COMMITTENTE:

ALTA SORVEGLIANZA:

SCALA

Albo ingegne 15/09/2021

File: IN1712EI2RIRI7604001A_01.DOCX

Cod. origine:

GENERAL CONTRACTOR:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE **OBIETTIVO N. 443/01**

LINEA AV/AC TORINO – VENEZIA Tratta VERONA – PADOVA Lotto funzionale Verona – Bivio Vicenza PROGETTO ESECUTIVO

RI – RILEVATI

IL PROGETTISTA INTEGRATORE

CIG. 8377957CD1

Progetto cofinanziato dalla Unione Europea

RI76 - RILEVATO FERROVIARIO DA PK 39+630,26 A PK 40+287,46 SISTEMAZIONI IDRAULICHE

Relazione idraulica smaltimento acque

Consorzio

GENERAL CONTRACTOR

iscatt inge Data		- Clou	olo Carmo	2021	RA/DISCIPLINA	PROGR.	REV.	FOGLIO
						VIST	o consorzio iri	CAV DUE
					F	rma		Data
<	Consor	zio IricA	V Due		Luca	RANDOLFI		15/09/2021
Prog	ettazione:						4	GEGNERI DELLA
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data Data	IDORO CATVANSIA
Α	EMISSIONE	E. Giorgetti	15/09/21	A.Gardani	15/09/21	P.Galvanin	15/09/21	Set Plan Carvalin N
A	EIVIISSIONE	36	15/09/21	AG.	13/09/21	45	15/09/21	Albo indegneri Milano b) ind in A21784
		,		, .			JLPIN	ing Pagy (CANA) IN Albo ingegneri Milao n. A21784

DIRETTORE LAVORI

CUP: J41E91000000009

GENERAL CONTRACTOR

RELAZIONE IDRAULICA SMALTIMENTO ACQUE

Progetto Lotto IN17 12 Codifica Documento E I2 RI RI7604 001 Rev. Foglio A 2 di 20

INDICE

1	DES	SCRIZIONE GENERALE	3
2	DOC	CUMENTI DI RIFERIMENTO	3
3	RIFE	ERIMENTI NORMATIVI	3
4	PAR	RAMETRI DI RIFERIMENTO	4
	4.1	Idrologia	4
	4.2	Coefficienti di deflusso	
5	DRE	ENAGGIO DELLE ACQUE DI PIATTAFORMA	
	5.1	Descrizione del sistema	
	5.2	Dimensionamento degli elementi di drenaggio	8
	5.2.1	1 Modello di trasformazione afflussi-deflussi	8
	5.2.2	2 Dimensionamento degli elementi di raccolta	9
	5.2.3		
6	SIST	TEMA DI LAMINAZIONE	16
	6.1	Dimensionamento del bacino di laminazione	17

1 DESCRIZIONE GENERALE

Oggetto della presente relazione è l'analisi del sistema di drenaggio del tratto in rilevato RI76, compreso tra il km 39+630.26 e il km 40+287.46 della Linea AV/AC Torino – Venezia - Tratta Verona - Padova - Lotto funzionale Verona-Bivio Vicenza.

L'intervento risulta idraulicamente connesso al successivo tratto in rilevato RI77A - Rilevato ferroviario da pk 40+287.46 a pk 40+950.00; le due WBS saranno trattate nel seguito come un unico sistema idraulico di smaltimento delle acque di piattaforma.

Il sistema di drenaggio della piattaforma ferroviaria della linea AV/AC di progetto, delle aree ad essa afferenti (scarpata e stradello) e della Linea Storica (L.S.) in affiancamento prevede la raccolta e il convogliamento della portata meteorica verso il bacino di laminazione RI78A-BL01 posto in affiancamento al rilevato ferroviario tra le WBS RI77A e RI78A. Tale bacino di laminazione è stato progettato in modo tale da laminare la portata meteorica e restituirla alla rete fognaria esistente conformemente al limite di 5 l/s per ettaro imposto dalla normativa vigente (DGRV 2948/2009) e dal Consorzio di Bonifica Alta Pianura Veneta (ApV) Ente Gestore del reticolo idrico interferito nell'area di interesse.

Il recapito ultimo delle acque meteoriche è rappresentato dal fabbricato di sollevamento IN95C posto a valle del bacino di laminazione e quindi dalla rete fognaria esistente su via Melaro.

Per quanto riguarda le difformità rispetto al progetto definitivo di rimanda all'elaborato di confronto PD/PE.

2 DOCUMENTI DI RIFERIMENTO

IN1710EI2BZRI0006001 – Dettagli smaltimento acque di piattaforma IN1710EI2BZRI0006002 – Dettagli manufatti di regolazione

IN1712EI2PZRI7604001A – Planimetria idraulica e sezione – Tav. 1 IN1712EI2PZRI7604002A – Planimetria idraulica e sezione – Tav. 2

IN1712EI2P8RI77A4001A – Planimetria idraulica e sezione – Tav. 1 IN1712EI2P8RI77A4002A – Planimetria idraulica e sezione – Tav. 2

IN1712EI2PZRI78A4003A - Pianta, sezioni e dettagli bacino di laminazione RI78A-BL01

3 RIFERIMENTI NORMATIVI

I principali riferimenti normativi utilizzati per la presente progettazione vengono riassunti di seguito:

- D. Lgs. 3 aprile 2006, n.152, "Norme in materia ambientale"
- D. Lgs. 16 gennaio 2008, n. 4, "Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006. n. 152. recante norme in materia ambientale"
- Circolare del Ministero dei Lavori Pubblici n.11633 del 7/1/1974

- Deliberazione della Giunta Regionale del Veneto DGRV 6 ottobre 2009 n. 2948, "Nuove indicazioni
 per la formazione degli strumenti urbanistici" e in particolare l'Allegato A, "Valutazione di compatibilità
 idraulica per la redazione di nuovi strumenti urbanistici. Modalità operative e indicazioni tecniche".
- Manuale di Progettazione delle Opere Civili RFI (Ed. 2017)

4 PARAMETRI DI RIFERIMENTO

4.1 Idrologia

La previsione quantitativa delle piogge nell'area di interesse è stata realizzata attraverso la determinazione della curva di possibilità pluviometrica individuante la relazione che intercorre tra il tempo di pioggia (t) e l'altezza d'acqua piovuta (h), secondo la seguente formulazione:

$$h(t) = a \cdot t^n$$

nella quale i termini a ed n sono parametri dipendenti dal tempo di ritorno specificato.

