COMMITTENTE:

ALTA SORVEGLIANZA:

GENERAL CONTRACTOR:

GENERAL CONTRACTOR

Progetto cofinanziato

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01
LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA
Lotto funzionale Verona – Bivio Vicenza
PROGETTO ESECUTIVO
NV-NUOVA VIABILITA' INTERFERENZE VIARIE
NV58 - REALIZZAZIONE DI ROTATORIA TRA VIA DEL LAVORO E SP ALMISANESE
RELAZIONE TECNICA SULLE PAVIMENTAZIONI STRADALI

DIRETTORE LAVORI

Cod. origine:

11 0000	OFTENTA INSTEAD ATORE	T =							
	OGETTISTA INTEGRATORE	Consorz	io						SCALA
Inge C	ovanni MALAVENDA	Irigav	Due						-
Iscritto	all ordine degli neri di Venezia n. 4289	ing 600	lo Carmo						
182 EM	4289	ing. Poo	Juli	ond					
Data:		Data:							
СОМ	MESSA LOTTO FAS	SE ENTE	TIPO D	OC. OPER	A/DISCIPLINA	PRO	GR. I	REV.	FOGLIO
					/ F O O				D
IN	1 7 1 2 E	1 2	R	H NV	5 8 0	0 0	0 2	A	- - - - -
							VISTO C	ONSORZIO IRICAV D	UE
					Fi	Data			
	Consorzi	o IricA1	V D110		Luca	RANDOLF	I		
	Corisorzi	O IIICA	v Due						
Prog	ettazione:							-	
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approve	ato D	ata IL	PROGETTISTA
		Coding		C.Pinti		P.Luciar		Giuse	ppetabrizio Coppa
Α	EMISSIONE	flei	30/07/21	Can We	30/07/21	Suoi Pris	30/	07/21	OFDINE 21
								ing	A8176 O
		-							100 * 490
	1		ID. 141	F010000	20000		Filo: INI	1712EI2RHNV580	200024
UIG. 8	3377957CD1		JP: J41	E9100000	10007		1 110.111	1/12/12/11/19/00	JUUU2/A

GENERAL CONTRACTOR

Progetto	Lotto	Codifica	
IN17	11	EI2RHNV5800002	Α

Sommario

1	PREMESS	SA	3
2	SCOPO	DEL DOCUMENTO	3
2.1	METODO	O AASHTO	4
	2.1.1	VALUTAZIONE DEL TRAFFICO VEICOLARE	5
	2.1.2	INDICE STRUTTURALE (O STRUCTURAL NUMBER) SN DELLA PAVIMENTAZIONE	7
	2.1.3	AFFIDABILITÀ PERCENTUALE R1 E FATTORE DI AFFIDABILITÀ ZR	8
	2.1.4	PORTANZA DEL SOTTOFONDO	8
	2.1.5	NUMERO MASSIMO DI PASSAGGI DI ASSI EQUIVALENTI DA 8,2 TON	9
	2.1.6	FATTORE DI SICUREZZA A FATICA FS	9
3	PAVIMEI	NTAZIONE DI PROGETTO	10
3.1	VERIFICA	A DELLA PAVIMENTAZIONE	11

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLI TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	11	EI2RHNV5800002	А

1 PREMESSA

Il presente documento si riferisce all'intero 1° Lotto Funzionale Verona-Bivio Vicenza ricompreso tra le progressive pk. 0+000 e pk. 44+250.

Nell'ambito del progetto esecutivo della linea AC Verona-Padova, è previsto il riassetto del reticolo viario limitrofo alla ferrovia attraverso la realizzazione di nuove viabilità o l'adeguamento di quelle esistenti.

Le opere previste si configurano o come prolungamento di opere esistenti, nei tratti in cui la nuova linea AC si sviluppa in affiancamento alla linea storica, o come opere di nuova realizzazione secondo le categorie previste dalle norme cogenti per la progettazione di nuove strade ed adeguamento di quelle esistenti.

