COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

RILEVATI

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 GENERALE

DIRETTORE LAVORI

Relazione Geotecnica

GENERAL CONTRACTOR

	GENERAL GONTRAGION				DIRETTORE LAVORI			
	OGETTISTA INTEGRATORI	E Consorz	io					SCALA
ING OF	PROVINCIANI MALAVENDA	Iricav	Due					-
fsenitt	od ordine degli neu di Venezia n. 4289		o Carmon	a				
10			Plan					
Data!	Aprile 2021	Data: Ap		Date	a:			
СОМ	MESSA LOTTO I	fase ente	TIPO E	OC. OPER	a/disciplina	PROGR.	REV.	FOGLIO
I N	1 7 1 2	E I 2	R	В В І	6 4 C C	0 0	1 A	D
							TO CONSC	DRZIO IRICAV DUE
						Firma		Data
	Consor	zio IricA	<i>V</i> Due		Luca RANDOLFI			
								Aprile 2021
Proge	ettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
		N. Valimberti	Aprile	V. Pastore	Aprile	P. Ascari	Aprile	P. Ascari
Α	EMISSIONE	Nicel Valimber	2021	Vibrisiafistico	2021	Porls Atraci	2021	- 122 Mel
								(The stand of
								The state of the s
								Data: Aprile 2021
CIG.	8377957CD1	CL	JP: J41E	91000000	009	File	: IN1712	EI2RBRI64C0001A.DOCX
	Progetto cofina	•				Cod	d. origine	:
**	dalla Unione E							

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48

Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI64C0001A 2 di 138

INDICE

1 INT	RODUZIONE	4
2 DO	CUMENTI DI RIFERIMENTO	5
2.1	Documentazione di progetto	5
2.2	Normativa e standard di riferimento	
2.3	Bibliografia	
	QUADRAMENTO DELL'OPERA	
3.1	Geometria del rilevato	8
4 CA	RATTERIZZAZIONE GEOTECNICA	10
4.1	Indagini disponibili	10
4.2	Inquadramento stratigrafico	11
4.3	Condizioni geotecniche del sito	13
4.4	Sintesi del modello geotecnico di riferimento	26
4.4	1 Materiale da rilevato	26
4.4	2 Falda	26
5 CA	RATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE	28
5.1	Sollecitazione sismica di progetto	28
5.1.	1 Vita Nominale	28
5.1.	.2 Classe d'uso	28
5.1.	.3 Periodo di riferimento per l'azione sismica	29
5.1.	4 Categorie di Sottosuolo	29
5.1	.5 Condizioni topografiche	29
5.1.	6 Accelerazione sismica di riferimento	30
5.2	Suscettibilità alla liquefazione	30
5.2	1 CRR da correlazione su prove CPT	32
5.2	2 CRR da correlazione su prove SPT	34
5.3	Risultati delle verifiche a liquefazione	37
6 VEI	RIFICA GEOTECNICA DEL RILEVATO	42
6.1	Criteri di verifica agli Stati Limite	42
6.1	1 Stati limite ultimi (SLU)	42
6.1	2 Stati limite di esercizio (SLE)	44
6.1	3 Verifiche in condizioni sismiche e post-sismiche	44
6.2	Azioni di progetto	44
6.2	1 Azioni permanenti	45
6.2	2 Azioni variabili	45

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica Progetto IN17 Lotto

Codifica
EI2RBRI64C0001A

Foglio 3 di 138

		e sismica	
6.3	Verifiche	e risultati SLU	46
6.3.1		essa	
6.3.2	Verific	he SLU in condizione statiche	46
6.3.3		he SLU in condizioni sismiche	
6.4	Verifica e	e risultati SLE	50
7 CONC	CLUSION	NI E RACCOMANDAZIONI	59
Allegati			60
ALLEGA	ATO 1 -	STRATIGRAFIE	61
ALLEGA	ATO 2 -	SONDAGGI	64
ALLEGA	- 8 OTA	SEZ. N° 16 - TABULATI DI SLIDE	76
ALLEGA	ATO 4 -	SEZ. N° 43 - TABULATI DI SLIDE	93
ALLEGA	ATO 5 -	SEZ. N° 43 - TABULATI DI SETTLE 3D – ANALISI SLE	122

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio	
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	4 di 138	

1 INTRODUZIONE

Il presente documento costituisce la Relazione Geotecnica del rilevato RI64c, previsto nell'ambito del Progetto Esecutivo della sub tratta Verona – Vicenza della Linea AV/AC Verona – Padova. Tale rilevato appartiene alla cosiddetta seconda variante L.S., si estende da pk 182+974.76 a pk 183+777.48 e costituisce il rilevato di approccio al Viadotto Rio Guà LS.

La relazione descrive in dettaglio il modello geotecnico definito per il rilevato, ricavato sulla base delle indagini geognostiche eseguite nelle vicinanze dell'opera e delle caratteristiche geotecniche attribuite ai materiali rinvenuti lungo la tratta.

Le verifiche discusse sono state eseguite ai sensi della Normativa applicata (v. capitolo seguente) e gli interventi proposti sono volti a garantire la stabilità dei rilevati ed il rispetto dei requisiti prestazionali previsti per le opere in oggetto.

Il documento è così organizzato:

- documenti e normativa di riferimento (capitolo 2);
- inquadramento dell'opera e caratteristiche geometriche del rilevato (capitolo 3);
- definizione del modello geotecnico di riferimento (capitolo 4);
- valutazione della suscettibilità alla liquefazione e descrizione degli eventuali interventi di mitigazione (capitolo 5);
- verifiche geotecniche dei rilevati (capitolo 6);
- conclusioni e raccomandazioni (capitolo 7).

2 DOCUMENTI DI RIFERIMENTO

2.1 Documentazione di progetto

- [1] Sezioni di Progetto Esecutivo
- [2] IN1710EI2RBGE0000004A Relazione Geotecnica (da 33+500 a 44+250)
- [3] IN1710EI2RHGE0000004A Relazione idrogeologica 2/2 (da 22+000 a 44+250)
- [4] IN1710EI2RHGE0000006A Relazione sulla modellazione sismica del sito e pericolosità sismica di base 2/2 (da 22+000 a 44+250)
- [5] IN1711EI2P5GE0000045A-55A Planimetria con ubicazione indagini e profilo geotecnico tav.1-11
- [6] IN1710EI2LZGE0000019A Planimetria con ubicazione indagini e profilo geotecnico
- [7] IN1711EI2RGGE0000008A Relazione di sintesi dei sondaggi e prove eseguite 2/2 (da 21+990 a 44+250)
- [8] IN1711EI2P5GE0000067A-77A Carta di ubicazione indagini di Progetto Esecutivo, tav. 1-11
- [9] IN1711EI2SGGE0000002A Programma indagini in sito di Progetto Esecutivo (da 21+990 a 44+250)
- [10] IN1711EI2PRGE0000002A Programma indagini di laboratorio di Progetto Esecutivo 1 di 2 (da 21+990 a 44+250)
- [11] IN1710EI2RHGE0000008A Relazione di sintesi dei sondaggi e prove esequite 2/2 (da 21+990 a 44+250)
- [12] IN1710EI2PRGE0000002A Risultati Indagini in sito di Progetto Esecutivo SOCOTEC (da 21+990 a 44+250)
- [13] IN1710EI2PRGE0000004A Risultati Indagini in sito di Progetto Esecutivo ATI GEOSERVING GEOLAVORI (da 21+990 a 44+250)
- [14] IN1710EI2PRGE0000007A-8A, Risultati Prove di laboratorio di Progetto Esecutivo SOCOTEC (da 21+990 a 44+250)
- [15] IN1710EI2PRGE00000011A-12A, Risultati Prove di laboratorio di Progetto Esecutivo ATI GEOSERVING
 GEOLAVORI (da 21+990 a 44+250)
- [16] IN1710El2IGGE0000002A Risultati Indagini Geofisiche di Progetto Esecutivo SOCOTEC (da 21+990 a 44+250)
- [17] IN1710El2IGGE0000004A Risultati Indagini Geofisiche di Progetto Esecutivo ATI GEOSERVING GEOLAVORI (da 21+990 a 44+250)

2.2 Normativa e standard di riferimento

- [18] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni",G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30
- [19] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008
- [20] UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali

GENERAL CONTRACTOR Consorzio Iric/W Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio		
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	6 di 138		

- [21] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [22] RFI DTC SI PS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 2, Ponti e strutture
- [23] RFI DTC SI CS MA IFS 001 B Manuale di progettazione delle opere civili, Parte II Sezione 3, Corpo stradale
- [24] RFI DTC INC PO SP IFS 001 A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario
- [25] RFI DTC INC CS SP IFS 001 A Specifica per la progettazione geotecnica delle opere civili ferroviarie
- [26] RFI DTC SICS SP IFS 001 B Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 5 "Opere in terra e scavi" RFI
- [27] RFI TCAR ST AR 01 001 D Standard di qualità geometrica del binario con velocità fino a 300 km/h
- [28] Specifiche Tecniche di interoperabilità 2015 (REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea)

2.3 Bibliografia

- [29] Hynes, M.E., and Olsen, R.S. (1999), "Influence of confining stress on liquefaction resistance", Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction, Balkema, Rotterdam, The Netherlands, 145-152.
- [30] Idriss, I.M. and Boulanger, R.W. (2004), "Semi-empirical procedures for evaluating liquefaction potential during earthquakes". In: Proceedings, 11th International Conference on Soil Dynamics and Earthquake engineering, and 3d International Conference on Earthquake Geotechnical Engineering. D. Doolin et al., eds., Stallion press, Vol. 1, pp. 32-56.
- [31] Liao, S.C.C. and Whitman, R.V. (1986), "Overburden Correction Factors for SPT in sand", Journal of Geotechnical Engineering, Vol. 112, No. 3, 373-377.
- [32] Robertson P.K. and Wride C.E. (1998). "Evaluating cyclic liquefaction potential using the cone penetration test". Canadian Geotechnical Journal, Ottawa, 35(3), pp. 442-459.
- [33] Seed, H.B. and Idriss, I.M. (1971), "Simplified procedure for evaluating soil liquefaction potential", Journal of Geotechnical Engineering Division, ASCE, 97(9), pp.1249-1273.
- [34] Seed, H.B. and Idriss, I.M. (1982), "Ground motions and soil liquefaction during earthquakes", Earthquake Engineering Research Institute, Oakland, CA, USA.
- [35] Seed, R.B., Tokimatsu, K., Harder, L.F., Chung, L.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluations", Journal of Geotechnical Engineering, ASCE, 111(12), pp.1425-1445.
- [36] Youd, T.L., Idriss, I.M., Andrus, R.D., Castro, G., Christian, J.T., Dobry, R., Finn, L.W.D., Harder, L.F. Jr., Hynes, M.H., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F. III, Martin, G.R., Mitchell, J.K.,

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio		
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	7 di 138		

Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, K.H. II (2001), "Liquefaction Resistance of Soil: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils", Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, n° 10, pp.817-833.

[37] Rocscience (2017), Slide ver 9.012, dic. 2020

[38] Rocscience (2009), Settle 3D ver 2.011

3 INQUADRAMENTO DELL'OPERA

Il rilevato ferroviario in esame è quello relativo alla seconda variante della Linea Storica che si estende dalla pk 182+974.76 alla pk 183+777.48, per una lunghezza totale di 802,72 m. E' ubicato in affiancamento alla Linea AV nel tratto in cui sono presenti il Viadotto VI21 (Viadotto Montebello) e la prima parte del Viadotto Rio Guà AV (VI09), e costituisce il rilevato di approccio al Viadotto Rio Guà LS (VI10A).

3.1 Geometria del rilevato

Il rilevato, lungo 802,72 m, presenta nel suo sviluppo una altezza variabile da 5 m a circa 11 m rispetto al piano campagna. Nelle sezioni iniziali l'opera coincide con il rilevato esistente della linea storica che viene risagomato per seguire il nuovo tracciato in seconda variante, mediante un allargamento, su un lato, e lo smantellamento di una parte sull'altro lato.

I suddetti rilevati si raccordano al terreno naturale con una scarpata con pendenza 2/3 (V:H).

Di seguito si riportano le sezioni n. 16 e 43, rispettivamente alle pk 183+126 e pk 183+703, che risultano più rappresentative per altezza massima del rilevato e/o per conformazione geometrica e/o per aspetti costruttivi. Nel dettaglio, nella sezione 16 (Figura 1) è previsto un mero rimodellamento del rilevato esistente con asportazione del materiale lungo le due scarpate. Nella sezione 43 (Figura 2) l'asse dei binari viene spostato, ovverosia viene realizzato un allargamento del rilevato esistente da un lato e smantellata una parte dello stesso dall'altro lato.

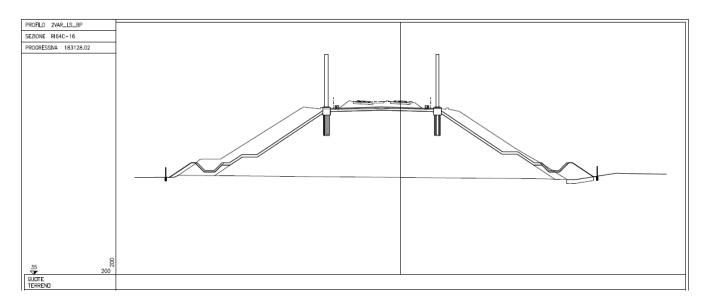


Figura 1 – Sezione di riferimento n° 16 pk pk 183+126 estratta da sezioni PE (Doc Rif.[1])

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR		
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio	
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	9 di 138	

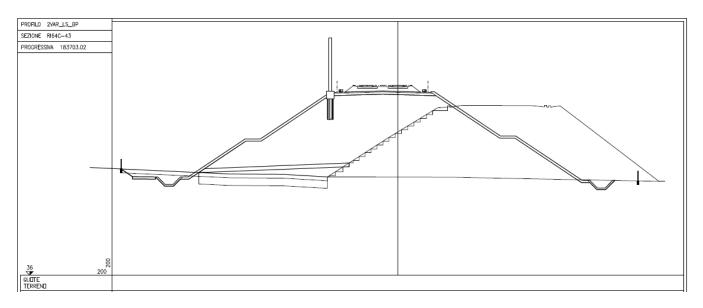


Figura 2 – Sezione di riferimento n° 43 pk 183+703, estratta da sezioni PE (Doc Rif.[1])

La presente relazione pertanto riporta le analisi di stabilità delle 2 sezioni appena descritte. Per quanto riguarda invece l'analisi dei cedimenti, si fa riferimento alla sola sezione n°43 in quanto rappresentativa delle condizioni più gravose.

GENERAL CONTRACTOR Consorzio Iric Av Due		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio			
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	10 di 138			

4 CARATTERIZZAZIONE GEOTECNICA

4.1 Indagini disponibili

L'ubicazione delle indagini disponibili relative all'opera esaminata è illustrata nella Figura 3, estratta dalla Planimetria geotecnica con ubicazione indagini e profilo geotecnico (Doc. Rif. [6]). Per ulteriori dettagli si rimanda alle relazioni di sintesi delle indagini (Doc. Rif. [7] - Doc. Rif [17]).

Il risultato delle indagini è riportato in ALLEGATO 2 - .

Le indagini disponibili lungo il tratto d'interesse per il rilevato in oggetto sono elencate in Tabella 1. Nel seguente paragrafo si riporta la caratterizzazione geotecnica, ottenuta basandosi sui risultati delle indagini relative all'area di interesse e sulla caratterizzazione generale dell'area in cui si inserisce il rilevato, presentata nella Relazione Geotecnica (Doc. Rif. [2]).

Per una trattazione completa dei criteri utilizzati per la valutazione dei parametri geotecnici a partire dai dati di prove in sito e di laboratorio, si rimanda al capitolo 5 della Relazione Geotecnica Generale (Doc. Rif. [2])

Tabella 1 - Indagini da pk 182+974,76 a pk 183+777,48

Progressiva	ID indagini	Campagna
Pk (*)	-	Anno
33+600	CDS 7	2020-2021
33+718	BH-PE-69	2020-2021
33+785	XA203V019	2002
33+887	BH-PE-70	2020-2021
34+000	CPTU PE 39	2020-2021

^(*) pk linea AV

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio	
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	11 di 138	

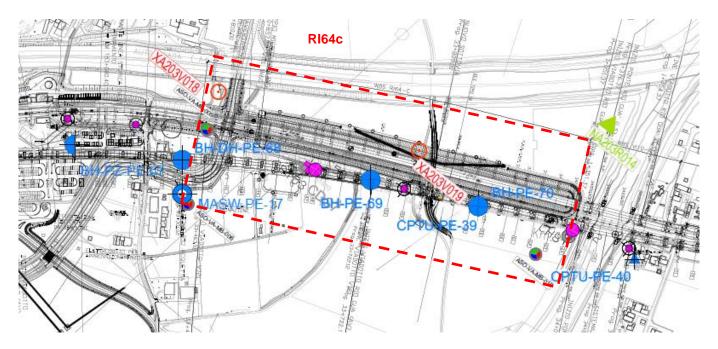


Figura 3 - Planimetria Rilevato RI64c, estratto dalla Planimetria Generale (Doc. Rif.[6])

4.2 Inquadramento stratigrafico

L'assetto stratigrafico nell'area è caratterizzato dall'alternanza di limo argilloso, limo da compatto a molto compatto (Unità 2), e ghiaie ben addensate (Unità 6).

Per una trattazione di dettaglio delle unità sopra citate si rimanda alla Relazione Geotecnica Generale del tratto in esame (Doc. Rif. [2]). Nella Figura 4 si riporta il profilo geotecnico specifico per il rilevato RI64c, estratto dalla Planimetria e Profilo Geotecnico (Doc. Rif. [6]), vedi ALLEGATO 1 -

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio	
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	12 di 138	

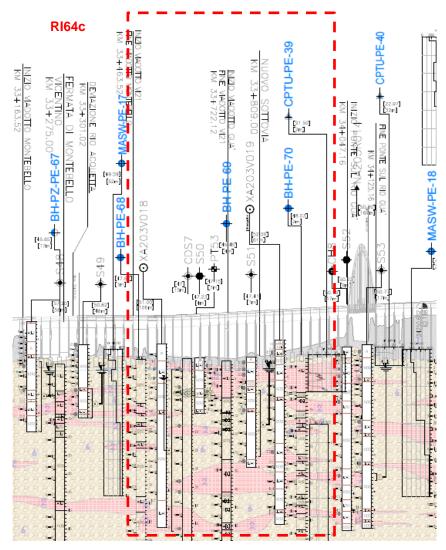


Figura 4 - Profilo Geotecnico Rilevato RI64c, estratto dal Profilo Geotecnico Generale (Doc. Rif. [6])

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio		
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	13 di 138		

4.3 Condizioni geotecniche del sito

A partire dalla superficie sono presenti terreni limoso-argillosi (Unità 2) di spessore variabile lungo lo sviluppo dell'opera fino ad un massimo di circa 10 metri. Al di sotto di questo orizzonte, fino alle massime profondità indagate (50m da p.c.), i corpi ghiaiosi sono intercalati da livelli di materiale fine, di spessore variabile e andamento discontinuo.

L'Unità 2 di superficie presenta contenuti di fine (argilla + limo) generalmente superiori all'80% ed il complemento al 100% è costituito da sabbia.

All'interno dei depositi incoerenti sottostanti, le percentuali di materiale a grana fine sono generalmente inferiori a 40%, con una generale prevalenza di ghiaia (percentuali superiori al 40% e fino all'80%).

La Figura 6 mostra i risultati delle prove SPT eseguite nel tratto interessato dal rilevato in esame.

Per il materiale fino dell'Unità 2 i valori sono variabili nel campo 5-25 colpi/30cm.

Nell'Unità 6 si registrano valori di N_{SPT} caratterizzati da una elevata variabilità e da un apprezzabile incremento del valore con la profondità. I colpi variano da 20 a 40 colpi/30cm, con alcuni valori superiori a 50 nei primi 30 m di profondità e aumentano fino a 80-90 negli strati più profondi ove si sono misurati anche dei rifiuti.

La densità relativa risulta variabile fra il 20% e il 50%.

L'angolo di resistenza al taglio si assesta intorno a 39° (intervallo di valori tra 36° e 42°), con variabilità maggiore negli strati più profondi.

Per analizzare il profilo delle onde di taglio Vs è stato redatto un grafico di confronto tra i risultati delle correlazioni con le SPT dei sondaggi disponibili nella tratta in oggetto ed i risultati derivanti delle interpretazioni discusse nella Relazione Sismica (Doc. Rif.[4]), basata sui risultati delle prove MASW e SPT (vedi

Figura 9) di tutta la tratta. Ad esclusione del primo strato superficiale di riporto, i valori di Vs sono crescenti con la profondità e fino a 20 metri si assestano tra 200 m/s e 300 m/s.

A profondità maggiori, ovvero oltre i 20 metri, le velocità sono da considerarsi pressoché costanti fino a 50 m pc. Tuttavia, si evidenzia una differenza significativa tra i risultati generali rappresentativi dell'intera tratta e i dati stimati a partire dalle prove SPT. Nel primo caso il valore è di circa 400 m/s, mentre dalle prove SPT il valore si assesta attorno ai 270 m/s fino 30 m, e tra 300 m/s e 400 m/s da 35 a 50 m.

Sulla base dei valori di Vs si sono stimati i valori del modulo di taglio alle piccole deformazioni (G₀). Impiegando le risultanze delle prove SPT, per le ghiaie superficiali si ottengono valori compresi tra 100 MPa e 150 MPa, mentre gli strati profondi si ottengono valori compresi tra 150 MPa e 250 MPa.

Per i materiali a grana grossa, si è stimato il valore del modulo di Young (E_0) utilizzando da teoria dell'elasticità a partire dal valore del modulo G_0 ed utilizzando valori di v=0.25-0.30. Il valore del modulo di Young operativo (E_{op}) per il calcolo di cedimenti di fondazioni superficiali e rilevati è stato calcolato ipotizzando valori del decadimento del

GENERAL CONTRACTOR Consorzio Iric/AV Due Consorzio Iric/AV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio 1N17 12 EI2RBRI64C0001A 14 di 138

modulo dell'ordine di 1/5 di quello iniziale per gli strati superficiali e dell'ordine di 1/3 di quello iniziale per gli strati più in profondità, dove le deformazioni attese sono minori.

Sulla base di questi criteri, i parametri geotecnici sono stati determinati mediante l'interpretazione dei risultati delle prove di sito e di laboratorio:

- Distribuzione delle granulometrie da analisi di laboratorio (v. Figura 5);
- Valori N_{SPT} da prove SPT (v. Figura 6);
- Densità relativa stimata da prove SPT (v. Figura 7);
- Angolo di resistenza al taglio stimato da prove SPT (v. Figura 8);
- Confronto della Velocità delle onde di taglio stimata da prove in sito (v.
- Figura 9);
- Confronto Modulo di taglio alle piccole deformazioni stimato da prove in sito (v. Figura 10)

Nel corso delle perforazioni eseguite nella tratta in oggetto sono stati prelevati campioni per l'esecuzione di prove di laboratorio. In particolare, sono state eseguite misure di contenuto d'acqua (w%) e limiti liquido e plastico (LL, LP), e prove triassiali non consolidate non drenate (TX-UU).

Sono state inoltre eseguite prove edometriche per la stima del grado di sovraconsolidazione OCR e degli indici di compressione e ricompressione.

I campioni sono stati prelevati in corrispondenza degli strati definiti come Unità 2 (limi argillosi e limi da compatti a molto compatti).

Il contenuto d'acqua è generalmente compreso tra 25% e 40% ed il limite plastico è compreso tra 20% e 46% (Figura 11). Il limite liquido, invece, mostra una maggiore variabilità, conseguentemente l'indice di plasticità IP dell'Unità 2 varia tra 2% e 38%. Il riflesso di tale differenza è visibile anche in Figura 12 (Carta di Casagrande) nella quale si osserva che punti si dispongono lungo la retta che separa il campo delle argille da quello dei limi.

