OGGETTO/OBJECT:

PROGETTO/PROJECT:

RIQUALIFICAZIONE DEL MOLO POLISETTORIALE

REDEVELOPMENT OF THE MOLO POLISETTORIALE

NUOVA DIGA FORANEA DEL PORTO FUORI RADA DI TARANTO TRATTO DI PONENTE

NEW BREAKWATER FOR THE PROTECTION OF THE OUTER PORT OF TARANTO WEST SIDE

(PROGETTO DEFINITIVO)

(DETAILED DESIGN)

	DATI \ <i>DATA</i>				
Aggiornamento Cod.Cliente Issue Code					
1°	Aprile 2013				

QUADRO DI RIFERIMENTO AMBIENTALE - APPENDICI

EIA - ENVIRONMENTAL FRAMEWORK- APPENDICES

RESPONSABILE DELLO STUDIO DI IMPATTO AMBIENTALE:

HEAD DESIGNER:

ING. GIUSEPPE MARFOLI

STUDI SPECIALISTICI A CURA DI:

DESIGNERS:

Dott. Giorgio Cardinali Dott. Daniele Bensaadi Ing. Stefano Saffioti **Dott. Giorgio Occhipinti**

Società Italiana per l'Ambiente

Viale Alfredo Ottaviani, 110 • 00126 Roma Tel. 06.52.15.554 - 06.52.15.621 • Fax 06.52.15.553 posta@siaenv.com • www.siaenvconsulting.com

01	O1 Febbraio 2014 AGGIORNAMENTO DEL PROGETTO IN CONFORMITA' AL VOTO N°24 DEL SIIT PROJECT UPDATING IN COMPLIANCE WITH THE VOTE N°24 OF SIIT				
00	Aprile 2013	PRIMA EMISSIONE / FIRST ISSUE	S.J.S. Engineering s.r.l.		
REVISIONE REVISION					
		MATRICE DELLA REVISIONE REVISION MATRIX			

Stazione appaltante Awarding body

AUTORITA' PORTUALE DI TARANTO

PORT AUTHORITY OF TARANTO

Incarico

RIQUALIFICAZIONE DEL MOLO POLISETTORIALE NUOVA DIGA FORÂNEA DI PROTEZIONE DEL PORTO FUORI RADA DI TARANTO TRATTO DI PONENTE

REDEVELOPMENT OF THE MOLO POLISETTORIALE NEW BREAKWATER FOR THE PROTECTION OF THE OUTER PORT OF TARANTO - WEST SIDE

Livello progettuale

Soggetto attuatore

Under autorization

PROGETTO DEFINITIVO Project level DETAILED DESIGN

Titolo Title

STUDIO DI IMPATTO AMBIENTALE ENVIRONMENTAL IMPACT ASSESSMENT

QUADRO DI RIFERIMENTO AMBIENTALE - APPENDICI Taranto Container Terminal s.p.a

EIA - ENVIRONMENTAL FRAMEWORK-**APPENDICES**

0130 TAR

03122-01

Progettista responsabile/Head designer

Dott. Ing. Alessandro Porretti

Dott. Ing. Marina Filippone Dott. Ing. Maria Santoro

Dott. Ing. Michelangelo Lentini

Check **RO3**.

Progettisti/Designers

Job code C - 03

Design by

S.J.S. Engineering s.r.l.

per l'Autorità Portuale di Taranto

Taranto Container Terminal Ltd.

for Port Authority of Taranto

*Roma (00187) Taranto (74123) P.zza Castel S.Anaelo Mosca (123242) Krasnaya Presna st. 22 - Ufficio 3

Certified office*
COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV
= ISO 9001=

Edited Filippone Checked MI

Date February 2014 Filename

0130TAR03122-01-R03.doc

Il presente disegno e le informazioni in esso contenute sono proprietà esdusiva della S.J.S. Engineering s.r.l. Il disegno non può essere riprodotto, reso pubblico o utilizzato in alcun modo senza tautorizzazione saritta della S.J.S. Engineering s.r.l.

This drawing and the information contained on it are exclusive properly of SJS. Engineering s.r.l.

This drawing is not to be reproduced, further distributed or used for any purpose without written permission of SJS. Engineering s.r.l.

<u>AUTORITA' PORTUALE DI TARANTO</u> <u>COMUNE DI TARANTO</u>

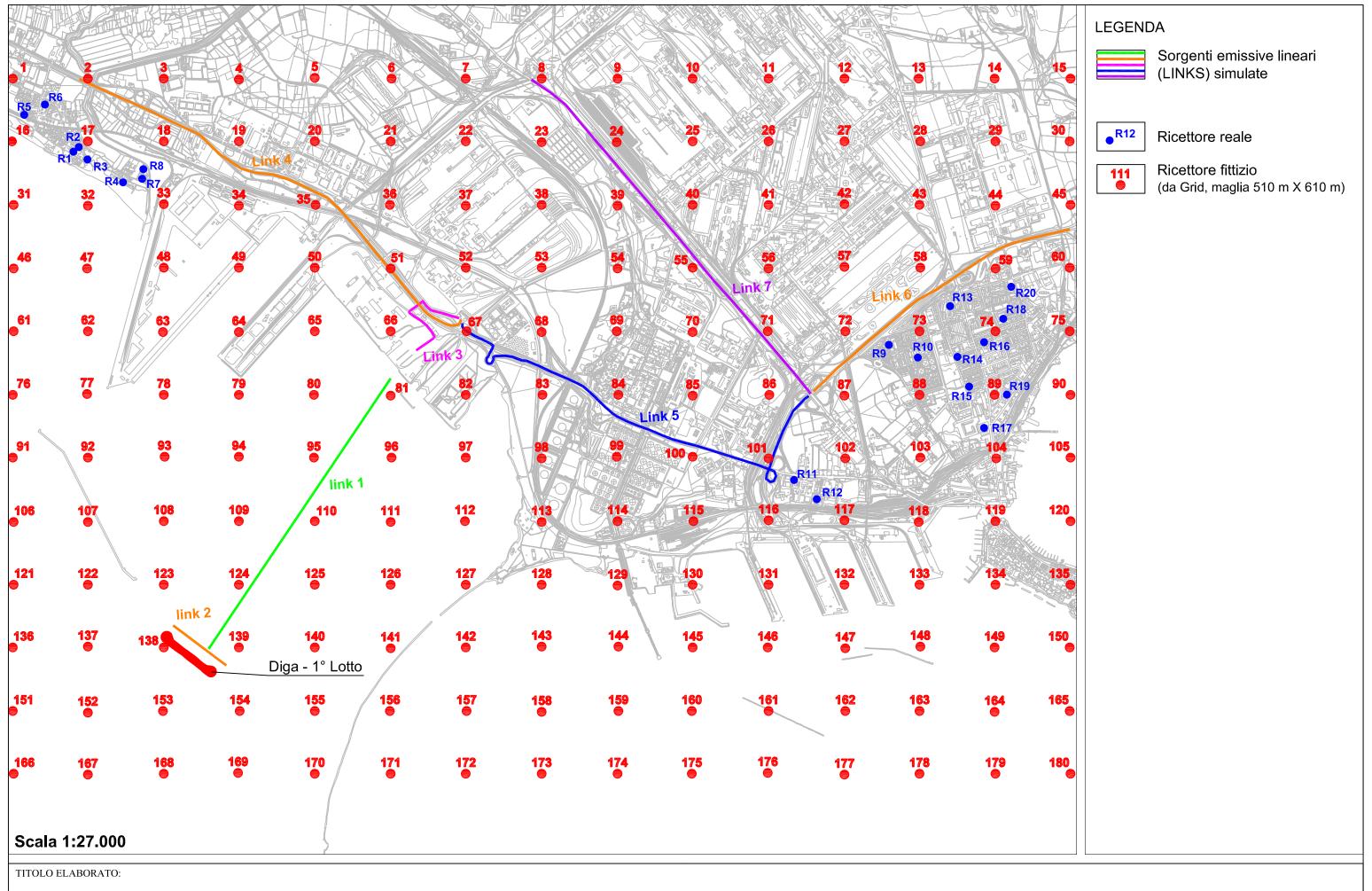
PORTO DI TARANTO

Riqualificazione del Molo Polisettoriale Nuova diga foranea del porto fuori rada di Taranto Tratto di ponente

STUDIO D'IMPATTO AMBIENTALE

Ai sensi del D.Lgs. 152/06 e successive integrazioni (Allegato VII del D.Lgs. 4/2008)

Quadro di Riferimento Progettuale


Appendice 1
Atmosfera

Aprile 2013

INDICE

1.	CARTA DELLE SORGENTI EMISSIVE LINEARI SIMULATE (LINKS) E DEI RICETTORI	2
2.	TABULATI DI CALCOLO - SCENARIO "VENTO FREQUENTE"	3
2.1.	Inquinante: CO, Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: CO_N123	3
2.2.	Inquinante: NO ₂ , Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: NO ₂ _N123	4
2.3.	Inquinante: PM10, Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: PM10_N123	5
2.4.	Inquinante: CO, Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: CO_N269	6
2.5.	Inquinante: NO ₂ , Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: NO ₂ _N269	7
2.6.	Inquinante: PM10, Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: PM10_N269	
3.	CARTE DI ISOCONCENTRAZIONE - SCENARIO "VENTO FREQUENTE"	9
3.1.	Inquinante: CO, Provenienza vento: N123, Velocità vento: 2,83 m/s	
3.2.	Inquinante: NO ₂ , Provenienza vento: N123, Velocità vento: 2,83 m/s	
3.3.	Inquinante: PM10, Provenienza vento: N123, Velocità vento: 2,83 m/s	
3.4.	Inquinante: CO, Provenienza vento: N269, Velocità vento: 2,83 m/s	
3.5.	Inquinante: NO ₂ , Provenienza vento: N269, Velocità vento: 2,83 m/s	
3.6.	Inquinante: PM10, Provenienza vento: N269, Velocità vento: 2,83 m/s	. 14

1.	CARTA	DELLE	SORGENTI	EMISSIVE	LINEARI	SIMULATE
(LII	NKS) E DI	EI RICET	TORI			

2. TABULATI DI CALCOLO - SCENARIO "VENTO FREQUENTE"

2.1. Inquinante: CO, Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: CO_N123

Nome Run: CO_N123

cod.	fattore di n	noltiplicazione (X 1000)	concentrazioni reali (mg/mc)
TICCLOTC	run (ppm)	run (mg/mc)	reali (mg/me)
1	0	0	0
2	0.2	0.236	0.000236
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	0	0	0
11	0	0	0
12	0	0	0
13	0	0	0
14	0	0	0
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0.1	0.118	0.000118
20	0	0	0
21	0	0	0
22	0	0	0
23	0.1	0.118	0.000118
24	0	0	0
25	0	0	0
26	0	0	0
27	0	0	0
28	0	0	0
29	0	0	0
30	0	0	0
31	0	0	0
32	0	0	0
33	0	0	0
34	0.1	0.118	0.000118
35	0.1	0.118	0.000118
36	0	0	0
37	0	0	0
38	0	0	0
39	0.1	0.118	0.000118
40	0	0	0
41	0	0	0
42	0	0	0
43	0	0	0
44	0	0	0
45	0	0	0
46	0.1	0.118	0.000118

4=	T	1 22	1 0000440
47	0.1	0.118	0.000118
48	0.1	0.118	0.000118
49	0	0	0
50	0.1	0.118	0.000118
51	0.1	0.118	0.000118
52	0	0	0
53	0	0	0
54	0	0	0
55	0.2	0.236	0.000236
56	0	0	0
57	0	0	0
58	0	0	0
59	0	0	0
60	0	0	0
61	0.1	0.118	0.000118
62	0.1	0.118	0.000118
63	0.1	0.118	0.000118
64	0.1	0.118	0.000118
65	0.1	0.118	0.000118
66	0.1	0.118	0.000118
67	0.4	0.472	0.000472
68	0	0	0
69	0	0	0
70	0	0	0
71	0	0	0
72	0	0	0
73	0	0	0
74	0	0	0
75	0	0	0
76	0.1	0.118	0.000118
77	0.1	0.118	0.000118
78	0.1	0.118	0.000118
79	0.1	0.118	0.000118
80	0.2	0.236	0.000236
81	0.2	0.230	0.000230
82	0	0	0
83	0	0	0
84	0.1	0.118	0.000118
85	0.1	0.118	0.000118
86	0.1	0.118	0.000118
87	0.1	0.118	0.000118
88	0	0	0
	0	0	0
89	0		
90 91	0.1	0 0.118	0 0.000118
	.		
92	0.1	0.118	0.000118
93	0.1	0.118	0.000118
94	0.2	0.236	0.000236
95	0.5	0.59	0.00059
96	0	0	0
97	0	0	0

98	0	0	0
99	0	0	0
100	0	0	0
101	0.2	0.236	0.000236
102	0	0	0
103	0	0	0
104	0	0	0
105	0	0	0
106	0.2	0.236	0.000236
107	0.2	0.118	0.000238
108	0.1	0.118	0.000118
109	0.1	0.354	0.000118
110	0.3	0.334	0.000334
111	0	0	0
112	0	0	0
113 114	0	0	0
115	0	0	
		0	0
116	0	0	0
117	0	0	0
118	0	0	0
119	0	0	0
120	0	0	0
121	0	0	0
122	0.4	0.472	0.000472
123	0.2	0.236	0.000236
124	0.7	0.826	0.000826
125	0	0	0
126	0	0	0
127	0	0	0
128	0	0	0
129	0	0	0
130	0	0	0
131	0	0	0
132	0	0	0
133	0	0	0
134	0	0	0
135	0	0	0
136	0	0	0
137	0	0	0
138	0	0	0
139	0	0	0
140	0	0	0
141	0	0	0
142	0	0	0
143	0	0	0
144	0	0	0
145	0	0	0
146	0	0	0
147	0	0	0
148	0	0	0

149	0	0	0
150	0	0	0
151	0	0	0
152	0	0	0
153	0	0	0
154	0	0	0
155	0	0	0
156	0	0	0
157	0	0	0
158	0	0	0
159	0	0	0
160	0	0	0
161	0	0	0
162	0	0	0
	0		
163		0	0
164	0	0	0
165	0	0	0
166	0	0	0
167	0	0	0
168	0	0	0
169	0	0	0
170	0	0	0
171	0	0	0
172	0	0	0
173	0	0	0
174	0	0	0
175	0	0	0
176	0	0	0
177	0	0	0
178	0	0	0
179	0	0	0
180	0	0	0
R1	0	0	0
R2	0	0	0
R3	0	0	0
R4	0	0	0
R5	0	0	0
R6	0	0	0
R7	0	0	0
R8	0	0	0
R9	0	0	0
R10	0	0	0
R11	0	0	0
R12	0	0	0
R13	0	0	0
R14	0	0	0
R15	0	0	0
R16	0	0	0
R17	0	0	0
R18	0	0	0
R19	0	0	0

R20	0	0	0

2.2. Inquinante: NO_2 , Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: NO_2 _N123

Nome Run: NO2_N123

cod.	fattore di r	moltiplicazione (X 1000)	concentrazioni
ricettore	run (ppm)	run (μg/mc)	reali (μg/mc)
1	0	0	0.000
2	0.02	39	0.039
3	0	0	0.000
4	0	0	0.000
5	0	0	0.000
6	0	0	0.000
7	0.01	19.5	0.020
8	0	0	0.000
9	0	0	0.000
10	0	0	0.000
11	0	0	0.000
12	0	0	0.000
13	0	0	0.000
14	0	0	0.000
15	0	0	0.000
16	0.01	19.5	0.020
17	0	0	0.000
18	0.01	19.5	0.020
19	0.01	19.5	0.020
20	0	0	0.000
21	0	0	0.000
22	0	0	0.000
23	0.01	19.5	0.020
24	0	0	0.000
25	0	0	0.000
26	0	0	0.000
27	0	0	0.000
28	0	0	0.000
29	0	0	0.000
30	0	0	0.000
31	0.01	19.5	0.020
32	0.01	19.5	0.020
33	0	0	0.000
34	0.01	19.5	0.020
35	0.01	19.5	0.020
36	0	0	0.000
37	0	0	0.000
38	0	0	0.000
39	0.01	19.5	0.020
40	0	0	0.000
41	0	0	0.000
42	0	0	0.000
43	0	0	0.000
44	0	0	0.000
45	0	0	0.000
46	0.01	19.5	0.020
70	0.01	10.0	0.020

