COMMITTENTE:

ALTA SORVEGLIANZA:

SCALA

GENERAL CONTRACTOR:

IL PROGETTISTA INTEGRATORE

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO PARTE GENERALE

NV58 - ROTATORIA TRA SP ALMISANESE E VIALE DEL LAVORO GENERALE

Relazione idraulica e smaltimento acque meteoriche

Consorzio

GENERAL CONTRACTOR

scritto	MESSA LOTTO FA	_ u	Due CARMO Igno 2021 TIPO D		A/DISCIPLINA 1 5 8 0 X	PROGR.	REV.	FOGLIO
						VIS	to consor	RZIO IRICAV DUE
					Fire	ma		Data
<	Consorz	zio IricA1	V Due		Luca R/	ANDOLFI	-	
Proge	ttazione:							
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	IL PROGETTISTA
А	EMISSIONE	CODING Loi	30/07/21	C.Pinti	30/07/21	P. Luciani	30/07/21	Giuseppe Coppa
								700 x 480
CIC	277057CD1	CI	ID. 141E	21000000	200	Filo	. INI1712E	12RINIV580Y001 A

DIRETTORE LAVORI

Cod. origine:

GENERAL CONTRACTOR Consorzio IricAV Due	1	A SORVEGI	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

INDICE

1.	PREMESSA	3
2.	RIFERIMENTI NORMATIVI	5
3.	ELABORATI DI RIFERIMENTO	6
4.	SINTESI DEGLI STUDI IDROLOGICI	7
5.	DESCRIZIONE DEI PRESIDI IDRAULICI ADOTTATI PER IL DRENAGGIO E LA LAMINAZIONE	8
6.	PROGETTAZIONE DEL SISTEMA DI DRENAGGIO	9
6.1	PROGETTAZIONE DEI FOSSI DISPERDENTI	11
7.	CONCLUSIONI	13
8.	ALLEGATI DI CALCOLO	14
8.1	DIMENSIONAMENTO DEI FOSSI DISPERDENTI	14
8.1.	1 FOSSO A	14
8.1.2	2 FOSSO B	16
8.1.3	3 FOSSO C	18
8.1.4	4 FOSSO D	20

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

1. PREMESSA

La presente relazione illustra la metodologia adottata e i risultati ottenuti per la progettazione del sistema di drenaggio della nuova viabilità al km 28+000 "NV58 - ROTATORIA TRA SP ALMISANESE E VIALE DEL LAVORO", parte integrante dell'intervento Infrastrutture Ferroviarie Strategiche definite dalla Legge Obiettivo N.443/01 – Linea AV/AC Torino – Venezie, tratta Verona-Padova Lotto Funzionale Verona – Bivio Vicenza.

Il documento, redatto in ragione dei pregressi studi idrologici e idraulici realizzati nell'ambito della progettazione ferroviaria, si articola nei capitoli che seguono:

- Capitolo 2 riferimenti normativi, bibliografici e documenti di istruttoria Italferr;
- Capitolo 3 elaborati grafici di riferimento;
- Capitolo 4 sintesi degli studi idrologici e definizione delle Curve di Possibilità Pluviometrica;
- Capitolo 5 descrizione dei presidi idraulici adottati per l'intervento in esame;
- Capitolo 6 progettazione della rete di drenaggio (embrici e fossi);
- Capitolo 7 conclusioni;
- Capitolo 8 allegati di calcolo.

In ottemperanza alle prescrizioni presenti all'interno del Manuale di Progettazione Italferr, il dimensionamento dei presidi idraulici è realizzato per un periodo di ritorno non inferiore a 50 anni. Il sistema di drenaggio, inoltre, risponde alle indicazioni riportate nel Decreto Regionale 2948 del 6 ottobre 2009 (Valutazione di compatibilità idraulica per la redazione degli strumenti urbanistici), ovvero alle prescrizioni fornite degli Enti Territoriali Competenti (Consorzio di Bonifica Alta Pianura Veneta). Infine, come è possibile osservare dallo stralcio planimetrico rappresentato in figura, l'intervento in esame ricade esternamente alle aree a rischio idraulico individuate dal Piano di Gestione del Rischio Alluvioni relativo alla Regione Veneto.

GENERAL CONTRACTOR Consorzio Iricav Due	ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

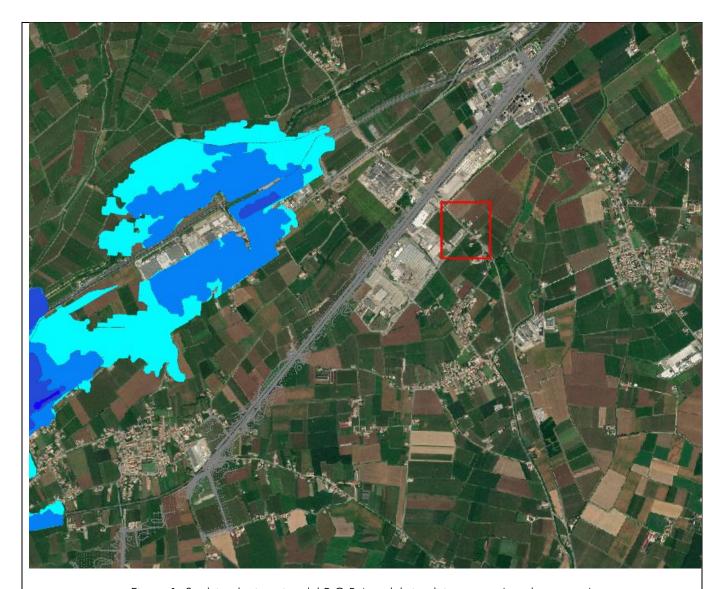


Figura 1: Stralcio planimetrico del P.G.R.A. e del sito di intervento (quadrato rosso).

GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

2. RIFERIMENTI NORMATIVI

Di seguito sono riportati i principali riferimenti normativi e bibliografici per la progettazione:

- Piano di Assetto Idrogeologico della Regione Veneto (PAI);
- Piano di Gestione del Rischio Alluvioni (PGRA);
- Nuove Norme Tecniche sulle Costruzioni (NTC2018);
- Circolare 21 gennaio 2019, n.7 C.S.LL.PP.;
- Regio Decreto del 25/07/1904 n.523;
- Manuale di Progettazione RFI;
- Piano di tutela delle acque art 121, Decreto legislativo 3 aprile 2006, n.152, "Norme in materia ambientale" – Norme tecniche di attuazione – Allegato A3 alla Delibera del Consiglio Regionale n. 107 del 5/11/2009 e successive modifiche e integrazioni Aggiornamento a LUGLIO 2018;
- Rapporto di verifica alla Progettazione (Italferr, 2020.08.06 INOD00D11ISNV5800001A);
- Idraulica dei sistemi fognari. Dalla teoria alla pratica (Gisonni C., Hager W.H.).

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

3. ELABORATI DI RIFERIMENTO

IN1712EI2P8NV580X001A – Planimetria idraulica e particolari idraulici;

GENERAL CONTRACTOR Consorzio Iric/41/ Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

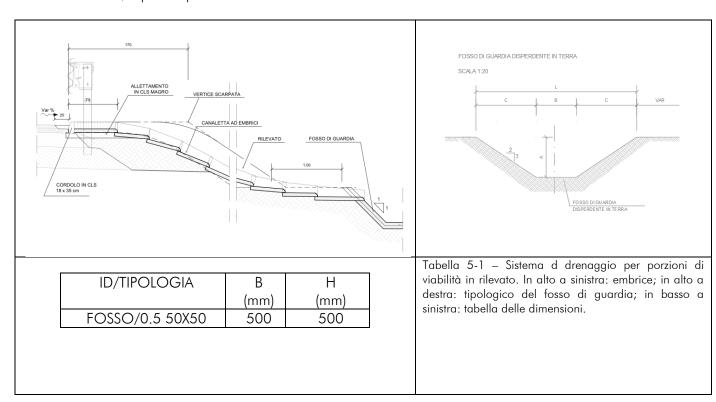
4. SINTESI DEGLI STUDI IDROLOGICI

Congruentemente alle indicazioni presenti all'interno del Progetto Esecutivo ("Relazione Idrologica e Idraulica Attraversamenti Secondari" - IN1710El2RHID0000002B), le Curve di Possibilità Pluviometrica sono state definite in ragione dello studio idrologico redatto tenendo conto delle prescrizioni fornite da parte del Consorzio di Bonifica Alta Pianura Veneta (2016), derivanti dal quadro prescrittivo a seguito dell'approvazione del Progetto Definitivo e specificate nell'allegato 1 della Delibera Cipe con Delibera n.84 del 22.12.2017 e derivanti dalle istruttorie ITF relative al Progetto Definitivo (2018-2019).

La tabella che segue riporta i parametri di riferimento per le CPP relativi alla stazione di Lonigo.

$$h(t) = at^n$$
 (formulazione a due parametri)

2 PARAMETRI (d<60min)			2 PARAMETRI (d>60min)			
a mm/h ⁿ	n	a mm/h ⁿ	n			
89.4	0.572	76.4	0.119			


Tabella 4-1 - Parametri delle CPP relativi a un evento con periodicità statistica cinquantennale

GENERAL CONTRACTOR Consorzio IricAv Due		TA SORVEGI	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

5.DESCRIZIONE DEI PRESIDI IDRAULICI ADOTTATI PER IL DRENAGGIO E LA LAMINAZIONE

Il presente capitolo offre una descrizione dei presidi idraulici adottati per il drenaggio della piattaforma stradale e per la laminazione delle portate. Come è possibile osservare dalle figure che seguono, il sistema di drenaggio e laminazione per la viabilità in esame è caratterizzato da:

1. Viabilità in rilevato - lo smaltimento dei volumi meteorici intercettati dalla piattaforma stradale è realizzato a mezzo di embrici che convogliano le portate ai fossi di guardia disperdenti in terra, sezione trapezoidale con base 0.5m, profondità 0.5m e pendenza 1/1 posti a presidio del rilevato stradale.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

6. PROGETTAZIONE DEL SISTEMA DI DRENAGGIO

Il presente capitolo ha come obiettivo la progettazione del sistema di raccolta e convogliamento delle portate a mezzo di rete di drenaggio. Come già anticipato nel paragrafo descrittivo dei presidi idraulici, i volumi meteorici delle viabilità in rilevato, vengono intercettati dalle porzioni di viabilità tramite embrici opportunamente disposti secondo un interasse che sarà calcolato nei paragrafi a seguire. I volumi raccolti vengono poi smaltiti mediante infiltrazione all'interno di fossi disperdenti anche essi dimensionati mediante applicazione dell'equazione di continuità.

