

Anas SpA

Direzione Centrale Progettazione

AUTOSTRADA A3 SALERNO - REGGIO CALABRIA AMMODERNAMENTO DEL TRONCO 1°- TRATTO 6° - LOTTO 3°

NUOVO SVINCOLO DI PADULA-BUONABITACOLO AL KM 103+200 (COLLEGAMENTO DELLA S.S. 517 "BUSSENTINA" CON LA A3)

PROGETTO DEFINITIVO

PROGETTAZIONE: ANAS - DIREZIONE CENTRALE PROGETTAZIONE

PROTOCOLLO	DATA	Ing. Achille Devitofranceschi Geom. Fabio Quondam	— Ingegneria Opere Civili — Ingegneria Computi, Stime e Capitolab			
VISTO: IL RESPONSABILE DEL I Dott. Ing. ANTONIO VALENTE	PROCEDIMENTO :	RESPONSABILI UNITA' DI INGE Ing. Fulvio Maria Soccodato Ing. Alessandro Micheli	– Ingegneria Territorio – Ingegneria Geotecnica e Impianti			
IL COORDINATORE PER LA SICI Geom. FABIO QUONDAM	UREZZA IN FASE DI PROGETTAZIONE	Geom. Michele Pacelli Geom. Marco Spinucci	- Strade - Strade - Computi, Stime e Capitolati			
IL RESPONSABILE DEL S.I.A. Dott. Arch. FRANCESCA IETTO Ordine Arch. di Roma n. 15857	Dott. Ing. GINEVRA BERETTA Ordine Ing. di Roma n. 20458	Ing. Attilio Petrillo Arch. Roberto Roggi Geom. Valerio Altomare Geom. Alessandro Cortese	 Idraulica Sicurezza Espropri Geateonica 			
IL GEOLOGO: Dott. Geol. STEFANO SERANGELI Ordine Geol. del Lazio n. 659		Ing. Pierluigi Fabbro Ing. Florenzo Forcone Ing. Gabriele Giovannini	 Interferenze Monitoraggio Ambientale Cartografia 			
I PROGETTISTI: Bott. Ing. PIA IASIELLO Ordine Ing. di Foggia n. 1895 Bott. Arch. GIANLUCA BONOLI Ordine Arch. di Roma n. 16639	Dott. Ing. GIANFRANCO FUSANI Ordine Ing. di Roma n. 18008	Ing. Francesca Bario	E ANAS - Responsabile di Progetto - Strutture - Impianti			

OPERE D'ARTE MAGGIORI PONTI E VIADOTTI

VIADOTTO RAMPA A RELAZIONE DI CALCOLO

CODICE PI	ROGETTO LIV. PROG. N. PROG.	NOME FILE TOO_VIO1_STR_REO1	_A		REVISIONE	SCALA:
L 0 4 1	1J D 1101	CODICE TOOVIO1STRRE01		A	1:200	
D	328		S22)		<u>8</u>	
С	8538		120	()	÷	(-2)
В	19—11		H	3 23 1	æ	181
А	EMISSIONE		GIU 2012	Arah. G. Bonoli	Ing. F. Bario	Ing.Devitofranceschi
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

SOMMARIO

1)	GI	ENERALITA'	4
1.1	1)	Premessa	4
1.2	2)	NORMATIVA DI RIFERIMENTO	5
1.3	3) (CARATTERISTICHE DEI MATERIALI	5
2)	IM	MPALCATO	7
2 1	1) (CARATTERISTICHE STRUTTURALI IMPALCATO	7
	' / 2.1.1		
	2.1.2	<i>,</i>	
	2.1.3	•	
2.2	2) .	Analisi dei Carichi	9
2	2.2.1	1) I Fase	9
2	2.2.2	2) II Fase	9
2	2.2.3	3) III Fase	11
2.3	3) (COMBINAZIONI DI CARICO	18
2.4	1)	MODELLAZIONE DELLA STRUTTURA	19
2.5	5) '	VERIFICHE DELLE TRAVI PRINCIPALI	23
2	2.5.1	1) Verifiche di resistenza	23
2	2.5.2	2) Verifiche di stabilità dell'anima	35
2	2.5.3	Verifiche a fatica con il metodo dei coefficienti λ	37
2.6	3)	VERIFICA DEI TRASVERSI	46
2.7	7)	APPARECCHI DI APPOGGIO	48
2.8	3) '	VERIFICA TRASVERSALE DELLA SOLETTA	49
3)	SF	PALLE	55
3.′	1)	DESCRIZIONE E CARATTERISTICHE GEOMETRICHE	55
3.2	2)	AZIONI DI CALCOLO	56
3.3	3)	SPALLA A – SOLLECITAZIONI E VERIFICA	59

Nuovo Svincolo di Padula-Buonabitacolo

RAMPA A - RELAZIONE DI CALCOLO

3.4)	SPALLA B – SOLLECITAZIONI E VERIFICA	62
3.5)	AZIONI SULLE PALIFICATE	65
3.6)	VERIFICHE DEI PALI ф120CM	68
4. F	PILE	70
4.1)	DESCRIZIONE E CARATTERISTICHE GEOMETRICHE	70
4.2)	AZIONI DI CALCOLO	70
4.3)	VERIFICHE STRUTTURALI PILE	71
4.4)	FONDAZIONE SU PALI	75
4.4.	4.1) Azioni sulle Palificate	77
4.4.	4.2) Verifica del Plinto di Fondazione	83
4.4.	4.3) Verifica Pali Φ 120 cm	86

1) GENERALITA'

1.1) PREMESSA

La relazione seguente riporta le verifiche di stabilità e di resistenza del viadotto "Rampa A" all'interno de nuovo svincolo di Padula-Buonabitacolo nell'ambito dei lavori di ammodernamento dell'autostrada A3 Salerno – Reggio Calabria al km 103+200.

Si tratta di un ponte curvilineo con sette campate di luce complessiva pari a 333,2m, costituito da un'impalcato con 2 travi in acciaio di altezza variabile e soletta in c.a., spalle fondate ciascuna su 9 pali trivellati in c.a. e 6 pile di altezza variabile fondate ciascuna su 6 pali trivellati in c.a..

Le travi in acciaio sono del tipo saldate a doppio T con altezza complessive pari a 1,90m, 2,10m e 3,00m poste ad interasse costante pari a 5,00m. Le larghezze e gli spessori delle ali che variano in funzione della tipologia e presentano spessori maggiori nelle sezioni più sollecitate.

La soletta in c.a. con una pendenza variabile con un massimo del 7% è realizzata su predalle con uno spessore complessivo di 25+5cm con ringrossi alle estremità per il posizionamento dei dispositivi di ritenuta e delle reti di protezione.

Al di sopra della soletta è prevista una piattaforma bitumata di 11cm che contiene la carreggiata di larghezza variabile tra 6,50m e 7,80m.

Sono inoltre previsti dei traversi in accaio ad interasse di circa 5,00m con il compito di aumentare la rigidezza trasversale dll'impalcato ed un sistema di controventamento in corrispondenza delle piattabande superiori dei trasversi.

Gli appoggi di ogni trave sono costituiti da isolatori in elastomero armato ancorati tramite piastre di acciaio alle travi soprastanti e ai baggioli in c.a. da realizzare sulle spalle e sulle pile. Essi sono dimensionati in modo da aumentare in maniera consistente i periodi di vibrazione sotto sisma e dissipando l'energia sismica, garantendo allo stesso tempo degli spostamenti compatibili con la funzionalità dell'opera.

L'analisi delle sollecitazioni è stata condotta a mezzo di programmi di calcolo automatico secondo un'analisi elastica lineare mentre le verifiche di resistenza e di stabilità sono state condotte con il metodo semiprobabilistico agli stati limite.

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

1.2) NORMATIVA DI RIFERIMENTO

Le verifiche e le calcolazioni, di cui alle pagine seguenti fanno riferimento alla vigente normativa qui di seguito indicata:

- D.Min.Infr. 14/01/2008 "Nuove Norme Tecniche per le Costruzioni", in seguito indicate con NTC.
- EN 1337-3:2005: "Appoggi strutturali. Parte 3: Appoggi elastomerici"

1.3) CARATTERISTICHE DEI MATERIALI

Calcestruzzo per predalles prefabbricate e soletta

- classe C 32/40
- $f_{ck} = 32 \text{ N/mm}^2$
- Resistenza di calcolo a compressione: $f_{cd} = 0.85 \text{ x } f_{ck} / \gamma_c = 18.13 \text{ N/mm}^2$
- Modulo elastico

$$E_c = 22.000 \text{ x } [(f_{ck}+8)/10]^{0.3} = 33.300 \text{ N/mm}^2$$

Calcestruzzo per elevazione spalle e pile

- classe C 28/35
- $f_{ck} = 28 \text{ N/mm}^2$
- Resistenza di calcolo a compressione: $f_{cd} = 0.85 \text{ x } f_{ck} / \gamma_c = 15.87 \text{ N/mm}^2$
- Modulo elastico

$$E_c = 22.000 \text{ x } [(f_{ck}+8)/10]^{0.3} = 32.300 \text{ N/mm}^2$$

Calcestruzzo per fondazione spalle e pile e per pali trivellati in c.a.

- classe C 25/30
- $f_{ck} = 25 \text{ N/mm}^2$
- Resistenza di calcolo a compressione: $f_{cd} = 0.85 \text{ x } f_{ck} / \gamma_c = 14.17 \text{ N/mm}^2$
- Modulo elastico

$$E_c = 22.000 \text{ x} [(f_{ck}+8)/10]^{0.3} = 31.500 \text{ N/mm}^2$$

avendo assunto per il coefficiente di sicurezza per le resistenze il valore γ_c = 1,5.

Acciaio ordinario in barre ad aderenza migliorata

- Classe B450C
- $f_{vk} = 450 \text{ N/mm}^2$
- Resistenza di calcolo a trazione agli SLU : $f_{yd} = f_{vk} / \gamma_s = 391 \text{ N/mm}^2$

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Modulo elastico: E_p = 210.000 N/mm²

avendo assunto per il coefficiente di sicurezza per le resistenze il valore γ_s = 1,15.

Copriferri minimi netti

• Baggioli: c = 2.0 cm

Soletta: c = 2,5 cm

Spalle, pile e pali: c = 4,0 cm

Acciaio da carpenteria per profili a sezione aperta

Classe S355

• $f_{yk} = 355 \text{ N/mm}^2 \text{ per spessori } t \le 40 \text{mm}$ $f_{yk} = 335 \text{ N/mm}^2 \text{ per spessori } 40 \text{mm} \le t \le 80 \text{mm}$

• $f_{tk} = 510 \text{ N/mm}^2 \text{ per spessori } t \le 40 \text{mm}$ $f_{tk} = 470 \text{ N/mm}^2 \text{ per spessori } 40 \text{mm} \le t \le 80 \text{mm}$

• Resistenza di calcolo: $f_{yd} = f_{yk} / \gamma_s = 338 \text{ N/mm}^2 \text{ per spessori t} \le 40 \text{mm}$

 $f_{yd} = f_{yk} / \; \gamma_s = 319 \; N/mm^2 \, per \; spessori \; 40mm \leq t \leq 80mm$

avendo assunto per il coefficiente di sicurezza per le resistenze il valore γ_s = 1,05.

2) IMPALCATO

2.1) CARATTERISTICHE STRUTTURALI IMPALCATO

L'impalcato viene realizzato con travi in acciaio del tipo saldato a doppio T poste ad interasse di 5,00m sulle quali verrà realizzato il getto della soletta collaborante su predalle.

Si distinguono tre fasi successive di lavoro:

PRIMA FASE - COSTRUZIONE: le travi posizionate sugli appoggi presenti sulle pile e sulle spalle, sono soggette al peso proprio, dei trasversi e del sistema di controventamento in pianta ed della soletta gettata in opera.

Nella seconda e terza fase le caratteristiche inerziali e di resistenza della sezione dell'impalcato sono state determinate considerando le travi in acciaio solidarizzate con il getto della soletta. Il calcolo di tali caratteristiche è stato svolto considerando un coefficiente di omogeneizzazione differente in funzione del modulo di elasticità del calcestruzzo.

SECONDA FASE – **LUNGO TERMINE**: i carichi agenti considerati sono costituti dai sovraccarichi permanenti e dagli effetti dovuti al ritiro.

TERZA FASE – BREVE TERMINE: i carichi considerati sono le azioni variabili da traffico, il vento, le variazioni di temperatura e l'azione sismica.

2.1.1) Travi principali

L'impalcato è costituito da 2 travi a doppio T in acciaio poste ad interasse di 5,00m e costituite da piatti saldati con altezza complessiva pari a 190cm, 210cm e 300cm.

La dimensione e gli spessori delle piattabande e dell'anima per le differenti sezioni sono riportate nel seguente riepilogo.

		TR. 1	TR. 2	TR. 3
	Altezza totale (cm)	190,0	210,0	210,0
Ala inferiore	Larghezza (cm)	120,0	120,0	120,0
Ala illienore	Spessore (cm)	4,0	6,0	9,0
Ala superiore	Larghezza (cm)	100,0	100,0	100,0
Ala superiore	Spessore (cm)	2,0	5,0	9,0
Anima	Altezza (cm)	184,0	199,0	192,0
Aliilla	Spessore (cm)	2,0	2,5	2,5
	Area (cm²)	1.048	1.718	2.460
	Peso (kN/m)	8,23	13,48	19,31

		TR. 4	TR. 5	TR. 6	TR. 7
	Altezza totale (cm)	210,0	300,0	300,0	300,0
Ala inferiore	Larghezza (cm)	120,0	120,0	120,0	120,0
Ala li liellore	Spessore (cm)	4,0	6,0	9,0	4,0
Ala superiore	Larghezza (cm)	100,0	100,0	100,0	100,0
Ala superiore	Spessore (cm)	2,0	5,0	9,0	2,0
Anima	Altezza (cm)	204,0	289,0	282,0	294,0
Aliilla	Spessore (cm)	2,0	2,5	2,5	2,0
	Area (cm²)	1.088	1.943	2.685	1.268
	Peso (kN/m)	8,54	15,25	21,08	9,95

2.1.2) Trasversi

Le travi principali sono collegate a mezzo di trasversi disposti ad interasse di circa 5,00m realizzati con una trave a doppio T con piatti saldati per un'altezza complessivo di 120cm per i trasversi posti in corrispondenza delle sezioni di altezza pari a 3,00m e di 80cm per le restanti sezioni.

2.1.3) Soletta in calcestruzzo armato su predalles

La soletta d'impalcato è realizzata mediante l'utilizzo di lastre prefabbricate e tralicciate in calcestruzzo (predalles) autoportanti in fase di getto, di spessore pari a 5cm, le quali contengono un getto in opera di calcestruzzo di spessore 25cm (pendenza trasversale massima 7,0%) con ringrossi laterali di altezza media pari a 45cm per il posizionamento dei dispositivi di ritenuta e delle reti di protezione.

2.2) ANALISI DEI CARICHI

Nella determinazione dei valori delle azioni si terrà conto dei seguenti valori elementari di progetto.

2.2.1) I Fase

I carichi agenti sulle travi in prima fase sono stati determinati considerando e diverse larghezze dell'impalcato.

CARICHI I FASE		TR. 1		TR. 2 - 3 - 4		TR. 5 - 6 - 7	
	Unitario (kN/m²)	Larghezza (m)	Carico (kN/m)	Larghezza (m)	Carico (kN/m)	Larghezza (m)	Carico (kN/m)
Soletta (30cm)	7,50	4,00	30,0	4,25	31,9	4,50	33,8
Ringrosso	5,00	0,75	3,8	0,75	3,8	0,75	3,8
Incidenza controventi			1,0		1,0		1,0
Totale I Fase (kNm)			34,8		36,6		38,5

2.2.2) II Fase

I carichi agenti sulle travi in prima fase sono stati determinati considerando e diverse larghezze dell'impalcato.

CARICHI II FASE - PERMANENTI		TR. 1			
	Unitario	Larghezza	Carico	Eccentr.	Momento
	(kN/m^2)	(m)	(kN/m)	(m)	(kN/m)
Pavimentazione	2,50	3,25	8,1	-0,875	-7,1
Sicurvia			2,50	1,125	2,8
Frangivento					0,0
Veletta in c.a.	2,00	1,00	2,0	1,500	3,0
	Totale II Fase		12,6		-1,3

CARICHI II FASE - PERMANENTI		TR. 2 - 3 - 4			
	Unitario	Larghezza	Carico	Eccentr.	Momento
	(kN/m²)	(m)	(kN/m)	(m)	(kN/m)
Pavimentazione	2,50	3,50	8,8	-0,750	-6,6
Sicurvia			2,50	1,375	3,4
Frangivento					0,0
Veletta in c.a.	2,00	1,00	2,0	1,750	3,5
	Totale II Fase		13,3		0,4

CARICHI II FASE - PERMANENTI		TR. 5 - 6 - 7			
	Unitario	Larghezza	Carico	Eccentr.	Momento
	(kN/m²)	(m)	(kN/m)	(m)	(kN/m)
Pavimentazione	2,50	3,75	9,4	-0,625	-5,9
Sicurvia			2,50	1,625	4,1
Frangivento					0,0
Veletta in c.a.	2,00	1,00	2,0	2,000	4,0
	Totale II Fase		13,9		2,2

I fenomeni di ritiro e viscosità sono stati considerati attribbuendo al modulo elastico del calcestruzzo un valore ridotto pari a $E_c^* = E_c / 2$.

La coazione tra calcestruzzo impedito di ritirarsi e la sezione mista si traduce in uno sforzo

$$N_r = \varepsilon_r \times E^*_c \times A_c$$

Tale sforzo risulta di trazione sulla soletta da aggiungersi ad una pressoflessione sulla sezione omogeneizzata con:

N_r (compressione)

$$M_r = N_r x (H_{tot} - s_{soletta} / 2 - Y_g)$$
 (momento positivo)

Le azioni dovute al ritiro sono state considerate esclusivamente per le sezioni di campata in quando per le sezioni di appoggio tale azione risulta essere favorevole. Il momento calcolato è stato aggiunto alle sollecitazioni di II FASE con un coefficiente moltiplicativo pari a 1,20.

A _{c,soletta} (m ²)	2,3	2,4	2,6
Ritiro Soletta ϵ_{cs} (%)	0,0003	0,0003	0,0003
Modulo di Elasticità Ridotto Calcestruzzo Soletta E _c * = E _c /2	16.673	16.673	16.673

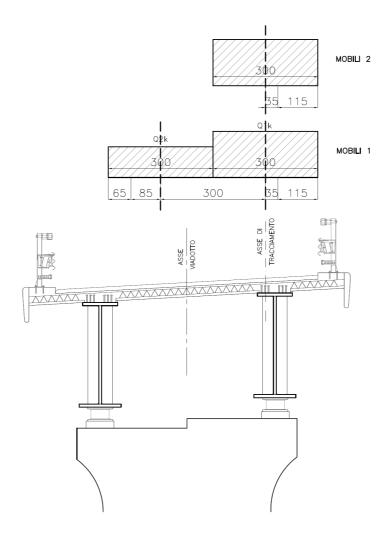
Sezione	TR. 1	TR. 4	TR. 7
y _G (m)	135,16	150,01	208,51
H _{TRAVE} (m)	190	210	300
$d (m) = H_{TOT} - s/2 - y_G$	0,72	0,77	1,09
Coefficiente parziale di sicurezza $\gamma_{\epsilon 2}$	1,2	1,2	1,2
N _R (kN)	6.903	7.278	7.653
$M_R = N_R \times d (kNm)$	4.993	5.639	8.341
Area reagente omog.acciaio A (cm²)	2.007	2.109	2.345
W_i (cm ³) =	115.026	129.018	194.970
W_s (cm ³) =	283.511	322.650	444.364
W_c (cm ³) =	2.308.182	2.709.041	4.214.809
W_a (cm ³) =	192.325	225.089	346.026
INCREMENTO T	ENSIONI II FASE	- RITIRO	
Trave acciaio lembo inf. σ _i (N/mm²)=	43,07	43,36	42,45
Trave acciaio lembo sup. σ_{s} (N/mm 2)=	-17,96	-17,82	-19,10
Calcestruzzo lembo sup. σ_c (N/mm 2)=	-2,51	-2,43	-2,31
Armatura sup. σ_a (N/mm ²)=	-26,31	-25,40	-24,43

2.2.3) III Fase

AZIONI VARIABILI DA TRAFFICO

• Corsia n.1 (larghezza 3,0m):

N.2 Carichi concentrati mobili in tandem a 1,20m: $2 \times Q_{1k} = 2 \times 300 \text{ kN}$


Carico distribuito: $q_{1k} = 9.0 \text{ kN/m}^2$

• Corsia n.2 (larghezza 3,0m):

N.2 Carichi concentrati mobili in tandem a 1,20m: $2 \times Q_{2k} = 2 \times 200 \text{ kN}$

Carico distribuito: $q_{1k} = 2.5 \text{ kN/m}^2$

Si considera la seguente configurazione che produce la maggiore eccentricità delle azioni e le maggiori sollecitazioni sulle travi:

AZIONE LONGITUDINALE DI FRENAMENTO O ACCELERAZIONE

L'azione di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n.1 ed è uguale a:

$$180 \text{ kN} \le q_3 = 0.6 \text{ (} 2 \text{ Q}_{1k}) + 0.10 \text{ q}_{1k} \text{ w}_1 \text{ L} \le 900 \text{ kN}$$

$$q_3 = 0.6 \times 2 \times 300 \text{kN} + 0.1 \times 9.0 \text{kN/m}^2 \times 3.0 \text{m} \times 333.2 \text{m} = 1.256 \text{kN}$$

L'azione sulla singola trave sarà:

$$q_3 = (900 \text{ kN} / 2) / 333\text{m} = 1,36 \text{ kN/m}$$

AZIONE DEL VENTO

	Azione del vento							
	D.M. 14	1/01/2008						
Regione	Campania							
a _s (m)	500							
Zona	3							
v _{b,0} (m/s)	27							
a ₀ (m)	500							
k _a (1/s)	0,020							
v _b (m/s)	27	Velocità di I	Riferimento					
$q_b (kN/m^2)$	0,456	Pressione (Cinetica di Ri	ferimento				
Determinazione del Coefficiente di Esposizione								
Classe di Rugosità		D						
Categoria di Esposizio	II							
Coefficiente di Topogr	1,00							
	k_r	0,19						
Parametri	$z_o(m)$	0,05						
	z _{min} (m)	4						
c_d		1,00	Coefficiente	dinamico				
Cp		1,40						
	PONTE	SCARICO						
Tipo trave		H = 300cm	H = 210cm	H = 190cm				
Altezza massima sul	suolo z (m)	15	13,1	10,5				
		1,801	1,801	1,801				
$c_e(z_{max})$ per $z > z_{min}$		2,616	2,526	2,383				
Pression p (kN/m²)	$z < z_{min}$	1,15	1,15	1,15				
Pression p (kiv/iii)	$z > z_{min}$	1,67	1,61	1,52				
Altezza Superficie E	sposta (m)	5,00	4,10	3,90				
Carico Trave p (kN/r	n)	8,34	6,61	5,93				
	PONT	E CARICO						
Tipo trave		H = 300cm	H = 210cm	H = 190cm				
Altezza massima sul	suolo z (m)	16	14,1	11,5				
		1,801	1,801	1,801				
$c_e(z_{max})$ per $z > z_{min}$		2,659	2,575	2,442				
Pression p (kN/m²)	$z < z_{min}$	1,15	1,15	1,15				
,	$z > z_{min}$	1,70	1,64	1,56				
Altezza Superficie E	. ,	6,00	5,10	4,90				
Carico Trave p (kN/m) 10,18 8,38 7,63								

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

AZIONE CENTRIFUGA

Essendo il ponte ad asse curvilineo con raggi di curvatura R < 200m è stata considerata la seguente azione centrifuga:

$$Q_{4,MOBILI} = 0.2 \times \Sigma 2 \times Q_{ik} = 0.2 \times 2 \times (300 \text{ kN} + 200 \text{ kN}) = 200 \text{ kN}$$

$$Q_{4 \text{ MOBILL 2}} = 0.2 \text{ x S 2 x } Q_{ik} = 0.2 \text{ x 2 x 300 kN} = 120 \text{ kN}$$

L'azione è applicata al livello della pavimentazione ed è stata distribuita sulle travi principali in direzione ortogonale all'asse ottenendo il seguente carico uniforme:

$$q_{4,MOBILI 1} = (Q_{4,MOBILI 1} / 2) / L = 100 kN / 333m = 0,3 kN/m$$

$$q_{4,MOBILI 1} = (Q_{4,MOBILI 2} / 2) / L = 60 kN / 333m = 0.18 kN/m$$

VARIAZIONI TERMICHE ε₃

Tipologia impalcato TIPO 2: Impalcato a struttura composta

Componente di temperatura uniforme

T_{min}	-7,0	temperatura minima dell'aria all'ombra
T _{max}	42,0	temperatura massima dell'aria all'ombra

$$T_{e,min}$$
 -4,0 temperatura minima effettiva del ponte $T_{e,max}$ 46,0 temperatura massima effettiva del ponte

T₀ 15,0 temperatura effettiva probabile

 $\Delta T_{N,neg}$ -19,0 valore caratteristico dell'intervallo massimo della temperatura negativa effettiva $\Delta T_{N,pos}$ 31,0 valore caratteristico dell'intervallo massimo della temperatura positiva effettiva

Componente lineare della temperatura

Gruppo 2 - Ponti stradali

 $\Delta T_{M,neg}$ -18,0 differenza di temperatura negativa $\Delta T_{M,pos}$ 15,0 differenza di temperatura positiva

	TR. 1	TR. 2 - 3 - 4	TR. 5 - 6 - 7
Altezza trave (m)	1,9	2,1	3,0
Soletta (m)	0,3	0,3	0,3
$\Delta T_{M,neg}$ (°C/m)	-8,182	-7,500	-5,455
$\Delta T_{M,pos}$	6,818	6,250	4,545

AZIONE SISMICA Q6

L'azione sismica è stata valutata attraverso un'analisi dinamica modale inserendo gli spettri elastici in termini di acelerazione relativi agli Stati Limite considerati.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.
- T*_C periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nei confronti delle azioni sismiche gli stati limite sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

Gli stati limite ultimi considerati sono così definiti:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali e un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Lo spettro di risposta elastico della componente orizzontale è definito dalle seguenti espressioni nelle quali T ed S_e sono, rispettivamente, periodo di vibrazione ed accelerazione spettrale orizzontale

$$\begin{aligned} 0 &\leq T < T_{B} & S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \left(1 - \frac{T}{T_{B}} \right) \right] \\ T_{B} &\leq T < T_{C} & S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \\ T_{C} &\leq T < T_{D} & S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}}{T} \right) \\ T_{D} &\leq T & S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right) \end{aligned}$$

è il coefficiente che tiene conto della categoria di sottosuolo

S

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

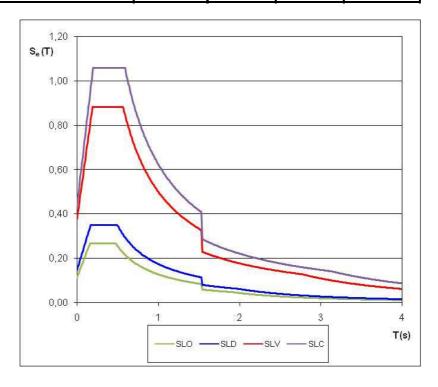
 η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%

F₀ è il fattore che quantifica l'amplificazione spettrale massima

$$T_{C} = C_{C} \ x \ T^{*}_{C} \ ; T_{B} = T_{C} \ / \ 3 \ ; T_{D} = 4,0 \ x \ (a_{g} \ / \ g) \ + \ 1,6$$

Lo spettro elastico è stato ridotto per tutto il campo di periodi T \geq 0,8 T_{is} assumento per il coefficiente riduttivo η un valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ = 15%.

