COMMITTENTE:

ALTA SORVEGLIANZA:

SCALA

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

RILEVATI

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 GENERALE

Relazione Geotecnica

IL PROGETTISTA INTEGRATORE

GENERAL CONTRACTOR

Consorzio

Data!			o Carmono Cloud bbraio 202 TIPO D	Date	a: A/DISCIPLINA 6 2 0 0	PROGR.	REV.	FOGLIO
						VIS	TO CONSC	DRZIO IRICAV DUE
					Fi	rma		Data
	Iric	AV2			Luca F	RANDOLFI		Febbraio 2022
Proge	ttazione:						•	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
А	EMISSIONE	M. Conti	Aprile	V. Pastore	Aprile	P. Ascari	Aprile	P. Ascari
	LIVIIOOIOINE	Moria Carli	2021	Valeriainfather	2021	Ports Hali	2021	To Bo Mal
		M. Conti	Fabbasia	V. Pastore	Febbraio	P. Ascari	Febbraio	() 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
В	REVISIONE	Uloria Carli	Febbraio 2022	Whenington	2022	Porls Hali	2022	Data: Febbraio 2022

DIRETTORE LAVORI

CIG. 8377957CD1

Progetto cofinanziato dalla Unione Europea

File: IN1712EI2RBRI6200001B

Cod. origine:

CUP: J41E91000000009

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI6200001B
 2 di 71

INDICE

1	INTR	ODUZIONE	4
2	DOC	UMENTI DI RIFERIMENTO	5
,	2.1	Documentazione di progetto	5
		Normativa e standard di riferimento	
		Bibliografia	
3		JADRAMENTO DELL'OPERA	
	3.1	Geometria del rilevato	
4	CAR	ATTERIZZAZIONE GEOTECNICA	8
2	1.1	Indagini disponibili	8
2	1.2	Inquadramento stratigrafico	9
4	1.3	Livello di falda	10
2	1.4	Condizioni geotecniche del sito	11
2	1.5	Sintesi del modello geotecnico di riferimento	19
	4.5.1	Materiale da rilevato	19
5	CAR	ATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	20
Ę	5.1	Sollecitazione sismica di progetto	20
	5.1.1	Vita Nominale	20
	5.1.2	Classe d'uso	20
	5.1.3	Periodo di riferimento per l'azione sismica	21
	5.1.4	Categorie di Sottosuolo	21
	5.1.5	Condizioni topografiche	21
	5.1.6	Accelerazione sismica di riferimento	22
Ę	5.2	Suscettibilità alla liquefazione	22
	5.2.1	CRR da correlazione su prove CPT	24
	5.2.2	CRR da correlazione su prove SPT	26
Ę	5.3	Risultati delle verifiche a liquefazione	29
6	VERI	IFICA GEOTECNICA DEL RILEVATO	31
6	5.1	Criteri di verifica agli Stati Limite	31
	6.1.1	Stati limite ultimi (SLU)	31
	6.1.2	Stati limite di esercizio (SLE)	33
	6.1.3	Verifiche in condizioni sismiche e post-sismiche	33
6	6.2	Azioni di progetto	33
	621	Azioni permanenti	34

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI6200001B
 3 di 71

	6.2.2	Azioni variabili	34
	6.2.3	Azione sismica	
	6.3 V	erifiche e risultati SLU	
	6.3.1	Premessa	
	6.3.2	Verifiche SLU in condizione statiche	
	6.3.3	Verifiche SLU in condizioni sismiche	
	6.4 V	erifica e risultati SLE	
7		LUSIONI E RACCOMANDAZIONI	
•	00.10		
A	llegati		43
	ALLEGA [.]	TO 1 – PROFILO STRATIGRAFICO	44
	_	TO 2 – SONDAGGI	
	_	TO 3 – TABULATI DI SLIDE - ANALISI SLU STATICO	_
		TO 4 – TABULATI DI SLIDE – ANALISI SLU SISMICO	
		TO 5 – TABULATI DI SETTLE 3D – ANALISI SLE	

GENERAL CONTRACTOR IFICAV2	1	SORVEGLIA TAL D FERROVIE DELLO S	FERR	
	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00				

IN17

12

El2RBRI6200001B

4 di 71

1 INTRODUZIONE

Relazione Geotecnica

Il presente documento costituisce la Relazione Geotecnica del rilevato RI62, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato si estende tra il km 32+130,00 ed il km 32+525,00.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta. Le verifiche discusse sono state eseguite ai sensi della Normativa vigente (v. capitolo seguente) e gli interventi proposti sono volti a verificare la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	El2RBRI6200001B	5 di 71	

2 DOCUMENTI DI RIFERIMENTO

2.1 Documentazione di progetto

- [1] Sezioni di Progetto Esecutivo
- [2] IN1710EI2RBGE0000003A Relazione Geotecnica (da 21+990 a 33+500)
- [3] IN1710EI2LZGE0000019A Planimetria con ubicazione indagini e profilo geotecnico 8 di 11
- [4] IN1710EI2RHGE0000006A Relazione sulla modellazione sismica del sito e pericolosità sismica di base 2/2
- [5] IN1710EI2P5GE0000008A Planimetrie con classificazione sismica del territorio 8 di 11
- [6] IN1710EI2RHGE0000004A Relazione idrogeologica 2/2
- [7] IN1710EI2RHGE0000007A-8A Relazione di sintesi dei sondaggi e delle prove eseguite
- [8] IN1710EI2PRGE0000001A-2A, Risultati Indagini in sito di Progetto SOCOTEC
- [9] IN1710EI2PRGE0000003A-4A, Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [10] IN1710El2PRGE0000005A-8A, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC
- [11] IN1710EI2PRGE0000009A-12A, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING GEOLAVORI
- [12] IN1710El2IGGE0000001A-2A, Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC
- [13] IN1710El2IGGE0000003A-4A, Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING -GEOLAVORI

2.2 Normativa e standard di riferimento

- [14] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni",G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [15] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [16] UNI EN 1997-1 : Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [17] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [18] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [19] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [20] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [21] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	6 di 71

- [22] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 "Opere in terra e scavi"– RFI
- [23] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [24] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

2.3 Bibliografia

- [25] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [26] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [27] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [28] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [29] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [30] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [31] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [32] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.
- [33] Rocscience (2017), Slide ver 7.0, 2017
- [34] Rocscience (2009), Settle 3D ver 2.0, 2009

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Piloseta (annotaria AV da al 220 120 00 a al 220 525 00	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	7 di 71	

3 INQUADRAMENTO DELL'OPERA

Il rilevato ferroviario in esame si estende dalla pk 32+130,00 alla pk 32+525,00 per una lunghezza totale di 395 m. Il rilevato è in affiancamento alla linea storica. Per la tratta in esame non si evidenziano altre interferenze con opere principali adiacenti e/o attraversate.

3.1 Geometria del rilevato

Come detto il rilevato risulta sempre in affiancamento alla linea storica (o alla sua variante). Ha una sezione relativamente uniforme per tutto il tracciato. con il lato Nord in affiancamento alla LS e quello Sud che si raccorda al terreno naturale con una scarpata con pendenza 2/3 (V:H).

Alla pk 32+250, si riscontra l'altezza massima del rilevato pari a 8.9 m. La Sezione A (Figura 1), con altezza massima, è quella considerata per le verifiche del rilevato in esame.

In sede di Progetto Definitivo sono state previste inclusioni rigide alla base del rilevato, probabilmente per cautelarsi dallo sviluppo di cedimenti dovuti alla eventuale presenza di terreni cedevoli.

Grazie alle indagini condotte nella fase del PE, la presenza di materiali argillosi è risultata molto più limitata rispetto a quanto assunto in fase di PD. Sulla base dei nuovi sondaggi, l'utilizzo di inclusioni rigide non è quindi più necessario.

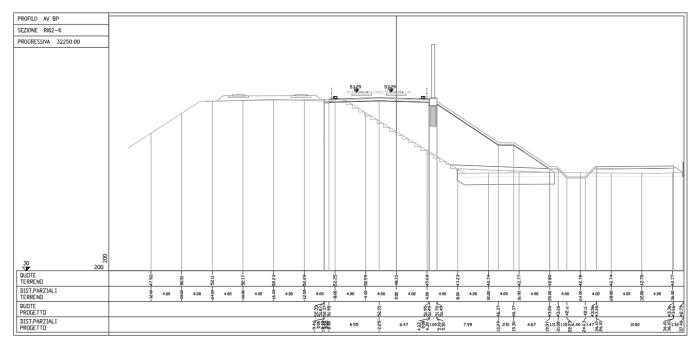


Figura 1 – Sezione di riferimento A (pk 32+250) estratta da sezioni PE (Doc Rif. [1])

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TTAL	FERR	
Rilevato ferroviario AV da pk 32+130.00 a pk 32+525.00	Progetto	Lotto	Codifica	Foglio

IN17

12

El2RBRI6200001B

8 di 71

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Indagini disponibili

Relazione Geotecnica

L'ubicazione planimetrica delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 2 - Planimetria Rilevato RI62, estratto dalla Planimetria Generale (Doc. Rif. [3]), estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [3]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [7] - [13]).

Il risultato delle indagini è riportato in ALLEGATO 2.

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Nei paragrafi che seguono si riporta la caratterizzazione stratigrafica e geotecnica, ottenuta basandosi sui risultati delle indagini relative all'aera di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2])

Tabella 1 - Indagini da pk 32+130 a pk 32+525

Progressiva pk	ID indagini -	Campagna anno
32+236	BH-DH-PE-65	2020-2021
32+366	MASW-PE-16	2020-2021

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	9 di 71	

Figura 2 - Planimetria Rilevato RI62, estratto dalla Planimetria Generale (Doc. Rif. [3])

4.2 Inquadramento stratigrafico

La tratta relativa al rilevato in esame si estende dalla progressiva pk 32+130,00 alla pk 32+525,00.

Dal punto di vista geotecnico, la zona è generalmente interessata dalla presenza di ghiaie ben addensate (Unità 6) da pc ad una profondità di circa 9-10 m, sovrastanti uno strato di limi argillosi (Unità 3) spesso circa 2.5 m. Sotto questo strato di limi argillosi si ritrovano le ghiaie fino a 45 m pc. Si segnala anche la presenza di una lente di limi argillosi (Unità 2) spessa 2-3 m a profondità di 35 m in corrispondenza del BH-PE-65 .

Sulla base dei dati disponibili, si presuppone la locale presenza di un modesto spessore di strato di riporto, solitamente costituiti da materiali a gran grossa (sabbie e ghiaie) .

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]).

Nella Figura 3 si riporta il profilo geotecnico specifico per il rilevato RI62, estratto dalla Planimetria e Profilo Geotecnico Tav. 8 di 11 (Doc. Rif. [3]),.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	10 di 71

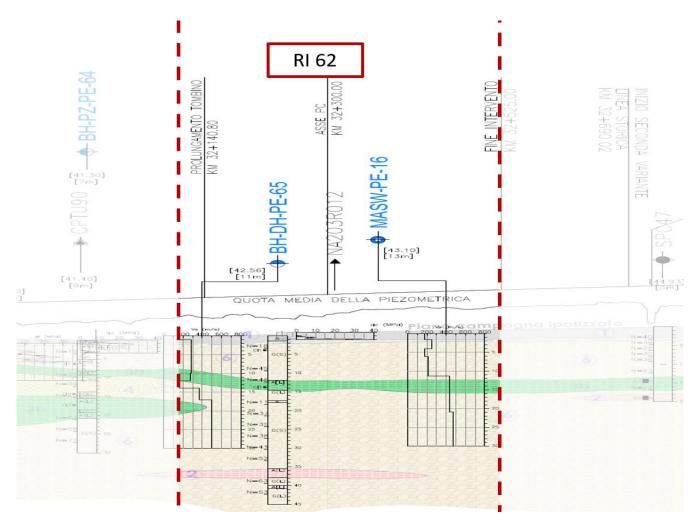


Figura 3 - Profilo Geotecnico Rilevato RI62, estratto dal Profilo Geotecnico Generale (Doc. Rif. [3])

4.3 Livello di falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Ref. [6]). Quest'ultimi indicano una sostanziale stabilità nelle escursioni stagionali.