La determinazione del massimo interasse ammissibile per gli embrici è realizzata raffrontando la portata critica generata da un evento di pioggia (tc=10min – formula razionale) con la capacità idraulica della porzione di piattaforma individuata tra cordolo e banchina (deflusso in condizioni di moto uniforme).

Le verifiche sono state condotte nell'ipotesi di evento di progetto con periodicità statistica media cinquantennale.

6.1 PROGETTAZIONE DELL'INTERASSE MINIMO DEGLI EMBRICI

Il dimensionamento dell'interasse di posizionamento è realizzato raffrontando la capacità del manufatto con le portate convogliate nella porzione di piattaforma compresa tra banchina e cordolo, rispetto a un evento meteorico di progetto.

L'analisi è condotta nell'ipotesi che, per i presidi in esame, i fenomeni di natura cinematica prevalgano rispetto alle condizioni di accumulo volumetrico, rendendo di fatto applicabile la formula razionale per la determinazione del picco di piena.

L'evento di progetto è calcolato per un periodo di ritorno pari a 50anni e un tempo di corrivazione del bacino drenato non superiore a 10 minuti.

Alle condizioni indicate, la portata critica risulta:

$$Q(d,TR) = ad^{n-1}L\sum_{i}^{n} \varphi_{i}b_{i}$$

Con a ed n parametri delle CPP per assegnato periodo di ritorno, qi coefficiente di afflusso in rete, L lunghezza dell'interasse massimo tra condotte e bi larghezza del bacino drenato.

La capacità di convogliamento è determinata ipotizzando che la massima superficie bagnata generata non ecceda i 100 cm. In tali condizioni, ipotizzando una pendenza media trasversale del 2.5%, il tirante massimo individuato è pari a 2.5cm. La massima portata è dunque:

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA Consorzio IricAV Due Consorzio IricAV Due Repro Ferrovie Dello Stato Italiane Progetto IN17 12 EI2RINV580X0001 A

$$Q_c = \frac{1}{n} R^{\frac{2}{3}} \sigma \sqrt{s}$$

Con n coefficiente di scabrezza di Manning (n=0. 015 s/m1/3), R raggio idraulico, [] sezione bagnata e s pendenza media della viabilità.

I risultati del dimensionamento dell'interasse sono di seguito riportati. Come è possibile osservare, per valori di pendenza media e ingombro di piattaforma variabili la capacità della caditoia grigliata eccede sempre quella del sistema cordolo+piattaforma. A vantaggio di sicurezza, per l'intervento in esame, si fissa un valore massimo dell'interasse non superiore a 15m.

			ı		ı		ı	ı		1	
sl m/m	L m	B m	A m²	b m	Qc m³/s	h m	σ m²	V m/s	Qd m³/s	Qg m³/s	Ld m
0.002	15.70	5.00	78.52	1.00	0.003	0.03	0.01	0.26	0.003	0.08425	15
0.005	24.83	5.00	124.15	1.00	0.005	0.03	0.01	0.41	0.005	0.08425	20
0.01	35.11	5.00	175.57	1.00	0.007	0.03	0.01	0.58	0.007	0.08425	20
0.015	43.01	5.00	215.03	1.00	0.009	0.03	0.01	0.72	0.009	0.08425	20
0.02	49.66	5.00	248.30	1.00	0.010	0.03	0.01	0.83	0.010	0.08425	20
0.025	55.52	5.00	277.61	1.00	0.012	0.03	0.01	0.92	0.012	0.08425	20
0.03	60.82	5.00	304.10	1.00	0.013	0.03	0.01	1.01	0.013	0.08425	20

sl m/m	L m	B m	A m²	b m	Qc m³/s	h m	σ m²	V m/s	Qd m³/s	Qg m³/s	Ld m
0.002	7.85	10.00	78.52	1.00	0.003	0.03	0.01	0.26	0.003	0.08425	7
0.005	12.41	10.00	124.15	1.00	0.005	0.03	0.01	0.41	0.005	0.08425	12
0.01	17.56	10.00	175.57	1.00	0.007	0.03	0.01	0.58	0.007	0.08425	17
0.015	21.50	10.00	215.03	1.00	0.009	0.03	0.01	0.72	0.009	0.08425	20
0.02	24.83	10.00	248.30	1.00	0.010	0.03	0.01	0.83	0.010	0.08425	20
0.025	27.76	10.00	277.61	1.00	0.012	0.03	0.01	0.92	0.012	0.08425	20
0.03	30.41	10.00	304.10	1.00	0.013	0.03	0.01	1.01	0.013	0.08425	20

Tabella 6-1 – Interasse embrici – In alto: larghezza piattaforma 5.0m; in basso: larghezza piattaforma 10m. SI: pendenza longitudinale; L: interasse grigli (secondo calcolo); B: larghezza piattaforma; A: superficie drenata; Qc: portata drenate; h: massimo tirante idraulico; s: sezione bagnata; V: velocità massima di deflusso; Qd: portata critica; Qg: massima capacità della griglia; Ld: interasse di progetto

Per analogia alle verifiche appena esposte si evince quanto segue:

• l'interasse di progetto degli embrici adottati in rilevato è fissato pari a 15m.

