

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

E.N.A.C.
ENTE NAZIONALE per L'AVIAZIONE
CIVILE

Committente Principale

AEROPORTO INTERNAZIONALE DI FIRENZE - "AMERIGO VESPUCCI"

Opera

PROJECT REVIEW - PIANO DI SVILUPPO AEROPORTUALE AL 2035

Titolo Documento Completo

STUDI SPECIALISTICI

ACQUE SOTTERRANEE- Report 11 di monitoraggio qualità delle acque sotterranee

Livello di Progetto

STUDIO AMBIENTALE INTEGRATO

LIV	REV	DATA EMISSIONE	SCALA	CODICE FILE COMPLETO
				FLR-MPL-SAI-QCA4-011-SO-RM_Rep Monit Acque Sott 11
SAI	00	MARZO 2024	_	TITOLO DIDOTTO
0,		1417 (1120 202 1		TITOLO RIDOTTO
				Rep Monit Acque Sott 11

00	03/2024	EMISSIONE PER PROCEDURA VIA-VAS	AMBIENTE	C.NALDI	L. TENERANI
REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

REV	DATA		DESCRIZIONE	REDATTO	VERIF	ICATO	APPROVATO		
	сомміт	TENTE PRINCIPALE	GRUPPO DI PROGETTAZIONE		SUPP	ORTI SPECIALIS	TICI		
	ACCOUN	OSCANA Eroporti ITABLE MANAGER I. Vittorio Fanti	Toscana Aeroporti e n g i n e e r i n g DIRETTORE TECNICO Ing. Lorenzo Tenerani Ordine degli ingegneri di Massa Carrara n'631		consulenza & ingegneria esperienza per l'ambiente Società Benefit				
		ER PROGETTAZIONE orenzo Tenerani					V		
		PER MANUTENZIONE Ricola D ¹ Ippolito	RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTI Ing. Lorenzo Tenerani Ordine degli ingegneri di Massa Carrara n° 631	СНЕ					
		AREA DI MOVIMENTO m. Luca Ermini							

SEVERAMENTE VIETATA LA RIPRODUZIONE E/O LA CESSIONE A TERZI SENZA AUTORIZZAZIONE DELLA COMMITTENTE

AEROPORTO INTERNAZIONALE "A. VESPUCCI" DI FIRENZE PROJECT REVIEW - PIANO DI SVILUPPO AEROPORTUALE AL 2035

SAI - STUDIO AMBIENTALE INTEGRATO

Il presente elaborato illustra le risultanze del monitoraggio ambientale condotto dal Gestore aeroportuale

con la finalità di dettagliata ricostruzione del Quadro Conoscitivo di riferimento per il Quadro Ambientale

dello Studio Ambientale Integrato relativo alla Project Review del Piano di Sviluppo Aeroportuale al 2035

dell'aeroporto di Firenze.

Si tratta di attività di rilievo e monitoraggio espletate nel recente passato a supporto del precedente

Masterplan aeroportuale 2014-2029 e, pertanto, formalmente riferite ad un progetto diverso rispetto alla

citata Project Review ora in esame. Ciononostante, considerato che l'ambito di intervento dei due differenti

strumenti di programmazione e progettazione dello sviluppo aeroportuale risulta pressochè coincidente e

che la finalità del monitoraggio eseguito risulta unicamente quella di pervenire ad una caratterizzazione sito-

specifica ex-ante (Ante Operam) della componente ambientale (indipendente dalle caratteristiche tecnico-

dimensionali del progetto), si ritiene che il contenuto del presente elaborato possa, per le precipue finalità

sopra indicate, considerarsi di oggettiva e certa rappresentatività anche per il procedimento ambientale

integrato VIA-VAS in corso.

Per tale motivo esso viene di seguito proposto quale rilevante fonte bibliografica, in quanto la pluriennale

conoscenza del territorio e dell'ambiente della Piana fiorentina interessato dal progetto non può che

rappresentare elemento informativo di assoluto rilievo ed interesse anche per l'attuale procedimento di

compatibilità ambientale, indipendentemente dal fatto che le attività di campo siano state eseguite

nell'ambito di una differente progettazione.

Ciò non elide, infatti, la totale autonomia ed indipendenza documentale dello Studio Ambientale Integrato

predisposto per la Project Review oggetto di valutazione che, proprio grazie alla molteplicità e complessità

dei dati ambientali a disposizione potrà fondarsi su solide basi conoscitive, da potersi ragionevolmente

considerarsi valide ai fini della caratterizzazione ambientale ex-ante dell'area di intervento.

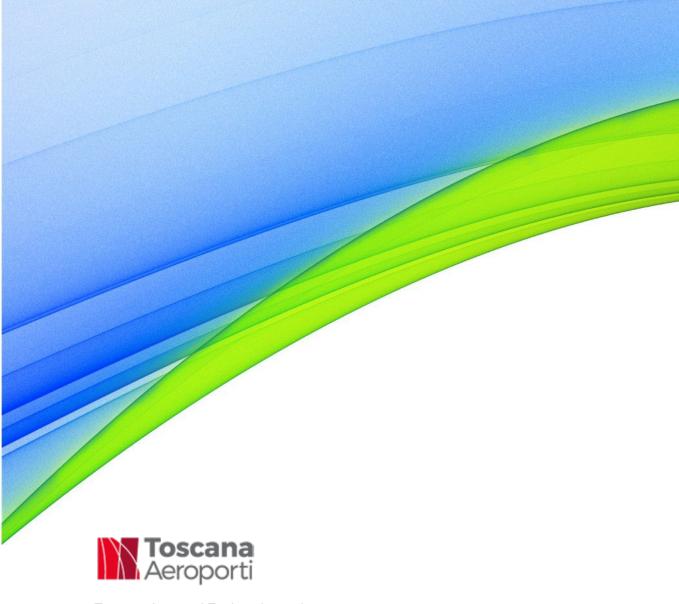
Toscana Aeroporti Engineering S.r.l.

REPORT DELLE ATTIVITÀ DI MONITORAGGIO AMBIENTALE

MATRICE ACQUE SOTTERRANEE

CAMPAGNA N° 11 - AGOSTO 2018

Piano di monitoraggio ambientale sulla matrice acque sotterranee per la realizzazione della nuova pista e delle opere accessorie - aeroporto internazionale di Firenze "Amerigo Vespucci"



Via Frassina, 21 - Carrara (MS)

Firenze (FI) - Via di Soffiano, 15

Via L. Robecchi Brichetti, 6- Roma (RM)

Milano (MI) - Via Paullo, 11

Documento a cura di:

Gruppo di lavoro:

Ing. Franco Rocchi Dott. Chim. Riccardo Galatà Ing. Carlo Ciapetti Ing. Elena Basile

	INDICE
PREME	ESSA5
1. INC	QUADRAMENTO GENERALE6
1.1	SINTESI GEOLOGIA E IDROGEOLOGIA DEL SITO
2. AT	TIVITÀ DI MONITORAGGIO AMBIENTALE ACQUE SOTTERRANEE10
2.1	MONITORAGGIO DELLA MATRICE AMBIENTALE ACQUE SOTTERRANEE
2.1	.1 Determinazioni analitiche di laboratorio
2.2	RISULTATI ANALITICI DI LABORATORIO ACQUE SOTTERRANEE
2.3	RILIEVI FREATIMETRICI
2.4	COMMENTO AI RISULTATI OTTENUTI
2.5	CONFRONTO CON I DATI PREGRESSI
	INDICE DELLE FIGURE
Figura	1: Localizzazione del Aeroporto "Amerigo Vespucci" con in rosa l'attuale area aeroportuale e ir
Ü	area comprensiva delle opere aggiuntive – (Fonte Geoscopio Reg.Toscana mod. QGis) 6
Figura	2: Localizzazione dell'Aeroporto "Amerigo Vespucci" in vista tridimensionale (Fonte Google
Earth) -	- in rosa la porzione in progetto, in viola la porzione attuale
Figura	3: stralcio della planimetria di progetto dell'Aeroporto "Amerigo Vespucci"
Figura 4	4: Planimetria area d'intervento e ubicazione dei punti di indagine11
•	5: andamento del livello di falda nel terzo trimestre 2018 nelle postazioni di acque sotterranee
Figura	6: andamento del nichel nei piezometri S19/ASOT3, S05/ASOT1 e S35/ASOT743
Figura ¹	7: andamento degli idrocarburi totali nei piezometri S19/ASOT3, S28/ASOT5 e S40/ASOT9. 43

ı	ND	ICE	DEL	ΙF	TΔ	RF	П	F
	שמו	-	ν_{LL}			\mathbf{L}	ᆫ	

Tabella 1: Risultati analitici delle indagini sulla matrice acque sotterranee – SET COMPLETO 21
Tabella 2: tabella di sintesi che riporta tutti gli analiti che hanno mostrato nel tempo superamenti,
raggruppati per singolo piezometro
Tabella 3: tabella riepilogativa di interconfronto tra i parametri comuni alle 11 campagne svolte
(dic_15, mar_16, giu_16, set_16, nov_16, gen_17, apr_17, set_17, nov_17, mar_18, giu_18) 40

ALLEGATI

Allegato 1	Certificati di laboratorio
------------	----------------------------

Allegato 2 Schede monografiche

Allegato 3 Rapporti di intervento, catene di custodia e verbali di prelievo

PREMESSA

Il presente documento costituisce il report descrittivo delle attività di monitoraggio ambientale delle acque sotterranee svolte nell'area dell'Aeroporto Internazionale "Amerigo Vespucci" di Firenze, dove è stata prevista la realizzazione della nuova pista e delle relative opere accessorie.

