COMMITTENTE:

ALTA

SORVEGLIANZA:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA

Lotto funzionale Verona – Bivio Vicenza

PROGETTO ESECUTIVO

INTERFERENZE VIARIE

GENERAL CONTRACTOR

IN47 – DEV. STRADA PORCILANA DAL km 19+615 AL km 20+260 GENERALE

Relazione idraulica e smaltimento acque meteoriche della deviazione provvisoria

DIRETTORE LAVORI

1	OGETTISTA INTEGRATORE	Consorz	io					SCALA
Ing ALBO	g. Giovanni MALAVENDA INGEGNERI PROV. DI MESSIN.	Iricav	Due					-
	n. 4503 \	Cla	olo CARM					
	•	Dafa: G	iugno 20	21				
СОМ	MESSA LOTTO FA	ASE ENTE	TIPO D	OC. OPER	RA/DISCIPLINA	PROG	R. REV.	FOGLIO
I N	1 7 1 2	E 1 2	R	1 I N	N 4 7 0 X	0 0	2 B	D
						٧	'ISTO CONSOF	RZIO IRICAV DUE
	#					irma		Data
	Iricav	′2			Ing. Alberto I	_evorato		
Proge	ettazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvat	o Data	IL PROGETTISTA
A	EMISSIONE -	Coding	03/02/22	C.Pinti	03/02/22	P. Luciani	03/02/22	G GEPPEFAD a
	EMIOGICIVE	Lei	00/02/22	Can W	00/02/22	Suc Pito	00/02/22	5 ORDINE
_	DEVICIONE DDV 255	Coding	00/44/00	C.Pinti	30/11/22	P.Luciani	30/11/22	A\$176 O
В	REVISIONE RDV 355	Lei	30/11/22	Car W	33,11/22	Show Pring	, 00,11/22	300 * A90
CIG. 8	3377957CD1	Cl	JP: J41E	91000000	009	Fi	le: IN1712E	EI2RIIN470X001 A.DOCX
		100					`ad ariaina	

Progetto cofinanziato dalla Unione Europea

Cod. origine:

GENERAL CONTRACTOR

Progetto Lotto Codifica
IN17 12 EI2RIIN470X0002 B

INDICE

1.	PREMESSA	3
2.	RIFERIMENTI NORMATIVI	5
3.	ELABORATI DI RIFERIMENTO	6
4.	SINTESI DEGLI STUDI IDROLOGICI	7
5.	DESCRIZIONE DEI PRESIDI IDRAULICI ADOTTATI PER IL DRENAGGIO E LA LAMINAZIONE	8
6.	PROGETTAZIONE DEL SISTEMA DI DRENAGGIO	10
6.1	PROGETTAZIONE DELLA RETE DI DRENAGGIO	10
6.2	PROGETTAZIONE DEI FOSSI DISPERDENTI	13
7.	CONCLUSIONI	15
8.	ALLEGATI DI CALCOLO	16
8	3.1 DIMENSIONAMENTO DELLA RETE DI DRENAGGIO	16
8	8.2.1 Fosso NE	18 18
	8.2.2 Fosso NO	20

GENERAL CONTRACTOR ITICAV2		A SORVEGL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

1. PREMESSA

La presente relazione illustra la metodologia adottata e i risultati ottenuti per la progettazione del sistema di drenaggio della viabilità interferita "IN47 - DEV. STRAD. STRADA PORCILANA DAL km 19+615 AL km 20+260" parte integrante dell'intervento Infrastrutture Ferroviarie Strategiche definite dalla Legge Obiettivo N.443/01 – Linea AV/AC Torino – Venezie, tratta Verona-Padova Lotto Funzionale Verona – Bivio Vicenza.

Il documento, redatto in ragione dei pregressi studi idrologici e idraulici realizzati nell'ambito della progettazione ferroviaria, si articola nei capitoli che seguono:

- Capitolo 2 riferimenti normativi, bibliografici e documenti di istruttoria Italferr;
- Capitolo 3 elaborati grafici di riferimento;
- Capitolo 4 sintesi degli studi idrologici e definizione delle Curve di Possibilità
 Pluviometrica;
- Capitolo 5 descrizione dei presidi idraulici adottati per l'intervento in esame;
- Capitolo 6 progettazione della rete di drenaggio;
- Capitolo 7 conclusioni;
- Capitolo 8 allegati di calcolo.

In ottemperanza alle prescrizioni presenti all'interno del Manuale di Progettazione Italferr e, in considerazione della provvisorietà della deviazione stradale di progetto, il dimensionamento dei presidi idraulici è realizzato per un periodo di ritorno di 5 anni. Il sistema di drenaggio, inoltre, risponde alle indicazioni riportate nel Decreto Regionale 2948 del 6 ottobre 2009 (Valutazione di compatibilità idraulica per la redazione degli strumenti urbanistici), ovvero alle prescrizioni fornite degli Enti Territoriali Competenti (Consorzio di Bonifica Alta Pianura Veneta). Infine, come è possibile osservare dallo stralcio planimetrico rappresentato in figura, l'intervento in esame ricade esternamente alle aree a rischio idraulico individuate dal Piano di Gestione del Rischio Alluvioni relativo alla Regione Veneto.