2 SCOPO DEL DOCUMENTO

La presente relazione è incentrata sul dimensionamento del pacchetto della pavimentazione stradale previsto per la WBS denominata NV58 - Realizzazione di un'intersezione a rotatoria tra Via del Lavoro e la SP17 Almisanese.

Il calcolo è finalizzato a verificare che le pavimentazioni abbiano una resistenza a fatica tale da rimanere in efficienza durante tutta la vita utile prevista e che se ne debba prevedere il rifacimento integrale solo al termine di quest'ultima. Le verifiche sono state eseguite con la metodologia semi-empirica dell'AASHTO Guide for Design of Pavement Structures.

GENERAL CONTRACTOR Consorzio IricAt Due		SORVEGLI TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	11	EI2RHNV5800002	А

2.1 METODO AASHTO

Il metodo AASHTO permette di ricavare il numero totale di passaggi di assi equivalenti da 8.2 t (N_{8,2max} [ESALS]) che una pavimentazione di assegnate caratteristiche meccaniche riesce a sopportare prima di raggiungere un grado di ammaloramento, cioè un livello di funzionalità accettabile, in relazione alla "Affidabilità" richiesta.

Il numero ricavato è confrontato con quello dei passaggi di assi standard alla fine della "Vita utile" (N_{8.2}), calcolati attraverso lo spettro di traffico indicato nel Catalogo delle Pavimentazioni Stradali CNR.

È opportuno osservare che il rifacimento dello strato di usura dopo un certo numero di anni è da considerarsi come un intervento manutentivo ordinario e prevedibile al fine di assicurare le necessarie caratteristiche di aderenza nelle pavimentazioni flessibili e semi-rigide.

L'obiettivo si sostanzia attraverso la definizione dei seguenti parametri:

- La "Vita utile", intesa come il numero di anni durante il quale la pavimentazione deve assicurare, attraverso normali operazioni di manutenzione, condizioni di funzionalità superiori allo stato limite;
- Lo "stato limite", cioè il livello minimo di funzionalità della sovrastruttura ritenuto accettabile, superato il quale è necessario intervenire. Nel metodo empirico si fa riferimento al PSI (Present Serviceability Index);
- L'"affidabilità", cioè la probabilità che la sovrastruttura sia in grado di assicurare, con normali operazioni di manutenzione, condizioni di circolazione superiori allo stato limite per l'intera durata della vita utile.

2.1.1 VALUTAZIONE DEL TRAFFICO VEICOLARE

Il numero di passaggi cumulati di veicoli commerciali alla fine della Vita utile è fornito dalla seguente espressione:

$$T^N = N_{vca} \cdot \frac{(1+R)^N - 1}{R}$$

Dove:

- N = vita utile della sovrastruttura espressa in anni;
- R = tasso di incremento annuo del traffico commerciale;
- N_{vca} = numero dei passaggi di veicoli commerciali che si prevede transiterà durante il primo anno successivo all'apertura della strada, ed è definito da:

$$N_{vca} = TGM_{tot} \cdot p_c \cdot p_{sm} \cdot p_{corsia} \cdot d \cdot gg_{comm}$$

in cui:

- TGM_{tot} il traffico giornaliero medio TGM in veicoli/giorno, che transita o si presume che transiterà nell'infrastruttura durante il primo anno di vita utile:
- pc = percentuale di veicoli commerciali di peso non inferiore a 3 ton sul traffico totale;
- p_{sm} = aliquota di traffico nella direzione più carica;
- p_{corsia} = percentuale dei veicoli commerciali sulla corsia di marcia normale;
- d = coefficiente di dispersione delle traiettorie;
- ggcomm = numero di giorni commerciali per anno.