Ai fini progettuali si assume:

- falda di progetto a medio termine: -1 m da piano campagna;
- falda di progetto a lungo termine: -1 m da piano campagna.

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	11 di 71		

4.4 Condizioni geotecniche del sito

La Figura 5 mostra i risultati delle prove SPT eseguite nel tratto interessato dal rilevato in esame. La porzione più superficiale è costituita da un sottile strato, spesso circa 1.5 m, di terreno di riporto (Unità 1). Tale materiale risulta ghiaioso/sabbioso al disotto dei primi 50 cm. Pertanto, alla luce dei dati disponibili, si ritiene che, una volta effettuato lo scotico, il materiale possa essere adeguatamente compattato, raggiungendo i requisiti prestazionali per i terreni di imposta dei rilevati.

Procedendo con la profondità si incontra uno strato di ghiaie e ghiaie sabbiose ben addensate (Unità 6), che si estende fino a 12 m ca. da pc. All'interno del deposito incoerente le percentuali di materiale a grana fine sono generalmente inferiori a 10% e si registrano valori di N_{SPT} mediamente pari a 40 colpi/30cm, con valori anche superiori a 50 colpi/30cm in profondità. La densità relativa delle ghiaie risulta generalmente variabile fra il 40 e il 70% e quindi il deposito risulta da mediamente addensato ad addensato.

Più in profondità, si incontra uno strato di argilla limosa (unità 3) spesso 2 m, come evidenziato anche da bassi valori di N_{SPT.} I valori di pocket penetrometer test sono compresi fra 75 e 125 kPa. Le prove triassiali forniscono una cu di 50 kPa.

Il profilo di Vs derivante delle interpretazioni discusse nella Relazione Sismica (Doc. Rif. [4]), basata sui risultati delle prove DH, MASW e infine SPT, conferma la presenza di materiali incoerenti da mediamente a molto addensati. Fino a 10 m pc, per le ghiaie si stimano valori di Vs crescenti e compresi tra 150 m/s e 240 m/s. A profondità maggiori, , le velocità sono da considerarsi pressoché costanti – variano tra 300 m/s e 420 m/s fino a 35 m pc. Sulla base dei valori di Vs si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Per le ghiaie si ottengono valori crescenti compresi tra 120 MPa e 350 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 , ed utilizzando valori di v = 0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato stimato ipotizzando valori del decadimento del modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

Le seguenti figure riportano i risultati delle principali prove di sito e dei parametri geotecnici dei terreni, interpretati alla luce di quanto riferito in [2] e [4].

- Distribuzione delle granulometrie da analisi di laboratorio (v. Figura 4);
- Valori N_{SPT} da prove SPT (v. Figura 5);
- Densità relativa stimata da prove SPT (v. Figura 6);

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	12 di 71

- Angolo di attrito stimato da prove SPT (v. Figura 7);
- Velocità delle onde di taglio stimata da prove in sito (v. Figura 8);
- Modulo di taglio alle piccole deformazioni valutati a partire dai valori stimati di Vs (v. Figura 9).

RI 62 da pk pk 32+130 a pk 32+525

Contributi granulometrici (%)

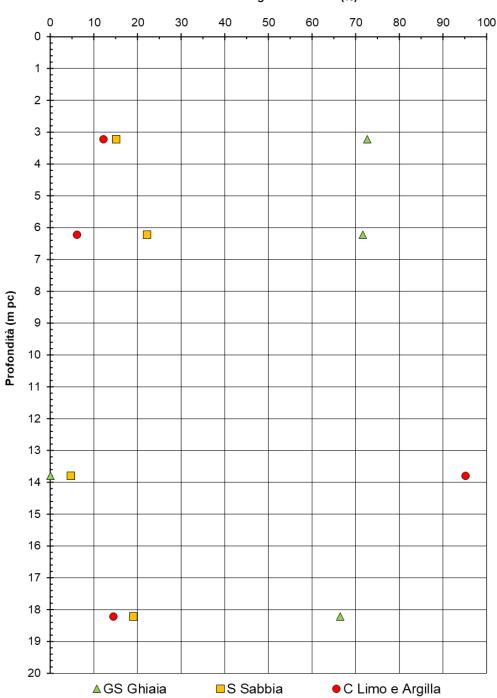


Figura 4 – Sintesi analisi granulometriche tra pk 32+130 a pk 32+525

RI 62 da pk pk 32+130 a pk 32+525

N_{SPT} (colpi/30cm)

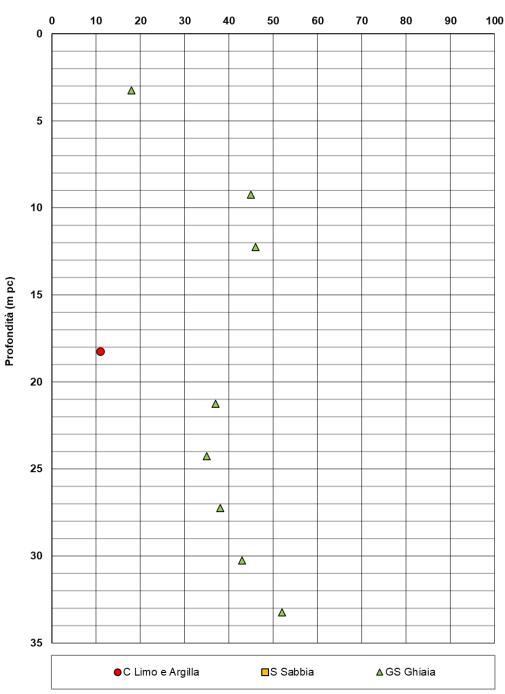


Figura 5 – Esito delle prove SPT tra pk 32+130 a pk 32+525

RI 62 da pk pk 32+130 a pk 32+525

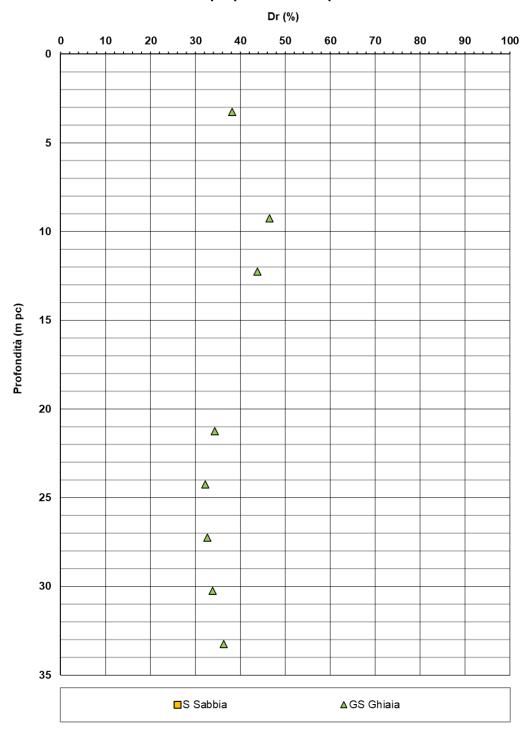


Figura 6 – Densità relativa da prove SPT tra pk 32+130 a pk 32+525

RI 62 da pk pk 32+130 a pk 32+525

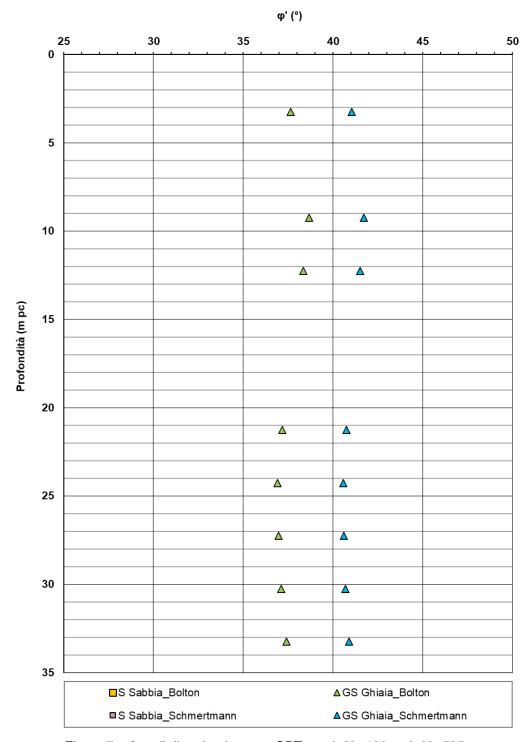


Figura 7 – Angoli di attrito da prove SPT tra pk 32+130 a pk 32+525

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL	FERR	
DI (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	17 di 71

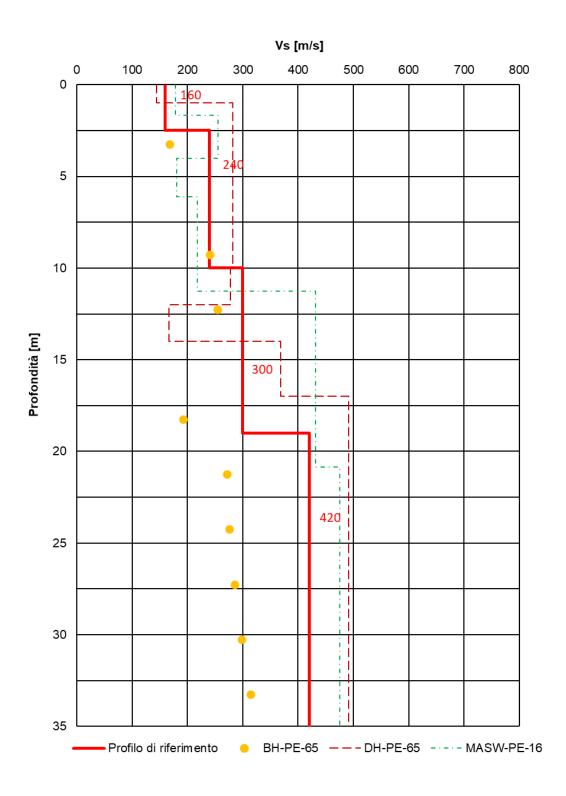


Figura 8 – Profilo di Vs di riferimento, a confronto con dati di correlazioni con SPT e prove geofisiche tipo MASW tra pk 32+130 e 32+525

pk 32+130 - pk 32+525

G0 (MPa)

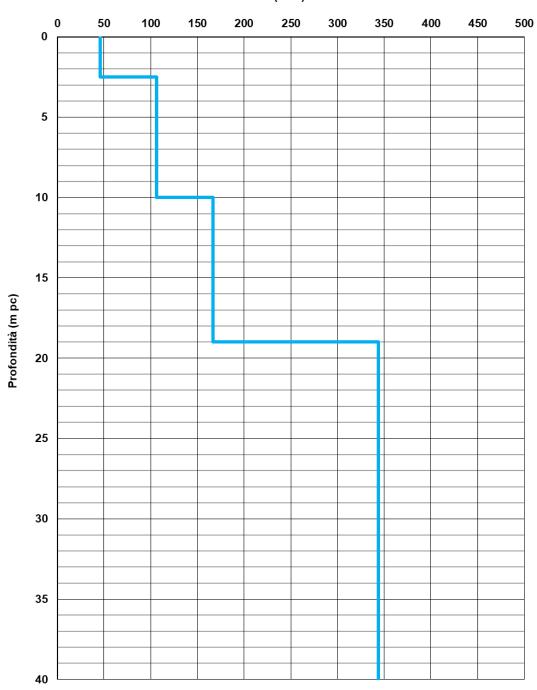


Figura 9 – Modulo di taglio G₀ tra pk 32+130 e 32+525

Rilevato ferroviario AV	da pk 32+130,00	a pk 32+525,00
Relazione Geotecnica		

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	19 di 71

4.5 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2.