47	0.01	19.5	0.020
48	0.01	19.5	0.020
49	0.01	0	0.020
	0.01		
50		19.5	0.020
51	0.02	39	0.039
52	0	0	0.000
53	0	0	0.000
54	0	0	0.000
55	0.03	58.5	0.059
56	0	0	0.000
57	0	0	0.000
58	0	0	0.000
59	0	0	0.000
60	0	0	0.000
61	0.01	19.5	0.020
62	0.01	19.5	0.020
63	0.01	19.5	0.020
64	0.02	39	0.039
65	0.01	19.5	0.020
66	0.01	19.5	0.020
67	0.05	97.5	0.098
68	0.01	19.5	0.020
69	0	0	0.000
70	0	0	0.000
71	0	0	0.000
72	0	0	0.000
73	0	0	0.000
74	0	0	0.000
75	0	0	0.000
76	0.01	19.5	0.020
77	0.01	19.5	0.020
78	0.01	19.5	0.020
79	0.02	39	0.039
80	0.04	78	0.078
81	0	0	0.000
82	0	0	0.000
83	0	0	0.000
84	0.01	19.5	0.020
85	0.01	0	0.000
86	0.01	19.5	0.020
87	0.01	0	0.000
88	0	0	0.000
	0	0	
89	0		0.000
90		0	0.000
91	0.01	19.5	0.020
92	0.01	19.5	0.020
93	0.02	39	0.039
94	0.03	58.5	0.059
95	0.07	136.5	0.137
96	0	0	0.000
97	0	0	0.000

98	0	0	0.000
99	0	0	0.000
100	0	0	0.000
101	0.03	58.5	0.059
102	0	0	0.000
103	0	0	0.000
104	0	0	0.000
105	0	0	0.000
106	0.04	78	0.078
107	0.02	39	0.039
108	0.02	39	0.039
109	0.04	78	0.078
110	0	0	0.000
111	0	0	0.000
112	0	0	0.000
113	0	0	0.000
114	0	0	0.000
115	0	0	0.000
116	0	0	0.000
117	0	0	0.000
118	0	0	0.000
119	0	0	0.000
120	0	0	0.000
121	0	0	0.000
122	0.05	97.5	0.098
123	0.03	58.5	0.059
124	0.11	214.5	0.215
125	0	0	0.000
126	0	0	0.000
127	0	0	0.000
128	0	0	0.000
129	0	0	0.000
130	0	0	0.000
131	0	0	0.000
132	0	0	0.000
133	0	0	0.000
134	0	0	0.000
135	0	0	0.000
136	0	0	0.000
137	0	0	0.000
138	0	0	0.000
139	0	0	0.000
140	0	0	0.000
141	0	0	0.000
142	0	0	0.000
143	0	0	0.000
144	0	0	0.000
145	0	0	0.000
146	0	0	0.000
147	0	0	0.000
148	0	0	0.000
		<u> </u>	3.000

149	0	0	0.000
150	0	0	0.000
151	0	0	0.000
152	0	0	0.000
153	0	0	0.000
154	0	0	0.000
155	0	0	0.000
156	0	0	0.000
157	0	0	0.000
158	0	0	0.000
159	0	0	0.000
160	0	0	0.000
161	0	0	0.000
162	0	0	0.000
163	0	0	0.000
164	0	0	0.000
165	0	0	0.000
166	0	0	0.000
167	0	0	0.000
168	0	0	0.000
169	0	0	0.000
170	0	0	0.000
171	0	0	0.000
172	0	0	0.000
173	0	0	0.000
174	0	0	0.000
175	0	0	0.000
176	0	0	0.000
177	0	0	0.000
178	0	0	0.000
179	0	0	0.000
180	0	0	0.000
R1	0	0	0.000
R2	0	0	0.000
R3	0	0	0.000
R4	0	0	0.000
R5	0	0	0.000
R6	0	0	0.000
R7	0	0	0.000
R8	0	0	0.000
R9	0	0	0.000
R10	0	0	0.000
R11	0	0	0.000
R12	0	0	0.000
R12	0	0	0.000
R13	0	0	
	+		0.000
R15	0	0	0.000
R16	0	0	0.000
R17	0	0	0.000
R18	0	0	0.000
R19	0	0	0.000

R20	0	0	0.000

2.3. Inquinante: PM10, Provenienza vento: N123, Velocità vento: 2,83 m/s, Nome file: PM10_N123

Nome Run: PM10_N123

cod.	fattore di m	oltiplicazione (X 1000)	concentrazioni
Hootiole	run (ppm)	run (μg/mc)	reali (μg/mc)
1	5	5	0.005
2	27.7	27.7	0.028
3	5.2	5.2	0.005
4	2.2	2.2	0.002
5	2.2	2.2	0.002
6	3.8	3.8	0.004
7	8.6	8.6	0.009
8	2.2	2.2	0.002
9	0.2	0.2	0.000
10	0.2	0.2	0.000
11	0.2	0.2	0.000
12	0.1	0.1	0.000
13	0	0	0.000
14	0	0	0.000
15	0	0	0.000
16	6.3	6.3	0.006
17	5.3	5.3	0.005
18	8.2	8.2	0.008
19	10.9	10.9	0.011
20	2.3	2.3	0.002
21	2.2	2.2	0.002
22	4.2	4.2	0.004
23	11.3	11.3	0.011
24	0.2	0.2	0.000
25	0.2	0.2	0.000
26	0.3	0.3	0.000
27	0.4	0.4	0.000
28	0.3	0.3	0.000
29	0	0	0.000
30	0	0	0.000
31	9	9	0.009
32	8.4	8.4	0.008
33	4.7	4.7	0.005
34	11.6	11.6	0.012
35	14.8	14.8	0.015
36	2.7	2.7	0.003
37	2	2	0.002
38	4.5	4.5	0.005
39	16.6	16.6	0.017
40	0.3	0.3	0.000
41	0.3	0.3	0.000
42	0.4	0.4	0.000
43	0.7	0.7	0.001
44	1.1	1.1	0.001
45	0	0	0.000

-	_		
46	10.2	10.2	0.010
47	11.6	11.6	0.012
48	12.9	12.9	0.013
49	4.7	4.7	0.005
50	10.8	10.8	0.011
51	20.8	20.8	0.021
52	3.6	3.6	0.004
53	2.1	2.1	0.002
54	4.6	4.6	0.005
55	40.4	40.4	0.040
56	0.4	0.4	0.000
57	0.7	0.7	0.001
58	1.6	1.6	0.002
59	0	0	0.000
60	0	0	0.000
61	11	11	0.011
62	12.8	12.8	0.013
63	15.5	15.5	0.016
64	20.2	20.2	0.020
65	17.3	17.3	0.017
66	10.1	10.1	0.010
67	64.9	64.9	0.065
68	6.7	6.7	0.007
69	2.7	2.7	0.003
70	3.9	3.9	0.004
71	0.6	0.6	0.001
72	1.5	1.5	0.002
73	0	0	0.000
74	0	0	0.000
75	0	0	0.000
76	11.9	11.9	0.012
77	14.1	14.1	0.014
78	17.8	17.8	0.018
79	24.6	24.6	0.025
80	43.5	43.5	0.044
81	0	0	0.000
82	0	0	0.000
83	0.3	0.3	0.000
84	18.1	18.1	0.018
85	4.7	4.7	0.005
86	11.4	11.4	0.011
87	0	0	0.000
88	0	0	0.000
89	0	0	0.000
90	0	0	0.000
91	14.1	14.1	0.014
92	15.9	15.9	0.016
93	21	21	0.021
94	32	32	0.032
95	91.1	91.1	0.091

96	0	0	0.000
			0.000
97	0	0	0.000
98	0	0	0.000
99	0	0	0.000
100	0	0	0.000
101	37.7	37.7	0.038
102	0	0	0.000
103	0	0	0.000
104	0	0	0.000
105	0	0	0.000
106	44.8	44.8	0.045
107	18.5	18.5	0.019
108	26	26	0.026
109	49.2	49.2	0.049
110	0	0	0.000
111	0	0	0.000
112	0	0	0.000
113	0	0	0.000
114	0	0	0.000
115	0	0	0.000
116	0	0	0.000
117	0	0	0.000
118	0	0	0.000
119	0	0	0.000
120	0	0	0.000
121	0.2	0.2	0.000
122	66.3	66.3	0.066
123	35	35	0.035
124	132.6	132.6	0.133
125	0	0	0.000
126	0	0	0.000
127	0	0	0.000
128	0	0	0.000
129	0	0	0.000
130	0	0	0.000
131	0	0	0.000
132	0	0	0.000
133	0	0	0.000
134	0	0	0.000
135	0	0	0.000
136	0	0	0.000
137	0	0	0.000
138	0.1	0.1	0.000
139	0	0	0.000
140	0	0	0.000
141	0	0	0.000
142	0	0	0.000
143	0	0	0.000
144	0	0	0.000
145	0	0	0.000
140	U	U	0.000

		_	
146	0	0	0.000
147	0	0	0.000
148	0	0	0.000
149	0	0	0.000
150	0	0	0.000
151	0	0	0.000
152	0	0	0.000
153	0	0	0.000
154	0	0	0.000
155	0	0	0.000
156	0	0	0.000
157	0	0	0.000
158	0	0	0.000
159	0	0	0.000
160	0	0	0.000
161	0	0	0.000
162	0	0	0.000
163	0	0	0.000
164	0	0	0.000
165	0	0	0.000
166	0	0	0.000
167	0	0	0.000
168	0	0	0.000
169	0	0	0.000
170	0	0	0.000
171	0	0	0.000
172	0	0	0.000
173	0	0	0.000
174	0	0	0.000
175	0	0	0.000
176	0	0	0.000
177	0	0	0.000
178	0	0	0.000
179	0	0	0.000
180	0	0	0.000
R1	5.5	5.5	0.006
R2	5.3	5.3	0.005
R3	5.4	5.4	0.005
R4	5.3	5.3	0.005
R5	5.3	5.3	0.005
R6	5.2	5.2	0.005
R7	5.1	5.1	0.005
R8	5.7	5.7	0.006
R9	0	0	0.000
R10	0	0	0.000
R11	0	0	0.000
R12	0	0	0.000
R13	0	0	0.000
R14	0	0	0.000
R15	0	0	0.000

R16	0	0	0.000
R17	0	0	0.000
R18	0	0	0.000
R19	0	0	0.000
R20	0	0	0.000

2.4. Inquinante: CO, Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: CO_N269

Nome Run: CO_N269

cod.	fattore di moltiplicazione (X 1000)		concentrazioni reali (mg/mc)
TICCLOTC	run (ppm)	run (mg/mc)	reali (mg/me)
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	0	0	0
11	0	0	0
12	0	0	0
13	0	0	0
14	0	0	0
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0	0	0
20	0	0	0
21	0	0	0
22	0	0	0
23	0	0	0
24	0.1	0.118	0.000118
25	0	0	0
26	0	0	0
27	0	0	0
28	0	0	0
29	0	0	0
30	0	0	0
31	0	0	0
32	0	0	0
33	0	0	0
34	0	0	0
35	0	0	0
36	0	0	0
36	0	0	0
38	0	0	0
39	0	0 110	0 000118
40	0.1	0.118	0.000118
41	0	0	0
42	0	0	0
43	0	0	0
44	0	0	0
45	0	0	0
46	0	0	0

47	0	0	0
48	0	0	0
49	0	0	0
50	0	0	0
51	0.1	0.118	0.000118
52	0.1	0.110	0.000110
53	0	0	0
54	0	0	0
55	0	0	0
56	0.1	0.118	0.000118
57	0.1	0.118	0.000118
58	0	0	0
59	0	0	0
60	0	0	0
61	0	0	0
	-		
62 63	0	0	0
64 65	0	0	0
65			
66	0	0	0
67	0.2	0.236	0.000236
68	0.1	0.118	0.000118
69	0.1	0.118	0.000118
70	0	0	0
71	0.2	0.236	0.000236
72	0.1	0.118	0.000118
73	0.1	0.118	0.000118
74	0	0	0
75 70	0	0	0
76	0	0	0
77	0	0	0
78	0	0	0
79	0	0	0
80	0	0	0
81	0.9	1.062	0.001062
82 83	0.2	0.236	0.000236
	0.1	0.118	0.000118
84	0.2	0.236	0.000236
85 86	0.1	0.118	0.000118 0.000118
86	0.1	0.118	
87	0.1	0.118	0.000118
88	0.1	0.118	0.000118
89	0.1	0.118	0.000118
90 91	0.1	0.118	0.000118
91	0	0	0
	-	0	0
93	0	0	0
94	0	0	0
95	0	0	0 000354
96	0.3	0.354	0.000354
97	0.2	0.236	0.000236

			•
98	0.1	0.118	0.000118
99	0.1	0.118	0.000118
100	0.1	0.118	0.000118
101	0.2	0.236	0.000236
102	0.1	0.118	0.000118
103	0.1	0.118	0.000118
104	0.1	0.118	0.000118
105	0.1	0.118	0.000118
106	0	0	0
107	0	0	0
108	0	0	0
109	0	0	0
110	0.7	0.826	0.000826
111	0.2	0.236	0.000236
112	0.1	0.118	0.000118
113	0.1	0.118	0.000118
114	0.1	0.118	0.000118
115	0.1	0.118	0.000118
116	0.1	0.118	0.000118
117	0.1	0.118	0.000118
118	0.1	0.118	0.000118
119	0	0	0
120	0	0	0
121	0	0	0
122	0	0	0
123	0	0	0
124	0	0	0
125	0.3	0.354	0.000354
126	0.2	0.236	0.000236
127	0.1	0.118	0.000238
128	0.1	0.118	0.000118
129	0.1	0.118	0.000118
130	0.1	0.118	0.000118
131	0.1	0.118	0.000118
132	0.1	0.118	0.000118
133 134	0	0	0
135	0	0	0
136	0	0	0
137	0	0	0
138	0	0	0
139	1.2	1.416	0.001416
140	0.5	0.59	0.00059
141	0.3	0.354	0.000354
142	0.2	0.236	0.000236
143	0.1	0.118	0.000118
144	0.1	0.118	0.000118
145	0.1	0.118	0.000118
146	0.1	0.118	0.000118
147	0	0	0
148	0	0	0

149	0	0	0
150	0	0	0
151	0	0	0
152	0	0	0
153	0	0	0
154	0	0	0
155	0	0	0
156	0	0	0
157	0	0	0
158	0	0	0
159	0	0	0
160	0	0	0
161	0	0	0
162	0	0	0
163	0	0	0
164	0	0	0
165	0	0	0
166	0	0	0
167	0	0	0
168	0	0	0
169	0	0	0
170	0	0	0
171	0	0	0
172	0	0	0
173	0	0	0
174	0	0	0
175	0	0	0
176	0	0	0
177	0	0	0
178	0	0	0
179	0	0	0
180	0	0	0
R1	0	0	0
R2	0	0	0
R3	0	0	0
R4	0	0	0
R5	0	0	0
R6	0	0	0
R7	0	0	0
R8	0	0	0
R9	0.1	0.118	0.000118
R10	0.1	0.118	0.000118
R11	0.1	0.118	0.000118
R12	0.1	0.118	0.000118
R13	0	0	0
R14	0.1	0.118	0.000118
R15	0.1	0.118	0.000118
R16	0.1	0.118	0.000118
R17	0.1	0.118	0.000118
R18	0	0	0
R19	0.1	0.118	0.000118
		1	

R20	0	0	0

2.5. Inquinante: NO_2 , Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: NO_2 _N269

Nome Run: NO2_N269

cod. ricettore	fattore di moltiplicazione (X 1000)		concentrazioni
	run (ppm)	run (μg/mc)	reali (μg/mc)
1	0	0	0.000
2	0	0	0.000
3	0	0	0.000
4	0	0	0.000
5	0	0	0.000
6	0	0	0.000
7	0	0	0.000
8	0	0	0.000
9	0	0	0.000
10	0	0	0.000
11	0	0	0.000
12	0	0	0.000
13	0	0	0.000
14	0	0	0.000
15	0	0	0.000
16	0	0	0.000
17	0	0	0.000
18	0	0	0.000
19	0	0	0.000
20	0	0	0.000
21	0	0	0.000
22	0	0	0.000
23	0	0	0.000
24	0.02	39	0.039
25	0.01	19.5	0.020
26	0	0	0.000
27	0	0	0.000
28	0	0	0.000
29	0	0	0.000
30	0	0	0.000
31	0	0	0.000
32	0	0	0.000
33	0	0	0.000
34	0	0	0.000
35	0	0	0.000
36	0	0	0.000
37	0	0	0.000
38	0	0	0.000
39	0	0	0.000
40	0.01	19.5	0.020
41	0	0	0.000
42	0	0	0.000
43	0	0	0.000
44	0	0	0.000
45	0	0	0.000
46	0	0	0.000

47	0	0	0.000
48	0	0	0.000
49	0	0	0.000
50	0	0	0.000
51	0.02	39	0.039
52	0.02	0	
			0.000
53	0	0	0.000
54	0	0	0.000
55	0	0	0.000
56	0.01	19.5	0.020
57	0	0	0.000
58	0	0	0.000
59	0.01	19.5	0.020
60	0	0	0.000
61	0	0	0.000
62	0	0	0.000
63	0	0	0.000
64	0	0	0.000
65	0	0	0.000
66	0	0	0.000
67	0.03	58.5	0.059
68	0.02	39	0.039
69	0.01	19.5	0.020
70	0.01	19.5	0.020
71	0.04	78	0.078
72	0.01	19.5	0.020
73	0.01	19.5	0.020
74	0.01	19.5	0.020
75	0.01	19.5	0.020
76	0	0	0.000
77	0	0	0.000
78	0	0	0.000
79	0	0	0.000
80	0	0	0.000
81	0.14	273	0.273
82	0.03	58.5	0.059
83	0.02	39	0.039
84	0.03	58.5	0.059
85	0.02	39	0.039
86	0.01	19.5	0.020
87	0.02	39	0.039
88	0.01	19.5	0.020
89	0.01	19.5	0.020
90	0.01	19.5	0.020
91	0	0	0.000
92	0	0	0.000
93	0	0	0.000
94	0	0	0.000
95	0	0	0.000
96	0.05	97.5	0.098
97	0.03	39	0.039
91	0.02] 59	0.008

