Regione Puglia

Provincia di Andria-Barletta-Trani

,	$\overline{}$	 _	:440	nto:	

GSMT WIND S.R.L

Piazza Europa,14 87100 Cosenza (CS) - Italy Tel. centralino + 39 0984 408606

Documento:

PROGETTO DEFINITIVO

Titolo del Progetto:

PARCO EOLICO "MINERVINO"

Elaborato:

Studio acustico

E-MIN	Α	-	RE	8	
PROGETTO	DISCIPLINA	AMBITO	TIPO ELABORATO	PROGRESSIVO	SCALA

NOME FILE: **E-MIN-A-RE-8.pdf**

Progettazione:

Ing. Giacomo Pettinelli

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
00	FEBBRAIO 2024	PRIMA EMISSIONE	GEMSA	GEMSA	GSMT WIND S.R.L

Indice

1	Pro	em	ıessa	2
2	In	po	ostazione metodologica	4
3	Qυ	ıad	lro conoscitivo	6
	3.1	I	inquadramento normativo e definizione dei limiti acustici di riferimento	6
	3.2	\mathcal{L}	Descrizione del contesto territoriale	7
	3.3	I	ndividuazione dell'ambito di studio e censimento dei ricettori	9
	3.4	\mathcal{L}	Definizione delle attuali sorgenti acustiche sul territorio	11
	3.5	C	Caratterizzazione del clima acustico attuale	13
	3.5	5.1	La campagna fonometrica eseguita per la caratterizzazione del rumore allo stato at 13	tuale
	3.5	5.2	Interazione tra il rumore residuo allo stato attuale e la velocità del vento	21
4	Cli	ma	a acustico nella fase di esercizio	23
	4.1	L	e caratteristiche emissive degli aerogeneratori	23
	4.2	L	a modellazione acustica	25
	4.2	2.1	Il software SoundPlan	25
	4.2	2.2	Il metodo di calcolo ISO 9613-2	25
	4.2	2.3	Dati di input al modello	26
	4.3	I	l rumore indotto dal funzionamento del campo eolico	27
	4.4	L	a verifica della compatibilità acustica del campo eolico	27
5	Cli	ma	a acustico nella fase di cantiere	30
	<i>5.1</i>	Α	Analisi delle potenziali interferenze acustiche indotte dal Cantiere Mobile	30
	5.1	.1	Le attività di cantiere previste per la realizzazione del parco eolico	30
	5.1	.2	La modellazione acustica	32
	5.1	3	Il rumore indotto dalle attività di cantiere	32
	<i>5.2</i>	Α	Analisi delle potenziali interferenze acustiche indotte dal Cantiere Fisso	34
	5.2	2.1	Le attività di cantiere previste per la realizzazione del parco eolico	34
	5.2	2.2	La modellazione acustica	35
	5.2	2.3	Il rumore indotto dalle attività di cantiere	35
	5.2	2.4	La verifica della compatibilità acustica delle attività di cantiere	36
6			lusioni	
7	Аp	ре	ndice A	39
8	Ap	pe	ndice B	40

Studio acustico

9	Appendice C	. 44
10	Appendice D	. 59
11	Appendice E	. 66
12	Appendice F	. 7 3

1 PREMESSA

Nei comuni di Minervino Murge e Canosa di Puglia (BAT) è prevista la realizzazione di un campo eolico costituito da 17 aerogeneratori, di potenza complessiva pari a 99,2 MW. L'impianto è localizzato nella parte Nord-Ovest del comune di Minervino Murge e Sud del comune di Canosa di Puglia.

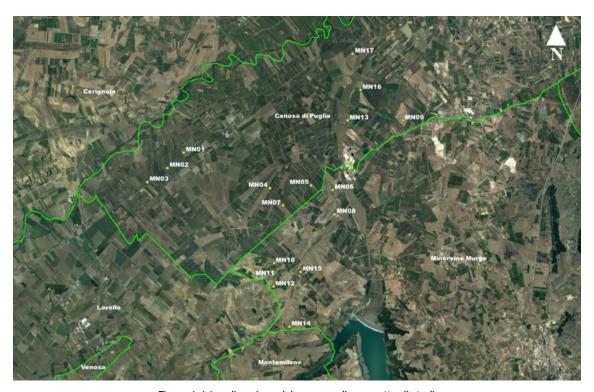


Figura 1-1 Localizzazione del campo eolico oggetto di studio

La seguente tabella geolocalizza e definisce le turbine la cui installazione è prevista per il campo eolico di progetto.

Tunkina	C amoura	Coordinate UTM		Albibadina Fuel
Turbina	Comune	Long. E [m]	Lat. N [m]	Altitudine [m]
MN01	Canosa di Puglia	577022.69	4556170.99	95
MN02	Canosa di Puglia	576406.93	4555596.89	102
MN03	Canosa di Puglia	575660.18	4555083.49	108
MN04	Canosa di Puglia	580218.52	4554849.56	123
MN05	Canosa di Puglia	581752.05	4554962.61	129
MN06	Minervino Murge	582554.41	4554787.35	125
MN07	Canosa di Puglia	580709.68	4554197.87	130
MN08	Minervino Murge	582625.91	4553876.86	135
MN09	Canosa di Puglia	585174.34	4557370.39	173
MN10	Minervino Murge	580368.37	4552058.80	178
MN11	Minervino Murge	579607.77	4551711.00	192
MN12	Minervino Murge	580365.00	4551187.91	176
MN13	Canosa di Puglia	583115.75	4557369.18	136
MN14	Minervino Murge	580949.16	4549693.31	218
MN15	Minervino Murge	581365.55	4551734.47	166
MN16	Canosa di Puglia	583592.61	4558502.38	126
MN17	Canosa di Puglia	583302.91	4559854.44	92

Tabella 1-1 Coordinate geografiche puntuali turbine d'impianto

La tipologia di macchina impiegata è di tipo ad asse orizzontale in cui il sostegno, ovvero una torre tubolare con altezza pari a 125 m, porta alla sua sommità la navicella, al cui lato esterno è collegata un rotore di diametro di 162 m.

2 IMPOSTAZIONE METODOLOGICA

Lo studio acustico ha tenuto conto di tutti gli aspetti connessi necessari alla valutazione della possibile interferenza indotta dal funzionamento degli aerogeneratori previsti e dalle relative attività di cantiere connesse alla loro realizzazione.

Per quanto riguarda la definizione del quadro conoscitivo, oltre ad individuare i limiti normativi territoriali sulla scorta della normativa nazionale, regionale e comunale di riferimento, è stata predisposta una analisi territoriale per l'individuazione dei potenziali ricettori. A riguardo, in accordo con la UNI/TS 11143-7:2013 "acustica - Metodo per la stima dell'impatto e del clima acustico per tipologia di sorgenti - Parte 7: Rumore degli aerogeneratori", per ciascun aerogeneratore è stata individuata un'area di potenziale disturbo definita da una circonferenza con raggio pari a 1000 m. L'inviluppo di tutte le aree dei 17 aerogeneratori in progetto ha definito l'ambito di studio, all'interno del quale sono stati censiti tutti gli edifici e individuati in particolare quelli a destinazione residenziale.

Per la verifica delle potenziali interferenze sul clima acustico attuale indotte dagli aerogeneratori sia nella condizione di funzionamento che temporanea di realizzazione degli stessi, è stato predisposto uno studio modellistico previsionale mediante il software SoundPlan con l'obiettivo di determinare le diverse mappature acustiche al suolo e i livelli puntuali in corrispondenza degli edifici residenziali posti all'interno dell'ambito di studio sia per il periodo diurno (6.00-22.00) che in quello notturno (22.00-6.00). In entrambi i casi la metodologia assunta si basa sulla teoria del "worst case scenario", ovvero quello di massimo disturbo, in modo che verificato che questo risulti acusticamente compatibile sul territorio ne consegue come tutti gli altri di minor interferenza sono conseguentemente verificati.

Per quanto riguarda il funzionamento di una pala eolica, questa dipende sia dall'intensità del vento che dalla durata dello stesso durante l'arco della giornata. Il "worst case scenario" è quindi definito considerando il funzionamento di ciascuna pala nelle condizioni di massima emissione acustica (Lw giorno 107,6 dB(A) – Lw notte (107,6 dB(A)), secondo la configurazione di progetto, in maniera continua e costante sia nel periodo diurno (6.00-22.00) che notturno (22.00-6.00).

Analogamente per la fase di corso d'opera è stata considerata una condizione di cantiere di massima emissione sulla scorta della tipologia di lavorazioni, del cronoprogramma delle attività e della tipologia e numero di mezzi operativi. Stante la temporaneità delle attività e la diversa localizzazione delle stesse in virtù della posizione dei 17 aerogeneratori, le analisi previsionali di verifica sono state eseguite considerando le posizioni dei mezzi di cantiere più vicine ai ricettori residenziali e lavorativi all'interno dell'ambito di studio.

I risultati ottenuti dalle suddette modellazioni acustiche sono stati quindi utilizzati per la verifica dei valori limite territoriali in corrispondenza dei ricettori in termini di livelli di immissione assoluta così come previsto dal quadro normativo nazionale, regionale e comunale di riferimento in materia di inquinamento acustico.

3 QUADRO CONOSCITIVO

3.1 Inquadramento normativo e definizione dei limiti acustici di riferimento

La Commissione Centrale Tecnica dell'UNI il 28 gennaio 2013 ha approvato la UNI/TS 11143-7:2013, la quale è stata elaborata per supportare, dal punto di vista metodologico, i diversi tipi di iter autorizzativo per la realizzazione o la modifica di un parco eolico, in conformità alla legislazione nazionale vigente. Essa descrive una metodologia per la stima dell'impatto acustico e del clima acustico, allo scopo di definire un percorso chiaro per i progettisti, i consulenti e per gli enti pubblici competenti. In particolare, la presente specifica tecnica si applica a singoli aerogeneratori, aventi potenza elettrica pari ad almeno 500 kW (come nel caso in esame), e a parchi eolici destinati allo sfruttamento industriale dell'energia del vento. Essa descrive i metodi per la caratterizzazione sperimentale del clima acustico presso i ricettori collocati nell'area di influenza e per la valutazione previsionale dell'impatto acustico.

Si specifica che la UNI/TS 11143-7:2013 non si applica alle sorgenti sonore e alle attività che, pur contemplate nella valutazione dell'impatto acustico di un parco eolico, non sono legate alla fase di esercizio, come, per esempio, le attività di costruzione. Inoltre, non riguarda il calcolo del livello di potenza sonora degli aerogeneratori, per il quale è opportuno applicare la norma CEI EN 61400-11, introdotta al paragrafo **Errore.** L'origine riferimento non è stata trovata., insieme alla UNI ISO 9613-1 "Acustica - Attenuazione sonora nella propagazione all'aperto - Parte 1: Calcolo dell'assorbimento atmosferico".

La Legge Quadro n.447 del 1995, recentemente modificata dal D.Lgs. 42/2017, costituisce il riferimento normativo cardine in materia di inquinamento acustico ambientale. Nello specifico per l'individuazione dei valori limite di riferimento sul territorio per le diverse sorgenti acustiche demanda ai Comuni la determinazione delle classi acustiche e dei relativi livelli limite in termini di emissione e immissione secondo i criteri dettati dalle normative regionali in armonia con il DPCM 14.11.1997.

Nel caso di comuni che non hanno ancora individuato la suddivisione in classi acustiche del proprio territorio di competenza, come nel caso specifico, si fa riferimento a quanto previsto all'art. 6 del DPCM 1° marzo 1991 nel quale vengono individuati dei limiti di accettabilità su tutto il territorio nazionale per le sorgenti sonore fisse (cfr. Tabella 3-1).

Zone	Limite diurno Leq(A)	Limite notturno Leq(A)
Tutto il territorio nazionale	70	60
Zona A (*)	65	55
Zona B (*)	60	50
Zona esclusivamente industriale	70	70

(*) Zone di cui all'art.2 del decreto ministeriale n 1444 del 2/04/1968

Tabella 3-1 Limiti di accettabilità previsti dall'art. 6 del DPCM 1 marzo 1991

L'art.2 del decreto ministeriale n 1444 del 2/04/1968 definisce:

- Zona A: le parti del territorio interessate da agglomerati urbani che rivestano carattere storico, artistico e di particolare pregio ambientale o da porzioni di essi, comprese le aree circostanti, che possono considerarsi parte integrante, per tali caratteristiche, degli agglomerati stessi;
- Zona B: le parti del territorio totalmente o parzialmente edificate, diverse dalle zone A: si considerano parzialmente edificate le zone in cui la superficie coperta degli edifici esistenti non sia inferiore al 12,5% (un ottavo) della superficie fondiaria della zona e nelle quali la densità territoriale sia superiore ad 1,5 mc/mg;

In particolare, l'area oggetto di studio non possiede requisiti tali da ricadere nella casistica delle zone classificate di tipo "A" o "B" della precedente tabella, né tantomeno di tipo esclusivamente industriale, in quanto quest'ultimo tipo di sorgenti sono poste a buona distanza dalla porzione di territorio indagata (cfr. paragrafo 3.4). Ne consegue pertanto come i valori di riferimento in Leq(A) assunti nel presente studio risultino essere pari a 70 dB(A) nel periodo diurno (6:00-22:00) e 60 dB(A) in quello notturno (22:00-6:00).

Quanto detto fa riferimento alle sorgenti acustiche fisse, ovvero quindi agli aerogeneratori. Per quanto riguarda le attività di cantiere, queste si inquadrano come sorgenti acustiche temporanee soggette, proprio per la temporaneità del loro svolgimento, a possibili deroghe ai limiti di rumorosità da parte del Comune competente.

3.2 Descrizione del contesto territoriale

I comuni di Minervino Murge e Canosa di Puglia si trovano nella provincia di Barletta-Andria-Trani in Puglia. Il comune di Minervino Murge si estende per 257,41 km² ed ha una densità abitativa di 31,47 abitanti/km². Si trova ad un'altitudine di 429 metri s.l.m. Il comune di Canosa di Puglia, invece, si estende per 150,93 km² con una densità abitativa di 184,05 abitanti/km² e con un'altitudine di 120 metri s.l.m.

Figura 3-1 Contesto territoriale in cui si prevede l'inserimento del campo eolico

Nello specifico, il contesto in cui il progetto si inserisce è delimitato:

- a Nord-Est dal centro abitato di Canosa di Puglia;
- ad Est dal centro abitato di Minervino Murge;
- a Sud dalla diga e dal lago di Locone.

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza notevole dal campo eolico di progetto.

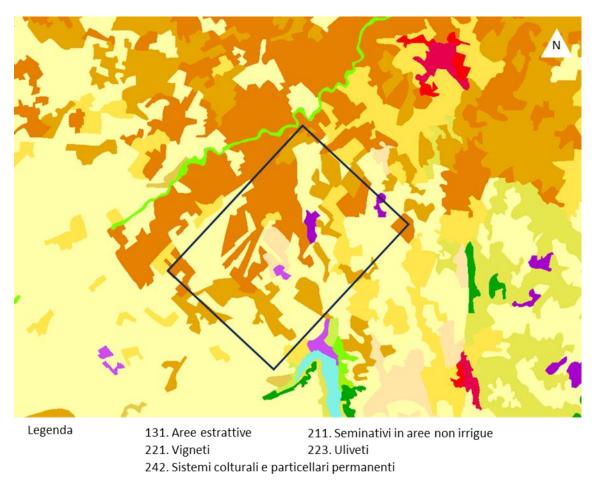


Figura 3-2 Inquadramento area di intervento su Carta uso suolo Corine Land Cover, fonte: Geo portale Nazionale

In generale, l'area interessata dalla realizzazione del parco eolico è omogenea per conformazione e caratteristiche meteoclimatiche in quanto tutto l'ambito di studio ricade su territori collinari con elevazione compresa tra gli 80 metri e i 240 metri s.l.m.

