5668	0	0
	20	-13.1805	0.937003	38.5968	0	0
	21	-12.8835	1.03316	40.4671	0	0
	21	-12.5865	1.03316	40.46/1	0	0
	22	-12.2895	1.24256	43.6319	0	0
	24	-11.9925			0	
	24	-11.6955	1.356 1.47543	44.8815 45.8818	0	0
	25	-11.8933	1,60097	45.8818	0	0
	26	-11.1016	1.6009/	45.5141	0	0
	28	-10.8046	1.87095	47.2068	0	0
	28	-10.8046	2.01571	47.2068	0	0
	30	-10.3076	2.16721	46,5398	0	0
	31	-9.91361	2.32564	45,7034	0	0
	32			45.7034	0	0
	33	-9.61663 -9.31964	2.4912	44.5187	0	0
			2.66414 2.84468			- 1
	34	-9.02265		41.0763	0	0
		-8.72567	3.0331	38.8094	0	0
	36	-8.42868	3.22969	36.1761	0	0
	37	-8.13169	3.43479	33.1773	0	0
	38	-7.83471	3.64873	29.8162	0	0
	39	-7.53772	3.87192	26.0991	0	0
	40	-7.24074	4.10479	22.0905	0	0
	41	-6.94375	4.34782	17.9007	0	0
	42	-6.64676	4.60155	13.5732	0	0
	43	-6.34978	4.86658	9.1757	0	0
	44	-6.05279	5.1436	4.8748	0	0
	45	-5.7558	5.43337	0.768383	0	0
	46	-5.45882	5.73678	-3.05087	0	0
	47	-5.16183	6.05482	-6.47962	0	0
	48	-4.86485	6.38867	-10.0409	0	0
	49	-4.56786	6.7397	-13.8418	0	0
	50	-4.27087	7.1095	-16.9808	0	0
	51	-3.97389	7.49999	0	0	0

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

SLEGISTERPRET 7.03

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 9 of 10

EI2RBRI36E0001A

197 di 309

12

X Y -5.00065 7.46919 0.0405669 7.62042 5.49691 7.45673

Distributed Load

x	Y
-3.46101	7.51538
-0.883091	7.59271

Distributed Load

X	Y
1.00969	7.59135
3.62105	7.51301

External Boundary

X	v
-58.8401	
-58.8401	-4
-58.8401	-8
-58.8401	-10
-58.8401	-18
-58.8401	-22
-58.8401	-33
-58.8401	-35
-58.8401	-40
64.9119	-40
64.9119	-35
64.9119	-33
64.9119	-22
64.9119	-18
64.9119	-10
64.9119	-8
64.9119	-4
64.9119	0
24.9786	0
22.9482	1.1011
21.4482	1.0861
21.1653	1.0861
20.1653	0.0860992
18.9153	0.0860992
17.9153	1.0861
17.6325	1.0861
16.6325	1.0861
7.59057	7.11706
6.59057	7.42392
0.0405669	7.62042
-6.50943	7.42392
-7.50943	7.11706
-16.5514	1.0861
-17.5514	1.0861
-17.8342	1.0861
-18.8342	0.0860992
-20.3342	0.0860992
-21.3342	1.0861
-21.617	1.0861
-24.617	1.1161
-25.617	1.1161
-26.5538	1e-016

Material Boundary

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 198 di

SLEGNTRAST 7.000

SLIDE - An Interactive Slope Stability Program: Page 10 of 10

309

Material Boundary

X	Y
-58.8401	-4
64.9119	-4

Material Boundary

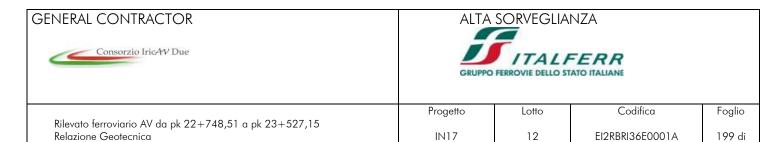
Material Boundary

X	γ
-58.8401	-10
64.9119	-10

Material Boundary

X	γ
-58.8401	-18
64.9119	-18

Material Boundary


X	γ
-58.8401	-22
64.9119	-22

Material Boundary

	X	Υ
-	-58.8401	-33
	64.9119	-33

Material Boundary

X	Y
-58.8401	-35
64.9119	-35

SLEGINTRPSET 7.0

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 10

309

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 2-1 muro_sis.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/10/2021, 14:46:13

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: A2+M2+R2 (SIS)

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
--------------	----------

Analysis Methods Used	
	Bishop simplified Janbu simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

GENERAL CONTRACTOR

Progetto Lotto Codifica Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica IN17 12 EI2RBRI36E0001A 200 di
309

SLEGISTRAST 7.03

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 10

Groundwater Analysis

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 3000
Upper Angle: Not Defined
Lower Angle: Not Defined
Composite Surfaces: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area [m2]: 20
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.081 Seismic Load Coefficient (Vertical): -0.04

3 Distributed Loads present

Distributed Load 1

Distribution: Constant
Magnitude [kPa]: 14.4
Orientation: Vertical
Load Action: Live

Distributed Load 2

Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Live

Distributed Load 3

Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Live

Material Properties

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric/tv Due GRUPPO FERROVIE DELLO STATO ITALIANE

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI36E0001A
201 di
309

I rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 10

Property	Rilevato	U4	u3a/u3b	U3b_2	U3b_3	U2	CA	U4-2
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Undrained	Infinite strength	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	18.5	18.5	18.5	19	25	19
Cohesion (kPa)	0	0	0					0
Friction Angle [deg]	38	34	32					34
Cohesion Type				40	65	120		
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

Property	U4-3
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	19
Cohesion [kPa]	0
Friction Angle [deg]	38
Water Surface	None
Ru Value	0

Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 2.4 m Pile Shear Strength: 127 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: bishop simplified

FS	1.234420
Center:	19.161, 15.654
Radius:	22.506
Left Slip Surface Endpoint:	-1.280, 6.237
Right Slip Surface Endpoint:	35.331, 0.000
Resisting Moment:	36113.1 kN-m
Driving Moment	29255.1 kN-m
Passive Support Moment:	2045.69 kN-m
Total Slice Area:	237.548 m2
Surface Horizontal Width:	36.6108 m
Surface Average Height:	6.48846 m

Method: janbu simplified

FS	1.105040
Center:	19.161, 15.654
Radius:	22.506
Left Slip Surface Endpoint:	-1.280, 6.237
Right Slip Surface Endpoint:	35.331, 0.000
Resisting Horizontal Force:	1360.82 kN
Driving Horizontal Force:	1231.47 kN
Passive Horizontal Support Force:	96.2121 kN
Total Slice Area:	237.548 m2
Surface Horizontal Width:	36.6108 m
Surface Average Height:	6.48846 m

Valid / Invalid Surfaces

Method: bishop simplified

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 202 di

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 10

309

Number of Valid Surfaces: 573 Number of Invalid Surfaces: 4427

Error Codes:

Error Code -99 reported for 4251 surfaces Error Code -114 reported for 176 surfaces

Method: janbu simplified

Number of Valid Surfaces: 573 Number of Invalid Surfaces: 4427

Error Codes:

Error Code -99 reported for 4251 surfaces Error Code -114 reported for 176 surfaces

Error Codes

The following errors were encountered during the computation:

-99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.

-114 = Surface with Reverse Curvature.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.23442	
I and the second	1

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAv Due Consorzio IricAv Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 5 of 1

EI2RBRI36E0001A

203 di 309

12

rocs	science)									,		
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.711843	10.0533	-63.2504	Rilevato	0	32.0066	3.42467	4.22748	6.76363	0	6.76363	13.5582	13.5582
2	0.711843	28.7195	-59.4537	Rilevato	0	32.0066	12.1897	15.0472	24.0744	0	24.0744	44.7302	44.7302
3	0.711843	45.0843	-56.0479	Rilevato	0	32.0066	24.0844	29.7303	47.5663	0	47.5663	83.3375	83.3375
4	0.711843	59.6198	-52.9222	Rilevato	0	32.0066	32,4463	40.0523	64.0808	0	64.0808	107.017	107.017
5	0.711843	72.67	-50.0091	Rilevato	0	32.0066	39.3471	48.5708	77.7097	0	77.7097	124.617	124.617
6	0.711843	84.4992	-47.2637	Rilevato	0	32.0066	45.9785	56.7568	90.8067	0	90.8067	140.57	140.57
7	0.743553	99.3595	-44.599	u3a/u3b	0	26.5603	44.8265	55.3347	110.693	0	110.693	154.896	154.896
8	0.743553	109.338	-41.996	u3a/u3b	0	26.5603	47.97	59.2151	118,455	0	118.455	161.642	161.642
9	0.743553	118.423	-39.4958	u3a/u3b	0	26.5603	50.7969	62.7047	125,436	0	125,436	167.303	167.303
10	0.743553	126.273	-37.0827	u3a/u3b	0	26.5603	55.1901	68.1278	136.284	0	136.284	177.998	177.998
11	0.743553	133.353	-34.7443	u3a/u3b	0	26.5603	62.8485	77.5814	155.195	0	155.195	198.786	198.786
12	0.743553	139.823	-32,4704	u3a/u3b	0	26.5603	66.6961	82.331	164.696	0	164.696	207.138	207.138
13	0.743553	145.728	-30.2528	u3a/u3b	0	26.5603	70.3539	86.8463	173.729	0	173.729	214.763	214.763
14	0.731	148.517	-28.1021	U3b 2	28.5714	0	23.1456	28.5714	209.295	0	209.295	221.655	221.655
15	0.731	157,466	-26.0118	U3b 2	28.5714	0	23.1456	28.5714	222.114	0	222.114	233.409	233.409
16	0.731	164.9	-23.9581	U3b 2	28.5714	0	23.1456	28.5714	223.184	0	223.184	233.469	233.469
17	0.731	168.831	-21.9366	U3b 2	28.5714	0	23.1456	28.5714	212.399	0	212.399	221.721	221.721
18	0.731	172,423	-19.9435	U3b 2	28.5714	0	23.1456	28.5714	218.039	0	218.039	226.438	226.438
19	0.731	180.391	-17.9753	U3b 2	28.5714	0	23.1456	28.5714	229.393	0	229.393	236.902	236.902
20	0.731	198.262	-16.0289	U3b 2	28.5714	0	23.1456	28.5714	253.722	0	253.722	260.371	260.371
21	0.731	117.163	-14.1013	U3b 2	28.5714	0	23.1456	28.5714	148.053	0	148.053	153.867	153.867
22	0.731	108.345	-12.1898	U3b 2	28.5714	0	23.1456	28.5714	137.287	0	137.287	142.287	142.287
23	0.731	103.507	-10.2921	U3b 2	28.5714	0	23.1456	28 5714	131.73	0	131.73	135.933	135.933
24	0.731	104,402	-8.40567	U3b 2	28.5714	0	23.1456	28.5714	133.688	0	133.688	137.108	137.108
25		105.613	-6.52843	U3b 2	28.5714	0	23.1456	28.5714	136.049	0	136.049	138.698	138.698
26	0.731	103.865	-4.65821	U3b 2	28.5714	0	23.1456	28.5714	134.517	0	134.517	136.403	136.403
27		97,4459	-2.79295	U3b 2	28.5714	0	23.1456	28.5714	126.843	0	126.843	127.973	127.973
28	0.731	92.7646	0.930655	U3b 2	28.5714	0	23.1456	28.5714	121.449	0	121,449	121.825	121.825
29			0.930655	U3b_2	28.5714	0	23.1456	28.5714	121.958	0	121.958	121.582	121.582
30		92.2583	2.79295	U3b_2	28.5714	0	23.1456	28.5714	122.289	0	122.289	121.16	121.16
31		91.6144	4.65821	U3b_2	28.5714	0	23.1456	28.5714	122.2	0	122.2	120.314	120.314
32	0.731	90.646	6.52843	U3b_2	28.5714	0	23.1456	28.5714	121.691	0	121.691	119.043	119.043
33	0.731	89.35	8.40567	U3b_2	28.5714	0	23.1456	28.5714	120.761	0	120.761	117.341	117.341
34	0.731	87.722	10.2921	U3b_2	28.5714		23.1456	28.5714	119.405	0	119.405	115.202	115.202
35		85.7567	12.1898	U3b_2	28.5714	0	23.1456	28.5714	117.621	0	117.621	112.621	112.621
36		83.4473	14.1013	U3b_2	28.5714	0	23.1456	28.5714	115.403	0	115.403	109.589	109.589
37		80.7856	16.0289	U3b_2	28.5714	0	23.1456	28.5714	112.743	0	112.743	106.093	106.093
38		77.7619	17.9753	U3b_2	28.5714	0	23.1456	28.5714	109.631	0	109.631	102.122	102.122
39		74.3646	19.9435	U3b_2	28.5714	0	23.1456	28.5714	106.059	0	106.059	97.6606	97.6606
40		70.5804	21.9366	U3b_2	28.5714		23.1456	28.5714	102.012	0	102.012	92.6908	92.6908
41		66.3934	23.9581	U3b_2	28.5714	0	23.1456	28.5714	97.4769	0	97.4769	87.1921	87.1921
42	0.731	61.785	26.0118	U3b_2	28.5714	0	23.1456	28.5714	92.4348	0	92.4348	81.1401	81.1401
43		56.7335	28.1021	U3b_2	28.5714	0	23.1456	28.5714	86.8657	0	86.8657	74.506	74.506
	0.743553		30.2528		0		35.6228	43.9735	87.9654	0	87.9654	67.1885	67.1885
	0.743553		32.4704	u3a/u3b	0		32.2615	39.8243	79.6652	0	79.6652	59.1358	59.1358
	0.743553			u3a/u3b	0		28.3564	35.0037	70.022	0	70.022	50.3547	50.3547
	0.743553			u3a/u3b	0		23.8015	29.381	58.7743	0	58.7743	40.7847	40.7847
	0.743553			u3a/u3b	0		18.4496	22.7746	45.5587	0	45.5587	30.3523	30.3523
1	0.743553	14.69		u3a/u3b	0		12.0874	14.9209	29.848	0	29.848	18.966	18.966
50	0.743553	5.04297	44.599	u3a/u3b	0	26.5603	4.38958	5.41858	10.8395	0	10.8395	6.51089	6.51089

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 6 of 10

EI2RBRI36E0001A

204 di 309

12

rocs	science	2						3400	e - An Ince	ractive 5i0	pe stability	Programs	Page 6 or 1
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
	0.711843		-63.2504	Rilevato	0	32.0066		3.9959	6.39317	0	6.39317	13.5674	13.5674
	0.711843		-59.4537	Rilevato	0	32.0066	12.9266	14.2844	22.854	0	22.854	44.7585	44.7585
	0.711843		-56.0479 -52.9222	Rilevato Rilevato	0	32.0066 32.0066	25.632 34.638	28.3244 38.2764	45.3169 61.2394	0	45.3169 61.2394	83.3866 107.076	83.3866 107.076
1 .	0.711843	72.67	-50.0091	Rilevato	0		42.1205	46.5448	74.4682		74.4682	124.682	124.682
_	0.711843		-47.2637	Rilevato	0		49.3417	54.5246	87.2354		87.2354	140.639	140.639
1	0.743553		-44.599	u3a/u3b	0		48,4751	53,5669	107.156		107.156	154,958	154.958
1	0.743553		-41.996	u3a/u3b	0		51,9804	57,4404	114,905		114.905	161.702	161.702
	0.743553		-39.4958		0		55.1483	60.9411	121.908	0	121.908	167.362	167.362
	0.743553		-37.0827	u3a/u3b	0		60.0252	66.3303	132.688	0	132.688	178.056	178.056
11	0.743553	133.353	-34.7443	u3a/u3b	0	26.5603	68.4706	75.6627	151.357	0	151.357	198.847	198.847
12	0.743553	139.823	-32.4704	u3a/u3b	0	26,5603	72.7805	80.4254	160.885	0	160.885	207.198	207.198
13	0.743553	145.728	-30.2528	u3a/u3b	0	26,5603	76.8921	84.9689	169.973	0	169.973	214.821	214.821
14	0.731	148.517	-28.1021	U3b 2	28.5714	0	25.8555	28.5714	207.865	0	207.865	221.672	221.672
15	0.731	157.466	-26.0118	U3b_2	28.5714	0	25.8555	28.5714	220.807	0	220.807	233.424	233.424
16	0.731	164.9	-23.9581	U3b_2	28.5714	0	25.8555	28.5714	221.995	0	221.995	233.484	233.484
17	0.731	168.831	-21.9366	U3b_2	28.5714	0	25.8555	28.5714	211.322	0	211.322	221.735	221.735
18	0.731	172.423	-19.9435	U3b_2	28.5714	0	25.8555	28.5714	217.068	0	217.068	226.45	226.45
19	0.731	180.391	-17.9753	U3b_2	28.5714	0	25.8555	28.5714	228.525	0	228.525	236.913	236.913
20	0.731	198.262	-16.0289	U3b_2	28.5714	0	25.8555	28.5714	252.954	0	252.954	260.382	260.382
21	0.731	117.163	-14.1013	U3b_2	28.5714	0	25.8555	28.5714	147.38	0	147.38	153.875	153.875
22	0.731	108.345	-12.1898	U3b_2	28.5714	0	25.8555	28.5714	136.708	0	136.708	142.294	142.294
23	0.731	103.507	-10.2921	U3b_2	28.5714	0	25.8555	28.5714	131.244	0	131.244	135.939	135.939
24		104.402	-8.40567	U3b_2	28.5714	0	25.8555	28.5714	133.293	0	133.293	137.113	137.113
25	0.731	105.613	-6.52843	U3b_2	28.5714	0	25.8555	28.5714	135.743	0	135.743	138.702	138.702
26		103.865	-4.65821	U3b_2	28.5714	0	25.8555	28.5714	134.299	0	134.299	136.406	136.406
27	0.731	97.4459	-2.79295	U3b_2	28.5714	0	25.8555	28.5714	126.713	0	126.713	127.974	127.974
28		92.7646	0.930655	U3b_2	28.5714	0	25.8555	28.5714	121.405	0	121.405	121.825	121.825
29		92.5797		U3b_2	28.5714	0	25.8555	28.5714	122.002	0	122.002	121.581	121.581
30		92.2583	2.79295	U3b_2	28.5714	0	25.8555	28.5714	122.42	0	122.42	121.158	121.158
31		91.6144	4.65821	U3b_2	28.5714	0	25.8555	28.5714	122,418	0	122,418	120.312	120.312
32	0.731	90.646	6.52843	U3b_2	28.5714	0	25.8555	28.5714	121.998	0	121.998	119.039	119.039
33	0.731	89.35	8.40567	U3b_2	28.5714	0	25.8555	28.5714	121.156	0	121.156	117.336	117.336
34	0.731	87.722	10.2921	U3b_2	28.5714	0	25.8555	28.5714	119.891	0	119.891	115.196	115.196
35		85.7567	12.1898	U3b_2	28.5714	0	25.8555	28.5714	118.2	0	118.2	112.614	112.614
36		83.4473	14.1013	U3b_2	28.5714	0	25.8555	28.5714	116.075	0	116.075	109.58	109.58
37		80.7856	16.0289	U3b_2	28.5714	0	25.8555	28.5714	113.512	0	113.512	106.083	106.083
38		77.7619	17.9753	U3b_2	28.5714	0	25.8555	28.5714	110.5	0	110.5	102.111	102.111
39		74.3646	19.9435	U3b_2	28.5714	0	25.8555	28.5714	107.03	0	107.03	97.6485	97.6485
40		70.5804	21.9366	U3b_2	28.5714	0	25.8555	28.5714	103.09	0	103.09	92.6774	92.6774
41		66.3934	23.9581	U3b_2	28.5714	0	25.8555	28.5714	98.6662	0	98.6662	87.1773	87.1773
42 43	0.731	61.785 56.7335	26.0118 28.1021	U3b_2 U3b_2	28.5714 28.5714	0	25.8555	28.5714 28.5714	93.7409 88.295	0	93.7409 88.295	81.1238 74.4883	81.1238 74.4883
	0.743553		30.2528	u3a/u3b	28.5/14	_	41.2694	45.6043	91.2277	0	91.2277	67.1574	67.1574
44	0.743553		30.2528	u3a/u3b	0		41.2694 37.5461	41,4899	91.2277 82.9972	0	82.9972	59.105	59.105
-		39.0018	34.7443	u3a/u3b	0	26,5603	33.1747	36.6594	73.3342	0	73.3342	50.325	50.325
-	0.743553		34.7443	u3a/u3b	0		28.0173	30.9602	73.334Z 61.9334	0	61.9334	40.7574	40.7574
	0.743553			u3a/u3b	0		21.8771	24.1751	48.3604	0	48.3604	30.329	30.329
48		14.69	41.996	u3a/u3b	0	26,5603	14.4621	15.9812	48.3604 31.9691	0	48.3604 31.9691	18.9491	18.9491
	0.743553			u3a/u3b	0		5.31188	5.86984	11.7421		11.7421	6.50406	6.50406
30	0.745335	3.04237	44.339	usa/us0	0	20.3003	J.51106	J.66784	11.7421	0	11.7421	0.30405	0.50406