Per quanto riguarda la coesione non drenata, questa è stata ottenuta mediante prova triassiale non consolidata non drenata. Le prove indicano una elevata variabilità con valori generalmente crescenti con la profondità come evidenziato in Figura 13. In superficie i valori sono contenuti entro i 60 kPa, a 18 metri il valore è di 70 kPa, nell'intorno dei 35 metri il valore raggiunge gli 80 kPa. A 45 m di profondità il valore della coesione non drenata è pari a 150 kPa. I valori sopra riportati testimoniano la presenza di materiali sovraconsolidati a tutte le quote, come confermato dai risultati delle prove edometriche. I valori di cu pari a circa 30 kPa registrati su campioni in profondità sono da attribuire ad un eccessivo disturbo del campione, e non sono da considerare significativi.

Dalla prova edometrica sono stati ricavati gli indici di compressione e ricompressione. Il primo cresce in modo più marcato con la profondità fino al valore medio di 0,40 a 35 m, mentre il secondo mostra un intervallo di variazione

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	15 di 138

più contenuto con un valore medio di 0,04..

RI64c da pk 182+974,76 a pk 183+777,48

Contributi granulometrici (%)

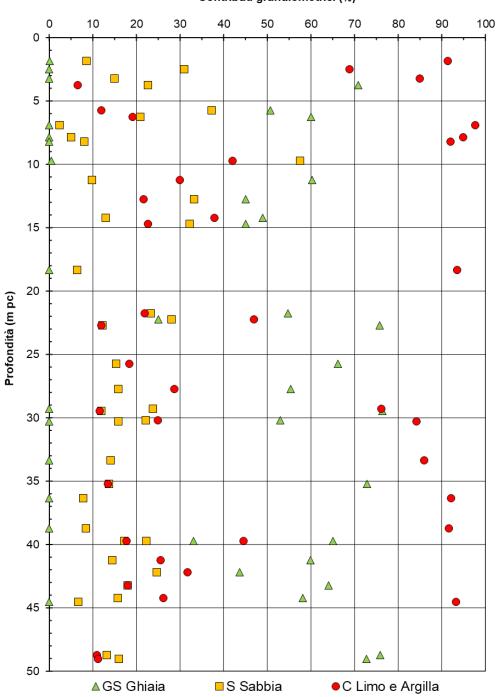


Figura 5 – Sintesi analisi granulometriche – RI64c (pk 182+974,76 ÷ 183+777,48)

Rl64c da pk 182+974,76 a pk 183+777,48

N_{SPT} (colpi/30cm)

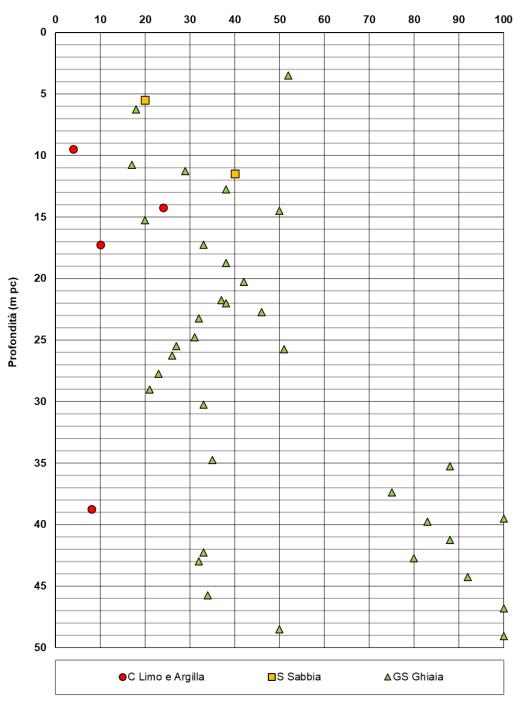


Figura 6 – Esito delle prove SPT – RI64c (pk 182+974,76 ÷ 183+777,48)

RI64c da pk 182+974,76 a pk 183+777,48

Dr (%) 0 10 20 30 40 50 90 100 0 Δ 5 10 Δ Δ 15 20 Δ Profondità (m pc) 25 $\stackrel{\triangle}{\Delta}$ 30 Δ 35 Δ Δ 40 Δ 45 Δ 50 ■S Sabbia △GS Ghiaia

Figura 7 – Densità relativa da prove SPT - RI64c (pk 182+974,76 ÷ 183+777,48)

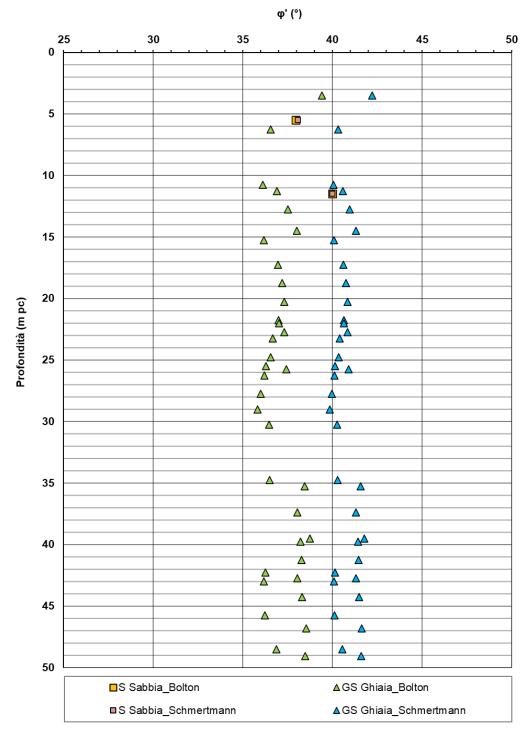


Figura 8 – Angoli di resistenza al taglio da prove SPT - RI64c (pk 182+974,76 ÷ 183+777,48)

RI64c da pk 182+974,76 a pk 183+777,48

Figura 9 – Confronto Vs con dati di correlazioni con SPT (blu) di RI64c e Profilo generale (verde) tra pk 32+000 a pk 36+000 (Doc. Rif.[2])

RI64c da pk 182+974,76 a pk 183+777,48

Figura 10 – Confronto G_0 con dati di correlazioni con SPT di RI64c e Profilo generale tra pk 32+000 a pk 36+000 (Doc. Rif.[2])

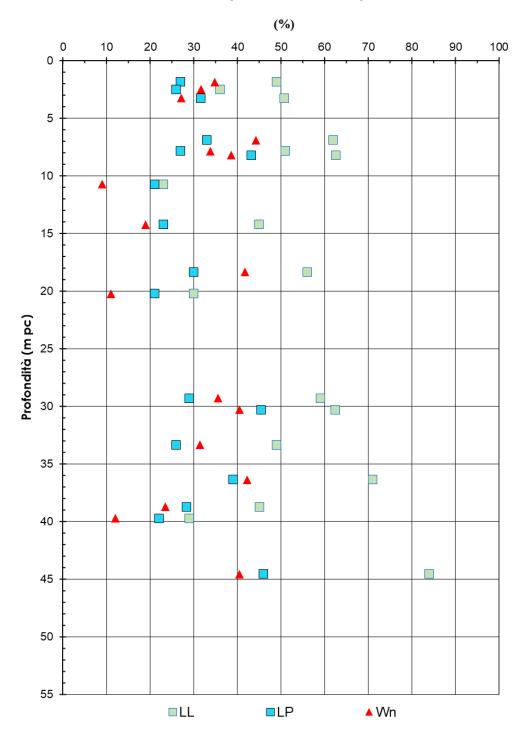


Figura 11 – Contenuto d'acqua, limite liquido e limite plastico - RI64c (pk 182+974,76 ÷ 183+777,48)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	23 di 138

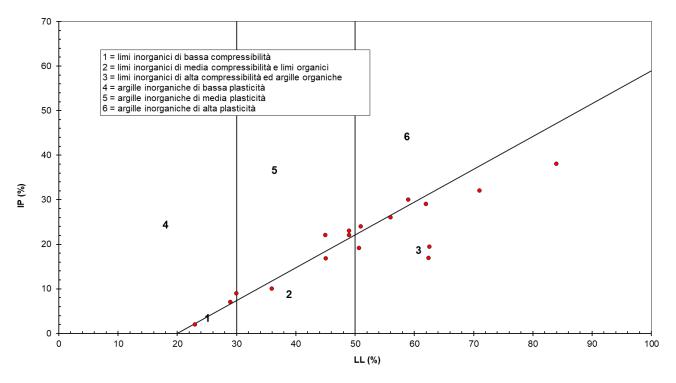


Figura 12 – Carta di Casagrande - RI64c (pk 182+974,76 ÷ 183+777,48)

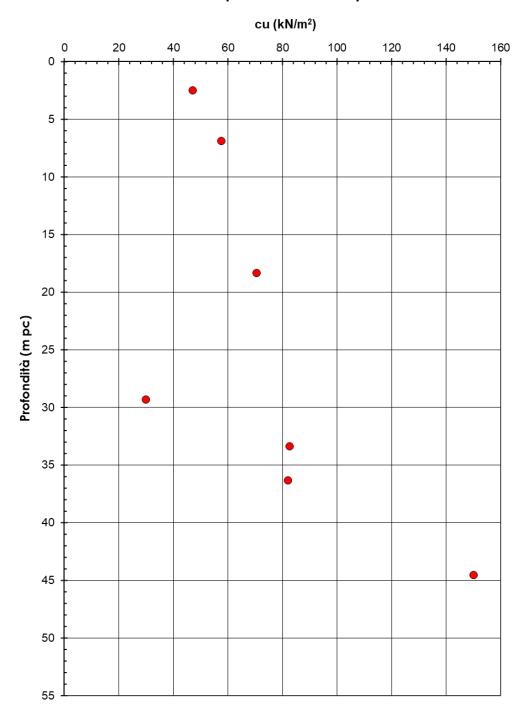


Figura 13 – Coesione non drenata - RI64c (pk 182+974,76 ÷ 183+777,48)

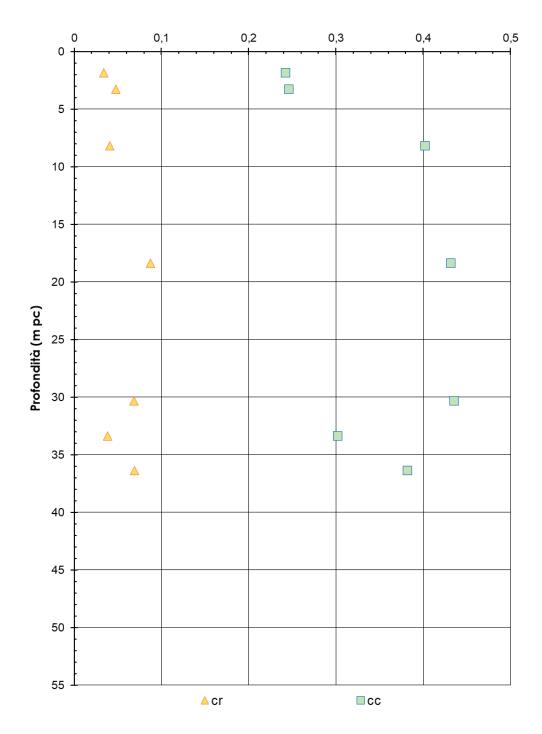


Figura 14 – Indici di ricompressione e compressione – c_r e c_c - RI64c (pk 182+974,76 \div 183+777,48)

4.4 Sintesi del modello geotecnico di riferimento

Sulla base di quanto esposto al punto precedente, il modello geotecnico considerato per le verifiche del rilevato in questione è riportato in Tabella 2.

Tabella 2 – Modello geotecnico di riferimento

11:42	da	а	γ	φ _k	C _k '	C _{u,k}	G ₀	E'op	σ' _p	Indice	Indice
Unità	m pc*	m pc*	kN/m³	0	kPa	kPa	MPa	MPa	kPa	RR	CR
2	0	10	18.5	26	0	60	-	-	260	0,015	0,18
6	10	12	20	39	0	-	120	60			
2	12	15	18.5	26	0	60	=	-	260	0,015	0,18
6	15	18	20	39	0	-	200	100			
2	18	21	18.5	26	0	80	-	-	360	0,015	0,18
6	21	31	20	39	0	-	280	140			
2	31	33	18.5	26	0	80	-	25			
6	33	40	20	39	0	-	300	150			
6	40		20	39	0	-	400	200			

4.4.1 Materiale da rilevato

Le caratteristiche dei rilevati ferroviari sono desunte dal MdP (Doc. Rif. [23]) e sono di seguito riassunte:

Tabella 3 - Caratteristiche materiale da rilevato

	γ	φ	c'
	kN/m³	0	kPa
Rilevato costruendo	20	40	0
Rilevato storico	20	38	5

Per le ragioni che verranno esposte nelle verifiche di stabilità, è necessario che la parte nuova del rilevato sia realizzata mediante l'impiego di terreni aventi angolo di resistenza al taglio ≥40°, o parametri di resistenza c' e f' equivalenti. Per tale motivo, si dovranno impiegare materiali tipo A1 o, in subordine, A2.-4. Per la porzione del rilevato esistente che verrà mantenuta sono stati assunti i parametri geotecnici riportati nella tabella, in considerazione del miglioramento delle caratteristiche meccaniche dell'opera indotto dai cicli di carico-scarico subiti dalla stessa nel corso della sua vita.

4.4.2 Falda

Per il livello di falda si è fatto riferimento ai valori di soggiacenza misurati nei piezometri lungo l'area in cui si inserisce

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto IN17	Lotto	Codifica	Foglio
Relazione Geotecnica		12	EI2RBRI64C0001A	27 di 138

l'opera in esame e riportati nella Relazione Idrogeologica (Doc. Rif.[3]). Le letture disponibili indicano una sostanziale stabilità nelle escursioni stagionali.

Ai fini progettuali si assume:

- falda di progetto a medio termine e lungo termine: -1 m da p.c.
- falda di progetto media: -3 m da p.c.

5 CARATTERISTICHE SISMICHE E SUSCETTIBILITÀ ALLA LIQUEFAZIONE

5.1 Sollecitazione sismica di progetto

5.1.1 Vita Nominale

La vita nominale di un'opera V_N è intesa come il numero di anni nel quale la stessa, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

Coerentemente a quanto previsto dal MdP l'opera in oggetto viene inserita nella tipologia di costruzione con $V_N = 100$ anni.

Tabella 4 – Vita nominale delle infrastrutture ferroviarie

Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM 14.01.2008 a velocità convenzionale (V < 250 km/h)	$V_N = 50 \text{ anni}$
Altre opere nuove a velocità V < 250 km/h	V _N = 75 anni
Altre opere nuove a velocità V ≥ 250 km/h	$V_N = 100 anni$
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	V _N ≥ 100 anni

5.1.2 Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso III (Tabella §2.5.1.1.2.1 di RFI DTC SI PS MA IFS 001 B):

- I Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Il Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- III Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- IV Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il coefficiente d'uso è pari a 1.50, coerentemente a quanto indicato nella Tab. 2.4.Il delle NTC.

Tabella 5 – Valori del coefficiente di uso Cu

Classe d'uso	I	II	Ш	IV
Coefficiente d'uso	0.7	1.0	1.5	2.0

5.1.3 Periodo di riferimento per l'azione sismica

Il periodo di riferimento $V_R = V_N * C_U = 100 * 1.5 = 150$ anni.

5.1.4 Categorie di Sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. Come discusso nella Relazione sulla modellazione sismica e nelle Planimetrie con classificazione sismica dei terreni, i terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C:

- Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
- B Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s
- C Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
- Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
- E Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

5.1.5 Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la classificazione proposta nelle NTC, secondo la quale le categorie individuate si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m. L'area interessata risulta classificabile come **T1**.

- T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤15°.
- T2 Pendii con inclinazione media $i > 15^{\circ}$.
- T3 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°.
- T4 Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	30 di 138

5.1.6 Accelerazione sismica di riferimento

Di seguito si riportano i valori dei parametri spettrali dipendenti dal sito dell'opera in oggetto:

ag (g) (SLV)	0.214
Coefficiente di amplificazione stratigrafica Ss	1.388
Coefficiente di amplificazione topografica St	1.0
Accelerazione massima attesa al suolo	
a_{\max} (g) ($a_{\max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$)	0.297

5.2 Suscettibilità alla liquefazione

Lo studio della suscettibilità alla liquefazione dei terreni identificati nell'area di realizzazione del rilevato è stato eseguito nel rispetto della normativa applicata (Doc. rif. [18]).

Nello specifico, verificata la non rispondenza ai criteri di esclusione di cui alle NTC2008, la determinazione del potenziale di liquefazione è stata condotta per il periodo di ritorno dell'azione sismica corrispondente a quello dello stato limite ultimo di verifica (SLV) utilizzando i valori di pericolosità sismica al sito riportati al par. 5.1.6 relativi allo SLV (opere di linea ad esclusione delle gallerie artificiali, V_R = 150 anni).

Il valore di magnitudo necessario per la valutazione della pericolosità a liquefazione è stato determinato tenendo conto di tre differenti "fonti di dati" alla base delle definizioni dell'azione sismica di NTC2008, ossia:

- a) L'analisi di disaggregazione dei valori di pericolosità sismica (accelerazione su suolo rigido orizzontale) di cui alle NTC2008, fornita quale elaborazione aggiuntiva direttamente dal progetto INGV-DPC S1.
- b) Analisi dei dati di magnitudo da terremoti storici aventi epicentro entro una distanza di 30Km dal tracciato di progetto, sulla base delle informazioni fornite dal Catalogo Parametrico dei Terremoti Italiani CPTI11.
- c) Magnitudo attesa per un periodo di ritorno pari almeno a 975 anni valutata sulla base del modello delle modello di zone sismogenetiche ZS9 (riportato in Figura 1), alla base delle mappe di pericolosità sismica del territorio italiano allegate alle NTC2008, e sulla distribuzione dei valori di magnitudo associati ai massimi terremoti storici.

Facendo sempre riferimento al Doc. rif. [18] per i dettagli dell'analisi sopra descritta, e in continuità con le considerazioni esposte in sede di Progetto Definitivo, è stato considerato ragionevole assumere per il tracciato di progetto un valore di magnitudo di riferimento da adottare nelle verifiche a liquefazione di cui ai paragrafi successivi pari a 6.5.

La valutazione di suscettibilità alla liquefazione è stata quindi condotta in accordo al "metodo semplificato" originariamente proposto da Seed e Idriss (1971,1982) e da Seed et al. (1985), confrontando lo sforzo di taglio ciclico normalizzato rispetto alla pressione verticale in sito (CSR) e la resistenza normalizzata del terreno al taglio ciclico (CRR) così definiti:

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk Relazione Geotecnica Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk Relazione Geotecnica RILA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI64C0001A 31 di 138

$$CSR = \frac{\tau_{media}}{\sigma'_{v0}}$$
 Rapporto di tensione ciclica

$$CRR = \frac{\tau_l}{\sigma'_{v0}}$$
 Rapporto di resistenza ciclica

Lo sforzo di taglio indotto ad ogni profondità in un terreno a superficie piana durante l'evento sismico è dovuto essenzialmente alla propagazione delle onde di taglio polarizzate orizzontalmente. In accordo al metodo utilizzato, la tensione di taglio ciclico indotta dallo scuotimento sismico (sforzo di taglio ciclico normalizzato CSR) viene approssimata da un valore efficace dell'accelerazione pari al 65% della accelerazione di picco a_{max} come segue:

$$CSR = \frac{\tau_c}{\sigma'_{vo}} = 0.65 \frac{\tau_{\text{max}}}{\sigma'_{vo}} = 0.65 \frac{a_{\text{max}}}{g} \frac{\sigma_{vo}}{\sigma'_{vo}} r_d$$

dove:

a_{max} accelerazione di picco al sito

g accelerazione di gravità

 au_c valore rappresentativo dello sforzo di taglio ciclico

ovo tensione verticale alla profondità in esame, in termini di tensioni totali

σ'_{vo} tensione verticale alla profondità in esame, in termini di tensioni efficaci

r_d coefficiente di riduzione dello sforzo di taglio ciclico in funzione della profondità da piano campagna, calcolato come segue in accordo a Blake (Blake, 1996, riportato da Youd et al., 2001):

$$r_d = \frac{1 - 0.4113 \cdot z^{0.5} + 0.04052 \cdot z + 0.001753 \cdot z^{1.5}}{1 - 0.4177 \cdot z^{0.5} + 0.05729 \cdot z - 0.006205 \cdot z^{1.5} + 0.00121 \cdot z^2}$$

CSR può essere messo in relazione al numero di cicli significativi dell'azione sismica, funzione della magnitudo M. Per M ≠ 7.5 è necessario introdurre un fattore di scala della magnitudo MSF così definito:

$$MSF = \frac{CSR_M}{(CSR)_{M=7.5}} = \left(\frac{N_{M=7.5}}{N_M}\right)^b$$

dove CSR_M e N_M rappresentano i valori di CSR e numero di cicli equivalenti per il valore di magnitudo di progetto, mentre $(CSR)_{M=7.5}$ e $N_{M=7.5}$ sono riferiti all'evento con M=7.5.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio 1N17 12 EI2RBRI64C0001A 32 di 138

Nel presente studio, in accordo sia alle prescrizioni dell'Eurocodice 8, sia a quanto suggerito da Youd et al., 2001 e Idriss e Boulanger (2004) si è assunto per M = 6.5 - MSF = 1.7.

Il rapporto di resistenza ciclica CRR è stato valutato mediante relazioni empiriche che correlano la sollecitazione sismica ai risultati di prove in sito di tipo SPT o CPT.

5.2.1 CRR da correlazione su prove CPT

Per la stima del CRR sulla base di prove in-situ o di laboratorio sono disponibili diverse procedure. La procedura basata sui risultati di prove CPT è piuttosto ben consolidata e diffusa e viene qui utilizzata ai fini di una analisi del potenziale di liquefazione, considerando i dati di prove in sito disponibili allo stato attuale delle conoscenze.

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove CPT si basa sulla relazione riportata in Figura 15: la curva in figura si riferisce alla resistenza penetrometrica normalizzata q_{c1N} per le sabbie pulite che può essere espressa come segue (Robertson & Wride, 1998, come riportato da Youd et al., 2001):

per (q_{c1N})_{cs} < 50
$$CRR_{7.5} = 0.833 \left[\frac{(q_{c1N})_{cs}}{1000} \right] + 0.05$$

per 50 \le (q_{c1N})_{cs} < 160
$$CRR_{7.5} = 93 \left[\frac{(q_{c1N})_{cs}}{1000} \right]^3 + 0.08$$

In Figura 15, la resistenza alla punta q_c è normalizzata rispetto al valore di pressione atmosferica (p_a = 100 kPa) e corretta (q_{c1N}) mediante la seguente relazione:

$$q_{c1N} = (q_c/P_a) (P_a/\sigma'_{v0})^n$$

dove σ'_{v0} è la tensione verticale efficace alla profondità in e l'esponente "n" varia da 0.5 per i materiali a grana grossa a 1 per i materiali a grana fine.

La natura dei materiali ed il relativo valore dell'esponente "n" sono determinati con procedura iterativa in relazione al valore del parametro I_c, indice del tipo di terreno, determinato come:

$$I_c = [(3.47 - \log Q)^2 + (1.22 + \log F)^2]^{0.5}$$

dove:

$$Q = \left(\frac{q_c - \sigma_{vo}}{P_a}\right) \cdot \left(\frac{P_a}{\sigma'_{vo}}\right)^n$$

$$F = \frac{f_s}{q_c - \sigma_{vo}} x 100$$

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due GRUPPO FERROVIE DELLO STATO ITALIANE

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 77748

Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
			_
IN17	12	EI2RBRI64C0001A	33 di 138

Tanto maggiore è il valore di Ic, tanto maggiore sarà il contenuto presunto di fini. Nell'analisi condotta il valore Ic = 2.6 è stato considerato lo spartiacque tra terreni con contenuto di fine inferiore a 35% e comportamento assimilabile a quello delle sabbie e terreni con contenuto di fine superiore al 35% e comportamento più simile a quello delle argille. Nel primo caso l'esponente n nella formula con cui viene determinato il parametro Q è pari a 0.5, nel secondo è pari a 1. Come detto, i valori effettivi di n e lo sono determinati al termine di una procedura iterativa, ipotizzando in prima istanza n = 1. Se l₀ così calcolato è superiore a 2.6, il risultato è consolidato. In caso contrario, il calcolo viene ripetuto ipotizzando n = 0.5. Se in questo secondo calcolo I_c è ancora inferiore a 2.6, i nuovi valori di n e I_c sono confermati. In caso contrario si è in presenza di terreni intermedi e il calcolo finale viene svolto con n = 0.75.