98	0.02	39	0.039
99	0.02	19.5	0.020
100	0.01	19.5	0.020
101	0.01	58.5	0.059
102	0.03	39	0.039
102	0.02	39	0.039
103	0.02	19.5	
			0.020
105	0.01	19.5	0.020
106	0	0	0.000
107	0	0	0.000
108	0	0	0.000
109	0	0	0.000
110	0.1	195	0.195
111	0.03	58.5	0.059
112	0.02	39	0.039
113	0.01	19.5	0.020
114	0.01	19.5	0.020
115	0.01	19.5	0.020
116	0.01	19.5	0.020
117	0.01	19.5	0.020
118	0.01	19.5	0.020
119	0.01	19.5	0.020
120	0.01	19.5	0.020
121	0	0	0.000
122	0	0	0.000
123	0	0	0.000
124	0	0	0.000
125	0.04	78	0.078
126	0.02	39	0.039
127	0.02	39	0.039
128	0.02	39	0.039
129	0.01	19.5	0.020
130	0.01	19.5	0.020
131	0.01	19.5	0.020
132	0.01	19.5	0.020
133	0.01	19.5	0.020
134	0.01	19.5	0.020
135	0.01	19.5	0.020
136	0	0	0.000
137	0	0	0.000
138	0	0	0.000
139	0.18	351	0.351
140	0.07	136.5	0.137
141	0.04	78	0.078
142	0.02	39	0.039
143	0.02	39	0.039
144	0.01	19.5	0.020
145	0.01	19.5	0.020
146	0.01	19.5	0.020
147	0.01	19.5	0.020
148	0.01	19.5	0.020

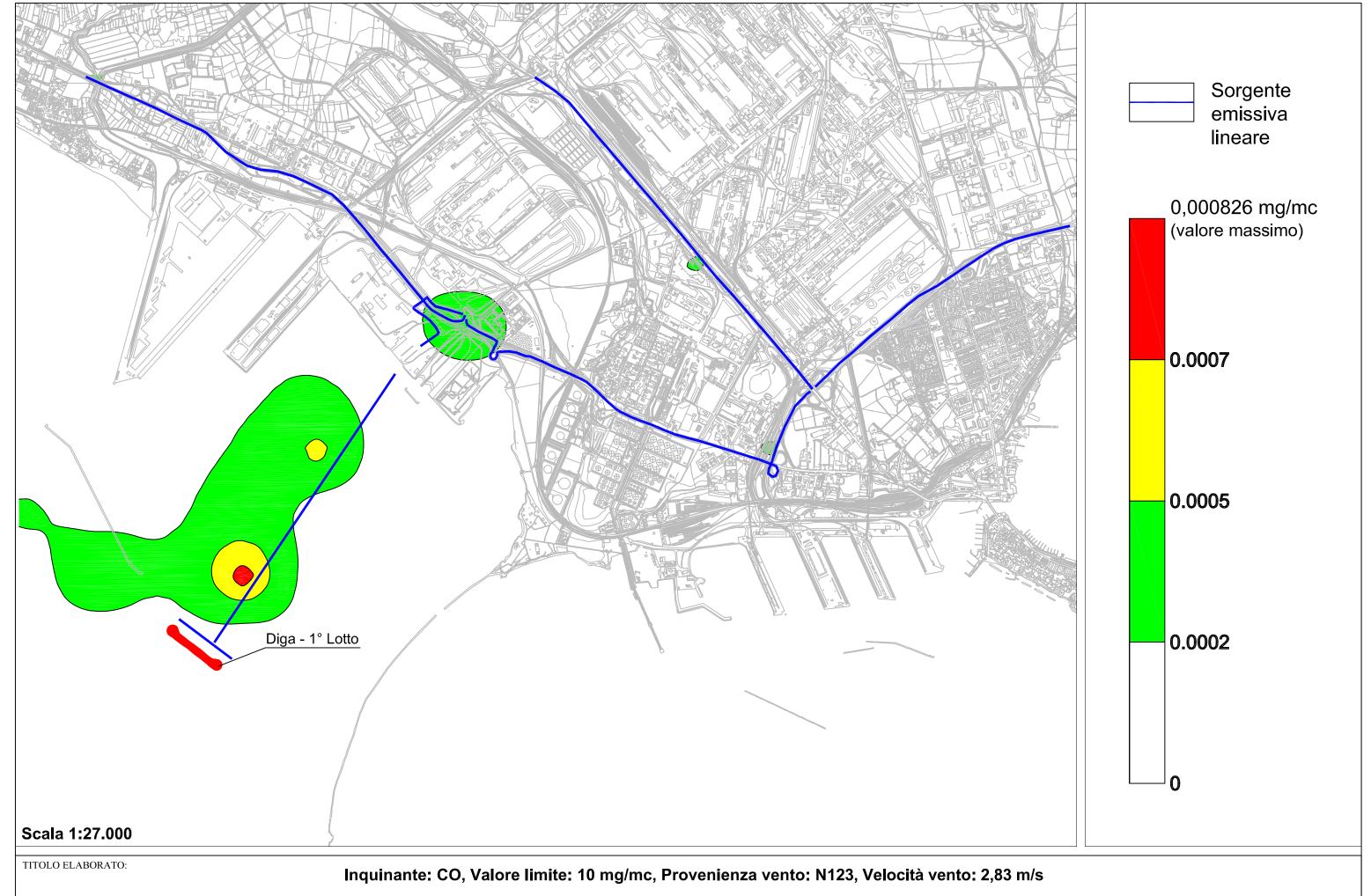
149	0	0	0.000
150	0	0	0.000
151	0	0	0.000
152	0	0	0.000
153	0	0	0.000
154	0	0	0.000
155	0	0	0.000
156	0	0	0.000
157	0	0	0.000
158	0	0	0.000
159	0	0	0.000
160	0	0	0.000
161	0	0	0.000
162	0	0	0.000
163	0	0	0.000
164	0	0	0.000
165	0	0	0.000
166	0	0	0.000
167	0	0	0.000
168	0	0	0.000
169	0	0	0.000
170	0	0	0.000
171	0	0	0.000
172	0	0	0.000
172	0	0	0.000
173	0	0	0.000
174	0	0	0.000
176	0	0	0.000
177	0	0	0.000
177	0	0	0.000
	0	0	
179			0.000
180	0	0	0.000
R1	0	0	0.000
R2	0	0	0.000
R3	0	0	0.000
R4	0	0	0.000
R5	0	0	0.000
R6	0	0	0.000
R7	0	0	0.000
R8	0	0	0.000
R9	0.01	19.5	0.020
R10	0.01	19.5	0.020
R11	0.01	19.5	0.020
R12	0.01	19.5	0.020
R13	0.01	19.5	0.020
R14	0.01	19.5	0.020
R15	0.01	19.5	0.020
R16	0.01	19.5	0.020
R17	0.01	19.5	0.020
R18	0.01	19.5	0.020
R19	0.01	19.5	0.020

R20	0.01	19.5	0.020

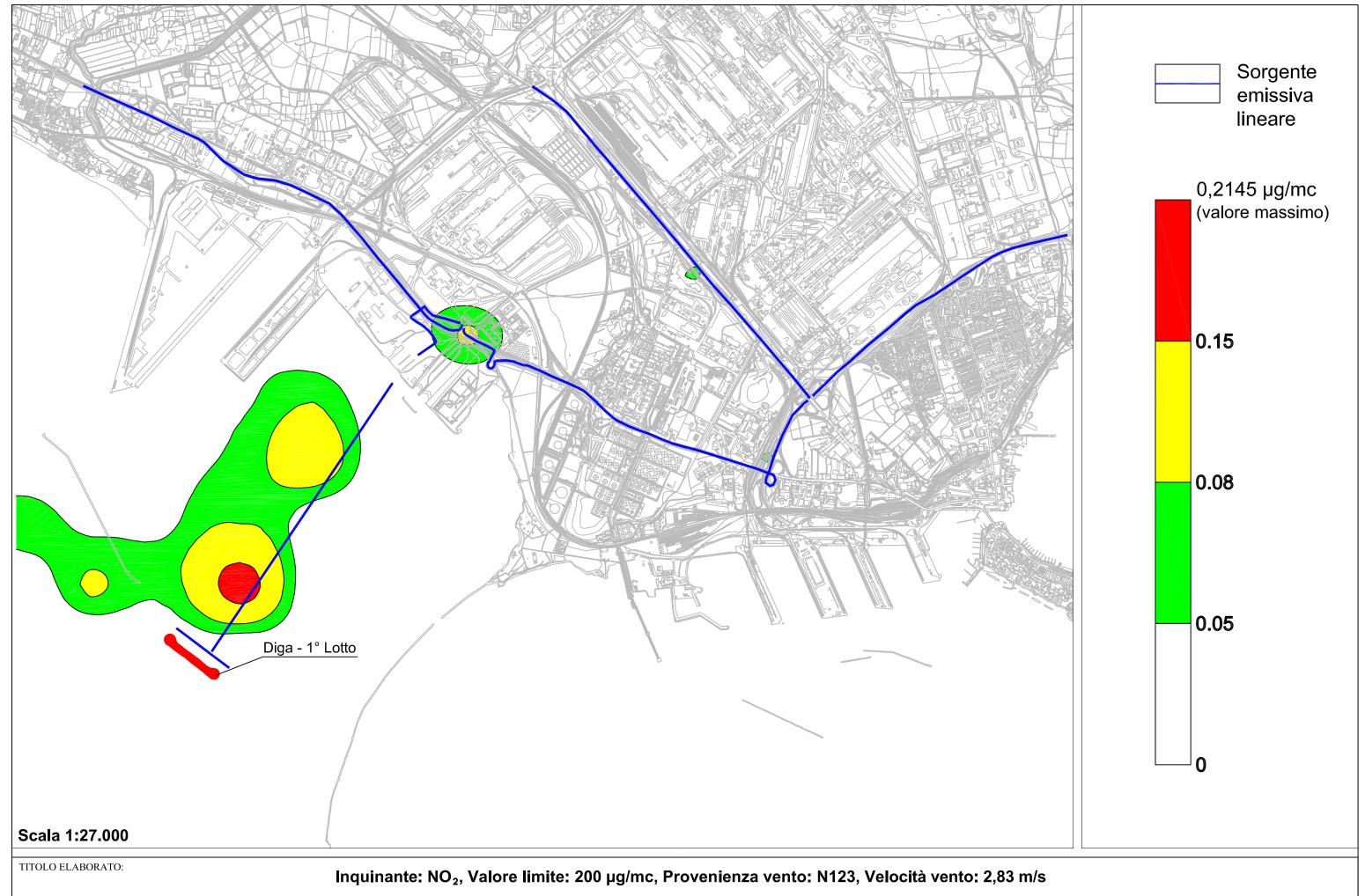
2.6. Inquinante: PM10, Provenienza vento: N269, Velocità vento: 2,83 m/s, Nome file: PM10_N269

Nome Run: PM10_N269

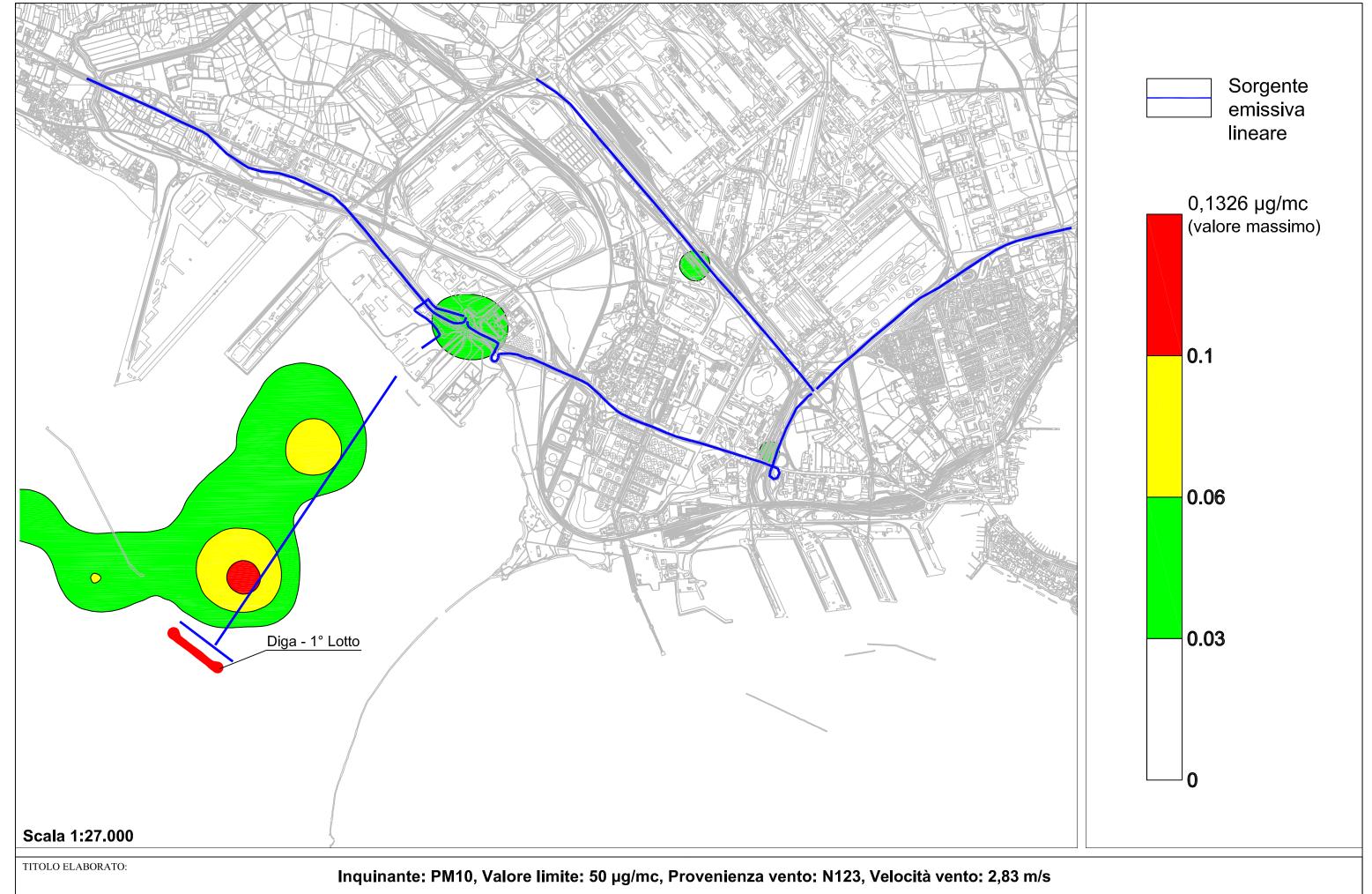
cod.	fattore di m	oltiplicazione (X 1000)	concentrazioni
ricettore	run (ppm)	run (μg/mc)	reali (μg/mc)
1	0	0	0.000
2	5.6	5.6	0.006
3	1.7	1.7	0.002
4	1.1	1.1	0.001
5	0.7	0.7	0.001
6	0.6	0.6	0.001
7	0.5	0.5	0.001
8	4.3	4.3	0.004
9	4.2	4.2	0.004
10	2.9	2.9	0.003
11	2.1	2.1	0.002
12	1.7	1.7	0.002
13	1.4	1.4	0.001
14	1.2	1.2	0.001
15	1.1	1.1	0.001
16	0	0	0.000
17	0	0	0.000
18	0	0	0.000
19	4.9	4.9	0.005
20	1.9	1.9	0.002
21	1.4	1.4	0.001
22	1.1	1.1	0.001
23	0.9	0.9	0.001
24	21.5	21.5	0.022
25	6.4	6.4	0.006
26	4.1	4.1	0.004
27	3.1	3.1	0.003
28	2.5	2.5	0.003
29	2.1	2.1	0.002
30	1.8	1.8	0.002
31	0	0	0.000
32	0	0	0.000
33	0	0	0.000
34	0	0	0.000
35	0	0	0.000
36	2.9	2.9	0.003
37	1.5	1.5	0.002
38	1.2	1.2	0.001
39	0.9	0.9	0.001
40	11.9	11.9	0.012
41	5.5	5.5	0.006
42	3.8	3.8	0.004
43	3.1	3.1	0.003
44	2.7	2.7	0.003
45	2.5	2.5	0.003