Interslice Data

Global Minimum Query (bishop simplifie	ed] - Safety Factor: 1.23442	

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

SLEENTEPRET 7.0

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 7 of 10

EI2RBRI36E0001A

205 di 309

12

Γ	rocs	science				9
-		¥	v	Interslice	Interslice	Interslice
	Slice	coordinate	coordinate - Bottom	Normal Force		Force Angle
	Number	[m]	[m]	[kN]	[kN]	[degrees]
	1	-1.2799	6.23682	0	0	0
	2	-0.568058	4.82453	7.92882	0	0
	3	0.143785	3.61829	30.6177	0	0
	4	0.855627	2.56103	67.4154	0	0
	5	1.56747	1.61905	109.512	0	0
	6	2.27931	0.770436	153.335	0	0
	7	2.99116	0	197.412	0	0
	8	3.73471	-0.733217	253.291	0	0
	9	4.47826	-1.40262	305.775	0	0
	10	5.22181	-2.01547	354.47	0	0
	11	5.96537	-2.57746	400.253	0	0
	12	6.70892	-3.09317	444.361	0	0
	13	7.45247	-3.56632	484.022	0	0
	14	8.19603	-4	518.858	0	0
	15	8.92703	-4.39035	595.667	0	0
	16	9.65803	-4.74707	670.735	0	0
	17	10.389	-5.07189	700.697	0	0
	18	11.12	-5.36629	759.984	0	0
	19	11.851	-5.63154	814.866	0	0
	20	12.582	-5.86871	866.963	0	0
	21	13.313	-6.07872	919.388	0	0
	22	14.044	-6.26235	900.175	0	0
	23	14.775	-6.42026	913.712	0	0
	24	15.506	-6.553	922.663	0	0
	25	16.237	-6.66102	928.641	0	0
	26	16.968	-6.74468	931.658	0	0
	27	17.699	-6.80424	931.164	0	0
	28	18.43	-6.8399	926.661	0	0
	29	19.161	-6.85178	918.698	0	0
	30	19.892	-6.8399	907.83	0	0
	31	20.623	-6.80424	894.023	0	0
	32	21.354	-6.74468	877.246	0	0
	33	22.085	-6.66102	857.489	0	0
	34	22.816	-6.553	834.763	0	0
	35	23.547	-6.42026	809.1	0	0
	36	24.278	-6.26235	780.553	0	0
	37	25.009	-6.07872	749.202	0	0
	38	25.74	-5.86871	715.149	0	0
	39	26.471	-5.63154	678.528	0	0
	40	27.202	-5.36629	639.5	0	0
	41	27.933	-5.07189	598.265	0	0
	42	28.664	-4.74707	555.062	0	0
	43	29.395	-4.39035	510.174	0	0
	44	30.126	-4	463.942	0	0
	45	30.8696	-3.56632	403.522	0	0
	46	31.6131	-3.09317	345.551	0	0
	47	32.3567	-2.57746	291.515	0	0
	48	33.1002	-2.01547	243.345	0	0
	49 50	33.8438	-1.40262	203.611	0	0
		34.5874	-0.733217	175.834		- 1
	51	35.3309	5.09241e-016	0	0	0

Global Minimum Query (janbu simplified) - Safety Factor: 1.10504					

GENERAL CONTRACTOR Consorzio IricAt/ Due Consorzio IricAt/ Due Consorzio IricAt/ Due Consorzio IricAt/ Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

IN17

I rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 8 of 10

EI2RBRI36E0001A

206 di 309

12

	rocs	science				
ı	Slice	X	Y	Interslice	Interslice	Interslice
1	Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
1	redilibei	[m]	[m]	[kN]	[kN]	[degrees]
1	1	-1.2799	6.23682	0	0	0
1	2	-0.568058	4.82453	7.27263	0	0
1	3	0.143785	3.61829	27.9767	0	0
١	4	0.855627	2.56103	61.3181	0	0
1	5	1.56747	1.61905	99.2094	0	0
1	6	2.27931	0.770436	138.347	0	0
١	7	2.99116	0	177.323	0	0
1	8	3.73471	-0.733217	227.943	0	0
1	9	4.47826	-1.40262	275.118	0	0
1	10	5.22181	-2.01547	318.469	0	0
1	11	5.96537	-2.57746	358.693	0	0
1	12	6.70892	-3.09317	396.707	0	0
1	13	7.45247	-3.56632	430.111	0	0
1	14	8.19603	-4	458.529	0	0
١	15	8.92703	-4.39035	532.824	0	0
1	16	9.65803	-4.74707	605.47	0	0
1	17	10.389	-5.07189	628.526	0	0
1	18	11.12	-5.36629	685.54	0	0
1	19	11.851	-5.63154	738.207	0	0
1	20	12.582	-5.86871	788.142	0	0
1	21	13.313	-6.07872	838.448	0	0
1	22	14.044	-6.26235	812.593	0	0
1	23	14.775	-6.42026	824.082	0	0
١	24	15.506	-6.553	831.011	0	0
١	25	16.237	-6.66102	834.99	0	0
1	26	16.968	-6.74468	836.025	0	0
1	27	17.699	-6.80424	833.562	0	0
1	28	18.43	-6.8399	827.098	0	0
1	29	19.161	-6.85178	817.178	0	0
1	30	19.892	-6.8399	804.352	0	0
1	31	20.623	-6.80424	788.584	0	0
١	32	21.354	-6.74468	769.838	0	0
١	33	22.085	-6.66102	748.099	0	0
١	34	22.816	-6.553	723.373	0	0
١	35	23.547	-6.42026	695.689	0	0
١	36	24.278	-6.26235	665.094	0	0
	37	25.009	-6.07872	631.663	0	ő
1	38	25.74	-5.86871	595.492	0	0
1	39	26.471	-5.63154	556.708	0	0
	40	27.202	-5.36629	515.467	0	
	41	27.933	-5.07189	471.958	0	0
1	42	28.664	-4.74707	426.411	0	0
	42	29.395	-4.74707 -4.39035	426.411 379.101	0	0
	44	30.126	-4.35033	330.355	0	0
	45	30.8696	-3.56632	264.361	0	0
				200.92	0	- 1
	46 47	31.6131 32.3567	-3.09317 -2.57746	141.625	0	0
1	47	33.1002	-2.57746 -2.01547	88.5724	0	0
	48	33.8438	-2.01347 -1.40262	44.5937	0	0
	49 50	33.8438 34.5874	-1.40262 -0.733217	44.5937 13.6441	0	0
1						- 1
L	51	35.3309	5.09241e-016	0	0	0

List Of Coordinates

Distributed Load

X Y 10.3833 6.22326 4.88932 6.38808 -0.1526 6.23682

Distributed Load

SLIDE - An Interactive Slope Stability Program: Page 9 of 10

X Y 4.10433 6.36453 0.381534 6.25285

Distributed Load

X Y 9.81471 6.24032 5.93126 6.35682

External Boundary

X	Y
13.1393	6.33018
12.1393	6.33018
12.1393	6.19158
10.3833	6.22326
4.88932	6.38808
-0.1526	6.23682
-1.309	6.23682
-2.66068	5.88472
-10.802	0.454492
-12.0848	0.454492
-12.5393	0
-42.8607	0
-42.8607	-4
-42.8607	-8
-42.8607	-10
-42.8607	-15
-42.8607	-18
-42.8607	-22
-42.8607	-33
-42.8607	-35
-42.8607	-40
57.1393	-40
57.1393	-35
57.1393	-33
57.1393	-22
57.1393	-18
57.1393	-15
57.1393	-10
57.1393	-8
57.1393	-4
57.1393	0
18.5965	9e-016
17.0673	1.01997
13.5675	1.04805
13.1393	5.33018

Material Boundary

X Y -12.5393 0 12.5393 0

Material Boundary

X Y -42.8607 -4 57.1393 -4

Material Boundary

X Y -42.8607 -8 57.1393 -8

GENERAL CONTRACTOR Consorzio IricAty Due Consorzio IricAty Due Consorzio IricAty Due Consorzio IricAty Due Progetto Progetto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 10 of 10

EI2RBRI36E0001A

208 di 309

12

Material Boundary

X	Y
-42.8607	-10
57.1393	-10

Material Boundary

X	Υ
-42.8607	-15
57.1393	-15

Material Boundary

X	γ
-42.8607	-22
57.1393	-22

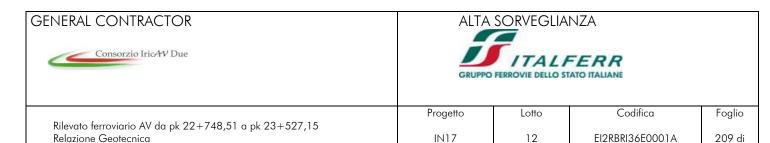
Material Boundary

X	Y
-42.8607	-33
57.1393	-33

Material Boundary

X	Y
-42.8607	-35
57.1393	-35

Material Boundary


X	Y
12.5393	-0.535483
9.23928	-0.535483
9.23928	-2.08548
10.2393	-2.08548
13.8393	-2.08548
14.8393	-2.08548
14.8393	-0.535483
13.7259	-0.535483
13.6723	0
13.5675	1.04805

Material Boundary

X	Y
12.1393	6.19158
12.1393	5.33018
12.5393	5.33018
12.5393	0
12.5393	-0.535483

Material Boundary

X	Y
13.6723	0
18.5965	0

SLEGNTRANCT 7.03

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 11

309

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: 36 E STAT-tratto 2-2 muri_sis.slim

Slide Modeler Version: 7.038

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 07/10/2021, 10:18:46

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Failure Direction: Left to Right
Data Output: Standard
Maximum Material Properties: 20
Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: A2+M2+R2 (SIS)

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1.1
Shear strength	1.1
Compressive strength	1.1
Bond strength	1.1
Seismic Coefficient	1

Analysis Options

Slices Type: Vertical

Analysis Methods Used

Bishop simplified
Janbu simplified

Number of slices: 50

Tolerance: 0.005

Maximum number of iterations: 75

Check malpha < 0.2: Yes

Create interslice boundaries at intersections with water tables and piezos: Initial trial value of FS: 1

Steffensen Iteration: Yes

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI36E0001A
210 di
309

SLEGNTRASET 7.03

rocscience

SLIDE - An Interactive Slope Stability Program: Page 2 of 11

Groundwater Analysis

 Groundwater Method:
 Water Surfaces

 Pore Fluid Unit Weight [kN/m3]:
 9.81

 Use negative pore pressure cutoff:
 Yes

 Maximum negative pore pressure [kPa]:
 0

 Advanced Groundwater Method:
 None

Random Numbers

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular
Search Method: Slope Search
Number of Surfaces: 5000
Upper Angle: Not Defined
Lower Angle: Disabled
Reverse Curvature: Invalid Surfaces
Minimum Elevation: Not Defined
Minimum Depth: Not Defined
Minimum Area: Not Defined
Minimum Weight: Not Defined

Seismic

Advanced seismic analysis: No Staged pseudostatic analysis: No

Loading

Seismic Load Coefficient (Horizontal): 0.081 Seismic Load Coefficient (Vertical): -0.04

4 Distributed Loads present

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due GRUPPO FERROVIE DELLO STATO ITALIANE

Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI36E0001A
211 di
309

rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 11

Distributed Load 1
Distribution: Constant
Magnitude (kPa): 14.4
Orientation: Vertical
Load Action: Live

Distributed Load 2
Distribution: Constant
Magnitude [kPa]: 14.4
Orientation: Vertical
Load Action: Live

Distributed Load 3
Distribution: Constant
Magnitude (kPa): 12.2
Orientation: Vertical
Load Action: Live

Distributed Load 4

Distribution: Constant

Magnitude (kPa): 12.2

Orientation: Vertical

Load Action: Live

Material Properties

Property	Rilevato	U4	u3a/u3b	U3b_2	U3b_3	U3b_4	U2	CA
Color								
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Undrained	Undrained	Undrained	Undrained	Infinite strength
Unit Weight [kN/m3]	20	19	18.5	18.5	18.5	18.5	19	25
Cohesion (kPa)	0	0	0					
Friction Angle [deg]	38	34	32					
Cohesion Type				40	65	80	120	
Water Surface	None	None	None	None	None	None	None	None
Ru Value	0	0	0	0	0	0	0	0

Property	U4-2	U4-3
Color		
Strength Type	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	19	19
Cohesion (kPa)	0	0
Friction Angle [deg]	34	38
Water Surface	None	None
Ru Value	0	0

Support Properties

Pali Fond Muro

Support Type: Micro-Pile Force Application: Passive Out-of-Plane Spacing: 2.4 m Pile Shear Strength: 127 kN Force Direction: Perpendicular to Pile

Global Minimums

Method: bishop simplified

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Consorzio Iric/AV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

IN17

SLEGNTRPSET 7.0

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 4 of 11

EI2RBRI36E0001A

212 di 309

12

rocscience	
FS	1.149750
Center:	12.926, 17.226
Radius:	24.682
Left Slip Surface Endpoint:	-9.416, 6.736
Right Slip Surface Endpoint:	30.6020.000

 Right Slip Surface Endpoint.
 42565.6 kN-m

 Resisting Moment:
 42565.6 kN-m

 Driving Moment:
 37021.6 kN-m

 Passive Support Moment:
 2239.77 kN-m

 Total Slice Area:
 355.661 mz

 Surface Horizontal Width:
 40.018 m

 Surface Average Height:
 7.13832 m

Method: janbu simplified

FS	1.037370
Center:	10.259, 14.829
Radius:	21.324
Left Slip Surface Endpoint:	-9.469, 6.735
Right Slip Surface Endpoint:	25.582, -0.000
Resisting Horizontal Force:	1334.91 kN
Driving Horizontal Force:	1286.83 kN
Passive Horizontal Support Force:	96.2121 kN
Total Slice Area:	242.62 m2
Surface Horizontal Width:	35.0503 m
Surface Average Height:	6.92204 m

Valid / Invalid Surfaces

Method: bishop simplified

Number of Valid Surfaces: 689 Number of Invalid Surfaces: 4311

Error Codes:

Error Code -99 reported for 4107 surfaces Error Code -114 reported for 204 surfaces

Method: janbu simplified

Number of Valid Surfaces: 689 Number of Invalid Surfaces: 4311

Error Codes:

Error Code -99 reported for 4107 surfaces Error Code -114 reported for 204 surfaces

Error Codes

The following errors were encountered during the computation:

-99 = Slip surface intersects an infinite strength material. If infinite strength regions are defined for a model, a large number of potential slip surfaces may show this error code. This is Normal.

-114 = Surface with Reverse Curvature.

Slice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.14975										

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

rocscience

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 5 of 11

EI2RBRI36E0001A

213 di 309

12

roc	e server rest												
			Angle		Base	Base	Shear	Shear	Base	Pore	Effective	Base	Effective
Slice	Width	Weight	of Slice	Base	Cohesion	Friction	Stress	Strength	Normal	Pressure	Normal	Vertical	Vertical
Number	[m]	[kN]	Base	Material	[kPa]	Angle	[kPa]	[kPa]	Stress	[kPa]	Stress	Stress	Stress
			[degrees]			[degrees]			[kPa]		[kPa]	[kPa]	[kPa]
			-62.8703	Rilevato	0		3.90184	4.48614	7.17749	0	7.17749	14.7926	14.7926
2	0.777574	34.2596	-59.1313	Rilevato	0	32.0066	12.042	13.8453	22.1515	0	22.1515	42.2972	42.2972
3	0.777574	53.6233	-55.7674	Rilevato	0	32.0066	21.3686	24.5685	39.3079	0	39.3079	70.7123	70.7123
4	0.777574	70.8013	-52.6742	Rilevato	0	32.0066	32.3132	37.1521	59.4407	0	59.4407	101.818	101.818
5	0.777574	86.245	-49.7875	Rilevato	0	32.0066	41.1425	47.3036	75.6823	0	75.6823	124.346	124.346
6	0.777574	100.258	-47.0644	Rilevato	0	32.0066	51.6044	59.3322	94.9272	0	94.9272	150.391	150.391
7	0.846815	123.163	-44.3643	u3a/u3b	0	26.5603	50.7122	58.3064	116.637	0	116.637	166.237	166.237
8	0.846815	135.985	-41.6734	u3a/u3b	0	26.5603	55.9014	64.2726	128.572	0	128.572	178.331	178.331
9	0.846815	147.708	-39.0909	u3a/u3b	0	26,5603	58.4297	67.1796	134.387	0	134.387	181.856	181.856
10	0.846815	157.983	-36.6	u3a/u3b	0	26.5603	63.5977	73.1215	146.274	0	146.274	193.505	193.505
11	0.846815	166.985	-34.1873	u3a/u3b	0	26.5603	71.8226	82.578	165.191	0	165.191	213.978	213.978
12	0.846815	175.18	-31.8419	u3a/u3b	0	26.5603	77.0984	88.6439	177.325	0	177.325	225.206	225.206
13	0.787211	169.554	-29.6335	U3b 2	28.5714	0	24.8501	28.5714	219.246	0	219.246	233.382	233.382
14	0.787211	175.985	-27.5516	U3b 2	28.5714	0	24.8501	28.5714	218.789	0	218.789	231.754	231.754
15	0.787211	188.718	-25,5085	U3b 2	28.5714	0	24.8501	28.5714	232.69	0	232.69	244,548	244,548
	0.787211		-23,4997	U3b 2	28.5714	0	24.8501	28.5714	235.361	0	235.361	246.166	246,166
17	0.787211	197.955	-21.521	U3b 2	28.5714	0	24.8501	28.5714	231.607	0	231.607	241.406	241,406
18	0.787211		-19.569	U3b 2	28.5714	0	24.8501	28.5714	237.896		237.896	246.73	246.73
19	0.787211		-17.6404	U3b 2	28.5714	0	24.8501	28.5714	268.035	0	268.035	275.938	275.938
20			-15.7322	U3b 2	28.5714	0	24.8501	28.5714	215.32		215.32	222.32	222.32
	0.787211		-13.8418	U3b_2	28.5714	0	24.8501	28.5714	164.275		164.275	170.398	170.398
	0.787211		-11.9667	U3b_2	28.5714	0	24.8501	28.5714	168.182	0	168.182	173,449	173,449
	0.787211		-10.1045	_	28.5714	0	24.8501	28.5714	163.124	0	163.124	167.552	167.552
24	0.787211		-10.1045 -8.25301	U3b_2 U3b_2	28.5714	0	24.8501	28.5714	164.858	0	164.858	168,462	168,462
25	0.787211		-6.41019	U3b_2	28.5714	0	24.8501	28.5714	163,515	0	163.515	166.307	166,307
26	0.787211		-4.57402	_		0	24.8501			0			
26	0.787211		-4.57402 -2.74254	U3b_2 U3b_2	28.5714 28.5714	0	24.8501	28.5714	155.659 147.269	0	155.659 147.269	157.647 148.46	157.647 148.46
_				_		_				_			
28	0.787211		-0.91387	U3b_2	28.5714	0	24.8501	28.5714	138.429	0	138.429	138.826	138.826
	0.787211		0.91387	U3b_2	28.5714	0	24.8501	28.5714	132.808	0	132.808	132.411	132.411
30	0.787211		2.74254	U3b_2	28.5714	0	24.8501	28.5714	133.047	0	133.047	131.856	131.856
	0.787211	107.39	4.57402	U3b_2	28.5714	0	24.8501	28.5714	132.95	0	132.95	130.962	130.962
	0.787211		6.41019	U3b_2	28.5714	0	24.8501	28.5714	132.409	0	132.409	129.618	129.618
33	0.787211	104.812	8.25301	U3b_2	28.5714	0	24.8501	28.5714	131.423	0	131.423	127.818	127.818
	0.787211		10.1045	U3b_2	28.5714	0	24.8501	28.5714	129.986	0	129.986	125.558	125.558
35	0.787211	100.723	11.9667	U3b_2	28.5714	0	24.8501	28.5714	128.098	0	128.098	122.831	122.831
36	0.787211	98.0953	13.8418	U3b_2	28.5714	0	24.8501	28.5714	125.749	0	125.749	119.626	119.626
37	0.787211	95.0682	15.7322	U3b_2	28.5714	0	24.8501	28.5714	122.935	0	122.935	115.935	115.935
38	0.787211	91.6306	17.6404	U3b_2	28.5714	0	24.8501	28.5714	119.645	0	119.645	111.743	111.743
39	0.787211	87.7701	19.569	U3b_2	28.5714	0	24.8501	28.5714	115.869	0	115.869	107.035	107.035
40	0.787211	83.472	21.521	U3b_2	28.5714	0	24.8501	28.5714	111.593	0	111.593	101.794	101.794
41	0.787211	78.7192	23.4997	U3b_2	28.5714	0	24.8501	28.5714	106.803	0	106.803	95.9977	95.9977
42	0.787211	73.4916	25.5085	U3b 2	28.5714	0	24.8501	28.5714	101.48	0	101.48	89.6226	89.6226
43	0.787211	67.7658	27.5516	U3b 2	28.5714	0	24.8501	28.5714	95.6047	0	95.6047	82.6401	82.6401
44	0.787211	61.5145	29.6335	U3b 2	28.5714	0	24.8501	28.5714	89.1526	0	89.1526	75.0165	75.0165
-	0.846815		31.8419	u3a/u3b	0	26,5603	39.5309	45.4506	90.9202	0	90.9202	66.37	66.37
46	0.846815	49.9197	34.1873	u3a/u3b	0	26,5603	34.9181	40.1471	80.311	0	80.311	56.592	56.592
47			36.6	u3a/u3b	0	26,5603	29,4735	33.8871	67.7882	0	67.7882	45.8993	45.8993
	0.846815		39.0909	u3a/u3b	0	26,5603	22.9943	26.4377	52.8866	0	52.8866	34.2057	34.2057
-	0.846815		41.6734	u3a/u3b	0	26,5603	15.181	17.4544	34.9161	0	34.9161	21,4029	21.4029
50			44.3643	u3a/u3b	0	26,5603	5.56362	6.39677	12.7962		12.7962	7.35466	7.35466
30	J.046513	0.40/3/	44.3045	use/us0	0	26.3603	3.30302	0.330//	12./502	0	12./902	7.53466	7.33466