GENERAL CONTRACTOR Consorzio IricAV Due		ALTA SORVEGLIANZA ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE		
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

6.2 PROGETTAZIONE DEI FOSSI DISPERDENTI

I volumi meteorici intercettati dalle porzioni di viabilità vengono smaltiti mediante infiltrazione all'interno di fossi disperdenti. Il dimensionamento dei fossi è realizzato per applicazione dell'equazione di continuità:

$$W_i = W_e - W_u$$

Con We volume entrante e Wu calcolato secondo la relazione:

$$W_u = KL\left(b + 2\frac{h}{sen(a)}\right)$$

Con K permeabilità media del terreno (1x10-4m/s), L lunghezza del fosso, b sviluppo trasversale della base del presidio e a angolo di inclinazione sull'orizzontale. Le tabelle che seguono riportano i risultati della modellazione.

Si rimanda al capitolo 8 di questa relazione per le tabelle e le immagini contenenti i dati di riferimento per i quali è stato realizzato il calcolo dei fossi disperdenti.

La tabella che segue riporta le dimensioni del fosso disperdente in terra a sezione trapezoidale con pendenza 2/3.

ID	L	В	Hmax	h
	m	m	m	m
FOSSO A	88.20	0.50	0.50	0.33
FOSSO B	47.00	0.50	0.50	0.41
FOSSO C	26.80	0.50	0.50	0.26
FOSSO D	25.70	0.50	0.50	0.27

Tabella 6-1.2 - Fosso disperdente – ID: identificativo; L: lunghezza fosso; B: base fosso; Hmax: profondità massima; h: tirante massimo.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALI FERROVIE DELLO ST	FERR		
	Progetto	Lotto	Codifica		
	IN17	12	EI2RINV580X0001	А	

I risultati del dimensionamento mettono in luce che:

- 1. Il fosso A accumula un volume massimo di 14.38 m³ per un tirante dell'ordine dei 30cm. Il tempo massimo di svuotamento è pari a 3.5h;
- 2. Il fosso B accumula un volume massimo di 9.60 m³ per un tirante dell'ordine dei 40cm. Il tempo massimo di svuotamento è pari a 5h;
- 3. Il fosso C accumula un volume massimo di 3.54 m³ per un tirante dell'ordine dei 30cm. Il tempo massimo di svuotamento è pari a 3h;
- 4. Il fosso D accumula un volume massimo di 3.50 m³ per un tirante dell'ordine dei 30cm. Il tempo massimo di svuotamento è pari a 3h;

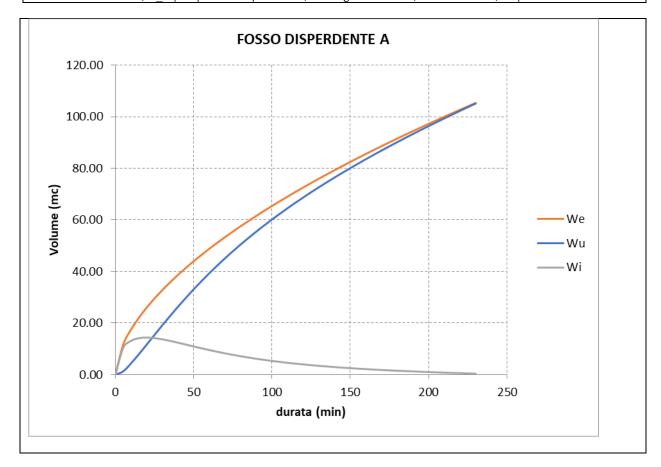
GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

7. CONCLUSIONI

La presente relazione ha illustrato la progettazione del sistema di smaltimento idraulico relativo alla nuova viabilità al km 28+000 "NV58 - ROTATORIA TRA SP ALMISANESE E VIALE DEL LAVORO", parte integrante dell'intervento Infrastrutture Ferroviarie Strategiche definite dalla Legge Obiettivo N.443/01 – Linea AV/AC Torino – Venezie, tratta Verona-Padova Lotto Funzionale Verona – Bivio Vicenza.

I volumi intercettati vengono smaltiti mediante infiltrazione all'interno dei fossi di guardia disperdenti in terra ($50x50 \text{ cm} - 1 \setminus 1$) opportunatamente posti al piede del rilevato stradale.

GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А


8. ALLEGATI DI CALCOLO

8.1 DIMENSIONAMENTO DEI FOSSI DISPERDENTI

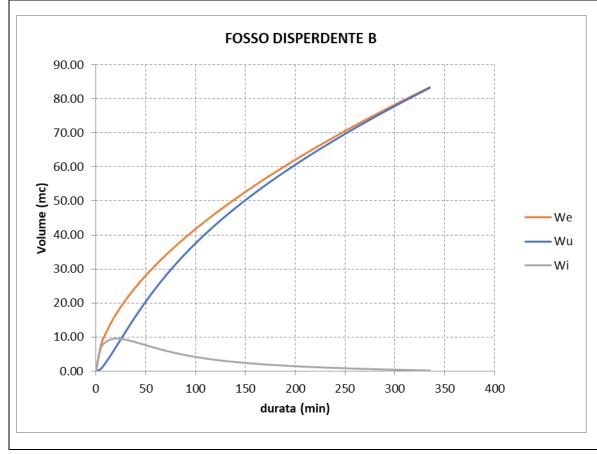
8.1.1 Fosso A

			DATI PLU	VIOMETR	ICI			
			a mm/h ⁿ	n				
			84.4	0.572	2			
	S_pav		Svers	Svers S_e		L	b	k
ID	m ²	φ_pav	m2	φ_vers	m ²	m	m	m/s
FOSSO A	529.20	0.9	176.40	0.4	546.84	88.20	0.5	0.0001

Tabella 8-1.1 – Calcolo dei volumi accumulati nei fossi disperdenti – Tabella1: dati pluviometrici; Tabella2: dati di calcolo dei volumi entranti. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_vers : superficie e coefficiente di afflusso del versante stradale; S_vers/ϕ_vers : superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

d	We	h	Qu	Wu	Wi	h
min	m³	m	m³/s	m³	m³	m
0	0.00	0.00	0.0044	0.00	0.00	0.00
5	11.80	0.00	0.0044	1.32	10.48	0.24
10	17.54	0.24	0.0103	4.42	13.12	0.30
15	22.12	0.30	0.0118	7.97	14.15	0.32
20	26.08	0.32	0.0124	11.70	14.38	0.33
25	29.63	0.33	0.0125	15.46	14.17	0.32
30	32.89	0.32	0.0124	19.19	13.70	0.31
35	35.92	0.31	0.0122	22.84	13.08	0.30
40	38.77	0.30	0.0118	26.38	12.39	0.28
45	41.47	0.28	0.0114	29.80	11.67	0.26
50	44.05	0.26	0.0110	33.11	10.94	0.25
55	46.51	0.25	0.0106	36.29	10.23	0.23
60	48.89	0.23	0.0102	39.35	9.54	0.22
65	51.18	0.22	0.0098	42.29	8.89	0.20
70	53.39	0.20	0.0094	45.12	8.27	0.19
75	55.54	0.19	0.0091	47.85	7.70	0.17
80	57.63	0.17	0.0088	50.48	7.16	0.16
85	59.67	0.16	0.0085	53.01	6.65	0.15
90	61.65	0.15	0.0082	55.47	6.18	0.14
95	63.58	0.14	0.0079	57.84	5.75	0.13
100	65.48	0.13	0.0077	60.14	5.34	0.12
105	67.33	0.12	0.0074	62.37	4.97	0.11
110	69.15	0.11	0.0072	64.53	4.62	0.10
115	70.93	0.10	0.0070	66.64	4.29	0.10
120	72.68	0.10	0.0068	68.69	3.99	0.09
125	74.39	0.09	0.0067	70.69	3.70	0.08
130	76.08	0.08	0.0065	72.64	3.44	0.08
135	77.74	0.08	0.0064	74.55	3.19	0.07
140	79.37	0.07	0.0062	76.41	2.96	0.07
145	80.98	0.07	0.0061	78.24	2.75	0.06
150	82.57	0.06	0.0060	80.03	2.54	0.06
155	84.13	0.06	0.0058	81.78	2.35	0.05
160	85.67	0.05	0.0057	83.50	2.17	0.05
165	87.20	0.05	0.0056	85.19	2.00	0.045
170	88.70	0.05	0.0055	86.86	1.84	0.04
175	90.18	0.04	0.0055	88.49	1.69	0.04
180	91.65	0.04	0.0054	90.10	1.54	0.03
185	93.09	0.03	0.0053	91.69	1.41	0.03
190	94.52	0.03	0.0052	93.25	1.28	0.03
195	95.94	0.03	0.0051	94.79	1.15	0.03
200	97.34	0.03	0.0051	96.31	1.03	0.02
205	98.72	0.02	0.0050	97.80	0.92	0.02
210	100.09	0.02	0.0049	99.28	0.81	0.02
215	101.45	0.02	0.0049	100.74	0.71	0.02
220	102.79	0.02	0.0048	102.19	0.61	0.01
225	104.12	0.01	0.0048	103.61	0.51	0.01
230	105.44	0.01	0.0047	105.02	0.42	0.01
235	106.74	0.01	0.0046	106.42	0.33	0.01
240	108.04	0.01	0.0046	107.79	0.24	0.01
245	109.32	0.01	0.0045	109.16	0.16	0.00
250	110.59	0.00	0.0045	110.51	0.08	0.00
255	111.85	0.00	0.0045	111.85	0.00	0.00
	111.00	0.00	0.0073	111.00	0.00	0.00

Tabella 8-1.2 – Verifica del fosso disperdente – In alto: We: volume entrante all'interno del fosso; Wu: volume uscente; Wi: volume accumulato. In basso: tabella di verifica.


GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

8.1.2 Fosso B

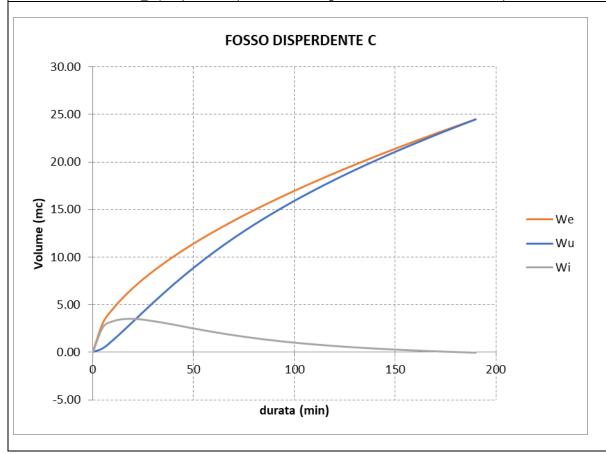
DATI PLU	VIOMETRICI
а	_
mm/h ⁿ	n
84.4	0.572

ID	S_pav m²	φ_pav	Svers m2	φ_vers	S_eq m²	L m	b m	k m/s
FOSSO B	329.00	0.9	131.70	0.4	348.78	47.00	0.5	0.0001

Tabella 8-1.3 – Calcolo dei volumi accumulati nei fossi disperdenti – Tabella1: dati pluviometrici; Tabella2: dati di calcolo dei volumi entranti. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_vers : superficie e coefficiente di afflusso del versante stradale; S_eq : superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

	d iin	We m³	h m	Qu m³/s	Wu m³	Wi m³	h m
(0	0.00	0.00	0.0024	0.00	0.00	0.00
	5	7.53	0.00	0.0024	0.71	6.82	0.29
	10	11.19	0.29	0.0062	2.57	8.62	0.37
	15	14.11	0.37	0.0072	4.74	9.37	0.40
	20	16.63 18.90	0.40	0.0077	7.03 9.37	9.60 9.53	0.41
	30	20.97	0.41	0.0077	11.69	9.29	0.40
	35	22.91	0.40	0.0076	13.97	8.94	0.38
4	10	24.73	0.38	0.0074	16.19	8.54	0.36
4	15	26.45	0.36	0.0072	18.34	8.10	0.34
	50	28.09	0.34	0.0069	20.43	7.67	0.33
_	55	29.67	0.33	0.0067	22.43	7.24	0.31
	50	31.18	0.31	0.0064	24.36	6.82	0.29
	70	32.64	0.29	0.0062	26.23 28.02	6.42	0.27
	75	34.06 35.43	0.27	0.0060	29.75	5.68	0.24
	30	36.76	0.24	0.0056	31.42	5.34	0.23
	35	38.06	0.23	0.0054	33.03	5.03	0.21
9	90	39.32	0.21	0.0052	34.59	4.73	0.20
	95	40.56	0.20	0.0050	36.10	4.46	0.19
	00	41.76	0.19	0.0049	37.56	4.21	0.18
	05	42.94	0.18	0.0047	38.98	3.97	0.17
	10	44.10	0.17	0.0046	40.35	3.75	0.16
	15 20	45.24 46.35	0.16	0.0045	41.70 43.00	3.54 3.35	0.15
	25	47.45	0.15	0.0044	44.28	3.35	0.14
	30	48.52	0.14	0.0042	45.52	3.01	0.14
13	35	49.58	0.13	0.0041	46.73	2.85	0.12
14	40	50.63	0.12	0.0040	47.92	2.70	0.12
14	45	51.65	0.12	0.0039	49.09	2.57	0.11
	50	52.66	0.11	0.0038	50.23	2.44	0.10
	55	53.66	0.10	0.0037	51.35	2.32	0.10
	60 65	54.64 55.61	0.10	0.0037	52.44 53.52	2.20	0.09
_	70	56.57	0.09	0.0035	54.58	1.99	0.03
_	75	57.52	0.08	0.0035	55.62	1.89	0.08
	80	58.45	0.08	0.0034	56.65	1.80	0.08
18	85	59.38	0.08	0.0034	57.66	1.71	0.07
19	90	60.29	0.07	0.0033	58.66	1.63	0.07
	95	61.19	0.07	0.0033	59.64	1.55	0.07
	00	62.08	0.07	0.0032	60.61	1.48	0.06
	05	62.97	0.06	0.0032	61.56	1.40	0.06
	10 15	63.84 64.71	0.06	0.0031	62.51 63.44	1.33	0.06
	20	65.56	0.05	0.0031	64.36	1.20	0.05
	25	66.41	0.05	0.0030	65.27	1.14	0.05
	30	67.25	0.05	0.0030	66.17	1.08	0.05
23	35	68.08	0.05	0.0030	67.06	1.03	0.04
	40	68.91	0.04	0.0029	67.93	0.97	0.04
	45	69.73	0.04	0.0029	68.80	0.92	0.04
	50	70.54	0.04	0.0029	69.67	0.87	0.04
	55 60	71.34 72.14	0.04	0.0028	70.52 71.36	0.82	0.03
	65	72.14	0.03	0.0028	72.20	0.77	0.03
	70	73.71	0.03	0.0028	73.03	0.68	0.03
	75	74.49	0.03	0.0027	73.85	0.64	0.03
28	80	75.26	0.03	0.0027	74.66	0.60	0.03
	85	76.03	0.03	0.0027	75.47	0.56	0.02
	90	76.79	0.02	0.0027	76.27	0.52	0.02
	95	77.54	0.02	0.0026	77.06	0.48	0.02
	00 05	78.29 79.03	0.02	0.0026 0.0026	77.85 78.63	0.44	0.02
	10	79.77	0.02	0.0026	79.40	0.41	0.02
	15	80.50	0.02	0.0026	80.17	0.34	0.02
	20	81.23	0.01	0.0025	80.93	0.30	0.01
	25	81.96	0.01	0.0025	81.69	0.27	0.01
	30	82.68	0.01	0.0025	82.44	0.24	0.01
	35	83.39	0.01	0.0025	83.18	0.21	0.01
	40	84.10	0.01	0.0025	83.92	0.18	0.01
	45	84.80	0.01	0.0024	84.66	0.15	0.01
	50 55	85.51 86.20	0.01	0.0024	85.39 86.11	0.12	0.01
	60	86.89	0.00	0.0024	86.83	0.09	0.00
	65	87.58	0.00	0.0024	87.55	0.03	0.00
		88.27	0.00	0.0024	88.26	0.01	0.00
37	/0	00.27	0.00			0.01	0.00