Il tempo di ritorno utilizzato come riferimento è TR = 100 anni, in linea con quanto prescritto nel manuale di progettazione RFI, parte II sezione 3.

Volendo determinare le portate che comportano la crisi del sistema di drenaggio occorre fare riferimento agli eventi pluviometrici di breve durata e forte intensità. Per definire le altezze di precipitazione corrispondenti a tali eventi pluviometrici vengono utilizzate le curve di possibilità pluviometrica (CPP), elaborate a partire dalle registrazioni di altezza di pioggia effettuate nelle stazioni pluviometriche.

Per la tratta Verona-Vicenza sono stati ottenuti i seguenti parametri della curva di possibilità pluviometrica:

Tabella 1 - Parametri a e n per durate superiori e inferiori all'ora, per tempo di ritorno pari a 100 anni

				Tr= 10	0 anni	
Stazioni ArpaV	da pk (km)	a pk (km)	<1h		1-24	h
			a (mm/ore ⁿ)	n (a-dim.)	a (mm/ore ⁿ)	n (a-dim.)
Verona Parco Adige Nord	0+000	3+050	102.34	102.34 0.60		0.17
Buttapietra (Verona sud)	3+050	4+105	86.75	0.62	81.64	0.13
50% Buttapietra 50%Arcole	4+105	13+775	94.28	0.62	85.94	0.13
Colognola ai colli	13+755	18+710	84.48	0.54	78.70	0.18
Arcole	18+710	26+010	101.76	0.62	90.07	0.13
Lonigo	26+010	32+975	99.50	0.57	85.05	0.12
Brendola	32+975	42+310	87.62 0.51		71.79	0.25
S.Agostino Vicenza	42+310	44+250	66.97 0.39		69.30	0.23

Nella tratta oggetto della presente Relazione si fa riferimento ai valori della stazione di Brendola.

Per maggiori dettagli si rimanda alla relazione idrologica (IN1711EI2RGID00000040).

GENERAL CONTRACTOR		ALTA S	ORVEG	LIANZA		
Consorzio IricAV Du		EDITORIAL PROPERTY OF		FERR STATO ITALIANE		
RELAZIONE IDRAULICA SMALTIMI	NTO ACQUE	Progetto IN17	Lotto 12	Codifica Documento E I2 RI RI7604 001	Rev. A	Foglio 5 di 20

4.2 Coefficienti di deflusso

La riduzione dell'afflusso (φ) alla rete si considera dovuta principalmente a impermeabilità e ritardo, che variano a seconda della densità delle costruzioni e della topografia della zona.

Come indicato dalla normativa regionale (Allegato A alla DGR 2948 del 6 ottobre 2009) si utilizza un coefficiente di deflusso ϕ = 0.9 per le aree pavimentate, ϕ = 0.6 per le scarpate dei rilevati, ϕ = 0.2 per le superfici permeabili e ϕ = 0.1 per le aree agricole.

Si calcolano quindi le superfici afferenti efficaci come: Aeff=φA.

5 DRENAGGIO DELLE ACQUE DI PIATTAFORMA

5.1 Descrizione del sistema

Il sistema di drenaggio della piattaforma ferroviaria, per il tratto in rilevato in oggetto, prevede la raccolta e il convogliamento della portata meteorica che scorre sul sub-ballast impermeabile verso i fossi di guardia posti al piede del rilevato e quindi al bacino di laminazione.

I fossi di guardia di forma rettangolare e dimensioni 3.00x1.00 m previsti nel presente progetto hanno la funzione di convogliamento della portata meteorica scaricata dalla piattaforma, della portata relativa alle scarpate e della portata relativa allo stradello ferroviario. Lo stradello, di larghezza 3 m, sarà infatti realizzato con una pendenza trasversale dell'1% verso il fosso di guardia. Lo stradello ferroviario si mantiene alla quota della testa dei fossi.

La laminazione delle acque meteoriche avviene tramite il bacino di laminazione RI78A-BL01 alla pk 40+950.00, illustrato nella seguente immagine.

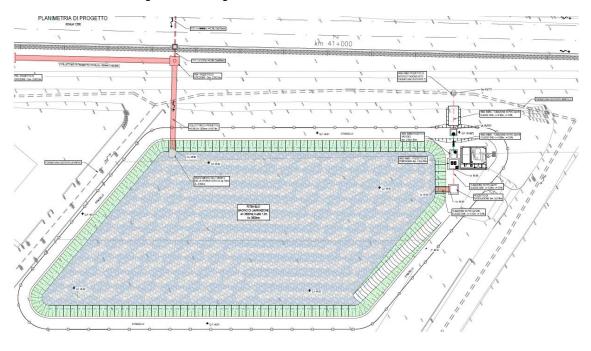


Figura 1 – Planimetria di progetto del bacino di laminazione RI78A-BL01

Le portate saranno convogliate dal bacino di laminazione in un manufatto dotato di un setto con una bocca tarata che garantisce la regolazione delle portate laminate in uscita dal bacino, e quindi nell'impianto di sollevamento IN95C. Le portate laminate saranno infine restituite alla rete fognaria esistente su via Melaro.

Le acque meteoriche relative alla semi-piattaforma lato B.D. della linea AV/AC ed alla semi-piattaforma lato B.P. della L.S., tra il km 36+630.00 e il km 40+957.00, sono raccolte in canalette rettangolari tipo "CR" di dimensioni variabili da 0.40x0.40 m a 0.50x0.50 m dotate di griglia metallica classe D400 e posate con la pendenza della linea, a meno di un primo tratto in contropendenza.

La raccolta e il convogliamento delle acque della semi-piattaforma relativa al B.P. della linea AV/AC, lungo il tratto compreso tra la pk 36+630.00 e la pk 39+977.00 e tra le pk 40+530.47 e la pk 40+957.00, data la presenza lato B.P. dei muri di mitigazione, avverrà tramite canalette rettangolari tipo "CR" di dimensioni 0.40x0.40 m dotate di griglia metallica classe D400 e posate con la pendenza della linea, a meno di un primo tratto in contropendenza.