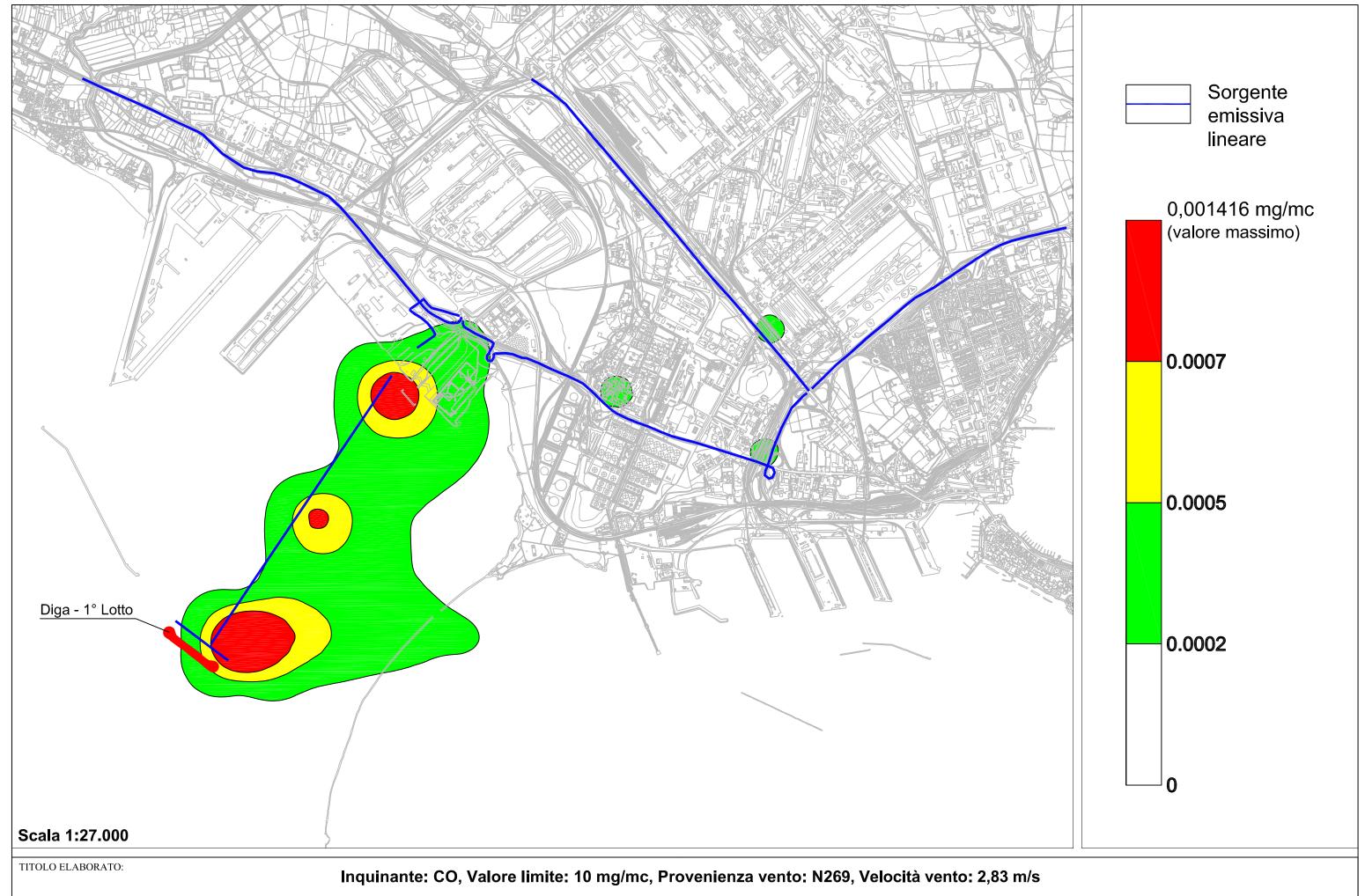

40			0.000
46	0	0	0.000
47	0	0	0.000
48	0	0	0.000
49	0	0	0.000
50	0	0	0.000
51	23.4	23.4	0.023
52	1.9	1.9	0.002
53	1.1	1.1	0.001
54	1	1	0.001
55	1.3	1.3	0.001
56	9.7	9.7	0.010
57	6	6	0.006
58	4.9	4.9	0.005
59	7.4	7.4	0.007
60	5.2	5.2	0.005
61	0	0	0.000
62	0	0	0.000
63	0	0	0.000
64	0	0	0.000
65	0	0	0.000
66	0	0	0.000
67	30.9	30.9	0.031
68	21.2	21.2	0.021
69	11.9	11.9	0.012
70	9	9	0.009
71	43.1	43.1	0.043
72	12.9	12.9	0.013
73	11.7	11.7	0.012
74	9	9	0.009
75	7.8	7.8	0.008
76	0	0	0.000
77	0	0	0.000
78	0	0	0.000
79	0	0	0.000
80	0	0	0.000
81	167.8	167.8	0.168
82	39.2	39.2	0.039
83	22.4	22.4	0.022
84	36.6	36.6	0.037
85	19.5	19.5	0.020
86	14.9	14.9	0.015
87	20.9	20.9	0.021
88	15.2	15.2	0.015
89	12.6	12.6	0.013
90	10.8	10.8	0.011
91	0	0	0.000
92	0	0	0.000
93	0	0	0.000
94	0	0	0.000
95	0	0	0.000

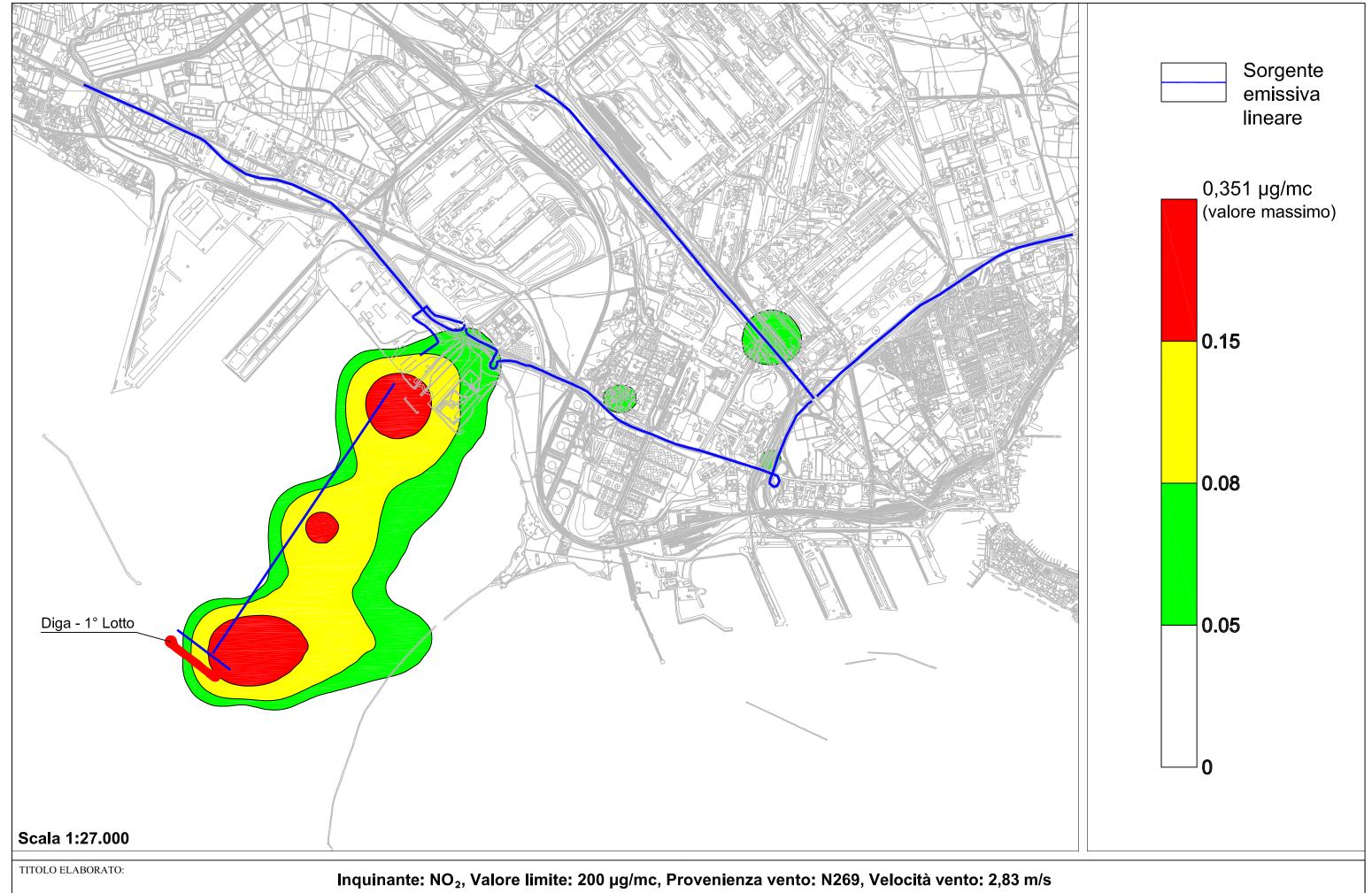
	50.7	T 50.7	0.057
96	56.7	56.7	0.057
97	28.8	28.8	0.029
98	20.3	20.3	0.020
99	15.9	15.9	0.016
100	13.2	13.2	0.013
101	37	37	0.037
102	26.8	26.8	0.027
103	18.6	18.6	0.019
104	14.1	14.1	0.014
105	11.5	11.5	0.012
106	0	0	0.000
107	0	0	0.000
108	0	0	0.000
109	0	0	0.000
110	121	121	0.121
111	36.1	36.1	0.036
112	23.3	23.3	0.023
113	17.4	17.4	0.017
114	14.3	14.3	0.014
115	12.4	12.4	0.012
116	11.1	11.1	0.011
117	10	10	0.010
118	9.1	9.1	0.009
119	8.3	8.3	0.008
120	7.7	7.7	0.008
121	0	0	0.000
122	0	0	0.000
123	0	0	0.000
124	0	0	0.000
125	50.2	50.2	0.050
126	27.7	27.7	0.028
127	21.7	21.7	0.022
128	18.6	18.6	0.019
129	16.1	16.1	0.016
130	13.7	13.7	0.014
131	11.7	11.7	0.012
132	10.1	10.1	0.010
133	8.8	8.8	0.009
134	7.7	7.7	0.008
135	6.8	6.8	0.007
136	0	0	0.000
137	0	0	0.000
138	0	0	0.000
139	224.6	224.6	0.225
140	85.4	85.4	0.085
141	48.6	48.6	0.049
142	30.2	30.2	0.030
143	20.6	20.6	0.021
144	15	15	0.015
145	11.6	11.6	0.012
			3.5.2

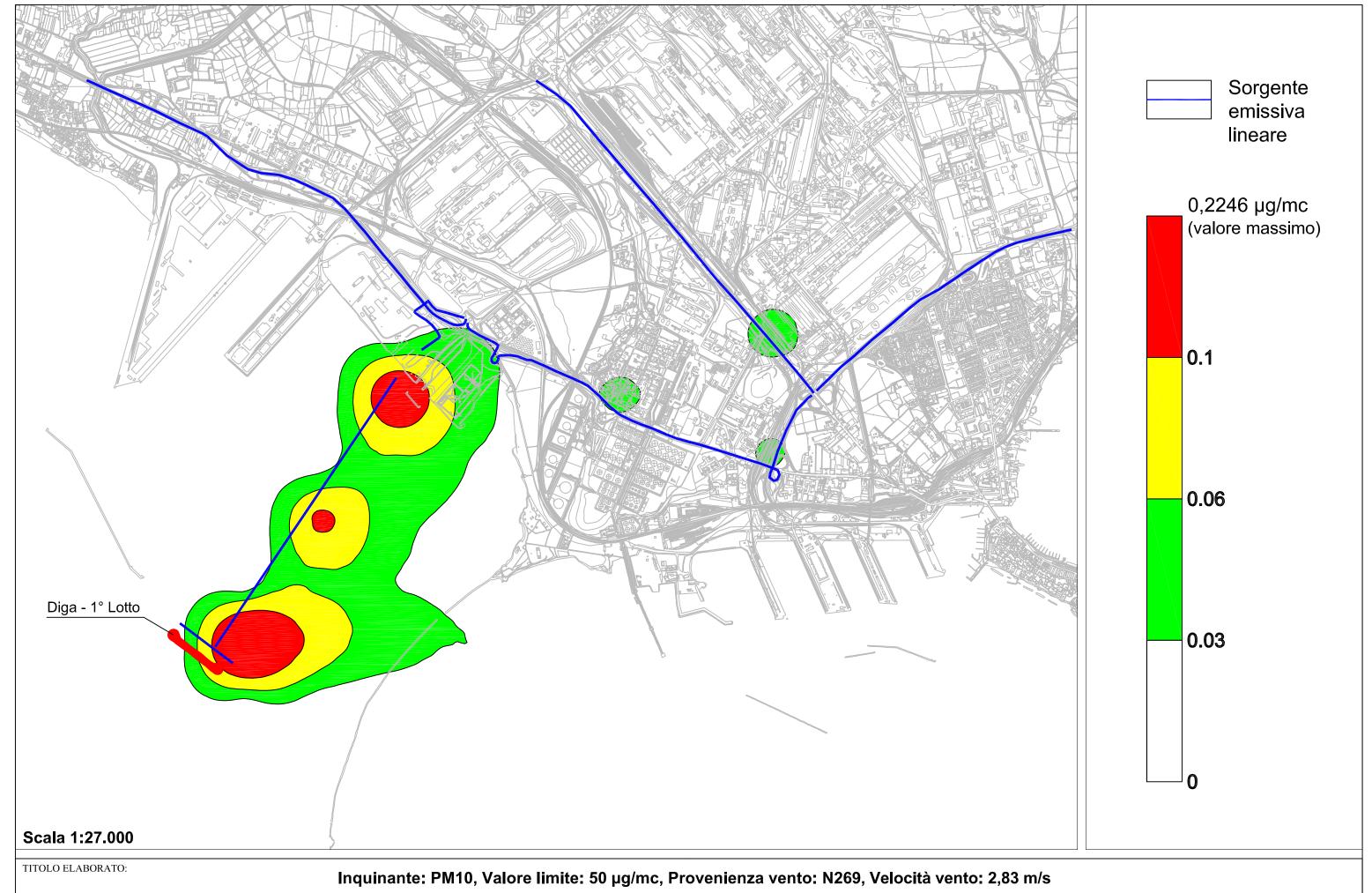

146	9.4	9.4	0.009
147	7.7	7.7	0.008
148	6.7	6.7	0.007
149	5.9	5.9	0.006
150	5.2	5.2	0.005
151	0	0	0.000
152	0	0	0.000
153	0	0	0.000
154	0	0	0.000
155	0	0	0.000
156	0	0	0.000
157	0.4	0.4	0.000
158	1.5	1.5	0.002
159	2.6	2.6	0.003
160	3.1	3.1	0.003
161	3.3	3.3	0.003
162	3.3	3.3	0.003
163	3.2	3.2	0.003
164	3.1	3.1	0.003
165	3	3	0.003
166	0	0	0.000
167	0	0	0.000
168	0	0	0.000
169	0	0	0.000
170	0	0	0.000
171	0	0	0.000
172	0	0	0.000
173	0	0	0.000
174	0	0	0.000
175	0.2	0.2	0.000
176	0.4	0.4	0.000
177	0.7	0.7	0.001
178	0.9	0.9	0.001
179	1.1	1.1	0.001
180	1.2	1.2	0.001
R1	0	0	0.000
R2	0	0	0.000
R3	0	0	0.000
R4	0	0	0.000
R5	0	0	0.000
R6	0	0	0.000
R7	0	0	0.000
R8	0	0	0.000
R9	15.2	15.2	0.015
R10	13.5	13.5	0.014
R11	12	12	0.012
R12	10.3	10.3	0.010
R13	8.8	8.8	0.009
R14	11.8	11.8	0.012
R15	12.8	12.8	0.013

R16	10	10	0.010
R17	14.4	14.4	0.014
R18	8	8	0.008
R19	12.3	12.3	0.012
R20	6.6	6.6	0.007


- 3. CARTE DI ISOCONCENTRAZIONE SCENARIO "VENTO FREQUENTE"
- 3.1. Inquinante: CO, Provenienza vento: N123, Velocità vento: 2,83 m/s


3.2. Inquinante: NO_2 , Provenienza vento: N123, Velocità vento: 2,83 m/s


3.3. Inquinante: PM10, Provenienza vento: N123, Velocità vento: 2,83 m/s


3.4.	Inquinante: CO, Provenienza vento: N269, Velocità vento: 2,83 m/s

3.5. Inquinante: NO_2 , Provenienza vento: N269, Velocità vento: 2,83 m/s

3.6. Inquinante: PM10, Provenienza vento: N269, Velocità vento: 2,83 m/s

AUTORITA' PORTUALE DI TARANTO COMUNE DI TARANTO

PORTO DI TARANTO

Riqualificazione del Molo Polisettoriale

Nuova diga foranea del porto fuori rada di Taranto

Tratto di ponente

STUDIO D'IMPATTO AMBIENTALE

Ai sensi del D.Lgs. 152/06 e successive integrazioni (Allegato VII del D.Lgs. 4/2008)

Quadro di Riferimento Progettuale

Appendice 2A
Rilevamenti fonometrici (campagna di misura del dicembre 2012)

Aprile 2013

INDICE

1.	RILEVAMENTI FONOMETRICI	3
1.1.	Metodologia di indagine	
1.2.	Localizzazione delle postazioni di misura	
1.3.	Strumentazione di misura utilizzata	
1.4.	Risultati delle misurazioni effettuate	
ΔΙΙΕ	GATI	8
	o 1 - Ubicazione delle postazioni fonometriche (campagna di rilievo dicembre 2012)	
Allegat	o 2 - Documentazione fotografica delle postazioni di misura	
Allegat	o 3 - Scheda tecnica delle caratteristiche del fonometro analizzatore LD 824 o 4 - Certificati di taratura del fonometro analizzatore LD 824 e del calibratore	
, iiicgai	CAL 200	15
Allegat	o 5 - Grafici dei rilevamenti acustici (Time-history e spettro)	

1. RILEVAMENTI FONOMETRICI

Il clima acustico che caratterizza attualmente la zona portuale e abitativa circostante l'area ex Yard Belleli entro la quale è prevista la collocazione del cantiere base per la realizzazione della Nuova Diga Foranea è stato determinato mediante una campagna di misure fonometriche effettuate nel dicembre 2012, durante giornate feriali lavorative.