3.3 Individuazione dell'ambito di studio e censimento dei ricettori

Come ambito di studio si intende la porzione di territorio che si ritiene potenzialmente interferita dalle opere in progetto nelle loro modalità di funzionamento e realizzazione. Appare evidente come, pertanto, la definizione di tale area sia correlata alla tipologia di sorgente acustica oggetto di studio.

Da un punto di vista acustico un aerogeneratore è una sorgente sonora caratterizzata da una emissione principalmente concentrata alle basse frequenze e quindi potenzialmente percepibile anche ad elevate distanze dalla pala stessa in virtù della maggior lunghezza d'onda che caratterizza una bassa frequenza rispetto ad una alta. In accordo con quanto descritto dalla UNI/TS 11143-7:2013 "Acustica - Metodo per la stima

dell'impatto e del clima acustico per tipologia di sorgenti - Parte 7: Rumore degli aerogeneratori", al fine di tener conto di questo fenomeno, per ciascun aerogeneratore è stata definita un'area di potenziale interferenza acustica delimitata da una circonferenza di centro il singolo aerogeneratore e raggio pari a 1000 m.

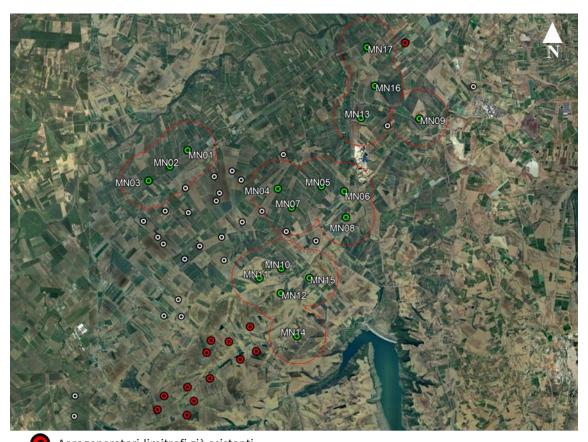
L'ambito di studio complessivo del parco eolico in studio è definito dall'inviluppo delle 17 singole aree, ciascuna definita per ogni aerogeneratore secondo il suddetto criterio.



Figura 3-3 Ambito di studio (in rosso) e turbine di progetto

Prendendo dunque l'area definita in Figura 3-3 come riferimento per le successive analisi acustiche, è stato effettuato un censimento degli edifici individuando la destinazione d'uso con particolare attenzione a quella residenziale in quanto certamente oggetto di un potenziale maggior disturbo vista l'operatività del parco eolico in continuo, e quindi anche nel periodo notturno più sensibile.

Complessivamente sono stati censiti 481 ricettori di cui: 69 di tipo residenziale ed i restanti ruderi, box o depositi agricoli classificati come 'Altri ricettori'. Gli edifici censiti sono poi stati codificati negli elaborati grafici con il codice Rxxx.


L'approccio precedentemente descritto ha consentito di calcolare la mappa di rumore della zona di indagine oltreché stimare i valori puntuali in dB(A) del rumore prodotto dal campo eolico per tutti i ricettori residenziali ricadenti all'interno dell'ambito di studio, soggetti ai potenziali effetti acustici indotti. Successivamente si è potuta verificare la conformità di quest'ultimi rispetto ai limiti di riferimento nazionali pari a 70 e 60 dB(A) rispettivamente in periodo diurno (6.00-22.00) e notturno (22.00-6.00).

In Appendice C vengono riportati i codici identificativi, l'uso in atto, i riferimenti geografici e la distanza dall'aerogeneratore di progetto più vicino dei ricettori individuati. Le celle evidenziate rappresentano i ricettori per i quali, in linea con la normativa nazionale di riferimento, è stato eseguito il calcolo dei livelli acustici in facciata poiché a destinazione d'uso residenziale.

3.4 Definizione delle attuali sorgenti acustiche sul territorio

Al fine di escludere potenziali effetti acustici cumulativi causati dalla sovrapposizione delle sorgenti (attuali e di progetto), è stata svolta un'analisi di definizione delle sorgenti attualmente presenti sul territorio, sia nelle prossimità che all'interno dell'ambito di studio precedentemente definito.

Per quanto riguarda la presenza di aerogeneratori esistenti o in autorizzazione, nella successiva immagine è riportata la localizzazione del campo eolico già presente nel comune di Lavello rispetto all'ambito di studio del campo eolico di progetto, il quale è costituito da 12 aerogeneratori e altri tre campi eolici in fase di approvazione per un totale di 26 aerogeneratori.

Aerogeneratori limitrofi già esistenti

Figura 3-4 Localizzazione campo eolico esistente (in rosso) e in autorizzazione (in bianco)

Per quanto riguarda invece le infrastrutture viarie, all'interno dell'ambito di studio si segnala la presenza della Strada Statale 93 e delle Strade provinciali 24, 4 e 143, appartenenti alla categoria F e ritenute trascurabili dal punto di vista acustico in quanto presentano carichi di traffico estremamente modesti.

In ultimo si rileva la presenza della linea ferroviaria interna all'ambito di studio.

La Figura 3-5Figura 3-5 descrive dal punto di vista grafico le considerazioni appena menzionate.

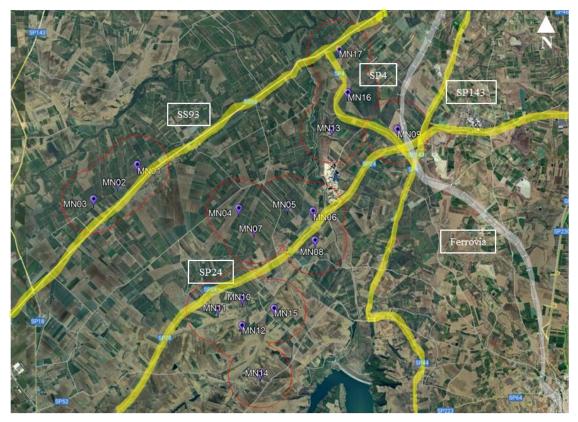


Figura 3-5 Sorgenti stradali e ferroviarie più vicine agli aerogeneratori di progetto.

3.5 Caratterizzazione del clima acustico attuale

3.5.1 La campagna fonometrica eseguita per la caratterizzazione del rumore allo stato attuale

Per la caratterizzazione del clima acustico allo stato attuale è stata effettuata una campagna fonometrica per il rilevamento dell'attuale rumore ambientale del territorio, come ad esempio il funzionamento degli aerogeneratori presenti nel campo eolico del comune di Canosa di Puglia e Lavello. Nello specifico sono state considerate quattro postazioni differenti per le quali sono state eseguite campionamenti di durata 1 ora sia durante il periodo diurno che notturno.

Le misure sono state eseguite secondo le modalità previste dal DM 16.03.1998, ovvero con fonometri di classe I con certificato di taratura valido, calibrazione ante e post misura e in assenza di pioggia e nebbia. Per quanto riguarda le condizioni di vento, seppur il DM indica un valore massimo di 5 m/s, nel caso specifico le misure sono finalizzate alla determinazione del rumore di fondo attuale e della sua variabilità con il vento.

Nello specifico la strumentazione utilizzata è stata:

- Fonometro integratore e analizzatore in frequenza 01dB Fusion s/n 11449 con certificato di taratura del produttore 01dB emesso in data 18 dicembre 2023 (vedi appendice B);
- Fonometro integratore e analizzatore in frequenza 01dB Fusion s/n 11140 con certificato di taratura del produttore 01dB emesso in data 18 dicembre 2023 (vedi appendice B);
- Calibratore del livello sonoro 01dB Cal01 s/n 86764 con certificato di taratura emesso dal produttore 01dB il 9 febbraio 2023 (vedi appendice B);
- Treppiedi ed accessori di completamento;
- Sistema di analisi con software 01dB dBTrait.

Le misure sono state eseguite i giorni 19, 20 e 21 febbraio 2024 nelle quattro postazioni individuate in figura seguente RUM_01, RUM_02, RUM_03 e RUM_04. Per ciascun punto è stato effettuato un campionamento di breve durata del livello acustico equivalente con tempo di integrazione pari a 100 ms, articolato in 1 misure nel periodo diurno e 1 in quello notturno. Questo ha permesso di stabilire i valori in Leq(A) rappresentativi del rumore ambientale allo stato attuale e, quindi, l'entità del rumore residuo da considerare nelle analisi previsionali per la verifica del criterio differenziale.

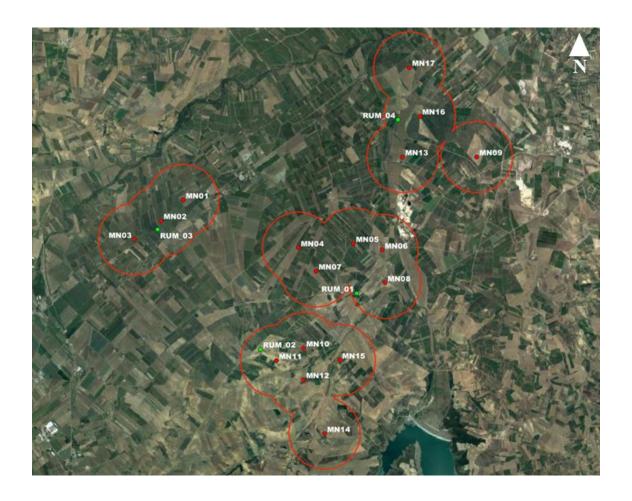


Figura 3-6 Localizzazione dei punti di misura RUM_01, RUM_02, RUM_03 e RUM_04 rispetto al campo eolico di progetto

Figura 3-7 Posizione dei fonometri nelle quattro postazioni di misura RUM_01, RUM_02, RUM_03 e RUM_04

Oltre alla caratterizzazione dello stato dei luoghi, le misure hanno come obiettivo quello di definire i valori di Leq(A) nel periodo diurno e notturno rappresentativi del territorio interferito dalle opere in progetto per la verifica della compatibilità acustica del parco eolico attraverso la verifica dei valori di immissione assoluta e differenziale.

Tuttavia, come maggiormente dettagliato nei paragrafi successivi, il vento è il principale elemento esterno che condiziona sia la potenza sonora emissiva della turbina eolica e, quindi, il rumore indotto al terreno, sia il rumore naturale di fondo, ovvero il rumore residuo nella fase post operam.

Attraverso l'interpolazione dei dati acustici, come dettagliato nel paragrafo successivo si è determinata la funzione di correlazione tra velocità del vento e livello acustico del fondo naturale del territorio.

Di seguito si riportano i valori acustici rilevati per ciascuna misura rispetto al valore medio del periodo di misura del Leq(A), del valore massimo e minimo (Lmax e Lmin) e dei valori percentili.

Punto di	Punto di misura: RUM_01								
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10
1	09:00-10:00	56,6	38,4	85,4	40,7	42,3	43,2	47,3	53,3
2	02:00-03:00	47,6	34,5	55,6	36,9	38,5	40,5	46,5	50,5

Tabella 3-2 Livelli acustici rilevati per il punto RUM_01 nelle 2 misure eseguite

Punto di	Punto di misura: RUM_02								
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10
1	09:00-10:00	49,4	24,5	84,5	26	26,9	27,5	31	37,7
2	05:00-06:00	46,4	21	79	22,1	23,2	24	27,8	31,7

Tabella 3-3 Livelli acustici rilevati per il punto RUM_02 nelle 2 misure eseguite

Punto di	Punto di misura: RUM_03								
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10
1	09:00-10:00	55	28	78,7	30,9	33	34,3	43,5	58,4
2	05:00-06:00	38,2	21,2	56,7	22,4	23,7	25,4	32,8	42,3

Tabella 3-4 Livelli acustici rilevati per il punto RUM_03 nelle 2 misure eseguite

Punto di misura: RUM_04									
Misura	Orario	Leq	Lmin	Lmax	L99	L95	L90	L50	L10
1	09:00-10:00	59,4	24,9	90,2	27,1	28,1	28,7	31,9	47,6
2	04:00-05:00	37	19,5	69,7	21,1	21,8	22,2	24,8	32

Tabella 3-5 Livelli acustici rilevati per il punto RUM_04 nelle 2 misure eseguite

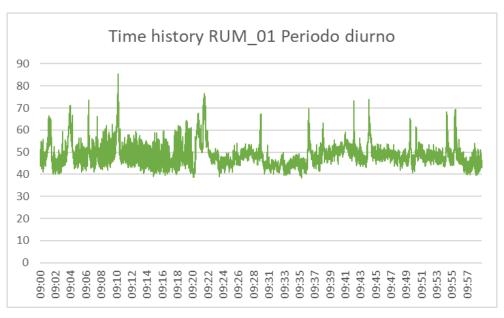


Figura 3-8 Punto di misura RUM_01: misura 1 (periodo diurno)

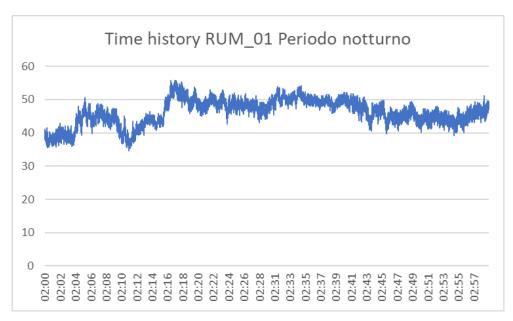


Figura 3-9 Punto di misura RUM_01: misura 2 (periodo notturno)

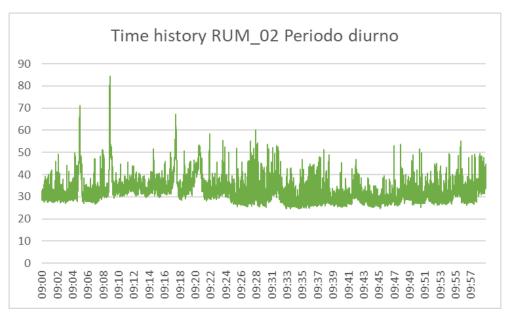


Figura 3-10 Punto di misura RUM_02: misura 1 (periodo diurno)

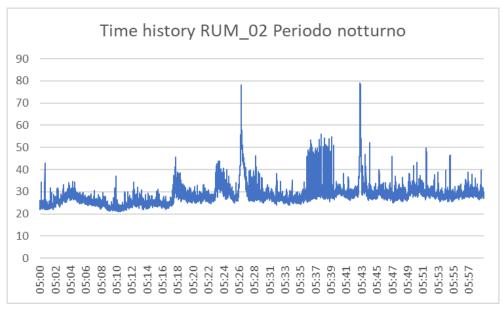


Figura 3-11 Punto di misura RUM_02: misura 2 (periodo notturno)

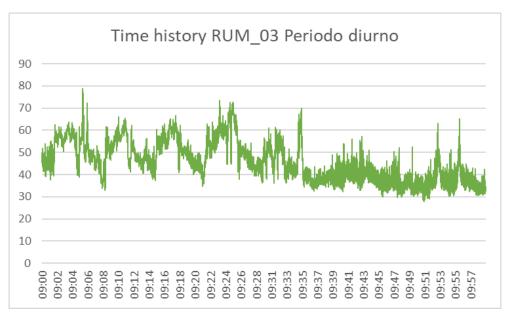


Figura 3-12 Punto di misura RUM_03: misura 1 (periodo diurno)