Si riportano di seguito i parametri sismici relativi alla struttura ed al sito in esame ed i diagrammi dei relativi spettri di progetto.

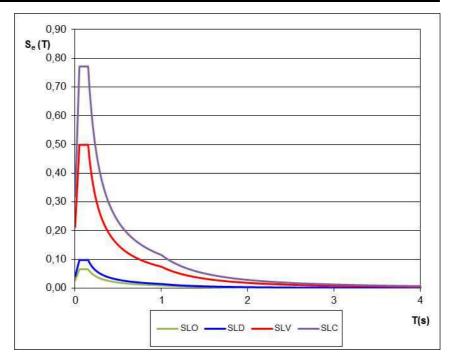

-	Coordinate geografiche	Long. 15°,6445	Lat. 40°,3060
-	Vita nominale	≥ 50 anni	
-	Classe d'uso	IV (Ponti e reti ferrov	riarie di importanza critica per il
		mantenimento delle particolarmente dopo	vie di comunicazione o un evento sismico
-	Coefficiente d'uso	$C_u = 2,0$	
-	Categoria di sottosuolo addensati o	C (Depositi di teri	reni a grana grossa mediamente
		di terreni a grana fin	e mediamente consistenti)
-	Categoria topografica	T1 (Superficie piane	ggiante, pendii e rilievi isolati con
		inclinazione media ≤	159

I dispositivi di isolamento sono stati progettati per sostenere gli spostamenti determinati dall'azione sismica derivante dallo spettro di risposta allo Stato Limite Ultimo di Collasso (SLC).

DATI GENERALI				
Comune	PADULA			
Latitudine	40,306°			
Longitudine	15,6445°			
Classi d'uso	Classe IV			
C _u	2,00			
Vita Nominale (V _N)	50			
Periodo di riferimento (V _R)	100			
Categoria sottosuolo	С			
Categoria topografica	T1			
Coefficiente di smorzamento	5,00%			
lη	1,00			
T _{is}	1,921			
Coefficiente di smorzamento	15,00%			
η	0,71			

Determinazione coefficiente S	SLO	SLD	SLV	SLC
S _S	1,50	1,50	1,29	1,15
$h/H \le 1,00 \ (h=Q_{sito}; \ H=Q_{rilievo})$	1,00	1,00	1,00	1,00
S _T	1,00	1,00	1,00	1,00
$S = S_S \times S_T$	1,50	1,50	1,29	1,15

Parametri che definiscono l'azione sismica							
Stato Limite	SLO	SLD	SLV	SLC			
P _{VR}	81%	63%	10%	5%			
T _R	60	101	949	1950			
a _g	0,075	0,098	0,292	0,383			
F ₀	2,375	2,373	2,341	2,41			
T _c *	0,307	0,328	0,398	0,422			
T _B	0,159	0,166	0,189	0,196			
T _C	0,476	0,498	0,566	0,589			
T _D	1,900	1,992	2,768	3,132			


RAMPA A - RELAZIONE DI CALCOLO

E' stato inoltre considerato lo spettro elastico per l'azione verticale determinato attraverso i seguenti parametri

DATI GENERALI				
Comune	PADULA			
Latitudine	40,306°			
Longitudine	15,6445°			
Classi d'uso	Classe IV			
C _u	2,00			
Vita Nominale (V _N)	50			
Periodo di riferimento (V _R)	100			
Categoria sottosuolo	C			
Categoria topografica	T1			
Coefficiente di smorzamento	5,00%			
η	1,00			

Determinazione coefficiente S	SLO	SLD	SLV	SLC
S _S	1,00	1,00	1,00	1,00
$h/H \le 1,00 \ (h=Q_{sito}; \ H=Q_{rilievo})$	1,00	1,00	1,00	1,00
S _T	1,00	1,00	1,00	1,00
$S = S_S \times S_T$	1,00	1,00	1,00	1,00

Parametri che definiscono l'azione sismica							
Stato Limite	SLO	SLD	SLV	SLC			
P _{VR}	81%	63%	10%	5%			
T _R	60	101	949	1950			
a _g	0,075	0,098	0,292	0,383			
F ₀	2,375	2,373	2,341	2,410			
F _∨	0,878	1,003	1,708	2,013			
T _B	0,050	0,050	0,050	0,050			
T _C	0,150	0,150	0,150	0,150			
T _D	1,000	1,000	1,000	1,000			

2.3) COMBINAZIONI DI CARICO

Le azioni caratteristiche precedentemente definite, nelle singole combinazioni di carico agli SLU sono poi combinate secondo i seguenti coefficienti parziali:

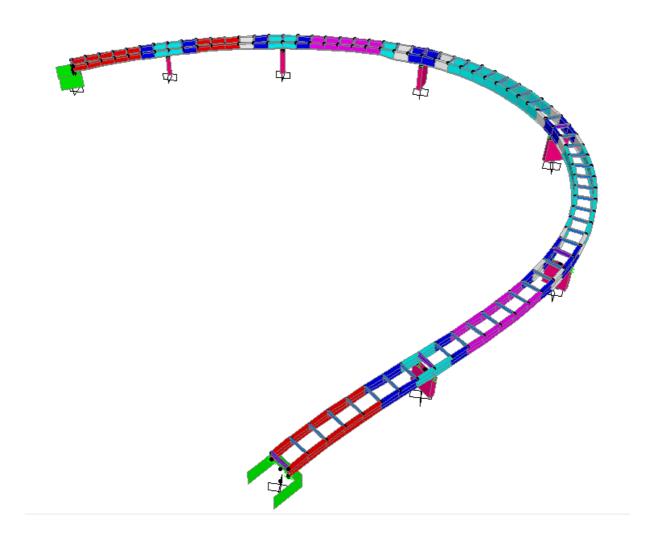
COMBINAZIONI A1		PERMANENTI		AZIONI DA TRAFFICO		VA	RIABILI	AZI	ONE SISI	IICA		
Tipo	Nome	PERMANENTI	Mobili 1	Mobili 2	Centrifuga 1	Centrifuga 2	Frenamento	Vento	Temperatura	Sisma X	Sisma Y	Sisma Z
Mobili 1	1-M1	1,35	1,35					0,6x1,5	0,6x1,2			
Mobili 2	1-M2	1,35		1,35				0,6x1,5	0,6x1,2			
Frenamento	2a	1,35	0,75x1,35				1,35	0,6x1,5	0,6x1,2			
Centrifuga 1	2b-M1	1,35	0,75x1,35		1,35			0,6x1,5	0,6x1,2			
Centrifuga 2	2b-M2	1,35		0,75x1,35		1,35		0,6x1,5	0,6x1,2			
Vento scarico	CVENTO	1,00						1,50	0,6x1,2			
	SISMA X	1,00								1,00	0,30	0,30
Sisma	SISMA Y	1,00								0,30	1,00	0,30
	SISMA Z	1,00								0,30	0,30	1,00

2.4) MODELLAZIONE DELLA STRUTTURA

Le sollecitazioni di progetto nelle varie combinazioni di carico sono state determinate attaverso modelli tridimensionale delle struttura utilizzando il programma di calcolo strutturale SAP2000.

Le tre fasi costruttive sono state analizzate con modelli di calcolo ad elementi finiti assegnado agli elementi monodimensionali "FRAME" le caratteristiche sezionali ed inerziali corrispondenti.

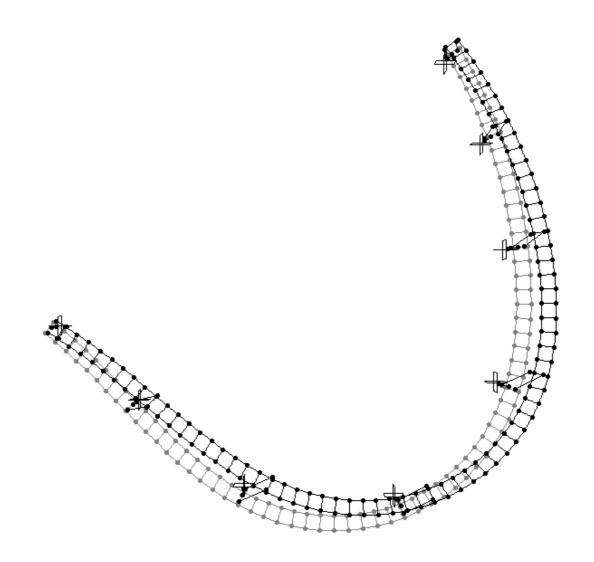
Nel modello relativo alla I Fase, sono state inserite le dimensioni delle travi in acciaio ed il programma provvede in automatico al calcolo delle caratteristiche sezionali.

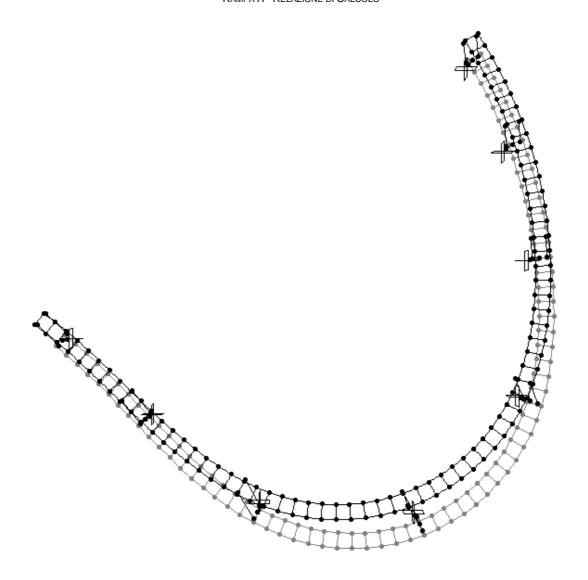

Per la II e III Fase è stata considerata la sezione composta dalla trave in acciaio e dalla soletta collaborante omogeneizzando le caratteristiche attraverso un coefficiente ottenuto dal rapporto tra i moduli elastici.

Il sistema di appoggio delle travi, realizzato mediante isolatori elastomerici armati, è stato modellato attraverso elementi "LINK" a cui sono state assegnate le rigidezze traslazionali proprie della tipologia scelta in progetto.

Si riportano le caratteristiche sezionali utilizzate nella modellazione.

	II FASE								
Area (m²)	J _{TOR} (m ⁴)	J ₃₋₃ (m ⁴)	J ₂₋₂ (m ⁴)	A ₂₋₂ (m ²)	A ₃₋₃ (m ²)	Sezione			
2,007E-01	3,300E-05	1,555E-01	4,234E-01	3,800E-02	7,939E-02	TR. 1			
1,856E-01	1,340E-04	1,643E-01	5,079E-01	5,250E-02	8,436E-02	TR. 2			
2,598E-01	5,170E-04	2,355E-01	5,079E-01	5,250E-02	8,436E-02	TR. 3			
2,109E-01	3,300E-05	1,935E-01	5,079E-01	4,200E-02	8,436E-02	TR. 4			
2,087E-01	1,390E-04	3,547E-01	6,029E-01	7,500E-02	8,932E-02	TR. 5			
2,829E-01	5,220E-04	5,063E-01	6,029E-01	7,500E-02	8,932E-02	TR.6			
2,345E-01	3,600E-05	4,065E-01	6,029E-01	6,000E-02	8,932E-02	TR. 7			
1,214E-01	3,300E-05	1,041E-01	4,234E-01	4,200E-02	7,939E-02	TR. 1-1			
1,406E-01	3,600E-05	2,282E-01	5,079E-01	6,000E-02	8,436E-02	TR. 4-1			


			III FASE			
Area (m²)	J _{TOR} (m ⁴)	J ₃₋₃ (m ⁴)	J ₂₋₂ (m ⁴)	A ₂₋₂ (m ²)	A ₃₋₃ (m ²)	Sezione
2,841E-01	3,300E-05	1,860E-01	8,469E-01	3,800E-02	1,588E-01	TR. 1
1,856E-01	1,340E-04	1,643E-01	1,016E+00	5,250E-02	1,687E-01	TR. 2
2,598E-01	5,170E-04	2,355E-01	1,016E+00	5,250E-02	1,687E-01	TR. 3
2,993E-01	3,300E-05	2,305E-01	1,016E+00	4,200E-02	1,687E-01	TR. 4
2,087E-01	1,390E-04	3,547E-01	1,206E+00	7,500E-02	1,786E-01	TR. 5
2,829E-01	5,220E-04	5,063E-01	1,206E+00	7,500E-02	1,786E-01	TR. 6
3,278E-01	3,600E-05	4,846E-01	1,206E+00	6,000E-02	1,786E-01	TR. 7
1,214E-01	3,300E-05	1,041E-01	8,469E-01	4,200E-02	1,588E-01	TR. 1-1
1,406E-01	3,600E-05	2,282E-01	1,016E+00	6,000E-02	1,687E-01	TR. 4-1


L'analisi modale è stata condotta esclusivamente nella III Fase inserendo gli spettri di risposta elastici in termini di accelerazioni per la definizione delle sollecitazioni sismiche.

Il modello tridimensionale della struttura riproduce la distribuzione di masse e rigidezze della struttura; nell'analisi modale sono stati considerati tutti i modi che attivano più dell' 85% della massa della struttura. La combinazione dei modi al fine di calcolare sollecitazioni e spostamenti complessivi viene effettuata calcolando la radice quadrata della somma dei quadrati dei risultati ottenuti per ciascun modo, ovvero $E = (\sum E_i^2)^{\frac{1}{2}}$.

Lo studio delle sollecitazioni derivanti dai carichi mobili è stato condotto attraverso la definizione delle "lane" lungo le quali sono stati fatti muovere i carichi definiti in base alle indicazioni fornite dalla Normativa.

1° modo di vibrare - T = 1,92069s

 2° modo di vibrare - T = 1,76198s

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

2.5) VERIFICHE DELLE TRAVI PRINCIPALI

2.5.1) Verifiche di resistenza

A partire dalle sollecitazioni sulle travi principali nelle varie combinazioni di carico, si sono condotte le verifiche di resistenza delle sezioni per ciascuna fase tenendo presente lo stato tensionale della fase precedente.

Nella prima fase risulta reagente soltanto la sezione in acciaio.

Nella seconda e terza fase la soletta collaborante viene omogeneizzata con il rispettivo coefficiente considerando una larghezza collaborante pari a metà impalcato.

Nelle zone di momento negativo non si tiene conto della collaborazione del calcestruzzo in quanto fessurato ma soltanto delle armature disposte nella soletta in corrispondenza della larghezza collaborante.

Nelle verifiche delle sezioni di calcestruzzo tese così come in quelle compresse viene tenuto conto della presenza dell'armatura longitudinale in soletta:

- Sezione di campata: 1+1¢20/20

Sezione di appoggio 1+1\(\phi\)20/20

Per ogni sezione viene effettuato il calcolo, con ovvio significato dei simboli per i dati geometrici di input, delle seguenti tensioni:

 σ_i = sforzo di trazione/compressione nella fibra estrema dell'ala inferiore = M_d/W_i

σ_s = sforzo di trazione/compressione nella fibra estrema dell'ala superiore = M_d/W_s

 σ_c = sforzo di compressione nella fibra estrema della soletta di calcestruzzo = M_d/W_c

 σ_a = sforzo di trazione/compressione nell'armatura lenta superiore della soletta = M_d/W_a

M_d = Momento flettente sulla trave principale

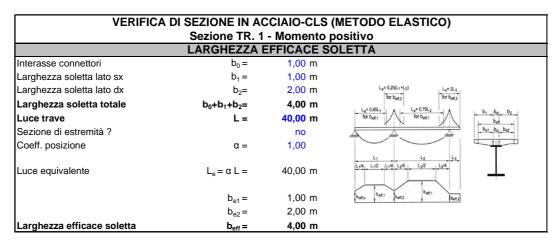
W_i = Modulo di resistenza della fibra estrema dell'ala inferiore

W_s = Modulo di resistenza della fibra estrema dell'ala superiore

W_c = Modulo di resistenza della fibra estrema della soletta di calcestruzzo

W_a = Modulo di resistenza dell'armatura lenta superiore nella soletta

Si è utilizzata una convenzione di segno per la quale gli sforzi di compressione sono di segno negativo, quelli di trazione di segno positivo.


Le tensioni sono state calcolate tenendo conto delle differenti sezioni resistenti in caso di presenza o assenza di soletta collaborante e di azione flettente positiva o negativa.

In presenza di momento flettente positivo la sezione considerata è una sezione composta cls-acciaio omogeneizzata ad acciaio.

In presenza di momento flettente negativo e di taglio massimo, in considerazione del fatto che il cls fessurato offre un contributo resistente nullo, si è considerata la sezione costituita dal profilo in acciaio e dalle armature della soletta.

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

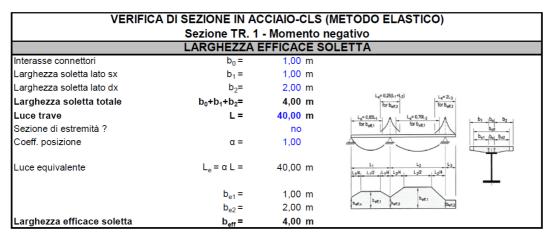
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		So	orante in c.a.		
Caratteristiche dei materiali			Calcestruzzo ord.		Acciaio in	barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	$f_{yk} =$	355	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	$\gamma_{MO} =$	1,05	$\gamma_c =$	1,50	$\gamma_s =$	1,15
Resistenza di progetto (N/mm²)	$f_{yd} =$	338	$f_{cd} =$	18,1	$f_{ywd} =$	391
Modulo elastico (N/mm²)	Es =	210.000	Ec =	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio									
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima				
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore			
190,0	120,00	4,00	100,00	2,00	184,0	2,0			

Caratteristiche geometriche soletta in c.a.									
Larghezza efficace (cm)	400,0	Spessore soletta (cm)	25,0						
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3						
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0						
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	220,0						
Armatura sup. soletta (cm²)	62,80	copriferro superiore (cm)	4,0						
Armatura inf. soletta (cm²)	62,80	copriferro inferiore (cm)	2,5						

Sollecitazioni (SLU)		I°FASE	II°FASE	III°FASE	Totale
Momento di progetto	M_d (kNm) =	4.869	1.464	15.276	21.609
Taglio di progetto	$V_d(kN) =$	0	0	1.564	1.564

Caratteristiche inerziali		Trave in acciaio	Trave in a	
		I°FASE Costruz.	II°FASE Lungo	III°FASE Istant.
Area reagente omog.acciaio	$A (cm^2) =$	1.048,00	2.007	2.841
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	70,7	135,2	156,1
Momenti d'inerzia	$I_x (cm^4) =$	6.338.940	15.547.159	18.596.918
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	89.666,46	115.026	119.157
Mod.res.lembo sup. trave acciaio	W_s (cm ³) =	53.132,07	283.511	548.117
Mod.res. lembo sup.soletta (omog.cls)	$W_c (cm^3) =$		2.308.182	1.831.992
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		192.325	310.317


Verifiche di resistenza (SLU)								
FLESSIONE		I°FASE	II°FASE	III°FASE	TOTALE	c.s.		
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	54	56	128	238	0,70		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$	-92	-23	-28	-143	0,42		
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2) =$		-3,1	-8,3	-11,5	0,63		
Armatura sup.	$\sigma_a (N/mm^2)=$		-34	-49	-83	0,21		

$\sigma > 0$	$\rightarrow traz$	ione; σ	< 0 –	→ com	pressic	ne
						•

TAGLIO									
Area di taglio	$A_v (cm^2) =$	374,000	c.s.						
Taglio resistente	$V_{c,Rd}$ (kN) =	7300,5	0,21						
	$\rho = in$	fl.taglio trasc	ssu res.fles.						
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0} =$	338_							
lembo inferiore anima	$\sigma_{ia} (N/mm^2)=$	230	0,68						
lembo superiore anima	$\sigma_{sa} (N/mm^2) =$	-139	0,41						

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

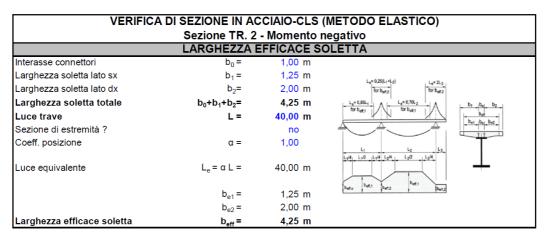
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		Soletta collaborante in c.a.			
Caratteristiche dei materian			Calcestruzzo ord.		Acciaio	in barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	355	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	γ _c =	1,50	γ _s =	1,15
Resistenza di progetto (N/mm²)	f _{yd} =	338	$f_{cd} =$	18,1	f _{ywd} =	391
Modulo elastico (N/mm²)	Es =	210.000	Ec=	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio									
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima				
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore			
210,0	120,00	4,00	100,00	2,00	204,0	2,0			

Caratteristiche geometriche soletta in c.a.									
Larghezza efficace (cm)	400,0	Spessore soletta (cm)	25,0						
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3						
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0						
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	240,0						
Armatura sup. soletta (cm²)	62,80	copriferro superiore (cm)	4,0						
Armatura inf. soletta (cm²)	62,80	copriferro inferiore (cm)	2,5						

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-1.427	-196	-12.477	-14.100
Taglio di progetto	$V_d(kN) =$	839	230	1.564	2.633
		Trave in	Trave in	anniain +	

Caratteristiche inerziali		Trave in acciaio	Trave in acciaio + soletta coll. in c.a.	
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.
Area reagente omog.acciaio	A (cm ²) =	1.088,00	1.214	1.214
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	79,1	94,3	94,3
Momenti d'inerzia	$I_x (cm^4) =$	7.939.000	10.406.125	10.406.125
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	100.428,24	110.308	110.308
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	60.626,87	89.970	89.970
Mod.res. lembo sup.soletta (omog.cls)	$W_c (cm^3) =$		0	0
Mod.res. corda a liv. armatura sup.	$W_a (cm^3) =$		73.457	73.457


Verifiche di resistenza (SLU)								
FLESSIONE		I° FASE	II° FASE	III° FASE	TOTALE	c.s.		
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	-14	-2	-113	-129	0,38		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$		2	139	164	0,49		
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2)=$		0,0	0,0	0,0	non reagente		
Armatura sup.	$\sigma_a (N/mm^2)=$		3	170	173	0,44		

 $\sigma > 0 \rightarrow trazione; \ \sigma < 0 \rightarrow compressione$

TAGLIO							
Area di taglio	$A_v (cm^2) =$	414,000	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	8081,3	0,33				
	$\rho = in$	fl.taglio traso	c.su res.fles.				
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	338					
lembo inferiore anima	σ_{ia} (N/mm ²)=	-124	0,37				
lembo superiore anima	$\sigma_{sa} (N/mm^2)=$	162	0,48				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