Global Minimum Query (janbu simplified) - Safety Factor: 1.03737

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15Relazione Geotecnica IN17 12 EI2RBRI36E0001A 214 di

309

	I rocs	science	,						SLIDE	E - An Inte	ractive Sk	pe Stability	Program: I	Page 6 of 11
	Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
	1	0.734111	11.8937	-65.328	Rilevato	0	32.0066	4.05425	4.20576	6.72889	0	6.72889	15.5548	15.5548
	2	0.734111	33.645	-60.934	Rilevato	0	32.0066	12.7213	13.1967	21.1138	0	21.1138	44.0014	44.0014
	3	0.734111	51.991	-57.088	Rilevato	0	32.0066	21.5858	22.3925	35.8263	0	35.8263	69.1776	69.1776
	4	0.734111	67.9532	-53.6099	Rilevato	0	32.0066	34.2364	35.5158	56.8227	0	56.8227	103.277	103.277
	5	0.734111	82.1033	-50.3998	Rilevato	0	32.0066	42,4548	44.0413	70.4629	0	70.4629	121.782	121.782
	6	0.734111	94.8007	-47.3952	Rilevato	0	32.0066	54.5209	56.5583	90.4891	0	90.4891	149.77	149.77
	7	0.664377	95.4153	-44.6826	u3a/u3b	0	26.5603	53.6827	55.6888	111.401	0	111.401	164.492	164.492
	8	0.664377	103.423	-42.2218	u3a/u3b	0	26.5603	59.0299	61.2358	122.497	0	122.497	176.063	176.063
	9	0.664377	110.801	-39.8536	u3a/u3b	0	26.5603	63.1867	65.548	131.123	0	131.123	183.869	183.869
	10	0.664377	117.615	-37.5647	u3a/u3b	0	26.5603	64.8185	67.2408	134.51	0	134.51	184.363	184.363
	11	0.664377	123.76	-35.3443	u3a/u3b	0	26.5603	69.4029	71.9965	144.023	0	144.023	193.243	193.243
	12	0.664377	129.076	-33.1834	u3a/u3b	0	26.5603	74.639	77.4283	154.889	0	154.889	203.701	203.701
	13	0.664377	133.942		u3a/u3b	0	26.5603	82.2168	85.2892	170.614	0	170.614	220.161	220.161
	14	0.664377	138.402	-29.0117	u3a/u3b	0	26.5603	86.1697	89.3899	178.817	0	178.817	226.605	226.605
	15	0.714844	153,455	-26.9139	U3b_2	28.5714	0	27.5421	28.5714	218.716	0	218.716	232.697	232.697
	16	0.714844	157.73	-24.779	U3b_2	28.5714	0	27.5421	28.5714	219.118	0	219.118	231.832	231.832
	17	0.714844	167.077	-22.6802	U3b_2	28.5714	0	27.5421	28.5714	227.274	0	227.274	238.784	238.784
	18	0.714844	172.229	-20.6131	U3b_2	28.5714	0	27.5421	28.5714	235.343	0	235.343	245.703	245.703
		0.714844		-18.5738	U3b_2	28.5714	0	27.5421	28.5714	228.843	0	228.843	238.098	238.098
	20	0.714844	177.976	-16.5586	U3b_2	28.5714	0	27.5421	28.5714	230.825	0	230.825	239.014	239.014
	21	0.714844	182.409	-14.5643	U3b_2	28.5714	0	27.5421	28.5714	237.811	0	237.811	244.967	244.967
	22	0.714844	206.811	-12.5879	U3b_2	28.5714	0	27.5421	28.5714	271.587	0	271.587	277.737	277.737
	23	0.714844	147.352	-10.6266	U3b_2	28.5714	0	27.5421	28.5714	192.72	0	192.72	197.888	197.888
		0.714844		-8.67785	U3b_2	28.5714	0	27.5421	28.5714	157.514	0	157.514	161.718	161.718
	25	0.714844	121.597	-6.73918	U3b_2	28.5714	0	27.5421	28.5714	160.045	0	160.045	163.299	163.299
		0.714844		-4.80825	U3b_2	28.5714	0	27.5421	28.5714	154.969	0	154.969	157.286	157.286
		0.714844		-2.88278	U3b_2	28.5714	0	27.5421	28.5714	154.104	0	154.104	155.491	155.491
		0.714844	115.03	0.960565	U3b_2 U3b_2	28.5714 28.5714	0	27.5421	28.5714	154.017	0	154.017 146.754	154.479	154.479
		0.714844		2.88278	U3b 2	28.5714	0	27.5421	28.5714	138.098	0	138.098	136.711	136.711
		0.714844		4.80825	U3b 2	28.5714	0	27.5421	28.5714	129.02	0	129.02	126.703	126.703
		0.714844		6.73918	U3b_2	28.5714	0	27.5421	28.5714	119.571	0	119.571	116.317	116.317
		0.714844		8.67785	U3b 2	28.5714	0	27.5421	28.5714	115.154	0	115.154	110.951	110.951
		0.714844		10.6266	U3b 2	28.5714	0	27.5421	28.5714	113.134	0	113.958	108.791	108.791
		0.714844	79.067	12.5879	U3b 2	28.5714	0	27.5421	28.5714	112.332	0	112.332	106.182	106.182
		0.714844		14,5643	U3b 2	28.5714	0	27.5421	28.5714	110.271		110.271	103.115	103.115
		0.714844		16,5586	U3b 2	28.5714	0	27.5421	28.5714	107.767	0	107.767	99.5783	99.5783
		0.714844		18.5738	U3b 2	28.5714		27.5421	28.5714	104.813	0	104.813	95.5577	95.5577
		0.714844		20.6131	U3b 2	28.5714		27.5421	28.5714	101.396		101.396	91.0368	91.0368
		0.714844		22.6802	U3b 2	28.5714	0	27.5421	28.5714	97.5062	0	97.5062	85.9962	85.9962
		0.714844		24,779	U3b 2	28.5714	0	27.5421	28.5714	93.1269	0	93.1269	80.4129	80.4129
		0.714844	55.298	26.9139	U3b 2	28.5714		27.5421	28.5714	88.2414		88.2414	74.2601	74.2601
	_	0.664377			u3a/u3b	28.5/14	_	44.5642	46.2296	92,4785	0	92.4785	67.7642	67.7642
		0.664377			u3a/u3b	0		41.3822	42.9287	85.8754	0	85.8754	60.9371	60.9371
		0.664377			u3a/u3b	0		41.3822 37.6606	39.068	78.1523	0	78.1523	53.5235	53.5235
		0.664377				0	26,5603	33.296	34.5403	69.095	0	69.095	45.4814	45.4814
		0.664377			u3a/u3b u3a/u3b	0		28.1461	29.1979	58.408	0	58.408	45.4814 36.7602	36.7602
		0.664377			u3a/u3b	0		22.0074	22.8298	45.6691	0	45.6691	27.2983	27.2983
		0.664377			u3a/u3b	0		14.5759	15.1206	30.2475	0	30.2475	17.0208	17.0208
		0.664377			u3a/u3b	0	26,5603	5.3709	5.57161	11.1455	0	11.1455	5.83381	5.83381
ı		2.00-2//	4,000,04	44.0020	-34/436		20.2003	2.2722	2.27242	44.4722			2.02231	2.02202

Interslice Data

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

S.DENTRACT 7.08

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 7 of 11

EI2RBRI36E0001A

215 di 309

12

I rocs	science					2
	X	Υ	Interslice	Interslice	Interslice	_
Slice Number	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle	
Number	[m]	[m]	[kN]	[kN]	[degrees]	
1	-9.41598	6.7364	0	0	0	
2	-8.63841	5.21883	8.82888	0	0	
3	-7.86084	3.91798	31.056	0	0	
4	-7.08326	2.77522	63.7035	0	0	
5	-6.30569	1.75546	104.928	0	0	
6	-5.52812	0.835727	149.529	0	0	
7	-4.75054	0	196.857	0	0	
8	-3.90373	-0.828231	260.492	0	0	
9	-3.05691	-1.58201	321.084	0	0	
10	-2.2101	-2.26997	376.022	0	0	
11	-1.36328	-2.89887	426.955	0	0	
12	-0.516467	-3.47409	474.681	0	0	
13	0.330349	-4	516.838	0	0	
14	1.11756	-4.44781	609.19	0	0	
15	1.90477	-4.85851	693.739	0	0	
16	2.69198	-5.23413	776.867	0	0	
17	3.47919	-5.57641	811.703	0	0	
18	4.26641	-5.88684	880.072	0	0	
19	5.05362	-6.16667	943.469	0	0	
20	5.84083	-6.417	1009.33	0	0	
21	6.62804	-6.63875	1052.28	0	0	
22	7.41525	-6.83272	1034.06	0	0	
23	8.20246	-6.99957	1054.08	0	0	
24	8.98968	-7.13986	1068.53	0	0	
25	9.77689	-7.25404	1078.98	0	0	
26	10.5641	-7.34248	1084.93	0	0	
27	11.3513	-7.40546	1085.64	0	0	
28	12.1385	-7.44317	1081.49	0	0	
29	12.9257	-7.45573	1072.89	0	0	
30	13.7129	-7.44317	1060.46	0	0	
31	14.5002	-7.40546	1044.63	0	0	
32	15.2874	-7.34248	1025.4	0	0	
33	16.0746	-7.25404	1002.73	0	0	
34	16.8618	-7.13986	976.655	0	0	
35	17.649	-6.99957	947.197	0	0	
36	18.4362	-6.83272	914.42	0	0	
37	19.2234	-6.63875	878.412	0	0	
38	20.0106	-6.417	839.289	0	0	
39	20.7978	-6.16667	797.198	0	0	
40	21.5851	-5.88684	752.322	0	0	
41	22.3723	-5.57641	704.879	0	0	
42	23.1595	-5.23413	655.136	0	0	
43	23.9467	-4.85851	603.408	0	0	
44	24.7339	-4.44781	550.071	0	0	
45	25.5211	-4	495.568	0	0	
46	26.3679	-3.47409	419.019	0	0	
47	27.2147	-2.89887	347.297	0	0	
48	28.0616	-2.26997	282.986	0	0	
49	28.9084	-1.58201	229.574	0	0	
50	29.7552	-0.828231	191.928	0	0	
51	30.602	-4.19887e-016	0	0	0	

GENERAL CONTRACTOR Consorzio IricAt/ Due Consorzio IricAt/ Due Consorzio IricAt/ Due Consorzio IricAt/ Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

IN17

Relazione Geotecnica

SLIDE - An Interactive Slope Stability Program: Page 8 of 11

EI2RBRI36E0001A

216 di 309

12

	rocs	science					
	Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interstice Shear Force [kN]	Interslice Force Angle [degrees]	
	1	-9.46864	6.73482	0	0	0	
	2	-8.73453	5.13669	8.74125	0	ő	
	3	-8.00042	3.81591	30.0158	0	0	
	4	-7.26631	2.68167	59.0189	0	0	
	;	-6.53219	1.68559	95.994	0	0	
	6	-5.79808	0.798206	134.01	0	0	
	7	-5.06397	-1.77636e-015	173.9	0	0	
	8	-4.3996	-0.657058	219.166	0	0	
	9	-3.73522	-1.25994	262 183	0	Ö	
	10	-3.07084	-1.81453	301.904	0	0	
	11	-2.40647	-2.32552	337.107	0	0	
	11	-1.74209	-2.32332 -2.7967	368.889	0	0	
	13	-1.07771	-3.23118	397.06	0	0	
	14	-0.413334	-3.63155	421.605	0	0	
	15	0.251044	-3.63133	441.461	0	0	
						- 1	
	16 17	0.965888	-4.36288 -4.69287	513.572 578.969	0	0	
					•	0	
	18	2.39558	-4.9916	640.712	0	0	
	19	3.11042	-5.26048	651.883	0	0	
	20	3.82527	-5.50069	701.366	0	0	
	21	4.54011	-5.71323	745.157	0	0	
	22	5.25495	-5.89896	784.415	0	0	
	23	5.9698	-6.05858	824.834	0	0	
	24	6.68464	-6.19271	842.933	0	0	
	25	7.39949	-6.30181	803.814	0	0	
	26	8.11433	-6.38628	807.497	0	0	
	27	8.82918	-6.44641	806.617	0	0	
	28	9.54402	-6.48241	801.857	0	0	
	29	10.2589	-6.4944	793.335	0	0	
	30	10.9737	-6.48241	780.715	0	0	
	31	11.6886	-6.44641	764.304	0	0	
	32	12.4034	-6.38628	744.503	0	0	
	33	13.1182	-6.30181	721.733	0	0	
	34	13.8331	-6.19271	696.176	0	0	
	35	14.5479	-6.05858	667.768	0	0	
	36	15.2628	-5.89896	636.556	0	0	
	37	15.9776	-5.71323	602.61	0	0	
	38	16.6925	-5.50069	566.026	0	0	
	39	17.4073	-5.26048	526.928	0	0	
	40	18.1222	-4.9916	485.47	0	0	
	41	18.837	-4.69287	441.843	0	0	
	42	19.5518	-4.36288	396.278	0	0	
	43	20.2667	-4	349.051	0	0	
	44	20.9311	-3.63155	289.173	0	0	
	45	21.5954	-3.23118	230.718	0	0	
	46	22.2598	-2.7967	174.746	0	0	
	47	22.9242	-2.32552	122.622	0	0	
	48	23.5886	-1.81453	76.1408	0	ő	
	49	24.253	-1.25994	37.7247	0	0	
	50	24.9173	-0.657058	10.7609	0	ő	
	51	25.5817	-5.28556e-016	0	0	0	
١					•	•	

List Of Coordinates

Distributed Load

X Y -2.25 6.95138 -7.32661 6.79908

Distributed Load

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 217 di

SLEGNTRANCT 7.000

rocscience

SLIDE - An Interactive Slope Stability Program: Page 9 of 11

309

X Y 3.24403 6.78655 -2.25 6.95138

Distributed Load

Distributed Load

X Y -3.22626 6.92209 -5.74861 6.84642

External Boundary

X	Y
-11.0893	0
-50	0
-50	-4
-50	-8
-50	-10
-50	-18
-50	-22
-50	-33
-50	-35
-50	-40
50	-40
50	-35
50	-33
50	-22
50	-18
50	-10
50	-8
50	-4
50	0
13.0415	-Be-016
9.87509	2.11198
6.37459	2.14699
5.99999	5.89298
5.99999	6.89298
4.99999	6.89298
4.99999	6.73388
3.24403	6.78655
-2.25	6.95138
-9.50003	6.73387
-9.50003	6.89298
-10.5	6.89298
-10.5	5.89298

Material Boundary

X	Y
-9.90003	0
5.39999	0

Material Boundary

X	Y
-50	-4
50	-4

Material Boundary

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 218 di 309

_	rocsci€	ence

SLDENTRPRET 7.000

SLIDE - An Interactive Slope Stability Program: Page 10 of 11

_			_:			
·	\cap	-55		Θľ	٦ſ	76
_	\sim	100	-	w.	-15	

X Y 50 -8

Material Boundary

X Y -50 -10 50 -10

Material Boundary

X Y -50 -18 50 -18

Material Boundary

X Y -50 -22 50 -22

Material Boundary

х ү -50 -33 50 -33

Material Boundary

X Y -50 -35 50 -35

Material Boundary

6.58929 -8e-016 13.0415 -8e-016

Material Boundary

X -11.0893 -11.0893 -0.481777 -12.8 -0.481777 -12.8 -2.03178 -6.35003 -2.03178 -6.35003 -0.481777 -9.90003 -0.481777 -9.90003 -9.90003 5.89298 -9.50003 5.89298 -9.50003 6.73387

Material Boundary

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Progetto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15Relazione Geotecnica IN17 12 EI2RBRI36E0001A 219 di 309

SLEGNTRAKET 7.009

SLIDE - An Interactive Slope Stability Program: Page 11 of 11

٠,	rocscience						
	00000	1100					
	X	Y					
	4.99999	6.73388					
	4.99999	5.89298					
	5.39999	5.89298					
	5.39999	0					
	5.39999	-0.440029					
	1.84998	-0.440029					
	1.84998	-1.99003					
	2.84998	-1.99003					
	7.29998	-1.99003					
	8.29998	-1.99003					
	8.29998	-0.440029					
	6.63329	-0.440029					
	6.58929	0					
	6.37459	2.14699					

GENERAL CONTRACTOR Consorzio Iric-\(\frac{1}{2}\) Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	220 di 309

ALLEGATO 5 - TABULATI DI SETTLE 3D - ANALISI SLE

Page 1 of 3

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri36E sezione1.s3z Project Title: Rilevato Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq Groundwater method: Water Table Water Unit Weight: 9.81 kN/m³ Depth to water table: 3 [m]

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 0 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.101316
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.101316
Loading Stress [kPa]	0	202.394
Effective Stress [kPa]	-0	371.913
Total Stress [kPa]	0	676.023
Total Strain	-0	0.0165817
Pore Water Pressure [kPa]	0	304.11
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	1.9	371.848
Over-consolidation Ratio	1	1.26305
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 13 m Width: 100 m