Il valore della resistenza penetrometrica normalizzata q_{c1N} è stato riportato ad un valore equivalente per le sabbie pulite attraverso la seguente relazione:

$$q_{c1Ncs} = q_{c1N} \cdot k_c$$

dove K_c è definito dalle seguenti equazioni (Robertson & Wride, 1998):

for
$$Ic \le 1.64$$
 $K_c = 1.0$

for
$$Ic > 1.64$$
 $K_c = -0.403(I_c)^4 + 5.581(I_c)^3 - 21.63(I_c)^2 + 33.75(I_c) - 17.88$

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA 17AL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	34 di 138

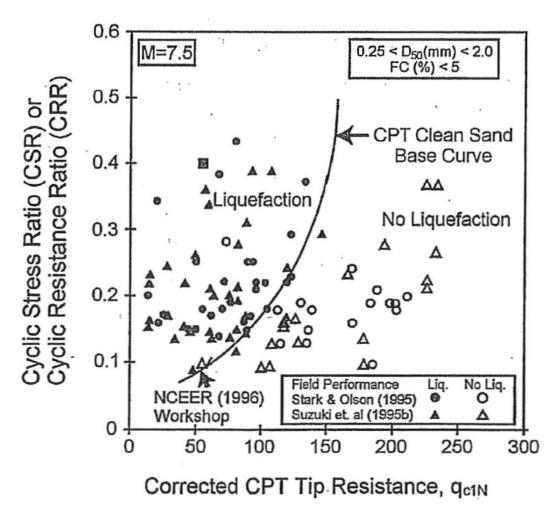


Figura 15: Relazione tra sforzo di taglio ciclico a liquefazione e valori corretti di resistenza alla punta qc1N – sisma di riferimento Magnitudo = 7.5 (Robertson & Wride, 1998)

5.2.2 CRR da correlazione su prove SPT

Il procedimento utilizzato per la stima di CRR a partire dai risultati di prove SPT si basa sulla relazione riportata in Figura 16, originariamente proposta da Seed e Idriss (1971,1982) e da Seed et al. (1985), e successivamente confermata da Youd et al. (2001).

In Figura 16, i risultati delle prove SPT sono espressi in termini di numero di colpi corretti N₁₍₆₀₎, ossia i valori sono normalizzati per una pressione verticale efficace pari a 100 kPa e corretti per un valore standard di energia trasmessa (60% del valore nominale) come segue:

$$(N_1)_{60} = N_{SPT}C_NC_EC_BC_RC_S$$

dove:

 C_N = coefficiente correttivo che tiene conto dell'influenza della pressione verticale efficace. In letteratura sono presenti diversi metodi per la valutazione del coefficiente correttivo C_N . Qui è stata applicata la seguente relazione

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric-AV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio IN17 12 EI2RBRI64C0001A 35 di 138

proposta da Liao e Whitman (1986):

$$C_N = \left(\frac{P_a}{\sigma'_{vo}}\right)^{0.5} \le 1.7$$

in cui P_a è la pressione atmosferica, pari a 100kPa, e σ'_{v0} è la tensione verticale in sito, in termini di sforzi efficaci.

C_E = coefficiente correttivo che va a considerare il rendimento energetico dell'attrezzatura e riconduce le misure ad un rendimento energetico del 60 % e può essere valutato nel modo seguente:

$$C_E = \frac{ER_m}{60}$$

in cui ER_m è il fattore di rendimento (espresso in %) del trasferimento dell'energia del maglio all'attrezzo campionatore, relativo alla macchina utilizzata per fare la prova; considerando che la configurazione di prova normalmente adoperata in Italia ha un rendimento energetico del 60 %, tale coefficiente è stato posto pari ad 1.

I coefficienti C_B (fattore correttivo per le dimensioni del foro di sondaggio), C_R (fattore correttivo per la lunghezza delle aste della macchina esecutrice) e C_S (fattore correttivo per il tipo di attrezzo campionatore) sono stati assunti pari ad 1 dato che le prove sono state eseguite sulla base delle raccomandazioni fornite dall'AGI (1977).

Sempre in Figura 16, viene riportato il valore di CSR calcolato ed i corrispondenti valori di $N_{1(60)}$ da siti in cui sono stati osservati o meno gli effetti della liquefazione per eventi simici avvenuti in passato, con Magnitudo pari M =7.5. Le corrispondenti curve CRR sono state determinate all'interno del grafico in modo da separare chiaramente i dati corrispondenti all'avvenuta liquefazione da quelli per i quali non è stato osservato il fenomeno in esame.

Le curve sono valide per eventi simici di Magnitudo pari a 7.5, per cui è necessario introdurre un fattore di scala (MSF) per adattare le curve di CRR alla magnitudo di riferimento per il caso in esame, come indicato in precedenza.

Si può osservare dalla Figura 16 come curve diverse siano state sviluppate per terreni aventi diverso contenuto di fini, a partire dalla curva di riferimento corrispondente alla sabbia pulita (FC< 5%).

La curva di riferimento per sabbie pulite è descritta dalla seguente equazione (Rauch, 1998, come riportato da Youd et al., 2001)

$$CRR_{7.5} = \frac{1}{34 - \left(N_{1}\right)_{60}} + \frac{\left(N_{1}\right)_{60}}{135} + \frac{50}{\left[10 \cdot \left(N_{1}\right)_{60} + 45\right]^{2}} - \frac{1}{200}$$

L'equazione è valida per $N_{1(60)}$ < 30. Nel caso in cui sia $N_{1(60)} \ge 30$, le sabbie pulite sono classificate come non liquefacibili, a causa della loro elevata densità.

L'equazione che segue (Idriss e Seed, come riportato da Youd et al. 2001) viene utilizzata per la correzione di valori di $N_{1(60)}$ ai valori corrispondenti per sabbia pulita $N_{1(60)cs}$:

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 77748

Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI64C0001A	36 di 138

$$(N_1)_{60cs} = \alpha + \beta \cdot (N_1)_{60}$$

In cui:

$$\alpha$$
 = 0 per FC < 5%

$$\alpha$$
 = exp [1.76 – (190/FC2)] per 5% < FC < 35%

$$\alpha$$
 = 5 per FC \geq 35%

$$\beta$$
 = 1 per FC < 5%

$$\beta$$
 = [0.99 + (FC1.5/1000)] per 5% < FC < 35%

$$β$$
 = 1.2 per FC \ge 35%

La resistenza alla liquefazione aumenta meno che proporzionalmente al crescere della tensione di confinamento. Una rappresentazione di tale relazione è stata proposta da Hynes e Olsen (1999) e riportata da Youd et al. (2001), elaborata sulla base dei risultati di prove cicliche in laboratorio. In particolare gli autori raccomandano di utilizzare il seguente coefficiente di correzione:

$$k_{\sigma} = \left(\frac{\sigma_{v0}}{p_a}\right)^{(f-1)} \le 1$$

dove:

 σ'_{v0} = tensione verticale efficace

= pressione atmosferica di riferimento pa

= fattore che dipende dalla densità relative del materiale in sito. f

In accordo a Youd et al. (2001) il fattore "f" si può stimare come segue, sia per sabbie pulite o limose e per ghiaie:

40% < DR <60% $f = 0.7 \div 0.8$

60% < DR <80% $f = 0.6 \div 0.7$

Quando possibile, il contenuto di fini è stato determinato sulla base dei risultati delle rispettive granulometrie ottenute da laboratorio per ogni prova SPT. Nel caso quest'ultime non erano disponibili, facendo riferimento alla stratigrafia locale, si è ipotizzato un valore di contenuto di fini pari al 5% per i materiali sabbioso/ghiaiosi, mentre per i terreni limosi/argillosi è stato ipotizzato un contenuto di fini pari al 30-40%.

Pertanto, in accordo a Youd et al. (2001):

FL = (CRR_{7.5}/CSR) MSF
$$k_{\sigma}$$

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	37 di 138

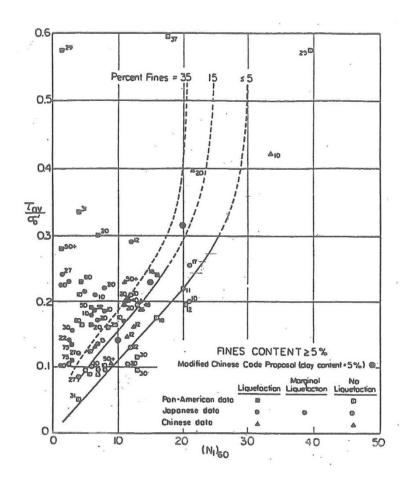


Figura 16: Relazione tra sforzo di taglio ciclico a liquefazione e $N_{1(60)}$ – sisma di riferimento Magnitudo = 7.5 (Seed et al., 1985).

5.3 Risultati delle verifiche a liquefazione

I risultati (cfr. Figure da 17 a 20) indicano come non si evidenzino rischi di potenziale liquefazione nella porzione di tracciato interessata dal rilevato RI64CA, in linea con gli stati di addensamento e le granulometrie descritte in precedenza.

In sostanza, i pochi livelli che potrebbero liquefare sotto il sisma di progetto rimangono generalmente circoscritti a livelli di spessore esiguo, posti in profondità, e che pertanto possono generare cedimenti di superficie nella fase di post-sisma, che possono facilmente essere recuperati da operazioni di ri-livellamento.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto IN17	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 38 di 138

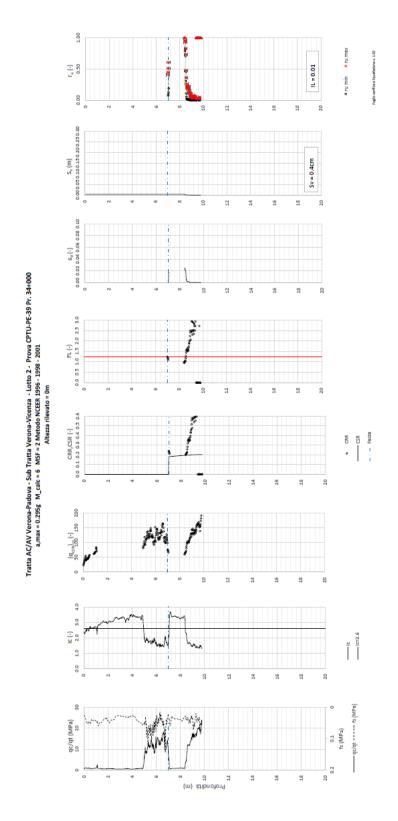


Figura 17 – Verifica Liquefazione da risultati CPTU PE 39

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	39 di 138

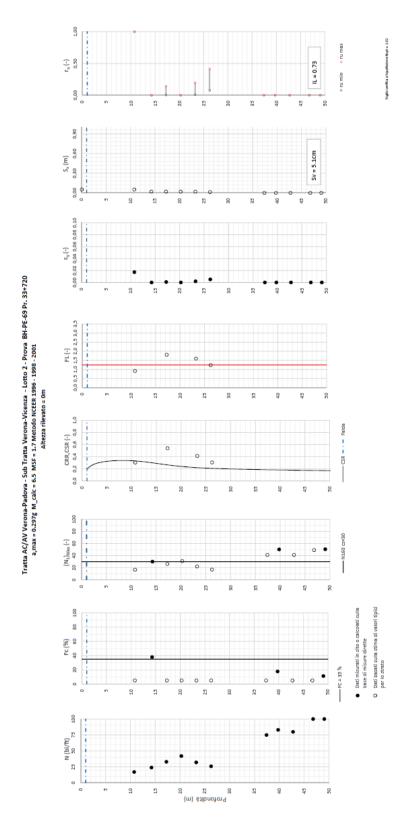


Figura 18 – Verifica Liquefazione da risultati BH PE 69

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	40 di 138

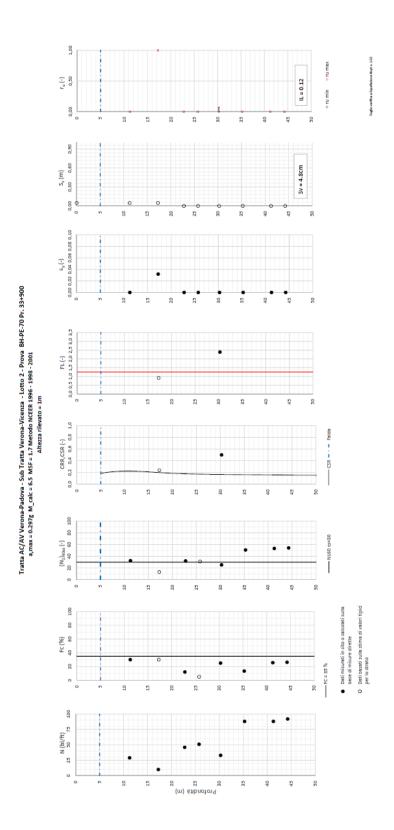


Figura 19 – Verifica Liquefazione da risultati BH PE 70

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA 	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto IN17	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 41 di 138

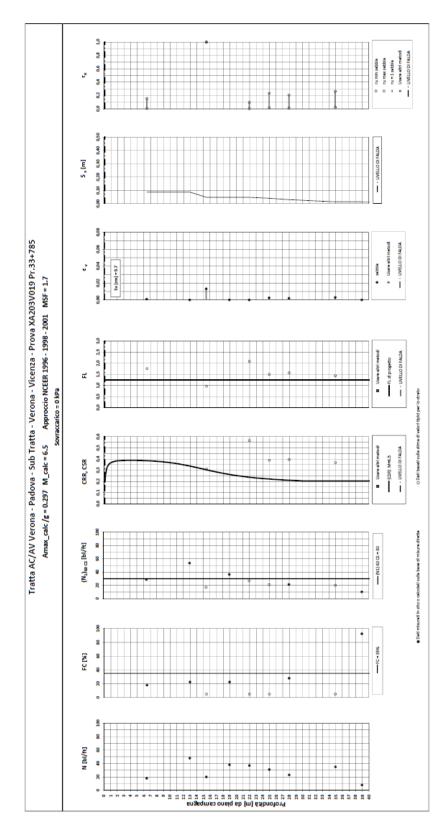


Figura 20 – Verifica Liquefazione da risultati XA203V019

GENERAL CONTRACTOR Consorzio Iric/IV Due Consorzio Iric/IV Due Consorzio Iric/IV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio 1N17 12 EI2RBRI64C0001A 42 di 138

6 VERIFICA GEOTECNICA DEL RILEVATO

6.1 Criteri di verifica agli Stati Limite

Per le opere in esame, la normativa applicata richiede l'esecuzione delle seguenti verifiche di sicurezza e delle prestazioni attese (par. 6.2.3. del Doc. Rif. [18]):

- Verifiche agli Stati Limite Ultimi (SLU);
- Verifiche agli Stati Limite d'Esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif. [18])

dove:

E_d valore di progetto dell'azione o dell'effetto dell'azione;

R_d valore di progetto della resistenza.

La verifica della condizione $E_d \le R_d$ deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3). I coefficienti da adottarsi nelle diverse combinazioni sono definiti in funzione del tipo di verifica da effettuare (si vedano i paragrafi seguenti). Si sottolinea che per quanto concerne le azioni di progetto E_d tali forze possono essere determinate applicando i coefficienti parziali di cui sopra alle azioni caratteristiche oppure, a posteriori, sulle sollecitazioni prodotte dalle azioni caratteristiche (Par. 6.2.3.1 del Doc. Rif. [18]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$ (Eq. 6.2.7 del Doc. Rif. [18])

dove:

Ed valore di progetto dell'effetto dell'azione;

C_d valore limite prescritto dell'effetto delle azioni (definito Progettista Strutturale).

La verifica della condizione $E_d \le C_d$ deve essere effettuata impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali.

In base a quanto indicato dalle NTC 2008 le verifiche di sicurezza che devono essere condotte per opere costituite da materiali sciolti sono le seguenti.

6.1.1 Stati limite ultimi (SLU)

Le verifiche di stabilità in campo statico di opere in materiali sciolti, quali rilevati, devono essere eseguite secondo l'Approccio 1 Combinazione 2 (A2 + M2 + R2, Doc. Rif. [18]), tenendo conto dei coefficienti parziali sotto definiti. La verifica di stabilità globale si ritiene soddisfatta se:

$$\frac{R_d}{E_d} \ge 1 \Rightarrow \frac{\frac{1}{\gamma_R} \cdot R}{E_d} \ge 1 \Rightarrow \frac{R}{E_d} \ge \gamma_R$$

essendo R resistenza globale del sistema (vedasi Par. C.6.8.6.2 del Doc. Rif. [18]), calcolata sulla base delle azioni

di progetto, dei parametri di progetto e della geometria di progetto $R = R \left[\gamma_F \cdot F_k; \frac{X_k}{\gamma_m}; a_d \right]$.

La stabilità globale dell'insieme manufatto-terreno deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive ed al termine della costruzione.

Facendo riferimento a quanto richiesto dalle NTC (Doc. rif. [18]), per le verifiche agli stati limite ultimi si sono adottati i valori dei coefficienti parziali riportati nelle tabelle che seguono.

Tabella 6 – Coefficienti parziali sulle azioni

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_F (o \gamma_E)$	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	.,	0,9	1,0	1,0
remanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	.,	0,0	0,0	0,0
remanenti non strutturan	Sfavorevole	$\gamma_{ m G2}$	1,5	1,5	1,3
Variabili	Favorevole	.,	0,0	0,0	0,0
v arraom	Sfavorevole	$\gamma_{ m Qi}$	1,5	1,5	1,3

dove:

γ_{G1} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua,

quando pertinente;

γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

γ_Q coefficiente parziale delle azioni variabili da traffico;

γ_{Qi} coefficiente parziale delle azioni variabili.

Tabella 7 – Coefficienti parziali sui terreni (Tab. 6.2.II, Doc. Rif. [18])

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γ_{M}		
Tangente dell'angolo di	tan φ′ _k	$\gamma_{\phi'}$	1,0	1,25
resistenza al taglio				
Coesione efficace	c′ _k	γ _{c′}	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 8 - Coefficienti parziali per verifiche di stabilità globale - SLU

Coefficiente	R2
$\gamma_{ m R}$	1.1

6.1.2 Stati limite di esercizio (SLE)

Deve essere verificato, mediante analisi effettuate impiegando i valori caratteristici delle azioni e dei parametri geotecnici dei materiali (Par. 6.5.3.2 del Doc. Rif. [18]), che gli spostamenti dell'opera in esame e del terreno circostante siano compatibili con la funzionalità della struttura e con la sicurezza e la funzionalità di manufatti adiacenti.

In particolare, successivamente al completamento del piano di posa del ballast, e fino alla fine della vita utile dell'opera (100 anni) i cedimenti residui devono essere inferiori a 5 cm.

Nel caso di rilevato da realizzarsi in affiancamento ad un rilevato esistente e mantenendo quest'ultimo in esercizio durante i lavori, si richiede che una stima del cedimento delle due rotaie in una stessa sezione verticale del rilevato, valutandone il decorso nel tempo. Inoltre, con riferimento alla tabella che segue, è necessario verificare che gli spostamenti indotti sui binari in esercizio durante la costruzione siano inferiori a 15 mm, ovvero inferiori ai valori limite dei difetti riferiti al secondo livello di qualità (Doc. rif. [23] e [27]). Laddove si superino i limiti riferiti al primo livello di qualità (10 mm, Doc. rif. [27]), è richiesto il monitoraggio del binario durante la costruzione.

Tabella 9 – Valori limite dei difetti in direzione trasversale (in mm)

	V ≤ 160 km/h	$160 < V \le 300 \text{ km/h}$
1° livello di qualità	$\Delta H \le 10$ SCARTXL ≤ 6	$\Delta H \le 10$ SCARTXL ≤ 4
2º livello di qualità	10 < ΔH ≤ 15 6 < SCARTXL ≤ 10	10 < ΔH ≤ 15 4 < SCARTXL ≤ 8
3º livello di qualità esecuzione a breve termine anche in rela- zione ai limiti di sghembo (2)	$15 < \Delta H \le 20 (1)$ $10 < SCARTXL \le 14$	$15 < \Delta H \le 20 (1)$ $8 < SCARTXL \le 12$

⁽¹⁾ il valore di ΔH può essere ammesso solo a seguito di una verifica di assenza di problemi di sagoma (gallerie, interasse, posizione linea di contatto ecc.)

6.1.3 Verifiche in condizioni sismiche e post-sismiche

La stabilità globale in condizioni sismiche e post-sismiche di opere in materiali sciolti, quali rilevati, è stata verificata secondo l'Approccio 1 – Combinazione 2 (A2 + M2 + R2), tenendo conto dei coefficienti parziali richiamati in precedenza e ponendo i coefficienti parziali sulle azioni tutti pari ad uno. Il coefficiente di combinazione ψ per il carico variabile da traffico è stato posto pari a 0.2 (Doc. rif. [23]).

6.2 Azioni di progetto

Le azioni di progetto considerate nella analisi sono state definite coerentemente a quanto prescritto nel MdP (Doc. rif. [22]) e nelle NTC (Doc. rif. [18]) e sono di seguito descritte.

⁽²⁾ ATTENZIONE al rispetto delle condizioni di lavorabilità del binario previste dalla Norma sulla l.r.s.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RITA SORVEGLIANZA Progetto Lotto Codifica Foglio 1N17 12 EI2RBRI64C0001A 45 di 138

6.2.1 Azioni permanenti

In funzione della configurazione esaminata e della presenza o meno di elementi strutturali, i carichi permanenti sono stati calcolati assumendo:

Peso massicciata e armamento 18 kN/m³
 Peso elementi in cls 25 kN/m³

In particolare, il peso della sovrastruttura ferroviaria è stato applicato sull'impronta del ballast, per un'altezza media fra il piano del ferro e l'estradosso del sub-ballast pari a 0.80 m.

6.2.2 Azioni variabili

Le azioni variabili sono rappresentate dai carichi da traffico ferroviario, valutati nel rispetto delle normative di riferimento e considerando il caso peggiore tra i tre modelli di carico previsti: LM71, SW/0 ed SW/2. Per ogni binario, tale azione risulta essere pari a 61.4 kPa (LM71) ed applicata su una superficie definita dalla larghezza della traversa e dalla larghezza di diffusione del carico nel ballast (2.8 m in totale).

6.2.3 Azione sismica

L'azione sismica di progetto è stata definita sulla base della pericolosità sismica di base ed in considerazione di quanto discusso nel capitolo 5. Nelle analisi essa è stata definita adottando un'azione statica equivalente definita dal prodotto tra il peso W del volume di terreno potenzialmente instabile ed i coefficienti sismici orizzontale (kh) e verticale (kv):

$$k_{\rm h} = \beta_s \cdot \frac{a_{\rm max}}{g}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$

dove

β_s coefficiente di riduzione dell'accelerazione massima attesa (v. Tabella 10)

a_{max} accelerazione orizzontale massima attesa al sito (v. capitolo 5.1.6)

g accelerazione di gravità.