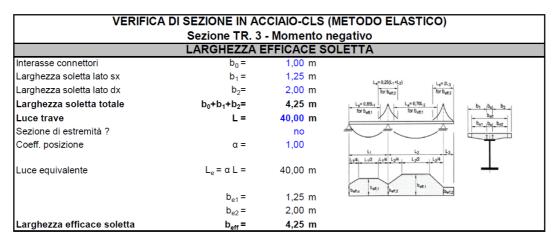
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		Soletta collaborante in c.a.			
Caratteristiche dei materiali			Calcestruzzo ord.		Acciaio	in barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	335	f _{ck} =	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	γ _c =	1,50	$\gamma_s =$	1,15
Resistenza di progetto (N/mm²)	f _{yd} =	319	$f_{cd} =$	18,1	f _{ywd} =	391
Modulo elastico (N/mm²)	Es =	210.000	Ec =	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio							
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima		
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore	
210,0	120,00	6,00	100,00	5,00	199,0	2,5	

Caratteristiche geometriche soletta in c.a.							
Larghezza efficace (cm)	425,0	Spessore soletta (cm)	25,0				
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3				
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0				
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	240,0				
Armatura sup. soletta (cm²)	69,08	copriferro superiore (cm)	4,0				
Armatura inf. soletta (cm²)	69,08	copriferro inferiore (cm)	2,5				

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-6.727	-1.564	-13.969	-22.260
Taglio di progetto	$V_d(kN) =$	1.186	337	2.001	3.524
ragne ar progette	• 4 ()				

Caratteristiche inerziali		Trave in acciaio	Trave in acciaio + soletta coll. in c.a.	
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.
Area reagente omog.acciaio	A (cm ²) =	1.717,50	1.856	1.856
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	92,2	102,2	102,2
Momenti d'inerzia	$I_x (cm^4) =$	14.108.821	16.434.770	16.434.770
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	152.982,78	160.746	160.746
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	119.794,59	152.514	152.514
Mod.res. lembo sup.soletta (omog.cls)	W_c (cm ³) =		0	0
Mod.res. corda a liv. armatura sup.	$W_a (cm^3) =$		122.868	122.868


Verifiche di resistenza (SLU)								
FLESSIONE		I° FASE	II° FASE	III° FASE	TOTALE	c.s.		
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$		-10	-87	-141	0,44		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$		10	92	158	0,50		
Calcestruzzo lembo sup.	$\sigma_{\rm c}$ (N/mm ²)=		0,0	0,0	0,0	non reagente		
Armatura sup.	$\sigma_a (N/mm^2)=$		13	114	126	0,32		

 $\sigma > 0 \rightarrow \text{trazione}; \ \sigma < 0 \rightarrow \text{compressione}$

TAGLIO							
Area di taglio	$A_v (cm^2) =$	511,250	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	9417,3	0,37				
	ρ = infl.taglio trasc.su res.fles.						
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	319_					
lembo inferiore anima	σ_{ia} (N/mm ²)=	-132	0,41				
lembo superiore anima	$J_{sa} (N/mm^2) =$	151	0,47				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

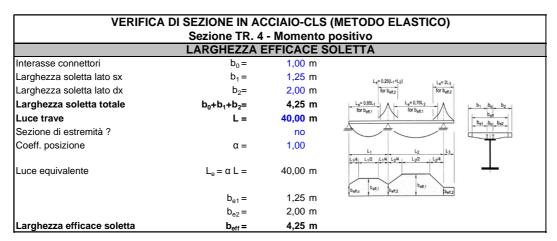
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		Soletta collaborante in c.a.			
Caratteristiche dei materian			Calcestruzzo ord.		Acciaio ir	n barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	335	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	γ _c =	1,50	γ _s =	1,15
Resistenza di progetto (N/mm²)	f _{yd} =	319	$f_{cd} =$	18,1	f _{ywd} =	391
Modulo elastico (N/mm²)	Es =	210.000	Ec=	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio								
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima			
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore		
210,0	120,00	9,00	100,00	9,00	192,0	2,5		

Caratteristiche geometriche soletta in c.a.							
Larghezza efficace (cm)	425,0	Spessore soletta (cm)	25,0				
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3				
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0				
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	240,0				
Armatura sup. soletta (cm²)	69,08	copriferro superiore (cm)	4,0				
Armatura inf. soletta (cm²)	69,08	copriferro inferiore (cm)	2,5				

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-13.384	-3.386	-18.931	-35.701
Taglio di progetto	$V_d(kN) =$	1.574	422	2.185	4.181

Caratteristiche inerziali		Trave in acciaio	Trave in acciaio + soletta coll. in c.a.		
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.	
Area reagente omog.acciaio	$A (cm^2) =$	2.460,00	2.598	2.598	
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	97,6	104,5	104,5	
Momenti d'inerzia	$I_x (cm^4) =$	21.353.392	23.545.576	23.545.576	
Mod.res. lembo inf. trave acciaio	$W_i (cm^3) =$	218.680,93	225.292	225.292	
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	190.055,16	223.205	223.205	
Mod.res. lembo sup.soletta (omog.cls)	$W_c (cm^3) =$		0	0	
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		179.070	179.070	


Verifiche di resistenza (SLU)								
FLESSIONE		I° FASE	II° FASE	III° FASE	TOTALE	c.s.		
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$		-15	-84	-160	0,50		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$		15	85	170	0,53		
Calcestruzzo lembo sup.	$\sigma_{\rm c}$ (N/mm ²)=		0,0	0,0	0,0	non reagente		
Armatura sup.	$\sigma_a (N/mm^2)=$		19	106	125	0,32		

 $\sigma > 0 \rightarrow trazione; \sigma < 0 \rightarrow compressione$

TAGLIO							
Area di taglio	$A_v (cm^2) =$	502,500	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	9256,2	0,45				
	ρ = infl.taglio trasc.su res.fles.						
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	319_					
lembo inferiore anima	$\sigma_{ia} (N/mm^2)=$	-146	0,46				
lembo superiore anima	σ _{sa} (N/mm²)=	156	0,49				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Caratteristiche dei materiali	Trave in Acciaio		Sc	oletta collal	orante in c.a.	orante in c.a.	
Caratteristiche dei materiali	Acciaio di carpenteria		Calcestruzzo ord.		Acciaio ii	n barre	
Classe di resistenza		S 355		C32/40		B450C	
Resistenza carat. a rottura (N/mm²)	$f_{yk} =$	355	$f_{ck} =$	32	$f_{ywk} =$	450	
Coefficiente di sicurezza	γ _{M0} =	1,05	$\gamma_c =$	1,50	$\gamma_s =$	1,15	
Resistenza di progetto (N/mm²)	$f_{yd} =$	338	$f_{cd} =$	18,1	$f_{ywd} =$	391	
Modulo elastico (N/mm²)	Es =	210.000	Ec=	33.346	Es =	210.000	

Caratteristiche geometriche trave in acciaio								
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima			
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore		
210,0	120,00	4,00	100,00	2,00	204,0	2,0		

Caratteristiche geometriche soletta in c.a.							
Larghezza efficace (cm)	425,0	Spessore soletta (cm)	25,0				
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3				
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0				
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	240,0				
Armatura sup. soletta (cm²)	69,08	copriferro superiore (cm)	4,0				
Armatura inf. soletta (cm²)	69,08	copriferro inferiore (cm)	2,5				

Sollecitazioni (S	LU)	I°FASE	II°FASE	III°FASE	Totale
Momento di progetto	$M_d(kNm) =$	4.274	1.627	21.504	27.405
Taglio di progetto	V _d (kN) =	0	0	1.765	1.765
Caratteristiche inerziali		Trave in	Trave in acciaio +		
		acciaio	soletta coll. in c.a.		

Caratteristiche inerziali		soletta coll. in c.a.	
	I°FASE Costruz.	II°FASE Lungo	III°FASE Istant.
$A (cm^2) =$	1.088,00	2.109	2.993
Y_g (cm) =	79,1	150,0	172,6
$I_x (cm^4) =$	7.939.000	19.354.536	23.053.535
W_i (cm ³) =	100.428,24	129.018	133.590
$W_s (cm^3) =$	60.626,87	322.650	615.893
W_c (cm ³) =		2.709.041	2.153.060
$W_a (cm^3) =$		225.089	363.442
	A $(cm^2) = Y_g(cm) = I_x(cm^4) = W_i(cm^3) = W_s(cm^3) = W_c(cm^3) = W_c(cm^$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Verifiche di resistenza (SLU)							
FLESSIONE		I°FASE	II° FASE	III°FASE	TOTALE	c.s.	
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	43	56	161	260	0,77	
Trave acciaio lembo sup.	$\sigma_s (N/mm^2) =$	-70	-23	-35	-128	0,38	
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2) =$		-3,0	-10,0	-13,0	0,72	
Armatura sup.	$\sigma_a (N/mm^2) =$		-33	-59	-92	0,23	

 $\sigma > 0 \rightarrow trazione; \sigma < 0 \rightarrow compressione$

TACLIC							
TAGLIO							
Area di taglio	$A_v (cm^2) =$	414,000	c.s.				
Taglio resistente	$V_{c,Rd}$ (kN) =	8081,3	0,22				
	$\rho = inf$	ρ = infl.taglio trasc.su res.fles.					
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0} =$	338_					
lembo inferiore anima	$\sigma_{ia} (N/mm^2) =$	252	0,75				
lembo superiore anima	J_{sa} (N/mm ²)=	-125	0,37				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

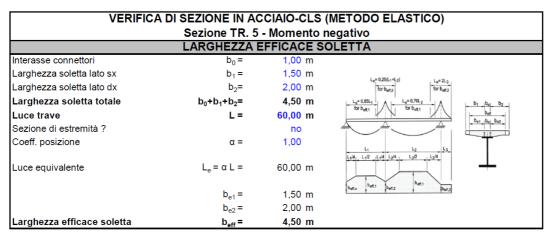
VERIFICA DI SEZIONE IN ACCIAIO-CLS (METODO ELASTICO) Sezione TR. 4 - Momento negativo						
	LARGHEZZA I	EFFICACE S	OLETTA			
Interasse connettori	b ₀ =	1,00 m				
Larghezza soletta lato sx	b ₁ =	1,25 m				
Larghezza soletta lato dx	b ₂ =	2,00 m	L _e = 0.25(L ₁ +L ₂) for b _{eff.2}			
Larghezza soletta totale	$b_0 + b_1 + b_2 =$	4,25 m	1 = 0.701			
Luce trave	L =	40,00 m	for b _{eff,1}			
Sezione di estremità ?		no				
Coeff. posizione	α =	1,00				
Luce equivalente	$L_e = \alpha L =$	40,00 m	L1			
	b _{e1} =	1,25 m	beff.o beff.1 beff.2 beff.1 beff.2			
	b _{e2} =	2,00 m				
Larghezza efficace soletta	b _{eff} =	4,25 m				

Caratteristiche dei materiali	Trave in A	cciaio	Sc	oletta collal	borante in c.a.	
Caratteristiche dei materiali	Acciaio di carpenteria		Calcestruzzo ord.		Acciaio ii	n barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	355	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	$\gamma_c =$	1,50	$\gamma_s =$	1,15
Resistenza di progetto (N/mm²)	f _{yd} =	338	$f_{cd} =$	18,1	f _{ywd} =	391
Modulo elastico (N/mm²)	Es =	210.000	Ec =	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio							
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima		
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore	
300,0	120,00	4,00	100,00	2,00	294,0	2,0	

Caratteristiche geometriche soletta in c.a.						
Larghezza efficace (cm)	425,0	Spessore soletta (cm)	25,0			
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3			
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0			
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	330,0			
Armatura sup. soletta (cm²)	69,08	copriferro superiore (cm)	4,0			
Armatura inf. soletta (cm²)	69,08	copriferro inferiore (cm)	2,5			

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-8.519	-2.511	-19.557	-30.587
Taglio di progetto	$V_d(kN) =$	1.265	384	2.076	3.725


Caratteristiche inerziali		Trave in acciaio	Trave in soletta co	
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.
Area reagente omog.acciaio	A $(cm^2) =$	1.268,00	1.406	1.406
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	117,9	137,5	137,5
Momenti d'inerzia	$I_x (cm^4) =$	17.887.478	22.823.583	22.823.583
Mod.res. lembo inf. trave acciaio	$W_i (cm^3) =$	151.665,83	166.021	166.021
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	98.250,49	140.430	140.430
Mod.res. lembo sup.soletta (omog.cls)	W_c (cm ³) =		0	0
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		121.063	121.063

Verifiche di resistenza (SLU)							
FLESSIONE		I° FASE	II° FASE	III° FASE	TOTALE	c.s.	
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	-56	-15	-118	-189	0,56	
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$		18	139	244	0,72	
Calcestruzzo lembo sup.	$\sigma_{\rm c}$ (N/mm ²)=		0,0	0,0	0,0	non reagente	
Armatura sup.	$\sigma_a (N/mm^2)=$		21	162	182	0,47	
$\sigma > 0 \rightarrow \text{trazione}; \ \sigma < 0 \rightarrow \text{compression}$	ne						

TAGLIO							
Area di taglio	$A_v (cm^2) =$	594,000	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	11594,8	0,32				
	ρ = in	ρ = infl.taglio trasc.su res.fles.					
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	338_					
lembo inferiore anima	σ_{ia} (N/mm ²)=	-183	0,54				
lembo superiore anima	σ _{sa} (N/mm ²)=	241	0,71				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Caratteristiche dei materiali	Trave in A	cciaio	Sc	oletta collal	borante in c.a.	
Caratteristiche dei materian	Acciaio di carpenteria		Calcestruzzo ord.		Acciaio ir	n barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	335	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	γ _c =	1,50	γ _s =	1,15
Resistenza di progetto (N/mm²)	f _{yd} =	319	$f_{cd} =$	18,1	f _{ywd} =	391
Modulo elastico (N/mm²)	Es =	210.000	Ec =	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio							
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima		
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore	
300,0	120,00	6,00	100,00	5,00	289,0	2,5	

Caratteristiche geometriche soletta in c.a.						
Larghezza efficace (cm)	450,0	Spessore soletta (cm)	25,0			
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3			
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0			
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	330,0			
Armatura sup. soletta (cm²)	72,22	copriferro superiore (cm)	4,0			
Armatura inf. soletta (cm²)	72,22	copriferro inferiore (cm)	2,5			

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-19.629	-5.664	-20.899	-46.192
Taglio di progetto	$V_d(kN) =$	1.808	578	2.289	4.675

Caratteristiche inerziali		Trave in	Trave in	acciaio +
Caratteristiche merzian	acciaio	soletta co	oll. in c.a.	
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.
Area reagente omog.acciaio	A (cm ²) =	1.942,50	2.087	2.087
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	133,7	146,3	146,3
Momenti d'inerzia	$I_x (cm^4) =$	30.950.391	35.469.248	35.469.248
Mod.res. lembo inf. trave acciaio	$W_i (cm^3) =$	231.550,17	242.380	242.380
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	186.073,77	230.826	230.826
Mod.res. lembo sup.soletta (omog.cls)	$W_c (cm^3) =$		0	0
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		197.422	197.422

Verifiche di resistenza (SLU)							
FLESSIONE 1º FASE IIIº FASE TOTALE c.s.							
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$		-23	-86	-194	0,61	
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$	105	25	91	221	0,69	
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2)=$		0,0	0,0	0,0	non reagente	
Armatura sup.	$\sigma_a (N/mm^2)=$		29	106	135	0,34	
$\sigma > 0 \rightarrow \text{trazione}; \ \sigma < 0 \rightarrow \text{compression}$	ne						

0 > 0 → trazione, 0 < 0 → compressione							
TAGLIO							
Area di taglio	$A_v (cm^2) =$	736,250	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	13561,9	0,34				
	$\rho = in$	fl.taglio traso	c.su res.fles.				
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	319					
lembo inferiore anima	$\sigma_{ia} (N/mm^2)=$	-186	0,58				
lembo superiore anima	$\sigma_{sa} (N/mm^2) =$	214	0,67				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

VERIFICA DI SEZIONE IN ACCIAIO-CLS (METODO ELASTICO) Sezione TR. 6 - Momento negativo						
	LARGHEZZA E	EFFICACE SO	OLETTA			
Interasse connettori	b ₀ =	1,00 m				
Larghezza soletta lato sx	b ₁ =	1,50 m				
Larghezza soletta lato dx	b ₂ =	2,00 m	L _e = 0,25(L ₁ +L ₂) L _e = 2L ₃			
Larghezza soletta totale	$b_0 + b_1 + b_2 =$	4,50 m	for b _{eff,2}			
Luce trave	L =	40,00 m	L _e = 0,85L ₁			
Sezione di estremità ?		no	b _{e1} b _{o1} b _{o2}			
Coeff. posizione	α =	1,00				
Luce equivalente	$L_e = \alpha L =$	40,00 m	L ₁ L ₂ L ₂ L ₃ L ₄ L ₂ L ₂ L ₃			
	b _{e1} =	1,50 m	beff,o beff,1 beff,2 beff,1 beff,2			
	b _{e2} =	2,00 m				
Larghezza efficace soletta	b _{eff} =	4,50 m				

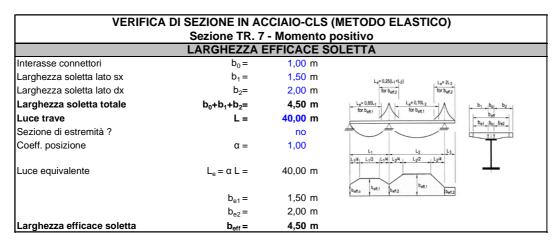
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		Soletta collaborante in c.a.			
Caratteristiche dei materian			Calcestruzzo ord.		Acciaio ir	n barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	f _{yk} =	335	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	γ _c =	1,50	γ _s =	1,15
Resistenza di progetto (N/mm²)	$f_{yd} =$	319	$f_{cd} =$	18,1	$f_{ywd} =$	391
Modulo elastico (N/mm²)	Es =	210.000	Ec=	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio							
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima		
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore	
300,0	120,00	9,00	100,00	9,00	282,0	2,5	

Caratteristiche geometriche soletta in c.a.						
Larghezza efficace (cm)	450,0	Spessore soletta (cm)	25,0			
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3			
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0			
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	330,0			
Armatura sup. soletta (cm²)	72,22	copriferro superiore (cm)	4,0			
Armatura inf. soletta (cm²)	72,22	copriferro inferiore (cm)	2,5			

Sollecitazioni (SLU)		I° FASE	II° FASE	III° FASE	Totale
Momento di progetto	M_d (kNm) =	-27.265	-7.905	-23.944	-59.114
Taglio di progetto	V _d (kN) =	1.814	563	2.375	4.752

Caratteristiche inerziali		Trave in acciaio	Trave in soletta co	
		I° FASE Costruz.	II° FASE Lungo	III° FASE Istant.
Area reagente omog.acciaio	A (cm ²) =	2.685,00	2.829	2.829
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	140,2	149,3	149,3
Momenti d'inerzia	$I_x (cm^4) =$	46.347.033	50.629.524	50.629.524
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	330.470,00	339.212	339.212
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	290.114,66	335.865	335.865
Mod.res. lembo sup.soletta (omog.cls)	W_c (cm ³) =		0	0
Mod.res. corda a liv. armatura sup.	$W_a (cm^3) =$		286.457	286.457


Verifiche di resistenza (SLU)							
FLESSIONE 1° FASE 11° FASE TOTALE c.s.							
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	-83	-23	-71	-176	0,55	
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$	94	24	71	189	0,59	
Calcestruzzo lembo sup.	$\sigma_{\rm c} ({\rm N/mm}^2) =$		0,0	0,0	0,0	non reagente	
Armatura sup.	$\sigma_a (N/mm^2) =$		28	84	111	0,28	

 $\sigma \geq 0 \rightarrow trazione; \, \sigma < 0 \rightarrow compressione$

TAGLIO							
Area di taglio	$A_v (cm^2) =$	727,500	c.s.				
Taglio resistente	$V_{c,Rd}(kN) =$	13400,7	0,35				
	ρ = in	fl.taglio trasc.	su res.fles.				
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	319_					
lembo inferiore anima	$\sigma_{ia} (N/mm^2)=$	-165	0,52				
lembo superiore anima	$\sigma_{sa} (N/mm^2) =$	178	0,56				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

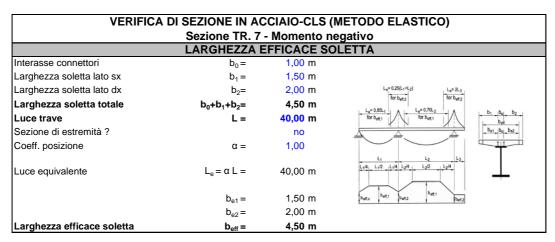
Caratteristiche dei materiali	Trave in Acciaio Acciaio di carpenteria		So	letta collabo	orante in c.a.	ante in c.a.	
Caratteristiche dei materiali			Calcestruzzo ord.		Acciaio in barre		
Classe di resistenza		S 355		C32/40		B450C	
Resistenza carat. a rottura (N/mm²)	$f_{yk} =$	355	$f_{ck} =$	32	$f_{ywk} =$	450	
Coefficiente di sicurezza	γ _{м0} =	1,05	$\gamma_c =$	1,50	$\gamma_s =$	1,15	
Resistenza di progetto (N/mm²)	$f_{yd} =$	338	$f_{cd} =$	18,1	$f_{ywd} =$	391	
Modulo elastico (N/mm²)	Es =	210.000	Ec =	33.346	Es=	210.000	

Caratteristiche geometriche trave in acciaio								
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima			
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore		
300,0	120,00	4,00	100,00	2,00	294,0	2,0		

Caratteristiche geometriche soletta in c.a.							
Larghezza efficace (cm)	450,0	Spessore soletta (cm)	25,0				
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3				
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0				
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	330,0				
Armatura sup. soletta (cm²)	72,22	copriferro superiore (cm)	4,0				
Armatura inf. soletta (cm²)	72,22	copriferro inferiore (cm)	2,5				

Sollecitazioni (SLU)		I°FASE	II°FASE	III°FASE	Totale
Momento di progetto	$M_d(kNm) =$	8.924	3.656	25.641	38.221
Taglio di progetto	V _d (kN) =	0	0	2.157	2.157

Caratteristiche inerziali		Trave in acciaio	Trave in a soletta co	
		I°FASE Costruz.	II°FASE Lungo	III°FASE Istant.
Area reagente omog.acciaio	A $(cm^2) =$	1.268,00	2.345	3.278
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	117,9	208,5	239,1
Momenti d'inerzia	$I_x (cm^4) =$	17.887.478	40.653.764	48.463.200
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	151.665,83	194.970	202.650
Mod.res.lembo sup. trave acciaio	$W_s (cm^3) =$	98.250,49	444.364	796.405
Mod.res. lembo sup.soletta (omog.cls)	W_c (cm ³) =		4.214.809	3.359.341
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		346.026	557.995


Verifiche di resistenza (SLU)								
FLESSIONE I°FASE III°FASE TOTALE c.s.								
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	59	61	127	247	0,73		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2) =$		-27	-32	-150	0,44		
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2) =$		-3,2	-7,6	-10,8	0,60		
Armatura sup.	$\sigma_a (N/mm^2) =$		-35	-46	-81	0,21		

 $\sigma > 0 \rightarrow \text{trazione}; \ \sigma < 0 \rightarrow \text{compressione}$

TAGLIO									
Area di taglio	$A_v (cm^2) =$	594,000	c.s.						
Taglio resistente	$V_{c,Rd}$ (kN) =	11594,8	0,19						
	$\rho = in$	ρ = infl.taglio trasc.su res.fles.							
Resistenza ridotta a flessione anima	(1- ρ) $f_{yk}/\gamma_{M0}=$	338_							
lembo inferiore anima	σ_{ia} (N/mm ²)=	241	0,71						
lembo superiore anima	J_{sa} (N/mm ²)=	-148	0,44						

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Caratteristiche dei materiali	Trave in Acciaio		S			
Caratteristiche dei materiali	Acciaio di carpenteria		Calcestruz	Calcestruzzo ord.		in barre
Classe di resistenza		S 355		C32/40		B450C
Resistenza carat. a rottura (N/mm²)	$f_{yk} =$	355	$f_{ck} =$	32	$f_{ywk} =$	450
Coefficiente di sicurezza	γ _{M0} =	1,05	$\gamma_c =$	1,50	$\gamma_s =$	1,15
Resistenza di progetto (N/mm²)	$f_{yd} =$	338	$f_{cd} =$	18,1	$f_{ywd} =$	391
Modulo elastico (N/mm²)	Es =	210.000	Ec=	33.346	Es =	210.000

Caratteristiche geometriche trave in acciaio							
Altezza trave in acciaio (cm)	Ala inferiore		Ala superiore		Anima		
	Larghezza	Spessore	Larghezza	Spessore	Altezza	Spessore	
300,0	120,00	4,00	100,00	2,00	294,0	2,0	

Caratteristiche geometriche soletta in c.a.							
Larghezza efficace (cm)	450,0	Spessore soletta (cm)	25,0				
Coef.di omog.a lungo termine (Ec*=Ec/2)	12,6	Coef.di omogeneizzazione istantaneo	6,3				
Larghezza b ₀ del getto (cm)	100,00	Altezza polistirolo (cm)	5,0				
$h' = s + h_{polistirolo}$ (cm)	30,00	$H_{totale} = h' + h_{trave}$ (cm)	330,0				
Armatura sup. soletta (cm²)	121,90	copriferro superiore (cm)	4,0				
Armatura inf. soletta (cm²)	121,90	copriferro inferiore (cm)	2,5				

Sollecitazioni (SLU)		I°FASE	II°FASE	III°FASE	Totale
Momento di progetto	$M_d(kNm) =$	-11.558	-3.277	-18.919	-33.754
Taglio di progetto	V _d (kN) =	1.690	541	2.047	4.278

Caratteristiche inerziali		Trave in acciaio	Trave in acciaio + soletta coll. in c.a.	
		I°FASE Costruz.	II°FASE Lungo	III°FASE Istant.
Area reagente omog.acciaio	$A (cm^2) =$	1.268,00	1.512	1.512
Posizione baricentro (risp.lembo inf)	Y_g (cm) =	117,9	150,0	150,0
Momenti d'inerzia	$I_x (cm^4) =$	17.887.478	25.990.635	25.990.635
Mod.res. lembo inf. trave acciaio	W_i (cm ³) =	151.665,83	173.270	173.270
Mod.res.lembo sup. trave acciaio	W_s (cm ³) =	98.250,49	173.272	173.272
Mod.res. lembo sup.soletta (omog.cls)	$W_c (cm^3) =$		0	0
Mod.res. corda a liv. armatura sup.	W_a (cm ³) =		147.675	147.675

Verifiche di resistenza (SLU)								
FLESSIONE		I°FASE	II°FASE	III°FASE	TOTALE	c.s.		
Trave acciaio lembo inf.	$\sigma_i (N/mm^2) =$	-76	-19	-109	-204	0,60		
Trave acciaio lembo sup.	$\sigma_s (N/mm^2)=$	118	19	109	246	0,73		
Calcestruzzo lembo sup.	$\sigma_c (N/mm^2) =$		0,0	0,0	0,0	non reagente		
Armatura sup.	$\sigma_a (N/mm^2)=$		22	128	150	0,38		

 $\sigma > 0 \rightarrow trazione; \sigma < 0 \rightarrow compressione$

TAGLIO							
Area di taglio	$A_v (cm^2) =$	594,000	c.s.				
Taglio resistente	$V_{c,Rd}$ (kN) =	11594,8	0,37				
	ρ = infl.taglio trasc.su res.fles.						
Resistenza ridotta a flessione anima	$(1-\rho) f_{yk}/\gamma_{M0}=$	338					
lembo inferiore anima	$\sigma_{ia} (N/mm^2) =$	-198	0,59				
lembo superiore anima	$\sigma_{sa} (N/mm^2) =$	243	0,72				

2.5.2) Verifiche di stabilità dell'anima

Si effettuano le verifiche di stabilità per imbozzamento dei pannelli d'anima delle travi principali d'impalcato.