Rotation angle: 0 degrees Load Type: Flexible

Ri36E sezione1.s3z 08/06/2021, 14:59:10

Page 2 of 3

Area of Load: 1300 m² Load: 11.6 kPa Depth: 0 m

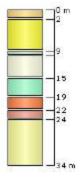
Installation Stage: Stage 1

Coordinates

X [m]	Y [m]
-6.49696	-50
6.50304	-50
6.50304	50
-6.49696	50

Embankments

1. Embankment


Center Line: (0, -50) to (0, 50) Number of Layers: 1 Near End Angle: 90 degrees Far End Angle: 90 degrees

Base Width: 37

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m ³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	34	6.9	20	34	0

Soil Layers

Layer #	Type	Thickness [m]	Depth [m]
1	u4	2	0
2	U4-2	7	2
3	3b-1	1	9
4	U4-3	5	10
5	3b-2	4	15
6	U4-4	3	19
7	u2	2	22
8	U2-6	10	24

Ri36E sezione1.s3z 08/06/2021, 14:59:10

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15Relazione Geotecnica IN17 12 EI2RBRI36E0001A 223 di 309

Page 3 of 3

Soil Properties

Property	3b-1	u2	u4	3b-2	U4-3	U4-2	U4-4	U2-6
Color								
Unit Weight [kN/m ³]	18	18	19	18	18	18	19	19
Saturated Unit Weight [kN/m ³]	18	18	18	18	18	18	18	18
Immediate Settlement	Enabled							
Es [kPa]	8000	25000	20000	15000	60000	50000	1e+006	150000
Esur [kPa]	6000	25000	20000	15000	60000	50000	100000	150000

Query Points

Point #	(X,Y) Location	Number of Divisions
1	0.00303833, 4.9738e-014	Auto: 79

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-40, 0	40, 0	100	Auto: 79

Page 1 of 3

Settle3D Analysis Information Rilevato

Project Settings

Document Name: Ri36E.s3z Project Title: Rilevato

Date Created: 08/06/2021, 14:59:10 Stress Computation Method: Boussinesq Groundwater method: Water Table Water Unit Weight: 9.81 kN/m³ Depth to water table: 3 [m]

Stage Settings

Stage #	Name
1	Stage 1

Results

Time taken to compute: 1.46386 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [m]	0	0.185414
Consolidation Settlement [m]	0	0
Immediate Settlement [m]	0	0.185414
Loading Stress [kPa]	0	220.065
Effective Stress [kPa]	-0	441.149
Total Stress [kPa]	0	853.169
Total Strain	-0	0.017301
Pore Water Pressure [kPa]	0	412.02
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [kPa]	2.7	441.078
Over-consolidation Ratio	1	1
Void Ratio	0	0
Hydroconsolidation Settlement [m]	0	0

Loads

1. Rectangular Load

Length: 13 m Width: 100 m

Rotation angle: 0 degrees Load Type: Flexible

Ri36E.s3z 08/06/2021, 14:59:10

Page 2 of 3

Area of Load: 1300 m² Load: 11.6 kPa Depth: 0 m

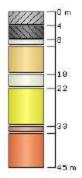
Installation Stage: Stage 1

Coordinates

X [m]	Y [m]
-6.49696	-50
6.50304	-50
6.50304	50
-6.49696	50

Embankments

1. Embankment


Center Line: (0, -50) to (0, 50) Number of Layers: 1 Near End Angle: 90 degrees Far End Angle: 90 degrees

Base Width: 34

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m ³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	34	7.3	20	34	0

Soil Layers

Layer#	Туре	Thickness [m]	Depth [m]
1	COLONNE 1	4	0
2	COLONNE 2	4	4
3	3b-2	2	8
4	u4	8	10
5	3B-3	4	18
6	U4-2	11	22
7	u2	2	33
8	U43	10	35

Ri36E.s3z 08/06/2021, 14:59:10

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica RIN17 RELEZEBRI 36E0001A RILEVATOR ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio RILEVATOR IN17 12 EI2RBRI 36E0001A 226 di

Page 3 of 3

309

Soil Properties

Property	3b-2	u2	u4	COLONNE 1	3B-3	U4-2	U43	COLONNE 2
Color								
Unit Weight [kN/m³]	18.5	18	19	18	18.5	19	19	19
Saturated Unit Weight [kN/m ³]	18	18	18	18	18	18	18	18
Immediate Settlement	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled	Enabled
Es [kPa]	8000	20000	40000	23200	15000	60000	1e+006	10300
Esur [kPa]	8000	20000	40000	23200	15000	60000	100000	10300

Query Points

Point #	(X,Y) Location	Number of Divisions
1	0.00303833, 4.9738e-014	Auto: 83

Query Lines

	Line#	Start Location	End Location	Horizontal Divisions	Vertical Divisions
ı	1	-40, 0	40, 0	100	Auto: 83

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI PERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	227 di 309

GENERAL CONTRACTOR Consorzio Iric-YV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	228 di 309

ALLEGATO 6 - TABULATI DI CALCOLO CAPACITÀ PORTANTE

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 229 di 309

*** PAL ***
Programma per l'analisi della capacita' portante assiale di un palo di fondazione

(C) G.Guiducci - Studio SINTESI (RN - Italy) ottobre 2006

pag. 1

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Elemento cilindrico, Diametro fusto = 1000. mm

Criterio per la determinazione della portata di base in uno strato "i" quando la Qb,i ad esso attribuibile e' superiore a quella degli strati adiacenti:

La base del palo deve essere situata almeno: 3.0 * 1.000 = 3.00 m entro lo strato se quello sovrastante e' piu' debole

La base del palo deve essere situata almeno: 3.0 * 1.000 = 3.00 m sopra lo strato sottostante se esso e' piu' debole

La variazione di Qb viene assunta lineare dal passaggio di strato

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 230 di 309

pag. 2

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 1 "S " (Incoerente) da .00 a 2.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 1500. a 1500. kPa

Strato 2 "S " (Incoerente) da 2.00 a 9.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 1500. a 1500. kPa

Strato 3 "LA " (Coesivo) da 9.00 a 10.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 50.0 a 50.0 kPa

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 231 di 309

pag. 3

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 4 "S " (Incoerente) da 10.00 a 15.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2000. a 2000. kPa

Strato 5 "LA " (Coesivo) da 15.00 a 19.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 85.0 a 85.0 kPa

Strato 6 "S " (Incoerente) da 19.00 a 32.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2500. a 2500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 232 di 309

pag. 4

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 7 "LA " (Coesivo) da 32.00 a 34.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 120.0 a 120.0 kPa

Strato 8 "G " (Incoerente) da 34.00 a 40.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 2.00 - .147 Z^ .75 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.80 * S'v

Qb variabile lin. da 3500. a 3500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 233 di 309

pag. 5

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

MOLTIPLICATORI per i parametri di calcolo

strato	Molt. Tau	Molt. Qb	Molt. Cu
1 "S " 2 "S "	1.00 1.00	1.00	 - -
3 "LA "	1.00	1.00	1.00
4 "S " 5 "LA "	1.00 1.00	1.00 1.00	1.00
6 "S "	1.00	1.00	-
7 "LA " 8 "G "	1.00 1.00	1.00 1.00	1.00
• •			

NOTA: i moltiplicatori non influenzano le limitazioni superiori o inferiori dei parametri

Per terreni coesivi: Criterio Tau = alfa * Cu

Cu	alfa
kPa	-
.0	.55
150.0	.55
250.0	.45
400.0	.45

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

ZZ	S'v	Sv	Cu	Tau/S'v	/ Tau	qb
m	kPa	kPa	kPa	-	kPa	kPa
2.00	38.0	38.0		1.15	43.8	1500.
2.50	47.5	47.5		1.11	52.8	1500.
3.00	57.0	57.0		1.08	61.3	1500.
3.50	61.5	66.5		1.04	64.1	1500.
4.00	66.0	76.0		1.01	66.7	1500.
4.50	70.5	85.5		.98	69.1	1500.
5.00	75.0	95.0		.95	71.4	1500.
5.50	79.5	104.5		.93	73.6	1500.
6.00	84.0	114.0		.90	75.6	1500.
6.50	88.5	123.5		.88	77.5	1325.
7.00	93.0	133.0		.85	79.2	1150.
7.50	97.5	142.5		.83	80.8	975.
8.00	102.0	152.0		.81	82.3	
8.50	106.5	161.5		.79	83.7	625.
9.00	111.0	171.0		.51	56.2	
9.50	115.3	180.3	50	.0 .2	4 27.	.5 450.
10.00	119.5	189.5	50		48 57	'.1 450.
10.50	124.0	199.0		.71	87.6	708.
11.00	128.5	208.5		.69	88.3	3 967.
11.50	133.0	218.0		.67	' 89.0	1225.
12.00	137.5	227.5		.65	89.6	1483.
12.50	142.0	237.0		.63		
13.00	146.5	246.5		.62	90.3	3 1656.
13.50	151.0	256.0		.60	90.6	1433.
14.00	155.5	265.5		.58	90.7	7 1210.
14.50	160.0	275.0		.57	90.7	7 988.
15.00	164.5	284.5		.42	68.7	765.
15.50	168.8	293.8	85	5.0 .2	28 46	i.8 765.
16.00	173.0	303.0		5.0 .2	27 46	
16.50	177.3	312.3	85	5.0 .2	26 46	6.8 765.

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

						_
ZZ	S'v	Sv	Cu Tau	ı/S'v	Tau	qb
m	kPa	kPa	kPa	-	kPa	kPa
						-
17.00	181.5	321.5	85.0	.26	46.8	765.
17.50	185.8	330.8	85.0	.25	46.8	765.
18.00	190.0	340.0	85.0	.25	46.8	765.
18.50	194.3	349.3	85.0	.24	46.8	765.
19.00	198.5	358.5	85.0	.33	66.3	765.
19.50	203.0	368.0		.42	84.9	1054.
20.00	207.5	377.5		.40	83.9	1343.
20.50	212.0	387.0		.39	82.8	1633.
21.00	216.5	396.5		.38	81.7	1922.
21.50	221.0	406.0		.36	80.4	2211.
22.00	225.5	415.5		.35	79.1	2500.
22.50	230.0	425.0		.34	77.7	2500.
23.00	234.5	434.5		.33	76.2	2500.
23.50	239.0	444.0		.31	74.6	2500.
24.00	243.5	453.5		.30	73.0	2500.
24.50	248.0	463.0		.29	71.3	2500.
25.00	252.5	472.5		.27	69.4	2500.
25.50	257.0	482.0		.26	67.5	2500.
26.00	261.5	491.5		.25	65.6	2500.
26.50	266.0	501.0		.25	66.5	2500.
27.00	270.5	510.5		.25	67.6	2500.
27.50	275.0	520.0		.25	68.8	2500.
28.00	279.5	529.5		.25	69.9	2500.
28.50	284.0	539.0		.25	71.0	2500.
29.00	288.5	548.5		.25	72.1	2500.
29.50	293.0	558.0		.25	73.3	2263.
30.00	297.5	567.5		.25	74.4	2027.
30.50	302.0	577.0		.25	75.5	1790.
31.00	306.5	586.5		.25	76.6	1553.
31.50	311.0	596.0		.25	77.8	1317.

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

STAMPA parametri per valutazione capacita' portante

						-
ZZ	S'v	Sv (Cu Tau	/S'v	Tau	qb
m	kPa	kPa	kPa	- k	(Pa	kPa
						-
32.00	315.5	605.5		.24	75.7	1080.
32.50	319.8	614.8	120.0	.23	73.5	1080.
33.00	324.0	624.0	120.0	.23	74.5	1080.
33.50	328.3	633.3	120.0	.23	75.5	1080.
34.00	332.5	642.5	120.0	.24	79.8	1080.
34.50	337.0	652.0		.25	84.3	1483.
35.00	341.5	661.5		.25	85.4	1887.
35.50	346.0	671.0		.25	86.5	2290.
36.00	350.5	680.5		.25	87.6	2693.
36.50	355.0	690.0		.25	88.8	3097.
37.00	359.5	699.5		.25	89.9	3500.
37.50	364.0	709.0		.25	91.0	3500.
38.00	368.5	718.5		.25	92.1	3500.
38.50	373.0	728.0		.25	93.3	3500.
39.00	377.5	737.5		.25	94.4	3500.
39.50	382.0	747.0		.25	95.5	3500.
40.00	386.5	756.5		.25	96.6	3500.

zz = Profondita' da piano campagna S'v = Tensione verticale efficace Sv = Tensione verticale totale

Cu = Coesione non drenata

Tau = Tensione di adesione laterale limite

qb = Portata di base limite unitaria

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Lp	QII	Qbl	Wp	Qu	Qd
m	kN	kN	kŃ	kN	kN
.00	0.	1178.	0.	1178.	1178.
.50	76.	1178.	2.	1252.	1252.
1.00	166.	1178.	5.	1339.	1339.
1.50	264.	1178.	7.	1435.	1435.
2.00	367.	1178.	9.	1535.	1535.
2.50	473.	1178.	12.	1640.	1640.
3.00	584.	1178.	14.	1748.	1748.
3.50	698.	1178.	16.	1859.	1859.
4.00	815.	1178.	19.	1974.	1974.
4.50	935.	1041.	21.	1954.	1954.
5.00	1058.	903.	24.	1938.	1938.
5.50	1184.	766.	26.	1924.	1924.
6.00	1312.	628.	28.	1912.	1912.
6.50	1442.	491.	31.	1902.	1902.
7.00	1552.	353.	33.	1873.	1873.
7.50	1618.	353.	35.	1936.	1936.
8.00	1684.	353.	38.	2000.	2000.
8.50	1798.	556.	40.	2314.	2314.
9.00	1936.	759.	42.	2653.	2653.
9.50	2075.	962.	45.	2993.	2993.
10.00	2216.	1165			
10.50	2357.	1233			
11.00	2498.	1300			
11.50	2640.	1125		. 3711	. 3711.
12.00	2783.	951.	57.	3677	
12.50	2925.	776.	59.	3642	
13.00	3050.	601.	61.	3590	
13.50	3141.	601.	64.	3678	
14.00	3214.	601.	66.	3749	
14.50	3288.	601.	68.	3820	. 3820.

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Lp m	QII kN	Qbl kN	Wp kN	Qu kN	Qd kN
15.00	3361.	601.	71.	3891.	3891.
15.50	3435.	601.	73.	3963.	3963.
16.00	3508.	601.	75.	4034.	4034.
16.50	3582.	601.	78.	4105.	4105.
17.00	3670.	601.	80.	4191.	4191.
17.50	3789.	828.	82.	4535.	4535.
18.00	3922.	1055	. 85.	4892.	4892.
18.50	4053.	1282	. 87.	5248.	5248.
19.00	4182.	1509	. 90.	5602.	5602.
19.50	4309.	1736	. 92.	5954.	5954.
20.00	4434.	1963	. 94.	6304.	6304.
20.50	4558.	1963		6425.	6425.
21.00	4679.	1963		6543.	
21.50	4797.	1963		6659	
22.00	4913.	1963		6773	
22.50	5026.	1963		6884	
23.00	5137.	1963		6992	
23.50	5244.	1963		7097	
24.00	5349.	1963		7199	
24.50	5453.	1963		7301	
25.00	5558.	1963		7404	
25.50	5665.	1963		7508	
26.00	5774.	1963		7615	
26.50	5885.	1963		7723	
27.00	5997.	1963		7833	
27.50	6111.	1778		7759	
28.00	6227.	1592		7687	
28.50	6345.	1406		7616	
29.00 29.50	6464. 6586.	1220		7548 7481	
29.50	0000.	1034	. 139.	7481	. /461.

GENERAL CONTRACTOR Consorzio Iric-W Due Consorzio Iric-W Due Consorzio Iric-W Due Consorzio Iric-W Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 239 di

309

pag. 11

MURO1 RI36E - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

STAMPA capacita' portante e relativi contributi

Lp m	QII kN		Wp kN	Qu kN	Qd kN
30.00 30.50 31.00 31.50 32.00 32.50 33.00 33.50 34.00 34.50	6706. 6823. 6940. 7057. 7179. 7308. 7441. 7576. 7713.	848. 848. 848. 848. 1165. 1482. 1799. 2115. 2432.	141. 144. 146. 148. 151. 153. 156. 158. 160.	7413. 7528. 7642. 7757. 7877. 8320. 8768. 9217. 9668.	8768. 9217. 9668. 10121.
35.00	7992.	2749.	165.	10576	i. 10576.

Lp = Lunghezza utile del palo

QII = Portata laterale limite

Qbl = Portata di base limite

Wp = Peso efficace del palo

 $\begin{array}{ll} Qu & = Portata \ totale \ limite \\ Qd & = Portata \ di \ progetto \ = \ Qll/FS,l + Qbl/FS,b - Wp \end{array}$

*** PAL ***

Programma per l'analisi della capacita' portante assiale di un palo di fondazione

(C) G.Guiducci - Studio SINTESI (RN - Italy) ottobre 2006

pag. 1

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

Elemento cilindrico, Diametro fusto = 800. mm

Criterio per la determinazione della portata di base in uno strato "i" quando la Qb,i ad esso attribuibile e' superiore a quella degli strati adiacenti:

La base del palo deve essere situata almeno: 3.0 * .800 = 2.40 m

GENERAL CONTRACTOR Consorzio Iric/IV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	240 di 309

entro lo strato se quello sovrastante e' piu' debole

La base del palo deve essere situata almeno: $3.0\,^*$.800 = $2.40\,\mathrm{m}$ sopra lo strato sottostante se esso e' piu' debole

La variazione di Qb viene assunta lineare dal passaggio di strato

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 241 di 309

pag. 2

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 1 "3ba " (Coesivo) da .00 a 4.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 90.0 a 90.0 kPa Strato 2 "3B " (Coesivo) da 4.00 a 8.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 40.0 a 40.0 kPa Strato 3 "3B2 " (Coesivo) da 8.00 a 10.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 65.0 a 65.0 kPa

GENERAL CONTRACTOR Consorzio Iric/1/V Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 El2RBRI36E0001A 242 di

309

pag. 3

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 4 "S " (Incoerente) da 10.00 a 18.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2000. a 2000. kPa

Strato 5 "3B3 " (Coesivo) da 18.00 a 22.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 80.0 a 80.0 kPa

Strato 6 "S " (Incoerente) da 22.00 a 33.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2500. a 2500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 243 di 309

pag. 4

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 7 "U2 " (Coesivo) da 33.00 a 35.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 120.0 a 120.0 kPa

Strato 8 "S " (Incoerente) da 35.00 a 50.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.80 * S'v

Qb variabile lin. da 3500. a 3500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 244 di 309

pag. 5

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

MOLTIPLICATORI per i parametri di calcolo

strato	Molt. Tau	Molt. Qb	Molt. Cu
1 "3ba " 2 "3B " 3 "3B2 " 4 "S " 5 "3B3 " 6 "S "	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 - 1.00
7 "U2 " 8 "S "	1.00 1.00	1.00 1.00	1.00

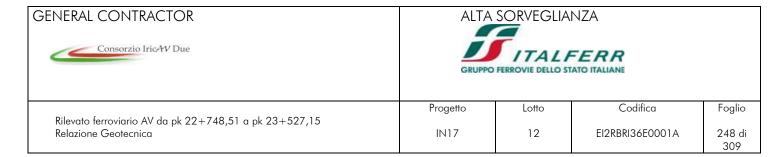
NOTA: i moltiplicatori non influenzano le limitazioni superiori o inferiori dei parametri

