COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA

Lotto funzionale Verona – Bivio Vicenza

PROGETTO ESECUTIVO

IN- INTERFERENZE VIARIE

dalla Unione Europea

IN35 - DEVIZIONI STRADALE STRADA SS PORCILANA DAL KM 16+440 AL KM 17+925

	GENERAL CON	TRACTOR				IRETTORE LA	AVORI	
	OGETTISTA INTEGRATORE	Consorzio	1					SCALA
I go oc	MALAVENDA					-		
10	al argine degli per de Venezia n. 4289	ing. Paolo	Carmona					
Data:	Novembre 2021	Data:Nov	embre 202	21				
COM	messa lotto fasi	E ENTE	TIPO DO	OC. OPERA	A/DISCIPLINA	PROGR.	REV.	FOGLIO
IN	1 7 1 2 E	1 2	R	Н	3 5 0	0 0	0 2 A	D
							visto consorzi	O IRICAV DUE
						irma		Data
<	Consorzi	o IricA1	/ Due		Luca	RANDOLFI		
Prog	ettazione:							
Prog	ettazione: Descrizione	Redatto	Data	Verificato	Data	Approvate	o Data	IL PROGETTISTA
		Redatto Coding	Data 20/09/21	Verificato C.Pinti	Data 20/09/21	Approvate P.Luciani	D Data 20/09/21	IL PROGETTISTA Giuseppetabrizio Coppa
Rev.	Descrizione					+ ''		*
Rev.	Descrizione	Coding	20/09/21		20/09/21	P.Luciani	20/09/21	*

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due Progetto Codifica Lotto IN17 12 EI2RIN3500002

Α

Sc	mmaric								
1	PREMES	SA	3						
2	SCOPO	SCOPO DEL DOCUMENTO							
2.1	METOD	O AASHTO	4						
	2.1.1	VALUTAZIONE DEL TRAFFICO VEICOLARE	5						
	2.1.2	Indice Strutturale (o structural number) sn della pavimentazione	7						
	2.1.3	AFFIDABILITÀ PERCENTUALE R1 E FATTORE DI AFFIDABILITÀ ZR	8						
	2.1.4	PORTANZA DEL SOTTOFONDO	8						
	2.1.5	NUMERO MASSIMO DI PASSAGGI DI ASSI EQUIVALENTI DA 8,2 TON	9						
	2.1.6	FATTORE DI SICUREZZA A FATICA FS	9						
3	PAVIMEI	NTAZIONE DI PROGETTO	10						

3.1 VERIFICA DELLA PAVIMENTAZIONE DELLE DEVIAZIONI DELLA STRADA STATALE PORCILANA (TIPO C1) 12

GENERAL CONTRACTOR Consorzio IricAty Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIN3500002	А

1 PREMESSA

Il presente documento si riferisce all'intero 1° Lotto Funzionale Verona-Bivio Vicenza ricompreso tra le progressive pk. 0+000 e pk. 44+250. Il suddetto Lotto Funzionale Verona-Bivio Vicenza, fino alla pk. 44+250, è costituito dall'unione dei sub-lotti: il primo da Verona (pk. 0+000) a Montebello Vicentino (pk. 32+525), il secondo poi fino a Bivio Vicenza (pk. 44+250), al fine di consentire l'innesto della linea AV/AC sulla linea storica esistente.

Nell'ambito del progetto esecutivo della linea AC Verona-Padova, è previsto il riassetto del reticolo viario limitrofo alla ferrovia attraverso la realizzazione di nuove viabilità o l'adequamento di quelle esistenti.

Le opere previste si configurano o come prolungamento di opere esistenti, nei tratti in cui la nuova linea AC si sviluppa in affiancamento alla linea storica, o come opere di nuova realizzazione secondo le categorie previste dalle norme cogenti per la progettazione di nuove strade ed adeguamento di quelle esistenti.