Le anime delle travi sono provviste di un sistema di irrigidimenti verticali atti a ridurre le dimensioni dei pannelli d'anima in modo tale da evitare i fenomeni di instabilità dovuti a forti valori di tensioni di compressione e di taglio.

Per le travi di altezza pari a 190cm e 210cm, gli irrigidimenti verticali sono posti in corrisponda dei trasversi con un interasse pari a circa 5,00m e sono costituiti da un piatto di dimensioni 330x15mm.

Per le travi di altezza pari a 300cm, oltre agli irrigidimenti verticali posti in corrispondenza dei trasversi con un interasse pari a circa 5,00m, sono previsti degli irrigidimenti aggiuntivi realizzati con piatti di dimensioni 300x20mm intervallati ai trasversi stessi.

Si riportano nella pagina seguente le verifiche, operate seguendo le istruzioni CNR 10011/85 par.7.6, valutando per ciascun concio e nel pannello d'anima maggiormente compresso i valori delle tensioni agenti (σ_1 , τ) e della tensione ideale di calcolo, ed il valore della tensione ideale critica funzione delle dimensioni geometriche del pannello e del rapporto spessore/altezza dello stesso.

ANAS SPA - AUTOSTRADA A3 SA RC NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Verifica di stabilità all'imbozzamento dell'anima di elementi strutturali in acciaio a parete piena										
Svincolo Padula Buonabitacolo - Rampa A										
Caratteristiche geom.	TR. 1 +	Tipo 1 -	TR. 2 -	TR. 3 -	TR. 4 +	TR. 4 -	TR. 5 -	TR. 6 -	TR. 7 +	Note
Altezza trave (m)	1,90	1,90	2,10	2,10	2,10	2,10	3,00	3,00	3,00	f _y (N/mm ²) 355
Spessore ala compressa (m)	0,02	0,04	0,06	0,09	0,02	0,04	0,06	0,09	0,02	
Spessore ala tesa (m)	0,04	0,02	0,05	0,09	0,04	0,02	0,05	0,09	0,04	
Altezza anima (m)	1,84	1,84	1,99	1,92	2,04	2,04	2,89	2,82	2,94	
Spessore anima (m)	0,020	0,020	0,025	0,025	0,020	0,020	0,025	0,025	0,020	
h: altezza pannello (m)	1,84	1,84	1,99	1,92	2,04	2,04	2,89	2,82	2,94	
a: larghezza pannello (m)	5,00	5,00	5,00	5,00	5,00	5,00	2,50	2,50	2,50	
α (a/h)	2,717	2,717	2,513	2,604	2,451	2,451	0,865	0,887	0,850	
$\tau_{\text{med,p}} (\text{N/mm}^2)$	31	47	51	62	32	46	47	48	27	
$\sigma_{\text{max, compr}} (\text{N/mm}^2)$	106	96	104	119	95	140	144	131	111	Tensione al lembo compresso (+ compr.)
$\sigma_{\text{max, traz}} (\text{N/mm}^2)$	177	122	117	126	192	181	163	140	183	Tensione al lembo teso (+ traz)
$\sigma_{1, pannello} (N/mm^2)$	103	91	98	109	92	134	138	123	109	Massima di compressione ; 0 se solo traz.
$\sigma_{\text{min,pannello}}$ (N/mm 2)	-171	-120	-112	-116	-187	-178	-158	-132	-179	Minima di compressione; negativa se traz.
Ψ	-1,660	-1,310	-1,144	-1,065	-2,022	-1,329	-1,145	-1,073	-1,642	
$\sigma_{cr,cal}$ (N/mm ²)	116	122	132	153	108	156	160	148	119	
β	1,000	1,000	1,000	1,000	1,000	1,000	0,800	0,800	0,800	
$\sigma_{cr,0}$	22	22	29	32	18	18	14	15	9	
k_{σ}	23,90	23,90	23,90	23,90	23,90	23,90	23,90	23,90	23,90	
k_{τ}	4,71	4,71	4,78	4,74	4,80	4,80	11,14	10,79	11,39	
$\sigma_{ m cr}$	526	526	702	754	428	428	333	350	206	
$\sigma_{cr,red}$	338	338	346	347	329	329	310	315	206	
$ au_{ m cr}$	104	104	140	150	86	86	155	158	98	
$\sigma_{cr,id}$	281	236	289	295	244	236	299	301	202	
$v = \sigma_{cr,id} / \sigma_{id,cal}$	2,42	1,93	2,19	1,93	2,27	1,52	1,87	2,03	1,70	> 1,5 x Beta =1,5 (verificato)

2.5.3) Verifiche a fatica con il metodo dei coefficienti λ

Per il progetto in esame si seguiranno i seguenti criteri per le verifiche allo stato limite di fatica di cui ai punti 4.2.4.1.4 e 5.1.4.3 delle NTC 2008.

Sulla base del danno D si può definire uno spettro di tensione equivalente, ad ampiezza costante, $\Delta\sigma_{E,d}$, in grado di produrre in 2×10^6 cicli, lo stesso danneggiamento prodotto dallo spettro di tensione di progetto. In tal caso, la verifica a fatica è ricondotta ad una verifica convenzionale, confrontando l'ampiezza di tensione equivalente di progetto, $\Delta\sigma_{E,d}$, con la classe del particolare $\Delta\sigma_c$, secondo la relazione:

$$\gamma_f \Delta \sigma_{E,d} \leq \Delta \sigma_C / \gamma_M$$

L'ampiezza di tensione equivalente di progetto $\Delta \sigma_{E,d}$ può essere ricavata in modo convenzionale secondo al relazione:

 $\Delta \sigma_{\text{E,d}} = \lambda_1 \lambda_2 \lambda_3 \lambda_4 \Delta \sigma_{\text{p}} = \lambda \Delta \sigma_{\text{p}}$ con $\lambda \leq \lambda_{\text{max}}$

in cui:

 $\gamma_f = 1$ è il coefficiente parziale di sicurezza delle azioni;

 $\gamma_{\rm M}$ è il coefficiente parziale di sicurezza delle resistenze;

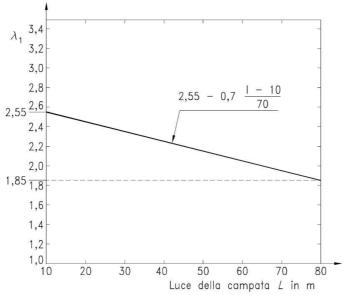
 $\Delta \sigma_p = \sigma_{p,max} - \sigma_{p,min}$ è la massima ampiezza di tensione indotta dal modello di carico;

λ è il fattore di equivalenza del danneggiamento per ponti stradali;

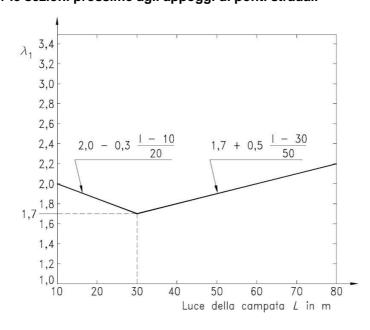
λi sono fattori, opportunamente calibrati, specificati nel seguito;

 λ_{max} è un valore limite del fattore λ , specificato nel seguito.

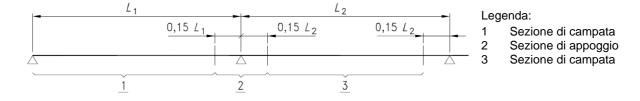
Le verifiche saranno effettuate utilizzando lo spettro di carico costituente il *modello di carico a fatica 3* descritto nella figura 5.1.5 delle NTC 2008.


Il vettore sarà fatto marciare in asse alla corsia di marcia della rampa.

Per valori di "L" non compresi nei grafici seguenti si useranno i valori estremi indicati negli stessi grafici.


Fattore λ_1

 $\lambda_{\rm l}$ è un fattore che tiene conto dell'effetto di danneggiamento dovuto al traffico e dipende dalla lunghezza della campata o della linea d'influenza. In assenza di studi specifici, $\lambda_{\rm l}$ può essere desunto dalle figure seguenti.


Fattore λ_1 per le sezioni in campata di ponti stradali

Fattore λ_1 per le sezioni prossime agli appoggi di ponti stradali

Aree dove si considerano le sezioni in campata e prossime agli appoggi

Essendo:

a) per i momenti:

- trave in semplice appoggio: la luce della campata L;
- sezione di campata di travi continue: la luce della campata L;
- sezione d'appoggio di travi continue: la media delle campate adiacenti all'appoggio (L_i+L_{i+1})/2;
- per diaframmi trasversali facenti da appoggio a travi secondarie, la somma della luce delle travi secondarie sostenute dal diaframma in questione;

b) per il taglio e la torsione:

- trave in semplice appoggio: la luce della campata L;
- sezione di campata di travi continue: 0.4 Li;
- sezione d'appoggio di travi continue: L_i;

c) per le reazioni:

- appoggi di travi in singola campata: L;
- appoggi terminali di travi continue: L_{terminale};
- appoggi intermedi di travi continue: 0,5(L_i + L_{i+1})

Fattore λ₂

 λ_2 è un fattore che tiene conto del volume del traffico. In assenza di studi specifici, λ_2 può essere ottenuto mediante la relazione:

$$\lambda_2 = \frac{Q_{m1}}{Q_0} \left(\frac{N_{Obs}}{N_0}\right)^{1/5}$$

in cui Q_{m1} è il peso lordo medio degli autocarri sulla corsia lenta (kN) ottenuto da:

$$Q_{m1} = \left(\frac{\sum n_i Q_i^5}{\sum n_i}\right)^{1/5}$$

 $Q_0 = 480 \text{ kN}$

 $N_0 = 0.5 \times 10^6$

N_{Obs} è il numero totale annuo di autocarri di peso superiore a 100kN transitanti sulla corsia di marcia lenta, che si assumerà pari a 1 milione.;

Qi è il peso lordo dell'autocarro i-esimo nella corsia lenta (kN); vedere NTC 2008 -Tab. 5.1.VIII con traffico di lunga percorrenza per le autostrade e per le strade extraurbane principali e per le strade extraurbane secondarie quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Per le altre reti viarie extraurbane si utilizzerà il traffico di media percorrenza;

n_i è il numero di autocarri di peso lordo Q_i nella corsia lenta; vedere NTC 2008 - Tab. 5.1.X e 5.1. VIII con traffico di lunga percorrenza per le autostrade e per le strade extraurbane principali e per le strade extraurbane secondarie quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Per le altre reti viarie extraurbane si utilizzerà il traffico di media percorrenza.

Il fattore λ_2 può essere ottenuto dalla tabella seguente per valori assegnati di $Q_{m1}e$ di N_{Obs} .

Fattore λ₂

1 411010 702								
Q _{m1}	N_Obs							
	0.25 10 ⁶	0.50 10 ⁶	0.75 10 ⁶	1.00 10 ⁶	1.25 10 ⁶	1.50 10 ⁶	1.75 10 ⁶	2.00 10 ⁶
200	0.362	0.417	0.452	0.479	0.500	0.519	0.535	0.550
300	0.544	0.625	0.678	0.712	0.751	0.779	0.803	0.825
400	0.725	0.833	0.904	0.957	1.001	1.038	1.071	1.100
500	0.907	1.042	1.130	1.197	1.251	1.298	1.338	1.374
600	1.088	1.250	1.356	1.436	1.501	1.557	1.606	1.649

Fattore λ_3

 λ_3 è un fattore che tiene conto della vita di progetto del ponte. In assenza di studi specifici, λ_3 può essere ottenuto mediante la relazione:

$$\lambda_3 = \left(\frac{t_{Ld}}{100}\right)^{1/5}$$

dove t_{Ld} è la vita di progetto del ponte in anni che si assumerà pari a $\mbox{Vn}.$

Il fattore λ₃ può essere ottenuto dalla tabella seguente per valori assegnati di t_{Ld}.

Fattore λ_3

Vita di progetto in anni	50	60	70	80	90	100	120
Fattore λ_3	0.871	0.903	0.931	0.956	0.979	1.000	1.037

Fattore λ₄

 λ_4 è un fattore che tiene conto del traffico pesante sulle altre corsie. In assenza di studi specifici, λ_4 può essere ottenuto mediante la relazione:

$$\lambda 4 = \left[1 + \frac{N_2}{N_1} \left(\frac{\eta_2 Q_{m2}}{\eta_1 Q_{m1}} \right)^5 + \frac{N_3}{N_1} \left(\frac{\eta_3 Q_{m3}}{\eta_1 Q_{m1}} \right)^5 + \dots + \frac{N_k}{N_1} \left(\frac{\eta_k Q_{mk}}{\eta_1 Q_{m1}} \right)^5 \right]^{1/5}$$

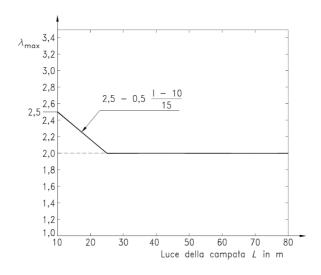
dove:

k è il numero di corsie con traffico pesante;

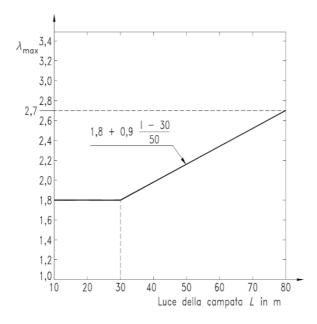
N_i è il numero annuo di autocarri nella corsia j.

In mancanza di dati si può assumere quanto segue: per le autostrade con 3 o più corsie per senso di marcia le corsie di marcia lenta in direzione "X" e "Y" sono equamente caricate in termini di numero annuo di autocarri e sono entrambe affiancate dalla adiacente corsia di marcia caricata a sua volta con un numero annuo di autocarri pari al 25% di quello valutato per la corsia di marcia lenta; per le altre autostrade e per le strade extraurbane principali si assumerà il numero di autocarri transitante solo sulle corsia di marcia lenta in direzione "X" e "Y" a loro volta equamente caricate; per le strade extraurbane secondarie si assumerà il numero di autocarri transitante sulla corsia di marcia in direzione "X" (pari a 0,5 milioni) uguale a quello transitante sulle corsia di marcia in direzione "Y".

 Q_{mj} è il peso lordo medio degli autocarri nella corsia j; in mancanza di dati si assumerà $Q_{mj} = Q_{m1}$


η_i è il coefficiente di ripartizione della j-esima corsia caricata.

Nel caso in esame $\lambda_4 \cong 1$


Fattore λ_{max}

 λ_{max} è il valore massimo del fattore λ , che tiene conto del limite a fatica. In assenza di studi specifici, λ_{max} può essere ottenuto dalle figure seguenti.

Fattore λ_{max} per le sezioni in campata di ponti stradali

Fattore λ_{max} per le sezioni in prossimità degli appoggi di ponti stradali

In accordo con UNI EN 1994-2 6.8.6.2 le verifiche a fatica dei pioli si eseguiranno assumendo i seguenti valori dei coefficienti λ :

 λ_1 = 1,55 per campate fino a 100 m;

 λ_2 , λ_3 , λ_4 : i valori calcolati dalle espressioni riportate ai punti precedenti ma impiegando potenze 8 e 1/8 in luogo di 5 e 1/5.

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Coefficienti parziali di sicurezza γ_M

Il coefficiente parziale di sicurezza per le verifiche a fatica γ_M dipende sia dalla possibilità di individuare e riparare eventuali lesioni per fatica, sia dall'entità delle conseguenze della crisi per fatica dell'elemento.

Relativamente al primo punto, le strutture possono essere distinte in strutture *poco sensibili* e in strutture *sensibili*.

Si dice poco sensibile una struttura nella quale il mantenimento del richiesto livello di affidabilità nei riguardi dello stato limite di fatica può essere garantito attraverso un appropriato programma di ispezione, controllo, monitoraggio e riparazione delle lesioni di fatica, esteso alla vita di progetto della struttura.

Una struttura può essere classificata poco sensibile alla rottura per fatica se si verificano le sequenti circostanze:

- dettagli costruttivi, materiali e livelli di tensione tali da non essere sensibili alla fatica (ad esempio dimostrando tramite procedure analitiche e/o sperimentali che le eventuali lesioni presentino bassa velocità di propagazione e significativa lunghezza critica);
- disposizioni costruttive che permettano la ridistribuzione degli sforzi (per esempio elementi che presentino gradi di iperstaticità strutturali);
- dettagli idonei ad arrestare la propagazione delle lesioni;
- dettagli facilmente ispezionabili;
- prestabilite procedure di ispezione e di manutenzione atte a rilevare e riparare le eventuali lesioni.

In caso contrario, la struttura si dice sensibile.

I valori dei coefficienti γ_M da adottare nelle verifiche sono riportati nella tabella seguente.

Coefficienti parziali di sicurezza per le verifiche a fatica γ_M

Sensibilità della struttura	Conseguenze della rottura per fatica		
	moderate	significative	
Struttura poco sensibile	1.00	1.15	
Struttura sensibile	1.15	1.35	

Le conseguenze della possibile crisi a fatica si distinguono in:

- significative: se relative ad elementi principali (travi principali, irrigidenti travi principali, traversi di testata, pioli, etc.), ovvero se il collasso di detti elementi comporta un forte danneggiamento dell'impalcato.
- moderate: se relative ad elementi secondari (diaframmi, controventi, traversi, travi di spina, elementi del deck della piastra ortotropa, etc.), ovvero se il collasso di tali elementi comporta una maggiore deformabilità della struttura, ma non il collasso per carichi frequenti da traffico, in quanto è possibile una ridistribuzione degli sforzi.

Per il progetto in esame si assumerà che le strutture siano sensibili.

2.6) VERIFICA DEI TRASVERSI

Si riportano le verifiche strutturali delle due differenti tipologie di trasversi.

TRASVERSO TIPO A

Caratteristiche dei materiali				
Classe di resistenza		S 355		
Resistenza caratteristica a rottura	f _{yk} (N/mm²)	355		
Coefficiente di sicurezza	Y мо	1,05		
Resistenza di progetto	f _{yd} (N/mm²)	338		
Modulo elastico	E _s (N/mm ²)	210.000		

Caratteristiche geometriche trave in acciaio				
Ala inf	eriore	Ala superiore		
Larghezza (cm)	Spessore (cm)	Larghezza (cm)	Spessore (cm)	
30,0	2,5	30,0	2,5	
Altezza to	tale (cm)	Ani	ima	
		Altezza (cm)	Spessore (cm)	
80,0		75,0	1,5	

Caratteristiche inerziali				
Area sezione	A (cm ²)	263		
Area di taglio	A_v (cm ²)	116,25		
Posizione baricentro (risp.lembo inf)	Y _g (cm)	40,0		
Momenti d'inerzia	I_x (cm ⁴)	278.046,9		
Mod.res. lembo inf. trave acciaio	W _i (cm ³)	6.951,2		
Mod.res.lembo sup. trave acciaio	W_s (cm ³)	6.951,2		

Sollecitazioni di Progetto				
Sforzo assiale	N _{Ed} (kN)	28,0		
Momento Flettente	M _{Ed} (kNm)	1414,0		
Taglio	V _{Ed} (kN)	557,0		
N>0: Trazione; M>0: momento che tende le fibre inferiori				

Verifiche di resistenza				
Presso flessione - Lembo inferiore	$\sigma_i (N/mm^2)$	204,5		
Presso flessione - Lembo superiore	$\sigma_{\rm s}$ (N/mm ²)	-202,4		
Taglio	τ (N/mm ²)	47,9		
$\sigma > 0 \rightarrow \text{trazione}; \sigma$	< 0 → compressione			
Tensione ideale	σ_{id} (N/mm ²)	220,7		
Coefficiente di sicurezza	f _{yd} / σ _{id} ≥	1,53		

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

TRASVERSO TIPO B

Caratteristiche dei materiali				
Classe di resistenza		S 355		
Resistenza caratteristica a rottura	f_{yk} (N/mm ²)	355		
Coefficiente di sicurezza	Y _{мо}	1,05		
Resistenza di progetto	f _{yd} (N/mm²)	338		
Modulo elastico	E _s (N/mm ²)	210.000		

Caratteristiche geometriche trave in acciaio					
Ala inf	eriore	Ala superiore			
Larghezza (cm)	Spessore (cm)	Larghezza (cm)	Spessore (cm)		
40,0	3,0	40,0	3,0		
Altezza to	tale (cm)	Ani	ma		
		Altezza (cm)	Spessore (cm)		
120	120,0		1,5		

Caratteristiche inerziali				
Area sezione	A (cm ²)	411		
Area di taglio	A_v (cm ²)	175,50		
Posizione baricentro (risp.lembo inf)	Y _g (cm)	60,0		
Momenti d'inerzia	I_x (cm ⁴)	1.006.713,0		
Mod.res. lembo inf. trave acciaio	W _i (cm³)	16.778,6		
Mod.res.lembo sup. trave acciaio	W_s (cm ³)	16.778,6		

Sollecitazioni di Progetto				
Sforzo assiale	N _{Ed} (kN)	46		
Momento Flettente	M _{Ed} (kNm)	4.274		
Taglio	V _{Ed} (kN)	1.611		
N>0: Trazione; M>0: momento che tende le fibre inferiori				

Verifiche di resistenza							
Presso flessione - Lembo inferiore $\sigma_i (N/mm^2)$ 255,8							
Presso flessione - Lembo superiore	$\sigma_{\rm s}$ (N/mm ²)	-253,6					
Taglio	τ (N/mm ²)	91,8					
$\sigma > 0 \rightarrow \text{trazione}; \sigma$	$< 0 \rightarrow$ compressione						
Tensione ideale σ_{id} (N/mm ²) 301,2							
Coefficiente di sicurezza	f _{yd} / σ _{id} ≥	1,12					

2.7) APPARECCHI DI APPOGGIO

Gli apparecchi di appoggio sono costituiti da isolatori di tipo elastomerico armato ancorati alle singole travi ed ai baggioli realizzati in testa alle pile e sulle spalle e sono progettati per supportare le azioni nella combinazione caratteristica (SLU) e le azioni e gli spostamenti nelle combinazioni sismiche allo Stato Limite di Collasso (SLC).