Noto il numero dei veicoli commerciali transitanti sulla corsia più lenta alla fine della vita utile, il calcolo del numero di assi standard equivalenti è stato eseguito ricorrendo ai coefficienti di equivalenza definiti da AASHTO e agli spettri di traffico suggeriti nel Catalogo delle Pavimentazioni Stradali:

	Tip	oi di veicoli co	mmer	ciali, nı	ımero	d'assi,	distrib	uzione	dei car	ichi pe	rasse					
Tin	ologie di veicoli commerciali	Numero				Peso assi (kN)										
	ologic di velcon commercian	totale assi		10	20	20	40	50	60	70	80	90	100	110	120	130
1	Autocarri leggeri	2		1	1											
2	Autocarri leggeri	2			1	1										
3	Autocarri medi e pesanti	2	S.				1				1					
4	Autocarri medi e pesanti	2	osad .					1						1		
5	Autocarri pesanti	3	per				1				2					
6	Autocarri pesanti	3	distribuiti						1				2			
7	Autotreni e autoarticolati	4	trib				1				2	1				
8	Autotreni e autoarticolati	4	idis						1				3			
9	Autotreni e autoarticolati	5	assi				1				4					
10	Autotreni e autoarticolati	5	ib o						1			2	2			
11	Autotreni e autoarticolati	5	Numero				1				3		1			
12	Autotreni e autoarticolati	5	Ž						1			3		1		
13	Mezzi d'opera	5						1							1	3
14	Autobus	2					1				1					
15	Autobus	2							1				1			
16	Autobus	2						1			1					

Figura 1: veicoli commerciali, numero di assi, distribuzione dei carichi per asse (Catalogo delle Pavimentazioni)

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLI ITALI FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	11	EI2RHNV5800002	А

	Spettri di traffico di veicoli commerciali per ciascun tipo di strada																	
	Tipo di strada	Cat.							Т	ipo di	veicol	0						
	Tipo di stiada	s tra da	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	Autostrade extraurbane	AE	12,2	0	24,4	14,6	2,4	12,2	2,4	4,9	2,4	4,9	2,4	4,9	0,1	0	0	12,2
2	Autostrade urbane	AU	18,2	18,2	16,5	0	0	0	0	0	0	0	0	0	1,6	18,2	27,3	0
3	Strade extraurbane principali e secondarie a forte traffico	В	0	13,1	39,5	10,5	7,9	2,6	2,6	2,5	2,6	2,5	2,6	2,6	0,5	0	0	10,5
4	Strade extraurbane secondarie ordinarie	С	0	0	58,8	29,4	0	5,9	0	2,8	0	0	0	0	0,2	0	0	2,9
5	Strade extraurbane secondarie turistiche	FE	24,5	0	40,8	16,3	0	4,15	0	2	0	0	0	0	0,05	0	0	12,2
6	Strade urbane di scorrimento	D	18,2	18,2	16,5	0	0	0	0	0	0	0	0	0	1,6	18,2	27,3	0
7	Strade urbane di quartiere e locali	E	80	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
	Strade urbane locali	FU	80	0	0	0	0	0	0	0	0	0	0	0	0	20	0	0
8	Corsie preferenziali	PR	0	0	0	0	0	0	0	0	0	0	0	0	0	47	53	0

Figura 2: Tipici spettri di traffico di veicoli commerciali per ciascun tipo di strada (Catalogo Pavimentazioni CNR)

In definitiva, si pone:

$$N_{8.2} = T^N \cdot C_{SN} \cdot n_a$$

in cui n_a è il numero medio di assi per veicolo commerciale; C_{SN} un coefficiente di equivalenza tra il generico asse reale, di peso P_i e tipologia T_i , e l'asse singolo standard da 8,2 ton, ed è definito dalla seguente espressione:

$$C_{SNi} = C_{SN} \left(P_i, T_i, PSF_f \right) = 10^{-A}$$

Con:

$$A = \left\{ 4.79 \cdot \left[log(18+1) - log(0.225 \cdot P_i + T_i) \right] + 4.33 \cdot log(T_i) + \frac{G}{B_i} - \frac{G}{B^*} \right\}$$

$$G = log \frac{PSI_i - PSI_f}{2.7}$$

$$B_i = 0.40 + \frac{0.081 \cdot (0.225 \cdot P_i + T_i)^{3.23}}{\left(\frac{SN}{2.54} + 1\right)^{5.19} \cdot T_i^{3.23}}$$

- PSI_i = Present Serviceability Index all'apertura della strada, assunto pari a
 4.2 per tenere conto delle inevitabili imperfezioni costruttive;
- PSIf = Present Serviceability Index al termine della vita utile, assunto in funzione del tipo di strada e scelto in base alle indicazioni del Catalogo delle Pavimentazioni CNR;
- SN = Indice Strutturale relativo alla sovrastruttura, meglio definito nel seguito.