GENERAL CONTRACTOR ITICAV2	1	A SORVEG	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

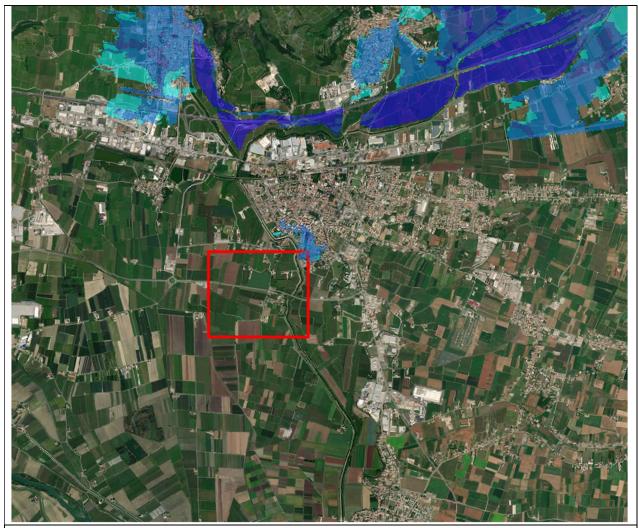


Figura 1: Stralcio planimetrico del P.G.R.A. e del sito di intervento (quadrato rosso).

GENERAL CONTRACTOR IFICAV2		A SORVEGL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

2. RIFERIMENTI NORMATIVI

Di seguito sono riportati i principali riferimenti normativi e bibliografici per la progettazione:

- Piano di Assetto Idrogeologico della Regione Veneto (PAI);
- Piano di Gestione del Rischio Alluvioni (PGRA);
- Nuove Norme Tecniche sulle Costruzioni (NTC2018);
- Circolare 21 gennaio 2019, n.7 C.S.LL.PP.;
- Regio Decreto del 25/07/1904 n.523;
- Manuale di Progettazione RFI;
- Piano di tutela delle acque art 121, Decreto legislativo 3 aprile 2006, n.152,
 "Norme in materia ambientale" Norme tecniche di attuazione Allegato A3 alla Delibera del Consiglio Regionale n. 107 del 5/11/2009 e successive modifiche e integrazioni Aggiornamento a LUGLIO 2018;
- Rapporto di verifica alla Progettazione (Italferr, 2020.08.08 INODOOD11ISIN4700001B);
- Idraulica dei sistemi fognari. Dalla teoria alla pratica (Gisonni C., Hager W.H.).

GENERAL CONTRACTOR IFICAV2		SORVEGLI TAL FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

3. ELABORATI DI RIFERIMENTO

1. IN1712EI2P8IN470X003B – Planimetria idraulica della deviazione provvisoria;

GENERAL CONTRACTOR IFICAV2		SORVEGLI TAL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

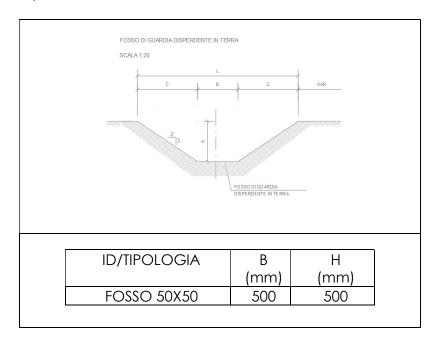
4. SINTESI DEGLI STUDI IDROLOGICI

Congruentemente alle indicazioni presenti all'interno del Progetto Esecutivo ("Relazione Idrologica e Idraulica Attraversamenti Secondari" - IN1710El2RHID0000002B), le curve di Possibilità Pluviometrica sono state ricavate dallo studio idrologico redatto tenendo conto delle prescrizioni fornite da parte del Consorzio di Bonifica Alta Pianura Veneta (2016), derivanti dal quadro prescrittivo a seguito dell'approvazione del Progetto Definitivo e specificate nell'allegato 1 della Delibera Cipe con Delibera n.84 del 22.12.2017 e derivanti dalle istruttorie ITF relative al Progetto Definitivo (2018-2019).

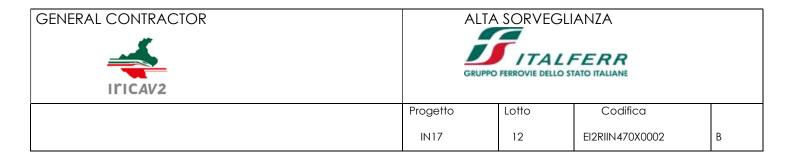
La tabella che segue riporta i parametri di riferimento per le CPP relativi alla stazione di Arcole (si rimanda al documento citato sopra per approfondimenti).