I dispositivi adottati hanno le seguenti rigidezze:

Spostamento massimo 300 mm

Rigidezza orizzontale equivalente: $K_e = 3,52 \text{ kN/mm}$

Rigidezza verticale $K_v = 2.439 \text{ kN/mm}$

Le azioni e gli spostamenti sui singoli appoggi sono riepilogati nelle tabelle che seguono, in cui sono evidenziate le azioni, gli spostamenti orizzontali massime.

	Risultati Modello							
Azioni orizzo	Azioni orizzontali sugli isolatori Azioni verticali sugli isolatori							
Esercizio Sisma				Esercizio	Sisma			
H _{media} (kN)	135	554	V _{media} (kN)	-3.785	-2.549			
H _{media} (kN) H _{min} (kN) H _{max} (kN)	74	250	V _{media} (kN) V _{min} (kN) V _{max} (kN)	-471	-224			
H _{max} (kN)	243	807	V _{max} (kN)	-10.354	-5.726			

Spostamenti massimi (SLC)				
Spalla A	230 mm	Pila 4	272 mm	
Pila 1	245 mm	Pila 5	234 mm	
Pila 2	282 mm	Pila 6	210 mm	
Pila 3	289 mm	Spalla B	200 mm	

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

2.8) VERIFICA TRASVERSALE DELLA SOLETTA

La soletta in c.a. è gettata per uno spessore di 25cm su predalles tralicciate di spessore pari a 5cm per un'altezza totale e costante pari a 30cm.

In direzione longitudinale la soletta è collaborante con le travi principali in acciaio e per essa le verifiche di resistenza sono riportate nelle varie condizioni di carico unitamente a quelle delle travi.

Inoltre in tale direzione bisogna tener presente gli effetti locali dei carichi permanenti e mobili che sollecitano a taglio e flessione la soletta.

A tal scopo si considerano due fasi distinte di comportamento:

- I Fase: Getto della soletta Struttura resistente solo la predalle tralicciata.
- II Fase: Sovraccarichi permanenti e carichi mobili Struttura resistente trasversale soletta di altezza pari a 30cm.

Sono stati considerati due differenti modelli per tener conto delle diverse larghezze dell'impalcato schematizzando la soletta come una trave continua su due appoggi con le sequenti luci:

Modello 1:	interasse appoggi	5,00m

luce sbalzi laterali 1,50m

larghezza complessiva implacato 8,00m

Modello 2: interasse appoggi 5,00m

luce sbalzi laterali 2,15m

larghezza complessiva implacato 9,30m

Analisi dei carichi permanenti:

- Soletta s=25+5cm 0,30m x 25 kN/m 3 = 7,50 kN/m 2

- Ringrosso $H_{media} = 20 \text{cm}$ 0,20m x 25 kN/m³ = 5,00 kN/m

- Pavimentazione 2,50 kN/m²

Veletta in c.a.
 3.75 kN/m

Sicurvia 2,50 kN/m

Frangivento 1,00 kN/m

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Carichi da traffico:

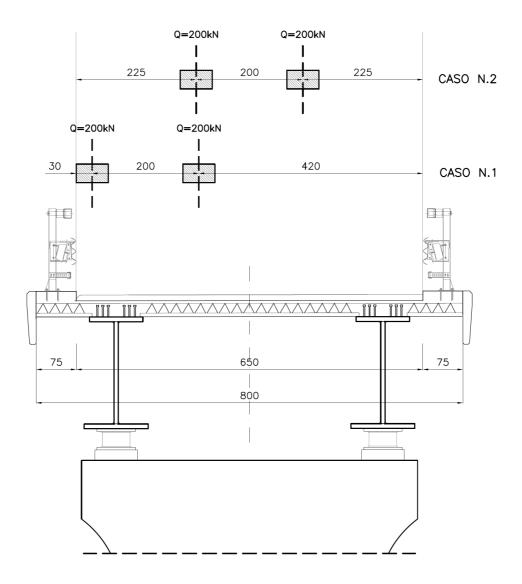
- **Schema di carico 2** – un singolo asse applicato su specifiche impronte di forma rettangolare di larghezza 0,60m ed altezza 0,35m poste ad interasse pari a 2,00m con carico pari a 200kN.

La larghezza collaborante della soletta è stata valutata considerando la diffusione dei carichi concentrati dovuri alle azioni del traffico nella soletta e nella pavimentazione ottenendo un'impronta pari a:

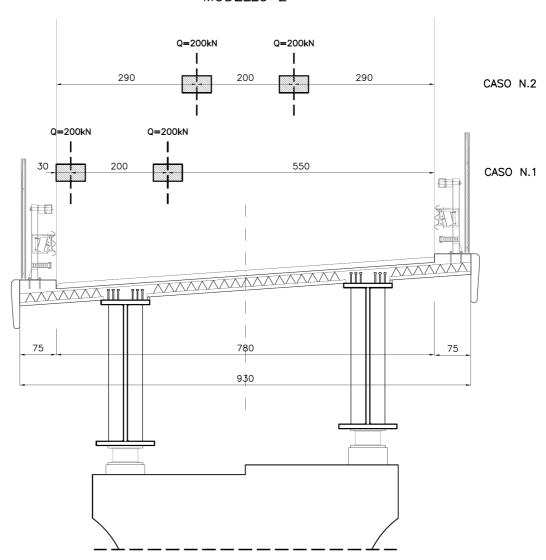
spessore pavimentazione s = 11cm

spessore soletta h = 25cm

b' = b + 2s + h = 60cm + 2x11cm + 25cm = 107cm


a' = a + 2s + h = 35cm + 2x11cm + 25cm = 82cm

La diffusione delle impronte in pianta per la determinazione della larghezza collaborante è stata effettuata a 45° fino all'asse delle travi principali ottenendo una larghezza collaborante di 2,75m.


q = (Q / B) / b' = (200kN/2,75m) / 1,07m = 68kN

Sono state considerate due differenti posizioni per il carico da traffico per massimizzare le sollecitazioni all'appoggio ed in campata.

MODELLO 1

MODELLO 2

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

I carichi sono stati combinati sencondo le indicazioni della Normativa moltiplicando i carichi per i seguenti coefficienti:

- Carichi permanenti: $\gamma_G = 1,35$

- Carichi variabili da traffico: $\gamma_0 = 1,35$

Si riportano sinteticamente le sollecitazioni per le combinazioni di calcolo esaminate.

CASO 1

 M_{max}^{-} = -160,87 kNm/m (valore all'appoggio)

M_{max} = -90,55 kNm/m (valore al limite della piattabanda superiore)

 $V_{max} = 138,20 \text{ kN/m}$ (valore all'appoggio)

V_d = 114,81 kN/m (valore al limite della piattabanda superiore)

CASO 2

 $M_{max}^{+} = 159,85 \text{ kNm/m}$

 $V_{max} = 131,98 \text{ kN (valore all'appoggio)}$

V_d = 125,23 kN/m (valore al limite della piattabanda superiore)

Verifica a flessione sezione di appoggio

B = 100cm h = 30cm

Armatura superiore: $1\Phi 20/10$ c = 3,0cm

Armatura inferiore: $1\Phi 20/20$ c = 6.0 cm

 $M_R = 289,90 \text{ kNm}$

c.s. = $M_R / M_{max}^- = 289,90 / 160,87 = 1,80$

Verifica a flessione sezione di campata

B = 100cm h = 25cm

Armatura superiore: $1\Phi 20/20$ c = 3,0cm

Armatura inferiore: $1\Phi 20/10$ c = 1,0 cm

 $M_R = 264,7 \text{ kNm}$

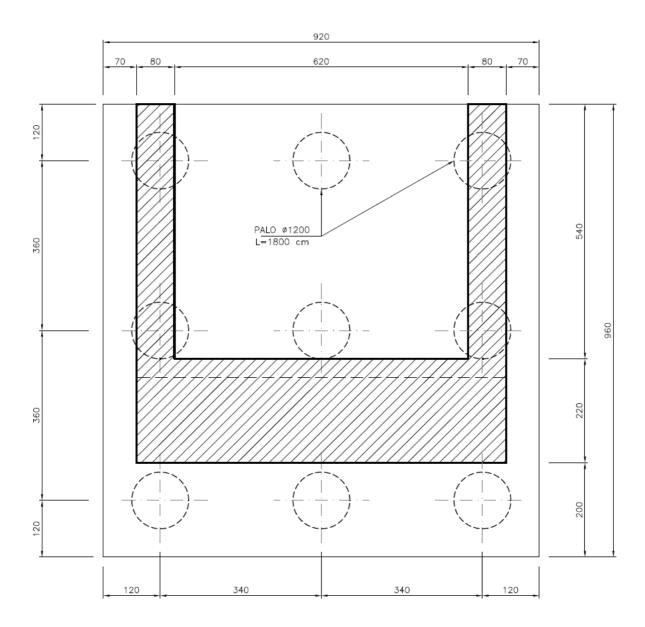
c.s. = $M_R / M_{max} = 264,7 / 159,85 = 1,66$

Si riporta la verifica a taglio per la soletta.

Sezione in C.A. Verifiche allo stato limite ultimo di taglio VERIFICA SENZA ARMATURA

Materiali (Unità N,mm)					
Calcestruzzo	Acciaio				
f _{ck} =	32	f _{yk} =	450		
$\gamma_{\rm c} =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	18,13	$f_{yd} =$	391		

Dati sezione	
Altezza utile sezione (cm)	26
B _{min} della sezione in zona tesa (cm)	100
Armatura tesa (cm²)	31,40
Sforzo Normale di compress. (kN)	0
σ_{cp} tensione media di compressione (N/mm 2)	0,00


Verifiche allo SLU per taglio $V_{Rd,c} > V_{sd}$			
Taglio di calcolo V _{sd} (kN)	125,23		
Taglio resistente V _{Rd,c} (kN)	198,00		
Coefficiente di sicurezza (V _{Rd} / V _{sd})	1,58		

3) SPALLE

3.1) DESCRIZIONE E CARATTERISTICHE GEOMETRICHE

Le spalle sono costituite da muri in calcestruzzo armato si spessore in retto pari a 2,20m ed altezza pari a 4,14m per la spalla A e 4,88m per la spalla B. La carpenteria delle spalle è completata da una paraghiaia di altezza pari a 2,80m e spessore 40cm che si sviluppa per tutta la larghezza della spalla e da due muri d'ala di altezza variabile e spessore 0,80m alla base e 60cm in sommità.

La fondazione è realizzata su n. 9 pali di diametro pari a 1,20m su un plinto di fondazione con dimensioni in pianta pari a 9,20 x 9,60m e uno spessore di 2,00m.

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

3.2) AZIONI DI CALCOLO

Le azioni derivanti dall'impalcato sono state calcolate attraveso lo studio dei modelli tridimensionali in cui sono inseriti gli elementi di appoggio.

Dalle reazioni negli appoggi sono state ricavate le seguenti azioni caratteristiche:

- Carichi permanenti
- Carichi variabili da traffico (mobili, frenamento e azione centrifuga)
- Vento
- Temperatura (uniforme e gradiente termico)
- Azione sismica

Le azioni dovute al peso proprio della spalla ed alla sua inerzia in fase sismica sono state introdotte nel calcolo con i rispettivi coefficienti moltiplicativi.

Oltre alle azioni elencate, nel calcolo delle spalle sono state considerate le azioni dovute al terreno presente a monte, ed in particolare:

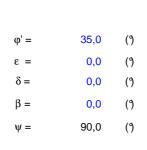
- Spinta delle terre in condizione statica e sismica
- Spinta del terreno per la presenza di un carico variabile a monte
- Peso ed inerzia sismica del terreno di rinterro

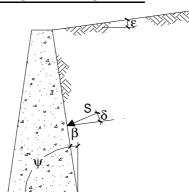
SPINTA DELLE TERRE

Caratteristiche del terreno (rilevato)

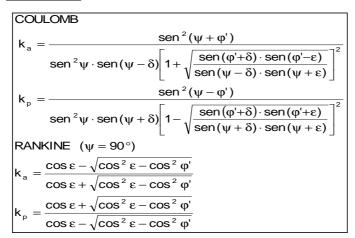
Per il calcolo delle spinte delle terre si tiene conto dei seguenti parametri di calcolo per il rilevato autostradale:

Peso specifico terreno in rilevato: $\gamma_t = 18 \text{kN/m}^3$


Angolo di attrito interno del rilevato: $\varphi = 35^{\circ}$


Coesione efficace del rilevato: $c' = 0 \text{ kN/m}^2$

Nella valutazione della spinta si tiene in conto (sia in condizioni statiche che sismiche) dell'attrito terreno/struttura per mezzo di un angolo (δ) paria a δ = 0°


Si riporta il calcolo dei coefficienti di spinta in condizione statica ed in condizione sismica.

COEFFICIENTI DI SPINTA

STATICO

coefficiente di spinta attiva

	Coulomb			Rankine	
ka =	0,2710	(-)	ka =	ka = 0,2710 (-)	
kah = ka co	$os(\delta_{muro} + \beta)$		kah = ka co	$kah = ka \cos(\varepsilon)$	
kah =	0,2710	(-)	kah =	0,2710	(-)

coefficiente di spinta passiva

	Coulomb		Rankine		
kp =	3,6902	(-)	kp =	3,6902	(-)
kph = kp cd	$os(\delta_{muro} + \beta)$		kph = kp co	s(arepsilon)	
kph =	3,6902	(-)	kph =	3,6902	(-)

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

SISMICO

 $a_g/g =$ massima accelerzione al suolo 0,29 (-) coefficiente stratigrafico $S_S =$ 1,00 (-) $S_T =$ coefficiente stratigrafico 1,29 (-) $k_v / k_h =$ rapporto sisma verticale/orizzontale 0,50 (-) peso di volume naturale del terreno (kN/mc) 18,0 peso di volume secco del terreno (kN/mc) $\gamma_d =$ peso specifico dell'acqua (kN/mc) $\gamma_w =$

 $\beta = 0.31$

- 1. quota falda al di sotto dell'opera di sostegno
- \bigcirc 2. terreno impermeabile in condizioni dinamiche in falda ($\gamma = \gamma_{sat}$)
- 3. terreno permeabile in condizioni dinamiche in falda

Coefficiente β per spostamenti ammissibili del muro

$$k_h = 0.1168$$
 $k_v = 0.0584$

$$\theta^{+} = 6,30$$
 (9) $\theta^{-} = 7,07$ (9)

coefficienti di spinta attiva			coefficient	i di spinta pa	assiva ($\delta = 0$)
kas ⁺ =	0,3342	(-)	kps⁺=	3,4725	(-)
kas =	0,3429	(-)	kps ⁻ =	3,4446	(-)

SPALLA A - SOLLECITAZIONI E VERIFICA 3.3)

SPALLA A - SOLLECITAZIONI E VERIFICHE

NOTA:

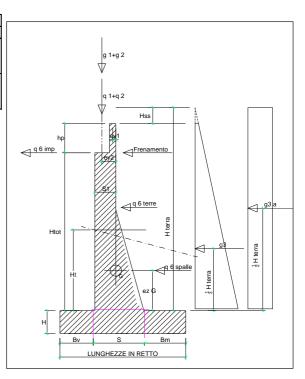
I momenti longitudinali sono riferiti al paramento anteriore del corpo spalla POSITIVI SE ORARI

Le altezze sono riferite allo spiccato del muro spalla. Le azioni orizontali derivanti dall'impalcato e le azioni sismiche sono concordi con la spinta delle terre.

POSIZIONAMENTO APPOGGI					
e _{trasv,SX} (m)	h (m)				
-2,50	-2,50	0,70	4,15		

			Trave SINISTRA		т	rave DESTR	A		
OutputCase	StepType	Р	F _{trasv}	F _{long}	Р	F_{trasv}	F _{long}	M_{trasv}	M_{long}
Permaneti I°fase									
Permaneti II°fase									
Permanenti		-996	-1	-19	-701	-1	-12	4.234	1.188
MOBILI 1	Max	126	1	5	231	1	8		
MOBILI 1	Min	-789	-1	-13	-1.071	-1	-18		
MOBILI 1		789	1	13	1.071	1	18	-4.638	-1.430
MOBILI 2	Max	80	1	3	178	1	7		
MOBILI 2	Min	-318	-1	-5	-927	-1	-15		
MOBILI 2		318	1	5	927	1	15	-3.105	-955
FREN		14	12	52	0	12	55	62	453
CENTR 1		8	9	5	-6	9	5	69	45
CENTR 2		5	5	3	-4	5	3	42	27
VENTO	Max	186	97	103	102	94	106		
VENTO	Min	-170	-102	-127	-95	-98	-131		
VENTO		186	102	127	102	98	131	112	1.274
TEMP	Max	151	12	57	60	8	60		
TEMP	Min	-129	-19	-91	-51	-13	-95		
TEMP		151	19	91	60	13	95	-394	920
SISMA X	Max	324	328	545	352	328	553	1.031	5.028
SISMA Y	Max	322	321	558	336	321	563	1.016	5.115
SISMA Z	Max	309	150	258	377	150	263	-468	2.642

GEOMETRIA SPALLA							
	B (m)	L (m)	H (m)	F _v (kN)	e _{long} (m)	M _{long} (kNm)	
Plinto	9,20	9,60	2,00	4.416			
Muri d'ala	1,60	5,40	6,80	1.469			
Fusto	7,80	2,20	4,15	1.780	1,10	-1.958	
Paraghiaia	7,80	0,40	2,67	208	2,00	-417	


Peso totale Spalla Elevazione 1.989

INERZIE SISMICHE SPALLA							
	Fusto	Muri d'ala	Paraghiaia	Totale			
F(kN)	208	172	24	404			
e _Z (m)	2,08	3,40	5,49				
M _{long} (kNm)	431	583	133	1.148			
F _{vert} (kN)	104	86	12	202			
e _{long} (m)	1,10	4,90	2,00				
M _{long} (kNm)	114	420	24	559			

	SISMA X	SISMA Y	SISMA Z
α (°)	18	72	
F _{long} (kN)	125	384	
F _{trasv} (kN)	384	125	
F _{vert} (kN)			202
M _{long} (kNm)	355	1.092	559
M _{trasv} (kNm)	1.092	355	

CARATTERIZZA	NONE TERR	ENG / COFFEIGHENTI	DLODINTA					
CARATTERIZZAZIONE TERRENO / COEFFICIENTI DI SPINTA								
$\gamma_t (kN/m^3)$	18,0	a _g / g	0,292					
φ_k°	35,0	$S = S_S \times S_T$	1,29					
δ_k°	0,0	$a_{max}/g = a_g/g \times S$	0,377					
β_s	0,310	k _{st}	0,271					
$k_h = b_m x a_{max} / g$	0,117	k _{s+}	0,327					
$k_v = \pm 0.5 \times k_h$	0,058	k _{s-}	0,333					

ORIUTE DEL TERRENO							
SPINTE DEL TERRENO							
	Statica	$q (kN/m^2) = 20,00$					
k _{st}	0,271	0,271					
H (m)	6,82	6,82					
F _{long} (kN)	885	288					
e _Z (m)	2,27	3,41					
M _{long} (kNm)	2.012	983					

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

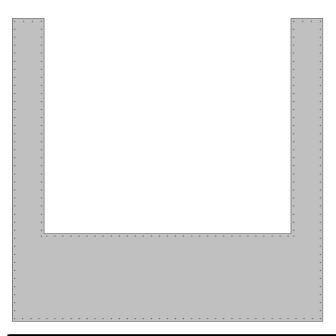
RINTERRO A MONTE						
	B (m)	6,20				
Geometria	L (m)	5,40				
	H (m)	6,80				
Statica	F _v (kN)	4.098				
Sisma X	F _{long} (kN)	148				
Sisma X	M _{long} (kNm)	503				
Sisma Y	F _{long} (kN)	455				
	M _{long} (kNm)	1.547				

SPINTE TERRENO IN FASE SISMICA					
k	0,346				
F (kN)	245				
e _Z (m)	2,27				
Sisma X	F _{long} (kN)	76			
Sisilia A	M _{long} (kNm)	172			
Sisma Y	F _{long} (kN)	233			
	M _{long} (kNm)	530			

RIEPILOGO S	RIEPILOGO SOLLECITAZIONI CARATTERISTICHE RIFERITE ALLO SPICCATO MURO							
	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)			
Permanenti	292			4.234	-1.187			
Spinte Terra			885		2.012			
Mobili 1	1.859	3	309	-4.638	-447			
Mobili 2	1.245	2	309	-3.105	28			
Centrifuga 1	2	11	6	69	45			
Centrifuga 2	1	11	6	42	27			
Frenamento	14	24	107	62	453			
Vento	288	191	209	112	1.274			
Temperatura	212	20	117	-394	920			
SISMA X	676	1.039	1.370	2.123	5.885			
SISMA Y	658	766	1.961	1.371	7.754			
SISMA Z	888	300	521	-468	3.201			

COMBINAZIONI	Permanenti		AZIO	NI DA TRAFFICO			VA	RIABILI	AZIO	ONE SISM	IICA
Nome	Spinte Terre	Mobili 1	Mobili 2	Centrifuga 1	Centrifuga 2	Frenamento	Vento	Temperatura	Sisma X	Sisma Y	Sisma Z
1-M1	1,35	1,35					0,90	0,72			
1-M2	1,35		1,35				0,90	0,72			
2a	1,35	1,01				1,35	0,90	0,72			
2b-M1	1,35	1,01		1,35			0,90	0,72			
2b-M2	1,35		1,01		1,35		0,90	0,72			
CVENTO	1,00						1,50	0,72			
SISMA X	1,00								1,00		
SISMA Y	1,00									1,00	
SISMA Z	1,00										1,00

SOLLECITAZIONI RIFERITE ALLO SPICCATO MURO							
COMBINAZIONI	N	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)		
1-M1	3.316	190	1.883	-728	2.319		
1-M2	2.486	189	1.883	1.342	2.960		
2a	2.707	221	1.923	921	3.081		
2b-M1	2.690	204	1.787	931	2.530		
2b-M2	2.067	203	1.787	2.446	2.987		
CVENTO	876	302	1.282	4.118	3.399		
SISMA X	968	1.039	2.255	6.357	6.710		
SISMA Y	950	766	2.846	5.605	8.579		
SISMA Z	1.180	300	1.406	3.766	4.025		


VERIFICA DELLA SEZIONE DI SPICCATO							
e _{long,SPICCATO} (m)	2,37	e _{long,MURI} (m)	-2,53]			
Clong,SPICCATO (111)	_,	ITAZIONI BARICEN	,	FZIONE			

ECCENTRICITA' RIFERITE AL BARICENTRO DELLA SEZIONE DI SPICCATO

SOLLECITAZIONI BARICENTRO DELLASEZIONE								
COMBINAZIONI	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)			
1-M1	5.299	190	1.883	-728	5.161			
1-M2	4.469	189	1.883	1.342	3.836			
2a	4.690	221	1.923	921	4.481			
2b-M1	4.673	204	1.787	931	3.889			
2b-M2	4.050	203	1.787	2.446	2.870			
CVENTO	2.345	302	1.282	4.118	1.759			
SISMA X	2.436	1.039	2.255	6.357	5.287			
SISMA Y	2.419	766	2.846	5.605	7.114			
SISMA 7	2 6 4 8	300	1 406	3 766	3 105			

Verifiche a Presso-Flessione

Si riportano le verifiche della sezione di spiccato della pila considerando un'armatura pari a $1+1 \oplus 24/20$.

Spalla A - Verifica a pressoflessione								
	Coefficiente di sicurezza a rapporto M _x /M _y costante							
M _x (daN*cm)	M _y (daN*cm)	N(daN)	M _{xu} (daN*cm)	M _{yu} (daN*cm)	N _u (daN)	c.s.		
51.608.781	-7.278.038	-529.863	3.418.233.909	-482.050.453	-35.094.719	66,23		
38.361.540	13.417.245	-446.917	3.079.036.598	1.076.916.839	-35.871.182	80,26		
44.811.664	9.212.562	-469.032	3.360.115.531	690.786.056	-35.169.453	74,98		
38.894.562	9.309.153	-467.314	3.039.009.173	727.366.498	-36.513.370	78,13		
28.698.913	24.456.541	-405.021	2.537.217.730	2.162.157.481	-35.807.156	88,41		
17.589.888	41.179.968	-234.482	1.924.002.423	4.504.312.831	-25.647.914	109,38		
52.866.231	63.569.368	-243.633	2.306.084.439	2.772.967.309	-10.627.545	43,62		
71.140.369	56.048.851	-241.869	2.264.846.227	1.784.388.112	-7.700.214	31,84		
31.047.198	37.661.419	-264.830	2.835.490.632	3.439.556.793	-24.186.498	91,33		

	Coefficiente di sicurezza a sforzo normale costante							
M _x (daN*cm)	M _y (daN*cm)	N(daN)	M _{xu} (daN*cm)	M _{yu} (daN*cm)	N _u (daN)	c.s.		
51.608.781	-7.278.038	-529.863	1.194.266.831	-168.419.389	-529.863	23,14		
38.361.540	13.417.245	-446.917	1.163.881.824	407.076.660	-446.917	30,34		
44.811.664	9.212.562	-469.032	1.177.659.382	242.107.949	-469.032	26,28		
38.894.562	9.309.153	-467.314	1.175.103.216	281.253.087	-467.314	30,21		
28.698.913	24.456.541	-405.021	1.092.391.607	930.910.523	-405.021	38,06		
17.589.888	41.179.968	-234.482	572.575.131	1.340.464.794	-234.482	32,55		
52.866.231	63.569.368	-243.633	960.665.361	1.155.158.761	-243.633	18,17		
71.140.369	56.048.851	-241.869	1.073.197.676	845.532.537	-241.869	15,09		
31.047.198	37.661.419	-264.830	960.236.354	1.164.802.816	-264.830	30,93		

SPALLA B – SOLLECITAZIONI E VERIFICA 3.4)

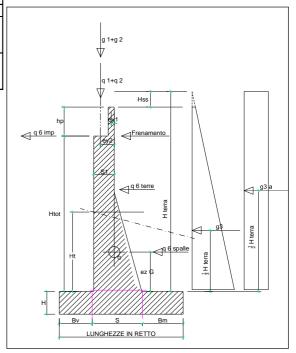
SPALLA B - SOLLECITAZIONI E VERIFICHE

NOTA:
I momenti longitudinali sono riferiti al paramento anteriore del corpo spalla POSITIVI SE ORARI
Le altezze sono riferite allo spiccato del muro spalla.
Le azioni orizontali derivanti dall'impalcato e le azioni sismiche sono concordi con la spinta delle terre.