Tabella 10 - Coefficienti di riduzione dell'accelerazione massima attesa al sito (Doc. rif.[18])

	Categoria di sottosuolo		
	A B, C, D, E		
	$oldsymbol{eta_{ m s}}$	$oldsymbol{eta_{ m s}}$	
$0.2 < a_{\rm g}(g) \le 0.4$	0,30	0,28	
$0.1 < a_{\rm g}(g) \le 0.2$	0,27	0,24	
$a_{\rm g}(g) \leq 0,1$	0,20	0,20	

6.3 Verifiche e risultati SLU

6.3.1 Premessa

Le verifiche SLU della stabilità globale del rilevato (sia in condizioni statiche che sismiche) sono state condotte tramite il codice di calcolo SLIDE 9 (Doc. Rif. [37]). Le combinazioni di carico adottate nelle analisi fanno riferimento rispettivamente ai coefficienti parziali (A2+M2) per le analisi in campo statico e ai coefficienti parziali (M2) per le analisi sismiche. Tali coefficienti sono contenuti nella Tabella 7 della presente relazione.

Come da NTC 2008 (Doc. Rif. [18]), la verifica SLU di stabilità globale è soddisfatta se è verificata, sia in condizioni statiche che sismiche, la relazione seguente:

La verifica è stata condotta con riferimento alla già citate sezioni di riferimento in condizioni non drenate in relazione ai litotipi presenti. La verifica è stata condotta facendo ricorso al metodo di Bishop modificato. Nel calcolo sono stati utilizzati i parametri geotecnici caratteristici definiti in Tabella 2.

6.3.2 Verifiche SLU in condizione statiche

Il carico da traffico ferroviario (q), assunto pari a 61.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è di tipo variabile/sfavorevole pertanto, in accordo al coefficiente parziale sulle azioni A2 riportato e pari a 1.3.

Per la falda si è considerata la condizione di lungo termine come da punto 0. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 21 e Figura 22 sono riportate le superfici di rottura critiche per la combinazione DA1C2 delle 2 sezioni di calcolo; il fattore di sicurezza FS per ciascuna sezione relativo a tali meccanismi è pari a:

Sezione	FS (DA1C2)
16	1.350
43	1.208

Essendo soddisfatta in tutti i casi la relazione:

FS_{MIN}≥R2=1.1,

le verifiche di stabilità globale in campo statico risultano soddisfatte.

6.3.3 Verifiche SLU in condizioni sismiche

In accordo a quanto riportato precedentemente, la azione sismica è stata definita attraverso i seguenti coefficienti sismici:

K_H= + 0.083 (concorde alla direzione di scivolamento)

 $K_V = \pm 0.042$ (positivo sisma verso il basso)

Il carico da traffico ferroviario (q), assunto pari a 61.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza delle impronte delle traversine ferroviarie. Tale sovraccarico è stato inserito nei calcoli col proprio valore caratteristico in accordo a quanto specificato dalle NTC 2008 (vedasi Par.7.11.1 del Doc. Rif. [18]). Seguendo le prescrizioni desunte dal MdP (Doc. rif. [23]), in condizioni sismiche si applica il coefficiente di combinazione ψ per il carico variabile da traffico ferroviario pari a 0,2.

La quota della falda è stata assunta come la media delle letture disponibili come riportato al punto 4.4.2. Si sottolinea che nella ricerca delle superfici di rottura critiche sono state escluse tutte quelle superfici di spessore ridotto e che non interessano la sede ferroviaria.

In Figura 23 e Figura 24 sono riportate le superfici di rottura critiche delle 2 sezioni di calcolo facendo riferimento alla situazione più gravosa, il fattore di sicurezza FS per ciascuna sezione relativo a tali meccanismi è pari a:

Sezione	FS (sismica)
16	1.117
43	1.116

Essendo soddisfatta in tutti i casi la relazione:

FS_{MIN}≥R2=1.1.

le verifiche di stabilità globale in campo sismico risultano soddisfatte.

Si rimarca che le verifiche di stabilità non vengono soddisfatte per valori dell'angolo di resistenza al taglio del materiale costituente il rilevato pari a 38°, come riportato in Figura 25. Anche le altre sezioni esaminate hanno evidenziato la stessa problematica, che non dipende dalla natura del terreno di fondazione, come evidenziato dalla presenza di superfici di rottura che attraversano il corpo del rilevato. Pertanto, al fine di soddisfare le verifiche di stabilità in campo sismico, si richiede che il materiale costituente il nuovo rilevato sia caratterizzato da un angolo di resistenza al taglio \geq 40° (ad esempio usualmente assicurati da materiali tipo A1), ovvero valori di c' e φ ' (nel caso, ad esempio, di materiali del tipo A2-4) che forniscano resistenze al taglio equivalenti.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITALI FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	48 di 138

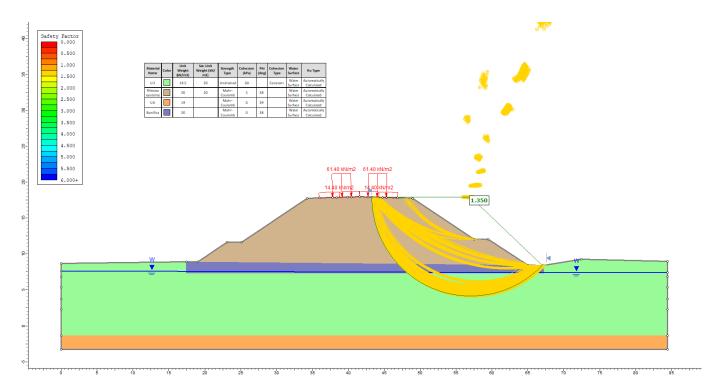


Figura 21 - Rilevato sezione n° 16 pk 183+126 - Analisi SLU in campo statico DA1C2

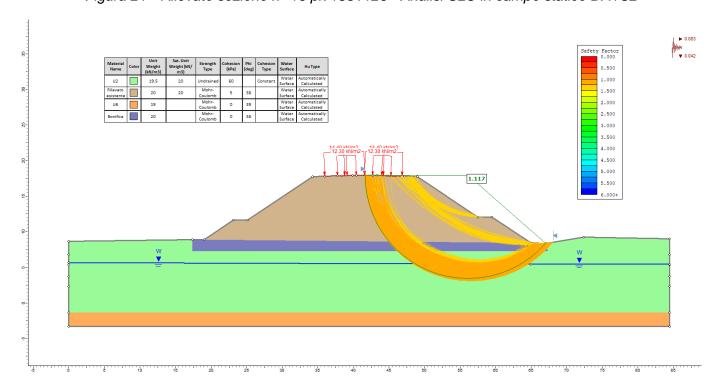


Figura 22 - Rilevato sezione n° 16 pk 183+126 - Analisi SLU in campo sismico

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Proporto Lotto Codifico E			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 49 di 138

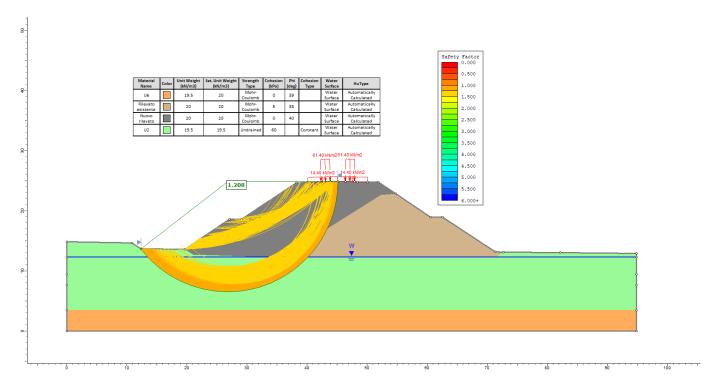


Figura 23 - Rilevato sezione n° 43 pk 183+703 - Analisi SLU in campo statico DA1C2

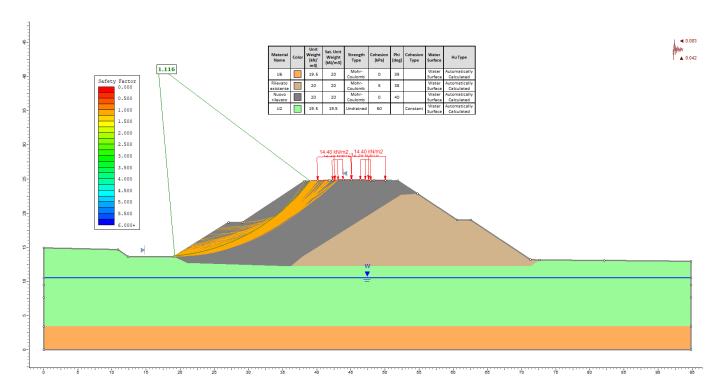


Figura 24 - Rilevato sezione n° 43 pk 183+703 - Analisi SLU in sismico

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	50 di 138

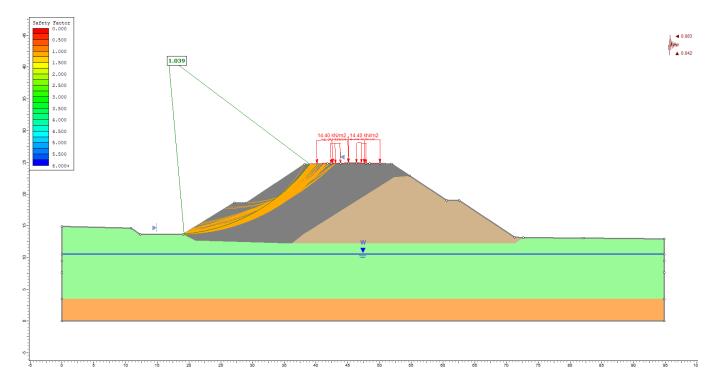


Figura 25 - Rilevato sezione n° 43 pk 183+703 - Analisi SLU in sismico con φ' ril = 38°

6.4 Verifica e risultati SLE

La determinazione del campo di spostamenti è stata svolta mediante l'utilizzo del codice di calcolo SETTLE 3D (Doc. Rif. [38]) che permette di valutare l'andamento dei cedimenti nel tempo sotto diverse ipotesi di carico. Il programma discretizza l'area analizzata in un numero finito di aree di carico e valuta gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti. A partire dagli incrementi tensionali vengono poi calcolati i cedimenti.

La valutazione dell'incremento dello stato tensionale indotto nel terreno dai carichi applicati viene condotta all'interno del codice di calcolo con riferimento a soluzioni basate sulle seguenti ipotesi semplificative:

- il terreno è schematizzato come un semispazio elastico lineare, omogeneo ed isotropo (modello di Boussinesq);
- l'area di carico è posta sulla superficie del semispazio ed è ipotizzata avere rigidezza nulla.

Per una generica condizione di carico viene quindi eseguita una discretizzazione in un numero finito di aree di carico sulle quali è applicata una pressione uniforme o variabile linearmente.

Per ogni direttrice di calcolo del cedimento vengono valutati gli incrementi di tensione indotti da ogni singola area di carico componendo poi gli effetti.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Codifico				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto IN17	Lotto	Codifica	Foglio	
Relazione Geotecnica		12	EI2RBRI64C0001A	51 di 138	

Il calcolo dell'incremento delle tensioni normali indotte da un'area di carico nastriforme, soggetta a un carico uniformemente distribuito (parte centrale del rilevato), viene eseguita sulla base delle formule di Jumikis (1971).

$$\begin{split} &\Delta\sigma_z = \frac{q}{\pi} \cdot \left[\tan^{-1}\!\!\left(\frac{x+B}{z}\right) - \tan^{-1}\!\!\left(\frac{x-B}{z}\right) - \frac{z\cdot(x-B)}{(x-B)^2 + z^2} + \frac{z\cdot(x+B)}{(x+B)^2 + z^2} \right] \\ &\Delta\sigma_x = \frac{q}{\pi} \cdot \left[\tan^{-1}\!\!\left(\frac{x+B}{z}\right) - \tan^{-1}\!\!\left(\frac{x-B}{z}\right) + \frac{z\cdot(x-B)}{(x-B)^2 + z^2} - \frac{z\cdot(x+B)}{(x+B)^2 + z^2} \right] \\ &\Delta\sigma_y = \upsilon\cdot\left(\Delta\sigma_z + \Delta\sigma_x\right) \end{split}$$

dove:

 $\Delta\sigma$ z, $\Delta\sigma$ x, $\Delta\sigma$ y = incremento delle tensioni normali verticali e orizzontali

q = carico applicato

u = coefficiente di Poisson

B = semilarghezza dell'area di carico in direzione x

x, y, z = coordinate geometriche di riferimento come indicato nella figura seguente.

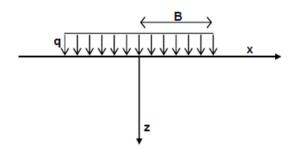


Figura 26 – Modello di calcolo Settle 3D – carico uniforme

Nel caso di un'area di carico nastriforme soggetta a un carico linearmente crescente (bordo del rilevato), le formule di Jumikis da applicare sono le seguenti:

GENERAL CONTRACTOR Consorzio Iric/W Due Consorzio Iric/W Due Consorzio Iric/W Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica RIN17 RIPUTAL FERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto IN17 12 EI2RBRI64C0001A 52 di 138

$$\begin{split} & \Delta\sigma_z = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_x = \frac{q}{\pi \cdot A} \cdot \left[(x - A) \cdot \left(tan^{-1} \left(\frac{x - A}{z} \right) - tan^{-1} \left(\frac{x}{z} \right) \right) + z \cdot ln \left(\frac{x^2 + z^2}{(x - A)^2 + z^2} \right) - \frac{A \cdot z \cdot x}{x^2 + z^2} \right] \\ & \Delta\sigma_y = \upsilon \cdot \left(\Delta\sigma_z + \Delta\sigma_x \right) \end{split}$$

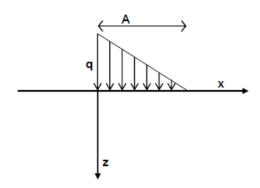


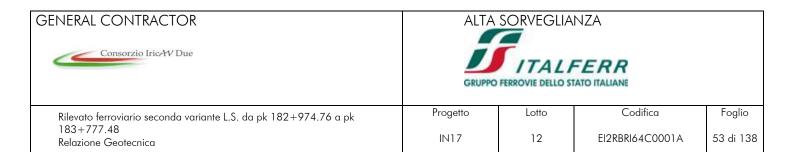
Figura 27 - Modello di calcolo Settle 3D – carico linearmente crescente

Il calcolo della deformazione verticale per ogni singolo sublayer viene valutato sulla base dell'incremento di sforzo verticale, utilizzando la seguente espressione:

$$\varepsilon_z = \frac{\Delta \sigma_z}{E}$$

Il cedimento verticale totale viene quindi calcolato come sommatoria dei cedimenti dei diversi strati.

Il calcolo dei cedimenti indotti dalla realizzazione del rilevato ferroviario è stato svolto modellando la successione stratigrafica in sito tenendo conto delle diverse caratteristiche di deformabilità degli strati, in accordo alla stratigrafia di progetto riportata in Tabella 2. Si sono assunti i valori caratteristici sia sulle azioni che sui materiali.


Si osserva come, in accordo con la stratigrafia e i parametri di progetto riportati nel Capitolo 4, i moduli elastici risultano di fatto indipendenti dallo stato tensionale ed il valore della quota della falda non ha alcuna influenza sull'esito del calcolo. Pertanto, nel calcolo la falda è stata rappresentata ad una quota convenzionale praticamente coincidente con il p.c.

Nell'ambito delle verifiche agli Stati Limite d'Esercizio, dev'essere verificata la seguente diseguaglianza:

$$E_d \le C_d$$
 (Eq. 6.2.7 del Doc. Rif. [18])

dove

 E_d è il valore di progetto dell'effetto dell'azione, e C_d è il valore limite prescritto dell'effetto delle azioni.

Sulla base di quanto riportato sopra, le verifiche geotecniche sono pertanto volte ad identificare un campo di spostamenti/cedimenti.

La verifica è stata condotta con riferimento alle seguente sezione:

• sezione n.43 - pk 183+703 illustrata in Figura 2.

Il modello di calcolo implementato per la sezione analizzata è riportato nelle seguenti Figura 28, Figura 29 e Figura 30. La larghezza del rilevato esistente (porzione rimanente) è pari a circa 35 m, quella del rilevato in affiancamento di circa 17 m. La pendenza delle scarpate è nel rapporto 2V:3H. Nel calcolo sono stati utilizzati i parametri geotecnici definiti in Tabella 2.

Il carico dato dal completamento della linea ferroviaria, assunto pari a 14.4 kPa, è stato modellato come un carico distribuito applicato in corrispondenza dell'impronta del rilevato ferroviario.

In considerazione dell'assetto stratigrafico dell'area interessata dalla realizzazione dell'opera in oggetto (presenza di terreni coesivi in prossimità del p.c.) la stima dei cedimenti, per i materiali dell'Unità 2, è stata condotta facendo riferimento ai parametri di compressibilità ricavati dalle prove edometriche. Trattandosi inoltre di materiali sovraconsolidati, in accordo alle indicazioni di letteratura, è stato assunto che il cedimento edometrico rappresenti una stima attendibile del cedimento totale. Infine, per valutare adeguatamente il decorso dei cedimenti nel tempo, nelle analisi è stato assunto un coefficiente di consolidazione $Cv = 5 \cdot 10^{-7}$ m²/s e presa in conto la seguente storia dei carichi:

- realizzazione del rilevato storico esistente,
- attesa dell'esaurimento dei cedimenti indotti,
- risagomatura del rilevato esistente,
- realizzazione del nuovo rilevato in allargamento a quello esistente suddivisa in 5 fasi (durata 4 mesi),
- posa in opera del ballast e dell'armamento ferroviario (inizio della presente fase dopo 12 mesi da inizio costruzione),
- fine fase di posa in opera del ballast e dell'armamento ferroviario (circa 14 mesi da inizio costruzione),
- attesa esaurimento dei cedimenti nel tempo.

Il decorso dei cedimenti nel tempo in corrispondenza degli assi dei due binari della linea LS di nuova costruzione è riportato nelle Figura 31 e Figura 32.

In Figura 33 è riportato l'andamento dei cedimenti trasversalmente alla sezione dell'opera. Le curve mostrano l'andamento dei cedimenti stimato allo step di carico corrispondente alla fine della posa del ballast/armamento e allo step corrispondente al termine del processo di consolidazione. Nella figura è anche indicata la posizione degli assi dei binari della linea ferroviaria.

Risulta quanto segue:

o i cedimenti totali in corrispondenza degli assi dei due binari sono pari a 198 mm e 175 mm

ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Progetto	Lotto	Codifica	Foglio 54 di 138	
	GRUPPO	Progetto Lotto	Progetto Lotto Codifica	

o il differenziale tra la stima del cedimento dopo due mesi dalla posa del ballast e quella al termine del processo di consolidazione è rispettivamente pari a 30 mm e 38 mm sui due assi

In relazione ai risultati ottenuti e presentati nelle figure citate, si osserva quanto segue:

- i cedimenti sono calcolati con un modello che non considera la deformabilità del continuo. In sostanza, ogni
 verticale può cedere in modo differente dalla verticale addicente, senza rispettare la congruenza. Ne deriva
 un calcolo dei cedimenti differenziali amplificato rispetto al reale, ove il continuo interviene a smorzare le
 disuniformità di carico (e di cedimento), con la sua rigidezza;
- il rilevato è simulato come un carico di superficie, privo di massa. Nella valutazione del cedimento, si è
 considerato il punto sulla verticale dei binari posti a piano campagna. Il cedimento sulla sommità del rilevato
 sarà tendenzialmente inferiore rispetto a quello qui calcolato, n quanto il rilevato tenderà ad opporsi a tale
 cedimento con la sua rigidezza.
- Nel calcolo della velocità di cedimento, non si è considerata la componente di drenaggio orizzontale, che qui
 giuocherà un ruolo non trascurabile, considerata la limitata estensione del carico. Ne deriva che il il
 cedimento sarà più veloce di quello qui calcolato, con una diminuzione del cedimento in esercizio rispetto a
 quanto qui calcolato.
- Si noti che il modello considera un cedimento negativo (rigonfiamento), nella parte ove il carico verrà rimosso.

Considerato quanto sopra discusso, la verifica SLE è quindi da considerarsi soddisfatta.

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Proporto Lotto Codifico E			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	55 di 138

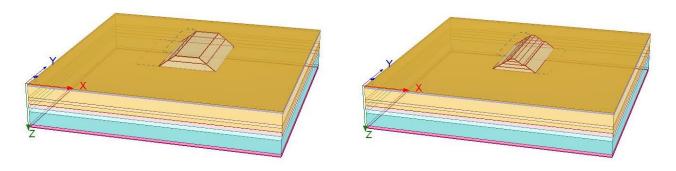


Figura 28 - Rilevato sez n° 43 - pk 183+703- Analisi SLE – Modello di calcolo – Rilevato esistente e porzione del rilevato rimanente dopo la risagomatura

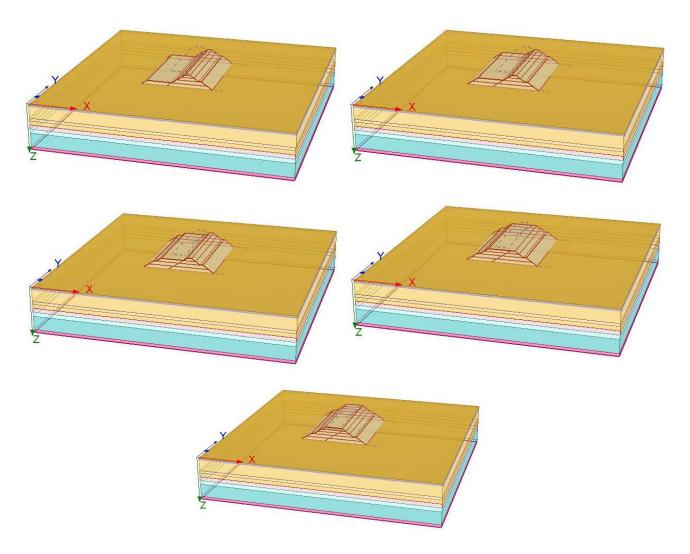


Figura 29 - Rilevato sez n° 43 - pk 183+703- Analisi SLE – Modello di calcolo – Costruzione rilevato nuovo in affiancamento al rilevato esistente risagomato – costruzione in 5 fasi

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO ST	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	56 di 138

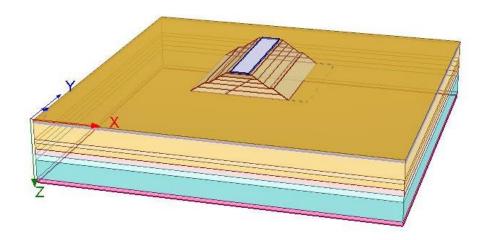


Figura 30 - Rilevato sez n° 43 - pk 183+703- Analisi SLE – Modello di calcolo – Posa Ballast

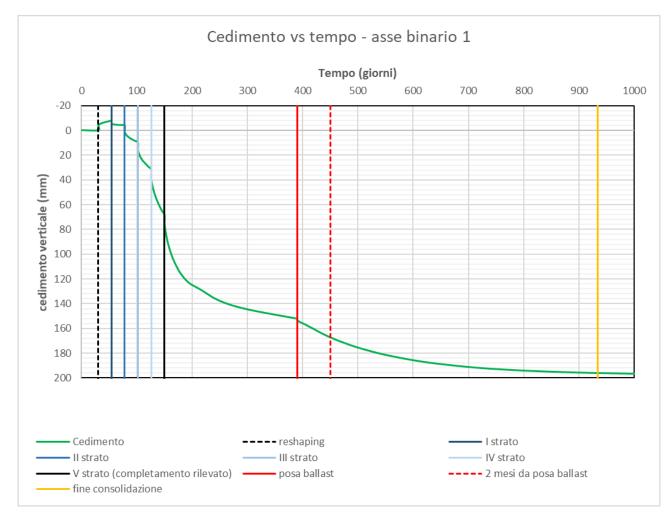


Figura 31 - Rilevato sez n° 43 - pk 183+703- Analisi SLE – Decorso dei cedimenti nel tempo in corrispondenza dell'asse del binario 1