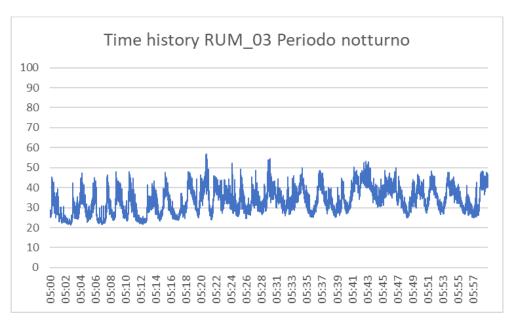


Figura 3-13 Punto di misura RUM_03: misura 2 (periodo notturno)

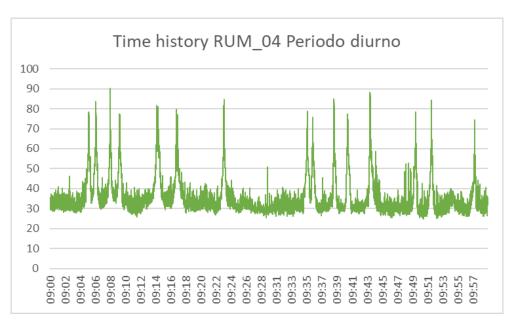


Figura 3-14 Punto di misura RUM_04: misura 1 (periodo diurno)

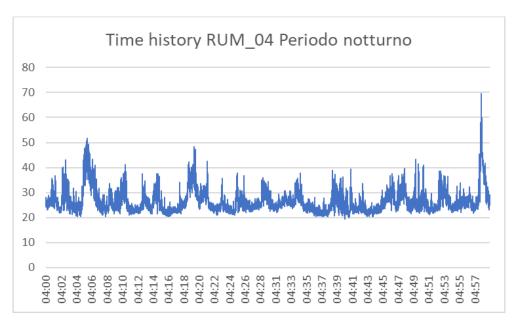


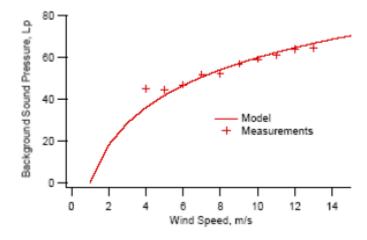
Figura 3-15 Punto di misura RUM_04: misura 2 (periodo notturno)

In sintesi, i valori determinati sulla base dei campionamenti fonometrici eseguiti hanno evidenziato la seguente condizione sul territorio.

Punto di misura	Periodo diurno	Periodo notturno
RUM_01	56,6	47,6
RUM_02	49,4	46,4
RUM_03	55,0	38,2

RUM_04	59,4	37

Tabella 3-6 Sintesi dei valori in Leq(A) rilevati nei quattro punti nel periodo diurno e notturno


3.5.2 Interazione tra il rumore residuo allo stato attuale e la velocità del vento

Il rumore residuo è come definito dalla normativa il contributo acustico indotto da tutte le sorgenti sonore presenti nel territorio ad eccezione di quella oggetto di studio e verifica. Nel caso in studio, essendo il parco eolico di nuova realizzazione, risulta evidente come il rumore residuo sia di fatto quello determinato mediante i suddetti rilievi fonometrici.

In linea generale il rumore residuo è indotto sia da fonti naturali, ovvero dall'interazione con il vento con l'orografia, la vegetazione e le costruzioni, sia da fonti antropiche ovvero dal quadro complessivo delle attività umane (traffico, industrie, agricoltura, etc.). Vista la peculiarità della sorgente acustica oggetto di indagine, e di come la sua emissione acustica dipenda dall'intensità del vento, in tale sede si vuole dare evidenza di come anche il rumore residuo sia funzione delle condizioni anemometriche oltre che del contesto del territorio. Per poter determinare quindi come la sorgente eolica interferisca sul territorio nelle diverse condizioni anemometriche occorre valutare anche la variazione del rumore di fondo secondo la velocità del vento.

Nel caso specifico in esame il territorio interessato dal parco eolico ha una denotazione prettamente naturale con la presenza di alcune attività antropiche di tipo agricolo. Il rumore residuo è quindi prettamente connesso alla naturalità dei luoghi e alla sua variazione con l'intensità anemometrica. Studi scientifici [Fégeant, 1999] a riguardo hanno evidenziato una correlazione tra la velocità del vento e il livello acustico misurato del rumore di fondo secondo la seguente formula:

$$L_{A.eq} \propto log_{10}(U)$$

Le misure eseguite sul campo hanno permesso di valutare la correlazione tra intensità di

vento e Leq(A) del rumore ambientale di fondo. In particolare, i quattro punti scelti ricadono in un territorio omogeneo a carattere prettamente rurale/agricolo ma a diversa altezza rispetto al livello del mare: RUM_01 è posizionato a 147 m s.l.m., RUM_02 è posizionato a 224 m s.l.m., RUM_03 è posizionato a 106 m s.l.m, mentre RUM_04 è posizionato a 107 m s.l.m.

Dall'interpolazione dei dati di vento e rumore è stata individuata la correlazione tra i due parametri. Questa è stata stimata differenziando il periodo diurno e notturno.

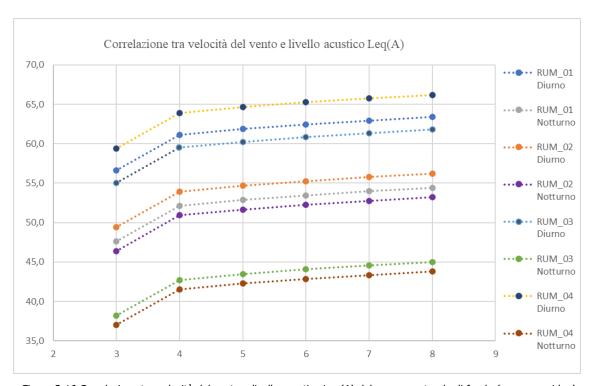


Figura 3-16 Correlazione tra velocità del vento e livello acustico Leq(A) del rumore naturale di fondo (rumore residuo) sulla base dei dati fonometrici rilevati

Considerando quindi la suddetta legge di correlazione tra velocità del vento e rumore naturale, e verificando le condizioni anemometriche durante le indagini di misura (velocità del vento di circa 3 m/s), per il caso specifico si riporta di seguito il valore del rumore residuo nelle diverse condizioni di vento.

Punto	Log(A)	Velocità del vento								
Punto	Leq(A)	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s			
RUM 01	Diurno	56,6	61,1	61,9	62,5	63,0	63,4			
KOM_01	Notturno	47,6	52,1	52,9	53,5	54,0	54,4			
DUM 02	Diurno	49,4	53,9	54,7	55,3	55,8	56,2			
RUM_02	Notturno	46,4	50,9	51,7	52,3	52,8	53,2			
DLIM 02	Diurno	55,0	59,5	60,3	60,9	61,4	61,8			
RUM_03	Notturno	38,2	42,7	43,5	44,1	44,6	45,0			
RUM_04	Diurno	59,4	63,9	64,7	65,3	65,8	66,2			
	Notturno	37,0	41,5	42,3	42,9	43,4	43,8			

Tabella 3-7 Valore del rumore residuo al variare della velocità del vento a partire dal dato misurato e utilizzando la legge di correlazione basata su dati sperimentali

4 CLIMA ACUSTICO NELLA FASE DI ESERCIZIO

4.1 Le caratteristiche emissive degli aerogeneratori

Il campo eolico è costituito da 17 aerogeneratori, la cui potenza unitaria massima sarà di 7,2 MW, ciascuno dei quali caratterizzato da una altezza del mozzo di 125 m e un diametro del rotore di 162 m.

Da un punto di vista acustico una turbina eolica genera rumore sia per fenomeni aerodinamici dovuti all'interazione tra il vento e le pale sia per fenomeni meccanici dovuti al movimento dei diversi componenti all'interno della gondola. Il rumore aerodinamico a banda larga rappresenta la componente emissiva principale ed è connesso ai fenomeni di flusso intorno alle pale e alla velocità del rotore stesso, ovvero:

- ⇒ perdita di portanza per effetto della separazione del flusso intorno alla pala (presenza della torre sottovento, cambi di intensità anemometrica, turbolenze di scia, etc.);
- ⇒ presenza di turbolenze atmosferiche che inducono variazioni della pressione intorno alla pala;
- ⇒ accoppiamento aria-pala, ovvero dalla corrente di aria lungo le superfici del profilo alare.

Il rumore aerodinamico è tipicamente concentrato alle basse frequenze.

Il rumore di origine meccanica è connesso invece ai diversi componenti e alla loro interazione dinamica durante il funzionamento delle pale eoliche, ovvero generatore, ventilatori, moltiplicatore di giri, etc. Il rumore prodotto, di tipo tonale essendo le sorgenti connesse alla rotazione di componenti meccanici, si propaga direttamente nell'aria o attraverso la trasmissione strutturale a seconda della localizzazione dello specifico componente.

Per quanto riguarda le caratteristiche emissive dell'aerogeneratore si è fatto riferimento a quanto previsto ai dati forniti dal costruttore e determinati sulla scorta della normativa CEI EN 61400-11 che costituisce un riferimento per stabilire le tecniche di misura e di analisi delle emissioni acustiche delle turbine eoliche. Come detto in precedenza la potenza sonora emissiva di una turbina eolica dipende dalle condizioni di velocità del vento: maggiore è l'intensità anemometrica più elevata è l'energia sonora emessa. L'impostazione metodologica alla base del presente studio acustico è quella di valutare la condizione di massima interferenza, il cosiddetto "worst case scenario, ovvero quello caratterizzato da una condizione di potenza sonora emissiva maggiore. Nel caso specifico tale condizione viene raggiunta già ad una velocità del vento di 8 m/s con un livello di potenza sonora Lw pari a 107,6 dB(A). Oltre tale velocità e fino a quella di "cut-out" la potenza sonora si mantiene costante.

Le principali caratteristiche degli aerogeneratori costituenti il parco eolico oggetto di studio sono:

altezza mozzo: 125 m;
altezza totale: 206 m;
diametro rotore: 162 m;

potenza nominale: max 7,2 MW;

❖ livello di potenza sonora: 107,6 dB(A) ad una velocità del vento di 8 m/s

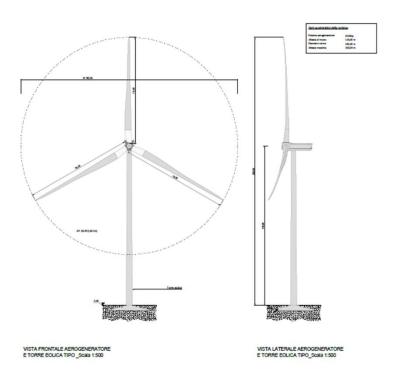


Figura 4-1 Vista aerogeneratore

4.2 La modellazione acustica

4.2.1 Il software SoundPlan

L'analisi modellistica previsionale è stata sviluppata attraverso il software di calcolo SoundPlan 8.2, sviluppato dalla Braunstein & Berndt GmbH sulla base di norme e standard definiti dalle ISO e da altri standards utilizzati localmente.

La peculiarità del modello SoundPLAN si basa sul metodo di calcolo per "raggi". Il sistema di calcolo fa dipartire dal ricevitore una serie di raggi ciascuno dei quali analizza la geometria della sorgente e quella del territorio, le riflessioni e la presenza di schermi. Studiando il metodo con maggior dettaglio si vede che ad ogni raggio che parte dal ricettore viene associata una porzione di territorio e così, via via, viene coperto l'intero territorio. Quando un raggio incontra la sorgente, il modello calcola automaticamente il livello prodotto della parte intercettata. I contributi forniti dai diversi raggi vengono evidenziati nei diagrammi di output. In tali schematizzazioni la lunghezza dei raggi è proporzionale al contributo in rumore fornito da quella direzione. Quando invece un raggio incontra una superficie riflettente come la facciata di un edificio, il modello calcola le riflessioni multiple. A tal proposito l'operatore può stabilire il numero di riflessioni massimo che deve essere calcolato ovvero la soglia di attenuazione al di sotto della quale il calcolo deve essere interrotto. Questa metodologia di calcolo consente quindi una particolare accuratezza nella valutazione della geometria del sito e risulta quindi molto preciso ed efficace in campo urbano, dove l'elevata densità di edifici, specie se di altezza elevata, genera riflessioni multiple che producono un innalzamento dei livelli sonori.

La possibilità di inserire i dati sulla morfologia dei territori, sui ricettori e sulle infrastrutture esistenti ed in progetto mediante cartografia tridimensionale consente di schematizzare i luoghi in maniera più che mai realistica e dettagliata. Ciò a maggior ragione se si considera che, oltre alla conformazione morfologica, è possibile associare ad elementi naturali e antropici specifici comportamenti acustici. Il modello prevede infatti l'inserimento di appositi coefficienti che tengono conto delle caratteristiche più o meno riflettenti delle facciate dei fabbricati o del territorio naturale o antropizzato.

4.2.2 Il metodo di calcolo ISO 9613-2

Per la valutazione della propagazione acustica nell'ambiente il metodo di calcolo assunto è quello dello standard ISO 9613-2 indicato come metodo per le attività produttive e industriali. Tale metodica viene utilizzata per stimare i livelli di pressione sonora ad una determinata distanza dal punto di emissione basandosi su algoritmi di propagazione che dipendono dalla frequenza e tengono conto degli effetti di:

- Divergenza geometrica;
- > Riflessione delle superfici;

- Assorbimento atmosferico;
- Effetto di schermatura del terreno e degli ostacoli;
- Terreno complesso;
- Attenuazione laterale dovuta all'effetto del terreno;
- Direttività della sorgente;
- Attenuazione dovuta alla vegetazione;
- > Attenuazione dovuta alle condizioni meteorologiche.

Come indicato dalla UNI/TS 11143-7:2013 e da ISPRA nelle "Linee guida per la valutazione e il monitoraggio dell'impatto acustico degli impianti eolici", nel caso di una modellazione acustica di aerogeneratori occorre tener conto di una serie di fattori connessi ai dati emissivi delle turbine fornite dai costruttori sulla norma CEI EN 61400-11, all'altezza e dimensioni del rotore e alle condizioni meteorologiche che influenzano la propagazione del suono a grandi distanze.

Riguardo il primo aspetto, essendo l'impianto di nuova realizzazione (nuovo parco eolico e non estensione di uno attuale), si è scelto di considerare il valore del livello di potenza sonora massimo rispettivamente diurno e notturno tra quelli forniti dal costruttore e stimati secondo la norma CEI EN 61400-11. Per tener conto degli effetti meteorologici nella propagazione del rumore sono stati inseriti i principali valori medi annui relativi ad umidità, temperatura, pressione atmosferica e la rosa dei venti secondo i dati meteorologici annuali.

4.2.3 Dati di input al modello

L'applicazione del modello previsionale SoundPlan ha richiesto l'inserimento dei dati riguardanti i seguenti aspetti:

- 1. Orografia per la costruzione tridimensionale della morfologia del terreno;
- 2. Edifici;
- 3. Layout del parco eolico definendo per ciascun aerogeneratore i parametri dimensionali (altezza mozzo, diametro rotore);
- 4. Caratteristiche emissive degli aerogeneratori (Livello di potenza sonora singola turbina eolica pari a 107,6 dB(A)) modellate in SoundPlan con lo specifico strumento "turbina eolica";
- 5. Dati meteorologici per il calcolo della propagazione del rumore nell'ambiente.