2 SCOPO DEL DOCUMENTO

La presente relazione è incentrata sul dimensionamento del pacchetto della pavimentazione stradale previsto per la WBS denominata IN35 – DEVIAZIONE STRADALE STRADA SS PORCILANA DAL KM 16+440 AL KM 17+925 ovvero la realizzazione di una viabilità estraurbana in affiancamento alla nuova linea ferroviaria di circa 1784m che parte dalla rotatoria esistente fra la Porcilana e la SP39 e si riconnette con la Statale all'altezza dell'intersezione a T esistente con Via Lioncello. In stretto affiancamento all'asse principale si prevede la realizzazione di una strada vicinale di accesso ai campi di sviluppo pari a circa 1360m. L'intervento insiste in corrispondenza del km 17+000 circa della linea ferroviaria in progetto.

Il calcolo è finalizzato a verificare che le pavimentazioni abbiano una resistenza a fatica tale da rimanere in efficienza durante tutta la vita utile prevista e che se ne debba prevedere il rifacimento integrale solo al termine di quest'ultima. Le verifiche sono state eseguite con la metodologia semi-empirica dell'AASHTO Guide for Design of Pavement Structures.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIN3500002	А

2.1 METODO AASHTO

Il metodo AASHTO permette di ricavare il numero totale di passaggi di assi equivalenti da 8.2 t (N_{8,2max} [ESALS]) che una pavimentazione di assegnate caratteristiche meccaniche riesce a sopportare prima di raggiungere un grado di ammaloramento, cioè un livello di funzionalità accettabile, in relazione alla "Affidabilità" richiesta.

Il numero ricavato è confrontato con quello dei passaggi di assi standard alla fine della "Vita utile" ($N_{8.2}$), calcolati attraverso lo spettro di traffico indicato nel Catalogo delle Pavimentazioni Stradali CNR.

È opportuno osservare che il rifacimento dello strato di usura dopo un certo numero di anni è da considerarsi come un intervento manutentivo ordinario e prevedibile al fine di assicurare le necessarie caratteristiche di aderenza nelle pavimentazioni flessibili e semi-rigide.

L'obiettivo si sostanzia attraverso la definizione dei seguenti parametri:

- La "Vita utile", intesa come il numero di anni durante il quale la pavimentazione deve assicurare, attraverso normali operazioni di manutenzione, condizioni di funzionalità superiori allo stato limite;
- Lo "stato limite", cioè il livello minimo di funzionalità della sovrastruttura ritenuto accettabile, superato il quale è necessario intervenire. Nel metodo empirico si fa riferimento al PSI (Present Serviceability Index);
- L'"affidabilità", cioè la probabilità che la sovrastruttura sia in grado di assicurare, con normali operazioni di manutenzione, condizioni di circolazione superiori allo stato limite per l'intera durata della vita utile.

2.1.1 VALUTAZIONE DEL TRAFFICO VEICOLARE

Il numero di passaggi cumulati di veicoli commerciali alla fine della Vita utile è fornito dalla seguente espressione:

$$T^N = N_{vca} \cdot \frac{(1+R)^N - 1}{R}$$

Dove:

- N = vita utile della sovrastruttura espressa in anni;
- R = tasso di incremento annuo del traffico commerciale;
- N_{vca} = numero dei passaggi di veicoli commerciali che si prevede transiterà durante il primo anno successivo all'apertura della strada, ed è definito da:

$$N_{vca} = TGM_{tot} \cdot p_c \cdot p_{sm} \cdot p_{corsia} \cdot d \cdot gg_{comm}$$

in cui:

- TGM_{tot} il traffico giornaliero medio TGM in veicoli/giorno, che transita o si presume che transiterà nell'infrastruttura durante il primo anno di vita utile;
- p_c = percentuale di veicoli commerciali di peso non inferiore a 3 ton sul traffico totale;
- p_{sm} = aliquota di traffico nella direzione più carica;
- p_{corsia} = percentuale dei veicoli commerciali sulla corsia di marcia normale;
- d = coefficiente di dispersione delle traiettorie;
- gg_{comm} = numero di giorni commerciali per anno.