L'intervento, all'interno del quale si inserisce l'attività di monitoraggio descritta nel presente elaborato, consiste nella realizzazione della nuova pista, degli interventi di deviazione del Fosso Reale con il relativo sottoattraversamento dell'asse autostradale della A11, la deviazione di Via dell'Osmannoro, la realizzazione del sistema di regimazione e laminazione dei deflussi idrici.

Le attività descritte all'interno del presente elaborato rientrano nelle attività previste dal Piano di Monitoraggio Ambientale relativo alle opere e agli interventi di Master Plan Aeroportuale 2014-2029.

La campagna oggetto del presente report è stata eseguita nel mese di agosto 2018.

Il seguente documento è suddiviso nelle seguenti macrosezioni:

- · breve inquadramento;
- risultati analitici conseguiti;
- commenti ai risultati ottenuti ed eventuali confronti.

1. INQUADRAMENTO GENERALE

L'aeroporto Amerigo Vespucci si estende per circa 120 ettari a nord-ovest dell'abitato di Firenze, collocandosi all'interno della vasta piana attraversata dal fiume Arno, tra la zona di Castello e Sesto Fiorentino, in località Peretola.

Geograficamente l'area interessata dagli interventi di ampliamento si sviluppa all'interno della valle dell'Arno, delimitata a nord e sud da due fasce collinari. In particolare, l'aeroporto e le nuove aree di ampliamento si trovano sulla sponda destra del Fiume Arno, dove la pianura si estende con dimensioni maggiori rispetto alla fascia pedecollinare, in un'area compresa fra i margini degli abitati di Firenze ovest, Sesto Fiorentino sud e Campi Bisenzio est.

Il sito si colloca in un'area attraversata da importanti infrastrutture di collegamento e attualmente compresa nel nuovo sviluppo urbano, con funzioni prevalentemente produttive e di servizio.

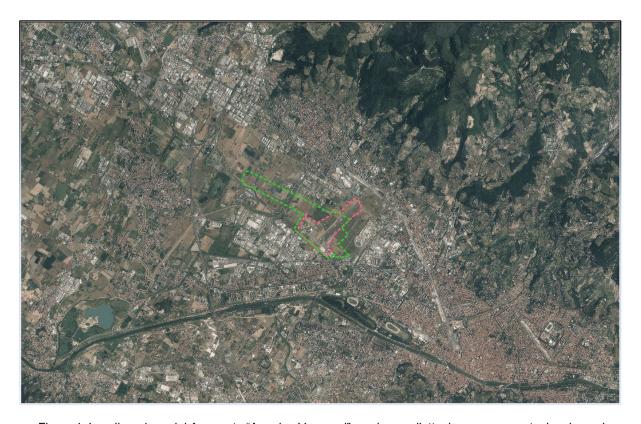


Figura 1: Localizzazione del Aeroporto "Amerigo Vespucci" con in rosa l'attuale area aeroportuale e in verde l'area comprensiva delle opere aggiuntive – (Fonte Geoscopio Reg.Toscana mod. QGis).

Nella figura seguente si riporta una visualizzazione tridimensionale del sito con l'indicazione dei confini della parte esistente e della parte di progetto:

Figura 2: Localizzazione dell'Aeroporto "Amerigo Vespucci" in vista tridimensionale (Fonte Google Earth) – in rosa la porzione in progetto, in viola la porzione attuale.

Nella figura seguente si riporta una visualizzazione dello stralcio planimetrico dell'opera in progetto:

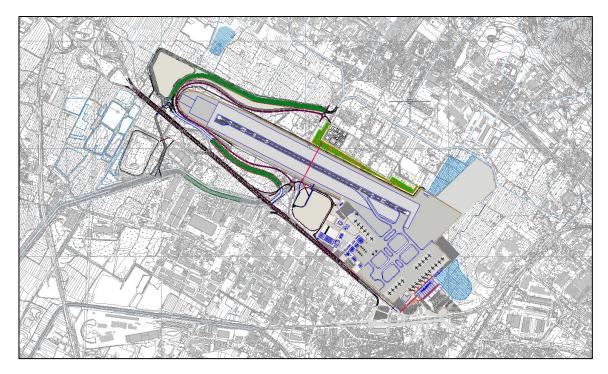


Figura 3: stralcio della planimetria di progetto dell'Aeroporto "Amerigo Vespucci"

1.1 Sintesi geologia e idrogeologia del sito

Di seguito, al fine di contestualizzare i dati presentati nel seguito del documento all'interno del quadro geologico e idrogeologico dell'area in oggetto, si richiamano le conclusioni di sintesi contenute all'interno della relazione generale per la matrice acque sotterranee. A tale relazione si rimanda per eventuali approfondimenti di carattere geologico, litologico e, soprattutto, dell'assetto idrogeologico del sito.

Nella zona aeroportuale affiora estesamente l'orizzonte Firenze 1 corrispondente alla porzione superficiale del Sintema dell'Arno. Si tratta in pratica dei sedimenti della piana alluvionale del fiume depositati in zone lontane dall'area di scorrimento e dunque nelle zone dotate di minore energia.

Dai sondaggi esaminati (storici, di area vasta, svolti nelle vicinanze del sito e, soprattutto, quelli svolti all'interno del sito nella campagna di indagine di fine 2015) si evince chiaramente che per uno spessore di almeno 25 – 30 m al di sotto del piano di campagna dell'area dell'aeroporto sono presenti terreni a granulometria fine costituiti da argille, argille limose e limi debolmente sabbiosi caratterizzati da una permeabilità compresa tra nulla e 9,34 x 10-6 m/s (9,34 x 10-4 cm/sec).

La superficie piezometrica nella zona aeroportuale talvolta è prossima al piano di campagna, altre volte è assai poco profonda (meno di un metro), altre volte è alla profondità di alcuni metri, con una variazione stagionale piuttosto importante, altre volte addirittura si è rivelata assente.

La situazione è quella di un livello da un paio di metri fino a 4-5 metri di spessore al di sotto del piano di campagna, che a seconda della stagione può essere interessato da saturazione, ma che essendo dotato di permeabilità bassa risulta essere un acquitardo o addirittura un acquicludo privo di una vera e propria falda freatica e privo di scorrimento dell'acqua che talvolta contiene.

In relazione ai dati chimici riportati nei paragrafi successivi, qui di seguito si riportano una serie di considerazioni importanti, generate dall'analisi geologica e idrogelogica sopra accennata:

- nella zona dell'aeroporto è presente un livello dello spessore di un paio di metri al di sotto del piano di campagna che, a seconda della stagione, può essere interessato da saturazione e presentare una tavola d'acqua posta alla profondità compresa tra 0 (falda affiorante) e 1,5 m. Il valore e l'interesse di questo livello dal punto di vista della risorsa idrica è nullo;
- 2. al di sotto di due metri di profondità dal piano di campagna non è stata registrata presenza di acqua fino alla profondità di almeno 25 m al di sotto del piano di campagna;
- 3. qualora i lavori fossero eseguiti nella stagione secca è ragionevole pensare che non vi sia acqua nemmeno nel livello superficiale;
- 4. il livello in cui ha sede la falda principale nell'area del bacino Firenze-Prato-Pistoia è identificato con l'orizzonte Firenze 2 (parte inferiore del Sintema dell'Arno) e con l'orizzonte Firenze 3 (Sintema di Firenze) e si trova solitamente alla profondità superiore ai 25 m (qualora presente);

11ª Campagna di indagini – Agosto 2018

5. l'unico livello litologico di interesse per il presente studio è rappresentato, dunque, dallo strato superficiale dell'orizzonte Firenze 1 (porzione superiore del Sintema dell'Arno) perché è evidente che l'orizzonte Firenze 2 (porzione inferiore del Sintema dell'Arno) non può creare problemi legati alla presenza di acqua vista la profondità cui si attesta nell'area di interesse.

Le acque sotterranee campionate nel corso dei monitoraggi periodici vengono pertanto considerate acque di ritenzione, impregnazione e scorrimento sub-superficiale, e non acque di falda, in quanto sull'area, entro i 25-30 m, non è presente un vero e proprio acquifero.

2. ATTIVITÀ DI MONITORAGGIO AMBIENTALE ACQUE SOTTERRANEE

Come accennato in premessa, ai fini dell'applicazione del Piano di Monitoraggio ambientale per il sito, nel mese di **agosto 2018** è stata svolta la campagna di campionamento e analisi delle acque sotterranee dalla rete piezometrica presente.