1.1. Metodologia di indagine

La campagna di misure è stata eseguita svolgendo dei rilievi di rumore a breve termine, utilizzando a questo proposito la "tecnica di campionamento" definita nel D.M.A. 16 marzo 1998, relativo alle "Tecniche di rilevamento e di misurazione dell'inquinamento acustico".

Il personale che ha svolto i rilievi è accreditato del riconoscimento di "Tecnico competente in acustica ambientale"¹, ai sensi dell'art.2 comma 7 della Legge n.447/95 (Legge Quadro sull'inquinamento acustico).

I rilievi dei livelli sonori ante-operam sono stati eseguiti in corrispondenza di n. 4 postazioni di misura per ciascuna delle quali si sono effettuati campionamenti della durata di 15 minuti ciascuno, di cui due nel periodo diurno (tra le ore 06.00 e le ore 22.00) ed uno nel periodo notturno (tra le 22.00 e le 06.00) al fine di avere un riscontro dell'andamento dei livelli sonori nell'area di studio nell'arco delle 24 ore.

Nel corso della campagna di indagini, effettuata il 6 e il 7 dicembre 2012, sono stati acquisiti tutti i principali parametri acustici, sia in termini globali che spettrali, tra i quali il Livello equivalente continuo (Leq), i livelli istantanei massimi e minimi (Lmin e Lmax), i percentili L95, L90, L50, L10; in particolare, i rilievi spettrali sono stati eseguiti in bande di 1/3 di ottava nel range compreso tra 12.5Hz e 20 KHz.

1.2. Localizzazione delle postazioni di misura

La localizzazione delle postazioni di misura effettuata nell'ambito del presente studio è stata determinata sulla base dei seguenti criteri:

- rappresentatività del clima acustico dell'ambito di studio adiacente l'area di cantiere;
- tipologia dei ricettori;
- presenza di altre sorgenti di inquinamento acustico;
- localizzazione ed estensione dell'area di intervento/cantiere;

¹ Il tecnico coinvolto è l'Ing. Rosanna Margarese, iscritto al n. 988 dell'Elenco Regionale del Lazio dei tecnici competenti in acustica ambientale

previsti percorsi dei mezzi veicolari in fase di realizzazione.

Nella seguente Tabella 1-1 è riportata una breve descrizione di ciascuna delle quattro postazioni di misura, oltre all'indicazione della relativa classe acustica individuata dalla proposta di zonizzazione acustica del Comune di Taranto. I punti di misura prescelti non rientrano, inoltre, all'interno delle fasce di pertinenza stradale e ferroviaria ai sensi rispettivamente del D.P.R. n.142/2004 e del DPR 459/1998, distando dalla SS 106 e dalla linea ferroviaria costiera oltre 250 m.

Punto Misura	Localizzazione e descrizione del punto di misura	Bozza Piano di zonizza- zione acustica (DPCM 14/11/97)
P1	Punto di misura localizzato in corrispondenza di edifici abitativi di Lido Azzurro su via la Torretta (bordo strada).	Classe III (cfr. DPCM 14/11/97)
P2	Punto di misura localizzato sul Molo Polisetto- riale all'inizio della banchina di carico e scari- co container.	Classe IV (cfr. DPCM 14/11/97)
P3	Punto di misura localizzato sul Molo Polisetto- riale in corrispondenza dell'accesso principale.	Classe IV (cfr. DPCM 14/11/97)
P4	Punto di misura localizzato all'interno dell'ex area Yard Belleli nella fascia antistante il mare.	Classe IV (cfr. DPCM 14/11/97)

Tabella 1-1 – Localizzazione e caratterizzazione delle postazioni di misura

I valori limite assoluti di immissione fissati per la classe III (aree di tipo misto), in cui ricade la postazione P1 (area abitativa di Lido Azzurro), risultano pari a 60 dBA nel periodo diurno e pari a 50 dBA nel periodo notturno.

I valori limite assoluti di immissione fissati per la classe IV (aree di intensa attività umana), in cui ricadono le postazioni P2, P3 e P4 (area portuale), risultano pari a 65 dBA nel periodo diurno e pari a 55 dBA nel periodo notturno.

L'ubicazione dei punti di rilevamento fonometrico sono riportati su uno stralcio di foto area in Allegato 1; le foto delle stesse postazioni sono invece riportate in Allegato 2.

1.3. Strumentazione di misura utilizzata

Le rilevazioni dei livelli sonori effettuate nell'ambito del presente studio sono state realizzate con la strumentazione di misura di seguito indicata:

- Fonometro integratore/Analizzatore Real Time LARSON DAVIS, modello LD 824 (matricola n. 0885), dotato di microfono a campo libero LARSON DAVIS, modello 2541;
- Calibratore LARSON DAVIS, modello CAL 200 (matricola n. 2391).

In particolare, il fonometro integratore LD 824 è conforme alle prescrizioni del D.M.A. 16.3.1998, con particolare riferimento a quanto indicato nell'Allegato C "Metodologia di misura del rumore stradale", nonché alle Norme IEC 651 Tipo 1 e IEC 804 Tipo 1 (identiche alle EN 60651, EN 60804 e CEI 29-10), oltre alle più recenti IEC 61672; tale strumento, inoltre, soddisfa le richieste della Legge Quadro sull'inquinamento acustico ed i successivi decreti attuativi.

Le misurazioni sono state eseguite con le seguenti impostazioni di misura:

Modalità: SSA-SLM+RTA

Costante di tempo: FASTCurva di ponderazione: A

- Spettro: 1/3 oct; FAST; LINEARE

- Time-history: Tempo di campionamento 1 sec; risoluzione 0,1 dB(A)

In allegato 3 e 4 sono riportati la scheda tecnica ed i certificati di taratura della strumentazione utilizzata.

1.4. Risultati delle misurazioni effettuate

La registrazione dei livelli sonori è stata effettuata con la catena di strumentazione sopra indicata, opportunamente tarata e calibrata sulla base dei riferimenti normativi vigenti.

Le calibrazioni effettuate prima e dopo ogni misura non hanno mostrato scostamenti superiori a 0,5 dB.

Nella seguente Tabella 1-2 sono riportati i risultati delle rilevazioni effettuate, della durata di 15 minuti ciascuna, contenenti i contributi emissivi di tutte le sorgenti sonore presenti nell'area (attività portuali in particolare di carico, scarico e trasporto container, traffico veicolare e ferroviario sulla SS 106 e sulla linea ferroviaria costiera, attività industriali limitrofe il porto). In particolare, per ciascun punto di misura e per ognuno dei cicli di misurazione effettuati (2 nel periodo diurno e 1 nel periodo notturno), è indicato il Leq rilevato in dBA, oltre ad alcune note descrittive della misura stessa. Il dettaglio di tali misure con gli andamenti grafici sono riportati in Allegato 5.

Punto Misura	Periodo Riferim.	Num. Camp.	Data/ora Misura	Durata	Leq	Fonti di rumore prevalenti	
	Diurno	1	6/12/12	15 min	47.0		
	Diuitio	ı	ore 21,06	15 111111	47,8		
P1	Diurno	2	7/12/12	15 min	39,3	Limitato traffico veicola- re locale su via La tor-	
	Didifio	۷	ore 12,10	13 111111	39,3	retta (Lido azzurro)	
	Notturno		7/12/12	15 min	38,8		
	Notturno		ore 1,21	13 111111	30,0		
	Diurno	1	6/12/12	15 min	63,1	Frequente passaggio di camion con rimorchi	
	Diamo	'	ore 19,08	10 111111	00,1	nell'area di stoccaggio	
	Diurno	2	7/12/12	15 min	62,1	container, operazione di carico e scarico dei con-	
P2	Biarrio	_	ore11,16	10 111111	02,1	tainer mediante gru e	
	Notturno		7/12/12 ore 1,59	15 min	65,5	carri ponte, diversi se- gnali acustici di allar- me/manovra, rumore di fondo proveniente dalle navi ferme alla darsena del Molo Polisettoriale	
	D:	_	6/12/12				Frequente passaggio di
	Diurno	1	ore 19,50	15 min 52,7	52,7	mezzi pesanti in entrata ed uscita alla darsena	
	D:	Diverse	2	7/12/12	15 min	E0.7	del Molo polisettoriale, diversi segnali acustici
P3	Diurno	2	ore 10,39	15 min 52,7	52,7	di allarme/manovra, ru-	
	Notturno		7/12/12 ore 00,42	15 min	54,7	morosità proveniente dalla V Sporgente rela- tiva ad attività di cari- co/scarico merci e tra- sporto locale mediante convoglio ferroviario	
	Diurno	4	6/12/12	15 min	E1 1	<u> </u>	
P4		1	ore 20,21	15 min	51,1	Rumore di fondo prove-	
	Diurno	Diurno 2	7/12/12	15 min	48,5	niente dalle attività effet- tuate sulla V Sporgente e sul piazzale posto alla radice di tale darsena	
F 4			ore 9,45				
	Notturno		7/12/12 ore 00,00	15 min	51,3	radio di tale dal seria	

Tabella 1-2 – Risultati delle rilevazioni effettuate nell'area di studio

Nell'intervallo di tempo delle misurazioni a seguito dell'elaborazione effettuata dei dati acustici rilevati, non si è riscontrata in generale la presenza di componenti tonali ed impulsive, così come definite dal D.M.A. 16 marzo 1998 a meno di una componente tonale a 80 Hz nella postazione P3 in periodo diurno-mattina correlato ad alcune attività specifiche di carico/scarico merci sul Molo Polisettoriale.

Dai risultati della campagna di monitoraggio effettuata il 6 e 7 dicembre 2012 emerge un generale rispetto dei limiti di rumorosità riportati nella Bozza di zonizzazione acustica relativamente alla:

- zona residenziale di Lido Azzurro posta a nord-ovest del Terminal contenitori del Molo polisettoriale e rientrante in classe III con valori limite di immissione pari a 60 dBA nel periodo diurno e 50 dBA nel periodo notturno;
- area portuale comprendente la banchina del Molo Polisettoriale, la radice della V Sporgente e l'ex area Yard Belleli rientrante in classe IV con valori limite di immissione pari a 65 dBA nel periodo diurno e 55 dBA nel periodo notturno.

Un solo superamento del valore limite di immissione si è riscontrato nel periodo notturno in corrispondenza della postazione P2 (65,5 dBA). In tale circostanza, infatti, la misura è stata svolta in contemporanea e nelle immediate vicinanze di una gru impegnata nel carico/scarico di una nave porta container. Il superamento durante tali attività risulta comunque limitato ad un limitato areale intorno al punto di carico/scarico container (circa 150-200 m dal bordo banchina).

Relativamente al contributo aggiuntivo della rumorosità connessa ai lavori di realizzazione della Nuova Diga Foranea, in base anche ai livelli acustici stimati nella relazione della componente rumore si conclude che:

- la somma tra i livelli sonori stimati mediante modello e i livelli rilevati nelle postazioni fonometriche in corrispondenza delle aree critiche sopra citate, rispettano il valore limite assoluto di immissione delle classi III e IV nel periodo diurno in cui sono previste le attività lavorative;
- il clima acustico rilevato nell'immediato intorno delle aree di cantiere non è alterato dal contributo emissivo aggiuntivo delle previste lavorazioni.

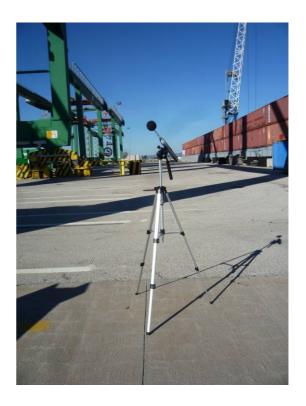
ALLEGATI

- Allegato 1 Ubicazione delle postazioni fonometriche
- Allegato 2 Documentazione fotografica delle postazioni di misura
- Allegato 3 Scheda tecnica del fonometro-analizzatore L&D 824
- Allegato 4 Certificati di taratura del fonometro e del calibratore
- Allegato 5 Grafici dei rilevamenti fonometrici (Time history e spettro)

Allegato 1 - Ubicazione delle postazioni fonometriche (campagna di rilievo dicembre 2012)

Allegato 2 - Documentazione fotografica delle postazioni di misura

Lido Azzurro: via la Torretta - Foto 1, 2, 3, 4 (Postazione P1)



Molo Polisettoriale: piazzale carico-scarico - Foto 5, 6, 7 (Postazione P2)

Molo polisettoriale: piazzale di accesso – Foto 8, 9, 10, 11 (Postazione P3)

Ex area Yard Belleli: fascia costiera – Foto 12, 13, 14, 15 (Postazione P4)

Allegato 3 - Scheda tecnica delle caratteristiche del fonometro analizzatore LD 824

CARATTERISTICHE SALIENTI DEL FONOMETRO ANALIZZATORE LD 824

- · Grande display grafico retroilluminato
- Tasti morbidi retroilluminati
- Menù a finestre, con barre di scorrimento
- Impostazioni dello strumento memorizzabili
- · Gestione intelligente della memoria
- Diversi modi di funzionamento in funzione delle esigenze di misura :

SLM + RTA (fonometro base con analizzatore in tempo reale) (standard)

Logging SLM (fonometro data logger e analizzatore statistico) (opzionale)

HiRange SLM (fonometro a gamma estesa) (opzionale)

RTA analyzer (analizzatore in tempo reale evoluto) (opzionale)

FFTanalyzer (analizzatore di Fourier) (opzionale)

- Soddisfa la IEC 651-1979, la IEC 804-1985, la Draft IEC 1672 e la ANSI S1.4 -1983
- Misura simultanea del livello di pressione sonora con costanti Fast, Slow ed Impulse, e con ponderazioni in frequenza secondo la curva 'A', la curva 'C' e la curva 'LIN' (nelle configurazioni SLM + RTA, Logging SLM e HiRange)
- Dinamica di misura fino a 110 dB (con l'opzione HiRange)
- Filtri digitali fino a 20 kHz conformi alla IEC 1260-1995 Classe 0 e ANSI S1.11-1986 Tipo 1-D con linearità dinamica di 100 dB:

filtri in banda di ottava da 16 Hz a 16 kHz (11 filtri)

filtri in banda di 1/3 di ottava da 12.5 Hz a 20 kHz (33 filtri)

- Memorizzazione automatica dei parametri fonometrici, degli Intervalli, dei valori L_n,degli Eventi e della Time History (con l'opzione Logging SLM)
- acquisizione simultanea dei parametri fonometrici e dello spettro, con ponderazioni in frequenza indipendenti (nel modo SLM+RTA)
- Analisi a banda fine su 400 linee con ponderazione Hanning (con l'opzione FFT)
- Memoria base di 512 kB sufficiente a memorizzare :

17000 spettri in banda di 1/1 ottava

6800 spettri in banda di 1/3 di ottava

5688 misure fonometriche semplici

7529 intervalli senza parametri L_n

4923 intervalli con parametri L_n

256000 valori relativi alla Time History

- Espansioni di memoria da:
 - 1 MB (opzione 20)
 - 2 MB (opzione 21)
- Uscita AC e DC, non pesata, con regolazione da -20 a +50 dB
- Flash memory per aggiornamento firmware
- Processore multitasking (è possibile visualizzare, trasferire o stampare i dati mentre lo strumento sta misurando)
- Interfaccia RS-422 (compatibile RS-232) con velocità fino a 115 kbps
- Stanpa diretta dei risultati

Allegato 4 - Certificati di taratura del fonometro analizzatore LD 824 e del calibratore CAL 200

Fonometro

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

Il SIT è uno dei firmatari degli Accordi di Mutuo Riconoscimento EA-MLA ed ILAC-MRA dei certificati di taratura.