Noto il numero dei veicoli commerciali transitanti sulla corsia più lenta alla fine della vita utile, il calcolo del numero di assi standard equivalenti è stato eseguito ricorrendo ai coefficienti di equivalenza definiti da AASHTO e agli spettri di traffico suggeriti nel Catalogo delle Pavimentazioni Stradali:

	Tir	oi di veicoli co	mmer	ciali. nı	ımero	d'assi.	distrib	uzione	dei car	ichi pei	asse					
T:-	•	Numero	Peso assi (kN)													
Пр	ologie di veicoli commerciali	totale assi		10	20	20	40	50	60	70	80	90	100	110	120	130
1	Autocarri leggeri	2		1	1											
2	Autocarri leggeri	2			1	1										
3	Autocarri medi e pesanti	2	20				1				1					
4	Autocarri medi e pesanti	2	osad					1						1		
5	Autocarri pesanti	3	per				1				2					
6	Autocarri pesanti	3	uiti						1				2			
7	Autotreni e autoarticolati	4	distribuiti per				1				2	1				
8	Autotreni e autoarticolati	4	i dis						1				3			
9	Autotreni e autoarticolati	5	assi				1				4					
10	Autotreni e autoarticolati	5	io di						1			2	2			
11	Autotreni e autoarticolati	5	Numero				1				3		1			
12	Autotreni e autoarticolati	5	N						1			3		1		
13	Mezzi d'opera	5						1							1	3
14	Autobus	2					1				1					
15	Autobus	2							1				1			
16	Autobus	2						1			1					

Figura 1: veicoli commerciali, numero di assi, distribuzione dei carichi per asse (Catalogo delle Pavimentazioni)

		Spettri o	li traffi	co di v	eicoli c	omme	rciali p	er ciaso	un tipo	di str	ada							
	Tipo di strada	Cat.	Cat. Tipo di veicolo															
		s tra da	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Autostrade extraurbane	AE	12,2	0	24,4	14,6	2,4	12,2	2,4	4,9	2,4	4,9	2,4	4,9	0,1	0	0	12,2
2	Autostrade urbane	AU	18,2	18,2	16,5	0	0	0	0	0	0	0	0	0	1,6	18,2	27,3	0
3	Strade extraurbane principali e secondarie a forte traffico	В	0	13,1	39,5	10,5	7,9	2,6	2,6	2,5	2,6	2,5	2,6	2,6	0,5	0	0	10,5
4	Strade extraurbane secondarie ordinarie	С	0	0	58,8	29,4	0	5,9	0	2,8	0	0	0	0	0,2	0	0	2,9
5	Strade extraurbane secondarie turistiche	FE	24,5	0	40,8	16,3	0	4,15	0	2	0	0	0	0	0,05	0	0	12,2
6	Strade urbane di scorrimento	D	18,2	18,2	16,5	0	0	0	0	0	0	0	0	0	1,6	18,2	27,3	0
7	Strade urbane di quartiere e locali	E	80	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
,	Strade urbane locali	FU	80	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
8	Corsie preferenziali	PR	0	0	0	0	0	0	0	0	0	0	0	0	0	47	53	0

Figura 2: Tipici spettri di traffico di veicoli commerciali per ciascun tipo di strada (Catalogo Pavimentazioni CNR)

In definitiva, si pone:

$$N_{8,2} = T^N \cdot C_{SN} \cdot n_a$$

in cui n_a è il numero medio di assi per veicolo commerciale; C_{SN} un coefficiente di equivalenza tra il generico asse reale, di peso P_i e tipologia T_i , e l'asse singolo standard da 8,2 ton, ed è definito dalla sequente espressione:

$$C_{SNi} = C_{SN} \left(P_i, T_i, PSF_f \right) = 10^{-A}$$

Con:

$$A = \left\{ 4.79 \cdot \left[log(18+1) - log(0.225 \cdot P_i + T_i) \right] + 4.33 \cdot log(T_i) + \frac{G}{B_i} - \frac{G}{B^*} \right\}$$

$$G = log \frac{PSI_i - PSI_f}{2.7}$$

$$B_i = 0.40 + \frac{0.081 \cdot (0.225 \cdot P_i + T_i)^{3.23}}{\left(\frac{SN}{2.54} + 1\right)^{5.19} \cdot T_i^{3.23}}$$

- PSI_i = Present Serviceability Index all'apertura della strada, assunto pari a 4.2 per tenere conto delle inevitabili imperfezioni costruttive;
- PSIf = Present Serviceability Index al termine della vita utile, assunto in funzione del tipo di strada e scelto in base alle indicazioni del Catalogo delle Pavimentazioni CNR;
- SN = Indice Strutturale relativo alla sovrastruttura, meglio definito nel seguito.