Lo standard di calcolo è, come detto, quella della UNI ISO 9613-2 impostando una griglia 5x5 m e un ordine di riflessione pari a 3.

4.3 Il rumore indotto dal funzionamento del campo eolico

Il risultato dello studio previsionale con il software Soundplan consiste sia nella mappatura acustica al suolo calcolata a 4 metri dal piano campagna e all'interno dell'intero ambito di studio sia nei valori di Leq(A) puntuali in corrispondenza dei ricettori sulla facciata più esposta al rumore del campo eolico sia durante il periodo diurno (6.00-22.00) che in quello notturno (22.00-6.00).

Negli elaborati grafici "Curve di isolivello acustico del campo eolico nella fase di funzionamento" sono riportate le mappature acustiche in termini di Leq(A). Le curve sono rappresentate con passo di 1 dB dal valore di 40 dB(A) fino al valore dei 57 dB(A).

Per quanto concerne i valori in Leq(A) puntuali, questi sono stati calcolati in corrispondenza ciascun ricettore residenziale ricadente all'interno dell'ambito di studio (cfr. paragrafo 3.3) sia durante il periodo diurno che notturno. Il calcolo tiene conto della facciata più esposta al rumore indotto dagli aerogeneratori assumendo un punto di calcolo all'esterno dell'edificio.

Tenendo conto dei tre campi eolici in autorizzazione, già menzionati precedentemente, sono stati considerati due diversi scenari:

- Scenario 1: Calcolo del rumore in facciata tenendo conto solo dell'impianto eolico di progetto;
- Scenario 2: Calcolo del rumore in facciata dell'impianto eolico di progetto ed i tre parchi eolici in autorizzazione.

Di conseguenza, in base allo scenario, il risultato in Leq(A) risulta differenziato.

4.4 La verifica della compatibilità acustica del campo eolico

Per quel che concerne la verifica della compatibilità acustica del campo eolico, la normativa in materia di inquinamento acustico prevede la verifica dei limiti di immissione assoluta e differenziale.

Per quanto concerne i limiti di immissione assoluti, nel caso specifico questi sono fissati dal DPCM 1° marzo 1991 non essendo i comuni di Minervino Murge e Canosa di Puglia (in cui ricade l'ambito di studio acustico) dotati di Piano Comunale di Classificazione Acustica del territorio ai sensi della L.447/95. Tali valori, come noto, sono fissati essere pari a 70 dB(A) nel periodo diurno e 60 dB(A) nel periodo notturno.

Per quanto riguarda invece i valori limite di immissione differenziale questi sono fissati pari a 5 dB(A) nel periodo diurno e 3 dB(A) in quello notturno.

La normativa di riferimento indica che tale verifica debba essere eseguita all'intero degli edifici negli ambienti abitativi o lavorativi a finestre aperte o chiuse purché il valore del Leq(A) sia superiore a 50 dB(A), o 35 dB(A) nel secondo caso, nel periodo diurno o 40 dB(A), o 25 dB(A) a finestre chiuse, nel periodo notturno.

La verifica della compatibilità acustica del campo eolico tiene conto delle seguenti ipotesi:

- Condizione di massima emissione diurna e notturna di ciascun aerogeneratore ad una velocità del vento di 8 m/s (intensità del vento alla quale la potenza sonora della turbina eolica raggiunge il valore massimo sia nelle condizioni diurne che notturne) in funzionamento continuo nelle 24 ore;
- 2) Rumore residuo rappresentativo del territorio considerando una condizione meteorologica (velocità vento) omogenea a quella assunta per la stima emissiva del campo eolico (8 m/s);
- Limiti di immissione assoluta secondo il DPCM 1.3.1991 data l'assenza dei PCCA dei comuni di Minervino Murge e Canosa di Puglia;
- 4) Verifica del limite di immissione differenziale sulla base dei valori acustici in facciata all'esterno (ipotesi cautelativa in quanto non viene considerato il potere fonoisolante della struttura e quindi una riduzione dei valori di Leq(A) all'interno dell'ambiente abitativo).

Nelle tabelle in appendice sono riportati i valori in Leq(A) riferiti ai diversi contributi, ovvero:

- Rumore indotto dal campo eolico nel periodo diurno e notturno (sorgente specifica oggetto di verifica);
- Rumore residuo, ovvero il rumore indotto dalle altre sorgenti presenti sul territorio e pari al rumore ambientale ante operam misurato nelle due postazioni di misura (si associa il valore medio dei punti di misura);
- Rumore ambientale, ovvero il rumore complessivo dato dalla somma dei due suddetti contributi.

La Legge Quadro sull'inquinamento acustico 447/95 stabilisce che non vada effettuata la verifica dei limiti acustici definiti al paragrafo precedente se non per gli edifici residenziali e lavorativi. Inoltre, il DPCM 14.11.1997 stabilisce che il calcolo dei livelli differenziali è applicabile ai soli ambienti abitativi e lavorativi.

In base ai due diversi scenari considerati, si hanno risultanti diverse.

In Appendice D viene riportato il risultato dello Scenario 1, ovvero calcolando il rumore in facciata degli edifici residenziali dal solo funzionamento degli aerogeneratori di progetto.

In Appendice E viene riportato il risultato dello Scenario 2, ovvero calcolando il rumore in facciata degli edifici residenziali sia dal funzionamento degli aerogeneratori di progetto che dal funzionamento dei tre campi eolici limitrofi in stato di autorizzazione. In questo scenario l'operatività di tutti gli aerogeneratori è tale da non indurre superamenti dei valori limite assoluti e differenziali durante il periodo diurno e durante quello notturno.

Entrambi i risultati escludono anche eventuali effetti derivati dal cumulo dei parchi eolici

esistenti in quanto le relative emissioni acustiche sono ricomprese nel cosiddetto rumore di fondo acquisito tramite la campagna fonometrica.

5 CLIMA ACUSTICO NELLA FASE DI CANTIERE

5.1 Analisi delle potenziali interferenze acustiche indotte dal Cantiere Mobile

5.1.1 Le attività di cantiere previste per la realizzazione del parco eolico

La metodologia assunta per l'analisi e valutazione del rumore indotto dal fronte di avanzamento dei lavori è basata sulla rappresentazione delle condizioni peggiori determinate dall'operatività e dall'avanzamento, lungo le aree di intervento, delle diverse sorgenti all'interno del cantiere mobile. Pertanto, il cantiere tipo considera tutte le attività necessarie per la realizzazione dell'allacciamento tramite cavidotto del nuovo impianto eolico di Minervino alla stazione TERNA. Tale metodo permette di determinare in ogni situazione la configurazione peggiore.

A seguito della modellizzazione del cantiere mobile viene individuata la distanza che intercorre tra il fronte di lavoro e la curva isolivello dei 70 dB(A), rappresentativa del valore limite indicato dal DPCM 1/03/1991 per tutto il territorio nazionale in assenza di PCCA, verificando la presenza di eventuali ricettori all'interno di tale fascia. Successivamente alla verifica del rispetto dei suddetti limiti acustici, qualora sia necessario, si identificano gli opportuni interventi di mitigazione acustica, ovvero barriere antirumore mobili con altezze che possono essere variabili in funzione delle risultanze del modello.

Entrando nello specifico, l'area in cui è previsto il fronte di avanzamento lavori del Cantiere Mobile ricade, in un territorio a vocazione prevalentemente agricola.

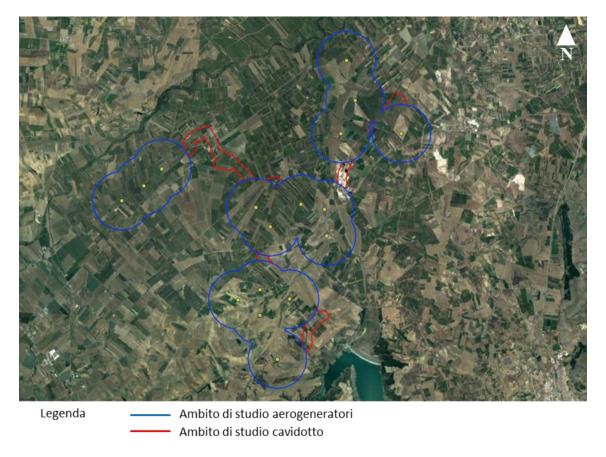


Figura 5-1 Localizzazione Cantiere Mobile

Lo scenario selezionato per la verifica delle interferenze acustiche indotte dalle lavorazioni previste all'interno del Cantiere Mobile coincide con l'area in cui è prevista la realizzazione del cavidotto di collegamento tra la zona di allocazione dell'intero impianto eolico e la stazione di Terna.

Dall'analisi territoriale risulta che sono presenti 64 ricettori nell'ambito di studio del cavidotto.

Nella successiva tabella sono riportate le caratteristiche del cantiere tipologico di tipo mobile connesso alla realizzazione dello scavo in cui verrà posato il cavidotto. Per ogni lavorazione è stato individuato il numero e la tipologia di macchinari presenti, con la rispettiva percentuale di impiego in un'ora e le relative grandezze di riferimento per la loro caratterizzazione acustica. I dati di potenza sonora delle macchine sono stati desunti dal manuale "Conoscere per Prevenire, n. 11" realizzato dal Comitato Paritetico Territoriale (CPT di Torino).

			Realizz	zazione	e scavo	e pos	a cavio	lotto			
Mezzi di cantiere Mini Esc. Mini Esc. con martellone Autocarro	Analisi spettrale [Hz]								Totale		% effettiva
cantiere	63	125	250	500	1K	2K	4K	8K	dB(A)	N° mezzi	di impiego
Mini Esc.	81,1	86,5	80,9	81,5	76,2	73,1	69,6	63,5	82,6	1	50
Mini Esc. con martellone	81,6	81,4	80,1	81,2	84,7	87,6	83,3	78,3	91,4	1	50
Autocarro	76,2	81,3	87,1	93	98,8	95,6	90,5	85,4	101,9	1	50
Totale con %	Гotale con % di impiego					99,3 dI	B(A)-				

Tabella 5-1 Livello di potenza sonora e spettro emissivo mezzi di cantiere mobile

5.1.2 La modellazione acustica

Anche per la fase di cantiere l'analisi previsionale si basa su una modellazione acustica con il software SoundPlan e la metodica di calcolo della UNI 9613-2.

Per ciascun cantiere la potenza emissiva acustica è pari alla somma energetica delle potenze sonore dei macchinari impiegati.

Data la dinamicità delle attività di cantiere di tipo mobile, l'area viene schematizzata nel modello di simulazione come una sorgente areale posta ad un'altezza di 1,5 m con lunghezza pari a 25 m e larghezza 5 m.

Per quanto concerne l'orario di lavoro, si assume un'operatività di due turni lavorativi di 8 ore complessive intervallate da pausa, nel solo periodo diurno, nell'arco temporale tra le 8.00 e le 12.00 e tra le 15.00 e le 19.00.

5.1.3 Il rumore indotto dalle attività di cantiere

Il modello di simulazione restituisce i livelli acustici in Leq(A) in termini di mappature acustiche in planimetria, calcolate ad un'altezza di 4 metri dal suolo, e in sezione verticale, con un'altezza di calcolo pari a 20 metri. Per le mappature acustiche in planimetria, la griglia di calcolo è stata impostata con passo pari a 10 metri con ordine di riflessione pari a 3, mentre, per le mappature acustiche in sezione verticale, la griglia di calcolo è stata impostata con passo pari a 0,1 metri.

Di seguito si riportano le mappature in planimetria e in sezione verticale per le aree di cantiere di tipo mobile.

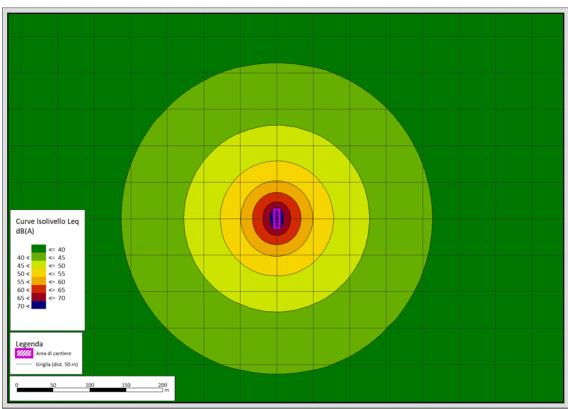


Figura 5-2 Mappatura acustica in planimetria: cantiere mobile connesso alla realizzazione del cavidotto

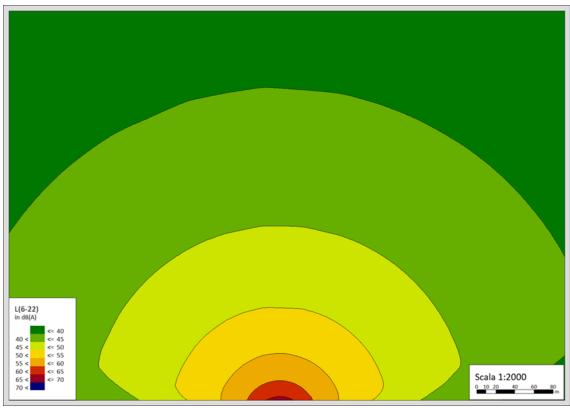


Figura 5-3 Mappatura acustica in sezione verticale: cantiere mobile connesso cantiere mobile connesso alla realizzazione del cavidotto.

Dai risultati si evince come il valore di 70 dB(A) rimanga circoscritto alle aree di lavorazione e come non sussistano condizioni di criticità nel periodo diurno.

5.2 Analisi delle potenziali interferenze acustiche indotte dal Cantiere Fisso

5.2.1 Le attività di cantiere previste per la realizzazione del parco eolico

Al fine di valutare le potenziali interferenze acustiche legate alle attività di cantiere svolte nella fase di corso d'opera a partire dalla definizione dei fattori causali individuati in Tabella 5-2, si è proceduto alla determinazione dei livelli di potenza sonora complessivi legati alla singola attività di cantiere. A tal fine sono stati considerati i dati forniti dalle schede elaborate dall'istituto CTP di Torino disponibili e riconosciute dal Ministero del Lavoro e delle Politiche Sociali con circolare prot. 15/VI/0014878/MA001.A001.

Stima della potenza sonora compl	essiva per singola fase	e di cantiere			
Fondazioni aerogeneratori					
Fase lavorativa	Macchinari utilizzati	Potenze sonore dB(A)	Somma dB(A)		
Convo	Autocarro	96,2	107,7		
Scavo	Escavatore	107,4			
	Escavatore attrezzato per pali	112,2			
Posa del calcestruzzo delle fondazioni	Betoniera	99,6	113,7		
	Pompa	107,9			
Door del magnene	Betoniera	99,6	100 5		
Posa del magrone	Pompa	107,9	108,5		
Approvvigionamento e installazione ferri armatura	Autocarro	96,2	96,2		
Posa del calcestruzzo	Betoniera	99,6	108,5		
Posa del Calcesti uzzo	Pompa	107,9			
Rinterro	Escavatore	107,4	107,4		
Piazzole e strade di accesso					
Fase lavorativa	Macchinari utilizzati	Potenze sonore dB(A)	Somma dB(A)		
Scavo e livellazione	Pala meccanica cingolata 107,9		108,2		
	Autocarro	96,2]		
	Pala meccanica cingolata	107,9	114,2		
Riporto del terreno	Rullo compressore	113			
	Autocarro	96,2			
Completamento strati di rivestimento	Miniescavatore	106,9	106,9		
Montaggio aerogeneratori					

Fase lavorativa	Macchinari utilizzati	Potenze sonore dB(A)	Somma dB(A)
Transports a convice materiali	Autocarro	96,2	102.2
Trasporto e scarico materiali	Gru	101	102,2
Montaggio	Gru	101	101

Tabella 5-2 Livelli di potenza sonora complessivi per fase lavorativa

A partire dai livelli di potenza sonora complessivi individuati in Tabella 5-2, per la verifica delle interferenze acustiche è stata analizzata la fase di cantiere più critica verificata la quale si possono escludere a priori interferenze indotte dalle altre fasi delle lavorazioni.