 $h(t) = at^n$ (formulazione a due parametri)

2 PARAMETRI (d<60min)	2 PARAMETE (d>60min)	••	
a mm/h ⁿ	n	a mm/h ⁿ	n
55.90	0.58	48.70	0.152


Tabella 4-1 - Parametri delle CPP relativi a un evento con periodicità statistica cinquennale

GENERAL CONTRACTOR IFICAV2		SORVEGLI TAL FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В


5. DESCRIZIONE DEI PRESIDI IDRAULICI ADOTTATI PER IL DRENAGGIO E LA LAMINAZIONE

Il presente capitolo offre una descrizione dei presidi idraulici adottati per il drenaggio della piattaforma stradale e per la laminazione delle portate. Come è possibile osservare dalle figure che seguono, il sistema di drenaggio e laminazione per la viabilità in esame è caratterizzato da:

- Viabilità in rilevato sinistra stradale lo smaltimento dei volumi meteorici intercettati dalla piattaforma stradale è realizzato a mezzo di fossi di guardia disperdenti in terra, sezione trapezoidale a presidio del rilevato stradale. Le tipologie di fossi di guardia adottati sono:
 - fossi di guardia disperdenti in terra base 0.5m, profondità 0.5m e pendenza 2/3;

- 2. Viabilità in rilevato destra stradale lo smaltimento dei volumi meteorici intercettati dalla piattaforma stradale è realizzato a mezzo di canalette grigliate che convogliano i volumi meteorici a fossi di guardia disperdenti in terra, sezione trapezoidale a presidio del rilevato stradale (sinistra stradale) tramite condotte in PVC di diametro pari a 315 mm. Le tipologie dei presidi elencati sono:
 - Canaletta prefabbricata in calcestruzzo vibrocompresso, con griglia in ghisa sferoidale (classe di resistenza D400) – base interna 300mm, altezza interna 300mm;

 Condotta in PVC conforme a norma UNI EN 1401-1 tipo SN8/SDR21 – DN315

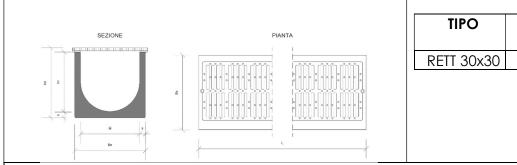


Tabella 5-1 – Sistema d drenaggio. In alto a sinistra: canaletta grigliata prefabbricata in calcestruzzo; in alto a destra: tabella delle dimensioni della canaletta.

TIPO	De	Di	S
	(mm)	(mm)	(mm)
PVC – DN315	315	296.6	9.2

Tabella 5-3 – Sistema di drenaggio. In alto: pozzetto prefabbricato in calcestruzzo con caditoia in acciaio carrabile; in basso a sinistra: tabella delle dimensioni delle condotte di drenaggio.

НΙ

(mm)

300

ΒI

(mm)

300

GENERAL CONTRACTOR ALTA SORVEGLIANZA Frogetto Lotto Codifica IN17 12 EI2RIIN470X0002 B

6. PROGETTAZIONE DEL SISTEMA DI DRENAGGIO

Il presente capitolo ha come obiettivo la progettazione del sistema di raccolta e convogliamento delle portate a mezzo di rete di drenaggio. Come già anticipato nel paragrafo descrittivo dei presidi idraulici, i volumi meteorici della viabilità vengono intercettati dalle canalette grigliate, distribuite longitudinalmente alla piattaforma, e quindi convogliati, tramite condotte in PVC di diametro pari a 315mm, ai fossi di guardia disperdenti in terra presenti in sinistra stradale.

I paragrafi che seguono riportano la progettazione delle canalette, condotte e fossi di guardia disperdenti.

Tutte le verifiche sono state condotte nell'ipotesi di evento di progetto con periodicità statistica media cinquennale, a ragione della provvisorietà dell'intervento.

6.1 PROGETTAZIONE DELLA RETE DI DRENAGGIO

Il presente paragrafo illustra sinteticamente la procedura adottata per il dimensionamento della rete di canalette a drenaggio della viabilità di progetto per applicazione del modello dell'Invaso Lineare.

La metodologia indicata assimila il deflusso caratterizzante il sistema di drenaggio a quello di un serbatoio a funzionamento autonomo (riempimento/svuotamento generato dalle caratteristiche idrologiche del bacino in assenza di effetti indotti dalla rete a valle del punto di indagine) e sincrono (riempimento/svuotamento contemporaneo). In tali condizioni, la distribuzione temporale dei volumi all'interno del serbatoio può esprimersi a mezzo dell'equazione di continuità:

$$(p-q)dt = dw$$

Con p e q portata entrante e uscente dal serbatoio nell'unità di tempo dt e dw volume infinitesimo accumulato. L'equazione è risolta nell'ipotesi di proporzionale linearità tra volume totale accumulato a monte della sezione di chiusura, portata convogliata e area sottesa.

$$\frac{W}{\omega} = cost$$

$$\frac{Q}{\omega} = cost$$

GENERAL CONTRACTOR IFICAV2		SORVEGLI TALI FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

Questa condizione, nel caso di un singolo tratto, corrisponde all'ipotesi di moto uniforme e caratterizza il comportamento autonomo e sincrono delle reti complesse. Applicando le condizioni appena introdotte risulta:

$$\frac{dw}{W} = \frac{dq}{Q}$$

$$\frac{dw}{W} = \frac{dq}{Q}$$

$$(p - q)dt = \frac{W}{Q} \cdot dq$$

$$p - q = \frac{dw}{dt}$$

L'integrazione dell'equazione di continuità consente di definire la relazione tra la portata e il tempo di riempimento di un canale, permettendo dunque la stima del deflusso massimo all'interno del condotto al tempo di riempimento tr.