POSIZIONAMENTO APPOGGI						
e _{trasv,SX} (m)	e _{trasv,DX} (m)	e _{long} (m)	h (m)			
-2,50	-2,50	0,70	4,88			

		1	Trave SINISTRA		Т	rave DESTR	4	1	
OutputCase	StepType	Р	F _{trasv}	F _{long}	Р	F _{trasv}	F _{long}	M_{trasv}	M _{long}
Permanenti		-606	-1	-8	-756	-1	-10	3.399	953
MOBILI 1	Max	116	1	3	249	1	9		
MOBILI 1	Min	-533	-1	-6	-1.094	-1	-17		
MOBILI 1		533	1	6	1.094	1	17	-4.056	-1.253
MOBILI 2	Max	73	1	2	211	1	8		
MOBILI 2	Min	-162	-1	-3	-934	-1	-15		
MOBILI 2		162	1	3	934	1	15	-2.731	-851
FREN		-9	-1	-50	-8	-1	-52	33	510
CENTR 1		6	-6	7	-4	-6	7	-62	71
CENTR 2		4	-3	4	-2	-3	4	-37	42
VENTO	Max	135	55	120	138	58	119		
VENTO	Min	-123	-57	-145	-122	-61	-145		
VENTO		135	57	145	138	61	145	-105	1.606
TEMP	Max	107	3	59	147	7	59		
TEMP	Min	-91	-6	-95	-125	-12	-94		
TEMP		107	6	95	147	12	94	-552	1.100
SISMA X	Max	358	348	413	381	348	418	1.545	4.571
SISMA Y	Max	332	326	454	371	326	457	1.423	4.939
SISMA Z	Max	382	156	203	440	156	207	-533	2.579

	GEOMETRIA SPALLA						
	B (m)	L (m)	H (m)	F_v (kN)	e _{long} (m)	M _{long} (kNm)	
Plinto	9,20	9,60	2,00	4.416			
Muri d'ala	1,60	5,40	6,80	1.469			
Fusto	7,80	2,20	4,88	2.094	1,10	-2.303	
Paraghiaia	7,80	0,40	2,80	218	2,00	-437	


Peso totale Spalla Elevazione 2.312

	INERZIE SISMICHE SPALLA						
	Fusto	Muri d'ala	Paraghiaia	Totale			
F(kN)	244	172	26	441			
e _Z (m)	2,44	3,40	6,28				
M _{long} (kNm)	596	583	160	1.340			
F _{vert} (kN)	122	86	13	221			
e _{long} (m)	1,10	4,90	2,00				
M _{long} (kNm)	134	420	26	580			

	SISMA X	SISMA Y	SISMA Z
α (°)	5	85	
F _{long} (kN)	38	440	
F _{trasv} (kN)	440	38	
F _{vert} (kN)			221
M _{long} (kNm)	117	1.335	580
M _{trasv} (kNm)	1.335	117	

CARATTERIZZAZIONE TERRENO / COEFFICIENTI DI SPINTA						
$\gamma_t (kN/m^3)$	18,0	a _g / g	0,292			
ϕ_k °	35,0	$S = S_S \times S_T$	1,29			
δ_k°	0,0	$a_{max} / g = a_g / g \times S$	0,377			
β_s	0,310	k _{st}	0,271			
$k_h = b_m x a_{max} / g$ $k_v = \pm 0.5 x k_h$	0,117	k _{s+}	0,327			
$k_v = \pm 0.5 \times k_h$	0,058	k _s .	0,333			

SPINTE DEL TERRENO						
Statica $q (kN/m^2) = 20,00$						
k _{st}	0,271	0,271				
H (m)	7,68	7,68				
F _{long} (kN)	1.122	325				
e _z (m)	2,56	3,84				
M _{long} (kNm)	2.873	1.247				

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

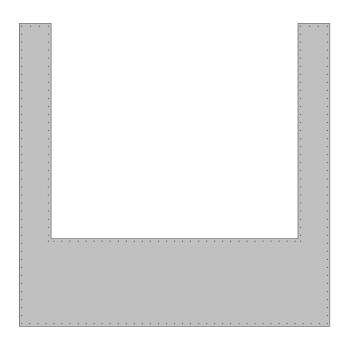
RINTERRO A MONTE					
	B (m)	6,20			
Geometria	L (m)	5,40			
	H (m)	6,80			
Statica	F _v (kN)	4.098			
Sisma X	F _{long} (kN)	42			
Sisilia A	M _{long} (kNm)	142			
Sisma Y	F_{long} (kN) M_{long} (kNm)	477			
Sisilia 1	M _{long} (kNm)	1.621			

SPINTE TERRENO IN FASE SISMICA					
k 0,346					
F (kN)	31	11			
F (kN) e _Z (m)	2,56				
Sisma X	F _{long} (kN)	27			
Sistila A	M _{long} (kNm)	69			
Sisma Y	F _{long} (kN)	310			
	M _{long} (kNm)	793			

RIEPILOGO S	OLLECITAZI	ONI CARATTERISTIC	HE RIFERITI	E ALLO SPICCATO	MURO
	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)
Permanenti	950			3.399	-1.786
Spinte Terra			1.122		2.873
Mobili 1	1.627	2	342	-4.056	-6
Mobili 2	1.096	2	342	-2.731	395
Centrifuga 1	2	-7	8	-62	71
Centrifuga 2	1	-7	8	-37	42
Frenamento	-17	-2	-102	33	510
Vento	273	114	239	-105	1.606
Temperatura	254	11	118	-552	1.100
SISMA X	739	1.135	911	2.879	4.829
SISMA Y	703	691	1.828	1.540	7.895
SISMA Z	1.043	312	410	-533	3.159

COMBINAZIONI	Permanenti		AZION	NI DA TRAFFICO			VA	RIABILI	AZI	ONE SISN	/ICA
Nome	Spinte Terre	Mobili 1	Mobili 2	Centrifuga 1	Centrifuga 2	Frenamento	Vento	Temperatura	Sisma X	Sisma Y	Sisma Z
1-M1	1,35	1,35					0,90	0,72			
1-M2	1,35		1,35				0,90	0,72			
2a	1,35	1,01				1,35	0,90	0,72			
2b-M1	1,35	1,01		1,35			0,90	0,72			
2b-M2	1,35		1,01		1,35		0,90	0,72			
CVENTO	1,00						1,50	0,72			
SISMA X	1,00								1,00		
SISMA Y	1,00									1,00	
SISMA Z	1,00										1,00

	SOLLECITAZIONI RIFERITE ALLO SPICCATO MURO							
COMBINAZIONI	N	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)			
1-M1	3.908	113	2.277	-1.379	3.695			
1-M2	3.191	112	2.277	409	4.238			
2a	3.336	110	2.024	33	4.385			
2b-M1	3.362	103	2.173	-94	3.793			
2b-M2	2.823	102	2.173	1.281	4.161			
CVENTO	1.542	178	1.566	2.843	4.287			
SISMA X	1.689	1.135	2.033	6.278	5.915			
SISMA Y	1.654	691	2.950	4.939	8.981			
SISMA Z	1.994	312	1.533	2.865	4.245			


e _{long,SPICCATO} (m) 2,37 e _{long,MURI} (m) -2,53	VERIFICA DELLA SEZIONE DI SPICCATO					
$e_{long,SPICCATO}$ (m) 2,37 $e_{long,MURI}$ (m) -2,53						
	e _{long,SPICCATO} (m)	2,37	e _{long,MURI} (m)	-2,53		

ECCENTRICITA' RIFERITE AL BARICENTRO DELLA SEZIONE DI SPICCATO

SOLLECITAZIONI BARICENTRO DELLASEZIONE							
COMBINAZIONI	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)		
1-M1	5.891	113	2.277	-1.379	7.940		
1-M2	5.174	112	2.277	409	6.783		
2a	5.319	110	2.024	33	7.275		
2b-M1	5.345	103	2.173	-94	6.743		
2b-M2	4.806	102	2.173	1.281	5.835		
CVENTO	3.011	178	1.566	2.843	4.227		
SISMA X	3.158	1.135	2.033	6.278	6.203		
SISMA Y	3.122	691	2.950	4.939	9.184		
SISMA Z	3.462	312	1.533	2.865	5.254		

Verifiche a Presso-Flessione

Si riportano le verifiche della sezione di spiccato della pila considerando un'armatura pari a $1+1 \oplus 24/20$.

	Spalla B - Verifica a pressoflessione									
	Coefficiente di sicurezza a rapporto M _x /M _y costante									
$M_x(daN^*cm)$ $M_y(daN^*cm)$ $N(daN)$ $M_{xu}(daN^*cm)$ $M_{yu}(daN^*cm)$ $N_u(daN)$ c										
79.400.656	-13.793.697	-589.058	4.044.929.872	-702.696.172	-30.008.547	50,94				
67.830.561	4.088.839	-517.364	4.065.870.786	245.091.457	-31.011.614	59,94				
72.752.006	334.167	-531.893	4.151.062.403	19.066.802	-30.348.593	57,06				
67.433.862	-940.163	-534.459	4.019.781.479	-56.043.799	-31.859.489	59,61				
58.345.815	12.805.279	-480.563	3.852.930.782	845.610.840	-31.734.512	66,04				
42.268.806	28.428.796	-301.119	3.486.646.392	2.345.019.138	-24.838.541	82,49				
62.033.594	62.779.868	-315.827	2.711.984.313	2.744.609.916	-13.807.323	43,72				
91.839.661	49.388.245	-312.242	2.480.447.219	1.333.900.122	-8.433.174	27,01				
52.537.694	28.652.290	-346.233	3.656.881.041	1.994.339.837	-24.099.514	69,60				

	Coefficiente di sicurezza a sforzo normale costante									
M _x (daN*cm)	M _y (daN*cm)	N(daN)	M _{xu} (daN*cm)	M _{yu} (daN*cm)	N _u (daN)	c.s.				
79.400.656	-13.793.697	-589.058	1.204.048.864	-209.170.630	-589.058	15,16				
67.830.561	4.088.839	-517.364	1.197.173.487	72.165.843	-517.364	17,65				
72.752.006	334.167	-531.893	1.203.952.957	5.530.038	-531.893	16,55				
67.433.862	-940.163	-534.459	1.203.841.253	-16.783.957	-534.459	17,85				
58.345.815	12.805.279	-480.563	1.179.071.560	258.773.321	-480.563	20,21				
42.268.806	28.428.796	-301.119	1.104.297.436	742.719.029	-301.119	26,13				
62.033.594	62.779.868	-315.827	1.035.007.868	1.047.459.177	-315.827	16,68				
91.839.661	49.388.245	-312.242	1.125.722.884	605.375.466	-312.242	12,26				
52.537.694	28.652.290	-346.233	1.131.881.378	617.290.007	-346.233	21,54				

3.5) AZIONI SULLE PALIFICATE

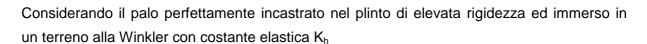
Ai fini della ripartizione delle azioni orizzontali dalla trave cuscino alla palificata (pali in gruppo) per tener in conto il diverso comportamento dei pali di bordo (più rigidi) rispetto a quelli intermedi (effetto shadowing) si procede in maniera semplificata:

Nelle tabelle che seguono si riportano le azioni sul singolo palo (di bordo ed intermedio) dovute alle azioni verticali, orizzontali longitudinali e trasversali considerando che :

- in senso longitudinale le azioni si distribuiscono sui pali in parti uguali in quanto gli stessi oppongono la medesima resistenza all'azione orizzontale, ed inoltre si considera il palo in testa libero di ruotare, ovvero l'azione sul palo vale

$$T_{p,long} = T_{LONG} / n_p$$

M_{LONG} serà quello dovuto alle azioni orizzontali sulla spalla ;


- in senso trasversale invece, avviene un'effetto "ombra" nei confronti dei pali interni rispetto a quello esterno che risulta così più sollecitato, ed inoltree si considera la struttura della trave cuscino così rigida che impedisce al palo la rotazione in testa, per cui l'azione sul palo vale:

Detto $n_i = il$ numero di file longitudinali

n_t = il numero di file trasversali

L'azione orizzontale trasversale (T_t=T_{TRASV}) sul palo di bordo maggiormente sollecitato vale:

$$T_{p,trasv} = T_{TRASV} / [n_l + 0.5 x (n-n_l)]$$

Si ottiene una lunghezza d'onda pari a :

$$\lambda = [4E_c \, x \, J \, / \, (K_h \, x \, D)]^{1/4}$$

Ed avendo i pali lunghezza molto superiore possono essere considerati come pali lunghi e pertanto la sollecitazione flettente massima d'incastro vale:

$$M_{p,x} = T_{p,x} * \lambda / 2$$

 $T_p = (T_{p,x}^2 + T_{p,y}^2)^{1/2}$ (Taglio sul palo maggiormente caricato)

Kh

Spalla A

GEOMETRIA I	PLINTO RINTERRO M		MURI D'A	LA	
Peso Proprio (kN)	4.416	Peso Proprio (kN)	4.098	Peso Proprio (kN)	1.469
e _{long} (m)	2,80	e _{long} (m)	-2,10	e _{long} (m)	-2,10

ECCENTRICITA' RIFERITE AL BARICENTRO DELLA FONDAZIONE

SOL	SOLLECITAZIONI RIFERITE AL BARICENTRO DELLA FONDAZIONE							
COMBINAZIONI	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)			
1-M1	16.792	190	1.883	-347	-413			
1-M2	15.963	189	1.883	1.721	-2.094			
2a	16.184	221	1.923	1.364	-1.274			
2b-M1	16.167	204	1.787	1.338	-2.145			
2b-M2	15.544	203	1.787	2.852	-3.432			
CVENTO	10.859	302	1.282	4.721	-3.275			
SISMA X	10.950	1.039	2.255	8.436	2.239			
SISMA Y	10.933	766	2.846	7.137	5.239			
SISMA Z	11.162	300	1.406	4.367	-1.551			

PALIFICATA					
N.file longitud.	3				
Interasse longit.	3,60				
N.file trasversali	3				
Interasse trasvers.	3,40				
Numero Totale Pali	9				
Diametro Pali	1,20				

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

Mmax = T *lambda /2

	AZIONI	SUI PALI		T SHADOWING	(EFFETTO G	RUPPO)	
COMBINAZIONI	P _{med} (kN)	P _{ant} (kN)	P _{pos} (kN)	$T_{p\;long,max}$	T _{ptrasv,max}	T _{ptot,max}	M _{max} (kNm)
1-M1	1.866	1.830	1.902	314	32	315	715
1-M2	1.774	1.761	1.786	314	32	315	715
2a	1.798	1.806	1.790	320	37	323	732
2b-M1	1.796	1.763	1.830	298	34	300	680
2b-M2	1.727	1.708	1.746	298	34	300	680
CVENTO	1.207	1.286	1.127	214	50	219	498
SISMA X	1.217	1.734	700	376	173	414	939
SISMA Y	1.215	1.807	622	474	128	491	1.114
SISMA Z	1.240	1.383	1.098	234	50	240	543

ANAS SPA - AUTOSTRADA A3 SA RC NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Spalla B

GEOMETRIA PLINTO		RINTERR	0	MURI D'ALA		
Peso Proprio (kN)	4.416	Peso Proprio (kN)	4.098	Peso Proprio (kN)	1.469	
e _{long} (m)	2,80	e _{long} (m)	-2,10	e _{long} (m)	-2,10	

ECCENTRICITA' RIFERITE AL BARICENTRO DELLA FONDAZIONE

SOLI	SOLLECITAZIONI RIFERITE AL BARICENTRO DELLA FONDAZIONE							
COMBINAZIONI	N (kN)	F _{trasv} (kN)	F _{long} (kN)	M _{trasv} (kNm)	M _{long} (kNm)			
1-M1	17.384	113	2.277	-1.153	3.409			
1-M2	16.667	112	2.277	633	1.944			
2a	16.813	110	2.024	253	1.992			
2b-M1	16.838	103	2.173	112	1.770			
2b-M2	16.299	102	2.173	1.485	629			
CVENTO	11.525	178	1.566	3.199	48			
SISMA X	11.672	1.135	2.033	8.548	3.021			
SISMA Y	11.636	691	2.950	6.320	7.821			
SISMA Z	11.976	312	1.533	3.489	1.202			

PALIFICAT	Ά
N.file longitud.	3
Interasse longit.	3,60
N.file trasversali	3
Interasse trasvers.	3,40
Numero Totale Pali	9
Diametro Pali	1,20

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

Mmax = T *lambda /2

	AZIONI	SUI PALI		T SHADOWING			
COMBINAZIONI	P _{med} (kN)	P _{ant} (kN)	P _{pos} (kN)	T _{p long,max}	T _{ptrasv,max}	T _{ptot,max}	M _{max} (kNm)
1-M1	1.932	2.033	1.830	379	19	380	862
1-M2	1.852	1.973	1.731	379	19	380	862
2a	1.868	1.973	1.763	337	18	338	766
2b-M1	1.871	1.958	1.784	362	17	363	822
2b-M2	1.811	1.913	1.709	362	17	363	822
CVENTO	1.281	1.440	1.122	261	30	263	596
SISMA X	1.297	1.856	738	339	189	388	880
SISMA Y	1.293	1.965	621	492	115	505	1.145
SISMA Z	1.331	1.557	1.104	255	52	261	591

3.6) VERIFICHE DEI PALI ϕ 120CM

Si riporta la verifica del palo maggiormente sollecitato

Verifica a taglio

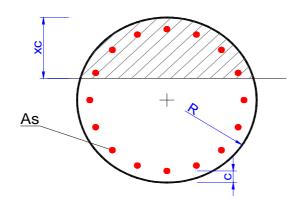
Si verifica il palo relativo alla spalla fissa sotto l'azione del taglio massimo nella peggiore condizione di carico:

$$T_{t,max} = 505 \text{ kN}$$
 $N = 621 \text{ kN}$

Le altre combinazioni di carico comportano sollecitazioni taglianti inferiori.

Sezione circolare in C.A. Verifiche allo stato limite ultimo di taglio VERIFICA CON STAFFE

Materiali (Unità N,mm)									
Calcestruzz	o ord.	Acciaio							
f _{ck} =	25	f _{ywk} =	450						
$\gamma_{\rm c} =$	1,50	γ_{s} =	1,15						
$f_{cd} =$	14,17	$f_{ywd} =$	391						


Dati sezione	
Diametro sezione (cm)	120
Copriferro (cm)	7
Altezza utile sezione d=D/2 + 2x(D/2-c)/π	94
Armatura longitudinale (cm²)	169,00
Diametro staffe (mm)	12
Bracci	2
Passo (cm)	10
Area staffe al metro (cm²/m)	22,62
Sollecitazioni	
Sforzo Normale di compressione (kN)	621
Taglio di calcolo V _{sd} (kN)	505
σ_{cp} tensione media di compressione (N/mm 2)	0,45
$lpha_{\sf cw}$	1,03
$ au_{\text{media}}$ tensione di taglio media (N/mm²)	0,50
σ _I tensione principale di trazione (N/mm²)	0,77
θ angolo bielle compresse	32,86
$\cot \theta (1 < \cot \theta < 2.5)$	1,55
Verifiche allo SLU per taglio $V_{Rd} > V_{sd}$	
$V_{Rd,s}$ (kN)	1160
$V_{Rd,max}$ (kN)	3383
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	1160
Coefficiente di sicurezza (V _{Rd} / V _{sd})	2,30

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Verifiche a Presso-Flessione

Si operano le verifiche a pressoflessione nella sezione di testa per i pali della spalla nella condizione di carico più gravosa



Geometria della sezione									
	[cm]								
Raggio	R	60							

5	Sollecitazioni									
М	1145	[kNm]								
N	621	[kN]								

Armatura As								
n°ferri	Diametro	Area	copriferro					
11 16111	[mm]	[cm ²]	[cm]					
18	26	95,57	8					
		0,00						
		0,00						
		95,57						

	Materiali Materiali												
	γс	α_{cc}	Rck [Mpa]	fck [Mpa]	fcd [Mpa]	fcc/fcd	ϵ_{c2}	ϵ_{cu2}					
C25/30 T	1,5	0,85	30	25	14,2	1,0	0,200%	0,350%					
	γs	Es [Mpa]	fyk [Mpa]	fyd [Mpa]	ϵ_{ys}	ϵ_{uk}	α_{s}	$\epsilon_{\text{ud}} = \epsilon_{\text{uk}} \alpha_{\text{s}}$					
B450C ▼	1,15	200000	450	391,3	0,196%	1,000%	1	1,000%					

4. PILE

4.1) DESCRIZIONE E CARATTERISTICHE GEOMETRICHE

La pile sono costituite da un fusto unico in c.a. a sezione rettagolare di spessore pari a 1,50m e larghezza di 4,80m allo spiccato con un ringrosso di 75cm per lato in sommità.

Gli impalcati poggiano direttamente sulla sommità delle pile su baggioli in c.a..

La fondazione è costituita da un plinto rettangolare con dimensioni in pianta pari 6,0x9,6m ed altezza di 2,00m poggiante su n.6 pali trivellati in c.a. del diametro pari a 120cm e lunghezza 18,0m disposti ad interasse di 3,60m.

4.2) AZIONI DI CALCOLO

Le sollecitazioni allo spiccato delle pile sono state ottenute direttamente dal modello tridimensionale con i valori caratteristici combinati secondo le indicazioni fornite dalla Normativa.

Si riportano le combinazioni di calcolo utilizzate ai fini delle verifiche delle pile.

COMBINA	AZIONI	PERMANENTI		А	ZIONI DATRA	AFFICO		VARIABILI		AZIONE SISMICA		
Tipo	Nome	PERMANENTI	Mobili 1	Mobili 2	Centrifuga 1	Centrifuga 2	Frenamento	Vento	Temperatura	Sisma X	Sisma Y	Sisma Z
Mobili 1	1-M1	1,35	1,35					0,6x1,5	0,6x1,2			
Mobili 2	1-M2	1,35		1,35				0,6x1,5	0,6x1,2			
Frenamento	2a	1,35	0,75x1,35				1,35	0,6x1,5	0,6x1,2			
Centrifuga 1	2b-M1	1,35	0,75x1,35		1,35			0,6x1,5	0,6x1,2			
Centrifuga 2	2b-M2	1,35		0,75x1,35		1,35		0,6x1,5	0,6x1,2			
Vento scarico	CVENTO	1,00						1,50	0,6x1,2			
	SISMA X	1,00								1,00	0,30	0,30
Sisma	SISMA Y	1,00								0,30	1,00	0,30
	SISMA Z	1,00								0,30	0,30	1,00

4.3) VERIFICHE STRUTTURALI PILE

Si riportano le verifiche agli stati limite ultimi delle pile considerando un'armatura costituita da $1\Phi26/15$ cm distribuiti lungo il perimetro esterno.