La fase individuata risulta essere quella del riporto del terreno con impiego di pala meccanica cingolata, rullo compressore e autocarro. Il cantiere lavorerà esclusivamente nel periodo diurno.

Cautelativamente l'impatto della fase cantiere viene calcolato con le sorgenti attive contemporaneamente su tutte le aree di installazione. Questa contemporaneità nella realtà non si realizzerà su tutte le aree di cantiere; pertanto, i risultati della simulazione vanno intesi come dei livelli massimi di immissione che potranno realizzarsi solo per brevi o brevissimi periodi della stessa giornata lavorativa.

5.2.2 La modellazione acustica

Anche per la fase di cantiere l'analisi previsionale si basa su una modellazione acustica con il software SoundPlan e la metodica di calcolo della UNI 9613-2.

Per ciascun cantiere la potenza emissiva acustica è pari alla somma energetica delle potenze sonore dei macchinari impiegati.

L'orario di lavoro è stato assunto pari a 8 ore nel periodo diurno, avendo escluso quindi attività di cantiere nel periodo notturno.

Ciascun cantiere è quindi modellato come una sorgente areale di $70 \times 70 \text{ m}$, altezza 2 m dal piano campagna, potenza sonora emissiva complessiva (somma energetica dei singoli contributi) pari a 114,6 dB(A) e operatività nelle 8 ore del periodo diurno.

5.2.3 Il rumore indotto dalle attività di cantiere

In questo caso l'output del modello di simulazione è costituito dalla mappatura acustica al suolo ad una altezza di 4 m in termini di Leq(A) nell'intorno di 1000 m dagli aerogeneratori, sia dai valori di Leq(A) puntuali in corrispondenza dei ricettori residenziali e lavorativi dell'ambito di studio precedentemente definito.

In Appendice F si riportano i valori acustici ad 1 metro della facciata rappresentativi del livello massimo sulla facciata più esposta indotti dall'attività di cantiere.

5.2.4 La verifica della compatibilità acustica delle attività di cantiere

Il cantiere, come detto, si configura come una attività temporanea e limitata al solo periodo di realizzazione delle opere previste dal progetto. Nel contesto normativo di riferimento indicato nella prima parte dello studio acustico. La fase di autorizzazione e richiesta di deroga ai limiti acustici, qualora necessaria sarà pertanto oggetto di richiesta da parte della Ditta preventivamente all'inizio dei lavori nell'ambito del quadro del processo di autorizzazione generale di avvio dei cantieri.

In tale sede si vuole dare riscontro di come in linea generale la fase di realizzazione del parco eolico sia compatibile da un punto di vista acustico secondo il quadro prescrittivo indicato dalle linee guida regionali. Queste individuano un valore di riferimento di 70 dB(A) in corrispondenza dei ricettori che si riduce a 65 dB(A) nel caso di livelli acustici all'interno delle abitazioni.

Per quanto concerne le attività di realizzazione delle opere di progetto, sulla base delle condizioni assunte nello studio, ovvero di scenario potenzialmente più critico in virtù del numero di mezzi oltre di valori di potenza sonora, nonché di ulteriori fattori cautelativi quali la sovrapposizione di più cantieri in parallelo, dai risultati calcolati mediante il software SoundPlan si evince come il livello acustico indotto dalla fase di corso d'opera sia contenuto al territorio nelle immediate vicinanze dell'area di cantiere.

6 IN APPENDICE FAPPENDICE E

Ricettore	Cod.	R1	R4	R7	R12	R14	R15	R17	R18	R20	R21
Rumore campo	LeqD	40,5	42,2	44,5	43,7	45,3	44,6	46,9	46,5	48,4	46,8
eolico (A)	LeqN	40,5	42,2	44,5	43,7	45,3	44,6	46,9	46,5	48,4	46,8
Rumore	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore	LeqD	63,2	63,2	63,3	63,2	63,3	63,3	63,3	63,3	63,3	63,3
ambientale (C)	LeqN	51,6	51,8	52,1	52,0	52,3	52,1	52,6	52,5	53,1	52,6
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello	LeqD	0,0	0,0	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1

differenziale (C-B)	LeqN	0,3	0,5	0,8	0,7	1,0	0,8	1,3	1,2	1,8	1,3
(C-D)											

Ricettore	Cod.	R27	R34	R37	R51	R58	R59	R63	R64	R69	R70
Rumore campo	LeqD	48	47,4	48,3	48,7	49	49,4	42,8	42,6	46,9	51,3
eolico (A)	LeqN	48	47,4	48,3	48,7	49	49,4	42,8	42,6	46,9	51,3
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore	LeqD	63,3	63,3	63,3	63,4	63,4	63,4	63,2	63,2	63,3	63,5
ambientale (C)	LeqN	53,0	52,8	53,1	53,2	53,3	53,5	51,9	51,8	52,6	54,3
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello	LeqD	0,1	0,1	0,1	0,2	0,2	0,2	0,0	0,0	0,1	0,3
differenziale (C-B)	LeqN	1,7	1,5	1,8	1,9	2,0	2,2	0,6	0,5	1,3	3,0

Ricettore	Cod.	R74	R80	R81	R82	R84	R86	R87	R88	R89	R91
Rumore campo	LeqD	47,5	45	44,1	46,2	45,4	44,2	45,9	45,1	45,6	44,3
eolico (A)	LeqN	47,5	45	44,1	46,2	45,4	44,2	45,9	45,1	45,6	44,3
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore	LeqD	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3
ambientale (C)	LeqN	52,8	52,2	52,1	52,5	52,3	52,1	52,4	52,2	52,3	52,1
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello	LeqD	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
differenziale (C-B)	LeqN	1,5	0,9	0,8	1,2	1,0	0,8	1,1	0,9	1,0	0,8

Ricettore	Cod.	R10 3	R10 6	R10 7	R11 0	R11 2	R21 4	R26 3	R27 5	R28 1	R29 5
Rumore	Leq D	42,4	44,5	44,2	43,7	46,5	42,1	45,1	47,2	46	44,6
campo eolico (A)	Leq N	42,4	44,5	44,2	43,7	46,5	42,1	45,1	47,2	46	44,6
Rumore	Leq D	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
residuo (B)	Leq N	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di	Leq D	70	70	70	70	70	70	70	70	70	70
assoluta	Leq N	60	60	60	60	60	60	60	60	60	60
Rumore ambientale	Leq D	63,2	63,3	63,3	63,2	63,3	63,2	63,3	63,3	63,3	63,3
(C)	Leq N	51,8	52,1	52,1	52,0	52,5	51,8	52,2	52,7	52,4	52,1
Limite di immissione	Leq D	5	5	5	5	5	5	5	5	5	5
differenzial e	Leq N	3	3	3	3	3	3	3	3	3	3
Livello differenzial	Leq D	0,0	0,1	0,1	0,0	0,1	0,0	0,1	0,1	0,1	0,1
e (C-B)	Leq N	0,5	0,8	0,8	0,7	1,2	0,5	0,9	1,4	1,1	0,8

Ricettore	Cod.	R29 9	R30 3	R30 7	R31 5	R32	R32 4	R32 6	R32 7	R32 8	R34 6
Rumore	Leq D	49,2	45,3	44,3	44,6	42,9	40,4	41,2	41,5	40,6	40,7
campo eolico (A)	Leq N	49,2	45,3	44,3	44,6	42,9	40,4	41,2	41,5	40,6	40,7
Rumore	Leq D	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
residuo (B)	Leq N	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di	Leq D	70	70	70	70	70	70	70	70	70	70
assoluta	Leq N	60	60	60	60	60	60	60	60	60	60
Rumore ambientale	Leq D	63,4	63,3	63,3	63,3	63,2	63,2	63,2	63,2	63,2	63,2
(C)	Leq N	53,4	52,3	52,1	52,1	51,9	51,6	51,7	51,7	51,7	51,7
Limite di immissione	Leq D	5	5	5	5	5	5	5	5	5	5
differenzial e	Leq N	3	3	3	3	3	3	3	3	3	3
Livello differenzial	Leq D	0,2	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0
e (C-B)	Leq N	2,1	1,0	0,8	0,8	0,6	0,3	0,4	0,4	0,4	0,4

Ricettore	Cod.	R34 9	R35 2	R36 7	R37 5	R37 6	R38 8	R38 9	R39 5	R40 2	R40 7
Rumore	Leq D	39,5	38,8	40,8	41,5	41	42,4	44,6	40,5	44,3	43,5
campo eolico (A)	Leq N	39,5	38,8	40,8	41,5	41	42,4	44,6	40,5	44,3	43,5
Rumore	Leq D	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
residuo (B)	Leq N	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di	Leq D	70	70	70	70	70	70	70	70	70	70
assoluta	Leq N	60	60	60	60	60	60	60	60	60	60
Rumore ambientale	Leq D	63,2	63,2	63,2	63,2	63,2	63,2	63,3	63,2	63,3	63,2
(C)	Leq N	51,6	51,5	51,7	51,7	51,7	51,8	52,1	51,6	52,1	52,0
Limite di immissione	Leq D	5	5	5	5	5	5	5	5	5	5
differenzial e	Leq N	3	3	3	3	3	3	3	3	3	3
Livello differenzial	Leq D	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0
e (C-B)	Leq N	0,3	0,2	0,4	0,4	0,4	0,5	0,8	0,3	0,8	0,7

Ricettore	Cod.	R408	R412	R416	R444	R449	R451	R454	R458	R459
Rumore campo eolico (A)	LeqD	44,8	40,7	46,1	44,4	43	47,7	44,5	45,5	46,9
	LeqN	44,8	40,7	46,1	44,4	43	47,7	44,5	45,5	46,9
Rumore	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60
Rumore ambientale	LeqD	63,3	63,2	63,3	63,3	63,2	63,3	63,3	63,3	63,3
(C)	LeqN	52,2	51,7	52,4	52,1	51,9	52,9	52,1	52,3	52,6
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3
Livello	LeqD	0,1	0,0	0,1	0,1	0,0	0,1	0,1	0,1	0,1
differenziale (C-B)	LeqN	0,9	0,4	1,1	0,8	0,6	1,6	0,8	1,0	1,3

Appendice viene riportato il confronto tra valori in Leq(A) riferiti al rumore indotto dalle attività di cantiere e i limiti di immissione assoluta dettati dalla normativa vigente.

Dalla disamina dei risultati ottenuti è possibile affermare che la fase di corso d'opera per la realizzazione del parco eolico oggetto di studio è tale da non indurre un'interferenza sul clima acustico attuale presso i ricettori esaminati.

7 CONCLUSIONI

Il lavoro svolto ha riguardato la definizione e la valutazione dei livelli di esposizione al rumore indotti dalla fase di esercizio e dalla fase di cantiere durante la realizzazione di un campo eolico costituito da 17 aerogeneratori nei comuni di Minervino Murge e Canosa di Puglia in provincia di Barletta-Andria-Trani (BAT).

Per la definizione del quadro conoscitivo, oltre ad individuare i limiti normativi territoriali sulla scorta della normativa nazionale, regionale e comunale di riferimento, è stata predisposta sia una analisi territoriale per l'individuazione dei potenziali ricettori sia una campagna fonometrica per la determinazione del rumore ambientale allo stato attuale. A riguardo, in accordo con la UNI/TS 11143-7:2013 "acustica - Metodo per la stima dell'impatto e del clima acustico per tipologia di sorgenti - Parte 7: Rumore degli aerogeneratori", per ciascun aerogeneratore è stata individuata un'area di potenziale disturbo definita da una circonferenza con raggio pari a 1000 m. L'inviluppo di tutte le aree dei 17 aerogeneratori in progetto ha definito l'ambito di studio, all'interno del quale sono stati censiti tutti gli edifici e individuati in particolare quelli a destinazione residenziale.

La campagna fonometrica ha avuto l'obiettivo di valutare, oltre che l'entità del rumore attuale o nello stato post operam, anche la sua variazione in funzione della velocità del vento sviluppando un'analisi dei livelli che caratterizzano il sito di indagine. In particolare, si è fatto riferimento ai valori misurati in corrispondenza dei punti di misura e assunto una legge di correlazione tra velocità del vento e livelli di rumore basata su dati sperimentali. Questo perché nel caso di un campo eolico, il vento è la principale variabile che influenza sia l'emissione sonora della turbina eolica e la sua propagazione nell'ambiente, sia l'entità del rumore ambientale naturale in un territorio, come nel caso in esame, prettamente naturale/agricolo e scarsamente antropizzato.

Per la verifica delle potenziali interferenze sul clima acustico attuale indotte dagli aerogeneratori sia nella condizione di funzionamento che temporanea di realizzazione degli stessi, è stato predisposto uno studio modellistico previsionale mediante il software SoundPlan con l'obiettivo di determinare le diverse mappature acustiche al suolo e i livelli puntuali in corrispondenza degli edifici residenziali posti all'interno dell'ambito di studio sia per il periodo diurno (6.00-22.00) che in quello notturno (22.00-6.00). In entrambi i casi la metodologia assunta si basa sulla teoria del "worst case scenario", ovvero quello di massimo disturbo, in modo che verificato che questo risulti acusticamente compatibile sul territorio ne consegue come tutti gli altri di minor interferenza sono conseguentemente verificati. Per quanto riguarda il funzionamento di una pala eolica questa dipende sia dall'intensità del vento che dalla durata dello stesso durante l'arco della giornata. Il "worst case scenario" è quindi definito considerando il funzionamento di ciascuna pala nelle condizioni di massima emissione acustica (107,6 dB(A), secondo la

configurazione di progetto, in maniera continua e costante sia nel periodo diurno (6.00-22.00) che notturno (22.00-6.00).

Verificata la conformità di entrambi gli scenari ai requisiti di legge in materia di inquinamento acustico nella condizione di funzionamento del campo eolico alla massima emissione acustica diurna e notturna già ad una velocità del vento di 8 m/s, secondo la metodologia assunta del "worst case scenario" qualsiasi altra condizione operativa degli aerogeneratori è tale da non indurre un superamento dei valori limite assoluti e differenziali. Vista l'entità dei livelli di rumore calcolati, si ritiene che l'esercizio degli aerogeneratori di fatto non concorra a modificare il clima acustico attuale.

Per quel che concerne la fase di corso d'opera la realizzazione degli aerogeneratori di progetto del parco eolico non costituisce una criticità sul clima acustico. Infatti, in ogni caso i livelli acustici sono ben al di sotto dal limite normativo di riferimento. In conclusione, sulla base dei risultati ottenuti e della temporaneità delle attività di cantiere si ritiene trascurabile l'interferenza acustica sul territorio.

Per ulteriori approfondimenti rimandiamo al piano di monitoraggio ambientale per la verifica del rispetto della norma di settore.