	Tipo di strada	Cat. strada	Affidabilità	PSI
1	Autostrade extraurbane	AE	90%	3,00
2	Autostrade urbane	AU	95%	3,00
3	Strade extraurbane principali e secondarie a forte traffico	В	90%	2,50
4	Strade extraurbane secondarie ordinarie	С	85%	2,50
5	Strade extraurbane secondarie turistiche	FE	80%	2,50
6	Strade urbane di scorrimento	D	95%	2,50
7	Strade urbane di quartiere e locali	Е	90%	2,00
	Strade urbane locali		90%	2,00
8	Corsie preferenziali	PR	95%	2,50

Figura 3: valori di affidabilità e PSI

2.1.2 INDICE STRUTTURALE (O STRUCTURAL NUMBER) SN DELLA PAVIMENTAZIONE

Lo "Structural Number" SN è un parametro che tiene conto della resistenza strutturale della pavimentazione. Esso è funzione degli spessori degli strati s_i, della resistenza dei materiali impiegati, rappresentata per mezzo dei coefficienti strutturali di strato a_i, e della loro sensibilità all'acqua rappresentata attraverso i coefficienti di drenaggio m_i. L'espressione analitica dello Structural Number è:

$$SN = \sum_{i} a_i \cdot s_i \cdot m_i$$

dove:

- i = numero degli strati costituenti la sovrastruttura stradale;
- a_i = coefficiente che esprime la capacità relativa dei materiali impiegati nei vari strati della pavimentazione a contribuire come componenti strutturali alla funzionalità della sovrastruttura. Tali coefficienti sono funzione della tipologia e relative proprietà del materiale.
- s_i = spessore dello strato i-esimo della sovrastruttura in pollici (inch);
- m_i = coefficiente funzione della qualità del drenaggio e della percentuale di tempo durante il quale la pavimentazione è esposta a livelli di umidità prossimi alla saturazione. Siccome l'effetto che l'acqua ha sui materiali legati è praticamente nullo si pone m=1.

Nello specifico i coefficienti strutturali relativi agli strati di usura (a_1) e di base (a_3) si ricavano direttamente dai monogrammi presenti sull'AASHTO Guide in funzione della stabilità Marshall scelta per i rispettivi strati (si considera per la stabilità Marshall a 75 colpi i valori indicati nel Catalogo delle Pavimentazioni stradali CNR). Il valore del coefficiente relativo allo strato di collegamento (a_2) si ricava per interpolazione lineare dei parametri a_1 e a_3 , ricavati sempre dall'AASHTO Guide, in funzione, ovviamente, del valore della stabilità Marshall relativa allo strato di collegamento (binder). Infine, il coefficiente riguardante lo strato di fondazione a_4 in misto granulare si ricava sempre dall'AASHTO Guide in funzione del CBR della fondazione.

Stabilità Marshall							
Strato S75 (kg) S50 (kg) S50							
usura	1100	916.67	2016.67				
binder	1000	833.33	1833.33				
base	800	666.67	1466.67				

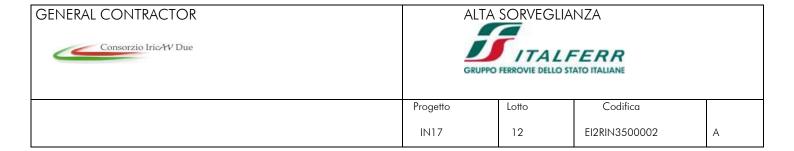
Il metodo AASHTO utilizza un valore della stabilità Marshall a 50 colpi espresso in libbre. Di seguito l'espressione di conversione dalla stabilità a 75 colpi, espressa in kg, alla stabilità Marshall a 50 colpi espressa in libbre:

$$S50(lb) = \frac{S75(kg)}{1.2} \cdot 2.2$$

2.1.3 AFFIDABILITÀ PERCENTUALE R1 E FATTORE DI AFFIDABILITÀ ZR

Per "Affidabilità" s'intende la probabilità che la sovrastruttura sia in grado di assicurare, con normali operazioni di manutenzione, condizioni di circolazione superiori allo stato limite per l'intera durata della vita utile. Nei casi in esame, l'affidabilità percentuale R1 è stata ricavata dalla seguente tabella, tratta dal Catalogo delle Pavimentazioni CNR:

Fattore di affidabilità Z _r								
R_1	80%	85%	90%	95%				
Z _r	-0.841	-1.037	-1.282	-1.645				


2.1.4 PORTANZA DEL SOTTOFONDO

La "portanza" di un terreno è la sua capacità di sopportare i carichi senza che si verifichino eccessive deformazioni, che risultano essere di tipo elasto – plastico - viscoso.