SIT is one of the signatories to the Mutual Recognition Agreement EA-MLA and ILAC-MRA for the calibration certificates

CENTRO DI TARATURA nº 146

Calibration Centre nº 146

Isoambiente s.r.l. Unità Operativa Distaccata di Roma Via Guglielmo Saliceto, 4 – 00161 Roma Tel.&Fax +39 06.44290451

Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

Web: www.isoambiente.com e-mail: sit@isoambiente.com

Pagina 1 di 8 Page 1 of 8

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

- <u>Data di emissione</u> date of issue
- destinatario S.I.A. - Roma addressee
- richiesta application
- in data 2011-03-14 date

Si riferisce a referring to - oggetto

item
- costruttore
manufacturer
- modello
model
- matricola
serial number

- data delle misure

date of measurements - registro di laboratorio laboratory reference Fonometro

Larson Davis

824 0885

2011-03-16

Fon 01033-RM

Il presente certificato di taratura è emesso in base all'accreditamento SIT N. 146 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). Il SIT garantisce le capacità di misura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation SIT No.146, granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. SIT attests the measurement capability and metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro e i rispettivi certificati di taratura, in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, sativo diversamente specificato.

The measurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards are indicated as well, from which starts the traceability chain of the laboratory, and the related calibration certificates in their course of validity. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to EA-4/02. They were estimated as ---expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del U.O.D. Head of the U.O.D.

> > ing. Tiziano Muchetti

Cinas Mulathe

SIT

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146

ISOAMBIENTE. Calibration Centre nº 146

Isoambiente s.r.l. Via Guglietno Saficeto, 4 – 00161 Roma
Via Guglietno Saficeto, 4 – 00161 Roma
Tet.&Fax +39 06.44290451
Sede Legale: Via India, 36/a – 86039 Termoli (CB)
Tet.&Fax+39 0875.702542
Web: www.isoambiente.com e-mail: sit@isoambiente.com

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

Pagina 2 di 8 Page 2 of 8

VERIFICA DELLA TARATURA DEL:

Fonometro Larson Davis tipo 824 matricola nº 0886	1 11.04100000
Capsula Microfonica BSWA tipo MP 201 matricola nº 4400062	
Preamplificatore Larson Davis tipo PRM902 matricola nº 1335	· · · · · · · · · · · · · · · · · · ·

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando la procedura:	The measurement results reported in this Certificate were obtained
	following procedure: PR001 Rev. 00 of the M.O. of the Centre.

RIFERIMENTI NORMATIVI CEI 29-30, CEI EN 60651, CEI EN 60804, CEI EN 61094-5

CAMPIONI DI PRIMA LINEA									
n° id.	Strumento	Marca e Modello	Matricola n°	Data emissione	Certificato nº	Ente			
CPL 01	Multimetro numerale	Keithley 2000	758523	2010-03-31	334515	ARO			
CPL 02	Pistonofono	B&K 4228	1793028	2010-03-26	10-0208-01	I.N.RI.M.			
CPL 03	Capsula Microfonica	B&K 4180	2488278	2010-09-02	10-0564-01	I.N.RI.M.			

CONDIZIONI AMBIENTALI				
Fase Prova Temperatura Umidità relativa Pressione //C //hPa				
Inizio	23,9	45,8	1000,3	
Fine	24,3	45,1	999,4	

INCERTEZZ	ZE DI MISURA
Tabella di acc	reditamento SIT
Fonometri	Capsule microfoniche
da 0,13 dB a 1,5 dB	da 0,3 dB a 0,9 dB

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile del U.O.D. ing. Tiziano Muchetti

16

SIT

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146 Calibration Centre nº 146

Isoambiente s.r.l. Unità Operativa Distaccata di Roma Via Guglielmo Saliceto, 4 – 00161 Roma Tel. &Fax +39 06.44290451 Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

Web: www.isoambiente.com e-mail: sit@iso

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

Pagina 3 di 8 Page 3 of 8

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2. The measurement uncertainties stated in this document have been determined according to EA-4/02. They were estimated as expanded

PROVA TEST	INCERTEZZA ESTESA EXPANDED UNCERTAINITY	
Regolazione della sensibilità acustica Acoustical sensitività adjustment		0,23 dB
Risposta acustica Acoustical response	31,5 Hz 63 Hz 125 Hz 250 Hz 500 Hz 1K Hz 2K Hz 4K Hz 8K Hz 12,5K Hz 16K Hz	0,28 dB 0,27 dB 0,27 dB 0,32 dB 0,35 dB 0,41 dB 0,43 dB 0,49 dB 0,63 dB 0,78 dB
Selettore del campo di misura Measurement range selector		0,13 dB
Rumore autogenerato Self generated noise	0,10 dB	
Linearità del campo di misura principale Linearity of reference measurement range	0,16 dB	
Linearità dei campi di misura secondari Linearity of secondary measurement ranges		0,16 dB
Ponderazioni in frequenza Frequency weighting	0,16 dB	
Pesature temporali (F, S ed I) Time weighting (F, S and I)	0,16 dB	
Rilevatore del valore efficace RMS value detector	0,16 dB	
Rilevatore del valore di picco Peak value detector		0,16 dB
Media Temporale Time averaging		0,16 dB
Campo dinamico agli impulsi Impulse dinamic range		0,16 dB
Indicatore di sovraccarico Overload detector	1	0,16 dB

Lo Sperimentatore ing. Tiziano Muchetti

R

Il Responsabile del U.O.D. ing. Tiziano Muchetti

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146

Calibration Centre nº 146

Isoambiente s.r.l. Unità Operativa Distaccata di Roma

Via Guglielmo Saliceto, 4 – 00161 Roma Tel.&Fax +39 06.44290451 Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

www.isoambiente.com e-mail: sit@isoambiente.com

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

Pagina 4 di 8 Page 4 of 8

CONDIZIONI PER LA VERIFICA

Il misuratore di livello di pressione sonora viene sottoposto alla verifica unitamente a tutti i suoi accessori, compresi microfoni aggiuntivi ed il manuale di istruzioni per l'uso.

Prima di ogni misura, lo strumento ed i suoi componenti vengono ispezionati visivamente e si eseguono tutti i controlli che assicurino la funzionalità dell'insieme. Lo strumento viene sottoposto ad un periodo di preriscaldamento per la stabilizzazione termica come indicato dal costruttore.

Il campo scala di riferimento, dichiarato nel manuale dello strumento, risulta essere di: 40 - 120 dB.

VERIFICHE ACUSTICHE

REGOLAZIONE DELLA SENSIBILITÀ

Verifica ed eventuale regolazione della sensibilità acustica del complesso fonometro-microfono per predisporre lo strumento alla esecuzione delle prove successive. Si invia al microfono un segnale sinusoidale di frequenza 250 o 1000 Hz e di livello compreso tra 94 e 124 dB tramite un pistonofono (campione di prima linea). Se necessario la sensibilità dello strumento deve essere regolata in modo tale da ottenere l'indicazione del livello di pressione acustica generato-dal-pistonofono, opportunamente corretto in funzione della pressione atmosferica, del volume dell'accoppiamento e se necessario dell'umidità relativa.

LIVELLO	LIVELLO	
PRIMA DELLA REGOLAZIONE	DOPO LA REGOLAZIONE	
/dB	/dB	
124,0	124,0	

RISPOSTA ACUSTICA DEL MICROFONO

Verifica della risposta acustica del microfono nel campo di frequenza da 31,5 a 12500 Hz.

La prova viene effettuata inviando al microfono in prova ed al microfono campione, tramite l'accoppiatore, segnali sinusoidali continui di frequenza variabile tra 31,5 e 12500 Hz.

FREQ. /Hz	RISPOSTA IN PRESSIONE /dB	RISPOSTA IN CAMPO LIBERO /dB
31,5	0,1	0,1
63	0,1,	0,1
125	0,1 ∜	0,1
250	0,0	0,0
500	-0,1	-0,1
1000	0,0	0,0
2000	-0,1	0,1
4000	-0,8	0,0
8000	-3,2	-0,6
12500	-6,5	-2,0

RISPOSTA ACUSTICA DEL FONOMETRO

Verifica della risposta acustica del fonometro nel campo di frequenza da 31,5 a 12500 Hz.

Alla risposta acustica del microfono in campo libero si aggiunge la risposta in frequenza del fonometro ponderazione Lin o ponderazione A inversa.

FREQ. /Hz RISPOSTA ACUSTICA FONOMETRO /dB		TOLL. /dB	
31,5	-0,8	(-1,5;1,5)	
63	-0,1	(-1;1)	
125	-0,1	(-1;1)	
250	-0,1	(-1;1)	
500	-0,1	(-1;1)	
1000	0,0	(-1;1)	
2000	0,0	(-1;1)	
4000	-0,1	(-1;1)	
8000	-0,7	(-3;1,5)	
12500	-2,1	(-6;3)	

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile del U.O.D. ing. Tiziano Muchetti

SIT

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146 Calibration Centre nº 146

Isoamblente s.r.l.
Unità Operativa Distaccata di Roma
Via Guglielmo Saliceto, 4 - 00161 Roma
Tel.&Fax + 39 06.44290451
Sede Legale: Via India, 36/a - 86039 Termoli (CB)
Tel.&Fax + 39 0875,702542
Web: vww.isoambiente.com

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM Pagina 5 di 8 Page 5 of 8

VERIFICHE ELETTRICHE

Le prove specificate nel seguito sono eseguite sostituendo un segnale elettrico a quello microfonico. Si sostituisce la capsula microfonica con un adattatore capacitivo di impedenza equivalente secondo le indicazioni del costruttore, applicato in serie al generatore.

SELETTORE DEL CAMPO DI MISURA

Si applica alla strumentazione in prova un segnale continuo sinusoidale con frequenza 4000 Hz e di ampiezza pari a 94 dB, esaminando tutti i campi in cui è possibile misurare il livello del segnale applicato.

CAMPO DI MISURA /dB	DEV. Leq /dB	DEV. Lp /dB	TOLL.
130	0,0	0,0	(-0,5;0,5)
110	-0,1	0,0	(-0,5;0,5)
100	0,0	0,0	(-0,5;0,5)

RUMORE AUTOGENERATO

Si sostituisce il generatore di segnali con un cortocircuito. Si legge l'indicazione relativa al livello del rumore autogenerato.

CURVE DI PESATURA	Lp o Leq /dB
LIN	13,5
Α	7,8
С	14,8

LINEARITÀ DEL CAMPO DI INDICAZIONE PRINCIPALE

Si applica alla strumentazione in prova un segnale sinusoidale con frequenza 4000 Hz e di ampiezza variabile in passi di 5 dB, ad eccezione dei primi e degli ultimi 5 dB, per i quali la variazione dei livelli avviene per passi di 1 dB.

LIVELLO /dB	DEV. Leq /dB	DEV. Lp /dB	TOLL. /dB
40	0,0	0,1	(-0,7;0,7)
41	, 0,1	-0,1	(-0,7;0,7)
42	9 0,0	0,1	(-0,7;0,7)
43	-0,1	0,1	(-0,7;0,7)
44	-0,1	0,0	(-0,7;0,7)
45	-0,1	0,0	(-0,7;0,7)
50	-0,1	0,0	(-0,7;0,7)
55	-0,1	0,0	(-0,7;0,7)
60	-0,1	0,0	(-0,7;0,7)
65	-0,1	0,0	(-0,7;0,7)
70	-0,1	0,0	(-0,7;0,7)
75	-0,1	0,0	(-0,7;0,7)
80	-0,1	0,0	(-0,7;0,7)
85	-0,1	0,0	(-0,7;0,7)
90	-0,1	0,0	(-0,7;0,7)
95	-0,1	0,0	(-0,7;0,7)
100	-0,1	0,0	(-0,7;0,7)
105	-0,1	0,0	(-0,7;0,7)
110	0,0	0,0	(-0,7;0,7)
115	-0,1	0,0	(-0,7;0,7)
116	-0,1	0,0	(-0,7;0,7)
117	-0,1	0,0	(-0,7;0,7)
118	-0,1	0,0	(-0,7;0,7)
119	-0,1	0,0	(-0,7;0,7)
120	-0,3	-0,2	(-0,7;0,7)

Lo Sperimentatore ing. Tiziano Mucheni

Il Responsabile del U.O.D. ing. Tiziane Aucheni

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146

ISOAMBIENTE. Calibration Centre nº 146

Isoambiente s.r.l.

Unità Operativa Distaccata di Roma Via Guglielmo Saliceto, 4 – 00161 Roma Tel. &Fax +39 08.44290461 Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

Web : www.isoambiente.com e-mail: sit@isoambiente.com

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

Pagina 6 di 8 Page 6 of 8

LINEARITÀ DEI CAMPI DI INDICAZIONE SECONDARI

Si applica alla strumentazione in prova un segnale sinusoidale con frequenza 4000 Hz e di ampiezza 2 dB inferiore all'estremo superiore e di 2 dB superiore 'all'estremo inferiore. In ogni caso il livello di prova deve essere maggiore di almeno 16 dB rispetto al rumore di fondo autogenerato dal fonometro.

CAMPO DI MISURA /dB	DEV. LIMITE INF. /dB	DEV. LIMITE SUP. /dB	TOLL. /dB
130	0,0	0,0	(-1;1)
110	0,0	0,0	(-1;1)
100	0,1	0,1	(-1;1)
90	-0,1	-0,1	(-1;1)
80	0,0	0,0	(-1;1)

PONDERAZIONI IN FREQUENZA

Si applica alla strumentazione in prova un segnale la cui ampiezza varia in modo opposto alle attenuazioni dei filtri di ponderazione in esame per ciascuna frequenza, in modo che l'indicatore dello strumento sia costante. La prova è effettuata a passi di 1 ottavo, da 31,5 Hz a 16000 Hz, oltre la frequenza di 12500 Hz. II livello del segnale di prova viene impostato per la ponderazione A come il valore del fondo scala meno 40 dB, mentre per le altre curve di ponderazione come il valore del fondo scala meno 30 dB.

FREQ.		TOLL.				
/Hz	CURVA A	CURVA B	CURVA C	LIN	/dB	
31,5	-0,2		-0,2	-0,9	(-1,5;1,5)	
63	-0,2		-0,2	-0,2	(-1;1)	
125	-0,1	-	-0,1	-0,2	(-1;1)	
250	-0,2		-0,2	-0,1	(-1;1)	
500	-0,1		-0,1	0,0	(-1;1)	
1000	0,0	-	0,0	0,0	(-1;1)	
2000	-0,1	-	-0,2	-0,1	(-1;1)	
4000	-0,2	***	-0,2	-0,1	(-1;1)	
8000	-0,1		-0,1	-0,1	(-3;1,5)	
12500	0,0	-	-0,1	-0,1	(-6;3)	
16000	-0,1		-0,2	-0,1	(-1000;3)	

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile del U.O.D. ing. Tiziano Muchetti

20

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

Isoambiente s.r.l.
Unità Operativa Distaccata di Roma
Via Guglielmo Salicato, 4 – 00181 Roma
Tel.&Fax-439 06.44290451
Sede Legale: Via India, 30/a – 86039 Termoli (CB)
Tel.&Faxx-39 0875.702542

Tel.&Fax+ 39 0875.702542
Web: www.jsoambiente.com e-mail: sit@isoambiente.

CERTIFICATO DI TARATURA N. 01033-RM Certificate of Calibration No. 01033-RM

Pagina 7 di 8 Page 7 of 8

PESATURE TEMPORALI (S, F, I)

Si applica alla strumentazione in prova un segnale continuo di frequenza pari 2000 Hz e successivamente un segnale costituito da un singolo treno d'onda sinusoidale di frequenza pari 2000 Hz e della durata dipendente dalla caratteristica dinamica con ampiezza di picco costante. Il livello del segnale continuo deve essere inferiore di 4 dB rispetto al fondo scala per le costanti S e F e pari al fondo scala per la costante di tempo I.

CARATTERISTICA DINAMICA	DURATA DEI TRENI D'ONDA /ms	DEVIAZIONE /dB	TOLL.	
Slow	500	0,0	(-1;1)	
Fast	200	0,0	(-1;1)	
Impulse	5	-0,5	(-2;2)	

RIVELATORE DEL VALORE EFFICACE

Si applica alla strumentazione in prova un segnale di riferimento alla frequenza di 2000 Hz ed ampiezza pari a 2 dB inferiore al fondo scala. Viene inviato un segnale in prova composto da 11 cicli di sinusoide con frequenza 2000 Hz, con frequenza di ripetizione di 40 Hz e ampiezza maggiore di 6,6 dB rispetto al segnale di riferimento. Se si registra la saturazione si diminuisce l'ampiezza dei segnale a passi di 1 dB.