8 APPENDICE A

Tecnico competente in acustica ambientale

9 APPENDICE B

Laboratoria Ambiente Italia Via dei Bonzagna, 22 00133 ROMA

06/2023263

CENTRO DI TARATURA

Laboratorio Accreditato di Taratura

LAT 227

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreemen

Pagina 1 di 10

CERTIFICATO DI TARATURA LAT 227/3561

2023/12/18 - Data di Emissione:

LRIDE Sri

Via Cristoforo Colombo, 163

00147 - Roma (RM)

- destinatario Idem Il presente certificato di tanatura è emesso in base all'accreditamento LAT 227 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificate non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del

- Si riferisce a:

Referring to

oggetto //m Fonometro

01dB - costruttore

- modello FUSION

11140 - matricola

data delle misure 2023/12/19

- registro di laboratorio CT 335/23

This certificate of calibration is issued in compliance with the accreditation LAT 227 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati unche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been extimated as expanded uncertainty-obtained multiplying, the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Direzione Tecnica

Laboratoria Ambiente Italia Laboratorio di Acostica Via dei Bonzagna, 22 00133 ROMA

06 2023263

06:2023263

CENTRO DI TARATURA

Laboratorio Accreditato di Taratura

Accredited Calibration Laborators

LAT 227

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed EAC

Signatory of EA, IAF and ILAC Mutual Recognition Agraements

Pagina 1 di 13

CERTIFICATO DI TARATURA LAT 227/3564

- Data di Emissione: 2023/12/18

LR.I.D.E. Srl

- cliente

Via Cristoforo Colombo, 163

00147 - Roma (RM)

- destinatario

Idem

Il presente certificato di taratura è emesso in base all'accreditamento LAT 227 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema. Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SD).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del

- Si riferisce a:

ogætto

Fonometro (Filtri 1/3 oct)

- costruttore

- modello

FUSION

- data delle misure

2023/12/18

registro di laboratorio CT 338/23

This certificate of calibration is issued in compliance with the accreditation LAT 227 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati unche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso. di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration vertificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration. unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying, the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Laboratorio Ambiente Italia Via dei Bonzagna, 22: 00133 ROMA

86 2021261

06 2023263

CENTRO DI TARATURA LAT 227

Laboratorio Accreditato di Taratura

ACCREDIA

LAT 227

Membro degli Accordi di Mutuo Riconoscimento EA, IAF ed TLAC

Signatory of EA, UF and ILAC Mobile Recognition Agreement

Pagina 1 di 5

CERTIFICATO DI TARATURA LAT 227/3265

- Data di Emissione: 2023/02/09

LR.LD.E. Srl

- cliente

Via Cristoforo Colombo, 163

00147 - Roma (RM)

- destinatario

Ide m

Il presente certificato di taratura è emesso in base all'accreditamento LAT 227 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali ed internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

- Si riferisce a:

- oggetto

Calibratore

- costruttore

01 dB

- modello

CAL31

- matricola

- data delle misure

- registro di laboratorio CT 39/23

86764

2023/02/09

This certificate of calibration is issued in compliance with the accreditation LAT 227 granted according to decrees connected with Italian Law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with

the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i Campioni di Riferimento da cui inizia la catena di riferibilità del Centro ed i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The mesurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated isem and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente al livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The mesurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

10 APPENDICE C

5:	-	Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R1	Residenziale	935,39	574727,58	4554942,90
R2	Altri ricettori	922,76	574745,41	4554940,13
R3	Altri ricettori	897,90	574790,58	4555321,33
R4	Residenziale	815,03	574837,17	4555037,38
R5	Altri ricettori	853,66	574999,87	4554514,21
R6	Altri ricettori	812,59	575019,89	4554548,88
R7	Residenziale	635,56	575023,52	4555186,04
R8	Altri ricettori	796,41	575029,10	4554578,93
R9	Altri ricettori	857,62	575035,39	4554488,37
R10	Altri ricettori	774,91	575065,50	4554578,30
R11	Altri ricettori	599,09	575179,60	4554706,22
R12	Residenziale	706,96	575186,82	4554551,79
R13	Altri ricettori	657,52	575184,04	4555541,31
R14	Residenziale	806,31	575345,17	4554334,52
R15	Residenziale	762,78	575376,32	4554366,74
R16	Altri ricettori	336,90	575439,02	4554818,59
R17	Residenziale	875,39	575459,82	4554224,08
R18	Residenziale	836,47	575490,14	4554255,48
R19	Altri ricettori	828,26	575526,39	4555905,01
R20	Residenziale	946,52	575545,98	4554134,23
R21	Residenziale	801,81	575608,45	4554273,35
R22	Altri ricettori	789,06	575695,75	4555947,05
R23	Altri ricettori	258,07	575712,02	4555339,81
R24	Altri ricettori	100,63	575735,28	4555007,98
R25	Altri ricettori	746,35	575838,96	4554344,90
R26	Altri ricettori	782,37	575841,45	4554312,70
R27	Residenziale	776,25	575887,73	4554328,42
R28	Altri ricettori	805,92	575881,13	4554304,20
R29	Altri ricettori	704,60	575898,73	4554411,42
R30	Altri ricettori	809,20	575903,45	4554308,40
R31	Altri ricettori	683,30	575928,22	4554448,33
R32	Altri ricettori	496,94	575937,54	4554664,59
R33	Altri ricettori	659,94	575958,06	4554478,15

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R34	Residenziale	493,79	575947,13	4554672,73
R35	Altri ricettori	666,34	575990,99	4554495,65
R36	Altri ricettori	641,05	576018,80	4554539,91
R37	Residenziale	724,41	576040,50	4554448,49
R38	Altri ricettori	493,97	576094,12	4554842,47
R39	Altri ricettori	502,91	576150,86	4554964,04
R40	Altri ricettori	390,22	576165,79	4555278,83
R41	Altri ricettori	349,92	576203,91	4555300,76
R42	Altri ricettori	556,70	576218,41	4555004,23
R43	Altri ricettori	639,03	576295,48	4554938,85
R44	Altri ricettori	638,70	576290,71	4554960,75
R45	Altri ricettori	552,03	576338,72	4555044,41
R46	Altri ricettori	527,86	576340,61	4555067,31
R47	Altri ricettori	544,81	576347,40	4555051,75
R48	Altri ricettori	663,62	576346,47	4556260,48
R49	Altri ricettori	200,84	576352,93	4555792,55
R50	Altri ricettori	579,09	576355,92	4555016,04
R51	Residenziale	535,41	576362,52	4555053,77
R52	Altri ricettori	792,57	576364,67	4556623,29
R53	Altri ricettori	799,57	576380,10	4556662,77
R54	Altri ricettori	894,40	576379,40	4554548,00
R55	Altri ricettori	517,15	576403,79	4555072,54
R56	Altri ricettori	529,48	576434,23	4555057,79
R57	Altri ricettori	272,16	576424,88	4555870,87
R58	Residenziale	511,39	576456,16	4555078,39
R59	Residenziale	454,07	576523,82	4555149,16
R60	Altri ricettori	741,94	576576,79	4554866,94
R61	Altri ricettori	412,19	576619,96	4556077,60
R62	Altri ricettori	318,46	576709,71	4556101,49
R63	Residenziale	751,87	576769,00	4556885,07
R64	Residenziale	763,41	576814,46	4556913,09
R65	Altri ricettori	493,13	576910,28	4556658,45
R66	Altri ricettori	500,12	576913,33	4555560,65
R67	Altri ricettori	511,31	576925,45	4555549,45

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R68	Altri ricettori	501,77	576941,67	4556671,31
R69	Residenziale	511,20	576955,44	4556686,61
R70	Residenziale	307,45	577013,45	4556486,01
R71	Altri ricettori	942,10	577206,67	4557099,56
R72	Altri ricettori	879,62	577250,47	4557024,55
R73	Altri ricettori	775,06	577278,74	4556910,96
R74	Residenziale	857,54	577323,51	4555341,77
R75	Altri ricettori	777,33	577335,25	4556887,92
R76	Altri ricettori	748,04	577361,04	4556842,43
R77	Altri ricettori	715,87	577398,07	4556784,89
R78	Altri ricettori	686,00	577434,75	4556724,54
R79	Altri ricettori	592,03	577478,22	4556552,40
R80	Residenziale	603,24	577497,87	4556550,57
R81	Residenziale	648,53	577537,91	4556574,81
R82	Residenziale	637,75	577571,64	4555827,35
R83	Altri ricettori	663,49	577593,34	4556518,33
R84	Residenziale	648,71	577596,52	4555852,45
R85	Altri ricettori	671,52	577601,19	4555819,21
R86	Residenziale	662,44	577607,28	4556502,46
R87	Residenziale	651,61	577624,02	4555868,44
R88	Residenziale	696,95	577665,79	4555853,41
R89	Residenziale	730,46	577713,59	4555889,14
R90	Altri ricettori	712,21	577712,23	4556381,19
R91	Residenziale	708,16	577714,40	4556358,23
R92	Altri ricettori	777,06	577731,98	4555823,35
R93	Altri ricettori	799,33	577768,46	4555874,66
R94	Altri ricettori	851,15	577876,15	4556139,58
R95	Altri ricettori	853,18	577902,36	4556190,39
R96	Altri ricettori	858,54	577888,79	4556127,83
R97	Altri ricettori	893,10	577923,77	4556150,61
R98	Altri ricettori	967,46	577939,48	4555843,85
R99	Altri ricettori	912,22	577944,00	4556169,99
R100	Altri ricettori	984,70	577981,91	4556412,22
R101	Altri ricettori	938,91	578662,32	4551706,36

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R102	Altri ricettori	900,04	578737,52	4551462,87
R103	Residenziale	895,59	578745,64	4551428,94
R104	Altri ricettori	902,76	578749,64	4551411,87
R105	Altri ricettori	884,35	578833,39	4552146,47
R106	Residenziale	756,41	578850,44	4551591,44
R107	Residenziale	733,09	578878,27	4551563,43
R108	Altri ricettori	838,76	579017,79	4552310,58
R109	Altri ricettori	843,73	579095,62	4552384,77
R110	Residenziale	946,23	579108,58	4552527,98
R111	Altri ricettori	958,43	579122,89	4552543,28
R112	Residenziale	518,62	579162,61	4552010,36
R113	Altri ricettori	940,04	579184,28	4552561,07
R114	Altri ricettori	469,48	579181,46	4551928,05
R115	Altri ricettori	521,90	579201,49	4552044,03
R116	Altri ricettori	387,58	579215,33	4551735,19
R117	Altri ricettori	444,12	579235,82	4551988,16
R118	Altri ricettori	451,98	579242,55	4552009,22
R119	Altri ricettori	983,80	579244,19	4554685,41
R120	Altri ricettori	440,62	579265,68	4551992,48
R121	Altri ricettori	430,75	579286,48	4552002,25
R122	Altri ricettori	382,60	579317,25	4551453,77
R123	Altri ricettori	233,90	579375,14	4551655,44
R124	Altri ricettori	779,50	579447,29	4550936,02
R125	Altri ricettori	410,43	579500,84	4552145,01
R126	Altri ricettori	830,44	579521,29	4550876,20
R127	Altri ricettori	782,55	579535,72	4550911,02
R128	Altri ricettori	387,14	579583,29	4552132,94
R129	Altri ricettori	380,60	579623,84	4552096,73
R130	Altri ricettori	640,72	579787,93	4552349,06
R131	Altri ricettori	679,54	579902,17	4552556,62
R132	Altri ricettori	538,27	579924,23	4552370,06
R133	Altri ricettori	676,12	579927,45	4554235,49
R134	Altri ricettori	582,08	579969,33	4554319,87
R135	Altri ricettori	586,14	580088,19	4552577,14

D:	- . , .	Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R136	Altri ricettori	462,86	580089,86	4552431,86
R137	Altri ricettori	265,26	580119,04	4555098,15
R138	Altri ricettori	762,34	580126,00	4552784,57
R139	Altri ricettori	300,19	580133,47	4552258,17
R140	Altri ricettori	271,75	580159,69	4552244,01
R141	Altri ricettori	465,17	580161,27	4552480,35
R142	Altri ricettori	428,20	580177,53	4554421,10
R143	Altri ricettori	818,78	580204,26	4552865,03
R144	Altri ricettori	433,28	580240,79	4552477,01
R145	Altri ricettori	470,59	580240,23	4554148,71
R146	Altri ricettori	460,94	580246,92	4554172,22
R147	Altri ricettori	892,17	580317,60	4552951,62
R148	Altri ricettori	694,23	580327,23	4553615,90
R149	Altri ricettori	418,48	580338,10	4554394,55
R150	Altri ricettori	237,71	580353,94	4555048,03
R151	Altri ricettori	587,95	580372,33	4549824,57
R152	Altri ricettori	552,24	580379,02	4553754,07
R153	Altri ricettori	802,16	580383,15	4553461,88
R154	Altri ricettori	513,01	580384,86	4553797,67
R155	Altri ricettori	995,81	580389,63	4553057,55
R156	Altri ricettori	360,76	580400,66	4554534,76
R157	Altri ricettori	306,75	580415,30	4552366,15
R158	Altri ricettori	350,00	580417,59	4552409,43
R159	Altri ricettori	381,98	580422,11	4555174,75
R160	Altri ricettori	339,36	580435,48	4554403,64
R161	Altri ricettori	363,24	580443,61	4552416,41
R162	Altri ricettori	85,24	580452,43	4551195,44
R163	Altri ricettori	267,84	580460,18	4551441,27
R164	Altri ricettori	493,26	580480,26	4553757,81
R165	Altri ricettori	327,95	580488,07	4552370,68
R166	Altri ricettori	349,22	580492,15	4552389,44
R167	Altri ricettori	687,74	580527,80	4553528,85
R168	Altri ricettori	446,08	580530,26	4553786,24
R169	Altri ricettori	175,12	580545,89	4552053,86

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R170	Altri ricettori	228,82	580562,92	4551933,23
R171	Altri ricettori	199,46	580573,93	4552064,71
R172	Altri ricettori	353,21	580576,81	4552348,40
R173	Altri ricettori	413,43	580589,16	4551538,25
R174	Altri ricettori	407,16	580591,34	4551528,79
R175	Altri ricettori	975,42	580663,69	4555725,74
R176	Altri ricettori	392,04	580670,77	4551802,81
R177	Altri ricettori	444,34	580725,38	4552327,59
R178	Altri ricettori	384,67	580737,52	4552197,95
R179	Altri ricettori	424,46	580742,90	4552267,32
R180	Altri ricettori	461,19	580794,62	4552258,70
R181	Altri ricettori	454,98	580826,02	4552067,12
R182	Altri ricettori	523,72	580838,99	4554709,38
R183	Altri ricettori	528,47	580843,55	4554713,44
R184	Altri ricettori	479,55	580846,90	4551146,21
R185	Altri ricettori	540,23	580852,00	4552320,23
R186	Altri ricettori	168,72	580870,66	4554130,65
R187	Altri ricettori	641,43	580884,91	4554818,03
R188	Altri ricettori	621,14	580909,96	4552381,93
R189	Altri ricettori	607,73	580913,06	4552334,42
R190	Altri ricettori	592,55	580924,01	4552276,15
R191	Altri ricettori	701,45	580939,09	4548984,40
R192	Altri ricettori	843,40	580940,14	4555307,08
R193	Altri ricettori	687,43	580940,41	4549003,47
R194	Altri ricettori	702,12	580967,65	4552442,73
R195	Altri ricettori	854,44	580960,99	4555291,63
R196	Altri ricettori	696,34	580978,43	4548991,77
R197	Altri ricettori	757,89	580976,22	4548933,75
R198	Altri ricettori	682,36	580980,12	4549009,27
R199	Altri ricettori	377,88	580996,83	4551833,75
R200	Altri ricettori	397,95	580999,92	4551904,16
R201	Altri ricettori	691,11	581016,96	4548998,75
R202	Altri ricettori	677,75	581016,54	4549015,92
R203	Altri ricettori	727,54	581024,58	4555022,67