Per terreni coesivi: Criterio Tau = alfa * Cu

Cu	alfa
kPa	-
.0	.55
150.0	.55
250.0	.45
400.0	.45

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

zz m	S'v kPa	Sv kPa	Cu Ta kPa	u/S'v -	Tau kPa	qb kPa
2.00	37.0	37.0	90.0	1.34	49.5	648.
2.50	46.3	46.3	90.0	1.07	49.5	594.
3.00	55.5	55.5	90.0	.89	49.5	540.
3.50	59.8	64.8	90.0	.83	49.5	450.
4.00	64.0	74.0	90.0	.56	35.8	360.
4.50	68.3	83.3	40.0	.32	22.0	360.
5.00	72.5	92.5	40.0	.30	22.0	360.
5.50	76.8	101.8	40.0	.29	22.0	360.
6.00	81.0	111.0	40.0	.27	22.0	360.
6.50	85.3	120.3	40.0	.26	22.0	360.
7.00	89.5	129.5	40.0	.25	22.0	360.
7.50	93.8	138.8	40.0	.23	22.0	360.
8.00	98.0	148.0	40.0	.30	29.1	360.
8.50	102.3	157.3	65.0	.35	35.8	405.
9.00	106.5	166.5	65.0	.34	35.8	450.
9.50	110.8	175.8	65.0	.32	35.8	495.
10.00	115.0	185.0	65.0	.52	59.6	540
10.50	119.5	194.5		.71	84.4	832.
11.00	124.0	204.0		.69	85.2	1124.
11.50	128.5	213.5		.67	86.0	1416.
12.00	133.0	223.0		.65	86.6	1708.
12.50	137.5	232.5		.63	87.1	2000.
13.00	142.0	242.0		.62	87.6	2000.
13.50	146.5	251.5		.60	87.9	2000.
14.00	151.0	261.0		.58	88.1	2000.
14.50	155.5	270.5		.57	88.2	2000.
15.00	160.0	280.0		.55	88.2	2000.
15.50	164.5	289.5		.54	88.1	2000.
16.00	169.0	299.0		.52	87.9	1744.
16.50	173.5	308.5		.50	87.6	1488.
						-


MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

zz	 S'v	Sv (Cu Tau	ı/S'v	 Tau	- ab
m	kPa	kPa	kPa	-		kPa -
17.00	178.0	318.0		.49	87.2	1232.
17.50	182.5	327.5		.48	86.7	976.
18.00	187.0	337.0		.35	65.1	720.
18.50	191.3	346.3	80.0	.23		720.
19.00	195.5	355.5	80.0	.23		720.
19.50	199.8	364.8	80.0	.23		720.
20.00	204.0	374.0	80.0	.23		720.
20.50	208.3	383.3	80.0	.23		720.
21.00	212.5	392.5	80.0	.23		720.
21.50	216.8	401.8	80.0	.23		720.
22.00	221.0	411.0	80.0	.29		720.
22.50	225.5	420.5		.34	76.2	1076.
23.00	230.0	430.0		.33	74.8	1432.
23.50	234.5	439.5		.31	73.2	1788.
24.00	239.0	449.0		.30	71.6	2144.
24.50	243.5	458.5		.29	70.0	2500.
25.00	248.0	468.0		.27	68.2	2500.
25.50	252.5	477.5		.26	66.4	2500.
26.00	257.0	487.0		.25	64.4	2500.
26.50	261.5	496.5		.25	65.4	2500.
27.00	266.0	506.0		.25	66.5	2500.
27.50	270.5	515.5		.25	67.6	2500.
28.00	275.0	525.0		.25	68.8	2500.
28.50	279.5	534.5		.25	69.9	2500.
29.00	284.0	544.0		.25	71.0	2500.
29.50	288.5	553.5		.25	72.1	2500.
30.00	293.0	563.0		.25	73.3	2500.
30.50	297.5	572.5		.25	74.4	2500.
31.00	302.0	582.0		.25	75.5	2216.
31.50	306.5	591.5		.25	76.6	1932.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

						-
ZZ	S'v	Sv C	Cu Tau	/S'v	Tau	qb
m	kPa	kPa	kPa	- 1	kPa	kPa
						-
32.00	311.0	601.0		.25	77.8	1648.
32.50	315.5	610.5		.25	78.9	1364.
33.00	320.0	620.0		.24	76.8	1080.
33.50	324.3	629.3	120.0	.23		
34.00	328.5	638.5	120.0	.23		
34.50	332.8	647.8	120.0	.23		
35.00	337.0	657.0	120.0	.24		
35.50	341.5	666.5		.25	85.4	1564.
36.00	346.0	676.0		.25	86.5	2048.
36.50	350.5	685.5		.25	87.6	2532.
37.00	355.0	695.0		.25	88.8	3016.
37.50	359.5	704.5		.25	89.9	3500.
38.00	364.0	714.0		.25	91.0	3500.
38.50	368.5	723.5		.25	92.1	3500.
39.00	373.0	733.0		.25	93.3	3500.
39.50	377.5	742.5		.25	94.4	3500.
40.00	382.0	752.0		.25	95.5	3500.
40.50	386.5	761.5		.25	96.6	3500.
41.00	391.0	771.0		.25	97.8	3500.
41.50	395.5	780.5		.25	98.9	3500.
42.00	400.0	790.0		.25	100.0	3500.
42.50	404.5	799.5		.25	101.1	3500.
43.00	409.0	809.0		.25	102.3	3500.
43.50	413.5	818.5		.25	103.4	3500.
44.00	418.0	828.0		.25	104.5	3500.
44.50	422.5	837.5		.25	105.6	3500.
45.00	427.0	847.0		.25	106.8	3500.
45.50	431.5	856.5		.25	107.9	3500.
46.00	436.0	866.0		.25	109.0	3500.
46.50	440.5	875.5		.25	110.1	3500.
						-

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

STAMPA parametri per valutazione capacita' portante

47.50 449.5 894.5 .25 112.4 3500 48.00 454.0 904.0 .25 113.5 3500 48.50 458.5 913.5 .25 114.6 3500				 		
47.50 449.5 894.5 .25 112.4 3500 48.00 454.0 904.0 .25 113.5 3500 48.50 458.5 913.5 .25 114.6 3500				 Γau/S'v -		
	47.50 48.00 48.50 49.00 49.50	449.5 454.0 458.5 463.0 467.5	894.5 904.0 913.5 923.0 932.5	 .25 .25 .25 .25 .25	112.4 113.5 114.6 115.8 116.9	3500. 3500. 3500. 3500. 3500. 3500.

zz = Profondita' da piano campagna

S'v = Tensione verticale efficace Sv = Tensione verticale totale

Tau = Tensione di adesione laterale limite
qb = Portata di base limite unitaria

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

Lp	QII	Qbl	Wp	Qu	Qd kN
111	KIN	NIN .	KIN	KIN	NIN
.00	0.	326.	0.	326.	326.
.50	62.	299.	2.	359.	359.
1.00	124.	271.	3.	393.	393.
1.50	187.	226.	5.	408.	408.
2.00	240.	181.	6.	415.	415.
2.50	276.	181.	8.	450.	450.
3.00	304.				476.
					502.
					528.
					554.
					581.
					607.
					637.
					699.
					765.
					831.
					912.
					1148.
					1400.
					1653.
14.50	2071.	748.	44.	2115	o. 2115.
	.00 .50 1.00 1.50 2.00 2.50	m kN .00 050 62. 1.00 124. 1.50 187. 2.00 240. 2.50 276. 3.00 304. 3.50 332. 4.00 359. 4.50 387. 5.00 415. 5.50 442. 6.00 474. 6.50 515. 7.00 560. 7.50 605. 8.00 665. 8.50 970. 10.00 1078. 11.00 1297. 11.50 1407. 12.00 1518. 12.50 1629. 13.00 1739. 13.50 1850.	m kN kN .00 0. 32650 62. 299. 1.00 124. 271. 1.50 187. 226. 2.00 240. 181. 2.50 276. 181. 3.00 304. 181. 3.50 332. 181. 4.00 359. 181. 4.50 387. 181. 5.50 442. 181. 6.00 474. 181. 6.50 515. 204. 7.00 560. 226. 7.50 605. 249. 8.00 665. 271. 8.50 970. 712. 10.00 1078. 859. 10.50 1187. 1005 11.50 1407. 1005 11.50 1407. 1005 11.50 1407. 1005 11.50 1407. 1005 12.00 1518. 1005 12.50 1629. 1005 13.50 1850. 1005 14.00 1961. 877.	m kN kN kN .00 0. 326. 0. .50 62. 299. 2. 1.00 124. 271. 3. 1.50 187. 226. 5. 2.00 240. 181. 6. 2.50 276. 181. 8. 3.00 304. 181. 9. 3.50 332. 181. 11. 4.50 387. 181. 12. 4.50 387. 181. 15. 5.50 442. 181. 17. 6.00 474. 181. 18. 6.50 515. 204. 20. 7.00 560. 226. 21. 7.50 605. 249. 23. 8.00 665. 271. 24. 8.50 755. 418. 26. 9.50 970. 712. 29. 10.00 1078.<	m kN kN kN kN .00 0. 326. 0. 326. .50 62. 299. 2. 359. 1.00 124. 271. 3. 393. 1.50 187. 226. 5. 408. 2.00 240. 181. 6. 415. 2.50 276. 181. 8. 450. 3.00 304. 181. 9. 476. 3.50 332. 181. 11. 502. 4.50 387. 181. 12. 528. 4.50 387. 181. 15. 581. 5.50 442. 181. 15. 581. 5.50 442. 181. 17. 607. 6.50 515. 204. 20. 699. 7.00 560. 226. 21. 765. 7.50 605. 249. 23. 831. <

pag. 11

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

Lp m	QII kN	Qbl kN	Wp kN	Qu kN	Qd kN
15.00	2181.	619.	45.	2755.	2755.
15.50	2290.	491.	47.	2734.	2734.
16.00	2385.	362.	48.	2699.	2699.
16.50	2454.	362.	50.	2766.	2766.
17.00	2510.	362.	51.	2820.	2820.
17.50	2567.	362.	53.	2876.	2876.
18.00	2625.	362.	54.	2933.	2933.
18.50	2685.	362.	56.	2991.	2991.
19.00	2746.	362.	57.	3050.	3050.
19.50	2808.	362.	59.	3111.	3111.
20.00	2879.	362.	60.	3181.	3181.
20.50	2967.	541.	62.	3447.	3447.
21.00	3062.	720.	63.	3719.	3719.
21.50	3155.	899.	65.	3989.	3989.
22.00	3246.	1078		4258.	
22.50	3335.	1257		4524.	
23.00	3422.	1257		4609.	
23.50	3507.	1257		4692.	
24.00	3589.	1257		4773.	
24.50	3670.	1257		4853.	
25.00	3753.	1257		4935.	
25.50	3838.	1257		5017.	
26.00	3923.	1257		5101.	
26.50	4010.	1257		5187.	
27.00	4099.	1257		5274.	
27.50	4189.	1257		5362.	
28.00	4280.	1257		5452.	
28.50	4373.	1257		5544.	
29.00 29.50	4467. 4563.	1114 971.	. 87. 89.	5493. 5445.	5493. 5445.
29.50	4303.	9/1.	69.	5445.	5445.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

Lp m	QII kN	Qbl kN	Wp kN	Qu kN	Qd kN
30.00	4660.	828.	90.	5398.	5398.
30.50	4758.	686.	92.	5352.	5352.
31.00	4856.	543.	93.	5305.	5305.
31.50	4951.	543.	95.	5399.	5399.
32.00	5045.	543.	97.	5492.	5492.
32.50	5141.	543.	98.	5586.	5586.
33.00	5240.	543.	100.	5683.	
33.50	5344.	786.	101.	6029.	
34.00	5452.	1029.		6379	
34.50	5562.	1273.		6730	
35.00	5672.	1516.		7083	
35.50	5785.	1759.		7437	
36.00	5898.	1759.		7549	
36.50	6013.	1759.		7663	
37.00	6130.	1759.		7778	
37.50	6248.	1759.		7894	
38.00	6367.	1759.		8012	
38.50	6488.	1759.		8131	
39.00	6610.	1759.		8252	
39.50	6733.	1759.		8374	
40.00 40.50	6858. 6985.	1759. 1759.		8497 8622	
40.50	7113.	1759.		8748	
41.50	7242.	1759.		8876	
42.00	7372.	1759.		9005	
42.50	7504.	1759.		9135	
43.00	7638.	1759.		9267	
43.50	7773.	1759.		9401	
44.00	7909.	1759.		9536	
44.50	8047.	1759.		9672	
1 1.00	00 1 1.	. 700.	104.	3012	. 5072.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=800mm SLE

STAMPA capacita' portante e relativi contributi

Lp	QII	Qbl	Wp	Qu	Q	
m	kN	kN	kN	kN	kh	
45.00 45.50 46.00 46.50 47.00 47.50 48.00	8186. 8326. 8468. 8611. 8756. 8902. 9050.	1759. 1759. 1759. 1759. 1759. 1759.	137. 139. 140. 142. 143.	980 994 100 102 103 105 106	18. 89. 31. 74. 18.	9809. 9948. 10089. 10231. 10374. 10518. 10664.

Lp = Lunghezza utile del palo QII = Portata laterale limite QbI = Portata di base limite Wp = Peso efficace del palo Qu = Portata totale limite

Qd = Portata di progetto = QII/FS,I + QbI/FS,b - Wp

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 IN17 12 EI2RBRI36E0001A 253 di Relazione Geotecnica 309

*** PAL ***
Programma per l'analisi della capacita' portante assiale di un palo di fondazione

(C) G.Guiducci - Studio SINTESI (RN - Italy) ottobre 2006

pag. 1

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Elemento cilindrico, Diametro fusto = 1000. mm

Criterio per la determinazione della portata di base in uno strato "i" quando la Qb,i ad esso attribuibile e' superiore a quella degli strati adiacenti:

La base del palo deve essere situata almeno: 3.0 * 1.000 = 3.00 m entro lo strato se quello sovrastante e' piu' debole

La base del palo deve essere situata almeno: 3.0 * 1.000 = 3.00 m sopra lo strato sottostante se esso e' piu' debole

La variazione di Qb viene assunta lineare dal passaggio di strato

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 254 di 309

pag. 2

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 1 "3ba " (Coesivo) da .00 a 4.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 90.0 a 90.0 kPa Strato 2 "3B " (Coesivo) da 4.00 a 8.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 40.0 a 40.0 kPa Strato 3 "3B2 " (Coesivo) da 8.00 a 10.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 65.0 a 65.0 kPa

GENERAL CONTRACTOR Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 El2RBRI36E0001A 255 di

309

pag. 3

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 4 "S " (Incoerente) da 10.00 a 18.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2000. a 2000. kPa

Strato 5 "3B3 " (Coesivo) da 18.00 a 22.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 80.0 a 80.0 kPa

Strato 6 "S " (Incoerente) da 22.00 a 33.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2500. a 2500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 256 di 309

pag. 4

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 7 "U2 " (Coesivo) da 33.00 a 35.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 120.0 a 120.0 kPa

Strato 8 "S " (Incoerente) da 35.00 a 50.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.80 * S'v

Qb variabile lin. da 3500. a 3500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 257 di 309

pag. 5

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

MOLTIPLICATORI per i parametri di calcolo

strato	Molt. Tau	Molt. Qb	Molt. Cu
1 "3ba "	1.00	1.00	1.00
2 "3B "	1.00	1.00	1.00
3 "3B2 "	1.00	1.00	1.00
4 "S "	1.00	1.00	-
5 "3B3 "	1.00	1.00	1.00
6 "S "	1.00	1.00	-
7 "U2 "	1.00	1.00	1.00
8 "S "	1.00	1.00	-

NOTA: i moltiplicatori non influenzano le limitazioni superiori o inferiori dei parametri

Per terreni coesivi: Criterio Tau = alfa * Cu

Cu	alfa
kPa	-
.0	.55
150.0	.55
250.0	.55
400.0	.45

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

						-
zz m	S'v kPa	Sv kPa	Cu Ta kPa	u/S'v -	Tau kPa	qb kPa
2.00	37.0	37.0	90.0	1.34	49.5	610.
2.50	46.3	46.3	90.0	1.07	49.5	560.
3.00	55.5	55.5	90.0	.89	49.5	510.
3.50	59.8	64.8	90.0	.83	49.5	435.
4.00	64.0	74.0	90.0	.56	35.8	360.
4.50	68.3	83.3	40.0	.32	22.0	360.
5.00	72.5	92.5	40.0	.30	22.0	360.
5.50	76.8	101.8	40.0	.29	22.0	360.
6.00	81.0	111.0	40.0	.27	22.0	360.
6.50	85.3	120.3	40.0	.26	22.0	360.
7.00	89.5	129.5	40.0	.25	22.0	360.
7.50	93.8	138.8	40.0	.23	22.0	360.
8.00	98.0	148.0	40.0	.30	29.1	360.
8.50	102.3	157.3	65.0	.35	35.8	398.
9.00	106.5	166.5	65.0	.34	35.8	435.
9.50	110.8	175.8	65.0	.32	35.8	473.
10.00	115.0	185.0		.52		510
10.50	119.5	194.5		.71	84.4	758.
11.00	124.0	204.0		.69	85.2	1007.
11.50	128.5	213.5		.67	86.0	1255.
12.00	133.0	223.0		.65	86.6	1503.
12.50	137.5	232.5		.63	87.1	1752.
13.00	142.0	242.0		.62	87.6	2000.
13.50	146.5	251.5		.60	87.9	2000.
14.00	151.0	261.0		.58	88.1	2000.
14.50	155.5	270.5		.57	88.2	2000.
15.00	160.0	280.0		.55	88.2	2000.
15.50	164.5	289.5		.54	88.1	1787.
16.00 16.50	169.0 173.5	299.0 308.5		.52	87.9 87.6	1573. 1360.
10.00	173.5	308.5		.50	07.0	1300.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

zz	 S'v	Sv (Cu Tau	ı/S'v	Tau	- qb
m	kPa	kPa	kPa	-		kPa -
17.00	178.0	318.0		.49	87.2	1147.
17.50	182.5	327.5		.48	86.7	933.
18.00	187.0	337.0		.35	65.1	720.
18.50	191.3	346.3	80.0	.23	44.0	720.
19.00	195.5	355.5	80.0	.23	45.0	720.
19.50	199.8	364.8	80.0	.23	45.9	720.
20.00	204.0	374.0	80.0	.23	46.9	720.
20.50	208.3	383.3	80.0	.23		720.
21.00	212.5	392.5	80.0	.23	48.9	720.
21.50	216.8	401.8	80.0	.23	49.9	720.
22.00	221.0	411.0	80.0	.29	64.2	720.
22.50	225.5	420.5		.34	76.2	1017.
23.00	230.0	430.0		.33	74.8	1313.
23.50	234.5	439.5		.31	73.2	1610.
24.00	239.0	449.0		.30	71.6	1907.
24.50	243.5	458.5		.29	70.0	2203.
25.00	248.0	468.0		.27	68.2	2500.
25.50	252.5	477.5		.26	66.4	2500.
26.00	257.0	487.0		.25	64.4	2500.
26.50	261.5	496.5		.25	65.4	2500.
27.00	266.0	506.0		.25	66.5	2500.
27.50	270.5	515.5		.25	67.6	2500.
28.00	275.0	525.0		.25	68.8	2500.
28.50	279.5	534.5		.25	69.9	2500.
29.00	284.0	544.0		.25	71.0	2500.
29.50	288.5	553.5		.25	72.1	2500.
30.00	293.0	563.0		.25	73.3	2500.
30.50	297.5	572.5		.25	74.4	2263.
31.00	302.0	582.0		.25	75.5	2027.
31.50	306.5	591.5		.25	76.6	1790.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

zz m	S'v kPa	Sv (kPa	Cu Tau kPa		Tau kPa	 qb kPa
32.00	311.0	601.0		.25	77.8	 1553.
32.50	315.5	610.5		.25	78.9	1317.
33.00	320.0	620.0		.24	76.8	1080.
33.50	324.3	629.3	120.0	.23		
34.00	328.5	638.5	120.0	.23		
34.50	332.8	647.8	120.0	.23		
35.00	337.0	657.0	120.0	.24		
35.50	341.5	666.5		.25	85.4	1483.
36.00	346.0	676.0		.25	86.5	1887.
36.50	350.5	685.5		.25	87.6	2290.
37.00	355.0	695.0		.25	88.8	2693.
37.50	359.5	704.5		.25	89.9	3097.
38.00	364.0	714.0		.25	91.0	3500.
38.50	368.5	723.5		.25	92.1	3500.
39.00	373.0	733.0		.25	93.3	3500.
39.50	377.5	742.5		.25	94.4	3500.
40.00	382.0	752.0		.25	95.5	3500.
40.50	386.5	761.5		.25	96.6	3500.
41.00	391.0	771.0		.25	97.8	3500.
41.50	395.5	780.5		.25	98.9	3500.
42.00	400.0	790.0		.25	100.0	3500.
42.50	404.5	799.5		.25	101.1	3500.
43.00	409.0	809.0		.25	102.3	3500.
43.50	413.5	818.5		.25	103.4	3500.
44.00	418.0	828.0		.25	104.5	3500.
44.50	422.5	837.5		.25	105.6	3500.
45.00	427.0	847.0		.25	106.8	3500.
45.50	431.5	856.5		.25	107.9	3500.
46.00	436.0	866.0		.25	109.0	3500.
46.50	440.5	875.5		.25	110.1	3500.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

STAMPA parametri per valutazione capacita' portante

zz	S'v	Sv	Cu	Tau/S'v	Tau	qb
m	kPa	kPa	kPa	-	kPa	kPa
47.00	445.0	885.0		.25	111.3	3500.
47.50	449.5	894.5		.25	112.4	3500.
48.00	454.0	904.0		.25	113.5	3500.
48.50	458.5	913.5		.25	114.6	3500.
49.00	463.0	923.0		.25	115.8	3500.
49.50	467.5	932.5		.25	116.9	3500.
50.00	472.0	942.0	-	.25	118.0	3500.