Tabella 8-1.4 – Verifica del fosso disperdente – In alto: We: volume entrante all'interno del fosso; Wu: volume uscente; Wi: volume accumulato. In basso: tabella di verifica.


GENERAL CONTRACTOR Consorzio IricAV Due		SORVEGLIA TALF FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

8.1.3 Fosso C

DATI PLU	DATI PLUVIOMETRICI				
а	**				
mm/h ⁿ	n				
84.4	0.572				

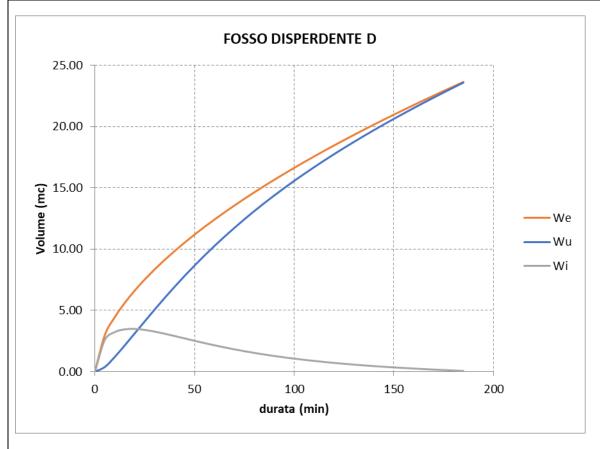
ID	S_pav m²	φ_pav	Svers m2	φ_vers	S_eq m²	L m	b m	k m/s
FOSSO C	139.36	0.9	40.20	0.4	141.50	26.80	0.5	0.0001

Tabella 8-1.5 – Calcolo dei volumi accumulati nei fossi disperdenti – Tabella1: dati pluviometrici; Tabella2: dati di calcolo dei volumi entranti. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_vers : superficie e coefficiente di afflusso del versante stradale; S_eq : superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

GENERAL CONTRACTOR Consorzio IricAV Due Consorzio IricAV Due Progetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA ALTA SORVEGLIANZA Frogetto IN17 ALTA SORVEGLIANZA ALTA SORVEG

d	We	h	Qu	Wu	Wi	h
min	m³	m	m³/s	m ³	m ³	m
0	0.00	0.00	0.0013	0.00	0.00	0.00
5	3.05	0.00	0.0013	0.40	2.65	0.20
10	4.54	0.20	0.0028	1.25	3.29	0.25
15	5.72	0.25	0.0032	2.21	3.51	0.26
20	6.75	0.26	0.0033	3.21	3.54	0.26
25	7.67	0.26	0.0033	4.21	3.45	0.26
30	8.51	0.26	0.0033	5.20	3.31	0.25
35	9.29	0.25	0.0032	6.17	3.13	0.23
40	10.03	0.23	0.0031	7.10	2.93	0.22
45	10.73	0.22	0.0030	8.00	2.73	0.20
50	11.40	0.20	0.0029	8.86	2.53	0.19
55	12.04	0.19	0.0028	9.70	2.34	0.17
60	12.65	0.17	0.0027	10.49	2.16	0.16
65	13.24	0.16	0.0026	11.26	1.98	0.15
70	13.82	0.15	0.0025	12.00	1.82	0.14
75	14.37	0.14	0.0024	12.71	1.66	0.12
80	14.91	0.12	0.0023	13.39	1.52	0.11
85	15.44	0.11	0.0022	14.05	1.38	0.10
90	15.95	0.10	0.0021	14.69	1.26	0.09
95	16.45	0.09	0.0021	15.31	1.15	0.09
100	16.94	0.09	0.0020	15.90	1.04	0.08
105	17.42	0.08	0.0019	16.48	0.94	0.07
110	17.89	0.07	0.0019	17.04	0.85	0.06
115	18.35	0.06	0.0018	17.59	0.76	0.06
120	18.81	0.06	0.0018	18.12	0.68	0.05
125	19.25	0.05	0.0017	18.64	0.61	0.05
130	19.69	0.05	0.0017	19.15	0.54	0.04
135	20.12	0.04	0.0016	19.64	0.48	0.04
140	20.54	0.04	0.0016	20.12	0.42	0.03
145	20.96	0.03	0.0016	20.60	0.36	0.03
150	21.37	0.03	0.0015	21.06	0.31	0.02
155	21.77	0.02	0.0015	21.51	0.26	0.02
160	22.17	0.02	0.0015	21.96	0.21	0.02
165	22.56	0.02	0.0015	22.40	0.17	0.01
170	22.95	0.01	0.0014	22.83	0.13	0.01
175	23.34	0.01	0.0014	23.25	0.09	0.01
180	23.71	0.01	0.0014	23.67	0.05	0.00
185	24.09	0.00	0.0014	24.08	0.01	0.00
190	24.46	0.00	0.0013	24.48	-0.02	0.00