Tabella 2 – Modello geotecnico di riferimento

Unità	da m pc*	a m pc*	γ kN/m³	φ k °	c _{u,k} kPa	RR	CR	OCR	G₀ MPa	E'op MPa
1	0	2	19	37	-	-	-	-		20
6	2	12.5	19	39	-	-	-	-	120-1 80**	80
3b	12.5	15	18.5	28	50	0.02	0.16	1.8	-	-
6	15	35.5	19	38	-	-	-	-	170- 350**	200
2	35.5	38.3	19	28	120- 150	-	-	-	-	30
6	38.3	-	19	38	-	-	-	-	350	200

^{*} quota piano campagna = 42,80 m s.l.m.

Per la falda si fa riferimento a quanto riportato in 4.3.

4.5.1 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. rif. [19]) e sono di seguito riassunte:

Tabella 3 - Caratteristiche materiale da rilevato

	Υ	φ	c'
	kN/m³	0	kPa
Materiale da rilevato	20	38	0

^{**} valori crescenti con la profondità

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL PERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	20 di 71

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP (Doc. rif. [18] e [19]), l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 4 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	V _N = 50 anni
Altre opere nuove a velocità V < 250 km/h	V _N = 75 anni
Altre opere nuove a velocità V ≥ 250 km/h	$V_N = 100 anni$
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- II Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

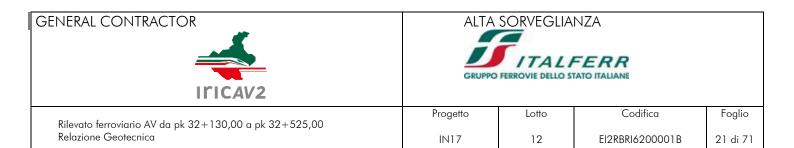


Tabella 5 – Valori del coefficiente di uso Cu

Classe d'uso	ı	II	Ш	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

Il periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica (Doc. rif. [4]) e nelle Planimetrie con classificazione sismica dei terreni (Doc. rif. [5]), i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media i > 15°.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Dil (Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	22 di 71

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

a _g (g) (SLV)	0.214
Coefficiente di amplificazione stratigrafica Ss	1.388
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
a_{max} (g) ($a_{\text{max}} = S \cdot a_{p} = S_{S} \cdot S_{T} \cdot a_{p}$)	0.297

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa vigente (Doc. rif. [4]).

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, $V_R = 150$ anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 (riportato in Figura 1), alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [4] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.5.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico (CRR) così definiti:

GENERAL CONTRACTOR

	Progetto	Lotto
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	_	
Relazione Geotecnica	IN17	12

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	23 di 71

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_l}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma'_{vo}} = 0.65 \frac{\tau_{\text{max}}}{\sigma'_{vo}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{vo}}{\sigma'_{vo}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

valore rappresentativo dello sforzo di taglio ciclico

 σ_{vo} tensione verticale alla profondità in esame, in termini di tensioni totali

 σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

rd coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 \cdot z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 \cdot z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per M ≠ 7.5 è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M-7.5}} = \left(\frac{N_{M-7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto, mentre $(CSR)_{M=7.5}$ e $N_{M=7.5}$ sono riferiti all'evento con M=7.5.

GENERAL CONTRACTOR

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	15.13.77	10	E100001 (0000010	0.4 1.71
Relazione Geolecnica	IN17	12	El2RBRI6200001B	24 di 71

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e Idriss e Boulanger (2004) si è assunto per M = 6.5 - MSF = 1.7.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 10: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per (q_{c1N})_{cs} < 50
$$CRR_{7.5} = 0.833 \left\lceil \frac{(q_{c1N})_{cs}}{1000} \right\rceil + 0.05$$

per 50
$$\leq$$
 (q_{c1N})_{cs} $<$ 160 $CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$

In Figura 10, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = [(3.47 - \log Q)^2 + (1.22 + \log F)^2]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

$$F = \frac{f_s}{q_c - \sigma_{vo}} x 100$$

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TALI FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	25 di 71

Tanto maggiore è il valore di I_c , tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore I_c = 2.6 è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e I_c sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se I_c così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di n e I_c sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove K_cè definito dalle seguenti equazioni (Robertson & Wride, 1998):

for Ic ≤ 1.64 $K_c = 1.0$

for Ic > 1.64 $K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$

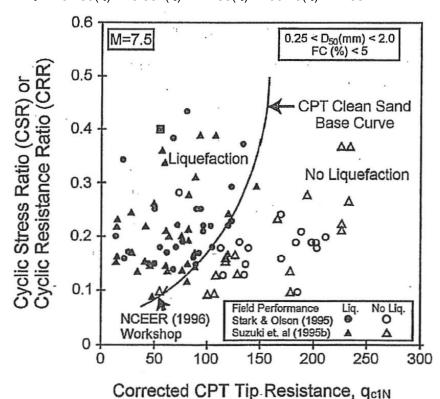


Figura 10 - Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

GENERAL CONTRACTOR IFICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
PH (Progetto	Lotto	Codifica	Foglio		
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	26 di 71		

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 11 originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 11, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti N₁₍₆₀₎, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT}C_NC_EC_BC_RC_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 11 viene riportato il valore di CSR calcolato ed i corrispondenti valori di $N_{1(60)}$ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

GENERAL CONTRACTOR

	Progetto	LOTTO
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00		
Relazione Geotecnica	IN17	12

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	27 di 71

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

Si può osservare dalla Figura 11 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - (N_1)_{60}} + \frac{(N_1)_{60}}{135} + \frac{50}{[10 \cdot (N_1)_{60} + 45]^2} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori di $N_{1(60)}$ ai valori corrispondenti per sabbia pulita $N_{1(60)cs}$:

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

$$\alpha$$
 = 0 per FC < 5%

$$\alpha$$
 = exp [1.76 – (190/FC2)] per 5% < FC < 35%

$$\alpha$$
 = 5 per FC \geq 35%

$$\beta$$
 = 1 per FC < 5%

$$\beta$$
 = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

$$β$$
 = 1.2 per FC ≥ 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il sequente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Piloseta (anno ini AV de al 22 120 00 and 22 525 00	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	28 di 71

pa = pressione atmosferica di riferimento

f = fattore che dipende dalla densità relative del materiale in sito.

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR < 60% f = 0.7÷0.8

60% < DR < 80% f = $0.6 \div 0.7$

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

FL = (CRR_{7.5}/CSR) MSF k_{σ}

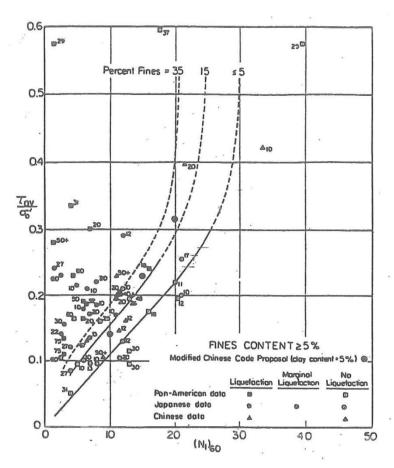


Figura 11 - Relazione tra sforzo di taglio ciclico a liquefazione e N1(60) – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

GENERAL CONTRACTOR ITICAV2		SORVEGLIA ITAL FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	29 di 71

5.3 Risultati delle verifiche a liquefazione

I risultati (cfr. Figura 12) indicano come non si evidenzino rischi di potenziale liquefazione nella porzione di tracciato interessata dal rilevato RI62, in linea con gli stati di addensamento e le granulometrie descritte in precedenza.

GENERAL CONTRACTOR IFICAV2		SORVEGLIA TAL	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	30 di 71

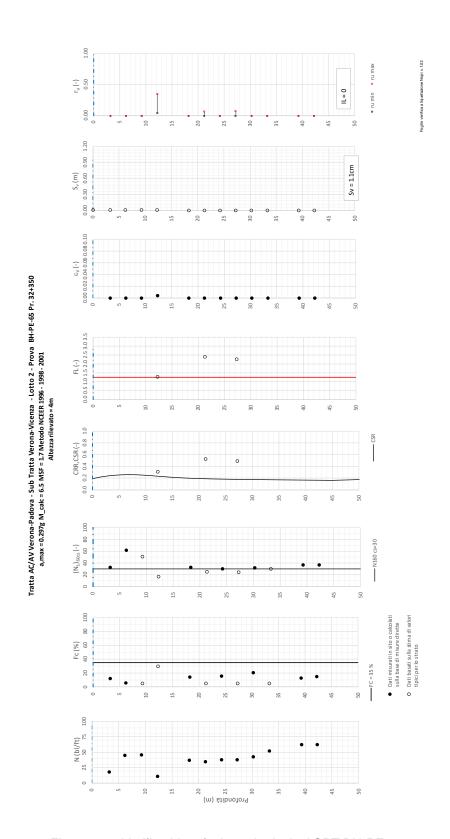


Figura 12 – Verifica Liquefazione da risultati SPT BH-PE-65

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	1511.7	10	EI2RBRI6200001B	31 di 71
Relazione Geolectica	IN17	12	EIZKBKIOZUUUU I B	31 01 / 1

VERIFICA GEOTECNICA DEL RILEVATO 6

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa vigente richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [14]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

E_d ≤ R_d (Eq. 6.2.1 del Doc. Rif. [14])

dove:

Ed valore di progetto dell'azione o dell'effetto dell'azione;

 R_d valore di progetto della resistenza.

La verifica della condizione E_d ≤ R_d deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche, oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [14]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove:

 E_d valore di progetto dell'effetto dell'azione;

valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale). C_d

La verifica della condizione E_d ≤ C_d deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [14]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [15]), calcolata sulla base delle azioni

GENERAL CONTRACTOR

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	32 di 71

di progetto, dei parametri di progetto e della geometria di progetto $R = R\left[\gamma_F \cdot F_k; \frac{x_k}{\gamma_m}; a_d\right]$.

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [14]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 6 - Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	.,	0,9	1,0	1,0
remanenti	Sfavorevole	$\gamma_{ m G1}$	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
remanenti non strutturan	Sfavorevole	$\gamma_{ m G2}$	1,5	1,5	1,3
Variabili	Favorevole	.,	0,0	0,0	0,0
v arraom	Sfavorevole	$\gamma_{ m Qi}$	1,5	1,5	1,3

dove:

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 7 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [14])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di resistenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ _{c′}	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 8 - Coefficienti parziali per verifiche di stabilità globale

Coefficiente	R2
$\gamma_{ m R}$	1.1

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [14]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del ballast, e per la durata della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [19] e [23]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [23]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 9 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	160 < V ≤ 300 km/h
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	10 < ΔH ≤ 15 4 < SCARTXL ≤ 8
3º livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ 8 < SCARTXL \le 12

⁽¹⁾ il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche e post-sismiche

La stabilità globale in condizioni sismiche e post-sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [19]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [18]) e nelle NTC (Doc. rif. [14]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	34 di 71

6.2.1 Azioni permanenti

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³ Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, valutati nel rispetto delle normative di riferimento e considerando il caso peggiore tra i tre modelli di carico previsti: LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71) ed applicata su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (k_h) e verticale (k_v) :

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove

β_s coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 10)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 10 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[14])

	Categoria di sottosuolo		
	A	B, C, D, E	
	$oldsymbol{eta_{ m s}}$	$eta_{ m s}$	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0.1 < a_{\rm g}(g) \le 0.2$	0,27	0,24	
$a_{o}(g) \leq 0,1$	0,20	0,20	

GENERAL CONTRACTOR		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Iricav2	D 11	1 1 11	C Fit	T = 1:		
Rilevato ferroviario AV da pk 32+130 00 a pk 32+525 00	Progetto	Lotto	Codifica	Foglic		

IN17

12

El2RBRI6200001B

35 di 71

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Relazione Geotecnica

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 7.0 (Doc. Rif. [33]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 7 della presente relazione.

Come da NTC 2008 (Doc. Rif. [14]), la verifica SLU di stabilità globale è soddisfatta se la relazione:

$$FS \ge R2 = 1.1$$
.

è verificata sia in condizioni statiche che sismiche.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1. La verifica è stata condotta facendo ricorso al metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2.