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA 	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	57 di 138

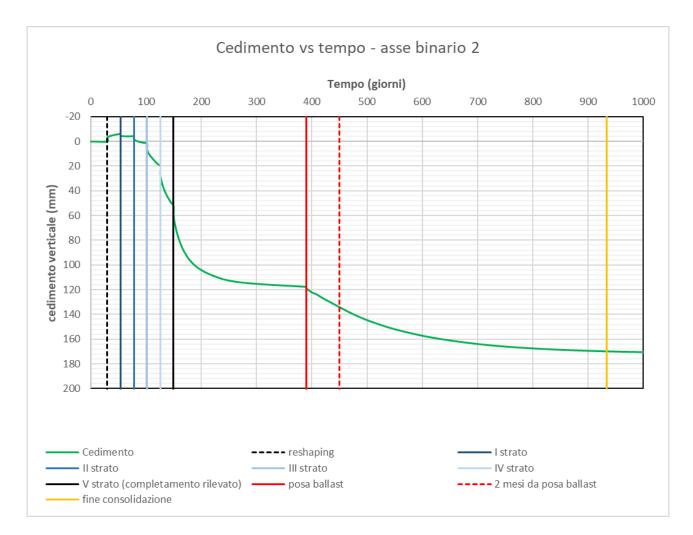


Figura 32 - Rilevato sez n° 43 - pk 183+703- Analisi SLE – Decorso dei cedimenti nel tempo in corrispondenza dell'asse del binario 2

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA I TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	58 di 138

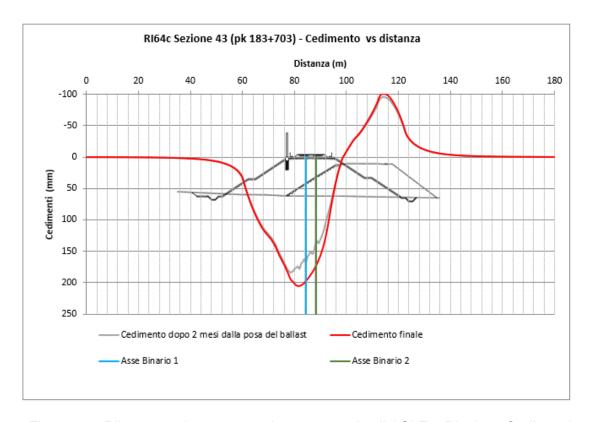
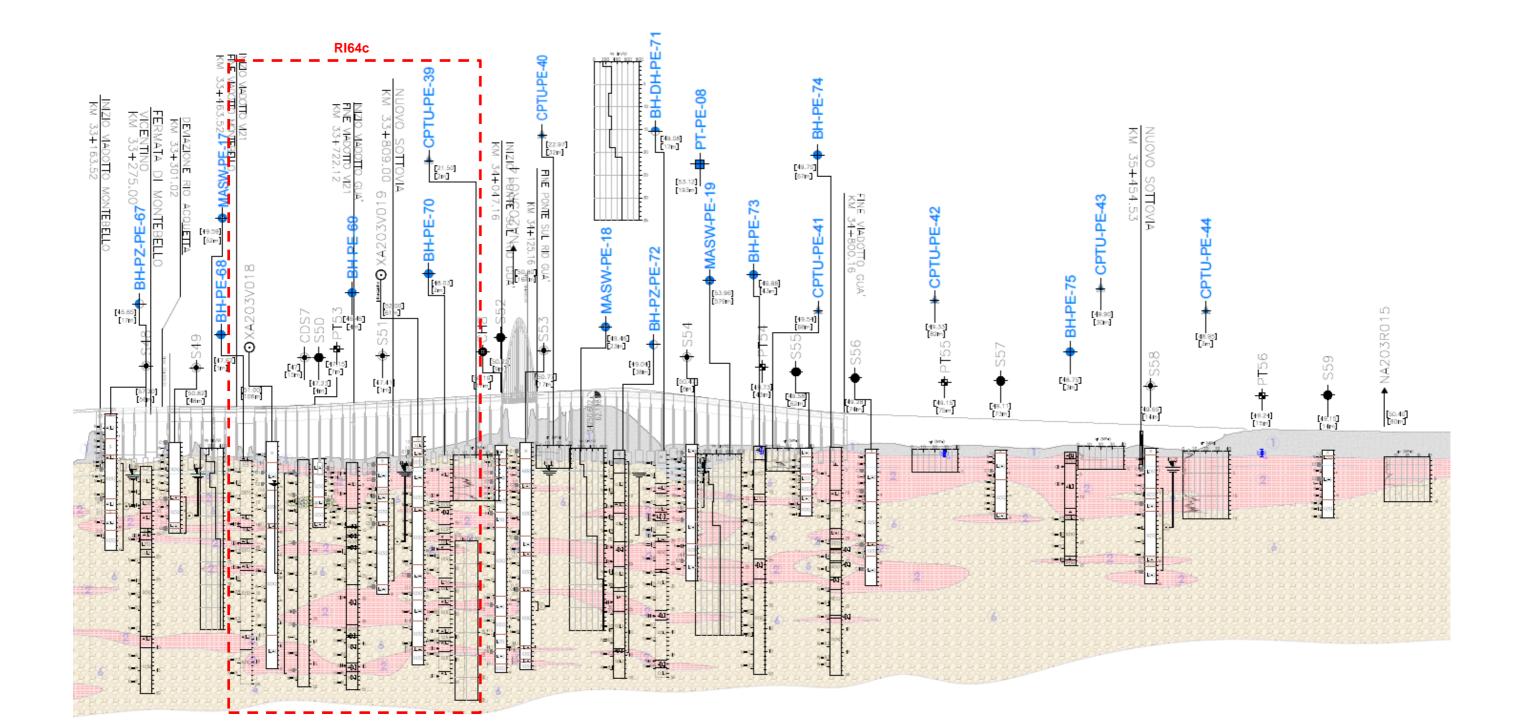


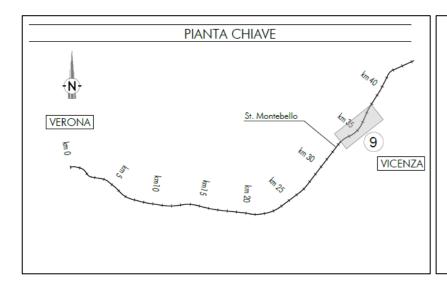
Figura 33 - Rilevato sezione n° 43 - pk 183+703 - Analisi SLE – Risultato Cedimenti

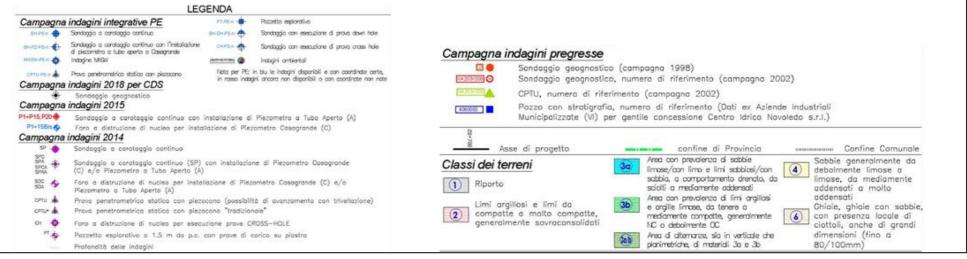
GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	59 di 138

7 CONCLUSIONI E RACCOMANDAZIONI


In conclusione, il rilevato oggetto di questa analisi risulta stabile. I cedimenti attesi sono mediamente elevati e differiti nel tempo: lo studio del loro decorso nel tempo ha però mostrato che i cedimenti residui successivi al completamento del piano di posa del ballast e fino alla fine della vita utile dell'opera sono comunque inferiori a 5 cm, e pertanto non si ravvede la necessità di monitoraggio.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA 17AL / FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	60 di 138


ALLEGATI


GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA /// TAL/ FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	61 di 138

ALLEGATO 1 - STRATIGRAFIE

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR		
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio	
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	63 di 138	

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO STA	ERR	
RI10a	Progetto	Lotto	Codifica	
Relazione Geotecnica	IN17	11	EI2GERI10A0001	Α

ALLEGATO 2 - SONDAGGI

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 EI2RBRI64C0001A 12 65 di 138

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT Via Annibale Zucchini, 69 – 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119 SOCOTEC ITALIA Srl - P. Iva 01872430648

Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

Relazione Geotecnica

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-69 ESECUZIONE: 12-18/11/2020 RDP SITO Nº: SF201051 OPERATORE: BARONE - EL AZHARI PROFONDITA': RIVESTIMENTO: 47,00 m Rimaneggiato PA: punta aperta COMMESSA: 22036AV-20 RESPONSABILE: FOGLI QUOTA s.l.m.: 46,446 m PC: punta chiusa kPa METODO T.V. kPa DESCRIZIONE STRATIGRAFICA LITOLOGIA PROF. PROF. TIPO Terreno vegetale Argilla limosa marrone con frammenti di laterizio 75.00 2.20 Sh1 25.00 Argilla limosa alternata a limo argilloso marrone. Presenti piccole inclusioni carbonatiche 30.00 35.00 4.00 50.00 20.00 Sabbia medio-fine debolmente limosa, marrone 6.60 150 125 75 55 101 Argilla debolmente limosa marrone, alternata ad argilla con limo poco consistente, marrone (da 8.40 a 8.80 m il colore semplice 150 70 diventa più scuro) non attrezzato 50 50 25 25 SPT1 10.50-10.95 r 13 - 12 - 5 PC ΧĒ Foro 10.95 Ghiaia medio-grossa (da sub-angolosa a sub-arrotondata) in matrice sabbioso limosa, beige (calcare, calcare marnoso) Ghiaia medio-grossa (da sub-angolosa a sub-arrotondata) in matrice sabbioso limosa, biancastra (calcare, calcare marnoso) Ghiaia (medio-grossa) da sub-arrotondata a sub-angolosa in matrice sabbioso limosa, marrone chiaro Argilla debolmente limosa, marrone Ghiaia (medio-grossa) da sub-arrotondata a sub-angolosa in matrice sabbioso limosa, marrone chiaro 100 50 Argilla debolmente limosa, marrone ΧE Ghiaia (medio-grossa) da sub-arrotondata a sub-angolosa in matrice sabbioso limosa, marrone chiaro 150 85 Argilla debolmente limosa con sporadica ghiala, marrone Ghiaia (medio-grossa) in matrice limoso-sabbiosa, beige

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 66 di 138

n Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT Via Annibale Zucchini, 69 - 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119

Relazione Geotecnica

SOCOTEC ITALIA Srl – P.Iva 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-69 ESECUZIONE: 12-18/11/2020 COMMESSA: 22036AV-20 RDP SITO N°: SF201051 OPERATORE: BARONE - EL AZHARI RESPONSABILE: FOGLI PROFONDITA': 50,00 m Indisturbato SPT RIVESTIMENTO: QUOTA s.l.m.: 47,00 m 46,446 m Rimaneggiato Ambientale PA: punta aperta PC: punta chiusa SFT4 20.00-20.45 m 20 - 21 - 21 UTENSIL P.P. kPa e B LITOLOGIA DESCRIZIONE STRATIGRAFICA Ghiaia (medio-grossa) da sub-arrotondata a sub-angolosa con semplice 101 sporadici ciottoli, marrone chiaro 23.00 X 6 23.45 carotiere Ghiaia (medio-grossa) in matrice limoso-argillosa, marrone X 26.45 SPT6 26.00-26.45 r 10 - 15 - 11 PC 27 27.00 50 35 Carotaggio 100 50 125 65 150 75 Alternanza tra argilla debolmente limosa (fino 27.50 m), argilla limosa (27.50-27.80 m) e argilla debolmente limosa (27.80-31.50 m). Sporadici livelli ghiaosi (28.20-28.35 m) 29.00 attrezzato non Limo argilloso sabbioso, marrone 100 180 150 125 75 60 125 55 Argilla debolmente limosa, marrone (sporadici clasti) 125 65 00,50 Ghiaia (medio-fine) in matrice limoso sabbiosa, marrone X 6 37.45 150 75 Argilla limosa, marrone 38.35

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 67 di 138 Relazione Geotecnica

xda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT Via Annibale Zucchini, 69 - 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119 SOCOTEC ITALIA Srl – P.lva 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI)

Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-69 ESECUZIONE: 12-18/11/2020 COMMESSA: 22036AV-20 RDP SITO N°: SF201051 OPERATORE: BARONE - EL AZHARI PROFONDITA': Indisturbato Rimaneggiato 50,00 m SPT RIVESTIMENTO: QUOTA s.l.m.: 47,00 m 46,446 m Rimaneggiato Ambientale PA: punta aperta PC: punta chiusa RESPONSABILE: FOGLI Pa NUM. LITOLOGIA DESCRIZIONE STRATIGRAFICA ALDA PROF. Ghiaia (medio-fine) in matrice limoso sabbiosa, marrone 42.50 101 X 6 42.95 attrezzato 125 85 250 175 44.30 Argilla marrone scuro S_A 44.80 Ghiaia (medio-fine) in matrice limoso sabbiosa 45.15 non -0-3 Argilla debolmente limosa con abbondanti clasti a grana fine, 0 marrone 8 X 5 46.70 Ghiaia eterogenea (da fine a grossolana) in matrice limoso-sabbiosa, marrone chiaro ⊠ H 49.00 SPT11 49.00-49.10 R PC FINE SONDAGGIO

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 El2RBRI64C0001A

FERRARA DEPARTMENT Via Annibale Zucchini, 69 - 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119 SOCOTEC ITALIA Srl - P. Iva 01872430648

Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI)

Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

Relazione Geotecnica

68 di 138

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-70 ESECUZIONE: 19-24/11/2020 COMMESSA: 22036AV-20 RDP SITO N°: SF201066 OPERATORE: BARONE - EL AZHARI RESPONSABILE: FOGLI PROFONDITA': 50.00 m Indisturbato SPT RIVESTIMENTO: QUOTA s.l.m.: 47,00 m 48,039 m Rimaneggiato PC: punta chiusa Ambientale METODO E UTENSILE CAMPIONI ę, ₽, LITOLOGIA DESCRIZIONE STRATIGRAFICA TIPO NUM. PROF. Terreno vegetale Argilla limosa marrone (presenza di laterizio e piccoli clasti) 175 150 125 75 55 Alternanza tra argilla debolmente limosa e limo argilloso debolmente sabbioso (molto fine); marrone 3.00 Sh1 75 25 Sabbia (medio-fine) limosa, marrone 20 30 55 Lef.1 5.00-6.00 m 125 65 125 75 30 Alternanza tra argilla debolmente limosa e limo argilloso; Lef.2 7.00-8.00 m marrone. Presenza di segni di ossidazione 101 50 100 Sh2 9.00 attrezzato 75 35 25 Lef.3 10.00-11.00 n Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone chiaro SH3 12.30 175 80 Alternanza tra argilla debolmente limosa e argilla limosa, grigio 175 85 100 45 75 35 75 Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone chiaro 100 50 Argilla grigio-grigio scuro con sporadiche strie nerastre. Livello 150 150 80 80 ghiaioso a circa 17.40 m Ghiaia in abbondante matrice limoso-argillosa, grigio

GENERAL CONTRACTOR Consorzio Iric** Con

IN17

12

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

FERRARA DEPARTMENT Via Annibale Zucchini, 69 – 44122 Ferrara (FE Tel.: +39 0532 56771 - Fax.: +39 0532 56119

Relazione Geotecnica

SOCOTEC ITALIA Srl – P.Na 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

EI2RBRI64C0001A

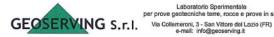
69 di 138

COMMITTENTE: CONSORZIO IRICAV DUE - Via Francesco Tovaglieri 413-00155 Roma (RM) CANTIERE: Montebello Vicentino PERFORAZIONE: BH-PE-70 ESECUZIONE: 19-24/11/2020 RDP SITO N°: SF201066 OPERATORE: BARONE - EL AZHARI RESPONSABILE: FOGLI PROFONDITA': RIVESTIMENTO: Rimaneggiato Ambientale 47,00 m PA: punta aperta COMMESSA: 22036AV-20 QUOTA s.l.m.: 48,039 m PC: punta chiusa UTENSIL LITOLOGIA DESCRIZIONE STRATIGRAFICA 20.50 Argilla, grigio Sh4 nplice 101 Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone chiaro Ghiaia eterogenea (da sub-arrotondata a sub-angolosa) in matrice limoso sabbiosa, marrone chiaro Carotaggio 125 Limo sabbioso debolmente argilloso, marrone chiaro 75 100 Ghiaia fine in matrice limoso-sabbiosa debolmente argillosa; marrone chiaro non Sabbia medio-grossa con limo, marrone chiaro Argilla con clasti, marrone-grigiastro 125 150 65 80 Argilla (da limosa a debolmente limosa), marrone chiaro Ghiaia medio-fine (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa, marrone chiaro Argilla limosa, marrone chiaro 50 75 100 150 Sh5 Argilla debolmente limosa, marrone chiaro 38.90 70

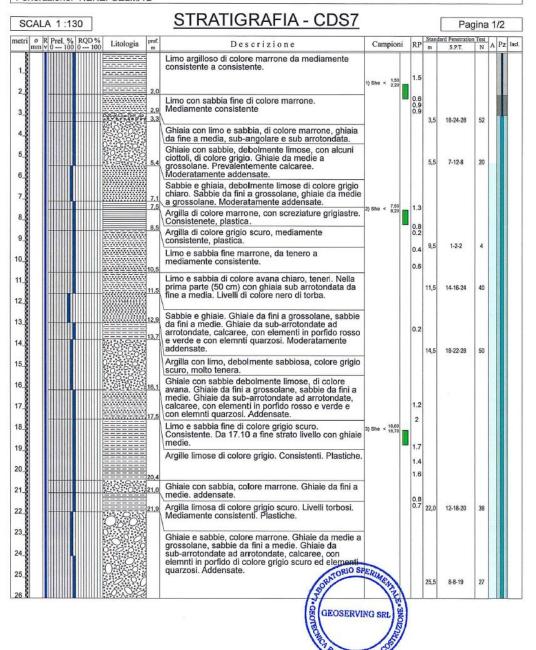
ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 70 di 138 Relazione Geotecnica

Azienda con Sistemi di Gestione certificati da Certiquality - Qualità Ambiente Sicurezza - UNI EN ISO 9001-2008 - UNI EN ISO 14001-2004 - BS OHSAS 18001-2007

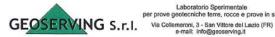
FERRARA DEPARTMENT Via Annibale Zucchini, 69 – 44122 Ferrara (FE) Tel.: +39 0532 56771 - Fax.: +39 0532 56119


SOCOTEC ITALIA Srl – P. Iva 01872430648 Headquarters: Via Bariola, 101-103 - 20020 Lainate (MI) Tel.: +39 02 9375 0000 - Fax: +39 02 9375 0099

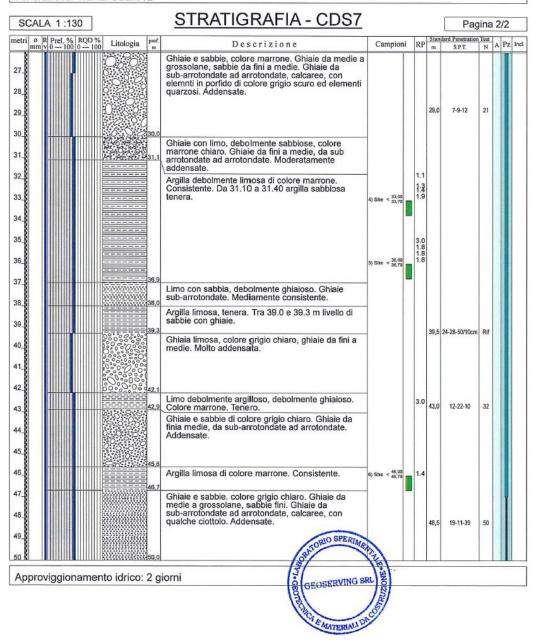
www.socotec.it

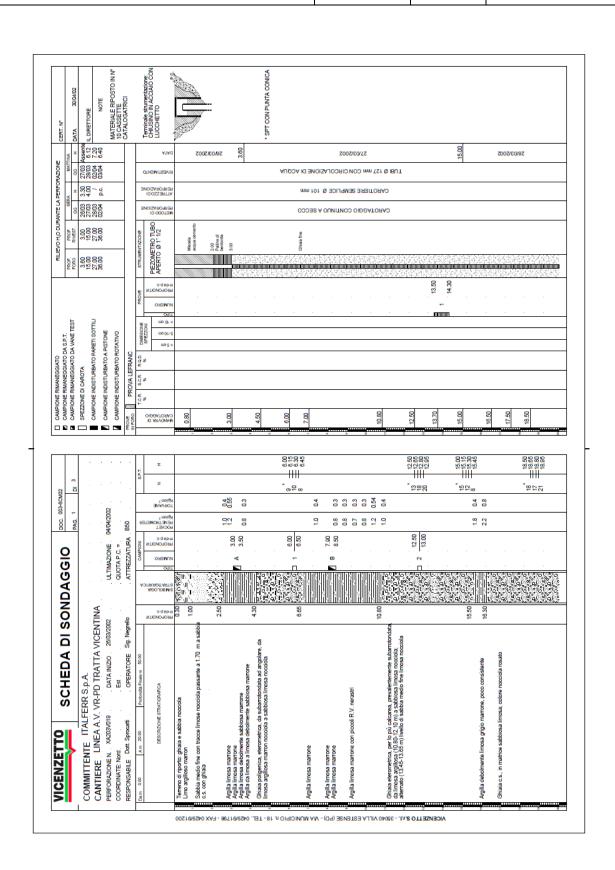


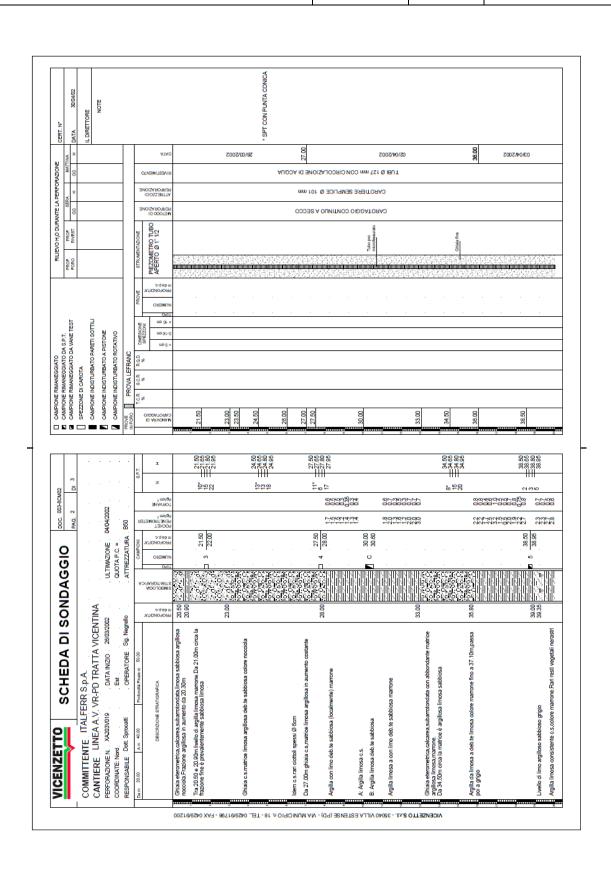
COMMITTENTE: CONSORZIO IRICATO DE - Via Francesco Tovaglieri 41-00155 Roma (PN) CANTIERE: Monte-bello Vicentio PERFORAZIONE: BH-PE-70 RDP SITO N°: SF201066 PROFONDITA': 50 50 ESECUZIONE: 19-24/11/2020 OPERATORE: BARONE - EL AZHARI RIVESTIMENTO: 47 47 COMMESSA: 22036 AV-20 RESPONSABILE: FOGLI QUOTA s.l.m.: 48 50,00 m SPT Indisturbato 47,00 m 48,039 m Rimaneggiato Ambientale PA: punta aperta PC: punta chiusa CAMPIONI ₽ B eg. LITOLOGIA DESCRIZIONE STRATIGRAFICA PROF. Ghiaia medio-grossa (da sub-arrotondata a sub-angolosa) in matrice sabbioso limosa (a tratti limoso sabbiosa); marrone SPT7 41.00-41.45 m 31 - 45 - 43 PC chiaro 150 100 75 55 42.60 Argilla limosa, marrone semplice 101 Sh6 43.10 attrezzato Ghiaia medio-grossa (da sub-arrotondata a sub-angolosa) in Non matrice sabbioso limosa (da 46.00 m limoso sabbiosa); marrone chiaro 75 75 48.50 Argilla limosa, marrone X 49.00 75 40 49.50 50 25 Limo argilloso, marrone FINE SONDAGGIO


GENERAL CONTRACTOR	ALTA	SORVEGLIA	NZA	
Consorzio Iric/4V Due	2101400000	ITAL A		
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	71 di 138

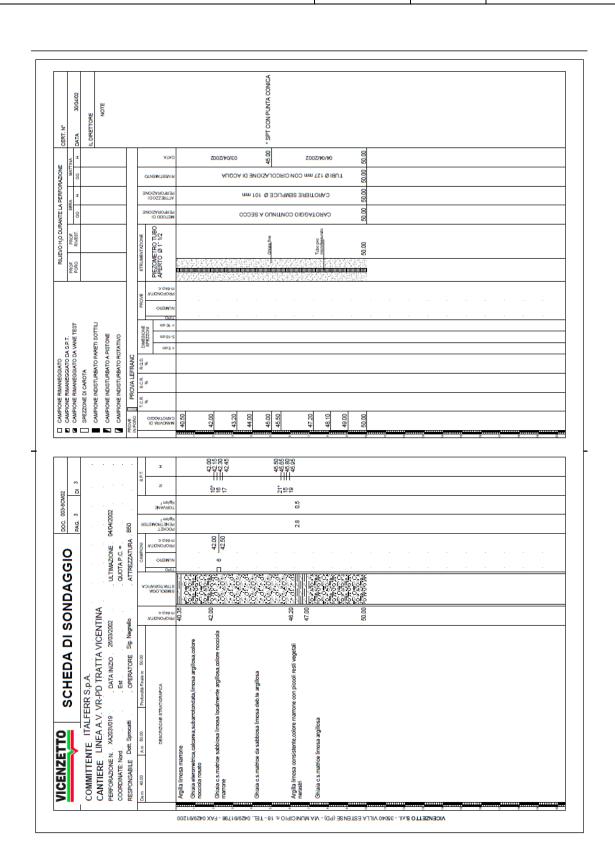
Sondaggio: CDS7
Data: 27-02÷02-03-17
Quota: 47 m s.l.m.




GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	72 di 138


Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ

Committente: IRICAV 2	Sondaggio: CDS7
Riferimento: AV/AC VERONA-BIVIO DI VICENZA. TORRENTE VALPANTENA	Data: 27-02÷02-03-17
Coordinate: 45.453955; 11.395617	Quota: 47 m s.l.m.



GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 74 di 138

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	75 di 138

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA //TAL/ FERROVIE DELLO ST	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica		12	EI2RBRI64C0001A	76 di 138

ALLEGATO 3 - SEZ. N° 16 - TABULATI DI SLIDE

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 77 di 138 Relazione Geotecnica

Slide Analysis Information

RI64C_sez16

Project Summary

File Name: RI64C_sez16.slmd

Slide Modeler Version: 9.012

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 12/04/2021, 18:38:27

Currently Open Scenarios

Group	Name	Scenario Name	Global Minimum	Compute Time
Statica	♦	Master Scenario	Bishop Simplified: 1.350110 Spencer: 1.289510 Gle/morgenstern-price: 1.276520	00h:00m:03.772s
Sismica kv+	♦	Master Scenario	Bishop Simplified: 1.116710 Spencer: 1.122020	00h:00m:02.621s
Sismica kv-	♦	Master Scenario	Bishop Simplified: 1.153800 Spencer: 1.156500 Gle/morgenstern-price: 1.127500	00h:00m:04.107s

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Data Output: Standard
Failure Direction: Left to Right

Design Standard

Statica

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 IN17 12 EI2RBRI64C0001A 78 di 138

Selected Type: Eurocode 7 (User Defined) NTC2008 A2+M2+R2 Statica Name: **Partial Factor** Type Permanent Actions: Unfavourable 1 Permanent Actions: Favourable 1 Variable Actions: Unfavourable 1.3 Variable Actions: Favourable 0 Effective cohesion 1.25 Coefficient of shearing resistance 1.25 Undrained strength 1.4 Weight density 1 Shear strength (other models) 1 Earth resistance 1 Tensile and plate strength 1 Shear strength 1 Compressive strength 1 Bond strength 1 Seismic Coefficient 1

♦ Sismica kv+

Relazione Geotecnica

Selected Type: Eurocode 7 (User Defined)

Name:	NTC2008 A2+M2+R2 Sismica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Sismica kv-

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 IN17 12 EI2RBRI64C0001A 79 di 138 Relazione Geotecnica

Selected Type: Name:	Eurocode 7 (User Defined) NTC2008 A2+M2+R2 Sismica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

Statica

Slices Type: Vertical **Analysis Methods Used** Bishop simplified GLE/Morgenstern-Price with interslice force function (Half Sine) Spencer Number of slices: 50 0.005 Tolerance: Maximum number of iterations: 75 Check malpha < 0.2: Yes Create Interslice boundaries at intersections with Yes water tables and piezos: Initial trial value of FS: 1 Steffensen Iteration: Yes

♦ Sismica kv+

Slices Type:	Vertical
Analysis M	ethods Used
	Bishop simplified
	Spencer
Number of slices:	50
Tolerance:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due

GRUPPO FERROVIE DELLO STATO ITALIANE

Progetto Lotto Codifica Foglio

80 di 138

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica

IN17 12 EI2RBRI64C0001A

Sismica kv-

Slices Type: Vertical

Analysis Methods Used

Bishop simplified

GLE/Morgenstern-Price with interslice force

function (Half Sine)

Spencer 50 0.005

Yes

Number of slices: 50
Tolerance: 0.009
Maximum number of iterations: 75
Check malpha < 0.2: Yes
Create Interslice boundaries at intersections with water tables and piezos:
Initial trial value of FS: 1

Groundwater Analysis

All Open Scenarios

Steffensen Iteration:

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

All Open Scenarios

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

All Open Scenarios

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 20
Circles per division: 10
Number of iterations: 10
Divisions to use in next iteration: 50%
Composite Surfaces: Disabled
Minimum Elevation: Not Defined

Minimum Depth [m]:

Minimum Area: Not Defined Minimum Weight: Not Defined

Seismic Loading

Statica

Advanced seismic analysis: No Staged pseudostatic analysis: No

♦ Sismica kv+

Advanced seismic analysis:

No
Staged pseudostatic analysis:
No
Seismic Load Coefficient (Horizontal):
0.083
Seismic Load Coefficient (Vertical):
0.042

Sismica kv-

Advanced seismic analysis:

No
Staged pseudostatic analysis:

No
Seismic Load Coefficient (Horizontal):

Seismic Load Coefficient (Vertical):

-0.042

Loading

Statica

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Consorzio IricAV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio

IN17

12

EI2RBRI64C0001A

82 di 138

Relazione Geotecnica

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Sismica kv+

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Sismica kv-

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Materials

U2	
Color	
Strength Type	Undrained
Unsaturated Unit Weight [kN/m3]	19.5
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	60
Cohesion Type	Constant
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Rilevato esistente	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	20
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	5
Friction Angle [deg]	38
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
U6	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	19
Cohesion [kPa]	0
Friction Angle [deg]	39
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Bonifica	
Color	
Strength Type	Mohr-Coulomb
Unit Weight [kN/m3]	20
Cohesion [kPa]	0
Friction Angle [deg]	38
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Materials In Use	

Materials In Use

Mate	rial	Statica	Sismica kv+	Sismica kv-
U2	✓	✓	✓	
Rilevato esistente	✓	✓	1	
U6	~	✓	1	
Bonifica	✓	✓	✓	

Global Minimums

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Codifica Lotto Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 IN17 12 EI2RBRI64C0001A 84 di 138

Statica

Relazione Geotecnica

Method: bishop simplified

FS	1.350110
Center:	57.048, 17.907
Radius:	13.767
Left Slip Surface Endpoint:	43.281, 17.907
Right Slip Surface Endpoint:	67.009, 8.405
Resisting Moment:	20873.2 kN-m
Driving Moment:	15460.4 kN-m
Total Slice Area:	173.285 m2
Surface Horizontal Width:	23.7283 m
Surface Average Height:	7.30289 m

Method: spencer

FS	1.289510
Center:	57.080, 17.907
Radius:	13.799
Left Slip Surface Endpoint:	43.281, 17.907
Right Slip Surface Endpoint:	67.087, 8.405
Resisting Moment:	20030.4 kN-m
Driving Moment:	15533.3 kN-m
Resisting Horizontal Force:	1097.97 kN
Driving Horizontal Force:	851.459 kN
Total Slice Area:	173.979 m2
Surface Horizontal Width:	23.806 m
Surface Average Height:	7.30818 m

Method: gle/morgenstern-price

FS	1.276520
Center:	57.077, 17.907
Radius:	13.798
Left Slip Surface Endpoint:	43.279, 17.907
Right Slip Surface Endpoint:	67.082, 8.404
Resisting Moment:	19827.7 kN-m
Driving Moment:	15532.6 kN-m
Resisting Horizontal Force:	1071.22 kN
Driving Horizontal Force:	839.175 kN
Total Slice Area:	173.97 m2
Surface Horizontal Width:	23.8025 m
Surface Average Height:	7.30888 m

Sismica kv+

Method: bishop simplified

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due GRUPPO FERROVIE DELLO STATO ITALIANE

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
183+777.48
Relazione Geotecnica

Progetto
Lotto
Codifica
Foglio
1N17
12
EI2RBRI64C0001A
85 di 138

FS 1.116710 Center: 56.112, 17.958 Radius: 14.523 Left Slip Surface Endpoint: 41.589, 17.958 Right Slip Surface Endpoint: 67.050, 8.404 Resisting Moment: 21365.1 kN-m Driving Moment: 19132.2 kN-m Total Slice Area: 206.6 m2 Surface Horizontal Width: 25.4609 m Surface Average Height: 8.11442 m

Method: spencer

FS	1.122020
Center:	56.540, 17.955
Radius:	14.863
Left Slip Surface Endpoint:	41.678, 17.955
Right Slip Surface Endpoint:	68.056, 8.558
Resisting Moment:	22794.6 kN-m
Driving Moment:	20315.7 kN-m
Resisting Horizontal Force:	1194.37 kN
Driving Horizontal Force:	1064.48 kN
Total Slice Area:	214.715 m2
Surface Horizontal Width:	26.3782 m
Surface Average Height:	8.13984 m

Sismica kv-

Method: bishop simplified

FS	1.153800
Center:	55.763, 17.940
Radius:	14.800
Left Slip Surface Endpoint:	40.963, 17.940
Right Slip Surface Endpoint:	67.081, 8.404
Resisting Moment:	21809.8 kN-m
Driving Moment:	18902.6 kN-m
Total Slice Area:	220.183 m2
Surface Horizontal Width:	26.1175 m
Surface Average Height:	8.43046 m

Method: spencer

FS	1.156500
Center:	56.458, 19.841
Radius:	15.612
Left Slip Surface Endpoint:	40.962, 17.940
Right Slip Surface Endpoint:	67.086, 8.405
Resisting Moment:	22501.5 kN-m
Driving Moment:	19456.5 kN-m
Resisting Horizontal Force:	1169.76 kN
Driving Horizontal Force:	1011.46 kN
Total Slice Area:	192.74 m2
Surface Horizontal Width:	26.124 m
Surface Average Height:	7.37788 m

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due **ITALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Codifica Lotto Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 IN17 12 EI2RBRI64C0001A 86 di 138 Relazione Geotecnica

Method: gle/morgenstern-price

FS	1.127500
Center:	56.456, 19.841
Radius:	15.611
Left Slip Surface Endpoint:	40.962, 17.940
Right Slip Surface Endpoint:	67.082, 8.404
Resisting Moment:	21933 kN-m
Driving Moment:	19452.7 kN-m
Resisting Horizontal Force:	1134.7 kN
Driving Horizontal Force:	1006.39 kN
Total Slice Area:	192.716 m2
Surface Horizontal Width:	26.1205 m
Surface Average Height:	7.37796 m

Global Minimum Support Data

All Open Scenarios

No Supports Present

Entity Information

Statica

Type Coordinates (x,y)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iricaty Due GRUPPO FERROVIE DELLO STATO ITALIANE

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
183+777.48
Relazione Geotecnica

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
1N17

Relazione Geotecnica

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
1N17

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
183+777.48
Relazione Geotecnica

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
183+777.48
Relazione Geotecnica

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk
183+777.48
Relazione Geotecnica

External Boundary	-0.0040618, -3.274 84.4286, -3.274 84.4286, -1.334 84.4286, 2.32276 84.4286, 3.72583 84.4286, 5.39855 84.4286, 6.82627 84.4286, 9.00345 72.391, 9.24455 67.0787, 8.40371 64.9835, 8.43828 59.4844, 12.0535 57.4844, 12.0535 57.4844, 12.0535 48.9629, 17.7364 46.8796, 17.7989 45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238 41.586, 17.9578 40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501 35.9572, 17.7971 34.2586, 17.7486 25.1185, 11.672 23.1185, 11.672 19.0299, 8.93426 17.385, 8.91234 -0.0040618, 8.68062 -0.0040618, 5.39855 -0.0040618, 5.39855 -0.0040618, 3.72583 -0.0040618, -1.334
Material Boundary	35.9572, 17.7971 35.9572, 16.7565 46.9032, 16.7565 46.8796, 17.7989
Material Boundary	37.8155, 17.8501 37.8155, 17.0663 40.3945, 17.0663 40.4057, 17.9241
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093
Material Boundary	42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461
Material Boundary	43.2721, 17.9072 43.2721, 17.6359 44.7909, 17.6359 44.791, 17.8616
Material Boundary	19.0299, 8.93426 64.9835, 8.43828

Material Boundary	17.385, 8.91234 17.385, 7.268 67.331, 7.268 67.0787, 8.40371
Material Boundary	-0.0040618, -1.334 84.4286, -1.334

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.0040618, 7.64 64.9835, 7.39766 84.4286, 7.39766	Assigned to: U2 Rilevato esistente U6 Bonifica
Distributed Load	46.8796, 17.7989 45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238 41.586, 17.9578 40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501 35.9572, 17.7971	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501	Constant DistributionOrientation: Normal to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238	Constant DistributionOrientation: Normal to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No

Sismica kv+

_	
Type	Coordinates (x,y)
I Y DC	Cool dillaces (x, y)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 ALTA SORVEGLIANZA GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio

Relazione Geotecnica

IN17

12

EI2RBRI64C0001A

89 di 138

1	1
	-0.0040618, -3.274
	84.4286, -3.274
	84.4286, -1.334
	84.4286, 2.32276
	84.4286, 3.72583
	84.4286, 5.39855
	84.4286, 6.82627
	84.4286, 9.00345
	72.391, 9.24455
	67.0787, 8.40371
	64.9835, 8.43828 59.4844, 12.0535
	57.4844, 12.0535
	48.9629, 17.7364
	46.8796, 17.7989
	45.3075, 17.8461
	44.791, 17.8616
L	43.2721, 17.9072
External Boundary	42.7191, 17.9238
	41.586, 17.9578
	40.4057, 17.9241
	39.8897, 17.9093
	38.3677, 17.8659
	37.8155, 17.8501
	35.9572, 17.7971
	34.2586, 17.7486
	25.1185, 11.672
	23.1185, 11.672
	19.0299, 8.93426
	17.385, 8.91234
	-0.0040618, 8.68062
	-0.0040618, 6.82627
	-0.0040618, 5.39855
	-0.0040618, 3.72583
	-0.0040618, 2.32276 -0.0040618, -1.334
	-0.0040618, -1.334
	35.9572, 17.7971 35.9572, 16.7565
Material Boundary	35.9572, 16.7565 46.9032, 16.7565
	46.8796, 17.7989
	37.8155, 17.8501 37.8155, 17.0663
Material Boundary	40.3945, 17.0663
	40.4057, 17.9241
	38.3677, 17.8659 38.3677, 17.6301
Material Boundary	39.8907, 17.6301
	39.8897, 17.9093
	42.7191, 17.9238
Material Boundary	42.7191, 17.0695 45.2971, 17.0695
	45.3075, 17.8461
	43.2721, 17.9072
Material Boundary	43.2721, 17.6359
	44.7909, 17.6359 44.791, 17.8616
Material Boundary	19.0299, 8.93426
· ·	64.9835, 8.43828

Material Boundary	17.385, 8.91234 17.385, 7.268 67.331, 7.268 67.0787, 8.40371
Material Boundary	-0.0040618, -1.334 84.4286, -1.334

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.0040618, 5.664 64.9835, 5.42166 84.4286, 5.42166	Assigned to: U2 Rilevato esistente U6 Bonifica
Distributed Load	46.8796, 17.7989 45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238 41.586, 17.9578 40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501 35.9572, 17.7971	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No

Sismica kv-

Type Coordinates (x,y)

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 91 di 138 Relazione Geotecnica

	-0.0040618, -3.274
	84.4286, -3.274
	84.4286, -1.334
	84.4286, 2.32276
	84.4286, 3.72583
	84.4286, 5.39855
	84.4286, 6.82627
	84.4286, 9.00345
	72.391, 9.24455
	67.0787, 8.40371
	64.9835, 8.43828
	59.4844, 12.0535
	57.4844, 12.0535
	48.9629, 17.7364
	46.8796, 17.7989
	45.3075, 17.8461
	44.791, 17.8616
External Boundary	43.2721, 17.9072
External boundary	42.7191, 17.9238
	41.586, 17.9578
	40.4057, 17.9241
	39.8897, 17.9093
	38.3677, 17.8659
	37.8155, 17.8501
	35.9572, 17.7971
	34.2586, 17.7486
	25.1185, 11.672
	23.1185, 11.672
	19.0299, 8.93426
	17.385, 8.91234
	-0.0040618, 8.68062
	-0.0040618, 6.82627
	-0.0040618, 5.39855
	-0.0040618, 3.72583
	-0.0040618, 2.32276
	-0.0040618, -1.334
	35.9572, 17.7971
Material Boundary	35.9572, 16.7565
l lacorial boardary	46.9032, 16.7565
	46.8796, 17.7989
	37.8155, 17.8501
	37.8155, 17.0663
Material Boundary	40.3945, 17.0663
	10.00 .07 17.10000
	40 4057 17 9241
	40.4057, 17.9241
	38.3677, 17.8659
Material Boundary	38.3677, 17.8659 38.3677, 17.6301
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301
Material Boundary	38.3677, 17.8659 38.3677, 17.6301
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093
	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238
Material Boundary Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695
	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695
	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461
	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072 43.2721, 17.6359
	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072 43.2721, 17.6359 44.7909, 17.6359
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072 43.2721, 17.6359 44.7909, 17.6359
Material Boundary Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072 43.2721, 17.6359 44.7909, 17.6359 44.791, 17.8616
Material Boundary	38.3677, 17.8659 38.3677, 17.6301 39.8907, 17.6301 39.8897, 17.9093 42.7191, 17.9238 42.7191, 17.0695 45.2971, 17.0695 45.3075, 17.8461 43.2721, 17.9072 43.2721, 17.6359 44.7909, 17.6359

GENERAL CONTRACTOR Consorzio IricAv Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 92 di 138

Material Boundary	17.385, 8.91234 17.385, 7.268 67.331, 7.268 67.0787, 8.40371
Material Boundary	-0.0040618, -1.334 84.4286, -1.334

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.0040618, 5.664 64.9835, 5.42166 84.4286, 5.42166	Assigned to: U2 Rilevato esistente U6 Bonifica
Distributed Load	46.8796, 17.7989 45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238 41.586, 17.9578 40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501 35.9572, 17.7971	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	40.4057, 17.9241 39.8897, 17.9093 38.3677, 17.8659 37.8155, 17.8501	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	45.3075, 17.8461 44.791, 17.8616 43.2721, 17.9072 42.7191, 17.9238	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica		12	EI2RBRI64C0001A	93 di 138

ALLEGATO 4 - SEZ. N° 43 - TABULATI DI SLIDE

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48	Progetto	Lotto	Codifica	Foglio
Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	94 di 138

MATERIALE DA RILEVATO $\phi' = 40^{\circ}$

Slide Analysis Information

RI64C_sez43

Project Summary

File Name: RI64C_sez43.slmd

Slide Modeler Version: 9.012

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 13/04/2021, 15:07:35

Currently Open Scenarios

Group	Name	Scenario Name	Global Minimum	Compute Time
Statica	♦	Master Scenario	Bishop Simplified: 1.207940	00h:00m:00.549s
Sismica kv+	♦	Master Scenario	Bishop Simplified: 1.119680	00h:00m:00.489s
Sismica kv-	♦	Master Scenario	Bishop Simplified: 1.115640	00h:00m:00.464s

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Data Output: Standard
Failure Direction: Right to Left

Design Standard

Statica

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	96 di 138

Selected Type: Name:	Eurocode 7 (User Defined) NTC2008 A2+M2+R2 Statica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Sismica kv+

Selected Type:		Eurocode 7 (User Defined)
Name:		NTC2008 A2+M2+R2 Sismica
	Туре	Partial Factor
	Permanent Actions: Unfavourable	1
	Permanent Actions: Favourable	1
	Variable Actions: Unfavourable	1
	Variable Actions: Favourable	0
	Effective cohesion	1.25
	Coefficient of shearing resistance	1.25
	Undrained strength	1.4
	Weight density	1
	Shear strength (other models)	1
	Earth resistance	1
	Tensile and plate strength	1
	Shear strength	1
	Compressive strength	1
	Bond strength	1
	Seismic Coefficient	1

Sismica kv-

Selected Type:	Eurocode 7 (User Defined)
Name:	NTC2008 A2+M2+R2 Sismica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

All Open Scenarios

Slices Type:	Vertical
Analysis M	lethods Used
	Bishop simplified
Number of slices:	50
Toleranœ:	0.005
Maximum number of iterations:	75
Check malpha < 0.2:	Yes
Create Interslice boundaries at intersections with water tables and piezos:	Yes
Initial trial value of FS:	1
Steffensen Iteration:	Yes

Groundwater Analysis

All Open Scenarios

Groundwater Method: Water Surfaces

Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

All Open Scenarios

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

All Open Scenarios

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 20
Circles per division: 10
Number of iterations: 10
Divisions to use in next iteration: 50%
Composite Surfaces: Disabled
Minimum Elevation: Not Defined

Minimum Depth [m]: 3

Minimum Area: Not Defined Minimum Weight: Not Defined

Seismic Loading

Statica

Advanced seismic analysis: No Staged pseudostatic analysis: No

Sismica kv+

Advanced seismic analysis:

No
Staged pseudostatic analysis:
No
Seismic Load Coefficient (Horizontal):
0.083
Seismic Load Coefficient (Vertical):
0.042

Sismica kv-

Advanced seismic analysis:

No
Staged pseudostatic analysis:
No
Seismic Load Coefficient (Horizontal):
0.083
Seismic Load Coefficient (Vertical):
-0.042