L'attraversamento dei fossi di guardia in corrispondenza del cavalcaferrovia IV09 alla pk 40+350.00 è realizzato mediante quattro collettori in HDPE corrugato De630 lato B.P. della linea AV/AC in progetto. Lungo questo tratto si prevede la raccolta e il convogliamento delle acque meteoriche relative alla semi-piattaforma lato B.P. della linea AV/AC tramite un'ulteriore tratto di canaletta tipo "CR" di dimensioni 0.40x0.40 m che scarica la portata nel fosso di guardia a valle dell'attraversamento del cavalcaferrovia.

Un ulteriore tratto di canaletta tipo "CR" di dimensioni 0.40x0.40 m di lunghezza pari a 34 m è posta in corrispondenza della piazzola CABINA RADIO BTS alla pk 40+151.30

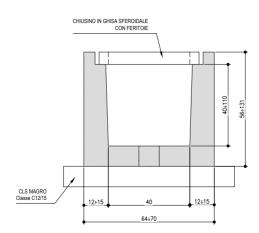


Figura 2 - Sezione tipologica della canaletta a sezione rettangolare in cls

Le canalette lato B.P. e lato B.D., ad interasse di circa 50 m, scaricano la portata nel fosso di guardia al piede del rilevato lato B.P. della linea AV/AC per mezzo di collettori in PVC De315 e De400 e pozzetti prefabbricati in cls di dimensioni 0.80x0.80 m, come illustrato nelle seguenti immagini.

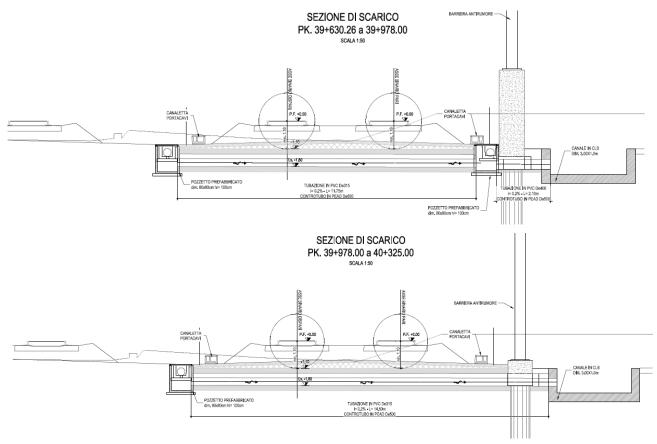


Figura 3 – Sezioni dei rilevati RI76 con collettori di convogliamento delle acque al fosso al piede del rilevato

Il dettaglio del pozzetto di scarico e dei relativi collettori è illustrato nella seguente immagine.

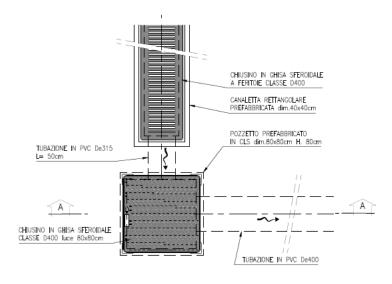


Figura 4 – Dettaglio di scarico della canaletta centrale nel pozzetto 0.8x0.8 m.

Lungo i tratti in cui non sono presenti i muri di mitigazione, le acque meteoriche relative al B.P. della linea AV/AC sono convogliate nei fossi di guardia al piede del rilevato tramite embrici/scassi nel cordolo della barriera antirumore posti a intervalli di 15 m.

Lungo il tratto relativo alla WBS RI77A dal km 40+763.00 fino al bacino di laminazione (km 40+950.00), dati i limitati spazi a disposizione, si prevede la sostituzione del fosso rettangolare 3.00x1.00 m posto al piede del rilevato ferroviario lato B.P. con un collettore in cls Φ1200.

Lo scarico delle acque nel bacino di laminazione avverrà per mezzo di un collettore in cls Φ1200 alla pk 40+956.00 che convoglia le acque del collettore in cls Φ1200 parallelo alla linea e delle canalette rettangolari relative all'ultimo tratto della WBS RI77A e ai primi 7 m della WBS RI78A.

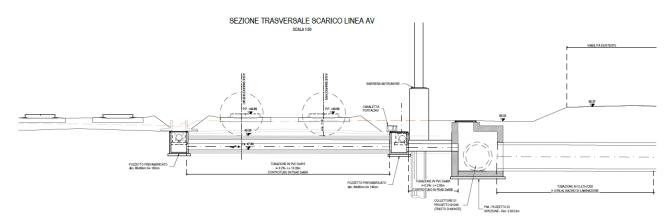


Figura 5 - Sezione di scarico della linea nel bacino di laminazione RI78A-BL01

Per i dettagli costruttivi dei singoli elementi si faccia riferimento all'elaborato IN1710EI2BZRI0006001 – Dettagli smaltimento acque di piattaforma.

Di seguito si illustrano gli elementi di drenaggio (scassi nei cordoli, canalette, collettori). Il sistema di laminazione, costituito dal bacino di laminazione, è descritto nel successivo capitolo 6.

5.2 Dimensionamento degli elementi di drenaggio

5.2.1 Modello di trasformazione afflussi-deflussi

La determinazione delle portate defluenti nelle sezioni di chiusura dei sottobacini ferroviari è stata effettuata mediante l'applicazione di un modello afflussi-deflussi. L'importanza di tale informazione risiede nella necessità di dimensionare correttamente i manufatti idraulici atti a convogliare le acque, in riferimento alla capacità idraulica dei ricettori finali.

Note le curve di possibilità pluviometrica, sì è proceduto alla determinazione delle piogge di progetto ed alla successiva determinazione delle onde di piena di progetto.

In questo caso, per la determinazione delle portate di progetto, è stato adottato il modello di corrivazione utilizzando uno ietogramma rettangolare depurato delle perdite idrologiche per infiltrazione e per detenzione

superficiale mediante l'applicazione di un coefficiente di deflusso (rapporto tra il volume defluito ed il corrispondente volume di afflusso meteorico) assunto costante durante l'evento.

Il modello adottato ammette due parametri fondamentali, uno per ciascuno dei due fenomeni citati in precedenza (infiltrazione e trasformazione afflussi netti - deflussi): il coefficiente di deflusso (equivalente al coefficiente di assorbimento orario nella nomenclatura del metodo italiano) e il tempo di corrivazione del bacino. Detti parametri hanno un preciso significato fisico e sono basilari per poter raggiungere una rappresentazione abbastanza accettabile del fenomeno delle piene.