In data 22 – 23 - 29 agosto 2018 sono pertanto stati campionati il totale dei n° 15 piezometri ambientali ai fini della di effettuare il monitoraggio chimico fisico di tale matrice ambientale.

Per le determinazioni analitiche da svolgere è stata prevista l'applicazione e l'utilizzo di n° 1 set analitico denominato set analitico completo, su tutti i piezometri della rete piezometrica presente sul sito.

Di seguito si riporta la pianta con l'ubicazione dei piezometri oggetto di monitoraggio.

Toscana Aeroporti

Figura 4: Planimetria area d'intervento e ubicazione dei punti di indagine.

Si precisa che l'ubicazione di tali punti di investigazione ambientale è stata a suo tempo definita nel dettaglio, tenendo conto della necessità di tenere monitorate le acque di sottosuolo afferenti alla porzione di piana su cui verrà realizzata l'opera.

Di seguito in formato tabellare si riportano i risultati analitici ottenuti, comprensivi dei relativi commenti, mentre per ciò che concerne metodiche di campionamento, metodiche analitiche di laboratorio e strumentazione utilizzata, si rimanda alla relazione generale già citata in precedenza.

2.1 Monitoraggio della matrice ambientale acque sotterranee

Il monitoraggio ha previsto, come detto, il campionamento di n. 15 piezometri, applicando le metodiche di campo, di laboratorio e la check list di analiti da ricercare così come di seguito descritto.

2.1.1 DETERMINAZIONI ANALITICHE DI LABORATORIO

Come già accennato, mentre nei monitoraggi precedenti erano state previste n°2 check list di analiti denominate "tipologia standard" e "tipologia completa" (la seconda comprendente un set analitico più ampio della prima, sebbene anche il primo sia costituito da un numero importante di parametri da ricercare), nella presente campagna è stata applicata, sulle acque sotterranee prelevate da <u>tutti</u> i piezometri della rete di monitoraggio, la <u>tipologia completa</u>.

In totale sono stati quindi prelevati n°15 campioni di acque sotterranee analizzati secondo la tipologia completa.

11ª Campagna di indagini – Agosto 2018

2.2 Risultati analitici di laboratorio acque sotterranee

Di seguito viene riportato il tabulato con i risultati analitici di laboratorio, suddivisi per campione e confrontati con i valori Concentrazione Soglia di Contaminazione di cui al D.Lgs. 152/06, titolo V, parte IV, allegato 5, tab.2.

Rapporto di	prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
	Denominazione del campione		Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pr	elievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Lu Campiona	ogo di mento	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pr	elievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Temperatura dell'acqua	°C	17,2	17,3	16,5	16,6	17,3	18,1	17	16,7	
Conducibilità elettrica	μS/c m	3922	8796	2323	3102	1385	1061	2019	2410	
рН	upH	6,91	6,64	7,31	11,89	7,16	7,19	7,32	7,33	
Potere Red- Ox (NHE)	mV	-148	-155	-206	-312	-37	-99	-200	-195	
Ossigeno disciolto	mgO 2/I	0,89	1,21	0,91	1,28	0,63	2,05	1,01	0,69	
Torbidità	NTU	29	31	39	42	63	31	28	29	
Alluminio	μg/l	34	49	240	120	61	43	54	110	200
Antimonio	μg/l	< 0,50	< 0,50	< 0,50	0,92	< 0,50	< 0,50	< 0,50	< 0,50	5
Argento	μg/l	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	10
Arsenico	μg/l	< 1,0	1,2	1,5	1,4	< 1,0	< 1,0	6,1	1,2	10
Berillio	μg/l	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	4
Cadmio	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Cobalto	μg/l	< 5,0	6,4	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	50
Cromo totale	μg/l	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	50

Rapporto d	i prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazione del campione		Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data P	relievo	23/08/2018	/08/2018 23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Luogo di Campionamento		Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di p	relievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Cromo (VI)	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Ferro	μg/l	140	990	430	92	63	62	2200	930	200
Mercurio	μg/l	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	1
Nichel	μg/l	2,2	15	3,9	3,8	2,4	2,8	< 2,0	3,5	20
Piombo	μg/l	6,9	7,2	8,7	18	7,7	6,8	8,3	23	10
Rame	μg/l	< 5,0	< 5,0	7,4	6,4	< 5,0	5,1	< 5,0	6,5	1000
Selenio	μg/l	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	10
Manganese	μg/l	2200	13000	1900	9,8	330	430	1500	760	50
Tallio	μg/l	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	2
Zinco	μg/l	60	89	30	< 20	36	38	< 20	34	3000
Boro	μg/l	85	87	96	140	84	< 50	79	230	1000
Calcio	mg/l	460	1000	190	300	140	160	180	160	
Magnesio	mg/l	95	240	51	1,1	32	17	31	50	
Potassio	mg/l	2,7	5,2	3,3	25	1,7	1,3	3,1	3,2	
Sodio	mg/l	560	1200	400	380	230	180	370	480	
Cianuri liberi	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	50
Fluoruri	μg/l	190	230	310	300	380	190	740	660	1500
Nitrati	mg/l	1,3	< 0,10	< 0,10	< 0,10	1	< 0,10	< 0,10	1,3	
Nitriti	μg/l	< 50	< 50	< 50	< 50	< 50	< 50	< 50	< 50	500
Solfati	mg/l	450	1400	380	160	120	110	47	310	250
Cloruri	mg/l	970	2700	360	850	120	46	330	340	
Azoto ammoniacale (come NH4)	mg/l	< 0,1	0,25	0,22	0,74	< 0,1	< 0,1	2,6	0,28	
Benzene	μg/l	0,01	0,017	0,013	0,052	< 0,010	< 0,010	< 0,010	< 0,010	1
Etilbenzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	50

Rapporto di	i prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	one del npione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pi	relievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
	Luogo di Campionamento		Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pi	relievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										_
Stirene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	25
Toluene	μg/l	< 0,050	< 0,050	< 0,050	0,078	< 0,050	< 0,050	< 0,050	< 0,050	15
meta- Xilene + para- Xilene	μg/l	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	10
Benzo (a) antracene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Benzo (a) pirene	μg/l	0,00035	0,0002	0,00046	0,00022	< 0,00014	< 0,00014	< 0,00014	< 0,00014	0,01
Benzo (b) fluorantene	μg/l	< 0,00056	< 0,00056	0,0011	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Benzo (k) fluorantene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,05
Benzo (g,h,i) perilene	μg/l	< 0,00014	< 0,00014	0,00091	< 0,00014	< 0,00014	< 0,00014	< 0,00014	< 0,00014	0,01
Crisene	μg/l	< 0,00056	< 0,00056	0,00097	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	5
Dibenzo (a,h) antracene	μg/l	0,0012	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,01
Indeno (1,2,3 - c,d) pirene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Pirene	μg/l	< 0,00056	< 0,00056	0,0016	0,0015	< 0,00056	< 0,00056	< 0,00056	< 0,00056	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo)	μg/l	< 0,00056	< 0,00056	0,002	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1

Rapporto di	Rapporto di prova		18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	ne del ipione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pr	elievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Lu Campiona	ogo di mento	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pr	elievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Clorometano	μg/l	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	1,5
Triclorometa no (Cloroformio)	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,15
Cloruro di Vinile	μg/l	0,014	0,65	0,043	0,089	< 0,010	< 0,010	0,075	< 0,010	0,5
1,2 - Dicloroetano	μg/l	< 0,0050	0,11	< 0,0050	0,14	< 0,0050	< 0,0050	0,012	< 0,0050	3
1,1 - Dicloroetilen e	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,05
Tricloroetilen e	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	1,5
Tetracloroetil ene (PCE)	μg/l	< 0,050	0,054	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	1,1
Esaclorobuta diene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,15
Sommatoria Organoaloge nati	μg/l	0,014	0,82	0,043	0,23	< 0,05	< 0,05	0,087	< 0,05	10
1,1 - Dicloroetano	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	810
1,2 - Dicloroetilen e	μg/l	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	60
1,2 - Dicloropropa no	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,15

Rapporto di	prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	ne del ipione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pi	elievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Campiona		Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pi	elievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
1,1,2 - Tricloroetano	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,2
1,2,3 - Tricloropropa no	μg/l	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	0,001
1,1,2,2 - Tetracloroeta no	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,05
Tribromomet ano (bromoformi o)	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,3
1,2 - Dibromoetan o	μg/l	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	0,001
Dibromoclor ometano	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,13
Bromodicloro metano	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,17
Nitrobenzene	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	3,5
1,2 - Dinitrobenze ne	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	15
1,3 - Dinitrobenze ne	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	3,7
Cloronitrobe nzeni	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,5

Rapporto di	prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	ne del npione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data P	relievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Lu Campiona	ogo di mento	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pi	relievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Monoclorobe nzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	40
1,2 - Diclorobenze ne	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	270
1,4 - Diclorobenze ne	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,5
1,2,4 - Triclorobenze ne	μg/l	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	190
1,2,4,5 - Tetraclorobe nzene	μg/l	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	1,8
Pentaclorobe nzene	μg/l	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	5
Esaclorobenz ene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,01
2 - Clorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	180
2,4 - Diclorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	110
2,4,6 - Triclorofenol o	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	5
Pentaclorofe nolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,5
Anilina	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	10