Applicando la condizione t = tr è possibile determinare l'espressione analitica del coefficiente udometrico:

$$u = k \frac{(\varphi a)^{1/n}}{w^{\frac{1}{n}-1}}$$

Con:

- u coefficiente udometrico, rappresenta la portata per unità di superficie del bacino (l/s/ha);
- φ il coefficiente di deflusso medio pesato rispetto alla superficie (bacino naturale: 0.4; scarpata di progetto: 0.6; piattaforma: 0.9);
- a, n coefficienti della curva di possibilità pluviometrica per durate inferiori all'ora;
- k coefficiente che assume il valore "2168 n" [Sistemi di Fognatura, Manuale di Progettazione, CSU Editore, Hoepli; Appunti di Costruzioni Idrauliche, Girolamo Ippolito, Liguori Editore];
- w volume specifico di invaso totale, pari al rapporto tra il volume di invaso a monte della sezione di chiusura indagata e superficie drenata, è valutato secondo la seguente espressione:

GENERAL CONTRACTOR ILICAV2	ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica		FERR		
	Progetto	Lotto	Codifica		
	IN17	12	EI2RIIN470X0002	В	

$$w = \frac{W}{A} = \frac{W_0 A + W_{c-1} + W_c}{A}$$

- A rappresenta la superficie del bacino sotteso;
- w₀ rappresenta il volume specifico dei piccoli invasi, compreso tra 15-20m³/ha (Artina e Martinelli, 1997) - bacini e reti di collettamento caratterizzati da modesta pendenza (0.1-0.3%) e valori di coefficiente di afflusso superiori uguali a 0.5. Per la presente progettazione il valore è stato fissato a 15 m³/ha;
- W_{c-1} rappresenta il volume accumulato all'interno della rete di collettori a monte del tratto indagato.

L'espressione del coefficiente udometrico utilizzata nel nostro studio è dunque:

$$u = 2168 n \frac{(\varphi a)^{1/n}}{w^{\frac{1}{n}-1}}$$

Ricavato il coefficiente udometrico, la portata critica come

$$Q = Au$$

Il valore viene raffrontato alla massima capacità della sezione del presidio idraulico (condizioni di deflusso in moto uniforme) a mezzo della relazione di Strickler-Manning:

$$Q_c = \frac{1}{n} R^{\frac{2}{3}} \sigma \sqrt{s}$$

Con n coefficiente di scabrezza di Manning (PVC/PeAD: n=0.012s/m^{1/3}; Calcestruzzo: n=0.015 s/m^{1/3}), R raggio idraulico, σ sezione bagnata e s pendenza media del presidio.

Le verifiche della rete di drenaggio sono realizzate in ragione delle prescrizioni che seguono:

- 1. Presidi "chiusi" (Canalette e condotte):
 - Altezza utile ≤ 500mm Massimo riempimento < 50%;
 - Altezza utile > 500mm Massimo riempimento < 67%;
 - Velocità di deflusso [0.20 5] m/s.

GENERAL CONTRACTOR IFICAV2		SORVEGLI TAL FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

Tutte le verifiche del sistema di drenaggio sono riportate all'interno degli allegati di calcolo. Come è possibile osservare:

- La rete risulta costituita da canalette grigliate prefabbricate in calcestruzzo di altezza interna pari a 300mm, con pendenza media variabile congruente alla pendenza stradale (0.3%), e da condotte in PVC, con pendenza del 0.5%;
- Il grado di riempimento delle canalette e delle condotte è ovunque inferiore al 50% della sezione utile;
- La velocità di deflusso è compresa tra 0.40 e 1.14 m/s.

La verifica del sistema interrato di drenaggio può dunque ritenersi soddisfatta.

6.2 PROGETTAZIONE DEI FOSSI DISPERDENTI

I volumi meteorici intercettati dalle porzioni di viabilità vengono smaltiti mediante infiltrazione all'interno di fossi disperdenti. Il dimensionamento dei fossi è realizzato per applicazione dell'equazione di continuità:

$$W_i = W_e - W_u$$

Con We volume entrante e Wu calcolato secondo la relazione:

$$W_u = KL\left(b + 2\frac{h}{sen(a)}\right)$$

Con K permeabilità media del terreno (1x10-4m/s), L lunghezza del fosso, b sviluppo trasversale della base del presidio e a angolo di inclinazione sull'orizzontale. Il valore di permeabilità media è stato dedotto dalla Relazione geotecnica generale (da 10+050 a 21+990) – Capitolo 6.8. La quota falda, invece, è stata dedotta dal profilo geotecnico longitudinale: +19.75m msl.

Le tabelle che seguono riportano i risultati della modellazione.

Si rimanda al capitolo 8 di questa relazione per le tabelle e le immagini contenenti i dati di riferimento per i quali è stato realizzato il calcolo dei fossi disperdenti.