La portata affluente (Qcritica) è valutabile attraverso l'applicazione della formula razionale, che restituisce la portata specifica da drenare:

$$Q = \frac{\varphi \cdot i_c \cdot A}{3600 \cdot 1000}$$

dove i_c [mm/h] è l'intensità di pioggia massima per la durata di pioggia pari al tempo di corrivazione t_c [ore], A[m²] è la superficie del bacino scolante e φ (§ 4.2) è il coefficiente di deflusso che esprime, a meno delle unità di misura, il rapporto tra il volume affluito alla rete e quello complessivamente affluito al bacino, la formula così scritta restituisce il valore di portata Q in m³/s.

5.2.2 Dimensionamento degli elementi di raccolta

La raccolta dell'acqua di piattaforma, per i tratti in rilevato, è realizzata tramite scassi nel cordolo posti ad interassi dimensionati per soddisfare in modo corretto la loro funzione che è quella di limitare i tiranti idrici sulle pavimentazioni a valori compatibili con la loro transitabilità, per garantire la dovuta sicurezza del sistema infrastruttura. Lo scasso nel cordolo è costituito dall'elemento di imbocco di un embrice.

Il funzionamento idraulico di un embrice può essere assimilato a quello di una soglia sfiorante; la portata sfiorata Q [m³/s] può essere definita come:

$$Q = C_q L h \sqrt{2gh}$$

nella quale:

- C_q = 0,385 è il coefficiente di deflusso;
- L [m] rappresenta la larghezza di imbocco dell'embrice (pari a 0.6 m)
- h [m] rappresenta l'altezza del velo liquido all'imbocco dell'embrice.

Si è imposto un tempo di corrivazione minimo pari a 5 minuti poiché per tempi molto brevi la curva dell'intensità di pioggia a due parametri tende all'infinito, fornendo quindi dati non realistici.

In Tabella 2 è riportato il dimensionamento degli embrici relativi alla WBS in oggetto e alla successiva WBS RI77A.

GENERAL CONTRACTOR		ALTA SO	ORVEG	LIANZA		
Consorzio IricAv Due		LICENSELS OF PRODUCT		FERR STATO ITALIANE		
RELAZIONE IDRAULICA SMALTIMENT	O ACQUE	Progetto IN17	Lotto 12	Codifica Documento E I2 RI RI7604 001	Rev. A	Foglio 10 di 20

In particolare, è stata calcolata la portata sfiorata e, dal rapporto tra quest'ultima e la portata drenata determinata con la formula razionale per unità di lunghezza, il passo minimo degli embrici al variare del tracciato. Viene ritenuto accettabile un allagamento massimo pari a 1.40 m a partire dal cordolino che delimita la piattaforma che porta ad un interasse di progetto per gli scassi pari a 15 m.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Lotto Codifica Documento Rev. Foglio Progetto RELAZIONE IDRAULICA SMALTIMENTO ACQUE IN17 E I2 RI RI7604 001 12 Α 20

Tabella 2 – Dimensionamento interasse embrici

Calcolo deflusso			RI	176	RI77
Sezioni			18 - 26	26 - 31	1 - 14
Sezioni			10-20	20-31	1-14
Larghezza piattaforma drenata [m]	w		6.40	6.40	6.40
Pendenza trasversale sub-ballast [m/m]	i		0.03	0.03	0.03
Angolo sulla verticale [grad]	q		88.28	88.28	88.28
Larghezza banchina allagata [m]	b		1.40	1.40	1.40
Altezza d'acqua massima ammissibile [m]	h		0.04	0.04	0.04
Pendenza ferroviaria longitudinale [m/m]	р		0.00329	0.00377	0.00377
Area di deflusso [m²]	Ad		0.03	0.03	0.03
Raggio idraulico banchina [m]	R		0.02	0.02	0.02
Coefficiente di Strickler sub-ballast [m ^{1/3} /s]	Ks		80.00	80.00	80.00
Portata longitudinale convogliata dalla banchina [l/s]	Q		10.07	10.77	10.77
Velocità di deflusso in cunetta [m/s]	v		0.34	0.37	0.37
Calcolo interassi scarico acqu	ue miste				
Coefficienti c.p.p.	a [mm/h]	87.62			
Brendola	n	0.51			
Durata precipitazione [min]	T _c	5			
Coefficiente di laminazione	е	1.00			
Coefficiente di afflusso	j	0.90			
Intensità precipitazione [mm/h]	i	295			
Coefficiente udometrico [l/s/ha]	u	738	738.0	738.0	738.0
Portata drenata/m [l/sm]	Q		0.47	0.47	0.47
	INTERA	SSE SCARICHI [m]	21.3	22.8	22.8
		Progetto			
INTERASS	SE ELEMENTI	DI RACCOLTA [m]	15	15	15
Verifica interasse embrici					
Carico idrico [m]	h		0.04	0.04	0.04
Coeff di contrazione	Cq	0.385			
Larghezza embrice [m]	L	0.6			
Portata sfiorata embrice [l/s]	Q		8.80	8.80	8.80
Interasse embrici [m]	Xe		18.64	18.64	18.64

GENERAL CONTRACTOR		ALTA SO	ORVEG	LIANZA		
Consorzio IricAV Due		AND STREET, ON PERSONS IN		FERR STATO ITALIANE		
RELAZIONE IDRAULICA SMALTIMENT	O ACQUE	Progetto IN17	Lotto 12	Codifica Documento E I2 RI RI7604 001	Rev. A	Foglio 12 di 20

5.2.3 Dimensionamento degli elementi di convogliamento

Il dimensionamento degli elementi di convogliamento (collettori, mezzi tubi, canalette) è dato dal confronto tra la portata transitante, ovvero la portata meteorica critica calcolata tramite la formula razionale, e quella massima ammissibile dall'elemento in questione. Anche in questo caso la condizione più gravosa è quella per cui il tempo di pioggia è pari al tempo di corrivazione. Quest'ultimo in questo caso è pari alla somma del tempo di afflusso (pari a 5 minuti) e del tempo di traslazione (t_r) lungo i rami costituenti il percorso idraulicamente più lungo ("asta principale"). Il tempo di traslazione si ottiene quindi dalla formula:

$$t_r = \sum_{i=1}^N \frac{I_i}{V_i}$$

dove:

N = numero dei tronchi della rete a monte della generica sezione, facenti parte dell'asta principale;

 l_i = lunghezza del tronco i-esimo;

 v_i = velocità nel tronco i-esimo.