DEVIAZIONE Lp	TOLL.
/dB	/dB
-0,2	(-0,5;0,5)

RIVELATORE DEL VALORE DI PICCO

Si applicano alla strumentazione in prova due segnali rettangolari di eguale valore di picco e durata differente. Il segnale di riferimento è costituito da un impulso della durata di 10 ms e di ampiezza inferiore di 1 dB al fondo scala. Mentre il segnale di prova consiste in un impulso della durata di 100 µs e con il medesimo valore di picco.

SEGNALE DI ,	DEVIAZIONE /dB	TOLL. /dB
Positivo	-0,1	(-2;2)
Negativo	0,0	(-2;2)

MEDIA TEMPORALE

Si applica alla strumentazione in prova un segnale di riferimento sinusoidale continuo alla frequenza di 4000 Hz, di ampiezza tale da fornire un indicazione di 20 dB superiore al limite inferiore del campo di misura principale. Quindi si sostituisce il segnale continuo con dei treni d'onda con fattore di durata rispettivamente di 10^{-3} e 10^{-4} il cui livello equivalente sia identico a quello del segnale continuo.

FATTORE DI DURATA DEL SEGNALE DI PROVA	DEVIAZIONE /dB	TOLL. /dB
10-3	-0,1	(-1;1)
10-4	-0,1	(-1;1)

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile del U.O.D. ing. Tiziana Muchetti

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA nº 146 Calibration Centre nº 146

Isoambiente s.r.l. Unità Operativa Distaccata di Roma Via Guglielmo Saliceto, 4 – 00161 Roma Tel.&Fax +39 06.44290451

Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

Web: www.isoambiente.com e-mail: sit@isoambiente.com

CERTIFICATO DI TARATURA N. 01033-RM

Certificate of Calibration No. 01033-RM

Pagina 8 di 8 Page 8 of 8

CAMPO DINAMICO AGLI IMPULSI

Si applica alla strumentazione in prova un treno d'onda sinusoidale a 4000 Hz di durata pari a 10 ms durante un periodo di integrazione preimpostato di 10 s. Il treno d'onda è sovrapposto ad un segnale sinusoidale continuo di base che ha un ampiezza pari al limite inferiore del campo di misura principale.

DEVIAZIONE Leq	TOLL.
/dB	/dB
-0,1	(-1,7;1,7)

INDICATORE DI SOVRACCARICO

Si applica alla strumentazione in prova un segnale costituito da treni d'onda sinusoidali formati da 11 cicli alla frequenza di 2000 Hz con frequenza di ripetizione di 40 Hz (fattore di cresta pari a 3) nel campo di misura principale; si incrementa l'ampiezza finché non si ha la segnalazione di sovraccarico. Si applica un segnale di ampiezza di 1 dB inferiore al segnale precedente e si verifica che non esista più una condizione di sovraccarico. Si assume tale valore come "valore di riferimento". Si riduce tale valore di ulteriori 3 dB e si rileva l'indicazione.

DEVIAZIONE Lp	TOLL. /dB
0,1	(-0,4;0,4)

Roma, 2011-03-16

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile del U.O.D. ing. Tiziano Muchetti

- Data di emissione

laboratory reference

date of issue

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

Il SIT è uno dei firmatari degli Accordi di Mutuo Riccuoscimento EA-MLA ed ILAC-MRA dei certificati di taratura.

SIT is one of the signatories to the Mutual Recognition Agreement EA-MLA and ILAC-MRA for the calibration certificates

CENTRO DI TARATURA nº 146

Calibration Centre nº 146

2011-03-16

Isoambiente s.r.l.
Unità Operativa Distaccata di Roma
Via Guglielmo Saliceto, 4 – 00161 Roma
Tel.&Fax +39 06.44290451

Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542

Web: www.isoambiente.com e-mail: sit@isoambiente.com

Pagina 1 di 3 Page 1 of 3

CERTIFICATO DI TARATURA N. 01034-RM Certificate of Calibration No. 01034 - RM

- destinatario S.I.A. - Roma addressee - richiesta T100/11 application - in data 2011-03-14 date Si riferisce a referring to Calibratore - oggetto item **Larson Davis** - costruttore manufacturer Cal 21 - modello model 2391 matricola serial number 2011-03-16 - data delle misure date of measurements Cal 01034-RM - registro di laboratorio

Il presente certificato di taratura è emesso in base all'accreditamento SIT N. 146 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). Il SIT garantisce le capacità di misura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI). Questo certificato non può essere riprodotto in modo parziale,

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation SIT No.146. granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. SIT attests the measurement capability and metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro e i rispettivi certificati di taratura, in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards are indicated as well, from which starts the traceability chain of the laboratory, and the related calibration certificates in their course of validity. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to EA-4/02. They were estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile dell'U.O.D.

Head of the U.O.D.

Ing. Tiziano MUCHETTI

23

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA Nº 146

Calibration Centre nº 146

Isoambiente s.r.i. Via Guglielmo Saliceto, 4 – 00161 Roma
Via Guglielmo Saliceto, 4 – 00161 Roma
Tel.&Fax +39 08.44290451
Sede Legale: Via India, 36/a – 86039 Termoli (CB)
Tel.&Fax+ 39 0875.702542

Web: www.iscambiente.com e-mail: sit@iscambi

Certificato di taratura n. 01034-RM Certificate of calibration No. 01034-RM

Pagina 2 di 3 Page 2 of 3

VERIFICA DELLA TARATURA DEL:

CALIBRATORE Larson Davis tipo Cal 21 matricola nº 2391

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando la procedura:	The measurement results reported in this Certificate were obtained following procedure:
PR003 Rev. 01 del M. O. del Centro.	PR003 Rev. 01 of the M.O. of the Centre.

RIFERIMENTI NORMATIVI

CEI EN 60942

CAMPIONI DI PRIMA LINEA						
n° id.	Strumento	Marca e Modello	n° matric.	Ente / Certificato	Data emissione	
CPL 01	Multimetro numerale	Keithley 2000	758523	ARO / nº 334515	31/03/2010	
CPL 02	Pistonofono	B&K 4228	1793028	I.N.RI.M. / nº 10-0208-01	26/03/2010	
CPL 03	Capsula Microfonica	B&K 4180	2488278	I.N.RI.M. / nº 10-0564-01	02/09/2010	

CONDIZIONI AMBIENTALI				
Fase Prova	Temperatura	Umidità relativa	Pressione	
Inizio	24,3 °C	44,9 %	999,6 hPa	
Fine	24,3 °C	44,6 %	999,2 hPa	

		INCERTEZZE	DI MISURA		
		Tabella di accre	ditamento SIT		
Campo di Condizione di			Incertezza Estesa		
Strumento misura / dB	misura	misura / Hz	Livello di pressione / dB	Frequenza / %	Distorsione / %
Pistonofono	124	250	0,10	0,02	0,24
Calibratore	da 94 a 114	250 – 1K	0,15	0,02	0,24

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile dell'U.O.D. ing. Tiziano Muchetti

24

SERVIZIO DI TARATURA IN ITALIA

Calibration Service in Italy

CENTRO DI TARATURA Nº 146 Calibration Centre nº 146

Isoambiente s.r.l. Unità Operativa Distaccata di Roma Via Guglielmo Saliceto, 4 - 00161 Ron Tel.&Fax +39 06,44290451

Sede Legale: Via India, 36/a – 86039 Termoli (CB) Tel.&Fax+ 39 0875.702542 Web: www.isoambiente.com e-mail: sit@isoamb

e-mail: sit@isoambiente.com

Certificato di taratura n. 01034-RM Certificate of calibration No. 01034-RM

Pagina 3 di 3 Page 3 of 3

MISURE ESEGUITE

MISURA DEL LIVELLO DI PRESSIONE ACUSTICA

114,00 dB [TOLL. CL 1 = ± 0,3 dB]

MISURA DELLA DISTORSIONE TOTALE

0.6 %

[TOLL. CL 1 = 3 %]

MISURA DELLA FREQUENZA

1000,00 Hz

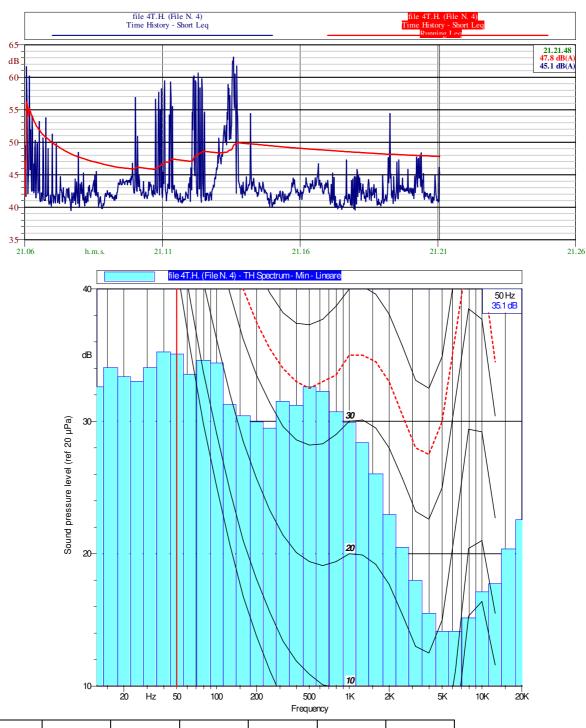
[TOLL. CL 1= ± 2 %]

- (1) I limiti di tolleranza si riferiscono al valore assoluto della differenza tra il livello di pressione acustica generato dallo strumento e il livello di pressione specificato, aumentati dall'incertezza estesa della misura, sono espressi in dB.
- (2) I limiti di tolleranza si riferiscono al valore assoluto della differenza, espresso come percentuale, tra la frequenza del suono generato dallo strumento e la frequenza specificata, aumentata dall'incertezza estesa della misura.
- (3) I limiti di tolleranza si riferiscono al valore massimo della distorsione generata dallo strumento, espresso in percentuale, aumentato dall'incertezza estesa della misura.

Roma, 2011-03-16

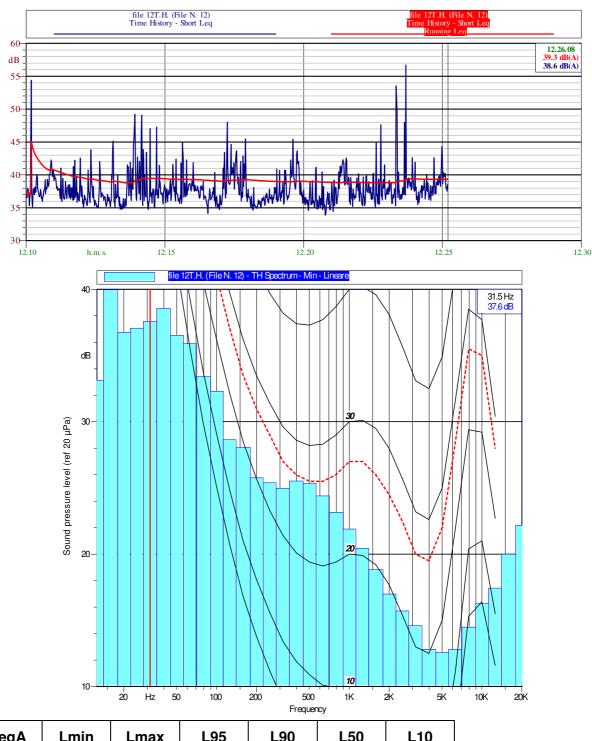
Lo Sperimentatore ing. Tiziano Muchetti

Il Responsabile dell'U.O.D. ing. Tiziano Muchetti

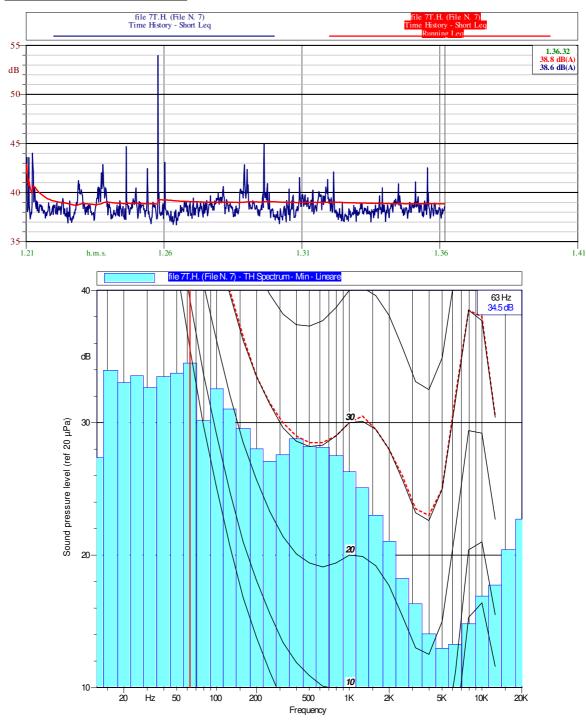

Allegato 5 - Grafici dei rilevamenti acustici (Time-history e spettro)

- <u>Postazione P1</u> (Lido Azzurro via La Torretta): misure diurno 1 2 e misura notturno
- <u>Postazione P2</u> (Molo Polisettoriale piazzale carico/scarico): misure diurno 1 2 e misura notturno
- <u>Postazione P3</u> (Molo Polisettoriale piazzale di accesso): misure diurno 1 2 e misura notturno
- <u>Postazione P4</u> (ex area Yard Belleli fascia costiera): misure diurno 1 2 e misura notturno

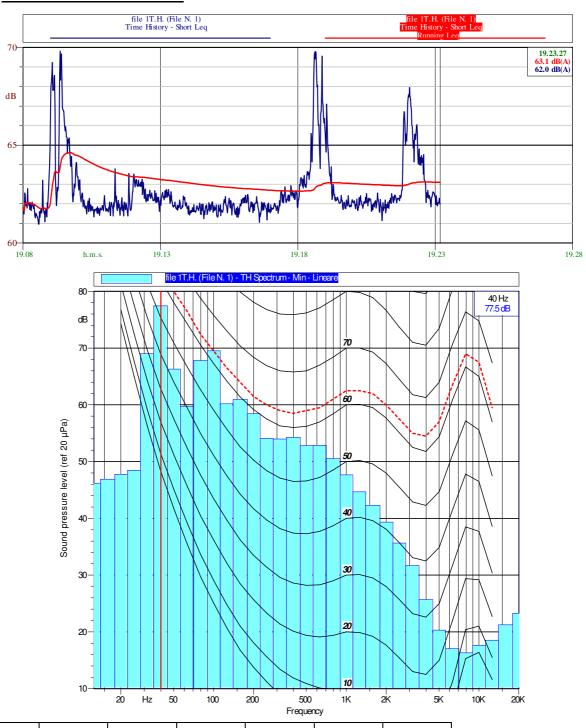
Note Per ogni rilevamento si riportano:


- la time history e l'andamento spettrale in terzi di ottava;
- indicazione dell'eventuale presenza di componenti tonali;
- il rilievo del traffico veicolare (leggero e pesante) registrato in prossimità di alcune postazioni durante i 15 minuti di misura laddove significativo: per la postazione P1 si sono rilevati rari transiti di auto, mentre per la postazione P2 si è registrato il passaggio di un mezzo pesante ogni 2 minuti circa; per le postazioni P3 e P4 si riportano i rispettivi passaggi nelle tabelle sotto i grafici delle misure;
- Il valore del Leq, Lmin, Lmax, L95, L90, L50, L10.