La tabella che segue riporta le dimensioni del fosso disperdente in terra a sezione trapezoidale con pendenza 2/3.

GENERAL CONTRACTOR IFICAV2		A SORVEGL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

ID	L m	B m	Hlimite m	h m
FOSSO NE	320.00	0.50	0.50	0.19
FOSSO NO	125.00	0.50	0.50	0.25

Tabella 6-1.1 - Fosso disperdente – ID: identificativo; L: lunghezza fosso; B: base fosso; Hmax: profondità limite; h: tirante massimo.

I risultati del dimensionamento mettono in luce che:

- 1. Il fosso NE accumula un volume massimo di 29.77m³ per un tirante dell'ordine dei 19cm. Il tempo massimo di svuotamento è pari a 60 minuti;
- 2. Il fosso NO accumula un volume massimo di 15.32m³ per un tirante dell'ordine dei 25cm. Il tempo massimo di svuotamento è pari a 65 minuti;

GENERAL CONTRACTOR IFICAV2	6	TA SORVEGL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

7. CONCLUSIONI

La presente relazione ha illustrato la progettazione del sistema di smaltimento idraulico dell'interferenza viaria "IN47 - DEV. STRAD. STRADA PORCILANA DAL km 19+615 AL km 20+260", parte integrante dell'intervento Infrastrutture Ferroviarie Strategiche definite dalla Legge Obiettivo N.443/01 – Linea AV/AC Torino – Venezie, tratta Verona-Padova Lotto Funzionale Verona – Bivio Vicenza.

Il sistema di drenaggio è costituito da fossi disperdenti in terra di progetto (base 0.5m profondità 0.5 e pendenza 2/3) che si sviluppano longitudinalmente lungo il piede del rilevato della sinistra stradale. In destra stradale, i volumi meteorici sono convogliati a mezzo di canalette grigliate (dimensioni interne 300x300) e condotte in PVC (DN315) presso i fossi disperdenti in sinistra stradale.

8. ALLEGATI DI CALCOLO

8.1 DIMENSIONAMENTO DELLA RETE DI DRENAGGIO

	Dati plano-altimet	rici dell'	asta	N	1etodo d	lell'inva	so italia	no - dat	i di baciı	10	Canale	tta	1	Analisi in	moto u	niforme	- Capac	ità della	canalett	ta
	PK	L m	s m/m	Wc _{i-1}	wo m³/ha	B m	Apav m²	фрач	A m²	φ	TIPOLOGIA	B_INT mm	h m	alpha rd	A m²	P m	R m	n s/m ^{1/3}	V m/s	m
	Pk 0+550 - Pk 0+525	25.00	0.003	0	15.00	7.00	175.00	0.90	175.00	0.90	RETT	300	0.055	-	0.016	0.41	0.04	0.015	0.44	0.
	Pk 0+525 - Pk 0+500	25.00	0.003	0.41	15.00	7.00	350.00	0.90	350.00	0.90	RETT	300	0.082	-	0.025	0.46	0.05	0.015	0.53	0.
CANALETTA A	Pk 0+500 - Pk 0+475	25.00	0.003	1.02	15.00	3.50	437.50	0.90	437.50	0.90	RETT	300	0.087	H	0.026	0.47	0.06	0.015	0.54	0.
	Pk 0+475 - Pk 0+450	25.00	0.003	1.68	15.00	3.50	525.00	0.90	525.00	0.90	RETT	300	0.096	-	0.029	0.49	0.06	0.015	0.56	0.
	Pk 0+450 - Pk 0+415	35.00	0.003	2.40	15.00	3.50	647.50	0.90	647.50	0.90	RETT	300	0.101	-	0.030	0.50	0.06	0.015	0.57	0
	Pk 0+233 - Pk 0+250	17.00	0.003	0.00	15.00	7.00	119.00	0.90	119.00	0.90	RETT	300	0.045	-	0.014	0.39	0.03	0.015	0.40	0
	Pk 0+250 - Pk 0+275	25.00	0.003	0.23	15.00	7.00	294.00	0.90	294.00	0.90	RETT	300	0.076	-	0.023	0.45	0.05	0.015	0.51	0
	Pk 0+275 - Pk 0+300	25.00	0.003	0.80	15.00	3.50	381.50	0.90	381.50	0.90	RETT	300	0.080	-	0.024	0.46	0.05	0.015	0.52	0
CANALETTA B	Pk 0+300 - Pk 0+325	25.00	0.003	1.40	15.00	3.50	469.00	0.90	469.00	0.90	RETT	300	0.087	H	0.026	0.47	0.06	0.015	0.54	0
CANALETTAB	Pk 0+325 - Pk 0+350	25.00	0.003	2.05	15.00	3.50	556.50	0.90	556.50	0.90	RETT	300	0.094	-	0.028	0.49	0.06	0.015	0.56	0
	Pk 0+350 - Pk 0+375	25.00	0.003	2.76	15.00	3.50	644.00	0.90	644.00	0.90	RETT	300	0.101	-	0.030	0.50	0.06	0.015	0.57	0
	Pk 0+375 - Pk 0+400	25.00	0.003	3.51	15.00	3.50	731.50	0.90	731.50	0.90	RETT	300	0.109	1-	0.033	0.52	0.06	0.015	0.59	0
	Pk 0+400 - Pk 0+415	15.00	0.003	4.33	15.00	3.50	784.00	0.90	784.00	0.90	RETT	300	0.111	U	0.033	0.52	0.06	0.015	0.59	0
	Pk 0+233 - Pk 0+200	33.00	0.003	0.00	15.00	7.00	231.00	0.90	231.00	0.90	RETT	300	0.063	-	0.019	0.43	0.04	0.015	0.47	0.
CANALETTA C	Pk 0+200 - Pk 0+175	25.00	0.003	0.62	15.00	7.00	406.00	0.90	406.00	0.90	RETT	300	0.089	H	0.027	0.48	0.06	0.015	0.54	0
CANALETTAC	Pk 0+175 - Pk 0+150	25.00	0.003	1.29	15.00	7.00	581.00	0.90	581.00	0.90	RETT	300	0.109	L.	0.033	0.52	0.06	0.015	0.59	0
	Pk 0+150 - Pk 0+125	25.00	0.003	2.10	15.00	3.50	668.50	0.90	668.50	0.90	RETT	300	0.112	-	0.034	0.52	0.06	0.015	0.60	0