6.3.2 Verifiche SLU in condizione statiche

Il carico da traffico ferroviario (q), assunto pari a 61.4 k Pa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile/sfavorevole, il coefficiente parziale sulle azioni è pari a 1.3. Per quanto riguarda la falda, è stata considerata la condizione a lungo termine e quindi è stato preso un livello a -1 m da piano campagna, come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 13 sono riportate le superfici di rottura critica per la combinazione DA1C2. Il valore minimo di FS è pari a:

FS_{MIN} (DA1C2) =1.237>R2=1.1

la verifica di stabilità globale in campo statico risulta soddisfatta.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	36 di 71

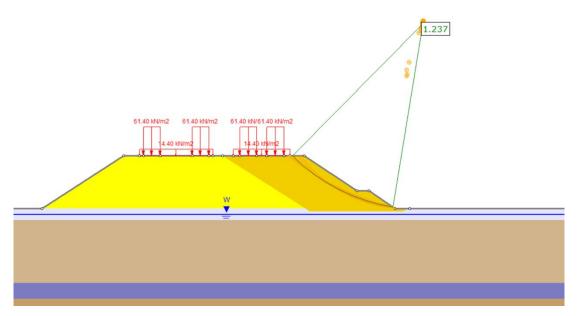


Figura 13 - Rilevato H=8.9 m (da pk 32+130 a pk 32+525) - Analisi SLU in campo statico DA1C2

6.3.3 Verifiche SLU in condizioni sismiche

In accordo a quanto riportato precedentemente, la azione sismica è stata definita attraverso i seguenti coefficienti sismici:

K_H= + 0.083 (concorde alla direzione di scivolamento)

K_V= ± 0.042 (verificando la più cautelativa tra negativo e positivo)

Il carico stradale (q), assunto pari a 61.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è stato inserito nei calcoli col proprio valore caratteristico in accordo a quanto specificato dalle NTC 2008 (vedasi Par.7.11.1 del Doc. Rif. [14]) che indicano per le analisi in condizioni sismiche di adottare l'Approccio 1 Combinazione 2 ponendo i coefficienti parziali sulle azioni (A2) tutti pari ad uno. Per quanto riguarda la falda è stata considerata la condizione a medio termine e quindi è stato preso un livello coincidente a -4 m p.c., come riportato nel paragrafo 4.3. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 14 è riportata la superficie di rottura critica. Il fattore di sicurezza FS è pari a:

FS_{MIN}=1.119>R2=1.1

la verifica di stabilità globale in campo sismico risulta soddisfatta.

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica	Foglio		
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	37 di 71		

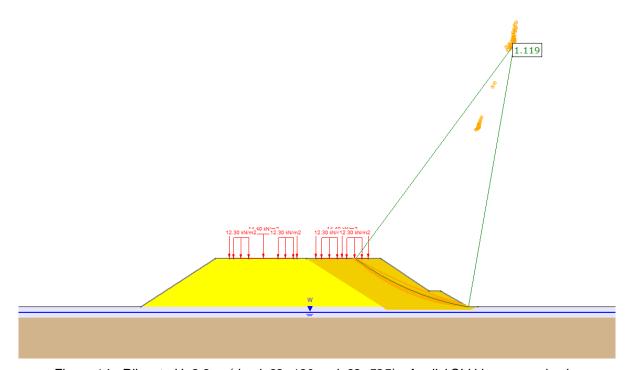


Figura 14 - Rilevato H=8.9 m (da pk 32+130 a pk 32+525) - Analisi SLU in campo sismico

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	38 di 71	

6.4 Verifica e risultati SLE

La determinazione del campo di spostamenti è stata svolta mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [34]) che calcola gli incrementi di tensione nei terreni utilizzando il classico modello di terreno come mezzo elastico, omogeneo ed isotropo, assumendo i valori caratteristici sia sulle azioni che sui materiali.

Il calcolo dei cedimenti utilizza quindi le variazioni di tensione calcolate con questa ipotesi, e tenendo comunque conto delle diverse caratteristiche di deformabilità dei vari strati.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente diseguaglianza:

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [14])

dove

Ed è il valore di progetto dell'effetto dell'azione, e Cd è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

La verifica è stata condotta con riferimento alla già citata sezione di riferimento A riportata in Figura 1. Il modello di calcolo implementato per il rilevato tipologico con altezza pari a 8.90 m, valido tra le pk 32+130 e pk 32+525, è riportato in Figura 15. La larghezza del rilevato esistente è pari a 44 m, quella del rilevato in affiancamento di 15 m con pendenza delle scarpate è 2V:3H. Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2.

Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza dell'impronta del rilevato ferroviario.

La storia di carico riprodotta nell'analisi è la seguente:

- Rilevato esistente (linea storica), vedi Figura 15 a)
- Affiancamento rilevato nuova linea, vedi Figura 15 b)
- Completamento rilevato nuova linea (ballast), vedi Figura 15 c)

I cedimenti sono stati calcolati al centro del nuovo rilevato, ed in corrispondenza dei due binari della linea storica adiacente, in modo da determinarne il cedimento differenziale dovuto alla costruzione del nuovo rilevato.

I valori calcolati sono riportati nella Figura 16, dove sono anche indicate le posizioni delle rotaie della linea storica e l'asse dei binari della linea AV. La Figura 17 riporta il profilo del cedimento con la profondità in corrispondenza del valore massimo del cedimento stesso, e pari a circa 6.5 cm.

• Sulla base dell'analisi dei risultati si conclude quanto segue: Il cedimento max complessivo (a consolidazione avvenuta) è dell'ordine dei 6.5 cm, di cui 2.5 cm dovuti al cedimento dello strato argilloso. Tenendo conto che

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Dilumba (ann. inita AV da al. 22 120 00 a al. 22 505 00	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	39 di 71	

lo spessore dello strato di argilla è di circa 2,5m (2H) , è facile constatare che anche considerando valori del coefficienti consolidazione verticale da considerare prossimi ai minimi per questi materiali (dell'ordine di 2x10⁻⁷ m²/s), si raggiungono percentuali di consolidazione dell'ordine del 90% in tempi dell'ordine dei 2-3 mesi dalla fine dell'applicazione dei carichi. I cedimenti in esercizio di tale strato, anche considerando un contributo di cedimento secondario, sono da considerarsi inferiori al centimetro.

- il restante contributo al cedimento è dovuto alla compressibilità di strati a grana grossa, e quindi da considerarsi immediato
- Se ne conclude quindi che il cedimento dalla fine della posa in opera del ballast, e per la durata utile dell'opera (100 anni), sarà inferiore al limite di 5 cm.
- Il cedimento indotto sui binari della LS è dell'ordine di 1-2 mm, e quindi largamente inferiore i limiti definiti al punto 6.1.2.

La verifica SLE è quindi da considerarsi soddisfatta.

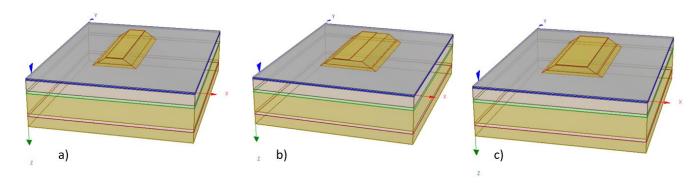


Figura 15 - Rilevato H=8.9 m (da pk 32+130 a pk 32+525) - Analisi SLE – Modello di calcolo

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
	Progetto	Lotto	Codifica	Foglio	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	EI2RBRI6200001B	40 di 71	

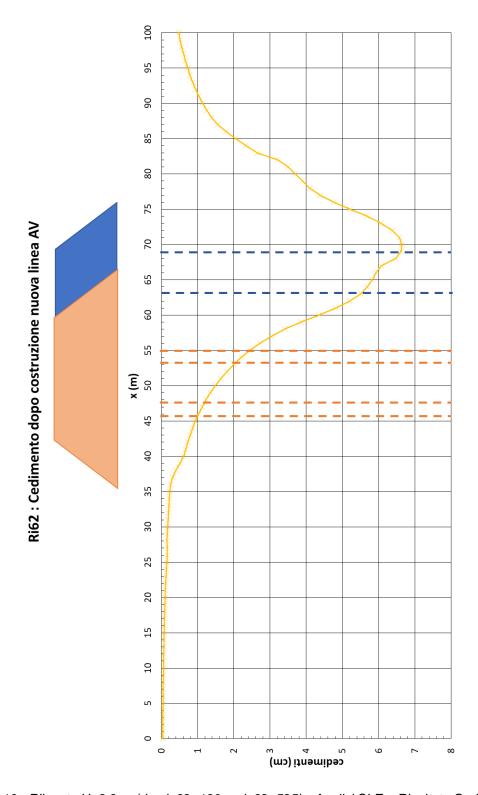


Figura 16 - Rilevato H=8.9 m (da pk 32+130 a pk 32+525) - Analisi SLE – Risultato Cedimenti

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	E12RBR16200001B	41 di 71	

Ri62: Cedimento dopo costruzione nuova linea AV

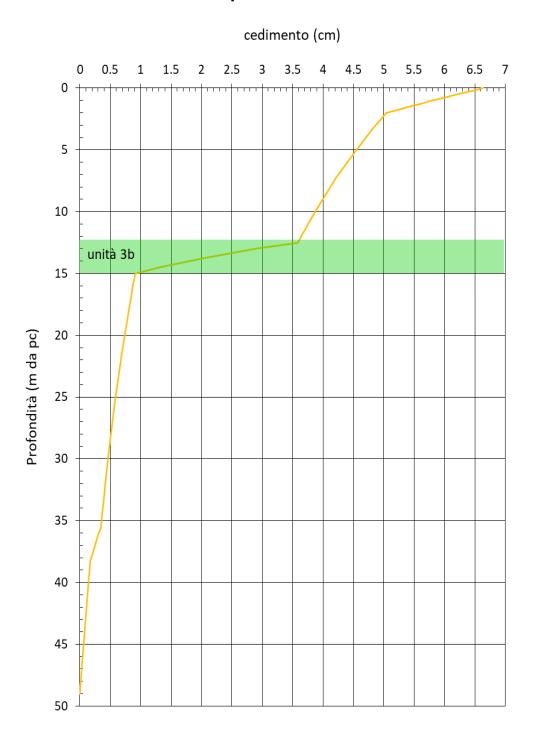


Figura 17 - Rilevato H=8.9 m (da pk 32+130 a pk 32+525) - Analisi SLE – Cedimento in funzione della profondità al centro del nuovo rilevato

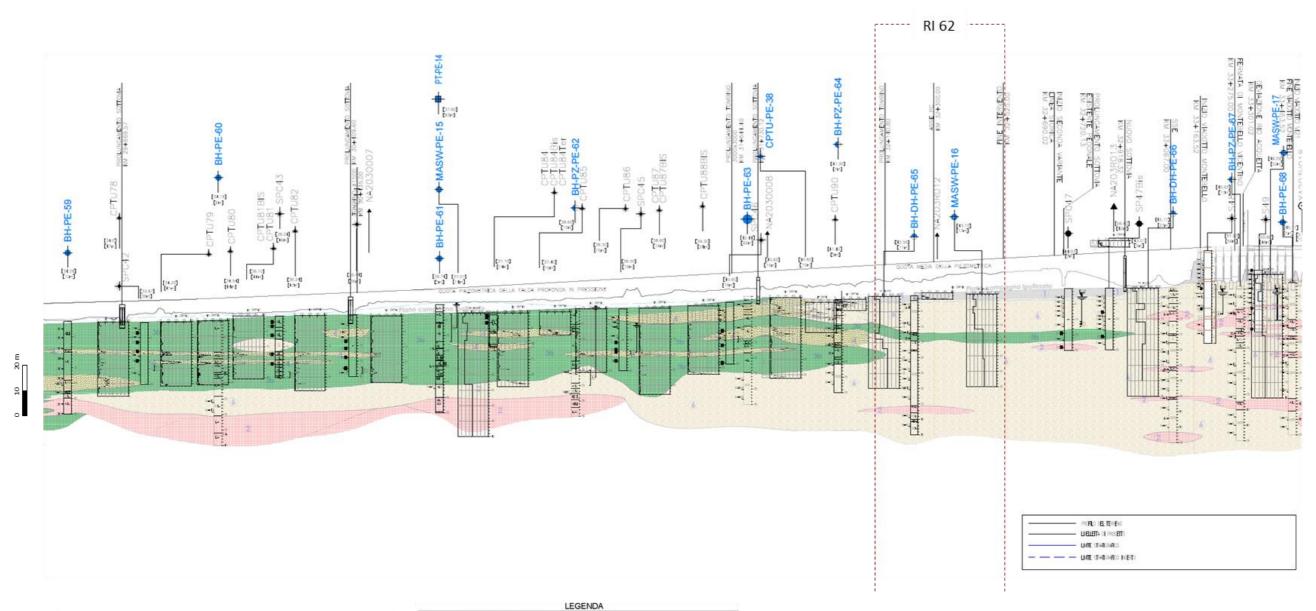
GENERAL CONTRACTOR IFICAV2	5	SORVEGLIA TAL D FERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	42 di 71

7 CONCLUSIONI E RACCOMANDAZIONI

In conclusione, il rilevato oggetto di questa analisi risulta stabile e i cedimenti attesi sono limitati e non differiti nel tempo.