11ª Campagna	di indagini –	Agosto 2018
	aa.g	g

Rapporto di	prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	ne del ipione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pr	elievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Campiona		Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pr	elievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Difenilammin a	μg/l	< 0,0028	< 0,0028	< 0,0028	0,0036	< 0,0028	< 0,0028	< 0,0028	< 0,0028	910
p- Toluidina	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,35
Alaclor	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Aldrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,03
Atrazina	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,3
alfa - esacloroesan o	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
beta - esacloroesan o	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
gamma - esacloroesan o (Lindano)	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
alfa - Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	
Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
gamma - Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	
DDD, DDT, DDE	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Dieldrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,03
Endrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1

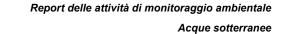
Rapporto di	prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	ne del npione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data Pı	relievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Lu Campiona	ogo di mento	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Firenze Ing. Case Passerini	Firenze zona Aereoporto	Osmannoro Firenze	Osmannoro Firenze	S. Mauro a Signa	n. 152/06 CSC acque
Punto di pi	relievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Sommatoria Fitofarmaci da 76 a 85 All.5 Tab.2 D.lgs 152/06 (Calcolo)	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,5
Sommatoria PCDD, PCDF conversione T.E.	pg TEQ /I	0,00000256	0,0000005	0,00000098	0,00000058	0,00000052	0,00000055	0,0000006	0,00000372	0,000004
PCB totali (Aroclor 1242,1248,12 54,1260)	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,01
Idrocarburi (C10-C40) (espressi come n- Esano)	μg/l	< 2,8	3,7	86	28	< 2,8	< 2,8	4,7	< 2,8	
Idrocarburi totali (espressi come n- esano) Calcolo	μg/l	< 25	4,1	94	31	< 25	< 25	5,2	< 25	350
Idrocarburi C<10	μg/l	< 23	< 23	< 23	< 23	< 23	< 23	< 23	< 23	

Rapporto di	i prova	18LA0031539	18LA0031540	18LA0031541	18LA0031542	18LA0031543	18LA0031544	18LA0031545	18LA0031546	
Denominazio can	one del npione	Campione di acqua di falda - ASOT 02	Campione di acqua di falda - ASOT 01	Campione di acqua di falda - ASOT 11	Campione di acqua di falda - ASOT 14	Campione di acqua di falda - ASOT 08	Campione di acqua di falda - ASOT 05	Campione di acqua di falda - ASOT 07	Campione di acqua di falda - ASOT 16	Tabella 2 All. V al Titolo V della Parte
Data P	relievo	23/08/2018	23/08/2018	23/08/2018	23/08/2018	22/08/2018	22/08/2018	22/08/2018	22/08/2018	IV del D.Lgs.
Lu	ıogo di	Sesto	Sesto	Sesto	Firenze Ing.	Firenze zona	Osmannoro	Osmannoro	S. Mauro a	n. 152/06
Campiona	mento	Fiorentino	Fiorentino	Fiorentino	Case Passerini	Aereoporto	Firenze	Firenze	Signa	CSC acque
Punto di p	relievo	ASOT 02	ASOT 01	ASOT 11	ASOT 14	ASOT 08	ASOT 05	ASOT 07	ASOT 16	sotterrane
Parametro										
Amianto										
(fibre >10	ff/I	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	
mm)										

n.p. = parametro non presente nel verbale di campionamento

Tabella 1: Risultati analitici delle indagini sulla matrice acque sotterranee – SET COMPLETO.

Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazio cam	ne del pione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pro	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionamento		S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Sotterrane
Parametro									
Temperatura dell'acqua	°C	15,9	18,2	18,1	20,1	22,1	19,7	20,7	
Conducibilità elettrica	μS/ cm	3545	2526	7618	1107	2419	982	745	
рН	upH	6,97	7,24	6,66	7,18	6,99	7,38	7,37	
Potere Red-Ox (NHE)	mV	-71	1,6	-235	-240	-218	-187	-53	
Ossigeno disciolto	mg O2/ I	2,13	1,21	0,63	0,62	1,03	1,27	1,61	
Torbidità	NTU	90	33	43	51	45	29	33	
Alluminio	μg/l	120	57	64	52	50	53	67	200
Antimonio	μg/l	< 0,50	0,63	0,66	0,64	< 0,50	0,75	0,73	5
Argento	μg/l	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	10
Arsenico	μg/l	< 1,0	< 1,0	2,4	< 1,0	< 1,0	1,3	< 1,0	10
Berillio	μg/l	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	< 0,40	4
Cadmio	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Cobalto	μg/l	< 5,0	< 5,0	5,7	< 5,0	< 5,0	< 5,0	< 5,0	50
Cromo totale	μg/l	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	50
Cromo (VI)	μg/l	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	5
Ferro	μg/l	150	63	1200	210	290	460	76	200
Mercurio	μg/l	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	1
Nichel	μg/l	3,9	3,3	17	9	2,4	3,2	< 2,0	20
Piombo	μg/l	41	18	17	18	15	27	21	10
Rame	μg/l	9,9	6	< 5,0	< 5,0	< 5,0	6,7	5,2	1000


Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazio cam	ne del pione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pr	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campiona	nento	S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Sotterrane
Parametro									
Selenio	μg/l	1,8	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	1,2	10
Manganese	μg/l	680	1800	11000	1200	3500	1300	120	50
Tallio	μg/l	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	< 0,20	2
Zinco	μg/l	71	35	28	< 20	< 20	29	23	3000
Boro	μg/l	99	86	75	93	69	68	< 50	1000
Calcio	mg/	260	230	890	160	510	93	85	
Magnesio	mg/	91	52	260	27	120	18	19	
Potassio	mg/	3,8	2,7	5	2	7,4	2,5	5,6	
Sodio	mg/	410	390	1000	160	690	130	60	
Cianuri liberi	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 5	50
Fluoruri	μg/l	420	590	370	360	340	1100	370	1500
Nitrati	mg/	3,8	0,25	< 0,1	0,12	< 0,1	< 0,1	0,81	
Nitriti	μg/l	< 50	< 50	< 50	< 50	< 50	< 50	< 50	500
Solfati	mg/	290	180	1100	90	180	140	72	250
Cloruri	mg/	710	640	2000	89	420	49	91	
Azoto ammoniacale (come NH4)	mg/	< 0,1	< 0,1	0,54	0,52	< 0,1	< 0,1	< 0,1	
Benzene	μg/l	0,013	0,027	0,016	< 0,010	0,025	0,014	< 0,010	1

Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazio cam	ne del ipione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pr	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionar	mento	S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Jotterrune
Parametro									
Etilbenzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	0,015	< 0,010	< 0,010	50
Stirene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,013	< 0,010	25
Toluene	μg/l	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	15
meta- Xilene + para- Xilene	μg/l	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	< 0,020	10
Benzo (a) antracene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,005	< 0,00056	< 0,00056	0,1
Benzo (a) pirene	μg/l	0,00019	< 0,00014	0,00027	< 0,00014	0,0073	< 0,00014	0,00025	0,01
Benzo (b) fluorantene	μg/l	< 0,00056	< 0,00056	0,0007	< 0,00056	0,0057	< 0,00056	< 0,00056	0,1
Benzo (k) fluorantene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0049	< 0,00056	< 0,00056	0,05
Benzo (g,h,i) perilene	μg/l	< 0,00014	< 0,00014	< 0,00014	< 0,00014	0,0046	< 0,00014	0,00052	0,01
Crisene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0048	< 0,00056	< 0,00056	5
Dibenzo (a,h) antracene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0016	< 0,00056	< 0,00056	0,01
Indeno (1,2,3 - c,d) pirene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0033	< 0,00056	< 0,00056	0,1
Pirene	μg/l	0,0011	< 0,00056	0,0022	0,00077	0,0089	< 0,00056	0,00075	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo)	μg/l	< 0,00056	< 0,00056	0,0007	< 0,00056	0,019	< 0,00056	0,00052	0,1
Clorometano	μg/l	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	1,5
Triclorometano	μg/l	< 0,010	0,028	< 0,010	< 0,010	< 0,010	< 0,010	0,029	0,15

Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
	Denominazione del campione		Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pr	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionar	mento	S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Jotterrane
Parametro									
(Cloroformio)									
Cloruro di Vinile	μg/l	< 0,010	< 0,010	< 0,010	0,02	0,27	0,017	< 0,010	0,5
1,2 - Dicloroetano	μg/l	< 0,0050	0,052	< 0,0050	< 0,0050	0,064	< 0,0050	< 0,0050	3
1,1 - Dicloroetilene	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,05
Tricloroetilene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	1,5
Tetracloroetilene (PCE)	μg/l	< 0,050	0,35	0,28	0,3	0,25	< 0,050	< 0,050	1,1
Esaclorobutadiene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,15
Sommatoria Organoalogenati	μg/l	< 0,05	0,43	0,28	0,32	0,58	0,017	0,029	10
1,1 - Dicloroetano	μg/l	0,035	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	810
1,2 - Dicloroetilene	μg/l	< 0,01	0,019	< 0,01	0,022	< 0,01	< 0,01	0,014	60
1,2 - Dicloropropano	μg/l	< 0,0050	0,041	< 0,0050	0,016	< 0,0050	< 0,0050	< 0,0050	0,15
1,1,2 - Tricloroetano	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,2
1,2,3 - Tricloropropano	μg/l	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	0,001
1,1,2,2 - Tetracloroetano	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,05
Tribromometano (bromoformio)	μg/l	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	< 0,0050	0,3
1,2 - Dibromoetano	μg/l	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	0,001
Dibromoclorometa no	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,13

Rapporto di _l	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazior cam _l	ne del pione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pre	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionamento		S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pre	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Socierrane
Parametro									
Bromodiclorometa no	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,17
Nitrobenzene	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	3,5
1,2 - Dinitrobenzene	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	15
1,3 - Dinitrobenzene	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	3,7
Cloronitrobenzeni	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,5
Clorobenzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	40
1,2 - Diclorobenzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	270
1,4 - Diclorobenzene	μg/l	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,5
1,2,4 - Triclorobenzene	μg/l	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene	μg/l	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	< 0,0011	1,8
Pentaclorobenzene	μg/l	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	< 0,00028	5
Esaclorobenzene	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,01
2 - Clorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	180
2,4 - Diclorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	110
2,4,6 - Triclorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	5
Pentaclorofenolo	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,004	0,5
Anilina	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	10
Difenilammina	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	910
p- Toluidina	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,35

Report delle attività di monitoraggio ambientale Acque sotterranee

Toscana Aeroporti Engineering s.r.l.

Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazio cam	ne del ipione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Pr	elievo	22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionar	mento	S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	sotterrane
Parametro									
Alaclor	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Aldrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,03
Atrazina	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,3
alfa - esaclorocicloesano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
beta - esaclorocicloesano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
gamma - esaclorocicloesano (Lindano)	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
alfa - Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	
Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
gamma - Clordano	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	
DDD, DDT, DDE	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Dieldrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,03
Endrin	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,1
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo)	μg/l	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,5
Sommatoria PCDD, PCDF conversione T.E.	μg TEQ /I	0,00000299	0,00000033	0,00000033	0,0000005	0,00000044	0,00000032	0,00000032	0,000004
PCB totali (Aroclor 1242,1248,1254,12	μg/l	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	< 0,0028	0,01

11ª Campagna di indagini – Agosto 2018

Rapporto di	prova	18LA0031547	18LA0031548	18LA0031549	18LA0031550	18LA0031551	18LA0032200	18LA0032202	
Denominazio cam	ne del ipione	Campione di acqua di falda - ASOT 15	Campione di acqua di falda - ASOT 13	Campione di acqua di falda - ASOT 03	Campione di acqua di falda - ASOT 12	Campione di acqua di falda - ASOT 04	Campione di acqua di falda - ASOT 9	Campione di acqua di falda - ASOT 10	Tabella 2 All. V al Titolo V della Parte IV
Data Prelievo		22/08/2018	23/08/2018	23/08/2018	23/08/2018	23/08/2018	29/08/2018	29/08/2018	del D.Lgs. n.
Luogo di Campionamento		S. Mauro a Signa	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Sesto Fiorentino	Aereoporto Firenze	Aereoporto Firenze	152/06 CSC acque sotterrane
Punto di pr	elievo	ASOT 15	ASOT 13	ASOT 03	ASOT 12	ASOT 04	ASOT 9	ASOT 10	Sotterrane
Parametro									
60)									
Idrocarburi (C10- C40)	μg/l	< 2,8	< 2,8	< 2,8	< 2,8	< 2,8	< 2,8	< 2,8	
Idrocarburi totali (espressi come n- esano) Calcolo	μg/l	< 25	< 25	< 25	< 25	< 25	< 25	< 25	350
Idrocarburi C<10	μg/l	< 23	< 23	< 23	< 23	< 23	< 23	< 23	
Amianto (fibre >10 mm)	ff/I	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	

n.p. = parametro non presente nel verbale di campionamento

Tabella 2: Risultati analitici delle indagini sulla matrice acque sotterranee – **SET COMPLETO**.

2.3 Rilievi freatimetrici

A partire dal 2018 sono stati effettuati con cadenza mensile i rilievi freatimetrici per ciascun piezometro oggetto di monitoraggio.

Di seguito si riportano i dati rilevati nel terzo trimestre di monitoraggio dell'anno 2018 con la relativa graficizzazione:

RILIEVO FREA	Data rilievo 20/06/2018				
Denominazione Postazioni Monitoraggio 2016-2017	Denominazione Postazioni Monitoraggio 2018	Misura livello bocca-pozzo bc (m)	Quota piano campagna (m slm)	Quota bocca pozzo (m slm)	Quota falda (m slm)
S05	ASOT 1	2,13	35,57	35,85	33,72
S13	ASOT 2	1,70	35,46	35,64	33,94
S19	ASOT 3	1,30	34,89	35,16	33,86
S22	ASOT 4	1,80	36,56	37,16	35,36
S28	ASOT 5	1,53	37,01	37,69	36,16
S31	ASOT 6	2,20	35,51	35,61	33,41
S35	ASOT 7	2,25	36,85	37,36	35,11
S39	ASOT 8	0,88	38,79	38,87	37,99
S40	ASOT 09	1,70	38,35	38,64	36,94
S44	ASOT 10	2,15	38,96	39,20	37,05
S88	ASOT 11	2,00	37,17	37,44	35,44
S106	ASOT 12	2,20	36,95	37,02	34,82
S108	ASOT 13	1,50	35,36	35,48	33,98
S117	ASOT 14	1,70	36,54	36,61	34,91
S126	ASOT 15	3,55	35,19	35,16	31,61
S128	ASOT 16	2,10	34,39	34,47	32,37

RILIEVO FREA	Data rilievo 22- 23/08/2018				
Denominazione Postazioni Monitoraggio 2016-2017	Denominazione Postazioni Monitoraggio 2018	Misura livello bocca-pozzo bc (m)	Quota piano campagna (m slm)	Quota bocca pozzo (m slm)	Quota falda (m slm)
S05	ASOT 1	2,31	35,57	35,85	33,54
S13	ASOT 2	2,05	35,46	35,64	33,59
S19	ASOT 3	2,40	34,89	35,16	32,76
S22	ASOT 4	4,00	36,56	37,16	33,16
S28	ASOT 5	2,80	37,01	37,69	34,89
S31	ASOT 6		35,51	35,61	
S35	ASOT 7	2,70	36,85	37,36	34,66
S39	ASOT 8	2,02	38,79	38,87	36,85
S40	ASOT 9	2,90	38,35	38,64	35,74
S44	ASOT 10	2,70	38,96	39,20	36,50
S88	ASOT 11	2,70	37,17	37,44	34,74
S106	ASOT 12	2,80	36,95	37,02	34,22
S108	ASOT 13	2,20	35,36	35,48	33,28
S117	ASOT 14	2,33	36,54	36,61	34,28
S126	ASOT 15	5,42	35,19	35,16	29,74
S128	ASOT 16	3,68	34,39	34,47	30,79

Dalla rappresentazione grafica dei livelli freatimetrici misurati nel trimestre estivo si registra un andamento decrescente nel tempo della quota di falda (in termini di quote assolute, m s.l.m.) per tutte le 16 postazioni monitorate, andamento giustificato dalla stagionalità in corso.

Il livello di falda varia tra una quota di 29,74 m s.l.m. ed una quota di 38 m s.l.m.

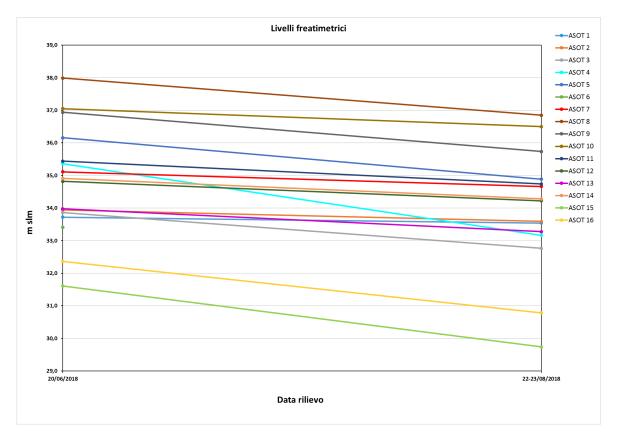


Figura 5: andamento del livello di falda nel terzo trimestre 2018 nelle postazioni di acque sotterranee

2.4 Commento ai risultati ottenuti

Gli esiti analitici riportati al paragrafo precedente hanno mostrato le seguenti non conformità ai limiti delle CSC di cui alla Tab. 2 All. 5 Parte Quarta Titolo V del D.Lgs 152/06 e ss.mm.ii:

- Alluminio: ASOT11;
- Ferro: ASOT11; ASOT4;
- Mercurio: ASOT1;
- Manganese: ASOT1; ASOT11; ASOT7; ASOT16; ASOT3; ASOT12; ASOT4; ASOT9;
- Piombo: ASOT14; ASOT16; ASOT15; ASOT13; ASOT3; ASOT12; ASOT4; ASOT9; ASOT10;
- Manganese: ASOT2; ASOT1; ASOT11; ASOT8; ASTO5; ASOT7; ASOT16; ASOT15;
 ASOT13; ASOT3; ASOT12; ASOT4; ASOT9; ASOT10;
- Solfati; ASOT2; ASOT1; ASOT11; ASOT16; ASOT15; ASOT3;
- Cloruro di vinile: ASOT1;

Nella presente campagna si sono rilevati superamenti dei limiti del CSC per i parametri Alluminio, Ferro, Mercurio, Piombo, Manganese, Solfati e cloruro di vinile.