Il moto all'interno della rete si descrive adottando uno schema di moto uniforme. In particolare, si utilizza la formula di Chézy per ottenere le scale di deflusso:

$$Q = \chi \ A \sqrt{\Re j} = k \frac{A^{5/3}}{C^{2/3}} \sqrt{j}$$

dove: Q rappresenta la portata di dimensionamento dell'elemento (m^3/s) ; k = 1/n il coefficiente di scabrezza di Strickler $(m^{1/3}/s)$ con n=0.015 per gli elementi in cls e pari a 0.011 per i collettori in materiale plastico: A l' area bagnata (m^2) ; C il contorno bagnato (m); j la pendenza media della condotta (m/m); $\mathfrak{R} = \frac{A}{C}$ il raggio idraulico (m).

Per ottenere la velocità di percorrenza del singolo tratto basta dividere la portata Q per l'area bagnata A.

Per i collettori è stato considerato un riempimento massimo del 75% per canalette e collettori e pari al 40% per i mezzi tubi. La velocità deve risultare compresa tra un minimo di 0.5 m/s per evitare sedimentazioni e 5 m/s come indicato nella circolare del Ministero dei Lavori Pubblici n.11633 del 7/1/19.

Nelle seguenti tabelle vengono presentati i risultati dei dimensionamenti relativi alle canalette rettangolari e ai relativi collettori di scarico in PVC delle WBS RI76 oggetto della presente relazione e RI77A idraulicamente connessa ad essa. Sono riportati anche i risultati relativi ai fossi rettangolari posti al piede del rilevato, che, date le elevate pendenze, non svolgono funzione di laminazione, ma solo di convogliamento delle acque meteoriche verso il bacino di laminazione. Alle canalette è stata assegnata la pendenza della linea, per i tratti in contropendenza è stata assunta una pendenza interna dello 0.2% ottenuta tramite massetti di altezza massima pari a 16 cm.

Ai fossi di guardia posti al piede del rilevato è stata assegnata la pendenza della linea.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Progetto Lotto Codifica Documento Rev. Foglio

Tabella 3 – Dimensionamento canalette tipo CR

IN17

12

E I2 RI RI7604 001

13 di 20

Α

RELAZIONE IDRAULICA SMALTIMENTO ACQUE

	pk monte	pk valle	Area imp	Area efficace	Base canaletta	Altezza canaletta	i	Lunghezza	T ingresso	R pieno riemp.	v pieno riemp.	T traslaz. singolo ramo	Max T traslaz. (min)	T corrivaz. (min)	Qcritica	Q pieno riemp.	h	Area bagnata	h/D	v
scarico fosso RI76-FR01-AVBP			[m2]	[m2]	[m]	[m]	[m/m]	[m]	[min]	[m]	[m/s]	[min]	[min]	[min]	[m3/s]	[m3/s]	[m]	[m2]	[-]	[m/s]
RI76-CR01-AVBD	39635	39684	627	564	0.40	0.40	0.0020	49.0	5.0	0.13	0.78	1.05	1.05	6.05	0.04	0.12	0.17	0.07	0.62	0.60
RI76-CR02-AVBD	39686	39716	378	340	0.40	0.40	0.0020	29.5	5.0	0.13	0.78	0.63	0.63	5.63	0.03	0.12	0.12	0.05	0.50	0.54
RI76-CR03-AVBD	39718	39734	211	190	0.40	0.40	0.0033	16.5	5.0	0.13	1.00	0.28	0.28	5.28	0.02	0.16	0.07	0.03	0.18	0.53
RI76-CR04-AVBD	39736	39784	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR05-AVBD	39786	39834	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR06-AVBD	39836	39884	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR07-AVBD	39886	39934	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR08-AVBD	39936	39977	525	472	0.40	0.40	0.0033	41.0	5.0	0.13	1.00	0.68	0.68	5.68	0.04	0.16	0.13	0.05	0.32	0.70
RI76-CR09-AVBD	39979	40027	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR10-AVBD	40029	40077	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR11-AVBD	40079	40127	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR12-AVBD	40129	40177	614	553	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.04	0.16	0.14	0.06	0.36	0.73
RI76-CR13-AVBD	40179	40227	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI76-CR14-AVBD	40229	40277	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI76-CR15-AVBD	40279	40324	576	518	0.40	0.40	0.0038	45.0	5.0	0.13	1.07	0.70	0.70	5.70	0.04	0.17	0.13	0.05	0.33	0.76
RI76-CR01-AVBP	39635	39684	314	282	0.40	0.40	0.0020	49.0	5.0	0.13	0.78	1.05	1.05	6.05	0.02	0.12	0.11	0.04	0.38	0.49
RI76-CR02-AVBP	39686	39716	192	173	0.40	0.40	0.0020	30.0	5.0	0.13	0.78	0.64	0.64	5.64	0.01	0.12	0.08	0.03	0.33	0.42
RI76-CR03-AVBP	39718	39735	109	98	0.40	0.40	0.0033	17.0	5.0	0.13	1.00	0.28	0.28	5.28	0.01	0.16	0.05	0.02	0.11	0.43
RI76-CR04-AVBP	39737	39785	307	276	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.02	0.16	0.09	0.04	0.23	0.58
RI76-CR05-AVBP	39787	39835	307	276	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.02	0.16	0.09	0.04	0.23	0.58
RI76-CR06-AVBP	39837	39885	307	276	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.02	0.16	0.09	0.04	0.23	0.58
RI76-CR07-AVBP	39887	39935	307	276	0.40	0.40	0.0033	48.0	5.0	0.13	1.00	0.80	0.80	5.80	0.02	0.16	0.09	0.04	0.22	0.59
RI76-CR08-AVBP	39937	39978	262	236	0.40	0.40	0.0033	41.0	5.0	0.13	1.00	0.68	0.68	5.68	0.02	0.16	0.08	0.03	0.20	0.57
RI76-CR09-AVBP	40134	40168	218	196	0.40	0.40	0.0033	34.0	5.0	0.13	1.00	0.57	0.57	5.57	0.02	0.16	0.07	0.03	0.18	0.53