Tabella 8-1.6 – Verifica del fosso disperdente – In alto: We: volume entrante all'interno del fosso; Wu: volume uscente; Wi: volume accumulato. In basso: tabella di verifica.


GENERAL CONTRACTOR Consorzio IricAtV Due		SORVEGLIA TALI FERROVIE DELLO ST	ERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

8.1.4 Fosso D

DATI PLU	DATI PLUVIOMETRICI				
а	~				
mm/h ⁿ	n				
84.4	0.572				

ID	S_pav m²	φ_pav	Svers m2	φ_vers	S_eq m²	L m	b m	k m/s
FOSSO D	133.64	0.9	46.40	0.4	138.84	25.70	0.5	0.0001

Tabella 8-1.7 – Calcolo dei volumi accumulati nei fossi disperdenti – Tabella1: dati pluviometrici; Tabella2: dati di calcolo dei volumi entranti. ID: identificativo fosso disperdente; S_pav/ϕ_pav : superficie e coefficiente di afflusso della pavimentazione stradale; S_vers/ϕ_vers : superficie e coefficiente di afflusso del versante stradale; S_eq : superficie equivalente; L: lunghezza fosso; b: base fosso; k: permeabilità.

GENERAL CONTRACTOR Consorzio IricAV Due		A SORVEGLIA TAL O FERROVIE DELLO S	FERR	
	Progetto	Lotto	Codifica	
	IN17	12	EI2RINV580X0001	А

d	We	h	Qu	Wu	Wi	h
min	m³	m	m³/s	m³	m ³	m
0	0.00	0.00	0.0013	0.00	0.00	0.00
5	3.00	0.00	0.0013	0.39	2.61	0.20
10	4.45	0.20	0.0028	1.21	3.24	0.25
15	5.62	0.25	0.0031	2.15	3.47	0.27
20	6.62	0.27	0.0032	3.12	3.50	0.27
25	7.52	0.27	0.0033	4.10	3.42	0.27
30	8.35	0.27	0.0032	5.07	3.28	0.26
35	9.12	0.26	0.0031	6.01	3.11	0.24
40	9.84	0.24	0.0030	6.92	2.92	0.23
45	10.53	0.23	0.0029	7.80	2.72	0.21
50	11.18	0.21	0.0028	8.65	2.53	0.20
55	11.81	0.20	0.0027	9.47	2.34	0.18
60	12.41	0.18	0.0026	10.25	2.16	0.17
65	12.99	0.17	0.0025	11.00	1.99	0.15
70	13.56	0.15	0.0024	11.73	1.83	0.14
75	14.10	0.14	0.0023	12.42	1.68	0.13
80	14.63	0.13	0.0022	13.09	1.54	0.12
85	15.15	0.12	0.0022	13.74	1.41	0.11
90	15.65	0.11	0.0021	14.36	1.29	0.10
95	16.14	0.10	0.0020	14.97	1.18	0.09
100	16.62	0.09	0.0019	15.55	1.07	0.08
105	17.09	0.08	0.0019	16.12	0.97	0.08
110	17.56	0.08	0.0018	16.67	0.88	0.07
115	18.01	0.07	0.0018	17.21	0.80	0.06
120	18.45	0.06	0.0017	17.73	0.72	0.06
125	18.89	0.06	0.0017	18.24	0.65	0.05
130	19.32	0.05	0.0017	18.73	0.58	0.05
135	19.74	0.05	0.0016	19.22	0.52	0.04
140	20.15	0.04	0.0016	19.69	0.46	0.04
145	20.56	0.04	0.0015	20.15	0.41	0.03
150	20.96	0.03	0.0015	20.61	0.35	0.03
155	21.36	0.03	0.0015	21.05	0.31	0.02
160	21.75	0.02	0.0015	21.49	0.26	0.02
165	22.14	0.02	0.0014	21.92	0.22	0.02
170	22.52	0.02	0.0014	22.34	0.18	0.01
175	22.90	0.01	0.0014	22.76	0.14	0.01
180	23.27	0.01	0.0014	23.17	0.10	0.01
185	23.64	0.01	0.0013	23.57	0.06	0.01
190	24.00	0.01	0.0013	23.97	0.03	0.00
195	24.36	0.00	0.0013	24.36	0.00	0.00
200	24.71	0.00	0.0013	24.74	-0.03	0.00
205	25.06	0.00	0.0013	25.12	-0.06	0.00
210	25.41	0.00	0.0013	25.50	-0.09	-0.01

Tabella 8-1.8 – Verifica del fosso disperdente – In alto: We: volume entrante all'interno del fosso; Wu: volume uscente; Wi: volume accumulato. In basso: tabella di verifica.