	Tipo di strada	Cat. strada	Affidabilità	PSI
1	Autostrade extraurbane	AE	90%	3,00
2	Autostrade urbane	AU	95%	3,00
3	Strade extraurbane principali e secondarie a forte traffico	В	90%	2,50
4	Strade extraurbane secondarie ordinarie	С	85%	2,50
5	Strade extraurbane secondarie turistiche	FE	80%	2,50
6	Strade urbane di scorrimento	D	95%	2,50
7	Strade urbane di quartiere e locali	Е	90%	2,00
	Strade urbane locali	FU	90%	2,00
8	Corsie preferenziali	PR	95%	2,50

Figura 3: valori di affidabilità e PSI

2.1.2 INDICE STRUTTURALE (O STRUCTURAL NUMBER) SN DELLA PAVIMENTAZIONE

Lo "Structural Number" SN è un parametro che tiene conto della resistenza strutturale della pavimentazione. Esso è funzione degli spessori degli strati si, della resistenza dei materiali impiegati, rappresentata per mezzo dei coefficienti strutturali di strato ai, e della loro sensibilità all'acqua rappresentata attraverso i coefficienti di drenaggio mi.

L'espressione analitica dello Structural Number è:

$$SN = \sum_{i} a_i \cdot s_i \cdot m_i$$

dove:

- i = numero degli strati costituenti la sovrastruttura stradale;
- ai = coefficiente che esprime la capacità relativa dei materiali impiegati nei vari strati della pavimentazione a contribuire come componenti strutturali alla funzionalità della sovrastruttura. Tali coefficienti sono funzione della tipologia e relative proprietà del materiale.
- s_i = spessore dello strato i-esimo della sovrastruttura in pollici (inch);
- m_i = coefficiente funzione della qualità del drenaggio e della percentuale di tempo durante il quale la pavimentazione è esposta a livelli di umidità prossimi alla saturazione. Siccome l'effetto che l'acqua ha sui materiali legati è praticamente nullo si pone m=1.

Nello specifico i coefficienti strutturali relativi agli strati di usura (a₁) e di base (a₃) si ricavano direttamente dai monogrammi presenti sull'AASHTO Guide in funzione della stabilità Marshall scelta per i rispettivi strati (si considera per la stabilità Marshall a 75 colpi i valori indicati nel Catalogo delle Pavimentazioni stradali CNR). Il valore del coefficiente relativo allo strato di collegamento (a₂) si ricava per interpolazione lineare dei parametri a₁ e a₃, ricavati sempre dall'AASHTO Guide, in funzione, ovviamente, del valore della stabilità Marshall relativa allo strato di collegamento (binder). Infine, il coefficiente riguardante lo strato di

fondazione a₄ in misto granulare si ricava sempre dall'AASHTO Guide in funzione del CBR della fondazione.

	Stabilità Marshall									
Strato	\$75 (kg)	\$50 (kg)	\$50 (lb)							
usura	1100	916.67	2016.67							
binder	1000	833.33	1833.33							
base	800	666.67	1466.67							

Il metodo AASHTO utilizza un valore della stabilità Marshall a 50 colpi espresso in libbre. Di seguito l'espressione di conversione dalla stabilità a 75 colpi, espressa in kg, alla stabilità Marshall a 50 colpi espressa in libbre:

$$S50(lb) = \frac{S75(kg)}{1.2} \cdot 2.2$$

2.1.3 AFFIDABILITÀ PERCENTUALE R1 E FATTORE DI AFFIDABILITÀ ZR

Per "Affidabilità" s'intende la probabilità che la sovrastruttura sia in grado di assicurare, con normali operazioni di manutenzione, condizioni di circolazione superiori allo stato limite per l'intera durata della vita utile. Nei casi in esame, l'affidabilità percentuale R1 è stata ricavata dalla seguente tabella, tratta dal Catalogo delle Pavimentazioni CNR:

Fattore di affidabilità Zr									
R ₁	80%	85%	90%	95%					
Z _r	-0.841	-1.037	-1.282	-1.645					

2.1.4 PORTANZA DEL SOTTOFONDO

La **"portanza"** di un terreno è la sua capacità di sopportare i carichi senza che si verifichino eccessive deformazioni, che risultano essere di tipo elasto – plastico - viscoso.