GENERAL CONTRACTOR

RELAZIONE IDRAULICA SMALTIMENTO ACQUE	Progetto	Lotto	Codifica Documento	Rev.	Foglio
RELAZIONE IDRAULICA SMALTIMENTO ACQUE	IN17	12	F I2 RI RI7504 001	Α	14 di 20

scarico fosso RI77A-FR01-AVBP																			'	1
RI77-CR01-AVBD	40326	40379	678	611	0.40	0.40	0.0038	53.0	5.0	0.13	1.07	0.83	0.83	5.83	0.05	0.17	0.15	0.06	0.37	0.78
RI77-CR02-AVBD	40381	40429	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI77-CR03-AVBD	40431	40479	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI77-CR04-AVBD	40481	40529	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI77-CR05-AVBD	40531	40579	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI77-CR06-AVBD	40581	40629	614	553	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.04	0.17	0.14	0.06	0.34	0.77
RI77-CR07-AVBD																				
RI77-CR08-AVBD	40681	40749	870	783	0.40	0.40	0.0038	68.0	5.0	0.13	1.07	1.06	1.06	6.06	0.06	0.17	0.18	0.07	0.44	0.83
RI77-CR01-AVBP	40326	40379	339	305	0.40	0.40	0.0038	53.0	5.0	0.13	1.07	0.83	0.83	5.83	0.02	0.17	0.09	0.04	0.23	0.64
RI77-CR02-AVBP	40531	40579	307	276	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.02	0.17	0.09	0.04	0.23	0.59
RI77-CR03-AVBP	40581	40629	307	276	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.02	0.17	0.09	0.03	0.21	0.62
RI77-CR04-AVBP	40631	40679	307	276	0.40	0.40	0.0038	48.0	5.0	0.13	1.07	0.75	0.75	5.75	0.02	0.17	0.09	0.03	0.21	0.62
RI77-CR05-AVBP	40681	40749	435	392	0.40	0.40	0.0038	68.0	5.0	0.13	1.07	1.06	1.06	6.06	0.03	0.17	0.11	0.04	0.27	0.69
scarico diretto nel bacino																				
RI77-CR09-AVBD	40751	40956	2624	2362	0.40	0.50	0.0038	205.0	5.0	0.14	1.12	3.05	3.05	8.05	0.15	0.22	0.37	0.15	0.73	1.05
RI77-CR06-AVBP	40763	40956	1235	1112	0.40	0.40	0.0038	193.0	5.0	0.13	1.07	3.01	3.01	8.01	0.07	0.17	0.20	0.08	0.51	0.89

Tabella 4 – Dimensionamento fossi tipo CR

	pk monte	pk valle	Area imp	Area efficace	Base canaletta	Altezza canaletta	i	Lunghezza	T ingresso	R pieno riemp.		singolo	Max T traslaz. (min)	T corrivaz. (min)	Qcritica	Q pieno riemp.	h	Area bagnata	h/D	v
			[m²]	[m²]	[m]	[m]	[m/m]	[m]	[min]	[m]	[m/s]	[min]	[min]	[min]	[m³/s]	[m ³ /s]	[m]	[m²]	[-]	[m/s]
RI76-FR01-AVBP	39635	40331	17091	16217	3.00	1.00	0.0035	696.0	5.0	0.60	2.81	4.13	4.13	9.13	0.99	8.42	0.24	0.72	0.24	1.38
RI77A-FR01-AVBP	40375	40762	26393	24218	3.00	1.00	0.0035	387.0	5.0	0.60	2.81	2.30	6.43	11.43	1.33	8.42	0.29	0.87	0.29	1.53

GENERAL CONTRACTOR Consorzio IricAV Due RELAZIONE IDRAULICA SMALTIMENTO ACQUE ALTA SORVEGLIANZA Consorzio IricAV Due Rev. Foglio 15 di 20

Tabella 5 – Dimensionamento collettori

Tratto	WBS	Collettore	Diametro	Pendenza	Lunghezza	Materiale	Ks	T ingresso	V pieno riemp.	T traslaz. singolo ramo	Max T traslaz.	T corrivaz.	Qcritica	Qmax riempi.	h	h/D	Angolo riemp.	Area bagnata	v
			[m]	[m/m]	[m]		(m1/3/s)	[min]	[m/s]	[min]	[min]	[min]	[m3/s]	[m3/s]	[m]	[-]	[grad]	[m2]	[m/s]
scarico nel fosso RI76-FR01-AVBP																			
scarico canaletta centrale	RI76		315	0.0020	11.58	PVC	91	5.00	0.72	0.27	0.27	5.27	0.04	0.05	0.21	0.71	229.81	0.05	0.81
scarico canaletta centrale+laterale	RI76		400	0.0020	1.86	PVC	91	5.00	0.84	0.04	0.31	5.31	0.06	0.09	0.23	0.60	203.76	0.07	0.90
scarico nel fosso RI77A-FR01-AVBP																			
scarico canaletta RI77-CR01-AVBD (L=53m)	RI77	T01	400	0.0020	10.90	PVC	91	5.00	0.84	0.22	0.22	5.22	0.05	0.09	0.19	0.50	179.42	0.06	0.84
scarico canaletta RI77-CR01-AVBD (L=53m) + RI77-CR01-AVBP (L=53m)	RI77	T02	400	0.0020	1.46	PVC	91	5.00	0.84	0.03	0.24	5.24	0.07	0.09	0.24	0.64	213.02	0.08	0.92
scarico canaletta centrale L=48	RI77		315	0.0020	13.95	PVC	91	5.00	0.72	0.32	0.32	5.32	0.04	0.05	0.21	0.71	229.91	0.05	0.81
scarico canaletta centrale RI77-CR08-AVBD	RI77	T12	400	0.0020	13.67	PVC	91	5.00	0.84	0.27	0.27	5.27	0.06	0.09	0.22	0.57	196.53	0.07	0.89
scarico canaletta centrale RI77-CR08-AVBD + RI77-CR05-AVBP	RI77	T13	400	0.0020	13.67	PVC	91	5.00	0.84	0.27	0.27	5.27	0.09	0.09	0.29	0.77	244.63	0.09	0.96
attraversamento cavalcaferrovia IV09	RI77	4 collettori De630	630	0.0035	44.58	HDPE	91	5.00	1.51	0.49	0.49	5.49	0.25	0.42	0.33	0.55	192.61	0.16	1.57
scarico diretto b.l.																			
scarico canaletta centrale	RI77	T14	315	0.0020	11.58	PVC	91	5.00	0.72	0.27	0.27	5.27	0.04	0.05	0.21	0.71	229.81	0.05	0.81
scarico canaletta centrale+laterale	RI77	T15	400	0.0020	1.86	PVC	91	5.00	0.84	0.04	0.31	5.31	0.06	0.09	0.23	0.60	203.76	0.07	0.90
CLS	RI77		1200	0.0050	194.00	CLS	67	5.00	2.12	1.52	1.52	6.52	1.33	2.40	0.64	0.53	186.99	0.61	2.18
CLS - scarico nel bl	RI77		1200	0.0050	25.00	CLS	67	5.00	2.12	0.20	0.20	5.20	1.55	2.40	0.70	0.59	199.59	0.69	2.26