Il parametro d'interesse da impiegare nel calcolo della pavimentazione con il metodo empirico è il modulo resiliente M_R .

In linea con le indicazioni del Capitolato Generale Tecnico di Appalto Delle Opere Civili - Parte II - Sezione 5, la superficie costituente il piano di posa della sovrastruttura stradale, sia in trincea che in rilevato, sarà realizzata mediante formazione di uno strato di terra fortemente compattato (supercompattato) di spessore non inferiore a 30 cm (spessore finito). Il modulo di deformabilità M_d di tale strato non dovrà essere inferiore ad 80 MPa. Da tale valore è possibile ricavare il modulo resiliente per mezzo della seguente relazione:

$$M_R = 2 \cdot M_d (MPa) = 160 MPa$$

2.1.5 NUMERO MASSIMO DI PASSAGGI DI ASSI EQUIVALENTI DA 8,2 TON.

Il numero massimo di passaggi di assi equivalenti che la pavimentazione può sopportare $(N_{8,2max})$ è ricavabile dalla seguente espressione:

$$log(N_{8,2max}) = Z_r \cdot S_0 + 9.36 \cdot log(SN+1) - 0.20 + \frac{log(\frac{\Delta PSI}{4.2-1.5})}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \cdot log(M_R) - 8.07$$

essendo:

- ΔPSI = differenza tra l'indice di funzionalità della pavimentazione e al termine della vita utile;
- S₀ = deviazione standard relativa all'aleatorietà delle previsioni di traffico e delle prestazioni della pavimentazione, assunta pari a 0.45;
- M_R = modulo resiliente del sottofondo, espresso in psi;
- SN = indice strutturale della pavimentazione.

2.1.6 FATTORE DI SICUREZZA A FATICA FS

I risultati delle verifiche sono espressi attraverso il "fattore di sicurezza a fatica FS", dato dal rapporto tra il numero massimo ($N_{8.2\text{max}}$) di passaggi di assi equivalenti sopportabili dalla struttura, nell'arco della vita utile, e il numero di assi effettivamente transitanti sulla pavimentazione $N_{8.2}$ nel medesimo intervallo temporale:

$$FS = \frac{N_{8.2max}}{N_{8.2}}$$

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio Iric/AV Due Progetto IN17 12 EI2RIN3500002 A

3 PAVIMENTAZIONE DI PROGETTO

In mancanza di dati di traffico di dettaglio per l'intervento di progetto, come portata veicolare è stata presa a riferimento la Portata di Servizio (PS) per corsia corrispondente al LOS richiesto, indicata nel D.M. 05/11/2001.

Quindi in questo caso per la strada Statale Porcilana catalogata come una strada di tipo C1 è pari a 600 autov/h.

La portata oraria effettiva è stata quindi ricavata ipotizzando a favore di sicurezza una percentuale di veicoli pesanti pari al 15% per la C1. Il coefficiente di equivalenza tra autoveicoli e veicoli commerciali è stato inoltre posto pari a n=2.5. Da cui:

Per la strada Statale Porcilana (tipo C1)

$$V = \frac{2PS}{[1 + p(n-1)]} = \frac{2 \times 600}{[1 + 0.15 \times (2.5 - 1)]} \cong 980 \ veic/h$$

Il TGM a fine vita utile si ricava invertendo la relazione tra questo e la portata oraria nell'ora di punta:

$$V = \frac{c \times TGM}{phf} (veic/h)$$

in cui c è il fattore di conversione da TGM a V (c = 0.08) e phf il fattore dell'ora di punta (phf = 0.85).