Dall'analisi dei risultati si rilevano concentrazioni importanti del parametro Manganese su 13 su 16 dei piezometri monitorati (ASOT1; ASOT2; ASOT3; ASOT4; ASOT5; ASOT6; ASOT7; ASOT8; ASOT9; ASOT10; ASOT11; ASOT12; ASOT13; ASOT15; ASOT16), valori dovuti come già segnalato nei report precedenti, a cause naturali: risulta infatti abbastanza comune la formazione e concentrazione di tale parametro in ambienti anossici e riducenti.

Dall'analisi dei valori relativi ai parametri Alluminio, Ferro, Mercurio, Piombo, Solfati, Cloruro di vinile anch'essi risultano con concentrazioni superiori rispetto al limite dato dalla Tab. 2 All. 5 Parte Quarta Titolo V del Decreto Legislativo 152/06 e ss.mm.ii riscontrabili.

Come descritto in precedenza, per il parametro Alluminio nei punti di prelievo ASOT11; per il parametro Ferro nei punti di prelievo ASOT4, ASOT11; per il parametro Mercurio esclusivamente nel punto ASOT1; per il parametro Piombo nei punti di prelievo ASOT14; ASOT16; ASOT15; ASOT13; ASOT3; ASOT12; ASOT4; ASOT9; ASOT10; per il parametro Solfati nei punti di prelievo ASOT1, ASOT2, ASOT3, ASOT11, ASOT15, ASOT16; per il parametro Cloruro di vinile nei punti di prelievo ASOT 1.

Analizzando i vari analiti presenti nei singoli punti di campionamento si rileva:

- S40 / ASOT 9: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti per i
 parametri Ferro, Piombo e Manganese, si rileva la presenza nel campione di Alluminio,
 Fluoruri, Solfati, Cloruro di vinile
- S44 / ASOT 10: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Piombo e Manganese, si rileva la presenza nel campione di Alluminio, Ferro, Fluoruri, Solfati, Cloruri.
- S05 / ASOT 1: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro,
 Manganese, Solfati e Cloruro di vinile, si rileva la presenza nel campione di Alluminio, Nichel,
 Piombo, Fluoruri.
- S13 / ASOT 2: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Manganese e Solfati, si rileva la presenza nel campione di Alluminio, Nichel, Piombo, Ferro, Zinco, Boro, Fluoruri.
- S39 / ASOT 8: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Manganese, si rileva la presenza nel campione di Alluminio, Ferro, Nichel, Piombo, Zinco, Boro, Fluoruri, Solfati.
- S35 / ASOT 7: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro e Manganese, si rileva la presenza nel campione di Alluminio, Arsenico, Piombo, Boro, Fluoruri, Solfati, Cloruro di vinile.
- S28 / ASOT 5: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti
 Manganese, si rileva la presenza nel campione di Alluminio, Ferro, Nichel, Piombo, Solfati.
- S88 / ASOT 11: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Alluminio, Ferro, Manganese e Solfati, si rileva la presenza nel campione di Arsenico, Nichel, Piombo, Rame, Zinco, Boro, Fluoruri e Idrocarburi totali.
- S106 / ASOT 12: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro, Piombo e Manganese, si rileva la presenza nel campione di Alluminio, Nichel, Boro, Fluoruri, Solfati, Cloruro di vinile, Tetracloroetilene (PCE).
- S128 / ASOT 16: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro, Piombo, Manganese e Solfati, si rileva la presenza nel campione di Alluminio, Arsenico, Nichel, Rame, Boro e Fluoruri.
- S126 / ASOT 15: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Piombo, Manganese e Solfati si rileva la presenza nel campione di Alluminio, Ferro, Nichel, Selenio, Zinco, Boro e Fluoruri.
- S19 / ASOT 3: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro Piombo, Manganese e Solfati, si rileva la presenza nel campione di Alluminio, Arsenico, Cobalto, Nichel, Boro, Fluoruri, Tetracloroetilene (PCE).
- S108 / ASOT 13: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Piombo e Manganese, si rileva la presenza nel campione di Alluminio, Ferro, Nichel, Boro, Fluoruri, Solfati.

- S117 / ASOT 14: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Piombo, si rileva la presenza nel campione di Alluminio, Arsenico, Ferro, Nichel, Rame, Manganese, Boro, Fluoruri, Solfati e Idrocarburi totali (espressi come n-esano).
- S22 / ASOT 4: oltre ai superamenti già elencati per quanto riguarda i valori degli analiti Ferro,
 Piombo e Manganese, si rileva la presenza nel campione di Alluminio, Nichel, Boro, Fluoruri,
 Solfati, Cloruro di vinile, Tetracloroetilene (PCE).

2.5 Confronto con i dati pregressi

I dati presentati nel paragrafo precedente possono essere confrontati con i dati delle campagne di marzo/giugno/settembre/novembre 2016, di gennaio/aprile/settembre/novembre 2017 e di marzo/giugno 2018.

Come per le campagne precedenti, i parametri che presentano non conformità sono perlopiù i medesimi (Manganese e Solfati), in linea con quanto rilevato nella campagna precedente svolta a Marzo 2018, mentre si presentano alcuni superamenti spot di Alluminio, Ferro, Mercurio, Piombo e Cloruro di vinile.

- Alluminio: ASOT11;
- Ferro: ASOT11; ASOT4;
- Mercurio: ASOT1;
- Manganese: ASOT1; ASOT1; ASOT7; ASOT16; ASOT3; ASOT12; ASOT4; ASOT9;
- Piombo: ASOT14; ASOT16; ASOT15; ASOT13; ASOT3; ASOT12; ASOT4; ASOT9; ASOT10;
- Manganese: ASOT2; ASOT1; ASOT11; ASOT8; ASTO5; ASOT7; ASOT16; ASOT15; ASOT13; ASOT3; ASOT12; ASOT4; ASOT9; ASOT10;
- Solfati; ASOT2; ASOT1; ASOT11; ASOT16; ASOT15; ASOT3;
- Cloruro di vinile: ASOT1;

In dettaglio, nella campagna attuale si rileva quanto segue:

- Il punto S05 / ASOT 1 ha rilevato le stesse non conformità registrate nella campagna precedente con un aumento dei valori del parametro Manganese e sempre un superamento dei parametri Ferro e Solfati: i Solfati risultano confrontabili con l'andamento generale rispetto a quanto rilevato nelle campagne precedenti, mentre il superamento del parametro Ferro non era stato più registrato dal monitoraggio di Novembre 2016.
- Il punto S13 / ASOT 2 ha rilevato il superamento dei valori limite per quanto riguarda i
 parametri Manganese e Solfati; tali valori risultano in aumento rispetto a quanto rilevato
 nell'ultima campagna di Giugno 2018.
- Il punto S19 / ASOT 3 ha rilevato il superamento dei valori limite per quanto riguarda i
 parametri Ferro, Piombo, Manganese e Solfati; tali valori risultano in aumento rispetto a
 quanto rilevato nella campagna di Giugno 2018. Il superamento del parametro Piombo non
 era mai stato registrato finora.
- Il punto S22 / ASOT 4 ha rilevato il superamento dei valori limite per quanto riguarda il parametro Ferro, Piombo e Manganese: la concentrazione di Ferro rilevata risulta confrontabile con l'andamento generale rilevato sul punto di campionamento a Giugno 2018, mentre è stato rilevato per la prima volta un superamento dei limiti per il parametro Piombo,

- oltre ad un aumento di concentrazione sempre oltre i limiti del parametro Manganese, superamento già registrato durante la campagna di Giugno 2018.
- Il punto S28 / ASOT 5, ha rilevato il superamento dei valori limite per quanto riguarda il parametro Manganese superiore a quanto rilevato nella campagna di Giugno 2018; il resto dei parametri risulta confrontabile con l'andamento generale rilevato sul punto di campionamento.
- Il punto S31 / ASOT 6 non è stato monitorato nella presente campagna per cui non sono possibili confronti con le campagne pregresse.
- Il punto S35 / ASOT 7 ha rilevato il notevole superamento dei valori limite per quanto riguarda i parametri Ferro e Manganese; il resto dei parametri risulta confrontabile con l'andamento generale rilevato sul punto di campionamento.
- Il punto S39 / ASOT 8 ha rilevato il superamento dei valori limite per quanto riguarda il parametro Manganese: tale valore risulta in diminuzione rispetto a quanto rilevato nelle campagne svolte a Giugno 2018; il resto dei parametri risulta confrontabile con l'andamento generale rilevato sul punto di campionamento.
- Il punto S40 / ASOT 9, ha rilevato il notevole superamento dei valori limite per quanto riguarda i parametri Ferro, Piombo e Manganese.
- Il punto S44 / ASOT 10 ha rilevato il superamento dei valori limite per quanto riguarda il parametro Piombo e Manganese; il resto dei parametri risulta confrontabile con l'andamento generale rilevato sul punto di campionamento.