			TAE	BLE: Elem	ent Fo	rces - l	Frames				
Frame	Station	OutputCase	StepType	P	V ₂	V ₃	T	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P1	0,00	SLU 1-M1	Max	-8.136	145	203	76	1.302	7.309	6,96	5,63
P1	0,00	SLU 1-M1	Min	-13.733	-165	-204	-120	-1.315	-7.916	5,34	5,81
P1	0,00	SLU 1-M2	Max	-8.350	144	191	56	1.222	4.962	8,31	7,83
P1	0,00	SLU 1-M2	Min	-12.592	-163	-190	-95	-1.236	-7.083	5,87	6,34
P1	0,00	SLU 2a	Max	-8.396	165	335	65	2.162	6.245	6,73	5,58
P1	0,00	SLU 2a	Min	-12.669	-186	-335	-106	-2.168	-6.272	5,66	5,97
P1	0,00	SLU 2b-M1	Max	-8.397	123	173	56	1.110	5.869	7,83	6,98
P1	0,00	SLU 2b-M1	Min	-12.667	-185	-208	-96	-1.346	-6.259	6,05	6,90
P1	0,00	SLU 2b-M2	Max	-8.558	130	171	41	1.096	4.186	8,81	9,19
P1	0,00	SLU 2b-M2	Min	-11.814	-175	-191	-77	-1.241	-5.563	6,59	7,61
P1	0,00	SLU VENTO	Max	-6.758	180	196	0	1.279	2.421	11,15	11,20
P1	0,00	SLU VENTO	Min	-7.086	-199	-190	-22	-1.234	-1.193	11,68	13,88
P1	0,00	SLU SX SLV	Max	-6. 4 97	840	1.092	28	7.066	8.209	2,87	2,30
P1	0,00	SLU SX SLV	Min	-7.320	-844	-1.106	-51	-7.149	-6.874	3,09	2,41
P1	0,00	SLU SY SLV	Max	-6.498	794	1.136	24	7.351	7.802	2,80	2,26
P1	0,00	SLU SY SLV	Min	-7.319	-798	-1.150	-47	-7.434	-6.467	3,01	2,35
P1	0,00	SLU SZ SLV	Max	-5.671	383	514	16	3.331	4.647	6,49	4,59
P1	0,00	SLU SZ SLV	Min	-8.146	-387	-529	-39	-3.414	-3.313	6,57	5,14

			TAE	BLE: Eler	nent Fo	rces - l	Frames				
Frame	Station	OutputCase	StepType	Р	V ₂	V ₃	T	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P2	0,00	SLU 1-M1	Max	-9.903	142	213	115	1.643	12.827	4,46	3,45
P2	0,00	SLU 1-M1	Min	-15.922	-238	-177	-163	-1.362	-8.042	4,86	5,89
P2	0,00	SLU 1-M2	Max	-10.170	140	191	96	1.469	10.355	5,23	4,27
P2	0,00	SLU 1-M2	Min	-14.710	-233	-159	-141	-1.222	-6.902	5,39	6,70
P2	0,00	SLU 2a	Max	-10.203	181	339	92	2.612	11.767	4,40	3,51
P2	0,00	SLU 2a	Min	-14.733	-275	-306	-140	-2.356	-6.686	5,05	5,75
P2	0,00	SLU 2b-M1	Max	-10.214	125	173	83	1.330	11.212	5,01	4,00
P2	0,00	SLU 2b-M1	Min	-14.723	-248	-164	-129	-1.261	-6.435	5,49	7,06
P2	0,00	SLU 2b-M2	Max	-10.413	129	161	68	1.238	9.424	5,58	4,74
P2	0,00	SLU 2b-M2	Min	-13.816	-239	-145	-113	-1.119	-5.522	6,01	8,06
P2	0,00	SLU VENTO	Max	-8.245	171	126	-8	973	6.624	7,53	6,38
P2	0,00	SLU VENTO	Min	-8.270	-248	-111	-26	-850	-2.141	10,65	15,32
P2	0,00	SLU SX SLV	Max	-7.857	1.084	1.202	15	9.192	14.159	1,96	1,71
P2	0,00	SLU SX SLV	Min	-8.657	-1.119	-1.181	-49	-9.028	-9.922	2,31	1,92
P2	0,00	SLU SY SLV	Max	-7.853	1.114	1.145	12	8.761	14.476	2,04	1,76
P2	,	SLU SY SLV	Min	-8.660	-1.149	-1.124	-4 6	-8.597	-10.240	2,40	1,98
P2	,	SLU SZ SLV	Max	-7.168	525	552	2	4.222	9.070	4,25	3,24
P2	0,00	SLU SZ SLV	Min	-9.345	-560	-531	-36	-4.058	-4.833	5,39	4,26

			TAE	BLE: Elei	nent Fo	rces - l	Frames				
Frame	Station	OutputCase	StepType	Р	V ₂	V ₃	T	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P3	0,00	SLU 1-M1	Max	-11.524	134	166	138	1.470	16.665	3,55	2,81
P3	0,00	SLU 1-M1	Min	-17.332	-302	-156	-146	-1.369	-4.316	5,24	9,58
P3	0,00	SLU 1-M2	Max	-11.705	131	138	115	1.226	14.449	4,05	3,26
P3	0,00	SLU 1-M2	Min	-16.114	-294	-129	-123	-1.129	-3.507	5,78	11,56
P3	0,00	SLU 2a	Max	-11.741	130	301	113	2.669	15.095	3,63	2,93
P3	0,00	SLU 2a	Min	-16.131	-294	-292	-121	-2.571	-2.855	5,22	7,70
P3	0,00	SLU 2b-M1	Max	-11.746	121	127	103	1.130	15.002	3,94	3,15
P3	0,00	SLU 2b-M1	Min	-16.130	-302	-123	-111	-1.076	-2.930	5,79	13,18
P3	0,00	SLU 2b-M2	Max	-11.881	122	108	86	956	13.378	4,33	3,55
P3	0,00	SLU 2b-M2	Min	-15.218	-292	-101	-94	-888	-2.291	6,14	16,23
P3	0,00	SLU VENTO	Max	-9.157	152	27	1	239	9.088	6,22	5,01
P3	0,00	SLU VENTO	Min	-9.320	-281	-20	-6	-170	-311	10,03	90,30
P3	0,00	SLU SX SLV	Max	-8.826	990	1.341	29	11.772	16.323	1,53	1,40
P3	0,00	SLU SX SLV	Min	-9.663	-1.057	-1.336	-34	-11.720	-7.354	1,89	1,61
P3	0,00	SLU SY SLV	Max	-8.823	1.137	1.174	25	10.309	17.999	1,66	1,50
P3	0,00	SLU SY SLV	Min	-9.666	-1.204	-1.169	-30	-10.256	-9.030	2,15	1,80
P3	0,00	SLU SZ SLV	Max	-8.210	603	584	14	5.126	12.299	3,25	2,60
P3	0,00	SLU SZ SLV	Min	-10.279	-670	-579	-19	-5.074	-3.330	4,83	3,77

TABLE: Element Forces - Frames											
Frame	Station	OutputCase	StepType	Р	V ₂	V ₃	T	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P4	0,00	SLU 1-M1	Max	-10.628	136	163	175	1.609	13.794	4,18	3,28
P4	0,00	SLU 1-M1	Min	-16.671	-255	-207	-112	-1.966	-7.313	4,70	5,93
P4	0,00	SLU 1-M2	Max	-10.870	133	143	152	1.411	11.409	4,85	3,97
P4	0,00	SLU 1-M2	Min	-15.461	-248	-183	-93	-1.737	-6.325	5,19	6,70
P4	0,00	SLU 2a	Max	-10.919	172	287	150	2.820	12.755	4,07	3,28
P4	0,00	SLU 2a	Min	-15.469	-287	-328	-88	-3.140	-6.095	4,70	5,28
P4	0,00	SLU 2b-M1	Max	-10.923	120	141	141	1.402	12.160	4,64	3,75
P4	0,00	SLU 2b-M1	Min	-15.469	-259	-171	-79	-1.618	-5.774	5,34	7,29
P4	0,00	SLU 2b-M2	Max	-11.103	123	124	123	1.233	10.430	5,15	4,38
P4	0,00	SLU 2b-M2	Min	-14.563	-249	-155	-65	-1.468	-4.980	5,80	8,20
P4	0,00	SLU VENTO	Max	-8.718	152	76	30	782	7.207	7,15	6,07
P4	0,00	SLU VENTO	Min	-8.827	-245	-94	12	-902	-1.904	10,19	15,84
P4	0,00	SLU SX SLV	Max	-8.363	1.151	1.093	55	10.513	17.523	1,63	1,48
P4	0,00	SLU SX SLV	Min	-9.176	-1.195	-1.125	-12	-10.771	-12.122	1,85	1,62
P4	0,00	SLU SY SLV	Max	-8.370	1.011	1.185	51	11.368	15.776	1,57	1,44
P4	0,00	SLU SY SLV	Min	-9.169	-1.055	-1.217	-7	-11.627	-10.375	1,78	1,57
P4	0,00	SLU SZ SLV	Max	-7.746	587	522	41	5.029	10.891	3,49	2,75
P4	0,00	SLU SZ SLV	Min	-9.792	-631	-554	3	-5.287	-5.490	4,42	3,39

ANAS SPA - AUTOSTRADA A3 SA RC NUOVO SVINCOLO DI PADULA-BUONABITACOLO RAMPA A - RELAZIONE DI CALCOLO

			TAE	BLE: Eler	ment Fo	rces - l	Frames				
Frame	Station	OutputCase	StepType	P	V ₂	V ₃	T	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P5	0,00	SLU 1-M1	Max	-7.739	139	124	100	1.274	6.350	7,66	6,30
P5	0,00	SLU 1-M1	Min	-13.299	-182	-139	-90	-1.301	-9.180	5,11	5,09
P5	0,00	SLU 1-M2	Max	-8.007	138	114	81	1.194	4.407	8,87	8,54
P5	0,00	SLU 1-M2	Min	-12.200	-180	-128	-73	-1.172	-8.380	5,58	5,49
P5	0,00	SLU 2a	Max	-8.064	168	248	85	2.440	5.718	6,77	5,50
P5	0,00	SLU 2a	Min	-12.254	-211	-262	-77	-2.483	-7.886	5,18	4,89
P5	0,00	SLU 2b-M1	Max	-8.069	120	123	75	1.256	5.171	8,29	7,49
P5	0,00	SLU 2b-M1	Min	-12.250	-198	-114	-67	-1.076	-7.760	5,79	5,94
P5	0,00	SLU 2b-M2	Max	-8.270	126	112	61	1.152	3.801	9,17	9,60
P5	0,00	SLU 2b-M2	Min	-11.428	-189	-111	-54	-1.025	-7.077	6,26	6,39
P5	0,00	SLU VENTO	Max	-6.690	166	106	2	1.036	2.875	11,34	11,49
P5	0,00	SLU VENTO	Min	-6.775	-204	-113	-1	-1.113	-3.067	10,92	10,76
P5	0,00	SLU SX SLV	Max	-6.400	989	961	40	8.987	11.814	2,01	1,76
P5	0,00	SLU SX SLV	Min	-7.073	-1.000	-965	-39	-9.028	-11.837	2,06	1,78
P5	0,00	SLU SY SLV	Max	-6.405	882	1.096	35	10.237	10.598	1,82	1,62
P5	0,00	SLU SY SLV	Min	-7.068	-893	-1.100	-34	-10.278	-10.620	1,87	1,64
P5	0,00	SLU SZ SLV	Max	-5.796	488	480	26	4.500	6.554	4,57	3,37
P5	0,00	SLU SZ SLV	Min	-7.676	-499	-484	-25	-4.541	-6.577	4,71	3,50

			TAE	BLE: Elem	ent Fo	rces - l	Frames				
Frame	Station	OutputCase	StepType	P	V ₂	V ₃	Т	M ₂	M ₃	c.s.	c.s.
Text	m	Text	Text	kN	kN	kN	kN-m	kN-m	kN-m	$M_x / M_y = cost$	N = cost
P6	0,00	SLU 1-M1	Max	-7.344	123	168	59	1.281	5.391	8,44	7,10
P6	0,00	SLU 1-M1	Min	-12.206	-150	-194	-63	-1.468	-8.210	5,54	5,42
P6	0,00	SLU 1-M2	Max	-7.508	121	162	46	1.235	3.514	9,77	9,68
P6	0,00	SLU 1-M2	Min	-11.196	-148	-187	-50	-1.416	-7.449	6,04	5,82
P6	0,00	SLU 2a	Max	-7.533	133	297	54	2.262	4.610	7,63	6,25
P6	0,00	SLU 2a	Min	-11.277	-160	-323	-58	-2.452	-6.791	5,67	5,31
P6	0,00	SLU 2b-M1	Max	-7.536	102	177	45	1.344	4.313	9,03	8,24
P6	0,00	SLU 2b-M1	Min	-11.275	-168	-171	-48	-1.297	-6.868	6,27	6,32
P6	0,00	SLU 2b-M2	Max	-7.658	109	166	35	1.262	2.984	9,99	10,49
P6	0,00	SLU 2b-M2	Min	-10.519	-158	-172	-39	-1.306	-6.224	6,74	6,75
P6	0,00	SLU VENTO	Max	-5.951	152	175	1	1.327	2.220	12,00	11,05
P6	0,00	SLU VENTO	Min	-6.361	-174	-201	-4	-1.530	-2.400	10,93	9,86
P6	0,00	SLU SX SLV	Max	-5.718	747	886	41	6.673	7.714	2,97	2,40
P6	0,00	SLU SX SLV	Min	-6.560	-756	-886	-44	-6.670	-8.017	3,06	2,43
P6	0,00	SLU SY SLV	Max	-5.718	700	993	36	7.467	7.258	2,69	2,22
P6	0,00	SLU SY SLV	Min	-6.559	-709	-992	-39	-7.464	-7.561	2,79	2,25
P6	0,00	SLU SZ SLV	Max	-4.949	346	437	28	3.293	5.191	6,24	4,41
P6	0,00	SLU SZ SLV	Min	-7.329	-355	-437	-31	-3.289	-5.494	6,15	4,62

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

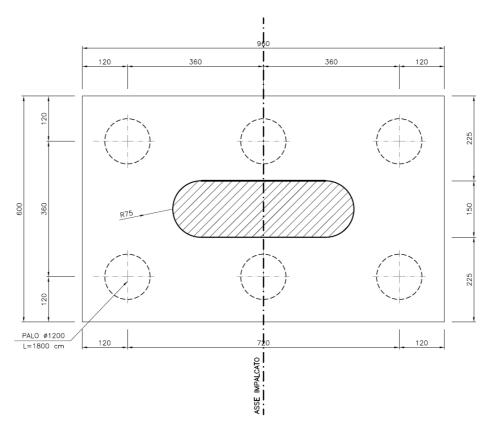
RAMPA A - RELAZIONE DI CALCOLO

Sezione in C.A. Verifiche allo stato limite ultimo di taglio VERIFICA CON STAFFE - V₂

Materiali (Unità N,mm)					
Calcestruzz	zo ord.	Acciaio			
f _{ck} =	28	f _{ywk} =	450		
$\gamma_{c} =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	15,87	$f_{ywd} =$	391		

Dati sezione				
Altezza utile sezione (cm)	480			
B _{min} della sezione in zona tesa (cm)	150			
Armatura longitudinale (cm²)	510			
Diametro staffe (mm)	10			
Bracci	2			
Passo (cm)	10			
Area staffe al metro (cm²/m)	15,71			
Sollecitazioni				
Sforzo Normale di compressione (kN)	8100			
Taglio di calcolo V _{sd} (kN)	1204			
σ_{cp} tensione media di compressione (N/mm 2)	1,02			
$lpha_{\sf cw}$	1,06			
τ _{media} tensione di taglio media (N/mm²)	0,19			
σ _ι tensione principale di trazione (N/mm²)	1,05			
heta angolo bielle compresse	10,04			
$\cot \theta \ (1 < \cot \theta < 2,5)$	2,50			
Verifiche allo SLU per taglio V _{Rd} > \	/ _{sd}			
$V_{Rd,s}$ (kN)	6638			
V _{Rd,max} (kN)	18863			
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	6638			
Coefficiente di sicurezza (Vpd / Vpd)	5.51			

Sezione in C.A. Verifiche allo stato limite ultimo di taglio VERIFICA CON STAFFE - V₃


Materiali (Unità N,mm)					
Calcestruzz	zo ord.	Acciaio			
f _{ck} =	28	f _{ywk} =	450		
$\gamma_{c} =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	15,87	$f_{ywd} =$	391		

Dati sezione	
Altezza utile sezione (cm)	150
B _{min} della sezione in zona tesa (cm)	480
Armatura longitudinale (cm²)	510
Diametro staffe (mm)	10
Bracci	6
Passo (cm)	10
Area staffe al metro (cm²/m)	47,12
Sollecitazioni	
Sforzo Normale di compressione (kN)	7400
Taglio di calcolo V _{sd} (kN)	1341
σ_{cp} tensione media di compressione (N/mm 2)	0,93
$\alpha_{\sf cw}$	1,06
τ _{media} tensione di taglio media (N/mm²)	0,21
σ _I tensione principale di trazione (N/mm²)	0,97
θ angolo bielle compresse	12,00
$\cot \theta (1 < \cot \theta < 2.5)$	2,50
Verifiche allo SLU per taglio V _{Rd} > V _s	sd
$V_{Rd,s}$ (kN)	6223
V _{Rd,max} (kN)	18765
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	6223
Coefficiente di sicurezza (V _{Rd} / V _{sd})	4,64

4.4) FONDAZIONE SU PALI

Con riferimento alle pile più sollecitate per le due tipologie di fondazione, si ricavano a partire dalle sollecitazioni di spiccato, le azioni agenti al baricentro della palificata.

La palificata è costituita da n.6 pali Φ 120 cm posti su due file ad interasse pari a 3,6m disposti secondo lo schema riportato in figura.

L'azione verticale in testa ai pali potrà essere valutata con la seguente formula

 $P = N/n \pm M_1/W_1 \pm M_t/W_t$

dove

 $N,\,M_I=M_x,\,M_t=M_y\,$ sono le sollecitazioni ad intradosso plinto di cui al prospetto precedente n=6 è il numero dei pali

 W_l e W_t sono i moduli di resistenza relativi alla palificata ($\sum d_i^2/d_{min}$) rispettivamente in direzione longitudinale e trasversale.

Ai fini della ripartizione delle azioni orizzontali (vento, sisma ecc.) dal plinto alla palificata (pali in gruppo) per tener in conto il diverso comportamento dei pali di bordo (più rigidi) rispetto a quelli intermedi (effetto shadowing) si procede in maniera semplificata con le seguenti formule:

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Detto n_I il numero di file longitudinali

nt il numero di file trasversali

L'azione orizzontale $(T_1=T_y; T_t=T_x)$ sul palo di bordo maggiormente sollecitato vale:

$$T_{p,l} = T_l / [n_t + 0.5 x (n-n_t)]$$

$$T_{p,t} = T_t / [n_l + 0.5 \times (n-n_l)]$$

 $T_p = (T_{p,l}^2 + T_{p,t}^2)^{1/2}$ (Taglio sul palo maggiormente caricato)

Considerando il palo perfettamente incastrato nel plinto di elevata rigidezza ed immerso in un terreno alla Winkler con costante elastica $K_h = 25.000 \; kN/m^3$

Si ottiene una lunghezza d'onda pari a :

$$\lambda = [4Ec \, x \, J \, / \, (Kh \, x \, D)]^{1/4}$$

Ed avendo i pali lunghezza molto superiore possono essere considerati come pali lunghi e pertanto la sollecitazione flettente massima d'incastro vale:

$$M_p = T_p x \lambda / 2$$
 Momento d'incastro massimo

4.4.1) Azioni sulle Palificate

Si riporta il calcolo delle azioni agenti sulla palificata di fondazione per ciascuna delle pile.

PILA N°1 - VERIFIC	CHE IN FONDAZIONE	(kN,m)			
Geometria Pli	nto	Rinterro			
Altezza (m)	2,00	Altezza (m)	1,00		
Lunghezza long.	6,00	Lunghezza long.	6,00		
Larghezza trasv.	9,60	Larghezza trasv.	9,60		
Peso Proprio (kN)	2.880	Peso Proprio (kN)	1.037		
γg	1,35	γ _G	1,35		
Dist. Pila/Plinto	0,00	Dist. Riporto/plinto	0,00		

Sollecitazioni Baricentro fondazione (kN,m)							
Combinaz, di carico	N	T _{long}	T _{trasv}	M_{long}	M_{trasv}		
Combinaz. di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)		
SLU 1-M1	13.423	203	145	1.709	7.599		
SLU 1-M1	19.020	165	204	-907	-7.585		
SLU 1-M2	13.637	144	191	1.605	5.250		
SLU 1-M2	17.880	163	190	-856	-6.756		
SLU 2a	13.684	165	335	2.831	6.576		
SLU 2a	17.957	186	335	-1.498	-5.900		
SLU 2b-M1	13.685	123	173	1.456	6.115		
SLU 2b-M1	17.954	185	208	-929	-5.889		
SLU 2b-M2	13.845	130	171	1.438	4.446		
SLU 2b-M2	17.102	175	191	-858	-5.212		
SLU VENTO	12.046	180	196	1.671	2.780		
SLU VENTO	12.374	199	190	-853	-795		
SLU SX SLV	10.413	840	1.092	9.250	9.889		
SLU SX SLV	11.237	844	1.106	-4.936	-5.187		
SLU SY SLV	10.415	794	1.136	9.623	9.391		
SLU SY SLV	11.236	798	1.150	-5.135	-4.871		
SLU SZ SLV	9.587	383	514	4.360	5.413		
SLU SZ SLV	12.063	387	529	-2.356	-2.539		

Palificata	
N.file longitud.	2
Interasse longit.	3,60
N.file trasversali	3
Interasse trasvers.	3,60
Numero Totale Pali	6
Diametro Pali	1,20

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

Azioni sui Pali (kN)				T Shac			
Combinaz. di carico	P _{,med}	P _{,max}	P _{,min}	T _{p long,max}	T _{p trasv,max}	T _{p tot,max}	M_{max}
SLU 1-M1	2.237	2.923	1.551	45	36	58	131
SLU 1-M1	3.170	2.559	3.781	37	51	63	142
SLU 1-M2	2.273	2.786	1.760	32	48	58	131
SLU 1-M2	2.980	2.432	3.528	36	48	60	136
SLU 2a	2.281	2.999	1.562	37	84	91	207
SLU 2a	2.993	2.444	3.541	41	84	93	212
SLU 2b-M1	2.281	2.840	1.721	27	43	51	116
SLU 2b-M1	2.992	2.497	3.487	41	52	66	150
SLU 2b-M2	2.308	2.750	1.866	29	43	52	117
SLU 2b-M2	2.850	2.409	3.292	39	48	62	140
SLU VENTO	2.008	2.355	1.660	40	49	63	143
SLU VENTO	2.062	1.928	2.196	44	48	65	147
SLU SX SLV	1.736	3.279	192	187	273	331	750
SLU SX SLV	1.873	1.056	2.690	188	277	334	758
SLU SY SLV	1.736	3.279	193	177	284	334	758
SLU SY SLV	1.873	1.059	2.686	177	287	338	766
SLU SZ SLV	1.598	2.378	818	85	129	154	350
SLU SZ SLV	2.011	1.616	2.405	86	132	158	358

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

PILA n°2 - VERIFIC	CHE IN FONDAZIONE	(kN,m)		
Geometria Pli	nto	Rinterro		
Altezza (m)	2,00	Altezza (m)	1,00	
Lunghezza long.	6,00	Lunghezza long.	6,00	
Larghezza trasv.	9,60	Larghezza trasv.	9,60	
Peso Proprio (kN)	2.880	Peso Proprio (kN)	1.037	
γ _G	1,35	γ _G	1,35	
Dist. Pila/Plinto	0,00	Dist. Riporto/plinto	0,00	

Sollecitazioni Baricentro fondazione (kN,m)							
Combinaz, di carico	N	T_{long}	T_{trasv}	M_{long}	M_{trasv}		
Combinaz. di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)		
SLU 1-M1	15.191	213	142	2.069	13.110		
SLU 1-M1	21.210	177	238	-1.008	-7.567		
SLU 1-M2	15.458	191	140	1.851	10.634		
SLU 1-M2	19.997	159	233	-904	-6.437		
SLU 2a	15.491	339	181	3.290	12.129		
SLU 2a	20.020	306	275	-1.744	-6.136		
SLU 2b-M1	15.501	173	125	1.676	11.462		
SLU 2b-M1	20.010	164	248	-933	-5.939		
SLU 2b-M2	15.701	161	129	1.559	9.682		
SLU 2b-M2	19.103	145	239	-828	-5.045		
SLU VENTO	13.533	126	171	1.225	6.966		
SLU VENTO	13.557	111	248	-629	-1.646		
SLU SX SLV	11.773	1.202	1.084	11.596	16.327		
SLU SX SLV	12.573	1.181	1.119	-6.666	-7.684		
SLU SY SLV	11.770	1.145	1.114	11.051	16.703		
SLU SY SLV	12.577	1.124	1.149	-6.349	-7.942		
SLU SZ SLV	11.085	552	525	5.326	10.119		
SLU SZ SLV	13.262	531	560	-2.996	-3.713		

Palificata					
N.file longitud.	2				
Interasse longit.	3,60				
N.file trasversali	3				
Interasse trasvers.	3,60				
Numero Totale Pali	6				
Diametro Pali	1.20				

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

A	zioni sui Pali (kN)		T Shac	dowing (effet	to gruppo)	
Combinaz. di carico	P _{,med}	P _{,max}	P _{,min}	$T_{p long,max}$	T _{p trasv,max}	T _{p tot,max}	M _{max}
SLU 1-M1	2.532	3.634	1.430	47	35	59	134
SLU 1-M1	3.535	2.916	4.154	39	59	71	162
SLU 1-M2	2.576	3.486	1.666	42	35	55	124
SLU 1-M2	3.333	2.802	3.864	35	58	68	154
SLU 2a	2.582	3.729	1.435	75	45	88	199
SLU 2a	3.337	2.749	3.924	68	69	97	219
SLU 2b-M1	2.584	3.535	1.632	38	31	49	112
SLU 2b-M1	3.335	2.836	3.834	36	62	72	163
SLU 2b-M2	2.617	3.434	1.800	36	32	48	109
SLU 2b-M2	3.184	2.757	3.611	32	60	68	154
SLU VENTO	2.255	2.853	1.658	28	43	51	116
SLU VENTO	2.260	2.087	2.432	25	62	67	151
SLU SX SLV	1.962	4.170	-245	267	271	381	863
SLU SX SLV	2.096	945	3.246	262	280	384	870
SLU SY SLV	1.962	4.145	-222	254	278	377	855
SLU SY SLV	2.096	957	3.236	250	287	381	863
SLU SZ SLV	1.847	3.043	652	123	131	180	407
SLU SZ SLV	2.210	1.675	2.746	118	140	183	415