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R204	Altri ricettori	752,84	581050,22	4552424,66
R205	Altri ricettori	339,58	581046,70	4551611,07
R206	Altri ricettori	280,50	581084,14	4551773,22
R207	Altri ricettori	435,43	581125,15	4554340,02
R208	Altri ricettori	676,46	581166,66	4555308,99
R209	Altri ricettori	176,06	581193,54	4551682,68
R210	Altri ricettori	680,78	581203,19	4555370,00
R211	Altri ricettori	202,74	581214,98	4551593,68
R212	Altri ricettori	769,89	581243,02	4553631,90
R213	Altri ricettori	787,16	581249,13	4553612,93
R214	Residenziale	972,89	581264,75	4555811,64
R215	Altri ricettori	169,16	581267,49	4551593,86
R216	Altri ricettori	619,24	581280,92	4554448,32
R217	Altri ricettori	647,28	581290,28	4555421,68
R218	Altri ricettori	175,20	581293,55	4551570,00
R219	Altri ricettori	642,05	581307,14	4554493,92
R220	Altri ricettori	657,61	581331,26	4550239,13
R221	Altri ricettori	252,23	581335,25	4551480,61
R222	Altri ricettori	193,50	581359,79	4551537,50
R223	Altri ricettori	218,81	581360,73	4551512,21
R224	Altri ricettori	604,28	581381,31	4555442,84
R225	Altri ricettori	599,11	581395,50	4555446,65
R226	Altri ricettori	758,66	581410,61	4549081,16
R227	Altri ricettori	594,61	581415,79	4555454,56
R228	Altri ricettori	658,22	581430,91	4550170,15
R229	Altri ricettori	469,61	581428,79	4554618,52
R230	Altri ricettori	849,52	581441,50	4553736,98
R231	Altri ricettori	872,80	581448,25	4553721,98
R232	Altri ricettori	678,94	581445,13	4550159,41
R233	Altri ricettori	441,43	581446,47	4554640,42
R234	Altri ricettori	920,04	581447,50	4553642,93
R235	Altri ricettori	916,55	581446,42	4553648,59
R236	Altri ricettori	892,70	581459,43	4553670,59
R237	Altri ricettori	932,66	581451,78	4553627,47

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R238	Altri ricettori	731,97	581455,57	4550229,11
R239	Altri ricettori	759,39	581462,39	4550276,98
R240	Altri ricettori	411,30	581463,34	4554664,78
R241	Altri ricettori	889,44	581474,31	4553718,23
R242	Altri ricettori	910,83	581483,22	4553679,65
R243	Altri ricettori	445,44	581490,62	4551303,70
R244	Altri ricettori	886,56	581502,80	4553788,40
R245	Altri ricettori	460,66	581503,49	4551290,96
R246	Altri ricettori	787,45	581522,91	4550259,42
R247	Altri ricettori	820,18	581514,96	4550304,22
R248	Altri ricettori	850,17	581516,30	4550337,35
R249	Altri ricettori	907,08	581558,60	4553843,10
R250	Altri ricettori	271,77	581548,88	4554776,06
R251	Altri ricettori	948,48	581565,15	4553768,36
R252	Altri ricettori	926,91	581561,48	4553818,70
R253	Altri ricettori	959,63	581571,08	4553755,01
R254	Altri ricettori	230,36	581569,29	4554810,68
R255	Altri ricettori	979,62	581646,43	4553722,61
R256	Altri ricettori	594,96	581636,01	4555550,12
R257	Altri ricettori	114,24	581641,16	4554919,49
R258	Altri ricettori	834,86	581720,08	4553877,66
R259	Altri ricettori	974,81	581661,88	4553691,65
R260	Altri ricettori	971,92	581668,49	4553679,74
R261	Altri ricettori	81,93	581667,62	4554950,61
R262	Altri ricettori	928,67	581675,06	4555891,87
R263	Residenziale	607,95	581678,29	4555572,87
R264	Altri ricettori	955,44	581682,68	4553698,20
R265	Altri ricettori	534,19	581698,26	4551311,75
R266	Altri ricettori	925,34	581701,54	4553791,89
R267	Altri ricettori	928,19	581719,11	4553645,24
R268	Altri ricettori	903,22	581724,00	4553785,05
R269	Altri ricettori	915,42	581725,41	4553689,69
R270	Altri ricettori	920,08	581725,14	4553680,27
R271	Altri ricettori	689,53	581741,60	4551146,43

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R272	Altri ricettori	56,11	581736,93	4555020,34
R273	Altri ricettori	624,58	581738,02	4555590,55
R274	Altri ricettori	922,66	581737,94	4553618,24
R275	Residenziale	939,99	581749,41	4553496,46
R276	Altri ricettori	633,74	581757,21	4555600,02
R277	Altri ricettori	89,39	581759,89	4555055,21
R278	Altri ricettori	878,07	581768,29	4553677,60
R279	Altri ricettori	707,47	581798,37	4551165,92
R280	Altri ricettori	763,29	581800,63	4551102,18
R281	Residenziale	870,31	581813,88	4553537,42
R282	Altri ricettori	162,42	581819,57	4555116,10
R283	Altri ricettori	807,02	581825,57	4551067,49
R284	Altri ricettori	757,87	581838,16	4551133,93
R285	Altri ricettori	958,94	581858,99	4553278,45
R286	Altri ricettori	980,60	581868,75	4553246,84
R287	Altri ricettori	820,98	581877,80	4551085,14
R288	Altri ricettori	872,13	581867,33	4551018,31
R289	Altri ricettori	759,64	581872,86	4553744,02
R290	Altri ricettori	316,29	581872,09	4555258,14
R291	Altri ricettori	920,52	581878,59	4553320,92
R292	Altri ricettori	794,92	581891,85	4553537,58
R293	Altri ricettori	889,19	581879,12	4551005,49
R294	Altri ricettori	926,25	581888,77	4553309,68
R295	Residenziale	779,43	581891,76	4553595,19
R296	Altri ricettori	862,47	581903,52	4553381,00
R297	Altri ricettori	779,90	581900,53	4553574,34
R298	Altri ricettori	719,89	581903,12	4553871,90
R299	Residenziale	817,82	581952,58	4553363,90
R300	Altri ricettori	741,53	581930,76	4554165,21
R301	Altri ricettori	912,25	581921,95	4553294,54
R302	Altri ricettori	898,29	581924,45	4553309,77
R303	Residenziale	783,27	581933,47	4553492,14
R304	Altri ricettori	875,48	581948,34	4553293,39
R305	Altri ricettori	429,02	581938,96	4555354,16

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R306	Altri ricettori	693,65	581967,05	4554159,42
R307	Residenziale	730,35	581951,21	4553572,95
R308	Altri ricettori	772,58	581951,83	4553482,65
R309	Altri ricettori	727,88	581957,18	4554195,21
R310	Altri ricettori	780,69	581975,60	4553434,49
R311	Altri ricettori	666,19	581972,50	4554021,83
R312	Altri ricettori	475,06	581978,90	4555384,26
R313	Altri ricettori	824,70	581990,89	4553319,95
R314	Altri ricettori	683,99	581982,85	4554121,81
R315	Residenziale	696,19	582009,40	4553526,23
R316	Altri ricettori	671,35	582007,41	4554161,30
R317	Altri ricettori	590,37	582037,46	4553948,19
R318	Altri ricettori	681,99	582043,17	4553512,87
R319	Altri ricettori	625,75	582049,21	4555517,68
R320	Altri ricettori	785,52	582091,46	4555739,42
R321	Residenziale	823,72	582133,59	4555708,55
R322	Altri ricettori	851,87	582191,67	4555698,01
R323	Altri ricettori	956,47	582216,86	4551289,15
R324	Residenziale	874,30	582233,08	4557347,88
R325	Altri ricettori	417,09	582292,99	4554132,95
R326	Residenziale	809,02	582309,79	4557237,28
R327	Residenziale	789,37	582318,41	4557379,43
R328	Residenziale	867,35	582315,10	4557025,66
R329	Altri ricettori	900,76	582341,76	4555664,77
R330	Altri ricettori	241,78	582347,94	4554654,39
R331	Altri ricettori	331,71	582362,49	4554511,82
R332	Altri ricettori	321,86	582369,94	4554518,35
R333	Altri ricettori	335,80	582390,21	4554120,45
R334	Altri ricettori	759,53	582414,73	4553144,45
R335	Altri ricettori	645,38	582464,81	4559954,90
R336	Altri ricettori	637,99	582593,79	4553236,26
R337	Altri ricettori	779,53	582599,92	4553094,45
R338	Altri ricettori	417,93	582608,73	4555203,69
R339	Altri ricettori	506,89	582644,94	4557567,43

5	- . , .	Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R340	Altri ricettori	848,31	582663,91	4560417,22
R341	Altri ricettori	818,20	582682,61	4560392,12
R342	Altri ricettori	328,67	582705,70	4554489,79
R343	Altri ricettori	905,70	582730,50	4558213,34
R344	Altri ricettori	846,58	582762,27	4558327,05
R345	Altri ricettori	540,54	582765,89	4553350,27
R346	Residenziale	791,24	582781,68	4560455,59
R347	Altri ricettori	482,40	582789,62	4557731,47
R348	Altri ricettori	777,65	582812,99	4558448,02
R349	Residenziale	949,55	582833,62	4560684,49
R350	Altri ricettori	502,19	582838,83	4554368,99
R351	Altri ricettori	452,90	582845,60	4559913,86
R352	Residenziale	927,21	582842,49	4560663,90
R353	Altri ricettori	439,49	582854,57	4559899,28
R354	Altri ricettori	738,09	582853,34	4558448,89
R355	Altri ricettori	768,66	582892,43	4558110,49
R356	Altri ricettori	668,85	582925,64	4558419,95
R357	Altri ricettori	394,85	582937,98	4559097,06
R358	Altri ricettori	729,39	582945,55	4553216,63
R359	Altri ricettori	411,51	582972,41	4560103,56
R360	Altri ricettori	544,72	582975,02	4553454,38
R361	Altri ricettori	422,82	583016,45	4553709,23
R362	Altri ricettori	958,10	583018,92	4560772,49
R363	Altri ricettori	971,40	583047,19	4560794,88
R364	Altri ricettori	688,39	583079,23	4555243,08
R365	Altri ricettori	709,43	583092,16	4555255,33
R366	Altri ricettori	583,84	583111,94	4558997,88
R367	Residenziale	912,16	583124,59	4555513,67
R368	Altri ricettori	950,96	583136,09	4555546,86
R369	Altri ricettori	994,93	583138,03	4555599,75
R370	Altri ricettori	945,46	583163,25	4555526,91
R371	Altri ricettori	972,31	583173,12	4555543,01
R372	Altri ricettori	667,88	583189,47	4555002,87
R373	Altri ricettori	626,31	583193,76	4553599,29

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R374	Altri ricettori	772,76	583198,98	4555220,89
R375	Residenziale	742,82	583206,09	4560595,49
R376	Residenziale	778,20	583205,08	4560630,73
R377	Altri ricettori	631,54	583216,79	4559107,64
R378	Altri ricettori	640,05	583211,84	4553607,02
R379	Altri ricettori	769,94	583251,67	4560624,77
R380	Altri ricettori	613,60	583257,90	4559026,54
R381	Altri ricettori	590,01	583271,19	4559002,14
R382	Altri ricettori	602,77	583271,22	4559015,13
R383	Altri ricettori	985,13	583284,12	4556392,25
R384	Altri ricettori	484,59	583294,36	4560342,18
R385	Altri ricettori	583,83	583303,82	4559012,68
R386	Altri ricettori	576,37	583305,17	4559006,23
R387	Altri ricettori	840,88	583333,40	4553410,61
R388	Residenziale	840,07	583335,46	4556549,32
R389	Residenziale	636,83	583339,54	4559093,39
R390	Altri ricettori	556,79	583341,84	4559016,55
R391	Altri ricettori	893,33	583341,27	4553337,35
R392	Altri ricettori	952,62	583344,10	4556441,69
R393	Altri ricettori	408,68	583346,61	4558831,79
R394	Altri ricettori	917,00	583350,86	4555251,26
R395	Residenziale	935,46	583360,26	4556458,26
R396	Altri ricettori	932,26	583365,72	4556468,66
R397	Altri ricettori	128,74	583369,26	4559968,49
R398	Altri ricettori	725,42	583368,49	4556686,13
R399	Altri ricettori	713,56	583368,82	4556699,31
R400	Altri ricettori	914,40	583380,43	4555201,17
R401	Altri ricettori	936,72	583387,49	4555247,27
R402	Residenziale	715,50	583386,22	4556697,38
R403	Altri ricettori	940,71	583383,16	4556463,77
R404	Altri ricettori	734,76	583384,43	4556681,25
R405	Altri ricettori	902,98	583403,44	4555104,51
R406	Altri ricettori	987,19	583410,88	4555283,83
R407	Residenziale	796,31	583416,62	4556623,69

5	-	Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R408	Residenziale	719,83	583451,99	4556725,56
R409	Altri ricettori	815,75	583467,84	4560655,20
R410	Altri ricettori	931,54	583488,30	4554780,06
R411	Altri ricettori	530,85	583492,27	4560356,05
R412	Residenziale	980,25	583538,92	4554667,72
R413	Altri ricettori	290,80	583571,76	4559716,98
R414	Altri ricettori	584,65	583579,70	4559335,66
R415	Altri ricettori	539,69	583586,51	4559389,99
R416	Residenziale	517,06	583604,71	4559412,78
R417	Altri ricettori	588,85	583593,79	4559323,48
R418	Altri ricettori	520,20	583623,53	4557243,16
R419	Altri ricettori	557,61	583633,55	4559396,73
R420	Altri ricettori	585,02	583631,46	4559365,96
R421	Altri ricettori	402,87	583651,57	4560061,04
R422	Altri ricettori	736,81	583700,83	4560478,93
R423	Altri ricettori	502,51	583720,92	4560139,36
R424	Altri ricettori	602,10	583818,06	4560171,22
R425	Altri ricettori	542,94	583867,51	4559899,23
R426	Altri ricettori	551,22	583857,74	4559856,31
R427	Altri ricettori	583,76	583897,78	4559851,87
R428	Altri ricettori	675,13	583916,81	4559098,55
R429	Altri ricettori	876,33	583964,25	4557144,21
R430	Altri ricettori	872,97	583989,29	4557721,55
R431	Altri ricettori	872,01	583993,63	4557726,06
R432	Altri ricettori	888,77	584062,41	4557742,47
R433	Altri ricettori	905,69	584150,71	4559529,92
R434	Altri ricettori	705,01	584153,46	4558934,70
R435	Altri ricettori	972,30	584187,80	4557730,23
R436	Altri ricettori	940,16	584221,40	4559643,87
R437	Altri ricettori	924,83	584230,31	4559806,29
R438	Altri ricettori	903,09	584317,65	4557666,10
R439	Altri ricettori	836,01	584334,98	4557399,33
R440	Altri ricettori	960,98	584373,52	4556836,30
R441	Altri ricettori	733,15	584436,92	4557357,57

