

Comune di Comune di Buddusò Alà dei Sardi Regione Sardegna

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSO' SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSO' E ALA' DEI SARDI (SS)

PROGETTO DEFINITIVO

AEI WIND PROJECT XII S.R.L.

Via Savoia n. 78 00198 - Roma

PEC: aeiwindprojectxii@legalmail.it

OGGETTO

PROPONENTE

9 - OPERE ELETTRICHE

PTO ELETTRODOTTI DI IMPIANTO

- TIMBRI E FIRME

VIA ROSOLINO PILO N. 11 - 10143 - TORINO VIA IS MAGLIAS N. 178 - 09122 - CAGLIARI TEL. +39 011 43 77 242 studiorosso@legalmail.it info@sria.it www.sria.it dott. ing. Giorgio Efisio DEMURTAS Ordine degli Ingegneri della Provincia di Cagliari Posizione n.5500 Cod. Fisc. DMR GGF 75L27 E441L dott. ing. Luca DEMURTAS Ordine degli Ingegneri della Provincia di Cagliari Posizione n.6062 Cod. Fisc. DMR LCU 77E10 E441L

dott. ing. Roberto SESENNA Ordine degli Ingegneri della Provincia di Torino Posizione n.8530J Cod. Fisc. SSN RRT 75B12 C665C

Coordinatore e responsabile delle attività: Dott. ing. Giorgio Efisio DEMURTAS

SIO DEMURTA

— consulenza

Studio Gioed

Consulenza studi ambientali: dott. for. Piero RUBIU

SIATER S.r.I. VIA CASULA N. 7 - 07100 - SASSARI

VIA IS MIRRIONIS N. 178 - 09121 - CAGLIARI

CONTROLLO QUALITA

DESCRIZIONE	EMISSIONE	REVISIONE
DATA	DIC/2023	FEB/2024
COD. LAVORO	629/SR	629/SR
TIPOL. LAVORO	D	D
SETTORE	9	9
N. ATTIVITA'	-	-
TIPOL. ELAB.	RT	RT
TIPOL. DOC.	Е	Е
ID ELABORATO	02	02
VERSIONE	0	1

REDATTO

ing. Giorgio Efisio DEMURTAS

CONTROLLATO

 $\hbox{ing. Luca DEMURTAS}\\$

APPROVATO

ing. Roberto SESENNA

ELABORATO

D.9.2

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

INDICE

1	sco	DPO DEL DOCUMENTO	2
2	RIFI	ERIMENTI LEGISLATIVI E NORMATIVI	2
3	RET	TE A 36 KV	2
	3.1	CARATTERISTICHE DEI CAVI	3
	3.2	DETERMINAZIONE DELLA SEZIONE	6
	3.3	FATTORE DI CORREZIONE DELL'INTENSITÀ DI CORRENTE	6
	3.4	CANALIZZAZIONE DEI CAVI-CAVIDOTTI	8
4	DES	SCRIZIONE RETE DI TERRA	9
5	CAE	DUTE DI TENSIONE E PERDITE DI POTENZA	10
<u>د</u>	DAE	RTICOLARE CIRCUITI DI MEDIA TENSIONE	11

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

1 SCOPO DEL DOCUMENTO

Il presente documento ha lo scopo di fornire una descrizione tecnica illustrativa, le scelte ed i calcoli preliminari della rete elettrica di media tensione necessaria al collegamento degli aerogeneratori alla rete elettrica nazionale.

La centrale di produzione di energia elettrica da fonte eolica avrà una potenza nominale pari 52,8 MW.

L'impianto sarà costituito da un unica sezione a 36 kV comprendente li cavidotti che convoglieranno l'energia dai singoli aerogeneratori verso la cabina di consegna utente che permetterà il collegamento dell'impianto in antenna a 36 kV con una nuova stazione elettrica (SE) a 150/36 kV.