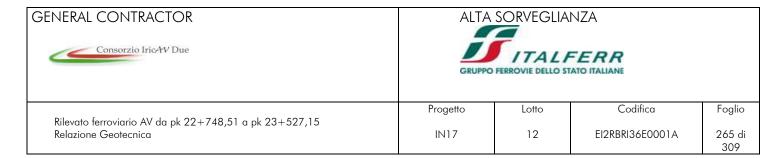
zz = Profondita' da piano campagna

S'v = Tensione verticale efficace

Sv = Tensione verticale totale
Cu = Coesione non drenata
Tau = Tensione di adesione laterale limite
qb = Portata di base limite unitaria

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Lp	QII	Qbl	Wp	Qu	Qd
m	kN	kN	kN	kN	kN
.00	0.	479.	0.	479.	479.
.50	78.	440.	2.	515.	515.
1.00	156.	401.	5.	551.	551.
1.50	233.	342.	7.	568.	568.
2.00	300.	283.	9.	574.	574.
2.50	346.	283.	12.	617.	617.
3.00	380.	283.	14.	649.	649.
3.50	415.	283.	16.	681.	681.
4.00	449.	283.	19.	713.	713.
4.50	484.	283.	21.	745.	745.
5.00	518.	283.	24.	778.	778.
5.50	553.	283.	26.	810.	810.
6.00	593.	283.	28.	848.	848.
6.50	644.	312.	31.	926.	926.
7.00	700.	342.	33.	1009.	1009.
7.50	756.	371.	35.	1092.	1092.
8.00	831.	401.	38.	1194.	1194.
8.50	944.	596.	40.	1500.	1500.
9.00	1078.	791.	42.	1826	. 1826.
9.50	1212.	986.	45.	2153	. 2153.
10.00	1348.	1181	. 47	. 248	1. 2481.
10.50	1484.	1376	. 49	. 281	0. 2810.
11.00	1621.	1571	. 52	. 314	0. 3140.
11.50	1759.	1571	. 54	. 327	6. 3276.
12.00	1897.	1571	. 57	. 341	1. 3411.
12.50	2036.	1571	. 59	. 354	8. 3548.
13.00	2174.	1571	. 61	. 368	4. 3684.
13.50	2313.	1403		. 365	
14.00	2451.	1236	. 66	. 362	1. 3621.
14.50	2589.	1068			


MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

 Lp	QII	Qbl	 Wp	Qu	Qd
m	kN	kN	kŇ	kN	kN
15.00	2726.	901.	71.	3556.	3556.
15.50	2862.	733.	73.	3522.	3522.
16.00	2982.	565.	75.	3472.	3472.
16.50	3067.	565.	78.	3555.	3555.
17.00	3137.	565.	80.	3623.	3623.
17.50	3209.	565.	82.	3692.	3692.
18.00	3282.	565.	85.	3762.	3762.
18.50	3356.	565.	87.	3834.	3834.
19.00	3432.	565.	90.	3908.	3908.
19.50	3510.	565.	92.	3983.	3983.
20.00	3599.	565.	94.	4070.	4070.
20.50	3709.	798.	97.	4411.	4411.
21.00	3828.	1031		4760.	
21.50	3944.	1264		5107	
22.00	4058.	1497		5452	
22.50	4169.	1730		5794	
23.00	4278.	1963		6133	
23.50	4383.	1963		6236	
24.00	4486.	1963		6336	
24.50	4588.	1963		6436	
25.00	4692.	1963		6537	
25.50	4797.	1963		6640	
26.00	4904.	1963		6745	
26.50	5013.	1963		6852	
27.00	5124.	1963		6960	
27.50	5236.	1963		7070	
28.00	5350.	1963		7182	
28.50	5466.	1778		7109	
29.00	5584.	1592		7039	
29.50	5703.	1406	. 139.	6970	. 6970.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

Lp m	QII kN		νρ kN		 Qd kN
30.00	5825.	1220.	141.	6903.	6903.
30.50	5948.	1034.	144.	6838.	6838.
31.00	6070.	848.	146.	6772.	6772.
31.50	6189.	848.	148.	6888.	6888.
32.00	6307.	848.	151.	7004.	7004.
32.50	6426.	848.	153.	7121.	7121.
33.00	6550.	848.	156.	7242.	7242.
33.50	6680.	1165.	158.	7687.	
34.00	6815.	1482.	160.	8137.	
34.50	6952.	1799.	163.	8588.	
35.00	7091.	2115.	165.	9041.	
35.50	7231.	2432.	167.	9496.	
36.00	7373.	2749.	170.	9952.	
36.50	7517.	2749.	172.	10094	
37.00	7662.	2749.	174.	10237	
37.50	7810.	2749.	177.	10382	
38.00	7959.	2749.	179.	10529	
38.50	8110.	2749.	181.	10677	
39.00	8262.	2749.	184.	10827	
39.50	8417.	2749.	186.	10980	
40.00	8573.	2749.	188.	11133	
40.50	8731.	2749.	191.	11289	
41.00	8891.	2749.	193.	11446	
41.50	9052.	2749.	196.	11606	
42.00	9215.	2749.	198.	11766	
42.50	9380.	2749.	200.	11929	
43.00	9547.	2749.	203.	12094	
43.50	9716.	2749.	205.	12260	
44.00 44.50	9886. 10058.	2749. 2749.	207. 210.	12428 12597	

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1000mm SLE

STAMPA capacita' portante e relativi contributi

					-
Lp m	QII kN		Wp kN		Qd :N
45.00 45.50 46.00 46.50 47.00 47.50 48.00	10232. 10408. 10585. 10764. 10945. 11128.	2749. 2749. 2749. 2749.	214. 217. 219. 221. 224.	12769 12942 13117 13294 13473 13653	. 12942. . 13117. . 13294. . 13473. . 13653.

Lp = Lunghezza utile del palo QII = Portata laterale limite QbI = Portata di base limite Wp = Peso efficace del palo Qu = Portata totale limite

Qd = Portata di progetto = QII/FS,I + QbI/FS,b - Wp

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 IN17 12 EI2RBRI36E0001A Relazione Geotecnica 266 di 309

*** PAL ***
Programma per l'analisi della capacita' portante assiale di un palo di fondazione

(C) G.Guiducci - Studio SINTESI (RN - Italy) ottobre 2006

pag. 1

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

Elemento cilindrico, Diametro fusto = 1200. mm

Criterio per la determinazione della portata di base in uno strato "i" quando la Qb,i ad esso attribuibile e' superiore a quella degli strati adiacenti:

La base del palo deve essere situata almeno: 3.0 * 1.200 = 3.60 m entro lo strato se quello sovrastante e' piu' debole

La base del palo deve essere situata almeno: 3.0 * 1.200 = 3.60 m sopra lo strato sottostante se esso e' piu' debole

La variazione di Qb viene assunta lineare dal passaggio di strato

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 267 di 309

pag. 2

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 1 "3ba " (Coesivo) da .00 a 4.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 90.0 a 90.0 kPa Strato 2 "3B " (Coesivo) da 4.00 a 8.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 40.0 a 40.0 kPa Strato 3 "3B2 " (Coesivo) da 8.00 a 10.00 m Gn = 18.5 kN/m3Ge = 8.5 kN/m3Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v Qb = 9.0 * CuCu variabile lin. da 65.0 a 65.0 kPa

GENERAL CONTRACTOR Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Consorzio Iric-YV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 El2RBRI36E0001A 268 di

309

pag. 3

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 4 "S " (Incoerente) da 10.00 a 18.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2000. a 2000. kPa

Strato 5 "3B3 " (Coesivo) da 18.00 a 22.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 80.0 a 80.0 kPa

Strato 6 "S $\,\,$ " (Incoerente) da 22.00 a 33.00 m $\,$

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.20 * S'v

Qb variabile lin. da 2500. a 2500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 269 di 309

pag. 4

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

DEFINIZIONE PARAMETRI E CRITERI DI CALCOLO PER GLI STRATI DI TERRENO

Strato 7 "U2 " (Coesivo) da 33.00 a 35.00 m

Gn = 18.5 kN/m3 Ge = 8.5 kN/m3

Tau = alfa * Cu < 100.0 kPa Criterio alfa(Cu) nel seguito Tau > .23 * S'v

Qb = 9.0 * Cu

Cu variabile lin. da 120.0 a 120.0 kPa

Strato 8 "S " (Incoerente) da 35.00 a 50.00 m

Gn = 19.0 kN/m3 Ge = 9.0 kN/m3

Tau = beta * S'v < 150.0 kPa beta = 1.50 - .245 Z^ .50 Z = profondita da piano campagna Tau > .25 * S'v Tau < 1.80 * S'v

Qb variabile lin. da 3500. a 3500. kPa

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Codifica Progetto Lotto Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 270 di 309

pag. 5

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

MOLTIPLICATORI per i parametri di calcolo

strato	Molt. Tau	Molt. Qb	Molt. Cu
1 "3ba "	1.00	1.00	1.00
2 "3B "	1.00	1.00	1.00
3 "3B2 "	1.00	1.00	1.00
4 "S "	1.00	1.00	-
5 "3B3 "	1.00	1.00	1.00
6 "S "	1.00	1.00	-
7 "U2 "	1.00	1.00	1.00
8 "S "	1.00	1.00	-

NOTA: i moltiplicatori non influenzano le limitazioni superiori o inferiori dei parametri

Per terreni coesivi: Criterio Tau = alfa * Cu

Cu	alfa
kPa	-
.0	.55
150.0	.55
250.0	.55
400.0	.45

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

						-
zz m	S'v kPa	Sv kPa	Cu Ta kPa	u/S'v -	Tau kPa	qb kPa
						-
2.00	37.0	37.0	90.0	1.34	49.5	580.
2.50	46.3	46.3	90.0	1.07	49.5	534.
3.00	55.5	55.5	90.0	.89	49.5	489.
3.50	59.8	64.8	90.0	.83	49.5	424.
4.00	64.0	74.0	90.0	.56	35.8	360.
4.50	68.3	83.3	40.0	.32	22.0	360.
5.00	72.5	92.5	40.0	.30	22.0	360.
5.50	76.8	101.8	40.0	.29	22.0	360.
6.00	81.0	111.0	40.0	.27	22.0	360.
6.50	85.3	120.3	40.0	.26	22.0	360.
7.00	89.5	129.5	40.0	.25	22.0	360.
7.50	93.8	138.8	40.0	.23	22.0	360.
8.00	98.0	148.0	40.0	.30	29.1	360.
8.50	102.3	157.3	65.0	.35	35.8	392.
9.00	106.5	166.5	65.0	.34	35.8	424.
9.50	110.8	175.8	65.0	.32	35.8	456.
10.00	115.0	185.0	65.0	.52		489
10.50	119.5	194.5		.71	84.4	704.
11.00	124.0	204.0		.69	85.2	920.
11.50	128.5	213.5		.67	86.0	1136.
12.00	133.0	223.0		.65	86.6	1352.
12.50	137.5	232.5		.63	87.1	1568.
13.00	142.0	242.0		.62	87.6	1784.
13.50	146.5	251.5		.60	87.9	2000.
14.00	151.0	261.0		.58	88.1	2000.
14.50	155.5	270.5		.57	88.2	2000.
15.00	160.0	280.0		.55	88.2	1817.
15.50	164.5	289.5		.54	88.1	1634.
16.00	169.0	299.0		.52	87.9	1451.
16.50	173.5	308.5		.50	87.6	1269.
						_

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

ZZ	S'v	Sv C	u Tau	 J/S'v	 Tau	- qb
m	kPa		kPa	-		kPa -
17.00	178.0	318.0		.49	87.2	1086.
17.50	182.5	327.5		.48	86.7	903.
18.00	187.0	337.0		.35	65.1	720.
18.50	191.3	346.3	80.0	.23	44.0	720.
19.00	195.5	355.5	80.0	.23	45.0	720.
19.50	199.8	364.8	80.0	.23	45.9	720.
20.00	204.0	374.0	80.0	.23	46.9	720.
20.50	208.3	383.3	80.0	.23	47.9	720.
21.00	212.5	392.5	80.0	.23	48.9	720.
21.50	216.8	401.8	80.0	.23	49.9	720.
22.00	221.0	411.0	80.0	.29	64.2	720.
22.50	225.5	420.5		.34	76.2	974.
23.00	230.0	430.0		.33	74.8	1229.
23.50	234.5	439.5		.31	73.2	1483.
24.00	239.0	449.0		.30	71.6	1737.
24.50	243.5	458.5		.29	70.0	1991.
25.00	248.0	468.0		.27	68.2	2246.
25.50	252.5	477.5		.26	66.4	2500.
26.00	257.0	487.0		.25	64.4	2500.
26.50	261.5	496.5		.25	65.4	2500.
27.00	266.0	506.0		.25	66.5	2500.
27.50	270.5	515.5		.25	67.6	2500.
28.00	275.0	525.0		.25	68.8	2500.
28.50	279.5	534.5		.25	69.9	2500.
29.00	284.0	544.0		.25	71.0	2500.
29.50	288.5	553.5		.25	72.1	2500.
30.00	293.0	563.0		.25	73.3	2297.
30.50	297.5	572.5		.25	74.4	2094.
31.00	302.0	582.0		.25	75.5	1891.
31.50	306.5	591.5		.25	76.6	1689.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

						-
ZZ	S'v	Sv C	Cu Tau	/S'v	Tau	qb
m	kPa	kPa	kPa	- 1	kPa	kPa
						-
32.00	311.0	601.0		.25	77.8	1486.
32.50	315.5	610.5		.25	78.9	1283.
33.00	320.0	620.0		.24	76.8	1080.
33.50	324.3	629.3	120.0	.23	74.6	
34.00	328.5	638.5	120.0	.23		
34.50	332.8	647.8	120.0	.23		
35.00	337.0	657.0	120.0	.24	80.9	
35.50	341.5	666.5		.25	85.4	1426.
36.00	346.0	676.0		.25	86.5	1771.
36.50	350.5	685.5		.25	87.6	2117.
37.00	355.0	695.0		.25	88.8	2463.
37.50	359.5	704.5		.25	89.9	2809.
38.00	364.0	714.0		.25	91.0	3154.
38.50	368.5	723.5		.25	92.1	3500.
39.00	373.0	733.0		.25	93.3	3500.
39.50	377.5	742.5		.25	94.4	3500.
40.00	382.0	752.0		.25	95.5	3500.
40.50	386.5	761.5		.25	96.6	3500.
41.00	391.0	771.0		.25	97.8	3500.
41.50	395.5	780.5		.25	98.9	3500.
42.00	400.0	790.0		.25	100.0	3500.
42.50	404.5	799.5		.25	101.1	3500.
43.00	409.0	809.0		.25	102.3	3500.
43.50	413.5	818.5		.25	103.4	3500.
44.00	418.0	828.0		.25	104.5	3500.
44.50	422.5	837.5		.25	105.6	3500.
45.00	427.0	847.0		.25 .25	106.8	3500.
45.50	431.5	856.5 866.0			107.9	3500. 3500.
46.00 46.50	436.0 440.5	875.5		.25 .25	109.0 110.1	3500. 3500.
40.50	440.5	0/5.5		.23	110.1	3300.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

STAMPA parametri per valutazione capacita' portante

zz	S'v	Sv	Cu	Tau/S'v	Tau	qb
m	kPa	kPa	kPa	-	kPa	kPa
47.00	445.0	885.0		.25	111.3	3500.
47.50	449.5	894.5		.25	112.4	3500.
48.00	454.0	904.0		.25	113.5	3500.
48.50	458.5	913.5		.25	114.6	3500.
49.00	463.0	923.0		.25	115.8	3500.
49.50	467.5	932.5		.25	116.9	3500.
50.00	472.0	942.0	-	.25	118.0	3500.

zz = Profondita' da piano campagna

S'v = Tensione verticale efficace

Sv = Tensione verticale totale

Tau = Tensione di adesione laterale limite
qb = Portata di base limite unitaria

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

Lp	QII	Qbl	Wp	Qu	Qd
m	kN	kN	kŃ	kN	kN
.00	0.	656.	0.	656.	656.
.50	93.	604.	3.	694.	694.
1.00	187.	553.	7.	732.	732.
1.50	280.	480.	10.	750.	750.
2.00	360.	407.	14.	754.	754.
2.50	415.	407.	17.	805.	805.
3.00	456.	407.	20.	843.	843.
3.50	498.	407.	24.	881.	881.
4.00	539.	407.	27.	919.	919.
4.50	581.	407.	31.	957.	957.
5.00	622.	407.	34.	995.	995.
5.50	664.	407.	37.	1033.	
6.00	712.	407.	41.	1078.	
6.50	773.	444.	44.	1172.	
7.00	840.	480.	48.	1273.	
7.50	908.	516.	51.	1373.	
8.00	997.	553.	54.	1496.	
8.50	1133.	797.	58.	1872	
9.00	1293.	1041.	61.	2273	
9.50	1454.	1285.	64.	2675	
10.00	1617.	1529			
10.50	1781.	1774			
11.00	1946.	2018			
11.50	2111.	2262			
12.00	2277.	2262			
12.50	2443.	2262			
13.00	2609.	2055			
13.50	2775.	1848			
14.00	2941.	1642			
14.50	3106.	1435	. 98	. 444	3. 4443.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

Lp m	QII kN	Qbl kN	Wp kN		Qd kN
15.00	3271.	1228.		4397.	
15.50	3435.	1021.		4351.	
16.00	3578.	814.	109.	4284.	4284.
16.50	3681.	814.	112.	4383.	4383.
17.00	3765.	814.	115.	4464.	4464.
17.50	3850.	814.	119.	4546.	4546.
18.00	3938.	814.	122. 126.	4630.	4630.
18.50	4027. 4118.	814.	126. 129.	4716.	4716.
19.00 19.50	4116.	814. 814.	132.	4804. 4893.	4804. 4893.
20.00	4319.	814.	136.	4998.	4998.
20.50	4451.	1102.		5414.	
21.00	4593.	1389.		5840.	
21.50	4733.	1677.		6264.	
22.00	4870.	1965.		6685.	
22.50	5003.	2252		7103.	
23.00	5133.	2540.		7517.	
23.50	5260.	2827		7928.	
24.00	5383.	2827.	163.	8048.	8048.
24.50	5506.	2827.	166.	8167.	8167.
25.00	5630.	2827.	170.	8288.	8288.
25.50	5756.	2827.	173.	8411.	8411.
26.00	5885.	2827.	176.	8536.	8536.
26.50	6016.	2827.	180.	8663.	8663.
27.00	6148.	2827.		8792.	
27.50	6283.	2827.		8924.	
28.00	6420.	2598.		8828.	
28.50	6559.	2369.		8734.	
29.00	6701.	2139.		8643.	
29.50	6844.	1910.	200.	8553.	8553.

MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

 Lp	QII	Qbl V	/p	 Qu 0	- Qd
m	kN		:N		N
30.00	6989.	1680.	204.	8466.	- 8466.
30.50	7137.	1451.	207.	8381.	8381.
31.00	7284.	1221.	210.	8295.	8295.
31.50	7426.	1221.	214.	8434.	8434.
32.00	7568.	1221.	217.	8572.	8572.
32.50	7711.	1221.	221.	8712.	8712.
33.00	7860.	1221.	224.	8857.	8857.
33.50	8016.	1612.	227.	9401.	9401.
34.00	8178.	2003.	231.	9951.	9951.
34.50	8342.	2394.	234.	10503.	10503.
35.00	8509.	2785.	238.	11057.	11057.
35.50	8677.	3176.	241.	11613.	11613.
36.00	8847.	3567.	244.	12171.	12171.
36.50	9020.	3958.	248.	12731.	12731.
37.00	9195.	3958.	251.	12902.	12902.
37.50	9372.	3958.	254.	13076.	13076.
38.00	9551.	3958.	258.	13251.	13251.
38.50	9732.	3958.	261.	13429.	13429.
39.00	9915.	3958.	265.	13609.	13609.
39.50	10100.	3958.	268.		
40.00	10288. 10477.	3958.	271.	13975. 14161.	
40.50 41.00	10477.	3958. 3958.	275. 278.		
41.50	10863.	3958.	282.		
42.00	11059.	3958.	285.		
42.50	11257.	3958.	288.		
43.00	11457.	3958.	292.		
43.50	11659.	3958.	295.		
44.00	11863.	3958.	299.		
44.50	12070.	3958.	302.		
					_

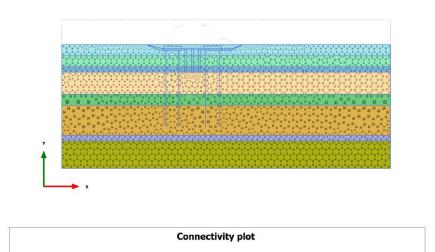
MURO1 RI36E-dopo pk 23000 - CURVE CAPACITA' PORTANTE Palo D=1200mm SLE

STAMPA capacita' portante e relativi contributi

Lp m	QII kN	Qbl kN	Wp kN	Qu kN	Qd kN	
45.00 45.50 46.00 46.50 47.00 47.50 48.00	12279. 12489. 12702. 12917. 13134. 13354.	3958 3958 3958 3958	3. 309. 3. 312. 3. 316. 3. 319. 3. 322.	1593 1613 1634 1650 1673 1699	39. 48. 60. 74.	15932. 16139. 16348. 16560. 16774. 16990. 17208.

Lp = Lunghezza utile del palo QII = Portata laterale limite QbI = Portata di base limite Wp = Peso efficace del palo Qu = Portata totale limite

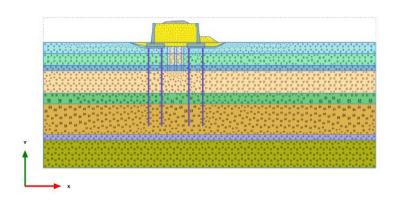
Qd = Portata di progetto = QII/FS,I + QbI/FS,b - Wp


GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	279 di 309

ALLEGATO 7- TABULATI PLAXIS

עזאז'

1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/4), Connectivity plot


1.1.1.2 Calculation results, Phase_3 [Phase_3] (3/158), Connectivity plot

Connectivity plot

1.1.1.3 Calculation results, completamento [Phase_4] (4/169), Connectivity plot

Connectivity plot

1.1.2.1.1 Materials - Soil and interfaces - Linear elastic

Identification		Ballast	CA
Identification number		1	10
Drainage type		Drained	Non-porous
Colour			
Comments			
Y unsat	kN/m³	18.00	25.00
Y sat	kN/m³	18.00	25.00
Dilatancy cut-off		No	No
e _{init}		0.5000	0.5000
e _{min}		0.000	0.000
e _{max}		999.0	999.0
E	kN/m²	100.0E3	33.00E6
v (nu)		0.3000	0.2000
G	kN/m²	38.46E3	13.75E6
E oed	kN/m²	134.6E3	36.67E6
Set to default values		Yes	Yes
E inc	kN/m²/m	0.000	0.000

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15IN17 12 EI2RBRI36E0001A

RI51_NT_01

282 di 309

Identification		Ballast	CA
y ref	m	0.000	0.000
Undrained behaviour		Standard	Standard
Skempton-B		0.9783	0.9866
V u		0.4950	0.4950
K _{w,ref} / n	kN/m²	3.750E6	1.352E9
Stiffness		Standard	Standard
Strength		Rigid	Rigid
R inter		1.000	1.000
Consider gap closure		Yes	Yes
δ_{inter}		0.000	0.000
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000
R	m² K/kW	0.000	0.000
K ₀ determination		Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes
K _{0,x}		0.5000	0.5000
K _{0,x}		0.5000	0.5000
Data set		Standard	Standard
Туре		Medium	Coarse

RI51_NT_01

Identification		Ballast	CA
< 2 μm	%	19.00	10.00
2 μm - 50 μm	%	41.00	13.00
50 μm - 2 mm	%	40.00	77.00
Use defaults		None	None
k _×	m/day	864.0	0.000
k,	m/day	864.0	0.000
$-\psi$ unsat	m	10.00E3	10.00E3
e _{init}		0.5000	0.5000
S _s	1/m	0.000	0.000
C k		1000E12	1000E12
C s	kJ/t/K	0.000	0.000
λ_s	kW/m/K	0.000	0.000
ρ_s	t/m³	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric
a_s	1/K	0.000	0.000
D _v	m²/day	0.000	0.000
f _{Tv}		0.000	0.000
Unfrozen water content		None	None

Relazione Geotecnica

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	283 di 309

RI51_NT_01

1.1.2.1.2.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)

Identification		Rilevato	U3b_1	U6_1	U3b_4	U4_1
Identification number		2	3	4	7	8
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
Y unset	kN/m³	20.00	18.50	19.00	18.50	19.00
Y set	kN/m³	20.00	18.50	19.00	18.50	19.00
Dilatancy cut-off		No	No	No	No	No
e wa		0.5000	1.000	0.5000	1.000	0.5000
e m		0.000	0.000	0.000	0.000	0.000
e max		999.0	999.0	999.0	999.0	999.0
E	kN/m²	60.00E3	20.00E3	100.0E3	15.00E3	40.00E3
v (nu)		0.3000	0.2300	0.3000	0.2300	0.3000
G	kN/m²	23.08E3	8130	38.46E3	6098	15.38E3
E oed	kN/m²	80.77E3	23.19E3	134.6E3	17.39E3	53.85E3
C ref	kN/m²	0.000	90.00	0.000	80.00	0.000
φ (phi)	۰	38.00	0.000	39.00	0.000	34.00
ψ (psi)	0	0.000	0.000	0.000	0.000	0.000
Set to default values		Yes	Yes	Yes	Yes	Yes
						RI51_NT_0
(dentification		Rilevato	U3b_1	U6_1	U3b_4	U4_1
E _{ix}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
C ix	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Fensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Jndrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9783	0.9848	0.9783	0.9848	0.9783
V u		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m²	2.250E6	798.0E3	3.750E6	598.5E3	1.500E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{Inter}		0.6670	0.6670	0.6670	0.6670	0.6670
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{koor}		0.000	0.000	0.000	0.000	0.000
cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Orainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
₹	m² K/kW	0.000	0.000	0.000	0.000	0.000
K _o determination		Automatic	Automatic	Automatic	Automatic	Automatic
K _{0x} = K _{0x}		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.3843	10.00E9	0.3707	10.00E9	0.4408
· · uje		0.30 13	10.0023	0.5707	10.0023	0.1100

10.00E9

0.3707

GENERAL CONTRACTOR Consorzio Iric/tv Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	284 di 309

						RI51_NT_01
Identification		Rilevato	U3b_1	U6_1	U3b_4	U4_1
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	86.40	0.8640E-3	86.40	0.8640E-3	8.640
k,	m/day	86.40	0.8640E-3	86.40	0.8640E-3	8.640
-Ψ _{unsat}	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e m		0.5000	1.000	0.5000	1.000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
Ck		1000E12	1000E12	1000E12	1000E12	1000E12
C s	kJ/t/K	0.000	0.000	0.000	0.000	0.000
λs	kW/m/K	0.000	0.000	0.000	0.000	0.000
ρs	t/m³	0.000	0.000	0.000	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric	Volumetric	Volumetric	Volumetric
a_s	1/K	0.000	0.000	0.000	0.000	0.000
D _*	m²/day	0.000	0.000	0.000	0.000	0.000
f™		0.000	0.000	0.000	0.000	0.000
Unfrozen water content		None	None	None	None	None

RI51_NT_01

1.1.2.1.2.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)

Identification		U2_1	U4_2	U4-3	colonne 1 strato	colonne strato 2
Identification number		9	11	12	13	14
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
Y unset	kN/m³	18.50	19.00	19.00	19.00	19.00
Y sat	kN/m³	18.50	19.00	19.00	19.00	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		1.000	0.5000	0.5000	0.5000	0.5000
e min		0.000	0.000	0.000	0.000	0.000
e max		999.0	999.0	999.0	999.0	999.0
E	kN/m²	25.00E3	60.00E3	100.0E3	23.20E3	10.30E3
v (nu)		0.2500	0.3000	0.3000	0.2300	0.2300
G	kN/m²	10.00E3	23.08E3	38.46E3	9431	4187
E oed	kN/m²	30.00E3	80.77E3	134.6E3	26.90E3	11.94E3
C ref	kN/m²	120.0	0.000	0.000	90.00	40.00
φ (phi)	٥	0.000	38.00	38.00	0.000	0.000
ψ (psi)	•	0.000	0.000	0.000	0.000	0.000
Set to default values		Yes	Yes	Yes	Yes	Yes

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 ALTA SORVEGLIANZA Progetto Lotto Codifica Foglio

IN17

12

RI51_NT_01

EI2RBRI36E0001A

285 di 309

Identification		U2_1	U4_2	U4-3	colonne 1 strato	colonne strato 2
E _{ix}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
C inc	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9783	0.9783	0.9848	0.9848
V u		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m²	980.0E3	2.250E6	3.750E6	925.6E3	410.9E3
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Rigid	Rigid
R _{Inter}		0.6670	0.6670	0.6670	1.000	1.000
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
R	m² K/kW	0.000	0.000	0.000	0.000	0.000
K o determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,x}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.5000	0.3843	0.3843	0.5000	0.5000
K _{0,z}		0.5000	0.3843	0.3843	0.5000	0.5000

12

Relazione Geotecnica

						KI21_N1_
Identification		U2_1	U4_2	U4-3	colonne 1 strato	colonne strato 2
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 μm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.08640E-3	10.00E3	86.40	0.000	0.000
k _y	m/day	0.08640E-3	10.00E3	86.40	0.000	0.000
-ψ _{ureat}	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
е и		1.000	0.5000	0.5000	0.5000	0.5000
S.	1/m	0.000	0.000	0.000	0.000	0.000
Ck		1000E12	1000E12	1000E12	1000E12	1000E12
Cs	kJ/t/K	0.000	0.000	0.000	0.000	0.000
λ.	kW/m/K	0.000	0.000	0.000	0.000	0.000
ρ,	t/m³	0.000	0.000	0.000	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric	Volumetric	Volumetric	Volumetric
a_s	1/K	0.000	0.000	0.000	0.000	0.000
Dv	m²/day	0.000	0.000	0.000	0.000	0.000
f _w		0.000	0.000	0.000	0.000	0.000
Unfrozen water content		None	None	None	None	None

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	286 di 309

RI51_NT_01

1.1.2.1.2.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)

Identification		colonne ghiaia
Identification number		15
Drainage type		Drained
Colour		
Comments		
Y unset	kN/m³	19.00
γ sat	kN/m³	19.00
Dilatancy cut-off		No
e init		0.5000
e min		0.000
e _{max}		999.0
E	kN/m²	60.00E3
v (nu)		0.2300
G	kN/m²	24.39E3
E oed	kN/m²	69.56E3
C ref	kN/m²	0.000

Identification		colonne ghiaia
φ (phi)	0	40.00
ψ (psi)	0	0.000
Set to default values		Yes
E inc	kN/m²/m	0.000
y ref	m	0.000
C _{Inc}	kN/m²/m	0.000
y ref	m	0.000
Tension cut-off		Yes
Tensile strength	kN/m²	0.000
Undrained behaviour		Standard
Skempton-B		0.9848
V _u		0.4950
K _{w,ref} / n	kN/m²	2.394E6
Stiffness		Standard
Strength		Rigid
R inter		1.000
Consider gap closure		Yes
δ inter		0.000
Cross permeability		Impermeable

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica IN17 12 EI2RBRI36E0001A 287 di

RI51_NT_01

309

Identification		colonne ghiaia
Drainage conductivity, dk	m³/day/m	0.000
R	m² K/kW	0.000
K₀ determination		Automatic
$K_{0,x} = K_{0,x}$		Yes
K _{0,x}		0.3572
K _{0,z}		0.3572
Data set		Standard
Туре		Coarse
< 2 µm	%	10.00
2 μm - 50 μm	%	13.00
50 μm - 2 mm	%	77.00
Use defaults		None
k _x	m/day	0.000
\mathbf{k}_{y}	m/day	0.000
-Ψ unset	m	10.00E3
e _{init}		0.5000
S _{\$}	1/m	0.000
C k		1000E12
C s	kJ/t/K	0.000

Identification		colonne ghiaia
λ_s	kW/m/K	0.000
ρ s	t/m³	0.000
Solid thermal expansion		Volumetric
a_s	1/K	0.000
D _v	m²/day	0.000
f _{Tv}		0.000
Unfrozen water content		None

RI51_NT_01

1.1.2.1.3 Materials - Soil and interfaces - Hardening soil

	U3b_2	U3b_3
	5	6
	Drained	Drained
kN/m³	18.50	18.50
kN/m³	18.50	18.50
	No	No
	1.000	1.000
	0.000	0.000
	999.0	999.0
kN/m²	3194	3594
kN/m²	2556	2875
kN/m²	20.70E3	20.70E3
	1.000	1.000
	No	No
	0.1800	0.1600
	kN/m ² kN/m ²	5 Drained kN/m³ 18.50 kN/m³ 18.50 No 1.000 0.000 999.0 kN/m² 3194 kN/m² 2556 kN/m² 20.70E3 1.000 No

40

			1131_11_01
Identification		U3b_2	U3b_3
C s		0.02000	0.02000
e _{init}		1.000	1.000
C ref	kN/m²	40.00	65.00
φ (phi)	0	0.000	0.000
ψ (psi)	0	0.000	0.000
Set to default values		Yes	Yes
V ur		0.2000	0.2000
p _{ref}	kN/m²	100.0	100.0
K ₀ nc		1.000	1.000
C inc	kN/m²/m	0.000	0.000
y ref	m	0.000	0.000
R _f		0.9000	0.9000
Tension cut-off		Yes	Yes
Tensile strength	kN/m²	0.000	0.000
Undrained behaviour		Standard	Standard
Skempton-B		0.9866	0.9866
V u		0.4950	0.4950
K _{w,ref} / n	kN/m²	848.1E3	848.1E3
Stiffness		Standard	Standard

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica N17 12 EI2RBRI36E0001A 289 di

RI51_NT_01

309

Identification		U3b_2	U3b_3
Strength		Manual	Manual
R inter		0.6670	0.6670
Consider gap closure		Yes	Yes
$\delta_{\text{ inter}}$		0.000	0.000
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000
R	m² K/kW	0.000	0.000
K ₀ determination		Automatic	Automatic
OCR		1.000	1.000
POP	kN/m²	160.0	160.0
Data set		Standard	Standard
Туре		Coarse	Coarse
< 2 μm	%	10.00	10.00
2 μm - 50 μm	%	13.00	13.00
50 μm - 2 mm	%	77.00	77.00
Use defaults		None	None
k _x	m/day	0.8640E-3	0.8640E-3
k _y	m/day	0.8640E-3	0.8640E-3
-Ψ unset	m	10.00E3	10.00E3

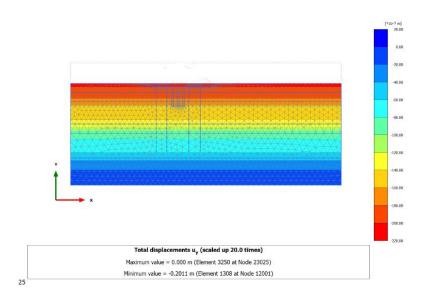
RI51_NT_01

Identification		U3b_2	U3b_3
e init		1.000	1.000
S _s	1/m	0.000	0.000
C k		1000E12	1000E12
C s	kJ/t/K	0.000	0.000
λ_s	kW/m/K	0.000	0.000
ρ_s	t/m³	0.000	0.000
Solid thermal expansion			
Solid thermal expansion		Volumetric	Volumetric
a_s	1/K	Volumetric 0.000	Volumetric 0.000
·	1/K m²/day		
a_s	•	0.000	0.000

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL PERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	290 di 309

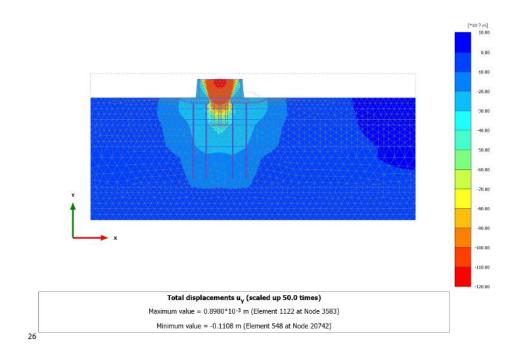
1.1.2.2 Materials - Embedded beam row -

Identification		PaliMuro	Consolidamenti
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
E	kN/m²	33.00E6	33.00E6
Υ	kN/m³	6.500	5.000
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	0.8000
A	m²	0.5027	0.5027
I 2	m ⁴	0.02011	0.02011
I ₃	m ⁴	0.02011	0.02011
Rayleigh a		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Multi-linear	Multi-linear
Multi-linear axial resistance		Axial skin resistance table	Axial skin resistance table

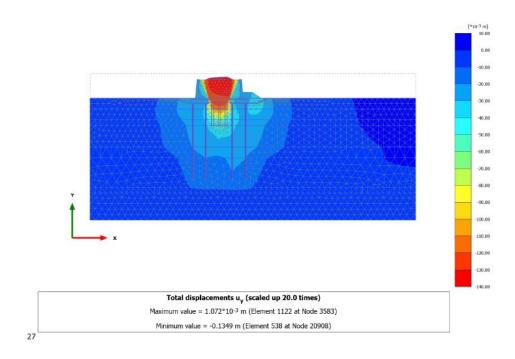

RI51_NT_01

Identification		PaliMuro	Consolidamenti
F max	kN	1759	543.0
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
E	kN/m²	33.00E6	33.00E6
Υ	kN/m³	6.500	5.000
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	0.8000
A	m²	0.5027	0.5027
I	m ⁴	0.02011	0.02011
L spacing	m	3.600	2.000
Rayleigh a		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Multi-linear	Multi-linear
Multi-linear axial resistance		Axial skin resistance table	Axial skin resistance table
Lateral resistance		Unlimited	Unlimited
F _{max}	kN	1759	543.0

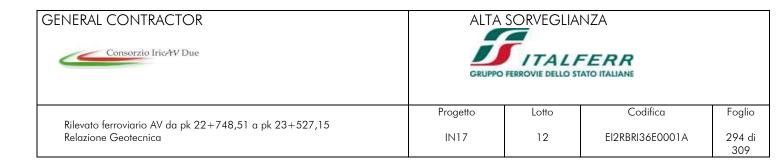
GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	291 di 309

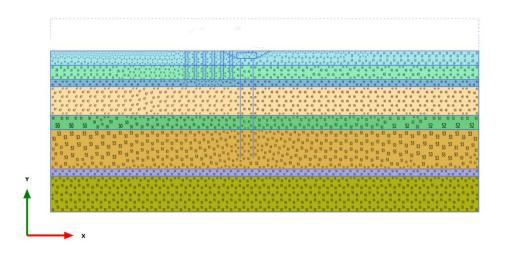

Identification	PaliMuro	Consolidamenti
Default values	Yes	Yes
Axial stiffness factor	0.8092	1.257
Lateral stiffness factor	0.8092	1.257
Base stiffness factor	8.092	12.57
Identification number	1	2