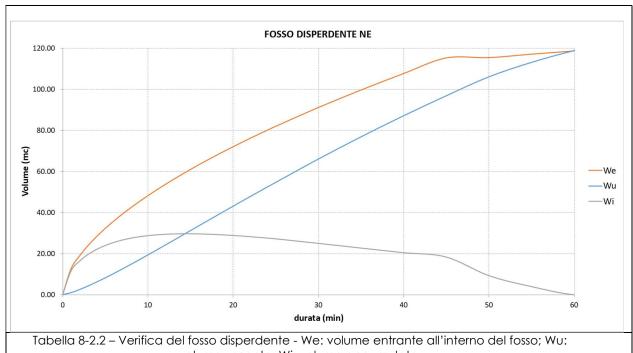
Dati plano-altimet	rici dell'	asta	N	1etodo d	lell'inva	so italia	no - dat	i di bacir	10	Condot	ta	1	Analisi in	moto u	niforme	- Capaci	tà della	canalett	a
PK	L m	s m/m	Wc _{i-1} m ³	wo m³/ha	B m	Apav m ²	фрач	A m²	φ	TIPOLOGIA	D_INT mm	h m	alpha rd	A m²	P m	R m	n s/m ^{1/3}	V m/s	Q mc/s
COLLETTORE A+B	10.00	0.005	7.50	15.00	0.00	1431.50	0.90	1431.50	0.90	PEAD	296.6	0.144	3.08	0.0332	0.46	0.07	0.011	1.14	0.0379
COLLETTORE C	10.00	0.005	3.35	15.00	0.00	668.50	0.90	668.50	0.90	PEAD	296.6	0.096	2.42	0.0193	0.36	0.05	0.011	0.93	0.0180

Tabella 8-1.1 - Determinazione portata critica - ID identificativo canaletta; L lunghezza canaletta; s pendenza longitudinale canaletta; Wci-1 volume accumulato all'interno della rete delle canalette a monte del tratto indagato; w0 volume specifico dei piccoli invasi; Apav/jpav: superficie e coefficiente di afflusso della pavimentazione stradale; A superficie equivalente; j coefficiente di afflusso medio; TIPOLOGIA canaletta; B_EST base esterna; B_INT base interna; h tirante idraulico; alpha angolo al centro per assegnato tirante; A area bagnata; P perimetro bagnato; R raggio idraulico; n coefficiente di scabrezza di Manning; V velocità di deflusso; Q capacità della condotta per assegnato tirante.