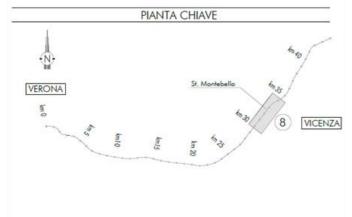
Si segnala che nell'area del rilevato, alla 32+140, è prevista l'installazione di un doppio spingitubo (IN58).

Al fine di consolidare il terreno a fronte del pozzo di spinta, e di assicurare così la corretta e sicura installazione del doppio spingitubo previsto in sua sostituzione, si prevede di realizzare un trattamento di irrigidimento del terreno di posa, installando 9 allineamenti longitudinali di inclusioni rigide D=1000 mm, delle quali 3 imbasati a quota inferiore in corrispondenza degli spingitubo e 4 lateralmente a rinfiancare gli spingitubo.


Si rimanda per i dettagli agli specifici elaborati di progetto di tracciamento dei consolidamenti dei terreni.

GENERAL CONTRACTOR ITICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Dilevete (considering AV deval 20 120 00 cm 20 505 00	Progetto	Lotto	Codifica	Foglio			
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica	IN17	12	El2RBRI6200001B	43 di 71			

ALLEGATI


GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio	
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	44 di 71	

ALLEGATO 1 – PROFILO STRATIGRAFICO

Pozzetto esplorativo

Sondaggio con esecuzione di prova down hale Sondaggio con esecuzione di prova cross hale

Campagna indagini integrative PE

GENERAL CONTRACTOR IFICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	46 di 71		

ALLEGATO 2 – SONDAGGI

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica
 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 EI2RBRI6200001B
 47 di 71

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT

Via Annibale Zucchini, 69 – 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119

SOCOTEC ITALIA Srl – P. Iva 01872430648 Headquarters: Via Bariola, 101-103 – 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino

PER ESE	FORAZ CUZIO	E: Montebel l ZIONE: BH-P PNE: 26/11 - A: 22036AV-2	E-65 RDP SITO №: SF201088 1/12 /2020 OPERATORE: BARONE - EL AZHARI	PROFONDITA' RIVESTIMENT QUOTA:		5,00 m 2,00 m	⊠ Ri	disturbato maneggiato mbientale	SPT PA: punta aperta PC: punta chiusa
METRI	METRI da P.C.	LITOLOGIA	DESCRIZIONE STRATIGRAFICA	NUM. PROF.	P.P. KPa	T.V. kPa	NUM. AND PROF.	METODO E UTENSILE FALDA	DOWN-HOLE
	0.20	W W	Terreno vegetale						
	0.50	$\overline{\mathcal{A}}$	Argilla limosa debolmente ghiaiosa, marrone scur						
1	-	0,000	Ghiaia eterogenea (da sub-arrotondata a sub-angolo		-				
l P	1.40	2,200	con sporadici frammenti di laterizio in matrice sabbio		H				
l ‡		OSO							
3 4 4 7 7 8 8 8			Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) i matrice sabbiosa debolmente limosa; marrone chiaro	in			SPT1 3.00-3.45 m 19 - 13 - 5 PC PC SPT2 6.00-6.45 m 15 - 28 - 17 PC	Carotaggio continuo tramite carotiere semplice 101 mm	0
9	9.00		Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) i matrice sabbiosa debolmente limosa; grigio chiaro	in			SPT3 9.00-9.45 m 18 - 26 - 20 PC	carotiere s	
	10.25		Argilla limeea marrene con frammento di legge	_	H			i i	
	10.50	0.40%	Argilla limosa marrone con frammento di legno	-	H			E	
11		유승유공장	Sabbia ghiaiosa, grigio	_				0	
12	11.90	60000	Ghiaia (a grana medio-fine) in matrice sabbiosa, grigio chi Da 11.50 m marrone	aro.			SPT4	o continu	
13			Argilla debolmente limosa (a tratti limosa), grigio. Preser sporadiche concrezioni carbonatiche a grana grossa. Sottili orizzonti sabbiosi da 13.35 m	13.50	75 125 75 75	40 65 40 40	SPT4 12.00-12.45 m 7 - 5 - 6 PC	Carotaggi	
15 16	14.50		Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) i matrice limoso sabbiosa, grigio-marrone		100	50			
18	17.70	(A)	Argilla, marrone scuro-grigiastro	 	H				
19			Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) i matrice sabbioso limosa, marrone chiaro	in			SPT5 18.00-18.45 m 4 - 14 - 23 PC		

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica
Progetto Lotto Codifica Foglio
IN17 12 EI2RBRI6200001B 48 di 71

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT

Via Annibale Zucchini, 69 – 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119

SOCOTEC ITALIA Srl – P. Na 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.; +39 02 9375 0000 - Fax: +39 02 9375 0099 www.socotec.it

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-65 ESECUZIONE: 26/11 - 1/12 /2020 COMMESSA: 22036AV-20 RDP SITO N°: SF201088 OPERATORE: BARONE - EL AZHARI RESPONSABILE: FOGLI PROFONDITA': RIVESTIMENTO: 42,00 m Rimaneggiato PA: punta aperta PC: punta chiusa QUOTA: CAMPIONI DOWN-HOLE T.V. kPa P.P. KPa DESCRIZIONE STRATIGRAFICA LITOLOGIA TIPO PROF. Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in semplice 101 matrice sabbioso limosa, marrone chiaro carotiere continuo tramite Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice limoso sabbiosa (a tratti limoso debolmente sabbiosa) Argilla limosa, marrone 125 $\sqrt{2}$ Ghiaia in matrice limoso sabbiosa, marrone 37 Argilla (da debolmente limosa a limosa) marrone con bande 300 300 grigiastre. Presenti abbondanti clasti di piccole dimensioni Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI6200001B
49 di 71

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT
Via Annibale Zucchini, 69 – 44122 Ferrara (FE)
Tel.: +39 0532 56771 - Fax.: +39 0532 56119

SOCOTEC ITAL IA Sri - P. Iva 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099 www.socotec.it

COMMITTENTE: CONSORZIO IRICAV DUE - VIa Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-65 RDP SITO N°: SF201088 PROFONDITA': 45, ESECUZIONE: 26/11 - 1/12 / 2020 OPERATORE: BARONE - EL AZHARI RIVESTIMENTO: 42, COMMESSA: 22036AV-20 RESPONSABILE: FOGLI QUOTA: -45,00 m 42,00 m Rimaneggiato Ambientale PA: punta aperta CAMPIONI P.P. kPa T.V. kPa LITOLOGIA DESCRIZIONE STRATIGRAFICA TIPO NUM. PROF. Argilla debolmente limosa, marrone 250 125 carotiere Carotaggio continuo tramite semplice 101 mm Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone chiaro FINE SONDAGGIO

GENERAL CONTRACTOR ITICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	50 di 71

ALLEGATO 3 – TABULATI DI SLIDE - ANALISI SLU STATICO

Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica IN17 EI2RBRI6200001B 12 51 di 71

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 8

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: RI62a_01.stm
Slide Modeler Version: 7.038
Smort Title: SLIDE - An interactive Slope Stability Program

General Settings

Metric Units days meters/second Left to Right Units of Measurement: Time Units: Permeability Units: Failure Direction: Data Output: Sta Maximum Material Properties: 20 Standard Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_A2+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:	Vertical
Analysis Methods Used	
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica IN17 EI2RBRI6200001B 12 52 di 71

SLIDE - An Interactive Slope Stability Program: Page 2 of 8

__ rocscience

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Water Surfaces Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Surface Type: Search Method: Divisions along slope: Circles per division: Number of iterations: Auto Refine Search

Divisions to use in next iteration: Composite Surfaces: 50% Disabled Minimum Elevation: Minimum Depth [m]: Not Defined Not Defined Not Defined Minimum Area: Minimum Weight:

Seismic

Advanced seismic analysis:

Loading

6 Distributed Loads present

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	53 di 71

rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 8

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Normal to boundary Permanent Orientation: Load Action:

Distribution: Constant Magnitude [kPa]: 14.4

Normal to boundary Permanent Orientation: Load Action:

Distributed Load 3

Distribution: Constar Magnitude [kPa]: 61.4 Constant

Normal to boundary Variable Orientation: Load Action:

Distributed Load 4

Distribution: Constant Magnitude [kPa]: 61.4

Normal to boundary Variable Orientation: Load Action:

Distributed Load 5

Distribution: Constant
Magnitude [kPa]: 61.4

Normal to boundary Variable

Orientation: Load Action:

Distributed Load 6

Distribution: Constant Magnitude [kPa]: 61.4

Normal to boundary Orientation: Load Action:

Material Properties

Property	Rilevato_nuovo	Riporto (G)	Ghiaia_sup	Argilla limosa 3b	Ghi aia_prof	Argilla limosa 2	Rilevato_esistente
Color							
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	19	18.5	19	19	20
Cohesion [kPa]	0	0	0	0	0	0	0
Friction Angle [deg]	38	37	39	29	38	28	35
Water Surface	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	1	1	1	1	1

Global Minimums

Method: bishop simplified

FS	1.236860
Center:	90.195, 74.467
Radius:	30.907
Left Slip Surface Endpoint:	68.427, 52.526
Right Slip Surface Endpoint:	85.195, 43.967
Resisting Moment:	8341.18 kN-m
Driving Moment:	6743.85 kN-m
Total Slice Area:	23.8947 m2
Surface Horizontal Width:	16.7677 m
Surface Average Height:	1.42504 m