Il parametro d'interesse da impiegare nel calcolo della pavimentazione con il metodo empirico è il modulo resiliente M_R .

In linea con le indicazioni del Capitolato Generale Tecnico di Appalto Delle Opere Civili - Parte II - Sezione 5, la superficie costituente il piano di posa della sovrastruttura stradale, sia in trincea che in rilevato, sarà realizzata mediante formazione di uno strato di terra fortemente compattato (supercompattato) di spessore non inferiore a $30\,$ cm (spessore finito). Il modulo di deformabilità $M_{\rm d}$ di tale strato non dovrà essere inferiore ad $80\,$ MPa. Da tale valore è possibile ricavare il modulo resiliente per mezzo della seguente relazione:

$$M_R = 2 \cdot M_d (MPa) = 160 MPa$$

GENERAL CONTRACTOR Consorzio Iric/W Due		A SORVEG	FERR	
	Progetto	Lotto	Codifica	
	IN17	11	EI2RHNV5800002	Α

2.1.5 NUMERO MASSIMO DI PASSAGGI DI ASSI EQUIVALENTI DA 8,2 TON.

Il numero massimo di passaggi di assi equivalenti che la pavimentazione può sopportare (N_{8,2max}) è ricavabile dalla seguente espressione:

$$log(N_{8,2max}) = Z_r \cdot S_0 + 9.36 \cdot log(SN + 1) - 0.20 + \frac{log(\frac{\Delta PSI}{4.2-1.5})}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \cdot log(M_R) - 8.07$$

essendo:

- Δ PSI = differenza tra l'indice di funzionalità della pavimentazione e al termine della vita utile;
- S₀ = deviazione standard relativa all'aleatorietà delle previsioni di traffico e delle prestazioni della pavimentazione, assunta pari a 0.45;
- M_R = modulo resiliente del sottofondo, espresso in psi;
- SN = indice strutturale della pavimentazione.

2.1.6 FATTORE DI SICUREZZA A FATICA FS

I risultati delle verifiche sono espressi attraverso il "fattore di sicurezza a fatica FS", dato dal rapporto tra il numero massimo ($N_{8.2\text{max}}$) di passaggi di assi equivalenti sopportabili dalla struttura, nell'arco della vita utile, e il numero di assi effettivamente transitanti sulla pavimentazione $N_{8.2}$ nel medesimo intervallo temporale:

$$FS = \frac{N_{8.2max}}{N_{8.2}}$$

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 Lotto El2RHNV5800002 A

3 PAVIMENTAZIONE DI PROGETTO

In mancanza di dati di traffico di dettaglio per l'intervento di progetto, come portata veicolare è stata presa a riferimento la Portata di Servizio (PS) per corsia corrispondente al LOS richiesto, indicata nel D.M. 05/11/2001 per una strada di tipo F2 (eztrarubana locale), pari a 450 autov/h per corsia.

La portata oraria effettiva è stata quindi ricavata ipotizzando a favore di sicurezza una percentuale di veicoli pesanti pari al 15%. Il coefficiente di equivalenza tra autoveicoli e veicoli commerciali è stato inoltre posto pari a n=2.5. Da cui:

Per la strada Comunale (tipo F)

$$V = rac{2PS}{[1+p(n-1)]} = rac{2 imes 450}{[1+0.15 imes (2.5-1)]} \cong 735 \ veic/h$$

Il TGM a fine vita utile si ricava invertendo la relazione tra questo e la portata oraria nell'ora di punta:

$$V = \frac{c \times TGM}{phf} \ (veic/h)$$

in cui c è il fattore di conversione da TGM a V (c = 0.08) e phf il fattore dell'ora di punta (phf = 0.85). Risulta:

L'analisi consisterà nel verificare che, al termine della vita utile della pavimentazione (20 anni), con la percentuale di veicoli pesanti ipotizzata e lo spettro di traffico previsto per la strada in oggetto (Catalogo delle pavimentazioni CNR) risulti $F_s > 1$ per un TGM_{fin}=7809 veic/giorno.