.		Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R442	Altri ricettori	837,55	584492,39	4556880,52
R443	Altri ricettori	867,06	584505,39	4556816,47
R444	Residenziale	662,04	584529,57	4557565,20
R445	Altri ricettori	672,94	584535,07	4557588,56
R446	Altri ricettori	661,96	584542,20	4557580,08
R447	Altri ricettori	645,83	584554,61	4557568,64
R448	Altri ricettori	847,95	584634,17	4556713,36
R449	Residenziale	871,06	584687,60	4556635,83
R450	Altri ricettori	510,05	584821,13	4556998,84
R451	Residenziale	576,50	584832,83	4556893,19
R452	Altri ricettori	591,09	584864,13	4557881,75
R453	Altri ricettori	449,48	584952,96	4556967,80
R454	Residenziale	634,64	584965,99	4556758,87
R455	Altri ricettori	651,17	584979,89	4556741,25
R456	Altri ricettori	344,21	585053,96	4557701,80
R457	Altri ricettori	873,39	585079,61	4556500,39
R458	Residenziale	559,27	585159,17	4556800,63
R459	Residenziale	496,57	585277,33	4556871,51
R460	Altri ricettori	784,16	585273,07	4556590,47
R461	Altri ricettori	337,90	585440,74	4557157,44
R462	Altri ricettori	381,08	585474,85	4557129,89
R463	Altri ricettori	406,94	585476,16	4557090,39
R464	Altri ricettori	840,98	585480,44	4558157,50
R465	Altri ricettori	445,53	585496,01	4557057,39
R466	Altri ricettori	397,92	585503,19	4557139,75
R467	Altri ricettori	452,44	585504,90	4557052,04
R468	Altri ricettori	424,26	585513,58	4557107,82
R469	Altri ricettori	477,25	585513,25	4557031,05
R470	Altri ricettori	454,55	585609,10	4557506,67
R471	Altri ricettori	457,37	585612,82	4557507,41
R472	Altri ricettori	962,11	585703,80	4556563,89
R473	Altri ricettori	630,59	585705,52	4557713,32
R474	Altri ricettori	639,77	585744,46	4557073,08
R475	Altri ricettori	597,61	585749,18	4557547,44

Disattons	The alle with	Distanza da	Coordin	ate UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R476	Altri ricettori	582,20	585751,58	4557461,72
R477	Altri ricettori	946,20	585774,78	4558106,47
R478	Altri ricettori	888,56	585839,50	4557962,11
R479	Altri ricettori	866,82	586029,93	4557522,20
R480	Altri ricettori	950,07	586064,51	4557024,49
R481	Altri ricettori	937,53	586089,37	4557583,01

11 APPENDICE D

Ricettore	Cod.	R1	R4	R7	R12	R14	R15	R17	R18	R20	R21
Rumore campo eolico (A)	LeqD	39,1	40,7	43,7	42,4	40,9	41,6	40	40,5	39,1	43,5
	LeqN	39,1	40,7	43,7	42,4	40,9	41,6	40	40,5	39,1	43,5
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,6	51,7	52,0	51,8	51,7	51,7	51,6	51,6	51,6	52,0
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	LeqN	0,3	0,4	0,7	0,5	0,4	0,4	0,3	0,3	0,3	0,7

PARCO EOLICO MINERVINO

Ricettore	Cod.	R27	R34	R37	R51	R58	R59	R63	R64	R69	R70
Rumore campo eolico (A)	LeqD	43,8	47,2	42,7	48,7	47,4	48,5	42	41,8	46,5	51,3
	LeqN	43,8	47,2	42,7	48,7	47,4	48,5	42	41,8	46,5	51,3
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,3	63,2	63,4	63,3	63,3	63,2	63,2	63,3	63,5
	LeqN	52,0	52,7	51,9	53,2	52,8	53,1	51,8	51,8	52,5	54,3
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,0	0,1	0,0	0,2	0,1	0,1	0,0	0,0	0,1	0,3
	LeqN	0,7	1,4	0,6	1,9	1,5	1,8	0,5	0,5	1,2	3,0

PARCO EOLICO MINERVINO

Ricettore	Cod.	R74	R80	R81	R82	R84	R86	R87	R88	R89	R91
Rumore campo eolico (A)	LeqD	43,5	44,3	43,4	44,5	43,8	43,2	43,7	42,6	44,7	42,4
	LeqN	43,5	44,3	43,4	44,5	43,8	43,2	43,7	42,6	44,7	42,4
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,3	63,2	63,3	63,2	63,2	63,2	63,2	63,3	63,2
	LeqN	52,0	52,1	52,0	52,1	52,0	51,9	52,0	51,8	52,2	51,8
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,0	0,1	0,0	0,1	0,0	0,0	0,0	0,0	0,1	0,0
	LeqN	0,7	0,8	0,7	0,8	0,7	0,6	0,7	0,5	0,9	0,5

PARCO EOLICO MINERVINO

Ricettore	Cod.	R103	R106	R107	R110	R112	R214	R263	R275	R281	R295
Rumore campo eolico (A)	LeqD	40,3	44,2	42,4	40,3	46,3	40,3	44,7	41,2	41,6	42,9
	LeqN	40,3	44,2	42,4	40,3	46,3	40,3	44,7	41,2	41,6	42,9
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,3	63,2	63,2	63,3	63,2	63,3	63,2	63,2	63,2
	LeqN	51,6	52,1	51,8	51,6	52,5	51,6	52,2	51,7	51,7	51,9
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale (C-B)	LeqD	0,0	0,1	0,0	0,0	0,1	0,0	0,1	0,0	0,0	0,0
	LeqN	0,3	0,8	0,5	0,3	1,2	0,3	0,9	0,4	0,4	0,6

Ricettore	Cod.	R299	R303	R307	R315	R321	R324	R326	R327	R328	R346
Rumore campo eolico	LeqD	42,9	42,4	43,2	43,4	42,5	40,1	40,9	41,1	40,2	40,7
(A)	LeqN	42,9	42,4	43,2	43,4	42,5	40,1	40,9	41,1	40,2	40,7
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
accelute	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore ambientale (C)	LeqN	51,9	51,8	51,9	52,0	51,8	51,6	51,7	51,7	51,6	51,7
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
(C B)	LeqN	0,6	0,5	0,6	0,7	0,5	0,3	0,4	0,4	0,3	0,4

Ricettore	Cod.	R349	R352	R367	R375	R376	R388	R389	R395	R402	R407
Rumore campo eolico	LeqD	39,5	38,8	40,5	41,5	41	40,5	44,5	39,3	42,2	41,1
(A)	LeqN	39,5	38,8	40,5	41,5	41	40,5	44,5	39,3	42,2	41,1
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (b)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
acceluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,3	63,2	63,2	63,2
Rumore ambientale (C)	LeqN	51,6	51,5	51,6	51,7	51,7	51,6	52,1	51,6	51,8	51,7
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0
(C B)	LeqN	0,3	0,2	0,3	0,4	0,4	0,3	0,8	0,3	0,5	0,4

Ricettore	Cod.	R408	R412	R416	R444	R449	R451	R454	R458	R459
Rumore campo eolico	LeqD	44,4	40,5	46,1	42,7	40,1	47	43,6	45,1	46,6
(A)	LeqN	44,4	40,5	46,1	42,7	40,1	47	43,6	45,1	46,6
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rulliole lesiduo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70
Limite di immissione assoluta	LeqN	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,3	63,2	63,3	63,2	63,2	63,3	63,2	63,3	63,3
Rumore ambientale (C)	LeqN	52,1	51,6	52,4	51,9	51,6	52,7	52,0	52,2	52,6
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,1	0,0	0,1	0,0	0,0	0,1	0,0	0,1	0,1
	LeqN	0,8	0,3	1,1	0,6	0,3	1,4	0,7	0,9	1,3

12 APPENDICE E

Ricettore	Cod.	R1	R4	R7	R12	R14	R15	R17	R18	R20	R21
Rumore campo eolico	LeqD	40,5	42,2	44,5	43,7	45,3	44,6	46,9	46,5	48,4	46,8
(A)	LeqN	40,5	42,2	44,5	43,7	45,3	44,6	46,9	46,5	48,4	46,8
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Kulliole lesiduo (b)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,2	63,3	63,2	63,3	63,3	63,3	63,3	63,3	63,3
Rumore ambientale (C)	LeqN	51,6	51,8	52,1	52,0	52,3	52,1	52,6	52,5	53,1	52,6
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,0	0,0	0,1	0,0	0,1	0,1	0,1	0,1	0,1	0,1
(C B)	LeqN	0,3	0,5	0,8	0,7	1,0	0,8	1,3	1,2	1,8	1,3

Ricettore	Cod.	R27	R34	R37	R51	R58	R59	R63	R64	R69	R70
Rumore campo eolico	LeqD	48	47,4	48,3	48,7	49	49,4	42,8	42,6	46,9	51,3
(A)	LeqN	48	47,4	48,3	48,7	49	49,4	42,8	42,6	46,9	51,3
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,3	63,3	63,3	63,4	63,4	63,4	63,2	63,2	63,3	63,5
Rumore ambientale (C)	LeqN	53,0	52,8	53,1	53,2	53,3	53,5	51,9	51,8	52,6	54,3
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,1	0,1	0,1	0,2	0,2	0,2	0,0	0,0	0,1	0,3
(C-B)	LeqN	1,7	1,5	1,8	1,9	2,0	2,2	0,6	0,5	1,3	3,0

Ricettore	Cod.	R74	R80	R81	R82	R84	R86	R87	R88	R89	R91
Rumore campo eolico	LeqD	47,5	45	44,1	46,2	45,4	44,2	45,9	45,1	45,6	44,3
(A)	LeqN	47,5	45	44,1	46,2	45,4	44,2	45,9	45,1	45,6	44,3
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (b)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
Limite di immissione assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3	63,3
Rumore ambientale (C)	LeqN	52,8	52,2	52,1	52,5	52,3	52,1	52,4	52,2	52,3	52,1
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
(C D)	LeqN	1,5	0,9	0,8	1,2	1,0	0,8	1,1	0,9	1,0	0,8

Ricettore	Cod.	R103	R106	R107	R110	R112	R214	R263	R275	R281	R295
Rumore campo eolico	LeqD	42,4	44,5	44,2	43,7	46,5	42,1	45,1	47,2	46	44,6
(A)	LeqN	42,4	44,5	44,2	43,7	46,5	42,1	45,1	47,2	46	44,6
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (b)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
Limite di immissione assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,3	63,3	63,2	63,3	63,2	63,3	63,3	63,3	63,3
Rumore ambientale (C)	LeqN	51,8	52,1	52,1	52,0	52,5	51,8	52,2	52,7	52,4	52,1
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,0	0,1	0,1	0,0	0,1	0,0	0,1	0,1	0,1	0,1
(C D)	LeqN	0,5	0,8	0,8	0,7	1,2	0,5	0,9	1,4	1,1	0,8

Ricettore	Cod.	R299	R303	R307	R315	R321	R324	R326	R327	R328	R346
Rumore campo eolico	LeqD	49,2	45,3	44,3	44,6	42,9	40,4	41,2	41,5	40,6	40,7
(A)	LeqN	49,2	45,3	44,3	44,6	42,9	40,4	41,2	41,5	40,6	40,7
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,4	63,3	63,3	63,3	63,2	63,2	63,2	63,2	63,2	63,2
Rumore ambientale (C)	LeqN	53,4	52,3	52,1	52,1	51,9	51,6	51,7	51,7	51,7	51,7
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,2	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0
(C-B)	LeqN	2,1	1,0	0,8	0,8	0,6	0,3	0,4	0,4	0,4	0,4

Ricettore	Cod.	R349	R352	R367	R375	R376	R388	R389	R395	R402	R407
Rumore campo eolico	LeqD	39,5	38,8	40,8	41,5	41	42,4	44,6	40,5	44,3	43,5
(A)	LeqN	39,5	38,8	40,8	41,5	41	42,4	44,6	40,5	44,3	43,5
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (B)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70	70
assoluta	LeqN	60	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,3	63,2	63,3	63,2
Rumore ambientale (C)	LeqN	51,6	51,5	51,7	51,7	51,7	51,8	52,1	51,6	52,1	52,0
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,1	0,0
(C-B)	LeqN	0,3	0,2	0,4	0,4	0,4	0,5	0,8	0,3	0,8	0,7

Ricettore	Cod.	R408	R412	R416	R444	R449	R451	R454	R458	R459
Rumore campo eolico	LeqD	44,8	40,7	46,1	44,4	43	47,7	44,5	45,5	46,9
(A)	LeqN	44,8	40,7	46,1	44,4	43	47,7	44,5	45,5	46,9
Rumore residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Rumore residuo (b)	LeqN	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3	51,3
Limite di immissione	LeqD	70	70	70	70	70	70	70	70	70
Limite di immissione Assoluta	LeqN	60	60	60	60	60	60	60	60	60
Rumore ambientale (C)	LeqD	63,3	63,2	63,3	63,3	63,2	63,3	63,3	63,3	63,3
Rumore ambientale (C)	LeqN	52,2	51,7	52,4	52,1	51,9	52,9	52,1	52,3	52,6
Limite di immissione	LeqD	5	5	5	5	5	5	5	5	5
differenziale	LeqN	3	3	3	3	3	3	3	3	3
Livello differenziale	LeqD	0,1	0,0	0,1	0,1	0,0	0,1	0,1	0,1	0,1
	LeqN	0,9	0,4	1,1	0,8	0,6	1,6	0,8	1,0	1,3

13 APPENDICE F

Ricettore	Cod.	R1	R4	R7	R12	R14	R15	R17	R18	R20	R21
Rumore Cantiere (A)	LeqD	41,1	42,4	44,8	43,8	42,5	43,1	41,9	42,3	41,2	45,1
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,2	63,2	63,3	63,2	63,2	63,2	63,2	63,2	63,2	63,3

Ricettore	Cod.	R27	R34	R37	R51	R58	R59	R63	R64	R69	R70
Rumore Cantiere (A)	LeqD	45,3	47,4	43,9	49,3	48	48,6	43,7	43,5	46,9	51,6
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,3	63,3	63,3	63,4	63,3	63,3	63,2	63,2	63,3	63,5

Ricettore	Cod.	R74	R80	R81	R82	R84	R86	R87	R88	R89	R91
Rumore Cantiere (A)	LeqD	44,9	45,2	43,5	46	45	44,4	44,9	43,9	46,2	43,8
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,3	63,3	63,2	63,3	63,3	63,3	63,3	63,3	63,3	63,2

Ricettore	Cod.	R103	R106	R107	R110	R112	R214	R263	R275	R281	R295
Rumore Cantiere (A)	LeqD	42,5	45,8	44,1	42,6	47,1	42,6	45,9	43,2	43,7	44,2
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,2	63,3	63,3	63,2	63,3	63,2	63,3	63,2	63,2	63,3

Ricettore	Cod.	R299	R303	R307	R315	R321	R324	R326	R327	R328	R346
Rumore Cantiere (A)	LeqD	44,5	44,2	44,7	45	44,4	42	42,7	42,8	42,1	42,3
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,3	63,3	63,3	63,3	63,3	63,2	63,2	63,2	63,2	63,2

Ricettore	Cod.	R349	R352	R367	R375	R376	R388	R389	R395	R402	R407
Rumore Cantiere (A)	LeqD	42,1	40,8	42,6	42,9	44,4	42,3	45,7	41,3	43,7	42,7
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,2	63,2	63,2	63,2	63,3	63,2	63,3	63,2	63,2	63,2

Ricettore	Cod.	R408	R412	R416	R444	R449	R451	R454	R458	R459
Rumore Cantiere (A)	LeqD	45,7	42,7	46,2	43,7	42	47,7	44,6	45,7	46,8
Rumore Residuo (B)	LeqD	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2	63,2
Limite di immissione assoluta	LeqD	70	70	70	70	70	70	70	70	70
Rumore Ambientale (C)	LeqD	63,3	63,2	63,3	63,2	63,2	63,3	63,3	63,3	63,3