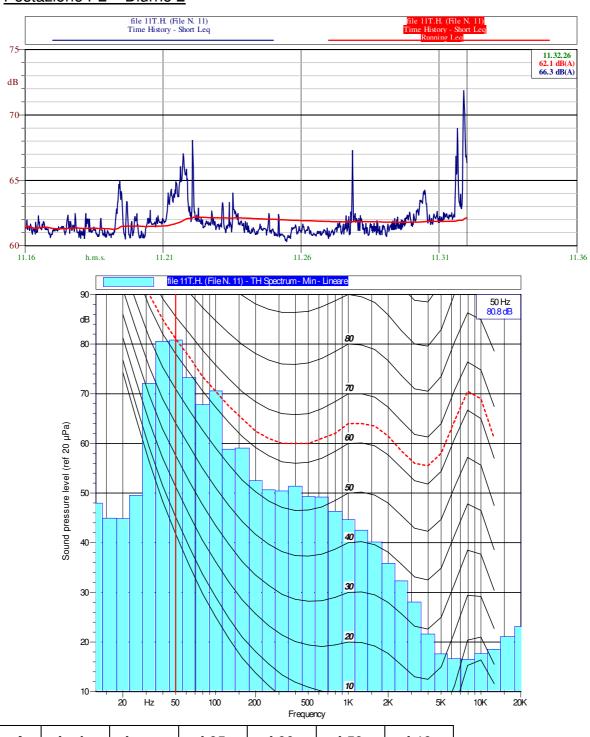
Postazione P1 – Diurno 1


LeqA	Lmin	Lmax	L95	L90	L50	L10
47,8	39,5	63,1	40,5	40,8	42,4	48,4

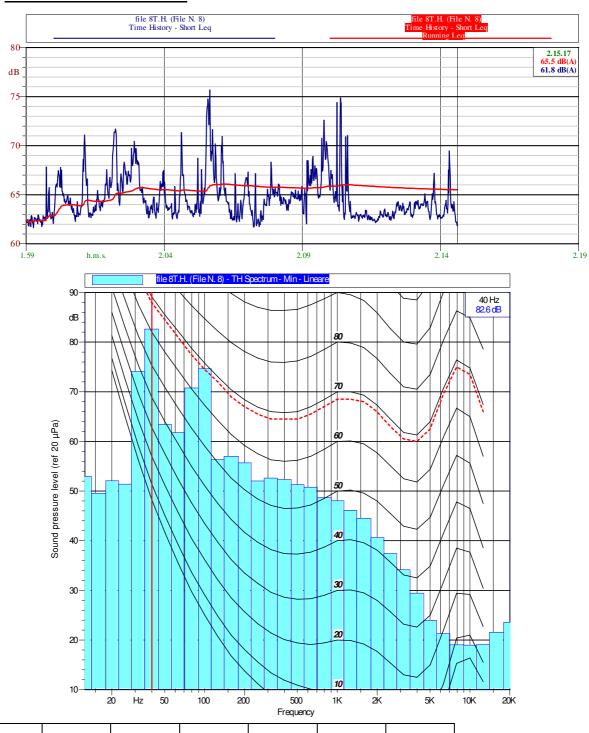
Postazione P1 – Diurno 2


LeqA	Lmin	Lmax	L95	L90	L50	L10
39,3	33,9	56,7	35,2	35,5	37,2	40,9

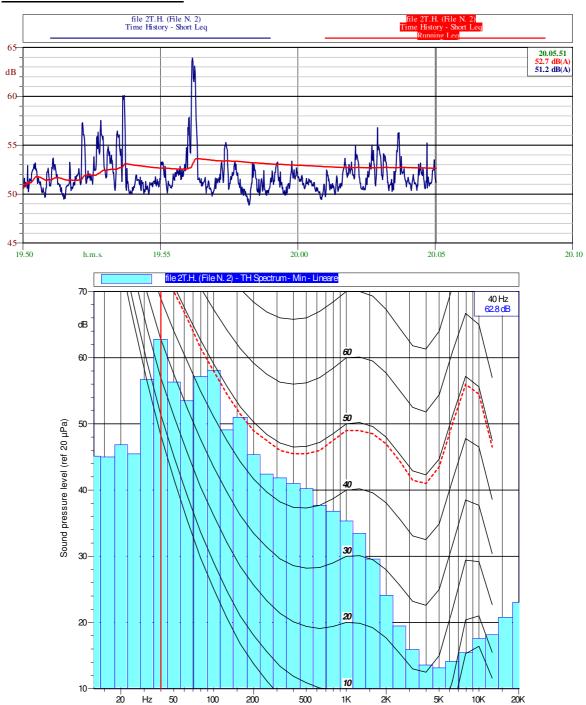
Postazione P1 – Notturno


LeqA	Lmin	Lmax	L95	L90	L50	L10
38,8	36,7	53,9	37,4	37,5	38,4	39,7

Postazione P2 – Diurno 1

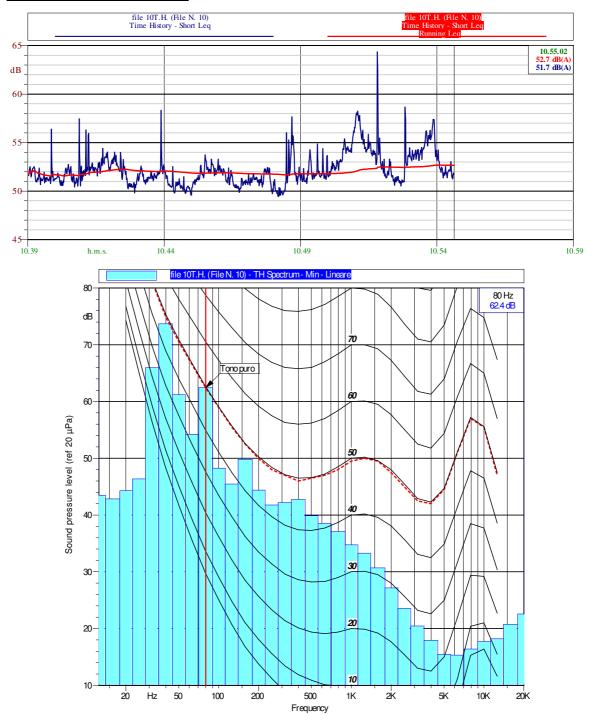

LeqA	Lmin	Lmax	L95	L90	L50	L10
63,1	61,0	69,8	61,5	61,6	62,1	65,1

Postazione P2 – Diurno 2

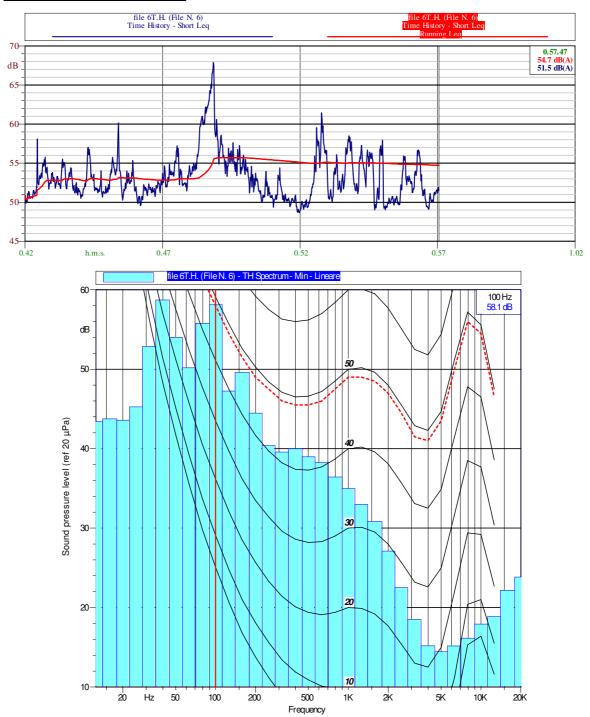

LeqA	Lmin	Lmax	L95	L90	L50	L10
62,1	60,3	71,9	60,8	60,9	61,5	63,3

Postazione P2 – Notturno

LeqA	Lmin	Lmax	L95	L90	L50	L10
65,5	61,6	75,7	62,4	62,6	64,1	67,8


Postazione P3 – Diurno 1

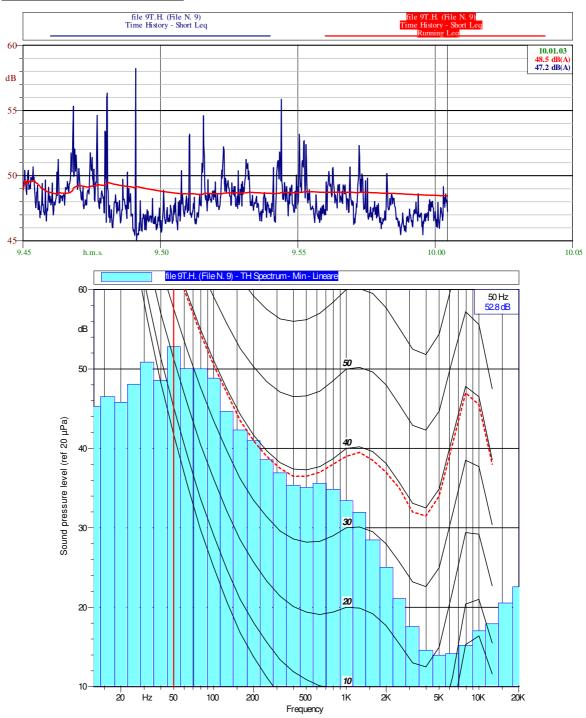
Leggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
44	13	52,7	48,9	63,9	50,1	50,3	51,5	54,1


Frequency

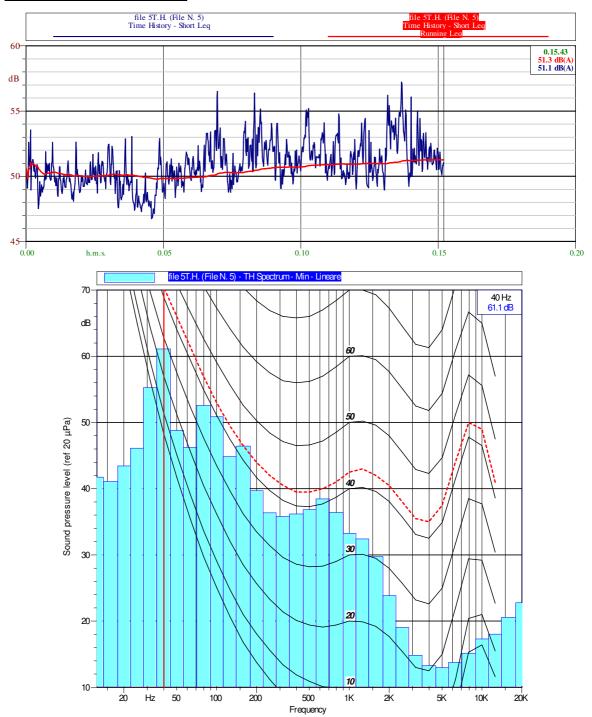
Postazione P3 – Diurno 2

Leggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
40	10	52,7	49,4	64,4	50,3	50,5	51,8	54,4

Postazione P3 – Notturno


Leç	ggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
(38	4	54,7	48,7	67,9	49,7	50,1	52,5	56,7

Postazione P4 – Diurno 1


Leggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
27	14	51,1	46,6	63,8	47,9	48,5	50,3	52,7

Postazione P4 – Diurno 2

Leggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
54	22	48,5	45,0	58,2	46,2	46,5	47,9	49,9

Postazione P4 – Notturno

Leggeri	Pesanti	LeqA	Lmin	Lmax	L95	L90	L50	L10
26	11	51,3	46,7	57,2	48,3	48,9	50,7	53,2

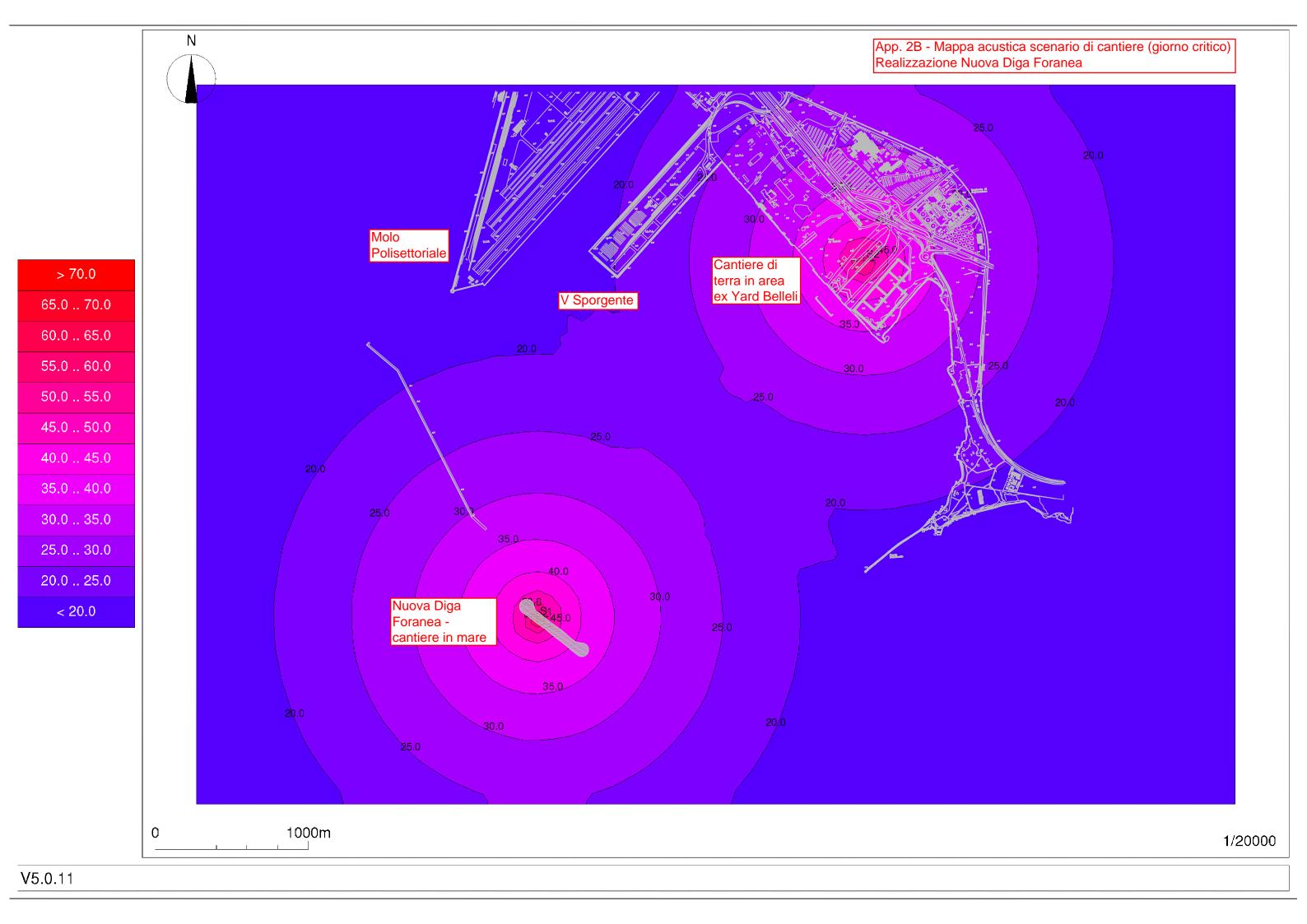
AUTORITA' PORTUALE DI TARANTO COMUNE DI TARANTO

PORTO DI TARANTO

Riqualificazione del Molo Polisettoriale

Nuova diga foranea del porto fuori rada di Taranto

Tratto di ponente


STUDIO D'IMPATTO AMBIENTALE

Ai sensi del D.Lgs. 152/06 e successive integrazioni (Allegato VII del D.Lgs. 4/2008)

Quadro di Riferimento Progettuale

Appendice 2B
Risultati delle simulazioni modellistiche: mappa acustica dello scenario di
cantiere (giorno critico). Realizzazione della Nuova Diga Foranea

Aprile 2013

AUTORITA' PORTUALE DI TARANTO COMUNE DI TARANTO

PORTO DI TARANTO

Riqualificazione del Molo Polisettoriale Nuova diga foranea del porto fuori rada di Taranto Tratto di ponente

STUDIO D'IMPATTO AMBIENTALE

Ai sensi del D.Lgs. 152/06 e successive integrazioni (Allegato VII del D.Lgs. 4/2008)

Quadro di Riferimento Progettuale

Appendice 3

Paesaggio - simulazioni visuali

Aprile 2013

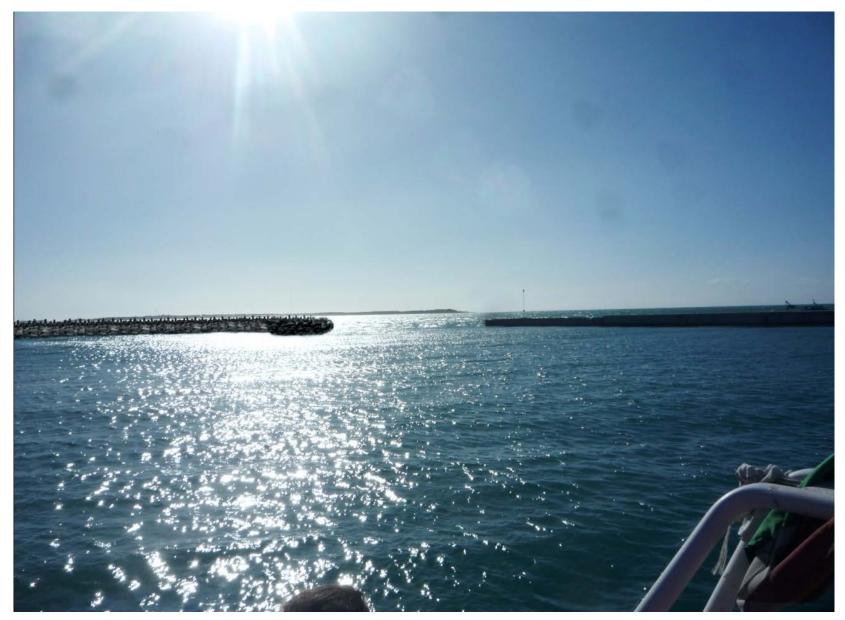

		\sim	_
ı	NI.	 -	_
	ıv		_

FOTO-SIMULAZIONE N	° 1
--------------------	-----

FOTO-SIMULAZIONE N° 1

Ante operam

Post operam