Per l'intervento in questione, su tutte le viabilità previste, è stata scelta una pavimentazione flessibile avente spessore totale pari a 45 cm così costituita:

- usura in conglomerato bituminoso chiuso di spessore pari a 4 cm.
- binder in conglomerato bituminoso semichiuso di spessore pari a 6 cm.
- base in conglomerato bituminoso aperto di spessore pari a 10 cm.
- fondazione in misto granulare frantumato stabilizzato di spessore pari a 25 cm.

GENERAL CONTRACTOR Consorzio IricAv Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE			
	Progetto	Lotto	Codifica	
	IN17	11	EI2RHNV5800002	А

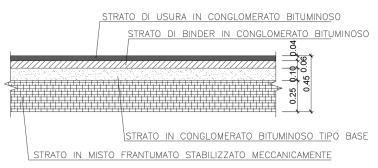


Figura 4: pavimentazione di progetto

3.1 VERIFICA DELLA PAVIMENTAZIONE

Di seguito, sotto forma tabellare, sono riportate le analisi di verifica:

DATI DI TRAFFICO				
Categoria di strada	FU			
TGM attuale	4 324			
Numero giorni commerciali per settimana	6			
Numero settimane commerciali per anno	52			
Aliquota di traffico per direzione più carica	50%			
Percentuale veicoli commerciali	15.00%			
Aliquota veicoli commerciali sulla corsia di marcia normale	60%			
Coefficiente di dispersione delle traiettorie	0.80			
Numero medio di assi per veicolo commerciale	2			
Tasso di crescita traffico durante la vita utile	3.00%			
Vita utile (anni)	20			
TGM al termine della vita utile	7 809			

Legenda per l'attribuzione della categoria di strada					
AE	Autostrade extraurbane				
AU	Autostrade urbane				
В	Strade extraurbane principali e secondarie a forte traffico				
С	Strade extraurbane secondarie ordinarie				
FE	Strade extraurbane secondarie turistiche				
D	Strade urbane di scorrimento				
Е	Strade urbane di quartiere e locali				
FU	Strade urbane locali				
PR	Corsie preferenziali				

GENERAL CONTRACTOR Consorzio IricAV Due Progetto Lotto Codifica IN17 11 EI2RHNV5800002 A

Strada tipo		FU
	Reliability	90%
Grado di affidabilità	$Z_R \times S_0$	-0.5769
5	PSI _{iniz}	4.5
Decadimento struttura	PSI _{min}	2.8
Caratteristiche struttu	rali degli strati costituenti la pavime	entazione
S	trati	
	a _i	0.43
Usura in conglomerato	spessore cm.	4
bituminoso chiuso	coeff. Drenaggio	1.00
	a _i xsxd (in)	0.677
	a _i	0.40
Binder in conglomerato	spessore cm.	6
bituminoso semi aperto	coeff. Drenaggio	1.00
	a _i xsxd (in)	0.945
	a _i	0.28
Base in conglomerato	spessore cm.	10
bituminoso aperto	coeff. Drenaggio	1.00
	a _i xsxd (in)	1.102
	a _i	0.14
Fondazione in misto granulare	spessore cm.	25
stabilizzato	coeff. Drenaggio	1.00
	a _i xsxd (in)	1.378
Spessore totale pavimentazione	cm.	45.00
SN	inch	4.102
	Sottofondo	•
M_D	MPa	80
CBR	%	16
M_R	psi	15067
	VERIFICHE	
	Traffico di progetto	953 443
W_{80}	Traffico massimo ammissibile	14 223 645
	Verifica	ОК
Coefficiente di sicu	14.92	
PSI a term	4.19	
Tempo per rag	49	