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

PILA N°3 - VERIFIC	CHE IN FONDAZIONE	(kN,m)	
Geometria Pli	nto	Rinterro	
Altezza (m)	2,00	Altezza (m)	1,00
Lunghezza long.	6,00	Lunghezza long.	6,00
Larghezza trasv.	9,60	Larghezza trasv.	9,60
Peso Proprio (kN)	2.880	Peso Proprio (kN)	1.037
γg	1,35	γ_{G}	1,35
Dist. Pila/Plinto	0,00	Dist. Riporto/plinto	0,00

Sollecitazioni Baricentro fondazione (kN,m)							
Combinaz, di carico	N	T_{long}	T_{trasv}	M_{long}	M_{trasv}		
Combinaz. di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)		
SLU 1-M1	16.812	166	134	1.801	16.933		
SLU 1-M1	22.620	156	302	-1.057	-3.712		
SLU 1-M2	16.993	138	131	1.502	14.711		
SLU 1-M2	21.402	129	294	-872	-2.919		
SLU 2a	17.028	301	130	3.272	15.355		
SLU 2a	21.419	292	294	-1.988	-2.266		
SLU 2b-M1	17.034	127	121	1.384	15.244		
SLU 2b-M1	21.417	123	302	-831	-2.326		
SLU 2b-M2	17.168	108	122	1.171	13.622		
SLU 2b-M2	20.506	101	292	-685	-1.706		
SLU VENTO	14.445	27	152	293	9.393		
SLU VENTO	14.608	20	281	-130	251		
SLU SX SLV	12.743	1.341	990	14.454	18.303		
SLU SX SLV	13.579	1.336	1.057	-9.048	-5.240		
SLU SY SLV	12.740	1.174	1.137	12.656	20.273		
SLU SY SLV	13.583	1.169	1.204	-7.919	-6.622		
SLU SZ SLV	12.126	584	603	6.294	13.505		
SLU SZ SLV	14.196	579	670	-3.917	-1.989		

Palificata				
N.file longitud.	2			
Interasse longit.	3,60			
N.file trasversali	3			
Interasse trasvers.	3,60			
Numero Totale Pali	6			
Diametro Pali	1,20			

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

A	zioni sui Pali (kN)		T Shac	lowing (effet	to gruppo)	
Combinaz. di carico	P _{,med}	P _{,max}	P _{,min}	T _{p long,max}	T _{p trasv,max}	T _{p tot,max}	M_{max}
SLU 1-M1	2.802	4.145	1.459	37	34	50	113
SLU 1-M1	3.770	3.414	4.126	35	76	83	188
SLU 1-M2	2.832	3.993	1.671	31	33	45	102
SLU 1-M2	3.567	3.284	3.850	29	73	79	179
SLU 2a	2.838	4.207	1.469	67	33	74	169
SLU 2a	3.570	3.228	3.911	65	74	98	222
SLU 2b-M1	2.839	4.026	1.652	28	30	41	94
SLU 2b-M1	3.570	3.331	3.808	27	75	80	182
SLU 2b-M2	2.861	3.916	1.807	24	30	39	88
SLU 2b-M2	3.418	3.236	3.600	23	73	77	174
SLU VENTO	2.407	3.087	1.728	6	38	39	87
SLU VENTO	2.435	2.440	2.429	4	70	70	160
SLU SX SLV	2.124	4.733	-486	298	248	387	878
SLU SX SLV	2.263	1.062	3.465	297	264	397	901
SLU SY SLV	2.123	4.703	-456	261	284	386	875
SLU SY SLV	2.264	1.071	3.457	260	301	398	902
SLU SZ SLV	2.021	3.542	500	130	151	199	451
SLU SZ SLV	2.366	1.865	2.867	129	168	211	479

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Geometria Pli	nto	Rinterro	
Altezza (m)	2,00	Altezza (m)	1,00
Lunghezza long.	6,00	Lunghezza long.	6,00
Larghezza trasv.	9,60	Larghezza trasv.	9,60
Peso Proprio (kN)	2.880	Peso Proprio (kN)	1.037
γg	1,35	γ _G	1,35
Dist. Pila/Plinto	0,00	Dist. Riporto/plinto	0,00

Sollecitazioni Baricentro fondazione (kN,m)							
Combinaz, di carico	N	T_{long}	T_{trasv}	M_{long}	M_{trasv}		
Combinaz. di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)		
SLU 1-M1	15.915	163	136	1.935	14.066		
SLU 1-M1	21.958	207	255	-1.551	-6.804		
SLU 1-M2	16.157	143	133	1.698	11.674		
SLU 1-M2	20.748	183	248	-1.372	-5.830		
SLU 2a	16.206	287	172	3.394	13.098		
SLU 2a	20.757	328	287	-2.485	-5.520		
SLU 2b-M1	16.210	141	120	1.683	12.401		
SLU 2b-M1	20.757	171	259	-1.276	-5.255		
SLU 2b-M2	16.391	124	123	1.481	10.676		
SLU 2b-M2	19.851	155	249	-1.159	-4.481		
SLU VENTO	14.006	76	152	934	7.511		
SLU VENTO	14.114	94	245	-714	-1.415		
SLU SX SLV	12.280	1.093	1.151	12.698	19.825		
SLU SX SLV	13.092	1.125	1.195	-8.522	-9.732		
SLU SY SLV	12.286	1.185	1.011	13.738	17.798		
SLU SY SLV	13.086	1.217	1.055	-9.193	-8.265		
SLU SZ SLV	11.663	522	587	6.073	12.064		
SLU SZ SLV	13.709	554	631	-4.179	-4.229		

Palificata				
N.file longitud.	2			
Interasse longit.	3,60			
N.file trasversali	3			
Interasse trasvers.	3,60			
Numero Totale Pali	6			
Diametro Pali	1,20			

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

A	zioni sui Pali (kN)		T Shad	dowing (effet	to gruppo)	
Combinaz. di carico	P _{,med}	P _{,ant}	P _{,max}	$P_{,min}$	T _{p trasv,max}	T _{p tot,max}	M_{max}
SLU 1-M1	2.653	3.809	1.497	36	34	50	113
SLU 1-M1	3.660	3.044	4.276	46	64	79	178
SLU 1-M2	2.693	3.661	1.725	32	33	46	104
SLU 1-M2	3.458	2.926	3.990	41	62	74	168
SLU 2a	2.701	3.925	1.477	64	43	77	174
SLU 2a	3.459	2.846	4.073	73	72	102	232
SLU 2b-M1	2.702	3.719	1.685	31	30	43	99
SLU 2b-M1	3.459	2.976	3.943	38	65	75	170
SLU 2b-M2	2.732	3.610	1.853	28	31	41	94
SLU 2b-M2	3.308	2.890	3.727	34	62	71	162
SLU VENTO	2.334	2.942	1.726	17	38	42	94
SLU VENTO	2.352	2.188	2.517	21	61	65	147
SLU SX SLV	2.047	4.599	-506	243	288	377	854
SLU SX SLV	2.182	717	3.647	250	299	390	883
SLU SY SLV	2.048	4.556	-460	263	253	365	828
SLU SY SLV	2.181	756	3.606	270	264	378	857
SLU SZ SLV	1.944	3.344	544	116	147	187	424
SLU SZ SLV	2.285	1.604	2.965	123	158	200	454

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

PILA N°5 - VERIFICHE IN FONDAZIONE (kN.m)

Geometria Plinto					
Altezza (m)	2,00				
Lunghezza long.	6,00				
Larghezza trasv.	9,60				
Peso Proprio (kN)	2.880				
γ _G	1,35				
Dist. Pila/Plinto	0,00				

Rinterro	
Altezza (m)	1,00
Lunghezza long.	6,00
Larghezza trasv.	9,60
Peso Proprio (kN)	1.037
γ _G	1,35
Dist. Riporto/plinto	0,00

Sollecitazioni Baricentro fondazione (kN,m)					
Combinaz, di carico	N	T_{long}	T_{trasv}	M_{long}	M_{trasv}
Combinaz, di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)
SLU 1-M1	13.027	124	139	1.521	6.628
SLU 1-M1	18.587	139	182	-1.023	-8.816
SLU 1-M2	13.295	114	138	1.423	4.682
SLU 1-M2	17.488	128	180	-916	-8.021
SLU 2a	13.352	248	168	2.937	6.055
SLU 2a	17.542	262	211	-1.959	-7.464
SLU 2b-M1	13.357	123	120	1.503	5.410
SLU 2b-M1	17.538	114	198	-848	-7.363
SLU 2b-M2	13.557	112	126	1.376	4.053
SLU 2b-M2	16.716	111	189	-803	-6.699
SLU VENTO	11.978	106	166	1.247	3.207
SLU VENTO	12.063	113	204	-887	-2.659
SLU SX SLV	10.316	961	989	10.908	13.793
SLU SX SLV	10.990	965	1.000	-7.098	-9.836
SLU SY SLV	10.322	1.096	882	12.429	12.362
SLU SY SLV	10.985	1.100	893	-8.078	-8.834
SLU SZ SLV	9.713	480	488	5.460	7.530
SLU SZ SLV	11.593	484	499	-3.572	-5.580

Palificata				
N.file longitud.	2			
Interasse longit.	3,60			
N.file trasversali	3			
Interasse trasvers.	3,60			
Numero Totale Pali	6			
Diametro Pali	1,20			

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

Azio	ioni sui Pali (kN) T Shadowing (effetto			gruppo)			
Combinaz. di carico	P _{,med}	P _{,max}	P _{,min}	$T_{p long,max}$	T _{p trasv,max}	T _{p tot,max}	M_{max}
SLU 1-M1	2.171	2.772	1.570	27	35	44	100
SLU 1-M1	3.098	2.391	3.805	31	46	55	125
SLU 1-M2	2.216	2.673	1.759	25	34	43	97
SLU 1-M2	2.915	2.273	3.556	28	45	53	121
SLU 2a	2.225	2.918	1.533	55	42	69	157
SLU 2a	2.924	2.224	3.623	58	53	79	178
SLU 2b-M1	2.226	2.741	1.711	27	30	41	92
SLU 2b-M1	2.923	2.333	3.513	25	50	56	126
SLU 2b-M2	2.260	2.668	1.851	25	31	40	91
SLU 2b-M2	2.786	2.246	3.325	25	47	53	121
SLU VENTO	1.996	2.334	1.658	23	41	48	108
SLU VENTO	2.010	1.744	2.277	25	51	57	129
SLU SX SLV	1.719	3.687	-248	213	247	327	741
SLU SX SLV	1.832	491	3.172	214	250	329	747
SLU SY SLV	1.720	3.730	-289	244	221	329	745
SLU SY SLV	1.831	469	3.192	244	223	331	751
SLU SZ SLV	1.619	2.647	590	107	122	162	367
SLU SZ SLV	1.932	1.214	2.650	108	125	165	373

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

PILA N°6 - VERIFIC	CHE IN FONDAZIONE	(kN,m)	
Geometria Pli	nto	Rinterro	
Altezza (m)	2,00	Altezza (m)	1,00
Lunghezza long.	6,00	Lunghezza long.	6,00
Larghezza trasv.	9,60	Larghezza trasv.	9,60
Peso Proprio (kN)	2.880	Peso Proprio (kN)	1.037
γ _G	1,35	γ_{G}	1,35
Dist. Pila/Plinto	0,00	Dist. Riporto/plinto	0,00

Sollecitazioni Baricentro fondazione (kN,m)							
Combinaz, di carico	N	T_{long}	T_{trasv}	M_{long}	M_{trasv}		
Combinaz. di canco	(kN)	(kN)	(kN)	(kNm)	(kNm)		
SLU 1-M1	12.632	168	123	1.618	5.636		
SLU 1-M1	17.493	194	150	-1.080	-7.910		
SLU 1-M2	12.795	162	121	1.559	3.757		
SLU 1-M2	16.483	187	148	-1.042	-7.153		
SLU 2a	12.820	297	133	2.857	4.877		
SLU 2a	16.564	323	160	-1.806	-6.470		
SLU 2b-M1	12.823	177	102	1.698	4.518		
SLU 2b-M1	16.563	171	168	-955	-6.533		
SLU 2b-M2	12.945	166	109	1.594	3.202		
SLU 2b-M2	15.807	172	158	-961	-5.908		
SLU VENTO	11.238	175	152	1.676	2.524		
SLU VENTO	11.649	201	174	-1.127	-2.052		
SLU SX SLV	9.635	886	747	8.446	9.209		
SLU SX SLV	10.476	886	756	-4.898	-6.505		
SLU SY SLV	9.635	993	700	9.453	8.657		
SLU SY SLV	10.476	992	709	-5.480	-6.144		
SLU SZ SLV	8.865	437	346	4.168	5.883		
SLU SZ SLV	11.246	437	355	-2.415	-4.783		

Palificata				
N.file longitud.	2			
Interasse longit.	3,60			
N.file trasversali	3			
Interasse trasvers.	3,60			
Numero Totale Pali	6			
Diametro Pali	1,20			

k 25.000 (1kg/cmc) E 31.200.000 (Rck 300) lambda 4,54 m

A	zioni sui Pali (kN)		T Shac	lowing (effet	to gruppo)	
Combinaz. di carico	P _{,med}	P _{,max}	P _{,min}	$T_{p long,max}$	T _{p trasv,max}	T _{p tot,max}	M _{max}
SLU 1-M1	2.105	2.646	1.564	37	31	48	110
SLU 1-M1	2.916	2.266	3.565	43	37	57	129
SLU 1-M2	2.133	2.538	1.727	36	30	47	107
SLU 1-M2	2.747	2.154	3.340	42	37	56	126
SLU 2a	2.137	2.740	1.534	66	33	74	168
SLU 2a	2.761	2.144	3.377	72	40	82	186
SLU 2b-M1	2.137	2.608	1.666	39	26	47	106
SLU 2b-M1	2.761	2.218	3.303	38	42	57	128
SLU 2b-M2	2.158	2.528	1.788	37	27	46	104
SLU 2b-M2	2.635	2.135	3.134	38	40	55	125
SLU VENTO	1.873	2.204	1.543	39	38	54	123
SLU VENTO	1.941	1.695	2.188	45	44	62	142
SLU SX SLV	1.606	3.027	184	197	187	271	616
SLU SX SLV	1.746	841	2.651	197	189	273	619
SLU SY SLV	1.606	3.082	129	221	175	282	638
SLU SY SLV	1.746	812	2.680	221	177	283	642
SLU SZ SLV	1.478	2.272	683	97	87	130	295
SLU SZ SLV	1.874	1.319	2.430	97	89	132	298

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

4.4.2) Verifica del Plinto di Fondazione

La solleciatazione massima sul plinto di fondazione dovuta all'azioni dei pali è stata calcolata considerando la fondazione come una mensola di lunghezza pari a 2,35m in direzione trasversale e 1,75m in direzione longitudinale.

Direzione trasversale:

$$M = (N_{max} + N'_{max}) \times I - \gamma_G \times (P_{plinto} \times I^2 / 2)$$

Direzione longitudinale:

$$M = \Sigma N'_{max} x I - \gamma_G x (P_{plinto} x I^2 / 2)$$

La sollecitazione massima si ottiene sul plinto di fondazione della pila n.3:

 $M_{max,long} = 18.286 \text{ kNm}$

 $M_{max,trasy} = 16.140 \text{ kNm}$

Si riporta il calcolo dei mmenti resistenti per le due sezioni considerate con l'indicazione delle armature previste in progetto.

Direzione longitudinale

Considerando la sezione 9,60x2,00m con le seguenti armature:

- armatura inferiore: 1Φ26/10

armatura superiore: 1Φ26/20

si ottiene un momento reistente pari a:

 $M_R = 37.679 \text{ kNm}$

a cui corrisponde un coefficiente di sicurezza c.s. = M_R / M_d = 2,06.

Direzione trasversale

Considerando la sezione 5,00x2,00m con le seguenti armature

- Armatura inferiore: 1Φ26/10

Armatura superiore: 1Φ26/20

si ottiene un momento reistente pari a:

 $M_R = 23.549 \text{ kNm}$

a cui corrisponde un coefficiente di sicurezza c.s. = $M_R / M_d = 1,46$.

NUOVO SVINCOLO DI PADULA-BUONABITACOLO

RAMPA A - RELAZIONE DI CALCOLO

Sezione in C.A. Verifiche allo stato limite ultimo di taglio PLINTO 6,0x9,6m - TRASVERSALE

Materiali (Unità N,mm)					
Calcestruzzo ord. Acciaio					
f _{ck} =	25	f _{ywk} =	450		
$\gamma_c =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	14,17	$f_{ywd} =$	391		

Dati sezione	
Altezza utile sezione (cm)	190
B _{min} della sezione in zona tesa (cm)	600
Armatura longitudinale (cm²)	318
Diametro staffe (mm)	20
Bracci	12,5
Passo (cm)	30
Area staffe al metro (cm²/m)	130,90
Sollecitazioni	
Sforzo Normale di compressione (kN)	0
Taglio di calcolo V _{sd} (kN)	7344
σ_{cp} tensione media di compressione (N/mm 2)	0,00
$lpha_{\sf cw}$	1,00
$ au_{ m media}$ tensione di taglio media (N/mm 2)	0,72
σ _I tensione principale di trazione (N/mm²)	0,72
heta angolo bielle compresse	45,00
$\cot \theta \ (1 < \cot \theta < 2.5)$	1,00
Verifiche allo SLU per taglio V _{Rd} > \	/ _{sd}
$V_{Rd,s}$ (kN)	8759
$V_{Rd,max}$ (kN)	36338
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	8759
Coefficiente di sicurezza (V _{Rd} / V _{sd})	1,19

Sezione in C.A. Verifiche allo stato limite ultimo di taglio PLINTO 6,0x9,6m - LONGITUDINALE

Materiali (Unità N,mm)					
Calcestruzzo ord. Acciaio					
f _{ck} =	25	f _{ywk} =	450		
$\gamma_{\rm c} =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	14,17	$f_{ywd} =$	391		

Dati sezione	
Altezza utile sezione (cm)	190
B _{min} della sezione in zona tesa (cm)	960
,	
Armatura longitudinale (cm²)	509
Diametro staffe (mm)	20
Bracci	20
Passo (cm)	30
Area staffe al metro (cm²/m)	209,44
Sollecitazioni	
Sforzo Normale di compressione (kN)	0
Taglio di calcolo V _{sd} (kN)	11016
σ_{cp} tensione media di compressione (N/mm 2)	0,00
$\alpha_{\sf cw}$	1,00
$ au_{ m media}$ tensione di taglio media (N/mm 2)	0,67
σ _I tensione principale di trazione (N/mm²)	0,67
θ angolo bielle compresse	45,00
$\cot \theta (1 < \cot \theta < 2.5)$	1,00
Verifiche allo SLU per taglio V _{Rd} > V _s	sd
$V_{Rd,s}$ (kN)	14014
$V_{Rd,max}$ (kN)	58140
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	14014
Coefficiente di sicurezza (V_{Rd} / V_{sd})	1,27

Sezione in C.A. Verifiche allo stato limite ultimo PUNZONAMENTO

Materiali (Unità N,mm)				
Calcestruzzo		Acciaio		
f _{ck} =	25	$f_{ywk} =$	450	
$\gamma_{c} =$	1,50	$\gamma_s =$	1,15	
$f_{cd} =$	14,17	$f_{ywd} =$	391	

Comiana da varificara				
Sezione da verificare				
Dimensioni pilastro B (cm)	90			
H (cm)	90			
Posizione pilastro (β)	4.50			
(angolo:β=1,5 ;bordo:β=1,4 ;interno:β=1,15)	1,50			
Spessore soletta (cm)	200			
Copriferro (cm)	5,0			
u perimetro critico	1740			
Diametro armatura $A_{s,x}$	26			
Diametro armatura $A_{s,x}$ tesa soletta (mm) $A_{s,y}$	26			
Interasse armatura i _{s,x}	20			
tesa soletta (cm) i _{s,y}	20			
ρ ₁ (percentuale di armatura tesa)	0,14%			
Diametro armatura a punzonamento (mm)	0			
Bracci sul perimetro	0			
s _r passo radiale perimetri	0			
α angolo tra armatura e piano della soletta	90			
Area staffe sul perimetro (cm²)	0,00			
Verifica allo SLU per punzonamento				
Taglio di calcolo V _{sd} (kN)	3.989			
Taglio di calcolo $v_{sd} = V_{sd}^* β/(u^*d) (N/mm^2)$	0,176			
Resistenza di progetto v _{Rd,c} (N/mm²)	0,265			
Coefficiente di sicurezza v _{Rd,c} / v _{sd}	1,505			

4.4.3) Verifica Pali Φ 120 cm

Si riporta la verifica del palo maggiormente sollecitato

Verifica a taglio

Si verifica il palo relativo alla spalla fissa sotto l'azione del taglio massimo nella peggiore condizione di carico:

$$T_{t,max} = 398 \text{ kN}$$
 $N = 1.071 \text{ kN}$

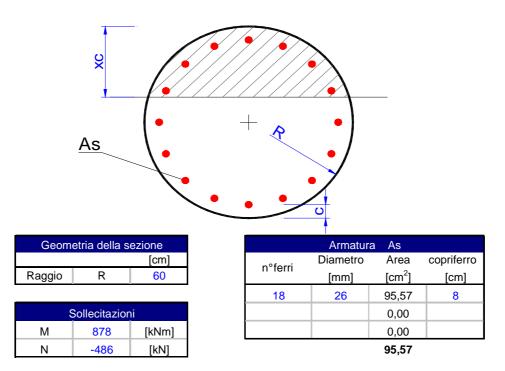
Le altre combinazioni di carico comportano sollecitazioni taglianti inferiori.

Sezione circolare in C.A.				
Verifiche allo stato limite ultimo di taglio				
VERIFICA CON STAFFE				

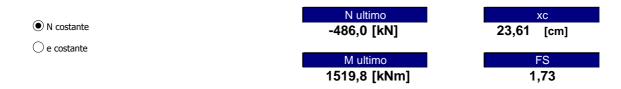
Materiali (Unità N,mm)					
Calcestruzzo ord.		Acciaio			
f _{ck} =	25	$f_{ywk} =$	450		
$\gamma_{\rm c} =$	1,50	$\gamma_s =$	1,15		
$f_{cd} =$	14,17	$f_{ywd} =$	391		

Dati sezione				
Diametro sezione (cm)	120			
Copriferro (cm)	7			
Altezza utile sezione d=D/2 + 2x(D/2-c)/π	94			
Armatura longitudinale (cm²)	84,80			
Diametro staffe (mm)	12			
Bracci	2			
Passo (cm)	20			
Area staffe al metro (cm²/m)	11,31			
Sollecitazioni				
Sforzo Normale di compressione (kN)	1017			
Taglio di calcolo V _{sd} (kN)	398			
σ_{cp} tensione media di compressione (N/mm 2)	0,81			
$lpha_{\sf cw}$	1,06			
τ _{media} tensione di taglio media (N/mm²)	0,39			
σ _I tensione principale di trazione (N/mm²)	0,97			
heta angolo bielle compresse	22,04			
$\cot \theta \ (1 < \cot \theta < 2.5)$	2,47			
Verifiche allo SLU per taglio V _{Rd} > V _{sd}				
$V_{Rd,s}$ (kN)	925			
V _{Rd,max} (kN)	2646			
V_{Rd} (kN) = min($V_{Rd,s}$; $V_{Rd,max}$)	925			
Coefficiente di sicurezza (V _{Rd} / V _{sd})	2,33			

Verifiche a Presso-Flessione


Si riportano le verifiche a pressoflessione e tensoflessione per i pali maggiormente sollecitati.

Le verifiche sono state condotte considerando le seguenti armature:


N = 1.071 kN M = 902 kNm c.s. = 2,33

N = 3.457 kN M = 902 kNm c.s. = 2,99

N = -486 kN M = 878 kNm c.s. = 1,73

Materiali Materi								
	γс	α_{cc}	Rck [Mpa]	fck [Mpa]	fcd [Mpa]	fcc/fcd	ϵ_{c2}	ϵ_{cu2}
C25/30 🔻	1,5	0,85	30	25	14,2	1,0	0,200%	0,350%
	γs	Es [Mpa]	fyk [Mpa]	fyd [Mpa]	ϵ_{ys}	ϵ_{uk}	α_{s}	$\epsilon_{\text{ud}} = \epsilon_{\text{uk}} \; \alpha_{\text{s}}$
B450C ▼	1,15	200000	450	391,3	0,196%	1,000%	1	1,000%