Valid / Invalid Surfaces

Method: bishop simplified

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI6200001B
54 di 71

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 8

Number of Valid Surfaces: 1748 Number of Invalid Surfaces: 0

Slice Data

	Que	у сызпор		- Safety Factor: 1.	2000	0			D		Effective.	Dasa	Effective
Slice Number	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Normal Stress [kPa]	Base Vertical Stress [kPa]	Vertical Stress [kPa]
1	0.335355	1.09896	-44.3387	Rilevato_nuovo	0	32.0066	1.10925	1.37199	2.19509	0	2.19509	3.27903	3.2790
2	0.335355	3.26426	-43.4757	Rilevato_nuovo	0	32.0066	3.32745	4.11559	6.58465	0	6.58465	9.7396	9.739
3	0.335355	5.36564	-42.6249	Rilevato_nuovo	0	32.0066	5.52191	6.82983	10.9272	0	10.9272	16.0093	16.009
4	0.335355	7.40572	-41.7856	Rilevato_nuovo	0	32.0066	7.69215	9.51411	15.2219	0	15.2219	22.096	22.09
5	0.335355	9.38689	-40.9571	Rilevato_nuovo	0	32.0066	9.83782	12.168	19.4678	0	19.4678	28.0068	28.006
6	0.335355	11.2958	-40.1389	Rilevato_nuovo	0	32.0066	11.942	14.7706	23.6318	0	23.6318	33.7017	33.701
7	0.335355	12.215	-39.3304	Rilevato_nuovo	0	32.0066	13.0238	16.1086	25.7726	0	25.7726	36.444	36.44
8	0.335355	12.5322	-38.5312	Rilevato_nuovo	0	32.0066	13.4728	16.664	26.6611	0	26.6611	37.3899	37.389
9	0.335355	12.7985	-37.7407	Rilevato_nuovo	0	32.0066	13.8704	17.1557	27.4479	0	27.4479	38.1839	38.183
10	0.335355	13.0153	-36.9586	Rilevato_nuovo	0	32.0066	14.2168	17.5842	28.1335	0	28.1335	38.8305	38.830
11	0.335355	13.1843	-36.1845	Rilevato_nuovo	0	32.0066	14.5126	17.95	28.7187	0	28.7187	39.3343	39.334
12	0.335355	13.3069	-35.418	Rilevato_nuovo	0	32.0066	14.7581	18.2537	29.2045	0	29.2045	39.6995	39.699
13	0.335355	13.3844	-34.6586	Rilevato_nuovo	0	32.0066	14.9538	18.4957	29.5917	0	29.5917	39.9302	39.930
14	0.335355	13.418	-33.9062	Rilevato_nuovo	0	32.0066	15.0999	18.6765	29.8811	0	29.8811	40.0302	40.030
15	0.335355	13,4089	-33.1603	Rilevato_nuovo	0	32.0066	15.197	18.7965	30.0731	0	30,0731	40.0026	40.002
16	0.335355	13.3581	-32.4208	Rilevato_nuovo	0	32.0066	15.2451	18.856	30.1684	0	30.1684	39.8509	39.850
17	0.335355	13.2668	-31.6872	Rilevato_nuovo	0	32.0066	15.2447	18.8555	30.1674	0	30.1674	39.578	39.5
18	0.335355	13.1359	-30.9594	Rilevato_nuovo	0	32.0066	15.196	18.7953	30.0711	0	30.0711	39.1871	39.18
19	0.335355	12.9663	-30.2372	Rilevato_nuovo	0	32.0066	15.0992	18.6756	29.8795	0	29.8795	38.6806	38.68
20	0.335355	12.7588	-29.5202	Rilevato_nuovo	0	32.0066	14.9546	18.4968	29.5936	0	29.5936	38.0614	38.06
21	0.335355	12.5142	-28.8082	Rilevato nuovo	0	32.0066	14.7624	18.259	29.2132	0	29.2132	37.3316	37.33
22	0.335355	12.2334	-28.1011	Rilevato_nuovo	0	32.0066	14.5227	17.9625	28.7387	0	28.7387	36.4934	36.49
23	0.335355	11.917	-27.3985	Rilevato_nuovo	0	32.0066	14.2356	17.6075	28.1707	0	28.1707	35.5493	35.54
24	0.335355	11.5658	-26.7005	Rilevato_nuovo	0	32.0066	13.9014	17.1941	27.5092	0	27.5092	34.5011	34.50
25	0.335355	11.1803	-26.0067	Rilevato nuovo	0	32.0066	13.5201	16.7225	26.7547	0	26.7547	33.3509	33.35
26	0.335355	10.7611	-25.3169	Rilevato_nuovo	0	32.0066	13.0918	16.1927	25.9071	0	25.9071	32.1003	32.10
27	0.335355	10.309	-24.6311	Rilevato_nuovo	0	32.0066	12.6165	15.6048	24.9666	0	24.9666	30.7512	30.75
28	0.335355	9.82428	-23.949	Rilevato_nuovo	0	32.0066	12.0943	14.959	23.9333	0	23.9333	29.3052	29.30
29	0.335355	9.30763	-23.2705	Rilevato_nuovo	0	32.0066	11.5253	14.2552	22.8072	0	22.8072	27.7638	27.76
30	0.335355	8.75949	-22.5955	Rilevato nuovo	0	32.0066	10.9093	13.4933	21.5884	0	21.5884	26.1285	26.12
31	0.335355	8.18033	-21.9237	Rilevato_nuovo	0	32.0066	10.2465	12.6735	20.2767	0	20.2767	24.4007	24.40
32	0.335355	7.57061	-21.2551	Rilevato nuovo	0	32.0066	9.53673	11.7956	18.8722	0	18.8722	22.5818	22.58
33	0.335355	7.61086	-20.5895	Rilevato_nuovo	0	32.0066	9.64159	11.9253	19.0797	0	19.0797	22.7017	22.70
34	0.335355	8.43935	-19.9268	Rilevato_nuovo	0	32.0066	10.7511	13.2976	21.2751	0	21.2751	25.1727	25.17
35	0.335355	9.24017	-19.2669	Rilevato_nuovo	0	32.0066	11.8367	14.6404	23.4236	0	23.4236	27.5611	27.56
36	0.335355	10.012	-18.6096	Rilevato_nuovo	0	32.0066	12.8964	15.951	25.5204	0	25.5204	29.8629	29.86
37	0.335355	10.7551	-17.9548	Rilevato_nuovo	0	32.0066	13.9297	17.2291	27.5652	0	27.5652	32.0792	32.07
38	0.335355	11.4699	-17.3025	Rilevato nuovo	0	32.0066	14.9366	18.4745	29.5579	0	29.5579	34.2108	34.21
39	0.335355	11.5492	-16.6525	Rilevato_nuovo	0	32.0066	15.1216	18.7033	29.9238	0	29.9238	34.4469	34.44
40	0.335355	10.693	-16.0047		0	32.0066	14.0764	17.4105	27.8556	0	27.8556	31.8932	31.89
41	0.335355	9.80067	-15.3589	Rilevato_nuovo Rilevato_nuovo	0	32.0066	12.9712	16.0436	25.6685	0	25.6685	29.2314	29.23
42	0.335355	8.88109	-14.7152	_	0	32.0066	11.8172	14.6162	23.3849	0	23.3849	26.4884	26.48
43	0.335355	7.93454	-14.7132	Rilevato_nuovo	0	32.0066	10.6141		21.0042	0	21.0042	23.6651	23.66
	0.335355	6.96124		Rilevato_nuovo	0		9.36177	13.1282	18.5259	0		20.762	23.66
44			-13.4333	Rilevato_nuovo	0	32.0066		11.5792		0	18.5259		
45	0.335355	5.96142	-12.7949	Rilevato_nuovo		32.0066	8.05981	9.96886	15.9494		15.9494	17.7798	17.77
46	0.335355	4.93527	-12.1582	Rilevato_nuovo	0	32.0066	6.70786	8.29668	13.2741	0	13.2741	14.7193	14.71
47	0.335355	3.883	-11.523	Rilevato_nuovo	0	32.0066	5.30558	6.56226	10.4991	0	10.4991	11.5808	11.58
48	0.335355	2.80479	-10.8892	Rilevato_nuovo	0	32.0066	3.8526	4.76513	7.62387	0	7.62387	8.36501	8.365
49	0.335355	1.7008	-10.2568	Rilevato_nuovo	0	32.0066	2.34852	2.90479	4.64746	0	4.64746	5.07243	5.072
50	0.335355	0.571188	-9.62559	Rilevato_nuovo	0	32.0066	0.792878	0.980679	1.56902	0	1.56902	1.70349	1.70

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.23686	_
1	1

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	rrogono	20110	Counica	rogno
Relazione Geotecnica	IN17	12	El2RBRI6200001B	55 di 71

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 5 of 8

	X	٧	Interslice	Interslice	Interslice
Slice	coordinate	coordinate - Bottom	Normal Force	Shear Force	Force Angle
Number	[m]	[m]	[kN]	[kN]	[degrees]
1	68.4268	52.5257	0	0	(
2	68.7621	52.198	0.348031	0	(
3	69.0975	51.88	1.32795	0	(
4	69.4328	51.5714	2.85221	0	(
5	69.7682	51.2717	4.83925	0	(
6	70.1035	50.9806	7.2129	0	
7	70.4389	50.6978	9.89824	0	(
8	70.7742	50.4231	12.6206	0	
9	71.1096	50.156	15.2307	0	
10	71,445	49.8964	17.7126	0	
11	71.7803	49.6441	20.0526	0	
12	72.1157	49.3988	22.2396	0	
13	72.451	49.1603	24.2644	0	
14	72.7864	48.9285	26.1198	0	
15	73.1217	48.7031	27.8006	0	
16	73.4571	48,484	29.3032	0	
17	73.7924	48.271	30.6259	0	
18	74.1278	48.0639	31,7681	0	
19	74.4631	47.8628	32.7312	0	
20	74.7985	47.6673	33.5177	0	
21	75.1339	47,4774	34.1314	0	
22	75.4692	47.293	34.5776	0	
23	75.8046	47.1139	34.8626	0	
24	76.1399	46.9401	34.9941	0	
25	76.1353	46,7714	34.9809	0	
26	76.8106	46.6078	34.8326	0	
27	77.146	46.4492	34.5604	0	
28	77.4813	46.2954	34.176	0	
29	77.8167	46.1465	33.6926	0	
				0	
30 31	78.1521 78.4874	46.0022 45.8627	33.124 32.4853	0	
				0	
32	78.8228	45.7277	31.7922	0	
33	79.1581	45.5972	31.0618		
34	79.4935	45.4713	30.2381	0	
35	79.8288	45.3497	29.2259	0	
36	80.1642	45.2325	28.0095	0	
37	80.4995	45.1195	26.5745	0	
38	80.8349	45.0109	24.9073	0	
39	81.1702	44.9064	22.9954	0	
40	81.5056	44.8061	20.9353	0	
41	81.841	44.7099	18.9029	0	
42	82.1763	44.6178	16.9255	0	
43	82.5117	44.5297	15.0295	0	
44	82.847	44.4457	13.2424	0	
45	83.1824	44.3656	11.5926	0	
46	83.5177	44.2894	10.1094	0	
47	83.8531	44.2171	8.8231	0	
48	84.1884	44.1488	7.76497	0	
49	84.5238	44.0843	6.96722	0	
50	84.8591	44.0236	6.46311	0	
51	85.1945	43.9667	0	0	

List Of Coordinates

Water Table

I	Х	Υ
I	0	42.7293
I	0 115	42.7696

Distributed Load

GENERAL	CONTRACTOR

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00		20.110	Coamea	. 090
Relazione Geotecnica	IN17	12	El2RBRI6200001B	56 di 71

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 6 of 8

ence
Υ
52.5257
52.5257
52.5257
52.5257
52.5257
52.5257

Distributed Load

х	Υ
68.0633	52.5257
66.9769	52.5257
64.1769	52.5257
62.462	52.5257
59.662	52.5257
58.5643	52.5257

Distributed Load

х	Y 52.5257 52.5257
46.3887	52.5257
43.5887	52.5257

Distributed Load

х	Υ
54.4958	52.5257
51.6958	52.5257

Distributed Load

Х	Υ
62.462	Y 52.5257 52.5257
59.662	52.5257

Distributed Load

х	Υ
66.9769	52.5257
64.1769	52.5257

External Boundary

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	rrogono	20110	Counica	rogno
Relazione Geotecnica	IN17	12	El2RBRI6200001B	57 di 71

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 7 of 8

rocscience		
х	Υ	ĺ
51.6958	52.5257	
46.3887	52.5257	
43.5887	52.5257	
42.9033	52.5257	
40.3272	52.5257	
26.7362	43.7293	
0	43.7293	
0	42.7293	
0	41.81	
0	31.31	
0	28.71	
0	8.21	
0	5.41	
0	0	
115	0	
115	5.41	
115	8.21	
115	28.71	
115	31.31	
115	41.81	
ı	42.7696	
115	43.7293	
88	43.7293	
85.5449	43.7293	
81.2062	46.6687	
79.1741	46.6687	
70.3905	52.5257	
68.0633	52.5257	
66.9769		
64.1769		
	52.5257	
	52.5257	
58.5643		
56.8199		
55.1946		
54.4958	52.5257	

Material Boundary

X Y 0 41.81 115 41.81

Material Boundary

X Y 0 31.31 115 31.31

Material Boundary

X Y 0 28.71 115 28.71

Material Boundary

X Y 0 5.41 115 5.41

Material Boundary

X Y 0 8.21 115 8.21

Material Boundary

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica

 Progetto
 Lotto
 Codifica
 Foglio

 IN17
 12
 El2RBRI6200001B
 58 di 71

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 8 of 8

X Y 26.7362 43.7293 70.68 43.7293 85.5449 43.7293

Material Boundary

х	Υ
56.8199	52.5257
70.68	43.7293

Material Boundary

Х	Υ
70.68	43.7293
71.4	43.2
86.6	43.2
88	43.7293

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL PERROVIE DELLO S	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	59 di 71

ALLEGATO 4 – TABULATI DI SLIDE – ANALISI SLU SISMICO

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica IN17 12

Progetto Lotto Codifica Foglio EI2RBRI6200001B 60 di 71

rocscience

SLIDE - An Interactive Slope Stability Program: Page 1 of 8

Slide Analysis Information SLIDE - An Interactive Slope Stability Program

Project Summary

File Name: RI62a_01_SISITITe......