GENERAL CONTRACTOR		ALTA SORVEGLIANZA									
Consorzio IricAV Due		GRUPPO FERROVIE DELLO STATO ITALIANE									
RELAZIONE IDRAULICA SMALTIMENT	TO ACQUE	Progetto IN17	Lotto 12	Codifica Documento E I2 RI RI760A4 001	Rev. A	Foglio 16 di 20					

6 SISTEMA DI LAMINAZIONE

Il bacino di laminazione ricadente nella WBS RI78A è stato dimensionato nell'intento di invasare le acque meteoriche raccolte sulla nuova infrastruttura garantendo lo scarico nei recettori finali nel rispetto dei limiti concessi dalla normativa regionale in relazione al principio dell'invarianza idraulica.

Nella tratta in oggetto lo scarico limite consentito è di 5 l/s/ha imposto dalla normativa vigente (DGRV 2948/2009) e dal Consorzio di Bonifica Alta Pianura Veneta (ApV) Ente Gestore del reticolo idrico interferito nell'area di interesse.

I volumi di laminazione hanno il compito di ridurre i picchi di portata che si verificano nei sistemi di drenaggio riducendoli a valori compatibili con i recapiti posti a valle. Nel caso specifico dell'opera in progetto l'incremento di portata dovuto alla impermeabilizzazione viene assorbito dal sistema di drenaggio attraverso l'invaso nel bacino di laminazione, le cui dimensioni sono legate alla funzione di invaso dei volumi che eccedono la capacità del recettore finale.

La laminazione delle portate relative alle canalette e ai fossi rettangolari avverrà per mezzo del bacino di laminazione RI78A-BL01 alla pk 40+950.00, situato in affiancamento al rilevato ferroviario lato B.P. della linea AV/AC tra la WBS RI77A e la successiva WBS RI78A. Il bacino di laminazione sarà caratterizzato da un sottofondo in ghiaia, mentre le sponde avranno inclinazione 1/1 e saranno rivestite in biostuoia ed inerbite con biosemina, come richiesto nel documento IN0D00DI2RHMD0000012A - Relazione descrittiva delle modifiche progettuali da recepire in fase di sviluppo del PE e dall'ente gestore del reticolo irriguo Consorzio Alta Pianura Veneta (APV). Il convogliamento delle portate nel bacino di laminazione sarà effettuato mediante un collettore in cls Φ1200.

Come da richiesta di APV l'altezza utile massima all'interno dei bacini è stata considerata pari a 1 m. Al fondo del bacino viene data una leggera pendenza longitudinale, pari allo 0.05% che facilita il transito della portata verso il punto di scarico e lo svuotamento del bacino stesso.

Il bacino RI78A-BL01 presenta un'area di base pari a circa 3600 m² per un'altezza utile di 1 m, il volume di invaso per la laminazione risulta quindi pari a circa 3600 m³.

Le sezioni del bacino di laminazione RI78A-BL01 sono riportate nelle figure seguenti.

SEZIONE TRASVERSALE BACINO DI LAMINAZIONE SCALA 1:50

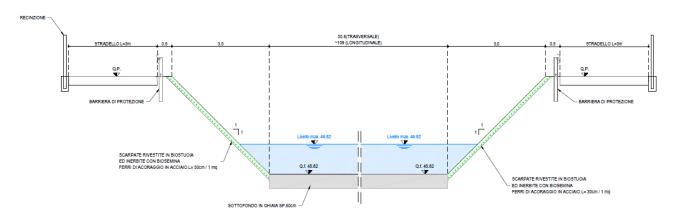


Figura 6 - Sezione del bacino di laminazione RI78A-BL01

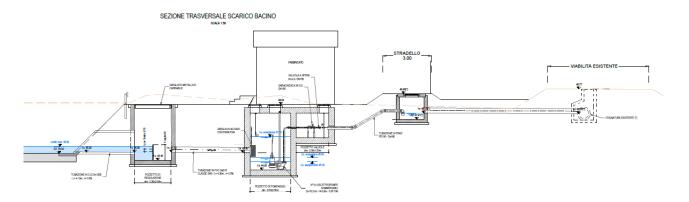


Figura 7 - Sezione di scarico del bacino di laminazione RI78A-BL01 e impianto di sollevamento IN95C

Le portate dal bacino di laminazione saranno convogliate in un manufatto dotato di un setto con una bocca tarata di diametro 10 cm che garantisce la regolazione delle portate laminate in uscita dal bacino, e quindi nell'impianto di sollevamento IN95C mediante un collettore in PVC De315 mm. Le portate laminate saranno infine restituite alla rete fognaria esistente su via Melaro.

Per i dettagli relativi al dimensionamento dell'impianto di sollevamento IN95C si rimanda agli elaborati della relativa WBS.

6.1 Dimensionamento del bacino di laminazione

Il dimensionamento del volume da accumulare nel bacino di laminazione è stato eseguito mediante il metodo cinematico (Alfonsi e Orsi, 1987):

GENERAL CONTRACTOR	ALTA SORVEGLIANZA
Consorzio Iric/W Due	GRUPPO FERROVIE DELLO STATO ITALIANE
RELAZIONE IDRAULICA SMALTIMENTO ACQUE	Progetto Lotto Codifica Documento Rev. Foglio IN17 12 E I2 RI RI760A4 001 A 18 di 20

$$W_m = S \cdot \varphi \cdot a \cdot \theta_w^n + \frac{t_c \cdot Q_u^2 \cdot \theta_w^{1-n}}{S \cdot \varphi \cdot a} - Q_u \cdot \theta_w - Q_u \cdot t_c$$

dove:

- S = superficie del bacino scolante;
- φ = coefficiente di afflusso del bacino scolante;
- a,n = parametri della curva di possibilità pluviometrica per Tr=100 anni;
- t_c = tempo di corrivazione
- Q_u = portata massima scaricabile per il principio dell'invarianza idraulica;
- θ_w = durata critica del bacino di laminazione.