La Soluzione Tecnica Minima Generale elaborata prevede che l'impianto venga collegato in antenna a 36 kV con una nuova Stazione Elettrica (SE) di trasformazione a 380/150/36 kV da collegare tramite un elettrodotto a 380 kV alla futura sezione 380 kV di Taloro e da raccordare alla linea 150 kV della RTN "Buddusò – Siniscola 2".

Planimetria, sezioni e schema unifilare dell'impianto sono riportati nei rispettivi allegati.

2 RIFERIMENTI LEGISLATIVI E NORMATIVI

Nella redazione del presente progetto sono state e dovranno essere osservate anche in fase di esecuzione dei lavori di installazione, le disposizioni di legge vigenti in materia e le norme tecniche del CEI.

In particolare, si richiamano le seguenti Norme e disposizioni di legge:

- Impianti elettrici in generale: CEI 64-8, CEI 81-1, CEI 81-3, CEI 81-8, CEI 0-2, CEI 0-3;
- Connessione alla rete: CEI 0-16, CEI EN 50160, AEEG 84-12
- Impianti di terra: CEI 11-1
- Cavidotti e cavi: CEI 20-21, CEI 11-17, DPR 16/12/ 92 N. 945 con successivi chiarimenti e deroghe, CEI EN 50086-2-4,
- Codice di trasmissione dispacciamento, sviluppo e sicurezza della rete ex art. comma 4, DPCM 11 maggio 2004;
- CEI 0-16, aprile 2019: Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT e MT delle imprese distributrici di energia elettrica.

3 RETE A 36 KV

Il Parco eolico sara costituito da due sottocampi principali composti da 4 aerogeneratori. La rete di cavidotti a 36 kV che convoglierà l'energia dai singoli aerogeneratori verso la cabina di consegna utente e permetterà il

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

collegamento dell'impianto in antenna a 36 kV con una nuova stazione elettrica (SE) a 150/36 kV, sarà formata da elettrodotti realizzati per mezzo di cavo interrato.

Sinteticamente i circuiti saranno formati nel seguente modo:

Circuito	Aerogeneratori	MW	Sezione Tipo (mm2)
1	WTG01,WTG02, WTG07,WTG08	26,4	95,150,400,630
2	WTG03,WTG04, WTG06,WTG05	26,4	95,150,400,630

Tabella 1 – Dettaglio circuiti

Il collegamento avrà termine sotto gli scomparti di arrivo e protezione di ognuno dei circuiti nella sala quadri a 36 kV della cabina utente. Gli scomparti saranno collegati in parallelo tra loro.

I cavi saranno posizionati principalmente lungo il margine delle strade interne ed esterne al parco, cercando di minimizzare il percorso in modo da ridurre la lunghezza dei cavi impiegati, le cadute di tensione e le perdite di energia lungo gli stessi.

Maggiori dettagli sul collegamenti degli aerogeneratori sono riportati nella relativa tavola in allegato.

3.1 CARATTERISTICHE DEI CAVI

La rete a 36 Kv sarà realizzata per mezzo di cavi unipolari tipo (ARE4H5EX 20,8/36kV 3x1x... SR/0,2) adatti alla tensione di 36kV.

Sono cavi media tensione tripolari ad elica visibile per la distribuzione interrata dell'energia elettrica a tensione 20,8/36 kV, con isolamento a spessore ridotto. Conduttori in corda di alluminio rotonda compatta cl.2. Cavo isolato con polietilene reticolato (XLPE). Guaina esterna in polietilene estruso PE.

Caratteristiche costruttive:

Conduttore: Corda di alluminio rotonda compatta CEI EN 60228 classe 2

Isolamento: Polietilene reticolato (XLPE)

Schermo: Nastro di alluminio longitudinale

Guaina esterna: Polietilene estruso PE.