2.1.1.1 Calculation results, Initial phase [InitialPhase] (0/4), Total displacements $\boldsymbol{u}_{\!\scriptscriptstyle \downarrow}$

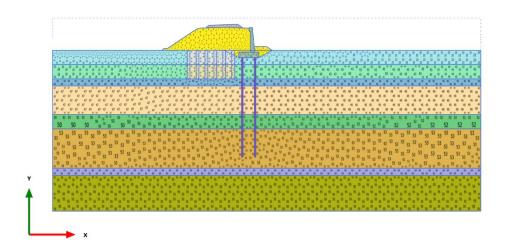


2.1.1.1.2 Calculation results, Phase_3 [Phase_3] (3/158), Total displacements u,

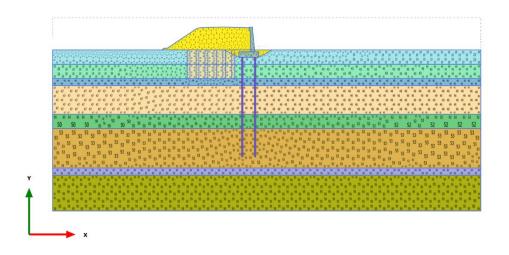

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	293 di 309



PLAXIS Report


1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/4), Connectivity plot

Connectivity plot


1.1.1.2 Calculation results, completamento [Phase_4] (4/16), Connectivity plot

Connectivity plot

1.1.1.3 Calculation results, rilevato [Phase_7] (3/188), Connectivity plot

GENERAL CONTRACTOR Consorzio Iric/AV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	295 di 309

Connectivity plot

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	296 di 309

1.1.2.1.1 Materials - Soil and interfaces - Linear elastic

Identification		Ballast	CA
Identification number		1	10
Drainage type		Drained	Non-porous
Colour			
Comments			
Yunsat	kN/m³	18.00	25.00
Ysat	kN/m³	18.00	25.00
Dilatancy cut-off		No	No
e init		0.5000	0.5000
e min		0.000	0.000
e _{max}		999.0	999.0
Е	kN/m²	100.0E3	33.00E6
v (nu)		0.3000	0.2000
G	kN/m²	38.46E3	13.75E6
Eoed	kN/m²	134.6E3	36.67E6
Cat to default values			V
Set to default values		Yes	Yes
E _{inc}	kN/m²/m	0.000	0.000
	kN/m²/m m		
E _{inc}		0.000	0.000
E _{inc} Yref		0.000 0.000	0.000
E _{inc} Yref Undrained behaviour		0.000 0.000 Standard	0.000 0.000 Standard
Yref Undrained behaviour Skempton-B		0.000 0.000 Standard 0.9783	0.000 0.000 Standard 0.9866
Yref Undrained behaviour Skempton-B Vu	m	0.000 0.000 Standard 0.9783 0.4950	0.000 0.000 Standard 0.9866 0.4950
Yref Undrained behaviour Skempton-B Vu K _{w,ref} / n	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6	0.000 0.000 Standard 0.9866 0.4950 1.352E9
Yref Undrained behaviour Skempton-B Vu K _{w,ref} / n Stiffness	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6 Standard	0.000 0.000 Standard 0.9866 0.4950 1.352E9 Standard
E _{inc} Yref Undrained behaviour Skempton-B Vu K _{w,ref} / n Stiffness Strength	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6 Standard Rigid	0.000 0.000 Standard 0.9866 0.4950 1.352E9 Standard Rigid
E _{inc} Yref Undrained behaviour Skempton-B Vu K _{w,ref} / n Stiffness Strength R _{inter}	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6 Standard Rigid 1.000	0.000 0.000 Standard 0.9866 0.4950 1.352E9 Standard Rigid 1.000
E _{inc} Yref Undrained behaviour Skempton-B Vu K _{w,ref} / n Stiffness Strength R _{inter} Consider gap closure	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6 Standard Rigid 1.000 Yes	0.000 0.000 Standard 0.9866 0.4950 1.352E9 Standard Rigid 1.000 Yes
E_{inc} y_{ref} $Undrained behaviour$ $Skempton-B$ v_{u} $K_{w,ref} / n$ $Stiffness$ $Strength$ R_{inter} $Consider gap closure$ δ_{inter}	m	0.000 0.000 Standard 0.9783 0.4950 3.750E6 Standard Rigid 1.000 Yes 0.000	0.000 0.000 Standard 0.9866 0.4950 1.352E9 Standard Rigid 1.000 Yes 0.000

GENERAL CONTRACTOR Consorzio Iric/IV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	297 di

Identification		Ballast	CA
K₀ determination		Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes
K _{0,x}		0.5000	0.5000
K _{0,z}		0.5000	0.5000
Data set		Standard	Standard
Туре		Medium	Coarse
< 2 µm	%	19.00	10.00
2 μm - 50 μm	%	41.00	13.00
50 μm - 2 mm	%	40.00	77.00
Use defaults		None	None
k _x	m/day	864.0	0.000
ky	m/day	864.0	0.000
- Ψunsat	m	10.00E3	10.00E3
e init		0.5000	0.5000
Ss	1/m	0.000	0.000
Ck		1000E12	1000E12
Cs	kJ/t/K	0.000	0.000
λs	kW/m/K	0.000	0.000
ρs	t/m³	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric
a_s	1/K	0.000	0.000
D _v	m²/day	0.000	0.000
f _{Tv}		0.000	0.000
Unfrozen water content		None (4/2)	None

1.1.2.1.2.1 Materials - Soil and interfaces - Mohr-Coulomb (1/3)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITALI PERROVIE DELLO ST	FERR	
Dilaceta (conscionia AV de al 20 1740 E) a al 22 1507 15	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	298 di

Identification		Rilevato	U3b_1	U6_1	U3b_4	U4_1
Identification number		2	3	4	7	8
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
Yunsat	kN/m³	20.00	18.50	19.00	18.50	19.00
Ysat	kN/m³	20.00	18.50	19.00	18.50	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	1.000	0.5000	1.000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
E	kN/m²	60.00E3	20.00E3	100.0E3	15.00E3	40.00E3
v (nu)		0.3000	0.2300	0.3000	0.2300	0.3000
G	kN/m²	23.08E3	8130	38.46E3	6098	15.38E3
E _{oed}	kN/m²	80.77E3	23.19E3	134.6E3	17.39E3	53.85E3
C _{ref}	kN/m²	0.000	90.00	0.000	80.00	0.000
φ (phi)	٥	38.00	0.000	39.00	0.000	34.00
ψ (psi)	۰	0.000	0.000	0.000	0.000	0.000
Set to default values		Yes	Yes	Yes	Yes	Yes
Einc	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
C _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
Yref	m	0.000	0.000	0.000	0.000	0.000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9783	0.9848	0.9783	0.9848	0.9783
V _u		0.4950	0.4950	0.4950	0.4950	0.4950
$K_{w,ref}$ / n	kN/m²	2.250E6	798.0E3	3.750E6	598.5E3	1.500E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.6670	0.6670	0.6670	0.6670	0.6670
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ_{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
R	m² K/kW	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.3843	10.00E9	0.3707	10.00E9	0.4408
K _{0,z}		0.3843	10.00E9	0.3707	10.00E9	0.4408
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 μm	%	10.00	10.00	10.00	10.00	10.00

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	299 di 309

Identification		Rilevato	U3b_1	U6_1	U3b_4	U4_1
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	86.40	0.8640E-3	86.40	0.8640E-3	8.640
k _y	m/day	86.40	0.8640E-3	86.40	0.8640E-3	8.640
-Ψunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	1.000	0.5000	1.000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
C _k		1000E12	1000E12	1000E12	1000E12	1000E12
Cs	kJ/t/K	0.000	0.000	0.000	0.000	0.000
λε	kW/m/K	0.000	0.000	0.000	0.000	0.000
ρ _s	t/m³	0.000	0.000	0.000	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric	Volumetric	Volumetric	Volumetric
a_s	1/K	0.000	0.000	0.000	0.000	0.000
D _v	m²/day	0.000	0.000	0.000	0.000	0.000
f _{Tv}		0.000	0.000	0.000	0.000	0.000
Unfrozen water content		None	None	None	None	None

1.1.2.1.2.2 Materials - Soil and interfaces - Mohr-Coulomb (2/3)

GENERAL CONTRACTOR	ALTA SORVEGLIANZA					
Consorzio IricAV Due		ITALF				
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio		

IN17

12

EI2RBRI36E0001A

300 di 309

Relazione Geotecnica

Identification		U2_1	U4_2	U4-3	colonne 1 strato	colonne strato 2
Identification number		9	11	12	13	14
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
Yunsat	kN/m³	18.50	19.00	19.00	19.00	19.00
Υ _{sat}	kN/m³	18.50	19.00	19.00	19.00	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		1.000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
E	kN/m²	25.00E3	60.00E3	100.0E3	23.20E3	10.30E3
v (nu)		0.2500	0.3000	0.3000	0.2300	0.2300
G	kN/m²	10.00E3	23.08E3	38.46E3	9431	4187
E _{oed}	kN/m²	30.00E3	80.77E3	134.6E3	26.90E3	11.94E3
C _{ref}	kN/m²	120.0	0.000	0.000	90.00	40.00
φ (phi)	•	0.000	38.00	38.00	0.000	0.000
ψ (psi)	٠	0.000	0.000	0.000	0.000	0.000
Set to default values		Yes	Yes	Yes	Yes	Yes
E _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y ref	m	0.000	0.000	0.000	0.000	0.000
Cinc	kN/m²/m	0.000	0.000	0.000	0.000	0.000
Yref	m	0.000	0.000	0.000	0.000	0.000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9783	0.9783	0.9848	0.9848
V _u		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m²	980.0E3	2.250E6	3.750E6	925.6E3	410.9E3
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Rigid	Rigid
R _{inter}		0.6670	0.6670	0.6670	1.000	1.000
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
R	m² K/kW	0.000	0.000	0.000	0.000	0.000
K₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.5000	0.3843	0.3843	0.5000	0.5000
K _{0,z}		0.5000	0.3843	0.3843	0.5000	0.5000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 μm	%	10.00	10.00	10.00	10.00	10.00

GENERAL CONTRACTOR Consorzio Iric/4V Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	301 di 309

Identification		U2_1	U4_2	U4-3	colonne 1 strato	colonne strato 2
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.08640E-3	10.00E3	86.40	0.000	0.000
k _y	m/day	0.08640E-3	10.00E3	86.40	0.000	0.000
-Ψunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		1.000	0.5000	0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
Ck		1000E12	1000E12	1000E12	1000E12	1000E12
C _s	kJ/t/K	0.000	0.000	0.000	0.000	0.000
λς	kW/m/K	0.000	0.000	0.000	0.000	0.000
ρ_s	t/m³	0.000	0.000	0.000	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric	Volumetric	Volumetric	Volumetric
a_s	1/K	0.000	0.000	0.000	0.000	0.000
D _v	m²/day	0.000	0.000	0.000	0.000	0.000
f_{Tv}		0.000	0.000	0.000	0.000	0.000
Unfrozen water content		None	None	None	None	None

1.1.2.1.2.3 Materials - Soil and interfaces - Mohr-Coulomb (3/3)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	302 di 309

Identification		colonne ghiaia
Identification number		15
Drainage type		Drained
Colour		
Comments		
Yunsat	kN/m³	19.00
Ysat	kN/m³	19.00
Dilatancy cut-off		No
e init		0.5000
e min		0.000
e _{max}		999.0
E	kN/m²	60.00E3
v (nu)		0.2300
G	kN/m²	24.39E3
E _{oed}	kN/m²	69.56E3
Cref	kN/m²	0.000
φ (phi)	0	40.00
ψ (psi)	0	0.000
Set to default values		Yes
Einc	kN/m²/m	0.000
y ref	m	0.000
Cinc	kN/m²/m	0.000
y ref	m	0.000
Tension cut-off		Yes
Tensile strength	kN/m²	0.000
Undrained behaviour		Standard
Skempton-B		0.9848
Vu		0.4950
K _{w,ref} / n	kN/m²	2.394E6
Stiffness		Standard

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO S'	FERR	
	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15 Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	303 di

Identification		colonne ghiaia
Strength		Rigid
R _{inter}		1.000
Consider gap closure		Yes
δinter		0.000
Cross permeability		Impermeable
Drainage conductivity, dk	m³/day/m	0.000
R	m² K/kW	0.000
K ₀ determination		Automatic
$K_{0,x} = K_{0,z}$		Yes
K _{0,x}		0.3572
K _{0,z}		0.3572
Data set		Standard
Туре		Coarse
< 2 μm	%	10.00
2 μm - 50 μm	%	13.00
50 μm - 2 mm	%	77.00
Use defaults		None
k _x	m/day	0.000
k _y	m/day	0.000
-Ψunsat	m	10.00E3
e _{init}		0.5000
Ss	1/m	0.000
Ck		1000E12
Cs	kJ/t/K	0.000
λ_{s}	kW/m/K	0.000
ρs	t/m³	0.000
Solid thermal expansion		Volumetric
a_s	1/K	0.000
D _v	m²/day	0.000
f _{Tv}		0.000
Unfrozen water content		None

1.1.2.1.3 Materials - Soil and interfaces - Hardening soil

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	304 di 309

Identification		U3b_2	U3b_3
Identification number		5	6
Drainage type		Drained	Drained
Colour			
Comments			
Yunsat	kN/m³	18.50	18.50
γsat	kN/m³	18.50	18.50
Dilatancy cut-off		No	No
e init		1.000	1.000
e min		0.000	0.000
emax		999.0	999.0
E ₅₀ ref	kN/m²	3194	3594
E _{oed} ref	kN/m²	2556	2875
Eur ^{ref}	kN/m²	20.70E3	20.70E3
power (m)		1.000	1.000
Use alternatives		No	No
Cc		0.1800	0.1600
Cs		0.02000	0.02000
e init		1.000	1.000
Cref	kN/m²	40.00	65.00
φ (phi)	0	0.000	0.000
ψ (psi)	0	0.000	0.000
Set to default values		Yes	Yes
Vur		0.2000	0.2000
p ref	kN/m²	100.0	100.0
K ₀ nc		1.000	1.000
Cinc	kN/m²/m	0.000	0.000
Y ref	m	0.000	0.000
Rf		0.9000	0.9000
Tension cut-off		Yes	Yes

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAv Due Consorzio IricAv Due Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15

IN17

12

EI2RBRI36E0001A

305 di 309

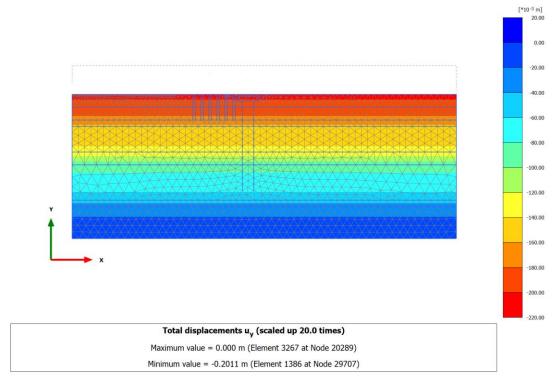
Relazione Geotecnica

Identification		U3b_2	U3b_3
Tensile strength	kN/m²	0.000	0.000
Undrained behaviour		Standard	Standard
Skempton-B		0.9866	0.9866
Vu		0.4950	0.4950
K _{w,ref} / n	kN/m²	848.1E3	848.1E3
Stiffness		Standard	Standard
Strength		Manual	Manual
Rinter		0.6670	0.6670
Consider gap closure		Yes	Yes
δ _{inter}		0.000	0.000
Cross permeability		Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000
R	m² K/kW	0.000	0.000
K₀ determination		Automatic	Automatic
OCR		1.000	1.000
POP	kN/m²	160.0	160.0
Data set		Standard	Standard
Туре		Coarse	Coarse
< 2 µm	%	10.00	10.00
2 μm - 50 μm	%	13.00	13.00
50 μm - 2 mm	%	77.00	77.00
Use defaults		None	None
k _x	m/day	0.8640E-3	0.8640E-3
k _y	m/day	0.8640E-3	0.8640E-3
- Ψunsat	m	10.00E3	10.00E3
e init		1.000	1.000
Ss	1/m	0.000	0.000
Ck		1000E12	1000E12
Cs	kJ/t/K	0.000	0.000
λ_{s}	kW/m/K	0.000	0.000
ρs	t/m³	0.000	0.000
Solid thermal expansion		Volumetric	Volumetric

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	306 di 309

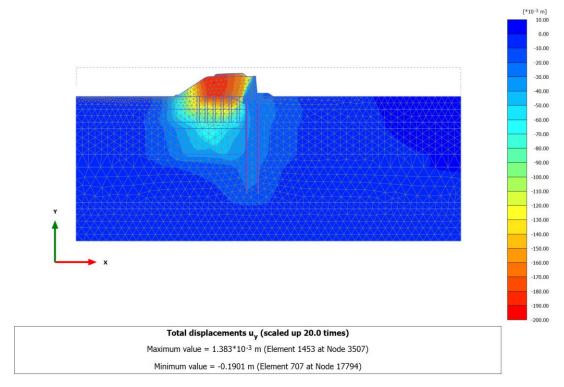
	U3b_2	U3b_3
1/K	0.000	0.000
m²/day	0.000	0.000
	0.000	0.000
	None	None
	,	1/K 0.000 m²/day 0.000 0.000

1.1.2.2 Materials - Embedded beam row -

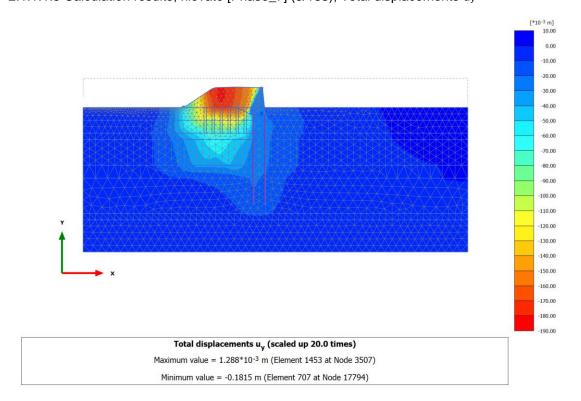

GENERAL CONTRACTOR Consorzio Iric/1V Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	307 di 309

Identification		PaliMuro	Consolidamenti
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
E	kN/m²	33.00E6	33.00E6
Υ	kN/m³	6.500	5.000
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	0.8000
A	m²	0.5027	0.5027
I_2	m ⁴	0.02011	0.02011
I_3	m ⁴	0.02011	0.02011
Rayleigh a		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Multi-linear	Multi-linear
Multi-linear axial resistance		Axial skin resistance table	Axial skin resistance table
F _{max}	kN	1759	543.0
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Е	kN/m²	33.00E6	33.00E6
Υ	kN/m³	6.500	5.000
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	0.8000
A	m²	0.5027	0.5027
I	m ⁴	0.02011	0.02011
L _{spacing}	m	3.600	2.000
Rayleigh a		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Multi-linear	Multi-linear
Multi-linear axial resistance		Axial skin resistance table	Axial skin resistance table
Lateral resistance		Unlimited	Unlimited
F _{max}	kN	1759	543.0
Default values		Yes	Yes
Axial stiffness factor		0.8092	1.257

GENERAL CONTRACTOR Consorzio Iric4v Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
RI19	Progetto	Lotto	Codifica	
Relazione Geotecnica	IN17	11	EI2GERI190001	А


Identification	PaliMuro	Consolidamenti
Lateral stiffness factor	0.8092	1.257
Base stiffness factor	8.092	12.57
Identification number	1	2

2.1.1.1.1 Calculation results, Initial phase [InitialPhase] (0/4), Total displacements u_{ν}



2.1.1.1.2 Calculation results, completamento [Phase_4] (4/16), Total displacements uy

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 22+748,51 a pk 23+527,15	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI36E0001A	309 di 309	

2.1.1.1.3 Calculation results, rilevato [Phase_7] (3/188), Total displacements uy