La durata critica per la laminazione si determina con metodo iterativo tramite la relazione:

$$n \cdot S \cdot \varphi \cdot a \cdot \theta_w^{n-1} + \frac{(1-n) \cdot t_c \cdot Q_u^2 \cdot \theta_w^{-n}}{S \cdot \varphi \cdot a} - Q_u = 0$$

Il tempo di corrivazione viene calcolato sommando il tempo di afflusso, convenzionalmente assunto pari a 5 minuti, e il tempo di rete, calcolato sul tratto più lungo con il massimo riempimento. Questa assunzione semplificativa risulta a favore di sicurezza in quanto per riempimenti maggiori la velocità risulta maggiore e di conseguenza risulta minore il tempo di percorrenza: a tempi minori corrisponde una maggiore intensità di pioggia.

Si è tenuta anche in considerazione a riduzione del volume di laminazione dovuta alla pendenza del bacino. Per fare questo è stato calcolato l'integrale della sezione del fosso A tra 0 e L*:

$$A = aX^{2} + bX$$

$$X = h_{0} - \frac{i(\%)l}{100}$$

$$V^{*} = \int_{0}^{L^{*}} \left[a \left(h_{0} - \frac{i(\%)l}{100} \right)^{2} + b \left(h_{0} - \frac{i(\%)l}{100} \right) \right] dl$$

$$= a \left(h_{0}^{2}L^{*} + \frac{i(\%)^{2}}{10000} \cdot \frac{L^{*3}}{3} - \frac{1}{100} h_{0}i(\%)L^{*2} \right) + b \left(h_{0}L^{*} - \frac{i(\%)}{200} L^{*2} \right)$$

con:

$$se \frac{h_0 - Y_u}{\frac{i(\%)}{100}} < L \to L^* = \frac{h_0 - Y_u}{\frac{i(\%)}{100}}$$

$$se \frac{h_0 - Y_u}{\frac{i(\%)}{100}} > L \to L^* = L$$

dove:

- L lunghezza di laminazione
- Yu è l'altezza di moto uniforme effettiva del bacino
- i la pendenza del bacino in %
- h₀ l'altezza utile del bacino, pari all'altezza totale meno il franco di sicurezza assunto pari a 50 cm
- a il coefficiente angolare delle sponde del bacino (pari a 1 data la tipologia del bacino con sponde all'1/1)
- b la base minore del bacino di laminazione

Sottraendo al volume disponibile V* così calcolato il volume di moto uniforme calcolato su L* si ottiene il volume disponibile per la laminazione.

$$V_{disp\ laminazione} = V^* - A_{bagnata} \cdot L^*$$

A partire da questo dato è possibile ricavare il V_{totale utile} del fosso, dato dalla somma tra il volume disponibile per la laminazione e il volume di moto uniforme calcolato sulla lunghezza totale di laminazione L.

$$V_{totale\ utile} = V_{disp\ laminazione} + A_{bagnata} \cdot L$$

Il $V_{totale\ utile}$ dovrà essere confrontato con il $V_{totale\ idrico}$ del fosso, dato dalla somma del $V_{laminazione}$ e del volume di moto uniforme calcolato sulla lunghezza totale di laminazione.

$$V_{totale\ idrico} = V_{laminazione} + A_{bagnata} \cdot L$$

Dovrà risultare:

$$V_{totale\ utile} > V_{totale\ idrico}$$

In Tabella 6 sono riportati i risultati ottenuti per il dimensionamento del bacino di laminazione RI78A-BL01; per il bacino è stata considerata un'area di base pari a 3600 m² e un'altezza utile di 1 m.

In Tabella 7 sono riportati i risultati del dimensionamento del collettore che dal pozzetto di regolazione posto a valle del bacino di laminazione convoglia le portate laminate verso l'impianto di sollevamento.

GENERAL CONTRACTOR ALTA SORVEGLIANZA Consorzio IricAV Due ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE Foglio Progetto Lotto Codifica Documento Rev. RELAZIONE IDRAULICA SMALTIMENTO ACQUE 20 di 20 IN17 12 E I2 RI RI7604 001 Α

Tabella 6 – Dimensionamento bacino di laminazione

	Lungh. laminazione L	tempo di rete (=L/v)	tc=ta+tr	Area imp.	Largh media scarpata	Area scarp.	Atotale intervento	Area totale efficace	Q invarianza	Qout bocca tarata	Qw	Wm	Yu	А	L* lungh. fosso lam	Vol. moto uniforme *		Vol. disp lam	Vtot utile Fosso	Vtot idrico Fosso	Check Vfosso
	[m]	[h]	[h]	[mq]	[m]	[mq]	[mq]	[mq]	[mc/s]	[mc/s]	[h]	[mc]	[m]	[mq]	[m]	[m]	[mc]	[mc]	[mc]	[mc]	[mc]
RI78A-BL01	90	0.45	0.53	30558.3	0	2117	32675.3	28772.67	0.0163	0.0163	18.41	3185.00	0.0073	0.29	90	26.32	3605.01	3578.69	3605.01	3211.32	ОК

Tabella 7 – Dimensionamento collettore di scarico bacino di laminazione

Collettore	Diametro	Pendenza	Lunghezza	Materiale	Ks	T ingresso	V pieno riemp.	T traslaz. singolo ramo	Max T traslaz.	T corrivaz.	Qcritica	Qmax riempi.	h	h/D	Angolo riemp.	Area bagnata	v
	[m]	[m/m]	[m]		(m ^{1/3} /s)	[min]	[m/s]	[min]	[min]	[min]	[m³/s]	[m ³ /s]	[m]	[-]	[grad]	[m²]	[m/s]
collettore scarico dal bacino in IN95C	315	0.01	4.10	PVC	91	5.00	1.15	0.06	0.06	5.06	0.016	0.08	0.09	0.30	133.38	0.02	0.90