Colore: rosso

Riferimento normativo

Costruzione e requisiti: ENEL DC 4385/1 | ENEL DC 4384

Conduttore: Al classe 2 Norma CEI EN 60228

Isolamento: XLPE tipo DX3 o DX8 secondo tabella 2A della HD 620-1

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

Guaina esterna: PE tipo DMP2 o DMZ1 come da tabella 4B e 4C della HD621 parte 1

Caratteristiche funzionali

Tensione nominale Uo/U: 20,8/36 kV

Tensione massima di esercizio Um: 42 kV

Tensione di Test: 3,5 Uo

Temperatura massima di esercizio: 90°C

Temperatura massima di corto circuito: 250°C 8max 5 s)

Temperatura massima di corto circuito (schermo): 150°C

Temperatura minima di posa: -25 °C

Questa tipologia di cavi sono indicati per la posa in canale interrato; in tubo interrato; in aria libera; ammessa anche la con protezione. Adatti negli impianti elettrici eolici.

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

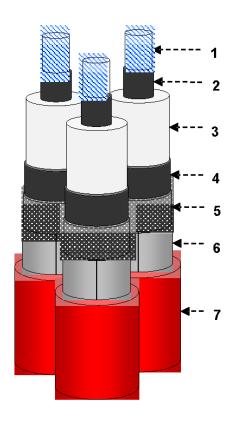


Figura 1 Particolare cavo MT

1	CONDUTTORE
2	SCHERMO
3	ISOLANTE
4	SCHERMO ISOLANTE
5	NASTRO IMPERMEABILE
6	SCHERMO METALLICO
7	GUAINA ESTERNA

Il cavo dovrà rispettare le prescrizioni della norma HD 620 per quanto riguarda l'isolante mentre per tutte le altre caratteristiche dovrà rispettare le prescrizioni della CEI 20-13

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI **BUDDUSÒ E ALÀ DEI SARDI (SS)**

DETERMINAZIONE DELLA SEZIONE

Per la determinazione della sezione si considerano:

- La corrente massima ammissibile per il cavo in servizio permanente
- La corrente massima ammissibile in cortocircuito per un tempo determinato.
- Caduta di tensione ammissibile per ciascun circuito: criterio $\Delta V \leq 3\%$
- Perdita di potenza totale de parco eolico: criterio $\Delta P \leq 2\%$

La portata Iz di un cavo con una determinata sezione e isolante è notevolmente influenzata dalle condizioni di installazione. Nella posa interrata la portata può variare in funzione della profondità di posa, della resistività e della temperatura del terreno. Aumentando la profondità di posa, con temperatura del terreno invariata, la portata di un cavo si riduce. Questo si spiega perché aumentando la profondità di interramento, maggiore diventa lo spessore di terreno che il calore, prodotto per effetto joule dal cavo, deve superare per giungere alla superficie. La portata dipende però anche dalla resistività e dalla temperatura del terreno che aumentano verso la superficie, soprattutto nei periodi estivi, vanificando in tal modo i benefici che si possono ottenere a profondità di posa minori (un buon compromesso sembra essere una profondità di posa variabile tra 0,5 m e 0,8 m). La portata di un cavo interrato diminuisce anche in caso di promiscuità con altre condutture elettriche e l'influenza termica tra i cavi aumenta sensibilmente se sono posati in terra piuttosto che in aria (solo se i cavi interrati sono posati a distanze superiori ad un metro la mutua influenza si riduce).

FATTORE DI CORREZIONE DELL'INTENSITÀ DI CORRENTE

Per conduttori raggruppati

Per terne di cavi raggruppati si considera:

caso	Nº cavi nel cavidotto interrato				
	2	3	4		
Cavi con una separazione di 7 cm ⁽¹⁾	0,85	0,75	0,68		
In contatto	0,80	0,70	0,64		

(1) Spessore approssimato di un mattone

Nel nostro caso, poiché l'ultimo tratto sarà percorso da 2 terne si utilizzerà il fattore di correzione di 0,8.

Pag. 6 629/SR-D-G09-RTE-02-1 FEBBRAIO 2024

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

Per cavi posati in tubo interrato

Lunghezza ≤ 15 m non si applica coefficiente correttivo

Lunghezza ≥ 15 m: si applica il coefficiente 0,8.