Slide Modeler Version: 7.038

Proiect Title: SLIDE - An interactive Slope Stability Program
-7/03/7021, 17:14:01

General Settings

Units of Measurement: Metric Units days meters/second Left to Right Time Units: Permeability Units: Failure Direction: Data Output: Sta Maximum Material Properties: 20 Standard Maximum Support Properties: 20

Design Standard

Selected Type: Eurocode 7 (User Defined)
Name: Stabilità Globale_SISMA+M2+R2

Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Slices Type:

Silves Type.	vertical
Analysis Methods Used	
	Bishop simplified
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Vertical

Groundwater Analysis

Progetto Lotto Codifica Foglio Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00 Relazione Geotecnica IN17 EI2RBRI6200001B 12 61 di 71

SLIDE - An Interactive Slope Stability Program: Page 2 of 8

__ rocscience

Groundwater Method: Pore Fluid Unit Weight [kN/m3]: Water Surfaces Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

Pseudo-random Seed: 10116 Random Number Generation Method: Park and Miller v.3

Surface Options

Surface Type: Circular Search Method: Divisions along slope: Auto Refine Search Circles per division: Number of iterations:

Divisions to use in next iteration: Composite Surfaces: 50% Disabled Minimum Elevation: Minimum Depth [m]: Not Defined Not Defined Not Defined Minimum Area: Minimum Weight:

Seismic

Advanced seismic analysis:

Loading

Seismic Load Coefficient (Horizontal): 0.083 Seismic Load Coefficient (Vertical): -0.042

6 Distributed Loads present

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	62 di 71

___ rocscience

SLIDE - An Interactive Slope Stability Program: Page 3 of 8

Distributed Load 1

Distribution: Constant Magnitude [kPa]: 14.4

Normal to boundary Orientation:

Load Action:

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Load Action: Normal to boundary Dead

Distributed Load 3

Distribution: Constar Magnitude [kPa]: 12.3 Constant

Normal to boundary Live Orientation: Load Action:

Distributed Load 4

Distribution: Constant Magnitude [kPa]: 12.3

Normal to boundary Live

Orientation: Load Action:

Distributed Load 5

Distribution: Constant Magnitude [kPa]: 12.3

Normal to boundary Live

Orientation: Load Action:

Distributed Load 6

Distribution: Constant Magnitude [kPa]: 12.3

Normal to boundary Orientation: Load Action:

Material Properties

Property	Rilevato_nuovo	Riporto (G)	Ghiaia_sup	Argilla limosa 3b	Ghi aia_prof	Argilla limosa 2	Rilevato_esistente
Color							
Strength Type	Mohr-Coulomb	Mohr-Coulomb	Mohr-Coulomb	Undrained	Mohr-Coulomb	Undrained	Mohr-Coulomb
Unit Weight [kN/m3]	20	19	19	18.5	19	19	20
Cohesion [kPa]	0	0	0		0		0
Friction Angle [deg]	38	37	39		38		35
Cohesion Type				50		130	
Water Surface	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table	Water Table
Hu Value	1	1	1	0	1	0	1

Global Minimums

Method: bishop simplified

FS	1.119370
Center:	94.569, 91.344
Radius:	48.325
Left Slip Surface Endpoint:	65.787, 52.526
Right Slip Surface Endpoint:	86.315, 43.729
Resisting Moment:	18988.2 kN-m
Driving Moment:	16963.3 kN-m
Total Slice Area:	34.7491 m2
Surface Horizontal Width:	20.5284 m
Surface Average Height:	1.69274 m

Valid / Invalid Surfaces

Method: bishop simplified

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
IN17
12
EI2RBRI6200001B
63 di 71

SLIDEINTERPRET 7.038

rocscience

SLIDE - An Interactive Slope Stability Program: Page 4 of 8

Number of Valid Surfaces: 1647 Number of Invalid Surfaces: 0

Slice Data

Slice umber	Width [m]	Weight [kN]	Angle of Slice Base [degrees]	Base Material	Base Cohesion [kPa]	Base Friction Angle [degrees]	Shear Stress [kPa]	Shear Strength [kPa]	Base Normal Stress [kPa]	Pore Pressure [kPa]	Effective Normal Stress [kPa]	Base Vertical Stress [kPa]	Effective Vertical Stress [kPa]
1	0.410567	1.23612	-36.2533	Rilevato_nuovo	0	32.0066	11.7218	13.121	20.9925	0	20.9925	29.5883	29.588
2	0.410567	3.68136	-35.6519	Rilevato_nuovo	0	32.0066	14.0717	15.7514	25.2011	0	25.2011	35.2947	35.294
3	0.410567	6.07321	-35.0551	Rilevato_nuovo	0	32.0066	15.9014	17.7995	28.4778	0	28.4778	39.6349	39.634
4	0.410567	8.41283	-34.4625	Rilevato_nuovo	0	32.0066	13.739	15.379	24.6053	0	24.6053	34.0346	34.034
5	0.410567	10.7013	-33.8742	Rilevato_nuovo	0	32.0066	15.9916	17.9005	28.6395	0	28.6395	39.3749	39.374
6	0.410567	12.9398	-33.2898	Rilevato_nuovo	0	32.0066	15.5451	17.4007	27.8399	0	27.8399	38.0472	38.047
7	0.410567	15.1292	-32.7094	Rilevato_nuovo	0	32.0066	14.5106	16.2427	25.9872	0	25.9872	35.3062	35.306
8	0.410567	17.2705	-32.1327	Rilevato_nuovo	0	32.0066	16.6611	18.6499	29.8384	0	29.8384	40.3031	40.303
9	0.410567	19.3646	-31.5597	Rilevato_nuovo	0	32.0066	18.7889	21.0317	33.6492	0	33.6492	45.19	45.1
10	0.410567	21.4125	-30.9901	Rilevato_nuovo	0	32.0066	20.894	23.3881	37.4193	0	37.4193	49.9688	49.968
11	0.410567	23.4148	-30.4239	Rilevato_nuovo	0	32.0066	22.9763	25.719	41.1485	0	41.1485	54.6415	54.641
12	0.410567	24.6772	-29.861	Rilevato_nuovo	0	32.0066	24.3495	27.2561	43.6077	0	43.6077	57.5873	57.587
13	0.410567	24.3942	-29.3013	Rilevato_nuovo	0	32.0066	24.2024	27.0914	43.3443	0	43.3443	56.9267	56.926
14	0.410567	24.0167	-28.7446	Rilevato_nuovo	0	32.0066	23.9572	26.817	42.9053	0	42.9053	56.0457	56.045
15	0.410567	23.5968	-28.1908	Rilevato_nuovo	0	32.0066	23.6648	26.4897	42.3815	0	42.3815	55.0656	55.069
16	0.410567	23.135	-27.6399	Rilevato_nuovo	0	32.0066	23.3251	26.1094	41.773	0	41.773	53.9878	53.98
17	0.410567	22.632	-27.0918	Rilevato_nuovo	0	32.0066	22.9381	25.6762	41.0801	0	41.0801	52.8139	52.81
18	0.410567	22.0884	-26.5463	Rilevato_nuovo	0	32.0066	22.504	25.1903	40.3026	0	40.3026	51.5454	51.54
19	0.410567	21.5048	-26.0034	Rilevato_nuovo	0	32.0066	22.0227	24.6515	39.4406	0	39.4406	50.1834	50.18
20	0.410567	20.8817	-25.4631	Rilevato_nuovo	0	32.0066	21.4941	24.0599	38.4941	0	38.4941	48.7293	48.72
21	0.410567	20.2197	-24.9251	Rilevato_nuovo	0	32.0066	20.9186	23.4156	37.4632	0	37.4632	47.1844	47.18
22	0.410567	19.5193	-24.3895	Rilevato_nuovo	0	32.0066	20.2957	22.7184	36.3479	0	36.3479	45.5499	45.54
23	0.410567	18.781	-23.8561	Rilevato nuovo	0	32.0066	19.6258	21.9685	35.148	0	35.148	43.827	43.8
24	0.410567	18.0053	-23.3249	Rilevato_nuovo	0	32.0066	18.9085	21.1656	33.8634	0	33.8634	42.0165	42.01
25	0.410567	17.1925	-22.7958	Rilevato_nuovo	0	32.0066	18.144	20.3099	32.4944	0	32.4944	40.1199	40.11
26	0.410567	16.3432	-22.2688	Rilevato_nuovo	0	32.0066	17.3322	19.4011	31.0404	0	31.0404	38.1378	38.13
27	0.410567	15.4577	-21.7438	Rilevato_nuovo	0	32.0066	16.4729	18.4393	29.5016	0	29.5016	36.0715	36.07
28	0.410567	14.5365	-21.2206	Rilevato_nuovo	0	32.0066	15.5662	17.4243	27.8777	0	27.8777	33.9218	33.92
29	0.410567	13.58	-20.6994	Rilevato_nuovo	0	32.0066	14.6118	16.356	26.1684	0	26.1684	31.6896	31.68
30	0.410567	12.5884	-20.1799	Rilevato_nuovo	0	32.0066	13.6096	15.2342	24.3737	0	24.3737	29.3756	29.37
31	0.410567	11.5622	-19.6621	Rilevato_nuovo	0	32.0066	12.5597	14.0589	22.4932	0	22.4932	26.9809	26.98
32	0.410567	10.5017	-19.146	Rilevato_nuovo	0	32.0066	11.4616	12.8298	20.5268	0	20.5268	24.5061	24.50
33	0.410567	9.58062	-18.6315	Rilevato_nuovo	0	32.0066	10.5056	11.7597	18.8147	0	18.8147	22.3566	22.35
34	0.410567	10.286	-18.1185	Rilevato_nuovo	0	32.0066	11.3321	12.6848	20.2948	0	20.2948	24.0027	24.00
35	0.410567	11.3726	-17.6071	Rilevato_nuovo	0	32.0066	12.5876	14.0902	22.5433	0	22.5433	26.5381	26.53
36	0.410567	12,426	-17.0971	Rilevato nuovo	0	32.0066	13.8176	15.467	24.7461	0	24.7461	28.9962	28.99
37	0.410567	13.4466	-16.5885	Rilevato_nuovo	0	32.0066	15.0219	16.8151	26.9028	0	26.9028	31.3778	31.37
38	0.410567	14.2441	-16.0812	Rilevato_nuovo	0	32.0066	15.9863	17.8946	28.6302	0	28.6302	33.2387	33.23
39	0.410567	13.5607	-15.5752	Rilevato_nuovo	0	32.0066	15.2895	17.1146	27.382	0	27.382	31.6437	31.64
40	0.410567	12.5447	-15.0705	Rilevato_nuovo	0	32.0066	14.209	15.9051	25,4469	0	25.4469	29.2729	29.27
41	0.410567	11.4969	-14.567	Rilevato_nuovo	0	32.0066	13.0818	14.6434	23.4284	0	23.4284	26.8279	26.82
42	0.410567	10.4175	-14.0646	Rilevato nuovo	0	32.0066	11.9079	13.3293	21.3258	0	21.3258	24.3091	24.30
43	0.410567	9.30668	-13.5633	Rilevato_nuovo	0	32.0066	10.6866	11.9623	19.1389	0	19.1389	21.717	21.7
44	0.410567	8.16472	-13.0631	Rilevato_nuovo	0	32.0066	9.41807	10.5423	16.867	0	16.867	19.0522	19.05
45	0.410567	6.99177	-12.5638	Rilevato_nuovo	0	32.0066	8.10177	9.06888	14.5095	0	14.5095	16.3151	16.31
46	0.410567	5.78802	-12.0656	Rilevato_nuovo	0	32.0066	6.73738	7.54162	12.066	0	12.066	13.5062	13.50
47	0.410567	4.55363	-11.5683	Rilevato_nuovo	0	32.0066	5.32458	5.96018	9.53586	0	9.53586	10.6258	10.62
48	0.410567	3.28879	-11.0718	Rilevato_nuovo	0	32.0066	3.86303	4.32416	6.91835	0	6.91835	7.67427	7.674
49	0.410567	1.99363	-10.5762	Rilevato_nuovo	0	32.0066	2.35235	2.63315	4.21285	0	4.21285	4.65207	4.652
50	0.410567		-10.5762	_	0	32.0066			1.42024	0	1.42024	1.56167	1.561