Loading

Statica

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Permanent

Sismica kv+

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

Sismica kv-

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	100 di 138

Materials

U6	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	19.5
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	0
Friction Angle [deg]	39
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Rilevato esistente	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	20
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	5
Friction Angle [deg]	38
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Nuovo rilevato	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	20
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	0
Friction Angle [deg]	40
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
U2	
Color	
Strength Type	Undrained
Unsaturated Unit Weight [kN/m3]	19.5
Saturated Unit Weight [kN/m3]	19.5
Cohesion [kPa]	60
Cohesion Type	Constant
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated

Materials In Use

Materi	ial	Statica Sismic	a kv+ Sismic	a kv-
U6	/	✓	1	
Rilevato esistente	✓	✓	1	
Nuovo rilevato	✓	✓	✓	
U2	√	✓	✓	

Global Minimums

Statica

Method: bishop simplified

FS	1.207940
Center:	26.805, 24.884
Radius:	18.308
Left Slip Surface Endpoint:	12.340, 13.661
Right Slip Surface Endpoint:	45.112, 24.884
Resisting Moment:	37899.8 kN-m
Driving Moment:	31375.5 kN-m
Total Slice Area:	306.35 m2
Surface Horizontal Width:	32.7728 m
Surfaœ Average Height:	9.34769 m

Sismica kv+

Method: bishop simplified

FS	1.119680
Center:	27.050, 24.833
Radius:	16.295
Left Slip Surfaœ Endpoint:	15.188, 13.661
Right Slip Surface Endpoint:	43.345, 24.833
Resisting Moment:	28729.5 kN-m
Driving Moment:	25658.6 kN-m
Total Slice Area:	227.383 m2
Surface Horizontal Width:	28.1571 m
Surface Average Height:	8.0755 m

Sismica kv-

Method: bishop simplified

FS	1.115640
Center:	16.743, 41.546
Radius:	27.938
Left Slip Surface Endpoint:	19.193, 13.716
Right Slip Surface Endpoint:	39.038, 24.710
Resisting Moment:	11984.4 kN-m
Driving Moment:	10742.2 kN-m
Total Slice Area:	38.1006 m2
Surface Horizontal Width:	19.8452 m
Surface Average Height:	1.91989 m

Global Minimum Support Data

All Open Scenarios

No Supports Present

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	102 di 138

Entity Information

♦ Statica

Туре	Coordinates (x,y)
	0.000294403, 0.00124803
	94.8254, 0.00124803
	94.8254, 3.46095
	94.8254, 7.66535
	94.8254, 9.48775
	94.8254, 12.9334
	82.1183, 13.0668
	72.6583, 13.1661
	71.2781, 13.1806
	62.5594, 18.9931
	60.5594, 18.9931
	54.75, 22.8661
	51.8894, 24.7731
	50.0744, 24.8027
	48.4272, 24.8296
	47.878, 24.8386
External Boundary	46.3568, 24.8634
	45.1132, 24.8837
	43.8787, 24.8485
	42.3569, 24.8051
	41.8186, 24.7897
	40.162, 24.7425
	38.2228, 24.6872
	29.0986, 18.6116
	27.0986, 18.6116
	19.6239, 13.6284
	12.3382, 13.6613
	10.8658, 14.6712
	-0.00884465, 14.9043
	-0.00552304, 9.48775
	-0.00440548, 7.66535
	-0.0018272, 3.46095
	19.6239, 13.6284
	21.0229, 12.7005
	36.2084, 12.2216
Material Boundary	37.8863, 13.6286
	52.2854, 22.6663
	54.75, 22.8661
	40.162, 24.7425
	40.1688, 23.7025
Material Boundary	50.0853, 23.7025
-	50.0744, 24.8027
	41.8186, 24.7897
Material Boundary	41.8186, 24.0231
	48.4444, 24.0231
	48.4272, 24.8296
	42.3569, 24.8051
Material Boundary	42.3569, 24.455
	43.878, 24.455
	43.8787, 24.8485

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 103 di Relazione Geotecnica 138

Material Boundary	46.3568, 24.8634 46.3568, 24.4523 47.8766, 24.4523 47.878, 24.8386	
Material Boundary	36.2084, 12.2216 71.2781, 12.2216 72.6583, 13.1661	
Material Boundary	-0.0018272, 3.46095 94.8254, 3.46095	

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.00723502, 12.2795 94.8258, 12.2795	Assigned to: U6 Rilevato esistente Nuovo rilevato U2
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Normal to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No

Sismica kv+

Туре	Coordinates (x,y)
------	-------------------

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	104 di 138

External Boundary	0.000294403, 0.00124803 94.8254, 0.00124803 94.8254, 7.66535 94.8254, 9.48775 94.8254, 12.9334 82.1183, 13.0668 72.6583, 13.1661 71.2781, 13.1806 62.5594, 18.9931 60.5594, 18.9931 54.75, 22.8661 51.8894, 24.7731 50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425 38.2228, 24.6872 29.0986, 18.6116 27.0986, 18.6116 19.105, 13.6613 10.8658, 14.6712 -0.00884465, 14.9043 -0.00552304, 9.48775
Material Boundary	-0.00552304, 9.48775 -0.00440548, 7.66535 -0.0018272, 3.46095 19.105, 13.6613 21.0229, 12.7005 36.2084, 12.2216 37.8863, 13.6286
Material Boundary	52.2854, 22.6663 54.75, 22.8661 40.162, 24.7425 40.1688, 23.7025 50.0853, 23.7025 50.0744, 24.8027 41.8186, 24.7897
Material Boundary	41.8186, 24.0231 48.4444, 24.0231 48.4272, 24.8296
Material Boundary	42.3569, 24.8051 42.3569, 24.455 43.878, 24.455 43.8787, 24.8485
Material Boundary	46.3568, 24.8634 46.3568, 24.4523 47.8766, 24.4523 47.878, 24.8386
Material Boundary	36.2084, 12.2216 71.2781, 12.2216 72.6583, 13.1661

Material Boundary -0.0018272, 3.46095 94.8254, 3.46095
--

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.00615211, 10.5136 94.8269, 10.5136	Assigned to: U6 Rilevato esistente Nuovo rilevato U2
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No

Sismica kv-

Tyne	Coordinates (x,y)
Туре	Coordinates (x,y)

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	106 di 138

1	1
	0.000294403, 0.00124803
	94.8254, 0.00124803
	94.8254, 3.46095
	94.8254, 7.66535
	94.8254, 9.48775
	94.8254, 12.9334
	82.1183, 13.0668
	72.6583, 13.1661
	71.2781, 13.1806
	62.5594, 18.9931
	60.5594, 18.9931
	54.75, 22.8661
	51.8894, 24.7731
	50.0744, 24.8027
	48.4272, 24.8296
External Boundary	47.878, 24.8386
,	46.3568, 24.8634
	45.1132, 24.8837
	43.8787, 24.8485
	42.3569, 24.8051
	41.8186, 24.7897
	40.162, 24.7425
	38.2228, 24.6872
	29.0986, 18.6116
	27.0986, 18.6116
	19.105, 13.6613
	12.3382, 13.6613
	10.8658, 14.6712
	-0.00884465, 14.9043
	-0.00552304, 9.48775
	-0.00440548, 7.66535
	-0.0018272, 3.46095
	19.105, 13.6613
	21.0229, 12.7005
Material Boundary	36.2084, 12.2216
,	37.8863, 13.6286
	52.2854, 22.6663
	54.75, 22.8661
	40.162, 24.7425
Material Boundary	40.1688, 23.7025
, and the same of	50.0853, 23.7025
	50.0744, 24.8027
	41.8186, 24.7897
Material Boundary	41.8186, 24.0231
Processor Doundary	48.4444, 24.0231
	48.4272, 24.8296
	42.3569, 24.8051
Material Roundany	42.3569, 24.455
Material Boundary	43.878, 24.455
	43.8787, 24.8485
	46.3568, 24.8634
Matarial Bassadan	46.3568, 24.4523
Material Boundary	47.8766, 24.4523
	47.878, 24.8386
	36.2084, 12.2216
Material Boundary	71.2781, 12.2216
Transfer boundary	72.6583, 13.1661

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto IN17	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 107 di 138

Material Roundany	-0.0018272, 3.46095	
Material Boundary	94.8254, 3.46095	

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.00615211, 10.5136 94.8269, 10.5136	Assigned to: U6 Rilevato esistente Nuovo rilevato U2
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	108 di 138

MATERIALE DA RILEVATO ϕ ' = 38°

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITALI FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	109 di 138

Slide Analysis Information RI64C_sez43_phi38

Project Summary

File Name: RI64C_sez43_phi38.slmd

Slide Modeler Version: 9.013

Project Title: SLIDE - An Interactive Slope Stability Program

Date Created: 13/04/2021, 15:07:35

Currently Open Scenarios

Group	Name	Scenario Name	Global Minimum	Compute Time
Statica	♦	Master Scenario	Bishop Simplified: 1.204380	00h:00m:00.572s
Sismica kv+	♦	Master Scenario	Bishop Simplified: 1.054110	00h:00m:00.541s
Sismica kv-	*	Master Scenario	Bishop Simplified: 1.038620	00h:00m:00.470s

General Settings

Units of Measurement: Metric Units
Time Units: days
Permeability Units: meters/second
Data Output: Standard
Failure Direction: Right to Left

Design Standard

Statica

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 110 di Relazione Geotecnica 138

RI64C_sez43_phi38 giovedì 22 aprile 2021

Selected Type:	Eurocode 7 (User Defined)
Name:	NTC2008 A2+M2+R2 Statica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1.3
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Sismica kv+

Selected Type: Name:	Eurocode 7 (User Defined) NTC2008 A2+M2+R2 Sismica
Туре	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Sismica kv-

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 111 di Relazione Geotecnica 138

RI64C_sez43_phi38 giovedi 22 aprile 2021

Selected Type:	Eurocode 7 (User Defined)
Name:	NTC2008 A2+M2+R2 Sismica
Type	Partial Factor
Permanent Actions: Unfavourable	1
Permanent Actions: Favourable	1
Variable Actions: Unfavourable	1
Variable Actions: Favourable	0
Effective cohesion	1.25
Coefficient of shearing resistance	1.25
Undrained strength	1.4
Weight density	1
Shear strength (other models)	1
Earth resistance	1
Tensile and plate strength	1
Shear strength	1
Compressive strength	1
Bond strength	1
Seismic Coefficient	1

Analysis Options

All Open Scenarios

Slices Type:	Vertical		
Analysis Methods Used			
	Bishop simplified		
Number of slices:	50		
Tolerance:	0.005		
Maximum number of iterations:	75		
Check malpha < 0.2:	Yes		
Create Interslice boundaries at intersections with water tables and piezos:	Yes		
Initial trial value of FS:	1		
Steffensen Iteration:	Yes		

Groundwater Analysis

All Open Scenarios

Groundwater Method: Water Surfaces
Pore Fluid Unit Weight [kN/m3]: 9.81
Use negative pore pressure cutoff: Yes
Maximum negative pore pressure [kPa]: 0
Advanced Groundwater Method: None

Random Numbers

RI64C_sez43_phi38 giovedi 22 aprile 2021

All Open Scenarios

Pseudo-random Seed: 10116

Random Number Generation Method: Park and Miller v.3

Surface Options

All Open Scenarios

Surface Type: Circular

Search Method: Auto Refine Search

Divisions along slope: 20
Circles per division: 10
Number of iterations: 10
Divisions to use in next iteration: 50%
Composite Surfaces: Disabled
Minimum Elevation: Not Defined

Minimum Depth [m]: 3

Minimum Area: Not Defined
Minimum Weight: Not Defined

Seismic Loading

Statica

Advanced seismic analysis: No Staged pseudostatic analysis: No

Sismica kv+

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.083
Seismic Load Coefficient (Vertical): 0.042

Sismica kv-

Advanced seismic analysis: No
Staged pseudostatic analysis: No
Seismic Load Coefficient (Horizontal): 0.083
Seismic Load Coefficient (Vertical): -0.042

Loading

Statica

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 113 di Relazione Geotecnica 138

RI64C_sez43_phi38 giovedi 22 aprile 2021

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant Magnitude [kPa]: 61.4

Orientation: Normal to boundary

Load Action: Variable

Distribution: Constant
Magnitude [kPa]: 14.4

Orientation: Normal to boundary
Load Action: Permanent

Sismica kv+

Distribution: Constant
Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant
Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

Sismica kv-

Distribution: Constant
Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant
Magnitude [kPa]: 12.3

Orientation: Normal to boundary

Load Action: Live

Distribution: Constant
Magnitude [kPa]: 14.4

Orientation: Normal to boundary

Load Action: Dead

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	114 di 138

RI64C_sez43_phi38 giovedì 22 aprile 2021

Materials

U6	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	19.5
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	0
Friction Angle [deg]	39
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Rilevato esistente	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	20
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	5
Friction Angle [deg]	38
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
Nuovo rilevato	
Color	
Strength Type	Mohr-Coulomb
Unsaturated Unit Weight [kN/m3]	20
Saturated Unit Weight [kN/m3]	20
Cohesion [kPa]	0
Friction Angle [deg]	38
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated
U2	
Color	
Strength Type	Undrained
Unsaturated Unit Weight [kN/m3]	19.5
Saturated Unit Weight [kN/m3]	19.5
Cohesion [kPa]	60
Cohesion Type	Constant
Water Surface	Assigned per scenario
Hu Value	Automatically Calculated

Materials In Use

Materia	al	Statica	Sismica kv+	Sismica kv-
U6		1	√	✓·
Rilevato esistente		1	✓·	✓·
Nuovo rilevato	2 2	1	1	1
U2		1	1	✓

RI64C_sez43_phi38 giovedi 22 aprile 2021

Global Minimums

Statica

Method: bishop simplified

FS	1.204380
Center:	26.804, 24.884
Radius:	18.308
Left Slip Surface Endpoint:	12.339, 13.661
Right Slip Surface Endpoint:	45.112, 24.884
Resisting Moment:	37789.5 kN-m
Driving Moment:	31376.7 kN-m
Total Slice Area:	306.361 m2
Surface Horizontal Width:	32.7735 m
Surface Average Height:	9.34781 m

Sismica kv+

Method: bishop simplified

FS	1.054110
Center:	16.598, 43.147
Radius:	29.486
Left Slip Surface Endpoint:	19.306, 13.786
Right Slip Surface Endpoint:	39.623, 24.727
Resisting Moment:	13749.9 kN-m
Driving Moment:	13044.1 kN-m
Total Slice Area:	40.7984 m2
Surface Horizontal Width:	20.3168 m
Surface Average Height:	2.00811 m

Sismica kv-

Method: bishop simplified

FS	1.038620
Center:	16.743, 41.546
Radius:	27.938
Left Slip Surface Endpoint:	19.193, 13.716
Right Slip Surface Endpoint:	39.038, 24.710
Resisting Moment:	11157 kN-m
Driving Moment:	10742.2 kN-m
Total Slice Area:	38.1006 m2
Surface Horizontal Width:	19.8452 m
Surface Average Height:	1.91989 m

Global Minimum Support Data

All Open Scenarios

No Supports Present

RI64C_sez43_phi38 giovedi 22 aprile 2021

Entity Information

Statica

Shared Entities

Type	Coordinates (x,y)
External Boundary	Coordinates (x,y) 0.000294403, 0.00124803 94.8254, 0.00124803 94.8254, 3.46095 94.8254, 7.66535 94.8254, 12.9334 82.1183, 13.0668 72.6583, 13.1661 71.2781, 13.1806 62.5594, 18.9931 60.5594, 18.9931 54.75, 22.8661 51.8894, 24.7731 50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425 38.2228, 24.6872 29.0986, 18.6116 27.0986, 18.6116 19.6239, 13.6284 12.3382, 13.6613 10.8658, 14.6712 -0.00884465, 14.9043 -0.00552304, 9.48775
Material Boundary	-0.00440548, 7.66535 -0.0018272, 3.46095 19.6239, 13.6284 21.0229, 12.7005 36.2084, 12.2216 37.8863, 13.6286 52.2854, 22.6663 54.75, 22.8661
Material Boundary	40.162, 24.7425 40.1688, 23.7025 50.0853, 23.7025 50.0744, 24.8027
Material Boundary	41.8186, 24.7897 41.8186, 24.0231 48.4444, 24.0231 48.4272, 24.8296
Material Boundary	42.3569, 24.8051 42.3569, 24.455 43.878, 24.455 43.8787, 24.8485

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	117 di 138

RI64C_sez43_phi38 giovedì 22 aprile 2021

Material Boundary	46.3568, 24.8634 46.3568, 24.4523 47.8766, 24.4523 47.878, 24.8386
Material Boundary	36.2084, 12.2216 71.2781, 12.2216 72.6583, 13.1661
Material Boundary	-0.0018272, 3.46095 94.8254, 3.46095

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario	
Water Table	-0.00723502, 12.2795 94.8258, 12.2795	Assigned to: U6 Rilevato esistente Nuovo rilevato U2	
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No	
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Norma to boundaryMagnitude: 61.4 kN/m2Creates Excess Pore Pressure: No	
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No	

Sismica kv+

Shared Entities

Type Coordinates (x,y)

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE				
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto IN17	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 118 di 138	

RI64C_sez43_phi38 giovedì 22 aprile 2021

3_p1136	giovedi 22 aprile 20
External Boundary	0.000294403, 0.00124803 94.8254, 0.00124803 94.8254, 3.46095 94.8254, 7.66535 94.8254, 9.48775 94.8254, 12.9334 82.1183, 13.0668 72.6583, 13.1661 71.2781, 13.1806 62.5594, 18.9931 60.5594, 18.9931 54.75, 22.8661 51.8894, 24.7731 50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425 38.2228, 24.6872 29.0986, 18.6116 27.0986, 18.6116 19.105, 13.6613 12.3382, 13.6613 10.8658, 14.6712 -0.00884465, 14.9043 -0.00552304, 9.48775 -0.00440548, 7.66535
Material Boundary	-0.0018272, 3.46095 19.105, 13.6613 21.0229, 12.7005 36.2084, 12.2216 37.8863, 13.6286 52.2854, 22.6663 54.75, 22.8661
Material Boundary	40.162, 24.7425 40.1688, 23.7025 50.0853, 23.7025 50.0744, 24.8027
Material Boundary	41.8186, 24.7897 41.8186, 24.0231 48.4444, 24.0231 48.4272, 24.8296
Material Boundary	42.3569, 24.8051 42.3569, 24.455 43.878, 24.455 43.8787, 24.8485
Material Boundary	46.3568, 24.8634 46.3568, 24.4523 47.8766, 24.4523 47.878, 24.8386
Material Boundary	36.2084, 12.2216 71.2781, 12.2216 72.6583, 13.1661

RI64C_sez43_phi38 giovedi 22 aprile 2021

-0.0018272, 3.46095 94.8254, 3.46095

Scenario-based Entities

Type	Coordinates (x,y)	Master Scenario	
Water Table	-0.00615211, 10.5136 94.8269, 10.5136	Assigned to: U6 Rilevato esistente Nuovo rilevato	
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No	
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Norm to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No	
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No	

Sismica kv-

Shared Entities

Toma	Coordinates (v. v.)
lvpe	Coordinates (x,v)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ///ALA FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	120 di 138

RI64C_sez43_phi38 giovedi 22 aprile 2021

3_51130	giovediz
External Boundary	0.000294403, 0.00124803 94.8254, 0.00124803 94.8254, 3.46095 94.8254, 7.66535 94.8254, 9.48775 94.8254, 12.9334 82.1183, 13.0668 72.6583, 13.1661 71.2781, 13.1806 62.5594, 18.9931 60.5594, 18.9931 54.75, 22.8661 51.8894, 24.7731 50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8387 43.8787, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425 38.2228, 24.6872 29.0986, 18.6116 27.0986, 18.6116 19.105, 13.6613 12.3382, 13.6613 10.8658, 14.6712 -0.00884465, 14.9043 -0.00552304, 9.48775 -0.00440548, 7.66535
Material Boundary	-0.0018272, 3.46095 19.105, 13.6613 21.0229, 12.7005 36.2084, 12.2216 37.8863, 13.6286 52.2854, 22.6663 54.75, 22.8661
Material Boundary	40.162, 24.7425 40.1688, 23.7025 50.0853, 23.7025 50.0744, 24.8027
Material Boundary	41.8186, 24.7897 41.8186, 24.0231 48.4444, 24.0231 48.4272, 24.8296
Material Boundary Material Boundary	42.3569, 24.8051 42.3569, 24.455 43.878, 24.455 43.8787, 24.8485
	46.3568, 24.8634 46.3568, 24.4523 47.8766, 24.4523 47.878, 24.8386
Material Boundary	36.2084, 12.2216 71.2781, 12.2216 72.6583, 13.1661

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA ITAL	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	121 di 138

RI64C_sez43_phi38 giovedì 22 aprile 2021

	Material Reundary	-0.0018272, 3.46095
		94.8254, 3.46095

Scenario-based Entities

Туре	Coordinates (x,y)	Master Scenario
Water Table	-0.00615211, 10.5136 94.8269, 10.5136	Assigned to: U6 Rilevato esistente Nuovo rilevato U2
Distributed Load	43.8787, 24.8485 42.3569, 24.8051	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	47.878, 24.8386 46.3568, 24.8634	Constant DistributionOrientation: Normal to boundaryMagnitude: 12.3 kN/m2Creates Excess Pore Pressure: No
Distributed Load	50.0744, 24.8027 48.4272, 24.8296 47.878, 24.8386 46.3568, 24.8634 45.1132, 24.8837 43.8787, 24.8485 42.3569, 24.8051 41.8186, 24.7897 40.162, 24.7425	Constant DistributionOrientation: Normal to boundaryMagnitude: 14.4 kN/m2Creates Excess Pore Pressure: No

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TAL FERROVIE DELLO S	FERR	
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica	Progetto	Lotto 12	Codifica EI2RBRI64C0001A	Foglio 122 di 138

ALLEGATO 5 - SEZ. N° 43 - TABULATI DI SETTLE 3D - ANALISI SLE

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 123 di Relazione Geotecnica

138

Settle3 Analysis Information RI64C sez43 R03

Project Settings

Document Name
Date Created
Stress Computation Method
Time-dependent Consolidation Analysis
Time Units
Permeability Units
Minimum settlement ratio for subgrade modulus
Use average properties to calculate layered stresses
Improve consolidation accuracy
Ignore negative effective stresses in settlement
calculations

RI64C_sez43_R03.s3z 14/04/2021, 16:29:50 Boussinesq

days meters/second 0.9

Stage Settings

Stage #	Name	Time [days]
1	Rilevato esistente	0
2	Rilevato esistente t infinito	3650
3	Riduzione Rilevato esistente	3680
4	Costruzione Rilevato nuovo 0	3704
5	Costruzione Rilevato nuovo 1	3728
6	Costruzione Rilevato nuovo 2	3752
7	Costruzione Rilevato nuovo 3	3776
8	Costruzione Rilevato nuovo 4	3800
9	Posa Ballast	4040
10	Cedimento dopo 2 mesi da ballast	4100
11	Cinque anni dalla costruzione	5865

Results (relative to Stage: Rilevato esistente t infinito = 3650 d)

Time taken to compute: 0 seconds

Stage: Rilevato esistente = 0 d

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica Progetto
IN17

Lotto 12 Codifica
EI2RBRI64C0001A

124 di 138

Foglio

Data Type	Minimum	Maximum
Total Settlement [mm]	-145.818	0
Total Consolidation Settlement [mm]	-145.818	0
Virgin Consolidation Settlement [mm]	-30.1937	0
Recompression Consolidation Settlement [mm]	-115.624	0
Immediate Settlement [mm]	0	0
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	0	0
Loading Stress XX [kPa]	0	0
Loading Stress YY [kPa]	0	0
Effective Stress ZZ [kPa]	-189.439	0
Effective Stress XX [kPa]	-189.439	0
Effective Stress YY [kPa]	-189.439	0
Total Stress ZZ [kPa]	-3.41061e-13	2.27374e-13
Total Stress XX [kPa]	-3.41061e-13	2.27374e-13
Total Stress YY [kPa]	-3.41061e-13	2.27374e-13
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0160122	0
Pore Water Pressure [kPa]	0	189.439
Excess Pore Water Pressure [kPa]	0	189.439
Degree of Consolidation [%]	-100	0
Pre-consolidation Stress [kPa]	-161.696	0
Over-consolidation Ratio	0	12.6725
Void Ratio	0	0.0272208
Permeability [m/s]	-3.76018e-09	0
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-7.98242	0