Si installerà una terna per tubo con una relazione $\mathcal{O}_{\text{tubo}} \geq 2 \mathcal{O}_{\text{apparente della terna}}$

Nota: In questo progetto si useranno tubi di diametro 200 mm (per la sezione maggiore dei cavi utilizzati si ha :

$$\varnothing_{\text{aparente de la terna}} = \frac{3+\sqrt{3}}{3} \cdot \varnothing_{\text{cable}} = \frac{3+\sqrt{3}}{3} \cdot 54,5 \text{mm} = 86 \text{ mm}$$
).

Per profondità di interramento

Nel caso si debba interrare lo stesso cavo a profondità diverse si applicheranno i seguenti fattori correttivi:

Profondità di installazione (cm) 70 100 120 150 200
Fattore: 1,03 1 0,98 0,96 0,94

In questo progetto si dovrebbe considerare un interramento medio di 1,0 m e un coefficiente correttivo di 1,02, in realtà non si considera, supponendo una compensazione con il coefficiente minore di 1 che si dovrebbe considerare per temperatura ambiente nel periodo estivo (paragrafo successivo)

Per temperatura ambiente

Temperatura del terreno ºC	Coefficiente di correzione
10	1,11
15	1,07
20	1,04
25	1,00
30	0,96
35	0,92
40	0,88
50	0,78

Tabella 2 -Coefficiente di correzione per temperatura ambiente

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI **BUDDUSÒ E ALÀ DEI SARDI (SS)**

Il sito ha una temperatura ambiente minore di 25 ºC ma non si applica il fattore correttivo (ipotesi conservativa). Per il periodo estivo non si applica il fattore correttivo che andrebbe a compensarsi con quello maggiore di 1 della profondità di interramento e non considerato.

3.4 **CANALIZZAZIONE DEI CAVI-CAVIDOTTI**

Il fattore che limita la capacità di trasporto di energia di un cavo, è la minore o maggiore difficoltà con la quale questo dissipa il calore associato alle perdite elettriche. Per questa ragione è consigliabile installare i cavi in contatto diretto con il terreno, in modo che l'umidità del suolo contribuisca positivamente alla dispersione del calore.

Questa umidità si forma con maggiore facilità alle profondità più elevate, ma comunque una maggiore profondità rende difficile la dissipazione del calore nell'ambiente. Per questo conviene raggiungere un compromesso tra i due estremi.

Per reti di media tensione è pratica abituale interrare alla profondità di circa 1,2 m. Per reti di 2ª categoria (M.T. \leq 30 kV) (CEI 11-17, paragrafo 2.3.11).

"4.3.1 linee elettriche: tutti gli elettrodotti di nuova realizzazione devono essere obbligatoriamente interrati, e posizionati ad almeno 1 m di profondità, opportunamente protetti, accessibili nei punti di giunzione e convenientemente segnalati".

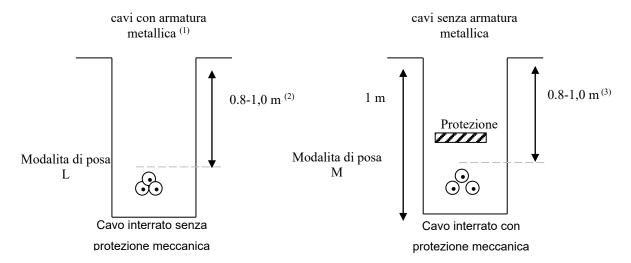


Figura 2 Particolare cavidotti MT

Pag. 8 629/SR-D-G09-RTE-02-1 FEBBRAIO 2024

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

- (1) Armatura metallica conspessore minimo di 0,8 mm
- (2) Senza armatura metallica la profondita passerà a 1,7 m.
- (3) Con protezione meccanica si ha:
 - 0,6 m per terreno privato
 - 0,8 m per terreno pubblico

Nel presente progetto si considera:

- La profondità del cavidotto a 1,2 m.
- Distanza superficie terreno-cavo a 1 m.