Interslice Data

Global Minimum Query (bishop simplified) - Safety Factor: 1.11937	
I	

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	rrogono	20110	Counica	rogno
Relazione Geotecnica	IN17	12	El2RBRI6200001B	64 di 71

SLIDEINTERPRET 7.030

SLIDE - An Interactive Slope Stability Program: Page 5 of 8

roc	science				
Slice Number	X coordinate [m]	Y coordinate - Bottom [m]	Interslice Normal Force [kN]	Interslice Shear Force [kN]	Interslice Force Angle [degrees]
1	65.7866	52.5257	0	0	0
2	66.1972	52.2246	1.61265	0	0
3	66.6078	51.9301	3.56525	0	0
4	67.0183	51.6421	5.74744	0	0
5	67.4289	51.3603	7.74083	0	0
6	67.8395	51.0847	9,96013	0	0
7	68.25	50.8151	12.1601	0	0
8	68.6606	50.5514	14.3132	0	0
9	69.0712	50.2935	16.6039	0	0
10	69.4817	50.0413	18.9865	0	0
11	69.8923	49.7947	21.4168	0	0
12	70.3029	49.5536	23.8526	0	0
13	70.7134	49.3179	26.1874	0	0
14	71.124	49.0875	28.2671	0	0
15	71.5346	48.8623	30.091	0	0
16	71.9451	48.6423	31.6645	0	0
17	72.3557	48.4273	32.9941	0	0
18	72.7663	48.2172	34.0871	0	0
19	73.1768	48.0121	34.952	0	0
20	73.5874	47.8118	35.5984	0	0
21	73.998	47.6163	36.0367	0	0
22	74.4085	47.4255	36.2784	0	0
23	74.8191	47.2394	36.3358	0	0
24	75.2297	47.0578	36.2222	0	0
25	75.6402	46.8808	35.9519	0	0
26	76.0508	46.7082	35.5399	0	0
27	76.4614	46.5401	35.0024	0	0
28	76.872	46.3764	34.3561	0	0
29	77.2825	46.2169	33.6189	0	0
30	77.6931	46.0618	32.8093	0	0
31	78.1037	45.9109	31.947	0	0
32	78.5142	45.7642	31.0521	0	0
33	78.9248	45.6217	30.1461	0	0
34	79.3354	45.4833	29.2344	0	0
35	79.7459	45.3489	28.1641	0	0
36	80.1565	45.2186	26.8797	0	0
37	80.5671	45.0923	25.3657	0	0
38	80.9776	44.97	23.6075	0	0
39	81.3882	44.8517	21.6179	0	0
40	81.7988	44.7372	19.6027	0	0
41	82.2093	44.6267	17.6261	0	0
42	82.6199	44.52	15.7115	0	0
43	83.0305	44.4171	13.883	0	0
44	83.441	44.3181	12.1656	0	0
45	83.8516	44.2228	10.5851	0	0
46	84.2622	44.1313	9.16827	0	0
47	84.6727	44.0436	7.94273	0	0
48	85.0833	43.9595	6.937	0	0
49 50	85.4939 85.9044	43.8792	6.18049 5.70357	0	0
50		43.8025	5./035/	0	0
l 2⊺	86.315	43.7293	Ü	Ü	0

List Of Coordinates

Water Table

X Y 0 42.7293 115 42.7293

Distributed Load

GENERAL	CONTRACTOR

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	
Relazione Geotecnica	

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	65 di 71

SLIDEINTERPRET 7.036

rocscience

SLIDE - An Interactive Slope Stability Program: Page 6 of 8

х	Υ
55.1946	52.5257
54.4958	52.5257
51.6958	52.5257
46.3887	52.5257
43.5887	52.5257
42.9033	52.5257

Distributed Load

х	Υ
68.0633	52.5257
66.9769	52.5257
64.1769	52.5257
62.462	52.5257
59.662	52.5257
58.5643	52.5257

Distributed Load

х	Υ
46.3887	52.5257
43.5887	52.5257

Distributed Load

х	Υ
X 54.4958 51.6958	52.5257
51.6958	52.5257

Distributed Load

х	Υ
62.462	52.5257
59.662	52.5257

Distributed Load

х	Υ
66.9769	52.5257
64 1769	52 5257

External Boundary

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	rrogono	20110	Councu	rogno
Relazione Geotecnica	IN17	12	El2RBRI6200001B	66 di 71

SLIDEINTERPRET 7.038

SLIDE - An Interactive Slope Stability Program: Page 7 of 8

rocsci	ence	
х	Υ	
51.6958	52.5257	
46.3887	52.5257	
43.5887	52.5257	
42.9033	52.5257	
40.3272	52.5257	
26.7362	43.7293	
0	43.7293	
0	42.7293	
0	41.81	
0	31.31	
0	28.71	
0	8.21	
0	5.41	
0	0	
115	0	
115	5.41	
115	8.21	
115	28.71	
115	31.31	
115	41.81	
	42.7696	
115	43.7293	
88	43.7293	
86.315	43.7293	
81.2062	46.6687	
79.1741	46.6687	
	52.5257	
68.0633		
66.9769		
64.1769		
	52.5257	
	52.5257	
58.5643	52.5257	
56.8199	52.5257	
55.1946	52.5257	
54.4958	52.5257	

Material Boundary

X Y 0 41.81 115 41.81

Material Boundary

X Y 0 31.31 115 31.31

Material Boundary

X Y 0 28.71 115 28.71

Material Boundary

X Y 0 5.41 115 5.41

Material Boundary

X Y 0 8.21 115 8.21

Material Boundary

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	67 di 71
	Ü		

SLIDEINTERPRET 7.03

rocscience

SLIDE - An Interactive Slope Stability Program: Page 8 of 8

 X
 Y

 26.7362
 43.7293

 70.68
 43.7293

 86.315
 43.7293

Material Boundary

Х	Υ
56.8199	Y 52.5257 43.7293
70.68	43.7293

Material Boundary

Х	Υ
70.68	43.7293
71.4	43.2

Material Boundary

Material Boundary

GENERAL CONTRACTOR ITICAV2		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	El2RBRI6200001B	68 di 71

ALLEGATO 5 – TABULATI DI SETTLE 3D – ANALISI SLE

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00	Trogello
Relazione Geotecnica	IN17

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI6200001B	69 di 71

Page 1 of 3

Settle3D Analysis Information RI62

Project Settings

Document Name: Ri62_CFR Settle-Plaxis.s3z Project Title: Rl62 Date Created: 08/03/2021, 11:30:59 Stress Computation Method: Boussinesq Groundwater method: Water Table Water Unit Weight: 9.81 kN/m³ Depth to water table: 1 [m]

Stage Settings

Stage #	Name
1	Stage 1
2	Stage 2
3	Stage 3

Results

Time taken to compute: 9.02723 seconds

Stage: Stage 1

Data Type	Minimum	Maximum
Total Settlement [cm]	0	9.36179
Consolidation Settlement [cm]	0	3.56317
Immediate Settlement [cm]	0	5.79862
Loading Stress [kPa]	0.0207731	188.963
Effective Stress [kPa]	0.0207731	515.967
Total Stress [kPa]	0.0207731	986.847
Total Strain	8.43959e-007	0.0175302
Pore Water Pressure [kPa]	0	470.88
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.971446	515.882
Over-consolidation Ratio	1	1.77407
Void Ratio	0	0.949751
Hydroconsolidation Settlement [cm]	0	0

Stage: Stage 2

Data Type	Minimum	Maximum
Total Settlement [cm]	0	11.061
Consolidation Settlement [cm]	0	4.68348
Immediate Settlement [cm]	0	6.37901

Ri62_CFR Settle-Plaxis.s3z 08/03/2021, 11:30:59

	Progetto	Lotto	Codifica	Foglio
Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00				
Relazione Geotecnica	IN17	12	EI2RBRI6200001B	70 di 71

SETTLE30 2,000

Page 2 of 3

Loading Stress [kPa]	0.0216486	189.005
Effective Stress [kPa]	0.0216486	536.172
Total Stress [kPa]	0.0216486	1007.05
Total Strain	8.97035e-007	0.0218069
Pore Water Pressure [kPa]	0	470.88
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.972367	536.091
Over-consolidation Ratio	1	1.77212
Void Ratio	0	0.949732
Hydroconsolidation Settlement [cm]	0	0

Stage: Stage 3

Data Type	Minimum	Maximum
Total Settlement [cm]	0	11.3506
Consolidation Settlement [cm]	0	4.85845
Immediate Settlement [cm]	0	6.49218
Loading Stress [kPa]	0.02438	189.271
Effective Stress [kPa]	0.02438	537.455
Total Stress [kPa]	0.02438	1008.33
Total Strain	9.59254e-007	0.0225346
Pore Water Pressure [kPa]	0	470.88
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [kPa]	0.975144	537.374
Over-consolidation Ratio	1	1.77166
Void Ratio	0	0.949728
Hydroconsolidation Settlement [cm]	0	0

Embankments

1. Embankment: "Rilevato"

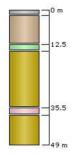
Label: Rilevato Center Line: (0, -50) to (0, 50) Number of Layers: 3 Near End Angle: 90 degrees Far End Angle: 90 degrees Base Width: 43.94

Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m³)	Right Angle (deg)	Right Bench Width (m)
1	Stage 1	0	33	2.94	20	34	0
2	Stage 1	0	33	5.86	20	34	0
3	Stage 1	0	90	0.6	18	90	0

Soil Layers

Layer# Type Thickness [m] Depth [m]

Ri62_CFR Settle-Plaxis.s3z 08/03/2021, 11:30:59



Page 3 of 3

Rilevato ferroviario AV da pk 32+130,00 a pk 32+525,00
Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	El2RBRI6200001B	71 di 71

4	-	SETTLE3D 2.003			
1	UG	settless 2.003			
	1	U1	2	0	
	2	U6_1	10.5	2	
	3	U3_b	2.5	12.5	
	4	U6_2	20.5	15	
	5	U2	2.8	35.5	
	6	U6_2	10.7	38.3	

Soil Properties

Property	U1	U6_1	U3_b	U6_2	U2
Color					
Unit Weight [kN/m³]	19	19	18.5	19	19
Saturated Unit Weight [kN/m ³]	19	19	18.5	19	19
Immediate Settlement	Enabled	Enabled	Disabled	Enabled	Enabled
Es [kPa]	20000	80000		200000	60000
Esur [kPa]	20000	80000		200000	60000
Primary Consolidation	Disabled	Disabled	Enabled	Disabled	Disabled
Material Type			Non-Linear		
Cc			0.31		
Cr			0.04		
e0			0.95		
OCR	1	1	1.8	1	1

Query Points

	(X,Y) Location	Number of Divisions
1	0, 0	Auto: 79

Query Lines

Line #	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	-50, 0	50, 0	100	Auto: 79

Ri62_CFR Settle-Plaxis.s3z 08/03/2021, 11:30:59