I restanti parametri analizzati risultano con concentrazioni inferiori ai limiti previsti dalla legge nazionale o inferiori al limite di rilevabilità della strumentazione di analisi non comportando criticità allo stato delle acque presenti nell'area interessata dal progetto in esame.

Per poter visualizzare al meglio i confronti qui sopra citati, nella pagina seguente viene presentata una tabella che riporta tutti i superamenti avvenuti fin d'ora durante le attività di monitoraggio sui piezometri della rete.

< 25

< 0,0005 < 0,0005

< 25

260

0,001

350

Solfati 1,2,3 - Tricloropropano

 < 0,0005</th>
 0,0039
 < 0,0005</th>
 < 0,0005</th>
 < 0,0005</th>
 < 0,00050</th>
 < 0,00050</th>
 < 0,00050</th>
 < 0,00050</th>
 < 0,00050</th>

 <50</td>
 <50</td>
 <50</td>
 <50</td>
 <50</td>
 <50</td>
 <50</td>
 1400

< 18,7

< 25,3

190 79 87 220 <18,7 <23

11^a Campagna di indagini – Agosto 2018

Data Prelievo		03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	23/08/2018	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	27/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	23/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	20/03/18	19/06/18	23/08/18
Punto di Campionamento		TAE S05	TAE S05	TAE S05	TAE S05	TAE S05	TAE S05	TAE S05	TAE S05	TAE S05	TAE SO5/ASOT1	TAE SO5/ASOT1	TAE SO5/ASOT1	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13	TAE S13/ASOT2	TAE S13/ASOT2	TAE S13/ASOT2	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19	TAE S19/ASOT3	TAE S19/ASOT3	FAE S19/ASOT3
Parametro	UM										·	·											·	•													
Alluminio	μg/I	-	67	39	22	89	44	39	< 20	< 20	75	79	49	-	770	530	35	51	150	< 20	200	< 20	53	67	34	-	130	100	31	39	37	37	< 20	< 20	24	61	64 20
Ferro	μg/l	-	320	270	77	260	74	44	< 20	< 20	100	48	990	-	900	560	67	100	180	27	55	< 20	89	130	140	-	460	380	430	490	280	88	51	80	46	170	1200 20
Nichel	μg/l	6,5	22	18	11	15	8,3	8,9	13	7,1	4,6	6,5	15	-	15	13	3,5	6,7	4,2	2,8	< 2,0	< 2,0	4,4	< 2,0	2,2	13	31	29	23	20	25	6,4	9,6	24	16	6,6	17 2
Piombo	μg/l	<1	1,5	3,2	1,2	3,4	1,8	1,3	< 1,0	< 1,0	5,2	2,5	7,2	-	2,4	4,3	1,2	<1	1,8	< 1,0	< 1,0	< 1,0	1,6	< 1,0	6,9	< 1	2,8	4,4	<1	<1	1,6	5	< 1,0	< 1,0	1,1	< 1,0	17 1
Manganese	μg/l	-	12000	11000	8600	6000	130	5800	6800	10000	5400	8400	13000	-	710	680	2300	1200	2700	260	730	2500	540	1800	2200	-	6100	5800	9200	3800	8400	1200	5800	11000	2100	3400	11000 5
h	mg/l	-	1200	970	1500	1800	730	1300	1400	1300	780	1700	1400	-	160	240	510	510	470	230	340	430	140	240	450	-	1100	940	1400	18	1100	1100	940	1100	870	1100	1100 25
h	μg/l	-	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	-	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	-	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050 0,0
Idrocarburi totali (espressi come n-esano) Calcolo	μg/l	49	240	250	290	< 35	130	82	< 23	< 18,7	<25,3	18	4,1	-	250	220	280	< 35	650	82	7,4	< 18,7	<25,3	16	< 25	140	350	350	77	75	< 35	< 18,7	<23	< 18,7	52	14	< 25 35
Data Prelievo		03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	20/03/18	19/06/18	23/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	20/03/18	19/06/18	22/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	20/03/18	19/06/18	
Punto di Campionamento		TAE S22	TAE S22	TAE S22	TAE S22	TAE S22	TAE S22	TAE S22	TAE S22	TAE S22 1	AE S22/ASOT4	TAE S22/ASOT4	TAE S22/ASOT4	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28	TAE S28/ASOT5	TAE S28/ASOT5	TAE S28/ASOT5	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31	TAE S31/ASOT6	AE S31/ASOT6	CSC
Parametro	UM											,	,										,	,	,												
Alluminio	μg/I	-	90	47	63	40	39	< 20	< 20	< 20	34	71	50	-	27	2500	13	42	82	53	< 20	< 20	72	75	43	-	31	17,3	130	160	47	20	< 20	< 20	25	170	200
Ferro	μg/l	-	310	190	130	130	85	97	< 20	180	180	290	290	-	640	460	85	110	110	50	< 20	< 20	91	37	62	-	270	170	280	120	66	< 20	< 20	20	47	62	200
Nichel	μg/l	-	16	12	4,3	9	4,9	4,4	< 2,0	< 2,0	< 2,0	< 2,0	2,4	3,2	18	14	2,5	< 2	4,2	2,9	< 2,0	< 2,0	2,4	3,6	2,8	< 2	12	8,9	2,9	< 2	2,6	2,7	< 2,0	< 2,0	< 2,0	3	20
Piombo	μg/l	-	<1	3	<1	2,6	1,4	< 1,0	< 1,0	< 1,0	1	< 1,0	15	< 1	4,2	5,8	1,4	2,8	1,9	1	< 1,0	< 1,0	1,6	1,8	6,8	<1	1,15	3,5	1,5	<1	1,5	< 1,0	< 1,0	< 1,0	1,3	2,6	10
Manganese	μg/l	-	1200	1200	960	2600	2100	1400	490	3100	410	2100	3500	-	230	210	280	69	37	140	85	32	31	360	430	-	530	500	380	29	15	< 5,0	340	330	5,2	100	50
<u> </u>	mg/l	-	250	400	380	530	360	260	340	310	90	110	180	-	45	140	120	86	110	110	94	82	6	130	110	-	110	170	270	140	100	100	220	190	89	130	250
h	μg/l	-	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	-	< 0.0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,0005	< 0,0005	< 0,0005	-	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,0005	< 0,00050	< 0,00050	< 0,00050	< 0,00050	< 0,00050	0,001
Idrocarburi totali (espressi come n-esano) Calcolo	μg/l	-	210	200	<35	< 35	< 35	130	< 23	32	88	< 25	< 25	690	660	340	100	<35	<35	< 18,7	9,1	< 18,7	<25,3	20	< 25	52	300	320	< 35	< 35	350	< 18,7	< 23	< 18,7	30	23	350
Data Prelievo		03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	22/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	22/08/18	03/12/15	20/03/16	20/06/16	07/09/16	17/11/16	27/01/17	20/04/17	15/09/17	27/11/17	12/03/18	20/06/18	
Punto di Campionamento		TAE S35	TAE S35	TAE S35	TAE S35	TAE S35	TAE S35	TAE S35	TAE S35	TAE S35	TAE S35/ASOT7	TAE S35/ASOT7	TAE S35/ASOT7	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39	TAE S39/ASOT8	TAE S39/ASOT8	TAE S39/ASOT8	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44	TAE S44/ASOT10	TAE S44/ASOT10	TAE C S44/ASOT10
Parametro																	1																				
Parametro	UM																											1									
Alluminio		-	76	60	290	12000	130	41	< 20	< 20	120	140	54	_	52	33	230	150	39	48	< 20	< 20	67	67	61	-	51	52	17	86	46	< 20	37	< 20	< 20	82	67 2
Alluminio	μg/I	-	76 430	60 280	290 670	12000 2600	130 140	41 33	< 20 < 20	< 20 < 20	120 150	140 110	54 2200	-	52 410	33 270	230	150 110	39 57	48 34	< 20 < 20	< 20 < 20	67 96	67 38	61 63	-	51 47	52 17	17 36	86 83	46 67	< 20 < 20	37 32	< 20 < 20	< 20 27	82 61	67 2 76 2