Per la strada Statale Porcilana (tipo C1)

$$TGM = V \times \frac{phf}{c} = 980 \times \frac{0.85}{0.08} = 10413 \ veic/giorno$$

L'analisi consisterà nel verificare che, al termine della vita utile della pavimentazione (20 anni), con la percentuale di veicoli pesanti ipotizzata e lo spettro di traffico previsto per la strada in oggetto (Catalogo delle pavimentazioni CNR) risulti $F_{\rm s}>1$

- Per la strada Statale Porcilana (tipo C1) in cui si è ipotizzata una percentuale di mezzi pesanti pari al 15% ed si ha un TGM_{fin} = 10413 veic/giorno

Per l'intervento in questione, su tutte le viabilità previste, è stata scelta una pavimentazione flessibile avente spessore totale pari a 45 cm così costituita:

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIN3500002	А

- usura in conglomerato bituminoso chiuso di spessore pari a 4 cm.
- binder in conglomerato bituminoso semichiuso di spessore pari a 6 cm.
- base in conglomerato bituminoso aperto di spessore pari a 10 cm.
- fondazione in misto granulare frantumato stabilizzato di spessore pari a 25 cm.

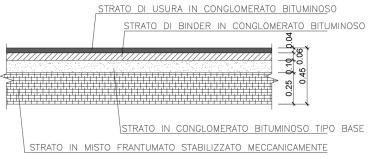


Figura 4: pavimentazione di progetto

3.1 VERIFICA DELLA PAVIMENTAZIONE DELLE DEVIAZIONI DELLA STRADA STATALE PORCILANA (TIPO C1)

Di seguito, sotto forma tabellare, sono riportate le analisi di verifica:

DATI DI TRAFFICO					
TGM _{tot} veicoli/gg	10,413				
N (Vita utile)	20				
R % (tasso incremento annuo traffico commerciale)	3				
p _{sm} % (traffico per senso di marcia)	50				
p _c % (veicoli commerciali)	15.00				
p _{corsia} % (veicoli commerciali sulla corsia di calcolo)	100				
numero giorni di riferimento TGM	365				
n _{vca} Numero veicoli/anno sulla corsia più carica	780.98				
T ²⁰	7,659,558				

Tipo di strada	C - Strada extr. secondaria ordinaria
----------------	---------------------------------------

Legenda per l'attribuzione della categoria di strada					
AE	Autostrade extraurbane				
AU	Autostrade urbane				
В	Strade extraurbane principali e secondarie a forte traffico				
С	Strade extraurbane secondarie ordinarie				
FE	Strade extraurbane secondarie turistiche				
D	Strade urbane di scorrimento				
Е	Strade urbane di quartiere e locali				
FU	Strade urbane locali				
PR	Corsie preferenziali				

Affidabilità %	85
Z _R	-1.037
S ₀	0.45
PSI _{iniziale}	4.2
PSI _{finale}	2.5
ΔΡSΙ	1.7

GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIN3500002	А

M _r (MPa)	M _r (psi)	
160	23,206.08	

PAVIMENTAZIONE	Spessore h _i (cm)	Coeff. materiale ai	Coeff. drenaggio m _i	Structural Number (cm)	
Sottofondo					
Misto cementato		0.25	1	0.00	
Misto granulare	25	0.11	1	2.75	
Base C.B.	10	0.28	1	2.80	
Binder C.B.	6	0.40	1	2.40	
Usura C.B.	4	0.43	1	1.72	
	45			9.67	cm
				3.81	pollici

Log(W _{8.2})	7.493458809	$LogW_{18} = Z_r \cdot S_0 + 9.36 \cdot (\log SN + 1) - 0.20 + \frac{\log \frac{(PSI_{jn} - PSI_{jin})}{4.2 - 1.5}}{0.40 + \frac{1094}{(SN + 1)^{4.19}}} + 2.32 \cdot \log M_r - 8.07$			
C _{SN}	2.107				
Numero di passaggi di assi ed	quivalenti previsti nella vita utile				
N _{8,2} =T ₂₀ *C _{SN}	16,138,500	Coefficiente di sicurezza FS =	W8.2/N8.2 =	1.93	
Numero di passaggi di as	ssi equivalenti sopportabili				
W _{8.2}	31,150,054		VERIFICATO		
Numero di passaggi veico	oli commerciali sopportabili				
T ²⁰ =N _{8,2} /C _{SN}	14,784,252				