GENERAL CONTRACTOR ITICAV2		SORVEGLI TAL FERROVIE DELLO S	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

						- 1	Metodo	dell'Inva	so italia	no - ver	ifica			
			PK	(Wc _i m³	w m³/m²	a mm/h ⁿ	a m/h ⁿ	n	u I/s/ha	Q mc/s	G %	V m/s
	Pk	0+550	-	Pk	0+525	0.67	0.004	55.90	0.0559	0.58	407.79	0.0071	18.2%	0.44
	Pk	0+525	-	Pk	0+500	1.55	0.004	55.90	0.0559	0.58	367.98	0.0129	27.3%	0.53
CANALETTA A	Pk	0+500	-	Pk	0+475	2.33	0.005	55.90	0.0559	0.58	321.44	0.0141	29.0%	0.54
	Pk	0+475	-	Pk	0+450	3.19	0.006	55.90	0.0559	0.58	292.64	0.0154	32.1%	0.56
	Pk	0+450	-	Pk	0+415	4.43	0.007	55.90	0.0559	0.58	268.23	0.0174	33.7%	0.57
	Pk	0+233	-	Pk	0+250	0.41	0.003	55.90	0.0559	0.58	440.98	0.0052	15.1%	0.40
	Pk	0+250	-	Pk	0+275	1.24	0.004	55.90	0.0559	0.58	380.47	0.0112	25.3%	0.51
	Pk	0+275	-	Pk	0+300	1.98	0.005	55.90	0.0559	0.58	328.31	0.0125	26.8%	0.52
CANALETTA B	Pk	0+300	-	Pk	0+325	2.76	0.006	55.90	0.0559	0.58	299.35	0.0140	29.0%	0.54
CANALETTA B	Pk	0+325	-	Pk	0+350	3.59	0.006	55.90	0.0559	0.58	279.88	0.0156	31.2%	0.56
	Pk	0+350	-	Pk	0+375	4.48	0.007	55.90	0.0559	0.58	265.07	0.0171	33.7%	0.57
	Pk	0+375	-	Pk	0+400	5.43	0.007	55.90	0.0559	0.58	252.92	0.0185	36.4%	0.59
	Pk	0+400	-	Pk	0+415	6.01	0.008	55.90	0.0559	0.58	247.14	0.0194	37.0%	0.59
·	Pk	0+233	-	Pk	0+200	0.97	0.004	55.90	0.0559	0.58	382.04	0.0088	21.0%	0.47
CANALETTA C	Pk	0+200	-	Pk	0+175	1.90	0.005	55.90	0.0559	0.58	353.59	0.0144	29.5%	0.54
CAMMLETTA	Pk	0+175	-	Pk	0+150	2.98	0.005	55.90	0.0559	0.58	330.83	0.0192	36.3%	0.59
	Pk	0+150	-	Pk	0+125	3.95	0.006	55.90	0.0559	0.58	298.54	0.0200	37.3%	0.60

Metodo dell'Invaso italiano - verifica Wci Q G ID n m/hⁿ m^3/m^2 mm/hⁿ I/s/ha mc/s m³ m/s COLLETTORE A+B 9.98 0.007 55.90 0.0559 0.58 264.69 0.0379 48.5% 1.14 COLLETTORE C 4.55 0.007 55.90 0.0559 0.58 269.38 0.0180 32.3% 0.93 Tabella 8-1.2 – Verifica della rete di drenaggio - ID: identificativo collettore/canaletta/fosso; Wci volume di invaso a monte della sezione di chiusura indagata; w volume specifico di invaso totale; a, n coefficienti della curva di possibilità pluviometrica per durate inferiori all'ora; u coefficiente udometrico; Q capacità del collettore/canaletta/fosso per assegnato tirante; G grado di riempimento; V velocità di deflusso.


GENERAL CONTRACTOR ITICAV2		A SORVEGL	FERR		
	Progetto	Lotto	Codifica		
	IN17	12	EI2RIIN470X0002	В	

8.2 DIMENSIONAMENTO DEI FOSSI DISPERDENTI

8.2.1 Fosso NE

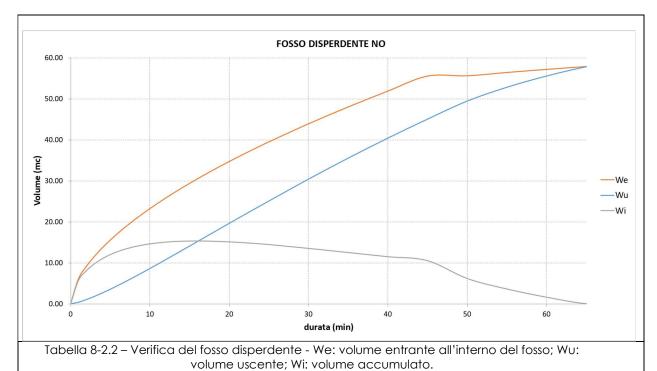
ID	S_pav m²	φ_pav	Svers m2	φ_vers	S_eq m²	L m	b m	k m/s
FOSSO DR. NE	2520.00	0.9	280.00	0.6	2436.00	320.00	0.5	0.0001

Tabella 8-2.1 - Calcolo dei volumi accumulati nei fossi. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_pav : superficie e coefficiente di afflusso del versante stradale; S_eq: superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

volume uscente; Wi: volume accumulato.