I cavidotti impiegati sono illustrati nella relativa tavola. Nello stesso cavidotto si poseranno i cavi di energia, quelli di comunicazione in fibra ottica e il conduttore di terra.

Durante le operazioni di posa non si devono creare raggi di curvatura minimi inferiori a 12D dove D è il diametro esterno del conduttore (CEI 17-11 paragrafo 2.3.03). In questo progetto si considera il criterio:

Raggio di curvatura > 10 (D+d)

Dove d è il diametro del conduttore interno. Si noti che risulta 10 (D+d)>12D per i cavi considerati.

4 DESCRIZIONE RETE DI TERRA

La rete di terra unirà le singole maglie di messa a terra degli aerogeneratori con la rete di terra della sottostazione in modo tale da costituire un'unica struttura equipotenziale.

La rete sarà formata da un conduttore nudo Cu 50 mm 2 che sarà posato interrato negli stessi scavi delle linee in cavo e in anello attorno alle torri degli aerogeneratori.

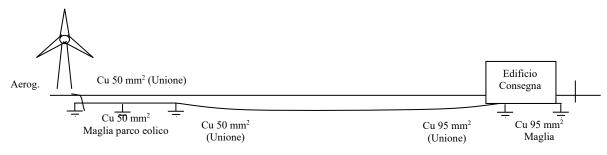


Figura 3 Particolare rete di terra

629/SR-D-G09-RTE-02-1 FEBBRAIO 2024

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

5 CADUTE DI TENSIONE E PERDITE DI POTENZA

Posto che sarà scopo del progetto esecutivo definire in maniera più dettagliata il dimensionamento dei cavi, in questo paragrafo si riporta una valutazione preliminare delle cadute di tensione e delle perdite di potenza nella rete interna a 36 kV.

La scelta della sezione sarà effettuata considerando che il cavo deve avere una portata Iz uguale o superiore alla corrente di impiego Ib del circuito. Sono stati così dimensionati i vari tratti di elettrodotto in base al numero di terne affiancate nello stesso scavo. Nella fattispecie si è optato per una scelta progettuale in cui il cavidotto sarà sempre costituito da una singola terna in tutte le 3 tratte in cui è suddiviso.

Cadute di tensione massima.

La si avrà nel circuito 1 2,311 %

Perdite di potenza rete 36 kV

La perdita sarà di 902 KW, che su un totale di 52.800 KW rappresenta il **1,71 %** di potenza persa.

PROGETTO PER LA REALIZZAZIONE DEL PARCO EOLICO "BUDDUSÒ SUD I" NEL TERRITORIO DEI COMUNI DI BUDDUSÒ E ALÀ DEI SARDI (SS)

6 PARTICOLARE CIRCUITI DI MEDIA TENSIONE

Circuito 1

CIRCUITO	P (KW)	L(m)	Ib	Cavo	Iz* (A)	R (Ω/km	ΔV R (%)	ΔV ΤΟΤ (%)	P.PERD (kW)
WTG 01-WTG02	6600	1645	106	95	282	0,32	0,268	0,268	17,69
WTG02-WTG07	13200	5377	212	150	350	0,206	1,128	1,396	148,92
WTG07-WTG08	19800	1532	318	400	542	0,0778	0,182	1,578	36,05
WTG08-CC	26400	7669	423	630	653	0,0469	0,733	2,311	193,43

Circuito 2

CIRCUITO	P (KW)	L(m)	Ib	Cavo	Iz* (A)	R (Ω/km	ΔV R (%)	ΔV TOT (%)	P.PERD (kW)
WTG03-WTG04	6600	694	106	95	282	0,32	0,113	0,113	7,46
WTG04-WTG06	13200	1394	212	150	350	0,206	0,292	0,406	38,61
WTG06-WTG05	19800	2523	318	400	542	0,0778	0,401	0,806	79,37
WTG05-CC	26400	10683	423	630	653	0,0469	1,441	2,247	380,32