Stage: Rilevato esistente t infinito = 3650 d

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48

Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI64C0001A 125 di

138

Total Settlement [mm] 0 0 Total Consolidation Settlement [mm] 0 0 Virgin Consolidation Settlement [mm] 0 0 Recompression Consolidation Settlement [mm] 0 0 Settlement [mm] 0 0 Immediate Settlement [mm] 0 0 Secondary Settlement [mm] 0 0 Loading Stress ZZ [kPa] 0 0 Loading Stress XX [kPa] 0 0 Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
[mm] 0 0 Virgin Consolidation Settlement [mm] 0 0 Recompression Consolidation Settlement [mm] 0 0 Settlement [mm] 0 0 Immediate Settlement [mm] 0 0 Secondary Settlement [mm] 0 0 Loading Stress ZZ [kPa] 0 0 Loading Stress XX [kPa] 0 0 Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
[mm] 0 0 Recompression Consolidation Settlement [mm] 0 0 Settlement [mm] 0 0 Immediate Settlement [mm] 0 0 Secondary Settlement [mm] 0 0 Loading Stress ZZ [kPa] 0 0 Loading Stress XX [kPa] 0 0 Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Settlement [mm] 0 Immediate Settlement [mm] 0 Secondary Settlement [mm] 0 Loading Stress ZZ [kPa] 0 Loading Stress XX [kPa] 0 Loading Stress YY [kPa] 0 Effective Stress ZZ [kPa] 0 Effective Stress XX [kPa] 0 Effective Stress YY [kPa] 0 Total Stress ZZ [kPa] 0 Total Stress XX [kPa] 0 Total Stress YY [kPa] 0 Modulus of Subgrade Reaction 0	
Secondary Settlement [mm] 0 Loading Stress ZZ [kPa] 0 Loading Stress XX [kPa] 0 Loading Stress YY [kPa] 0 Loading Stress YY [kPa] 0 Effective Stress ZZ [kPa] 0 Effective Stress XX [kPa] 0 Effective Stress YY [kPa] 0 Total Stress ZZ [kPa] 0 Total Stress XX [kPa] 0 Total Stress YY [kPa] 0 Modulus of Subgrade Reaction 0	
Loading Stress ZZ [kPa] 0 0 Loading Stress XX [kPa] 0 0 Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Loading Stress XX [kPa] 0 0 Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Loading Stress YY [kPa] 0 0 Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Effective Stress ZZ [kPa] 0 0 Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress XZ [kPa] 0 0 Total Stress XY [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Effective Stress XX [kPa] 0 0 Effective Stress YY [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Effective Stress YY [kPa] 0 0 Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Total Stress ZZ [kPa] 0 0 Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Total Stress XX [kPa] 0 0 Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction 0 0	
Total Stress YY [kPa] 0 0 Modulus of Subgrade Reaction	
Modulus of Subgrade Reaction	
(Total) [kPa/m]	
Modulus of Subgrade Reaction (Immediate) [kPa/m] 0	
Modulus of Subgrade Reaction (Consolidation) [kPa/m] 0	
Total Strain 0 0	
Pore Water Pressure [kPa] 0 0	
Excess Pore Water Pressure [kPa] 0 0	
Degree of Consolidation [%] 0 0	
Pre-consolidation Stress [kPa] 0 0	
Over-consolidation Ratio 0 0	
Void Ratio 0 0	
Permeability [m/s] 0 0	
Coefficient of Consolidation 0 0 0 0 0	
Hydroconsolidation Settlement 0 0	
Average Degree of Consolidation 0 0	
Undrained Shear Strength 0 0	

Stage: Riduzione Rilevato esistente = 3680 d

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48IN17 12 EI2RBRI64C0001A 126 di Relazione Geotecnica

Data Type	Minimum	Maximum
Total Settlement [mm]	-26.9983	7.80725e-06
Total Consolidation Settlement	-19.1219	0.39174
[mm]	-19.1219	0.39174
Virgin Consolidation Settlement [mm]	0	4.32525e-07
Recompression Consolidation Settlement [mm]	-19.1219	0.39174
Immediate Settlement [mm]	-7.98735	0
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	12.3726
Loading Stress XX [kPa]	-153.572	169.249
Loading Stress YY [kPa]	-279.341	77.9515
Effective Stress ZZ [kPa]	-150.566	12.3726
Effective Stress XX [kPa]	-153.572	169.249
Effective Stress YY [kPa]	-279.341	77.9515
Total Stress ZZ [kPa]	-150.566	12.3726
Total Stress XX [kPa]	-286.297	146.25
Total Stress YY [kPa]	-357.396	73.4121
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.000416659
Pore Water Pressure [kPa]	-145.977	12.0375
Excess Pore Water Pressure [kPa]	-145.977	12.0375
Degree of Consolidation [%]	0	0.000873621
Pre-consolidation Stress [kPa]	0	2.00716e-06
Over-consolidation Ratio	-0.0870238	279.118
Void Ratio	-0.000708321	0.0572473
Permeability [m/s]	-1.84718e-09	1.89561e-09
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-1.77057e-07	3.16226e-07

Stage: Costruzione Rilevato nuovo 0 = 3704 d

138

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica Progetto Lotto
IN17 12

Codifica EI2RBRI64C0001A Foglio 127 di 138

Data Type	Minimum	Maximum
Total Settlement [mm]	-52.0555	15.5971
Total Consolidation Settlement [mm]	-44.3303	12.8835
Virgin Consolidation Settlement [mm]	0	0.0249945
Recompression Consolidation Settlement [mm]	-44.3551	12.8835
Immediate Settlement [mm]	-7.83825	3.00109
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	53.8446
Loading Stress XX [kPa]	-158.926	162.954
Loading Stress YY [kPa]	-281.888	105.073
Effective Stress ZZ [kPa]	-150.566	53.8446
Effective Stress XX [kPa]	-281.425	161.562
Effective Stress YY [kPa]	-355.763	102.922
Total Stress ZZ [kPa]	-150.566	53.8446
Total Stress XX [kPa]	-289.952	146.582
Total Stress YY [kPa]	-357.187	151.62
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.0261041
Pore Water Pressure [kPa]	-118.406	53.9684
Excess Pore Water Pressure [kPa]	-118.406	53.9684
Degree of Consolidation [%]	-90.6493	0.000873621
Pre-consolidation Stress [kPa]	0	0.422961
Over-consolidation Ratio	-241.547	279.118
Void Ratio	-0.044377	0.0572473
Permeability [m/s]	-3.76018e-09	0
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	3.16226e-07

Stage: Costruzione Rilevato nuovo 1 = 3728 d

Data Type	Minimum	Maximum
Total Settlement [mm]	-60.5909	42.8458
Total Consolidation Settlement	-53.0451	36.6349
[mm]	33.0131	30.03 13
Virgin Consolidation Settlement	0	0.235514
[mm] Recompression Consolidation		
Settlement [mm]	-53.0699	36.6349
Immediate Settlement [mm]	-7.62761	6.51823
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	107.733
Loading Stress XX [kPa]	-165.315	217.816
Loading Stress YY [kPa]	-285.582	147.38
Effective Stress ZZ [kPa]	-150.566	107.733
Effective Stress XX [kPa]	-284.718	222.474
Effective Stress YY [kPa]	-356.888	183.898
Total Stress ZZ [kPa]	-150.566	107.733
Total Stress XX [kPa]	-294.213	246.941
Total Stress YY [kPa]	-357.657	241.313
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.0299334
Pore Water Pressure [kPa]	-110.62	97.9288
	-110.62	97.9288
Degree of Consolidation [%]	-85.0889	0.000873621
Pre-consolidation Stress [kPa]	0	37.8371
Over-consolidation Ratio	-241.547	279.118
Void Ratio	-0.0508867	0.0572473
Permeability [m/s]	-3.76018e-09	5.88744e-10
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	2.43225

Stage: Costruzione Rilevato nuovo 2 = 3752 d

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica IN17 12 EI2RBRI64C0001A 129 di

Data Type	Minimum	Maximum
Total Settlement [mm]	-66.0507	66.0393
Total Consolidation Settlement [mm]	-58.7075	57.1184
Virgin Consolidation Settlement [mm]	0	4.43938
Recompression Consolidation Settlement [mm]	-58.7323	55.9786
Immediate Settlement [mm]	-7.40081	8.96526
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	153.268
Loading Stress XX [kPa]	-171.214	282.69
Loading Stress YY [kPa]	-289.754	185.335
Effective Stress ZZ [kPa]	-150.566	153.268
Effective Stress XX [kPa]	-287.71	318.541
Effective Stress YY [kPa]	-358.545	264.711
Total Stress ZZ [kPa]	-150.566	153.268
Total Stress XX [kPa]	-298.116	347.889
Total Stress YY [kPa]	-358.888	320.707
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.0302765
Pore Water Pressure [kPa]	-99.2829	127.216
Excess Pore Water Pressure [kPa]	-99.2829	127.216
Degree of Consolidation [%]	-85.4624	0.00053977
Pre-consolidation Stress [kPa]	0	76.9182
Over-consolidation Ratio	-241.547	279.118
Void Ratio	-0.05147	0.0572473
Permeability [m/s]	-3.76018e-09	2.60827e-09
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	6.30803

Stage: Costruzione Rilevato nuovo 3 = 3776 d

138

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica IN17 12 EI2RBRI64C0001A 130 di

Data Type	Minimum	Maximum
Total Settlement [mm]	-70.0082	87.2305
Total Consolidation Settlement [mm]	-62.9356	76.4093
Virgin Consolidation Settlement [mm]	0	12.7239
Recompression Consolidation Settlement [mm]	-62.9602	70.0011
Immediate Settlement [mm]	-7.1394	10.9261
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	192.556
Loading Stress XX [kPa]	-177.117	339.028
Loading Stress YY [kPa]	-294.474	216.602
Effective Stress ZZ [kPa]	-150.566	192.556
Effective Stress XX [kPa]	-290.655	408.327
Effective Stress YY [kPa]	-360.701	336.723
Total Stress ZZ [kPa]	-150.566	192.556
Total Stress XX [kPa]	-302.735	434.192
Total Stress YY [kPa]	-360.588	386.511
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.0302768
Pore Water Pressure [kPa]	-87.0897	146.419
Excess Pore Water Pressure [kPa]	-87.0897	146.419
Degree of Consolidation [%]	-82.7729	0.00044901
Pre-consolidation Stress [kPa]	0	103.132
Over-consolidation Ratio	-241.547	279.117
Void Ratio	-0.0514706	0.0572473
Permeability [m/s]	-3.76018e-09	2.97679e-09
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	7.69938

Stage: Costruzione Rilevato nuovo 4 = 3800 d

138

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica

IN17

12

EI2RBRI64C0001A

131 di 138

Data Type	Minimum	Maximum
Total Settlement [mm]	-73.1295	112.009
Total Consolidation Settlement [mm]	-66.3797	99.2992
Virgin Consolidation Settlement [mm]	0	37.8026
Recompression Consolidation Settlement [mm]	-66.4042	80.3811
Immediate Settlement [mm]	-6.79762	12.7096
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.566	219.449
Loading Stress XX [kPa]	-184.006	385.612
Loading Stress YY [kPa]	-300.523	229.945
Effective Stress ZZ [kPa]	-150.566	219.449
Effective Stress XX [kPa]	-294.046	476.63
Effective Stress YY [kPa]	-363.855	391.17
Total Stress ZZ [kPa]	-150.566	219.449
Total Stress XX [kPa]	-308.324	498.51
Total Stress YY [kPa]	-363.055	425.595
Modulus of Subgrade Reaction (Total) [kPa/m]	0	0
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	0
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	0
Total Strain	-0.0336749	0.0302768
Pore Water Pressure [kPa]	-75.5135	156.434
Excess Pore Water Pressure [kPa]		156.434
Degree of Consolidation [%]	-80.7922	3.23686e-05
Pre-consolidation Stress [kPa]	0	123.254
Over-consolidation Ratio	-241.547	279.117
Void Ratio	-0.0514706	0.0572473
Permeability [m/s]	-3.76018e-09	3.8565e-09
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	10.2636

Stage: Posa Ballast = 4040 d

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica IN17 12 EI2RBRI64C0001A 132 di

Data Type	Minimum	Maximum
Total Settlement [mm]	-93.2111	176.169
Total Consolidation Settlement	-86.5538	163.176
[mm]	-00.5550	103.170
Virgin Consolidation Settlement [mm]	0	97.6133
Recompression Consolidation Settlement [mm]	-86.5783	108.306
Immediate Settlement [mm]	-6.69686	12.9942
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.351	223.307
Loading Stress XX [kPa]	-183.541	385.619
Loading Stress YY [kPa]	-300.393	230.656
Effective Stress ZZ [kPa]	-150.351	223.307
Effective Stress XX [kPa]	-301.051	499.82
Effective Stress YY [kPa]	-362.186	421.959
Total Stress ZZ [kPa]	-150.351	223.307
Total Stress XX [kPa]	-307.47	501.944
Total Stress YY [kPa]	-361.851	430.27
Modulus of Subgrade Reaction (Total) [kPa/m]	0	55.1232
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	315.905
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	58.7787
Total Strain	-0.032349	0.0303472
Pore Water Pressure [kPa]	-16.9508	37.1876
Excess Pore Water Pressure [kPa]	-16.9508	37.1876
Degree of Consolidation [%]	-44.6604	3.91562e-05
Pre-consolidation Stress [kPa]	0	140.333
Over-consolidation Ratio	-241.627	263.163
Void Ratio	-0.0515903	0.0549933
Permeability [m/s]	-3.76018e-09	6.30087e-09
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	13.9263

Stage: Cedimento dopo 2 mesi da ballast = 4100 d

138

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica IN17 12 EI2RBRI64C0001A 133 di

Data Type	Minimum	Maximum
Total Settlement [mm]	-95.2956	183.239
Total Consolidation Settlement	-88.6382	170.245
[mm]	-86.0362	170.243
Virgin Consolidation Settlement	0	111.887
[mm]		
Recompression Consolidation Settlement [mm]	-88.6628	110.614
Immediate Settlement [mm]	-6.69686	12.9942
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.351	223.307
Loading Stress XX [kPa]	-183.541	385.619
Loading Stress YY [kPa]	-300.393	230.656
Effective Stress ZZ [kPa]	-150.351	223.307
Effective Stress XX [kPa]	-302.406	501.619
Effective Stress YY [kPa]	-361.375	426.517
Total Stress ZZ [kPa]	-150.351	223.307
Total Stress XX [kPa]	-307.47	501.944
Total Stress YY [kPa]	-361.851	430.27
Modulus of Subgrade Reaction	0	51.6724
(Total) [kPa/m]		31.0721
Modulus of Subgrade Reaction	0	315.905
(Immediate) [kPa/m] Modulus of Subgrade Reaction		
(Consolidation) [kPa/m]	0	52.4005
Total Strain	-0.032349	0.0303472
Pore Water Pressure [kPa]	-11.6706	25.276
Excess Pore Water Pressure [kPa]		25.276
Degree of Consolidation [%]	-34.9675	4.78157e-05
Pre-consolidation Stress [kPa]	0	143.253
Over-consolidation Ratio	-241.627	263.163
Void Ratio	-0.0515903	0.0549933
Permeability [m/s]	-3.76018e-09	1.97241e-08
Coefficient of Consolidation	0	0
[m^2/s]	0	•
Hydroconsolidation Settlement	0	0
[mm]		
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	20.5362
oraramed Streat Saletigat	2.00110	20.5502

Stage: Cinque anni dalla costruzione = 5865 d

138

ALTA SORVEGLIANZA GENERAL CONTRACTOR Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica IN17 12 EI2RBRI64C0001A 134 di 138

Data Type	Minimum	Maximum
Total Settlement [mm]	-100.961	205.689
Total Consolidation Settlement		
[mm]	-94.3037	193.356
Virgin Consolidation Settlement [mm]	0	142.371
Recompression Consolidation Settlement [mm]	-94.3283	114.199
Immediate Settlement [mm]	-6.69686	12.9942
Secondary Settlement [mm]	0	0
Loading Stress ZZ [kPa]	-150.351	223.307
Loading Stress XX [kPa]	-183.541	385.619
Loading Stress YY [kPa]	-300.393	230.656
Effective Stress ZZ [kPa]	-150.351	223.307
Effective Stress XX [kPa]	-307.47	501.891
Effective Stress YY [kPa]	-361.851	430.244
Total Stress ZZ [kPa]	-150.351	223.307
Total Stress XX [kPa]	-307.47	501.944
Total Stress YY [kPa]	-361.851	430.27
Modulus of Subgrade Reaction (Total) [kPa/m]	0	51.5442
Modulus of Subgrade Reaction (Immediate) [kPa/m]	0	315.905
Modulus of Subgrade Reaction (Consolidation) [kPa/m]	0	50.557
Total Strain	-0.032349	0.0303472
Pore Water Pressure [kPa]	-0.50506	0.575155
Excess Pore Water Pressure [kPa]	-0.50506	0.575155
Degree of Consolidation [%]	-0.16319	0.000873596
Pre-consolidation Stress [kPa]	0	143.253
Over-consolidation Ratio	-241.627	263.163
Void Ratio	-0.0515903	0.0549933
Permeability [m/s]	-3.76018e-09	1.97241e-08
Coefficient of Consolidation [m^2/s]	0	0
Hydroconsolidation Settlement [mm]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-2.08116	20.5655

Loads

1. Rectangular Load: "Rectangular Load 1"

GENERAL CONTRACTOR

Consorzio IricAV Due

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183 + 777.48Relazione Geotecnica

Progetto Lotto Codifica Foglio IN17 12 EI2RBRI64C0001A 135 di 138

Length 60 m Width 9.9 m Rotation angle 90 degrees Load Type Flexible Area of Load 594 m2 Load 14.4 kPa Depth -11.7 m

Installation Stage

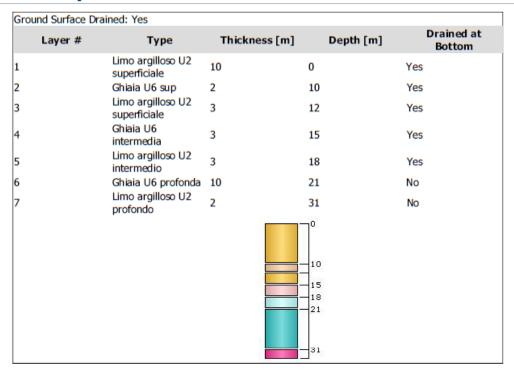
Posa Ballast = 4040 d

Coordinates

	X [m]	Y [m]	
16.25		21.0393	
16.25		81.0393	
6.35		81.0393	
6.35		21.0393	

Embankments

1. Embankment: "Embankment Load 1"


Label Center Line Near End Ang Far End Ang Number of L Base Width	le			Embankment (25.3, 21) to 90 degrees 90 degrees 2 44	t Load 1 (25.3, 81.75)	7)	
Layer	Stage	Left Bench Width (m)	Left Angle (deg)	Height (m)	Unit Weight (kN/m3)	Right Angle (deg)	Right Bench Width (m)
1	Rilevato esistente = 0 d	0	37	5.4	20	37	0
2	Rilevato esistente = 0 d	0	37	4.3	20	37	0

2. Embankment: "Embankment Load 2"

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Foglio Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk IN17 12 EI2RBRI64C0001A 136 di Relazione Geotecnica 138

Label		Embankment Load 2	
Center Line		(-15.2, 21) to (-15.2, 8	81.757)
Near End Angle		90 degrees	
Far End Angle		90 degrees	
Number of Zones		9	
Number of Sections		9	
Zone	Na	me	Unit Weight (kN/m3)
1	New Zone	20	
2	New Zone 2	20	
3	New Zone 3	20	
4	New Zone 4	20	
5	New Zone 5	20	
6	New Zone 6	20	
7	New Zone 7	20	
8	New Zone 8	20	
9	New Zone 9	20	

Soil Layers

Soil Properties

GENERAL CONTRACTOR Consorzio IricAV Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk	Progetto	Lotto	Codifica	Foglio
183+777.48 Relazione Geotecnica	IN17	12	EI2RBRI64C0001A	137 di 138

		Lima amilia	chi-i-	us time annillan
Property	Ghiaia U6 sup	Limo argillos U2 superficia	o Ghiaia le interm	
Color				
Unit Weight [kN/m3]	20	18.5	20	18.5
Saturated Unit Weight [kN/m3]	20	18.5	20	18.5
K0	1	1	1	1
Immediate Settlement	Enabled	Disabled	Enabled	Disabled
Es [kPa]	60000	-	100000	-
Esur [kPa]	60000	-	100000	-
Primary Consolidation	Disabled	Enabled	Disabled	Enabled
Material Type		Non-Linear		Non-Linear
Cc	-	0.31	-	0.31
Cr	-	0.026	-	0.026
e0	-	0.7	-	0.7
Pc [kPa]	-	260	-	360
Cv [m2/s]	-	5e-07	-	5e-07
Cvr [m2/s]	-	5e-07	-	5e-07
B-bar	-	1	-	1
Undrained Su A [kN/m2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8
Piezo Line ID	2	2	2	2
Property		Limo argill profon		Ghiaia U6 profonda
Color		100		
Unit Weight [kN/m3]		18.5	2	0
Saturated Unit Weight [kN/m3]		18.5		0
K0		1	1	
Immediate Settlement		Disabled	_	nabled
Es [kPa]		-		40000
Esur [kPa]				40000
Primary Consolidation		Enabled)isabled
-				
Material Type		Non-Linear		
		Non-Linear 0.31	_	
Сс		0.31	-	
Material Type Cc Cr e0		0.31 0.026	-	
Cc Cr e0		0.31 0.026 0.7	-	
Cc Cr e0 Pc [kPa]		0.31 0.026 0.7 360	-	
Cc Cr e0 Pc [kPa] Cv [m2/s]		0.31 0.026 0.7 360 5e-07	- - - -	
Cc Cr e0 Pc [kPa] Cv [m2/s] Cvr [m2/s]		0.31 0.026 0.7 360 5e-07 5e-07	- - - - -	
Cc Cr e0 Pc [kPa] Cv [m2/s] Cvr [m2/s] B-bar		0.31 0.026 0.7 360 5e-07 1	- - - - - -	
Cc Cr e0 Pc [kPa] Cv [m2/s] Cvr [m2/s] B-bar Undrained Su A [kN/m2]		0.31 0.026 0.7 360 5e-07 5e-07	- - - - - - 0	
Cc Cr e0 Pc [kPa] Cv [m2/s] Cvr [m2/s] B-bar		0.31 0.026 0.7 360 5e-07 1	0	

GENERAL CONTRACTOR

Rilevato ferroviario seconda variante L.S. da pk 182+974.76 a pk 183+777.48 Relazione Geotecnica

Progetto	Lotto	Codifica	Foglio
IN17	12	EI2RBRI64C0001A	138 di 138

Groundwater

Groundwater method Water Unit Weight Piezometric Lines 9.81 kN/m3

Piezometric Line Entities

	ID	Depth (m)	
1		1 m	
2		1 m	

Query Points

	Point #	Query Point Name	(X,Y) Location	Number of Divisions
1		Query Point 1	6.35, 50.6954	Auto: 73
2		Query Point 2	37.3, 50.9015	Auto: 73
3		Asse binario 1	9.033, 50	Auto: 73
4		Asse binario 2	13.033, 50	Auto: 73

Query Lines

	Line #	Query Line Name	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1		Query Line 1	-75.457, 51.0393	108.057, 51.0393	300	Auto: 73
2		Query Line 2	-75.457, 51	108.057, 51	300	Auto: 73