GENERAL CONTRACTOR IFICAV2	1	A SORVEGL	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RIIN470X0002	В

d	We	h	Qu	Wu	Wi	h	HMAX
min	m ³	m	m³/s	m³	m³	m	m
0	0.00	0.00	0.0160	0.00	0.00	0.00	0.19
1	12.67	0.00	0.0160	0.96	11.71	0.07	
2	18.94	0.07	0.0254	2.48	16.46	0.10	
3	23.96	0.10	0.0292	4.23	19.73	0.12	
4	28.31	0.12	0.0318	6.14	22.17	0.14	
5	32.22	0.14	0.0337	8.16	24.06	0.15	
6	35.82	0.15	0.0352	10.28	25.54	0.16	
7	39.17	0.16	0.0364	12.46	26.70	0.17	
8	42.32	0.17	0.0374	14.71	27.62	0.17	
9	45.31	0.17	0.0381	16.99	28.32	0.18	
10	48.17	0.18	0.0387	19.31	28.86	0.18	
11	50.91	0.18	0.0391	21.66	29.25	0.18	
12	53.54	0.18	0.0394	24.02	29.52	0.18	
13	56.09	0.18	0.0396	26.40	29.69	0.19	1
14	58.55	0.19	0.0398	28.78	29.77	0.19	
15	60.94	0.19	0.0398	31.17	29.77	0.19	1
16	63.26	0.19	0.0398	33.56	29.70	0.19	1
17	65.53	0.19	0.0398	35.95	29.58	0.18	1
18	67.74	0.18	0.0397	38.33	29.41	0.18	1
19	69.89	0.18	0.0395	40.70	29.20	0.18	1
20	72.00	0.18	0.0394	43.06	28.95	0.18	1
21	74.07	0.18	0.0392	45.41	28.66	0.18	1
22	76.10	0.18	0.0389	47.74	28.35	0.18	
23	78.08	0.18	0.0387	50.06	28.02	0.18	
24	80.04	0.18	0.0384	52.37	27.67	0.17	
25	81.95	0.17	0.0381	54.66	27.30	0.17	
30	91.09	0.17	0.0378	66.01	25.09	0.16	
35	99.61	0.16	0.0361	76.83	22.78	0.14	
40	107.64	0.14	0.0342	87.10	20.54	0.13	
45	115.25	0.13	0.0324	96.83	18.42	0.12	
50	115.39	0.12	0.0307	106.05	9.34	0.06	
55	117.07	0.06	0.0235	113.09	3.98	0.02	
60	118.63	0.02	0.0192	118.85	0.00	0.00	


Tabella 8-2.3 – Verifica del fosso disperdente – tabella di verifica.

GENERAL CONTRACTOR IFICAV2			CELANZA LFERR O STATO ITALIANE		
	Progetto	Lotto	Codifica		
	IN17	12	EI2RIIN470X0002	В	

8.2.2 Fosso NO

ID	S_pav m²	φ_pav	Svers m2	φ_vers	S_eq m²	L m	b m	k m/s
FOSSO DR. NO	1225.00	0.9	120.00	0.6	1174.50	125.00	0.5	0.0001

Tabella 8-2.1 – Calcolo dei volumi accumulati nei fossi. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_vers : superficie e coefficiente di afflusso del versante stradale; S_eq : superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

GENERAL CONTRACTOR IFICAV2		ALTA SORVEGLIANZA TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					
	Progetto	Lotto	Codifica				
	IN17	12	EI2RIIN470X0002	В			

d	We	h	Qu	Wu	Wi	h	HMAX
min	m ³	m	m³/s	m ³	m³	m	m
0	0.00	0.00	0.0063	0.00	0.00	0.00	0.25
1	6.11	0.00	0.0063	0.38	5.73	0.09	
2	9.13	0.09	0.0108	1.03	8.11	0.13	
3	11.55	0.13	0.0127	1.79	9.76	0.16	
4	13.65	0.16	0.0141	2.63	11.02	0.18	
5	15.54	0.18	0.0151	3.54	12.00	0.19	
6	17.27	0.19	0.0158	4.49	12.78	0.20	
7	18.88	0.20	0.0165	5.48	13.41	0.21	
8	20.40	0.21	0.0170	6.49	13.91	0.22	
9	21.85	0.22	0.0174	7.54	14.31	0.23	
10	23.22	0.23	0.0177	8.60	14.62	0.23	
11	24.54	0.23	0.0179	9.68	14.87	0.24	
12	25.81	0.24	0.0181	10.76	15.05	0.24	
13	27.04	0.24	0.0183	11.86	15.18	0.24	
14	28.23	0.24	0.0184	12.97	15.26	0.24	
15	29.38	0.24	0.0185	14.07	15.31	0.24	
16	30.50	0.24	0.0185	15.18	15.32	0.25	
17	31.59	0.25	0.0185	16.29	15.30	0.24	
18	32.66	0.24	0.0185	17.40	15.26	0.24	
19	33.70	0.24	0.0185	18.51	15.19	0.24	
20	34.72	0.24	0.0184	19.61	15.10	0.24	
21	35.71	0.24	0.0183	20.71	15.00	0.24	
22	36.69	0.24	0.0182	21.81	14.88	0.24	
23	37.65	0.24	0.0182	22.90	14.75	0.24	
24	38.59	0.24	0.0180	23.98	14.61	0.23	
25	39.51	0.23	0.0179	25.06	14.46	0.23	
30	43.92	0.23	0.0178	30.40	13.52	0.22	
35	48.03	0.22	0.0171	35.52	12.51	0.20	
40	51.90	0.20	0.0163	40.40	11.50	0.18	
45	55.56	0.18	0.0154	45.03	10.53	0.17	
50	55.63	0.17	0.0147	49.44	6.20	0.10	1
55	56.45	0.10	0.0112	52.80	3.65	0.06	
60	57.20	0.06	0.0092	55.55	1.65	0.03	
65	57.90	0.03	0.0076	57.82	0.08	0.00	

Tabella 8-2.3 – Verifica del fosso disperdente – tabella di verifica.