Alluminio Ferro		-					<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>			<u>}</u>		-	~}~~~~~~~	<u> </u>	ç		dj			Į	ţ	<u> </u>	·}····			·•		4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			< 20	~ } ~~~~~~~~~~	}	
Alluminio Ferro Nichel	μg/I μg/I	-	430	280	670	2600	140	33	< 20	< 20	150	110	2200		410	270	200	110	57	34	< 20	< 20	96	38	63	-	47	17	36	83	67	< 20 5,8	32	< 20	27	61	76 2
Alluminio Ferro Nichel Piombo	µg/I µg/I µg/I		430 11	280 7,5	670 4,1	2600 48	140 6,1	33 3,1	< 20 < 2,0	< 20 < 2,0	150 < 2,0	110 3,6	2200 < 2,0	-	410 14	270 11	200 2,9	110 4,9	57 3,7	34 3	< 20 2,4	< 20 4,7	96 < 2,0	38 2,7	63 2,4	-	47 <2	17 5,9	36 < 2	83 < 2	67 2	< 20 5,8	32 < 2,0	< 20 < 2,0	27 2,2	61 < 2,0	76 2 <2,0
Alluminio Ferro Nichel Piombo Manganese	µg/I µg/I µg/I µg/I		430 11 1,9	280 7,5 4,1	670 4,1 3,3	2600 48 4,2	140 6,1 1,8	33 3,1 <1,0	< 20 < 2,0 < 1,0	< 20 < 2,0 < 1,0	150 < 2,0 2	110 3,6 1,1	2200 < 2,0 8,3	-	410 14 1,9	270 11 4	200 2,9 <1	110 4,9 <1	57 3,7 1,5	34 3 <1,0	< 20 2,4 < 1,0	< 20 4,7 < 1,0	96 < 2,0 1,4	38 2,7 1,2	63 2,4 7,7		47 <2 <1	17 5,9 <1	36 <2 <1	83 <2 <1	67 2 1,6	< 20 5,8 8	32 <2,0 <1,0	< 20 < 2,0 < 1,0	27 2,2 < 1,0	61 < 2,0 1,2	76 2 <2,0 21
Alluminio Ferro Nichel Piombo Manganese Solfati 12,3-Tricloropropano	µg/I µg/I µg/I µg/I µg/I	-	430 11 1,9 51	280 7,5 4,1 52 47	670 4,1 3,3 570	2600 48 4,2 290	140 6,1 1,8 11	33 3,1 <1,0 6,8	< 20 < 2,0 < 1,0 440	<20 <2,0 <1,0 <5,0	150 < 2,0 2 23	110 3,6 1,1 110	2200 < 2,0 8,3 1500	-	410 14 1,9 38	270 11 4 35	200 2,9 <1 240	110 4,9 <1 830	57 3,7 1,5 23	34 3 <1,0 130	< 20 2,4 < 1,0 550 96	< 20 4,7 < 1,0 250	96 <2,0 1,4 100	38 2,7 1,2 520	63 2,4 7,7 330		47 <2 <1 65	17 5,9 <1 92	36 <2 <1 37	83 <2 <1 46	67 2 1,6 26 46	< 20 5,8 8 54	32 <2,0 <1,0 180 190	<20 <2,0 <1,0 <5,0 55	27 2,2 <1,0 <5,0	61 <2,0 1,2 140	76 2 <2,0 21 120
Alluminio Ferro Nichel Plombo Manganese Solfati 1,2,3-Tridoropropano	µg/I µg/I µg/I µg/I µg/I		430 11 1,9 51 94	280 7,5 4,1 52 47	670 4,1 3,3 570 87	2600 48 4,2 290 35	140 6,1 1,8 11 44	33 3,1 <1,0 6,8 28	< 20 < 2,0 < 1,0 440 62	<20 <2,0 <1,0 <5,0	150 <2,0 2 2 23 11	110 3,6 1,1 110 31	2200 < 2,0 8,3 1500 47	-	410 14 1,9 38 49	270 11 4 35 120	200 2,9 <1 240 100	110 4,9 <1 830 62	57 3,7 1,5 23 42	34 3 <1,0 130 89	< 20 2,4 < 1,0 550 96	<20 4,7 <1,0 250 100	96 <2,0 1,4 100 16	38 2,7 1,2 520 280	63 2,4 7,7 330 120		47 <2 <1 65 34	17 5,9 <1 92 54	36 <2 <1 37 80	83 <2 <1 46 36	67 2 1,6 26 46	<20 5,8 8 54 49	32 <2,0 <1,0 180 190	<20 <2,0 <1,0 <5,0 55	27 2,2 <1,0 <5,0 47	61 <2,0 1,2 140 23	76 2 <2,0 21 120 72 2
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tricloropropano Idrocarburi totali (espressi come	µg/I µg/I µg/I µg/I µg/I mg/I µg/I	- - - - - - - - 03/12/15	430 11 1,9 51 94 <0,0005	280 7,5 4,1 52 47 <0,0005	670 4,1 3,3 570 87 < 0,0005	2600 48 4,2 290 35 <0,0005	140 6,1 1,8 11 44 <0,0005	33 3,1 <1,0 6,8 28 <0,00050	<20 <2,0 <1,0 440 62 <0,00050 <23	<20 <2,0 <1,0 <5,0 26 <0,00050	150 <2,0 2 23 11 <0,0005	110 3,6 1,1 110 31 < 0,0005	2200 < 2,0 8,3 1500 47 < 0,0005		410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tridoropropano Idrocarburi totali (espressi come n-esano) Calcolo	µg/I µg/I µg/I µg/I µg/I mg/I µg/I		430 11 1,9 51 94 < 0,0005	280 7,5 4,1 52 47 <0,0005	670 4,1 3,3 570 87 < 0,0005	2600 48 4,2 290 35 <0,0005	140 6,1 1,8 11 44 < 0,0005 < 35	33 3,1 <1,0 6,8 28 <0,00050 <18,7	<20 <2,0 <1,0 440 62 <0,00050 <23	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17	150 <2,0 2 23 11 <0,0005 37	110 3,6 1,1 110 31 <0,0005 190	2200 < 2,0 8,3 1500 47 < 0,0005 5,2		410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tricloropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento	µg/I µg/I µg/I µg/I µg/I mg/I µg/I		430 11 1,9 51 94 < 0,0005 330	280 7,5 4,1 52 47 <0,0005 330 20/06/16	670 4,1 3,3 570 87 <0,0005 280 07/09/16	2600 48 4,2 290 35 <0,0005 260 17/11/16	140 6,1 1,8 11 44 < 0,0005 < 35	33 3,1 <1,0 6,8 28 <0,00050 <18,7	<20 <2,0 <1,0 440 62 <0,00050 <23	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17	150 <2,0 2 23 11 <0,0005 37 12/03/18	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE		410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Plombo Manganese Solfati 1,2,3 - Tricloropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro	мв/I мв/I мв/I мв/I мв/I мв/I		430 11 1,9 51 94 < 0,0005 330	280 7,5 4,1 52 47 <0,0005 330 20/06/16	670 4,1 3,3 570 87 <0,0005 280 07/09/16	2600 48 4,2 290 35 <0,0005 260 17/11/16	140 6,1 1,8 11 44 < 0,0005 < 35	33 3,1 <1,0 6,8 28 <0,00050 <18,7	<20 <2,0 <1,0 440 62 <0,00050 <23	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17	150 <2,0 2 23 11 <0,0005 37 12/03/18	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE		410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tridoropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro Alluminio	нg/I нg/I нg/I нд/I нд/I нд/I нд/I нд/I нд/I		430 11 1,9 51 94 <0,0005 330 20/03/16 TAE \$40	280 7,5 4,1 52 47 <0,0005 330 20/06/16 TAE \$40	670 4,1 3,3 570 87 <0,0005 280 07/09/16 TAE S40	2600 48 4,2 290 35 <0,0005 260 17/11/16 TAE \$40	140 6,1 1,8 11 44 <0,0005 <35 27/01/17 TAE \$40	33 3,1 <1,0 6,8 28 <0,00050 <18,7 20/04/17 TAE 540 140 72	<20 <2,0 <1,0 440 62 <0,00050 <23 15/09/17 TAE S40	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17 TAE S40	150 <2,0 2 23 11 <0,0005 37 12/03/18 TAE \$40/ASOT9	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE \$40/ASOT9	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE S40/ASOT9 53 460		410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Plombo Manganese Solfati 1,2,3-Tricloropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro Alluminio Ferro	HE/I HE/I HE/I HE/I HE/I HE/I HE/I HE/I		430 11 1,9 51 94 <0,0005 330 20/03/16 TAE S40	280 7,5 4,1 52 47 < 0,0005 330 20/06/16 TAE S40	670 4,1 3,3 570 87 < 0,0005 280 07/09/16 TAE \$40 29 330 4,8	2600 48 4,2 290 35 < 0,0005 260 17/11/16 TAE \$40 160 310 3,7	140 6,1 1,8 11 44 <0,0005 <35 27/01/17 TAE \$40 63 79 4	33 3,1 <1,0 6,8 28 <0,00050 <18,7 20/04/17 TAE S40 140 72 2,3	<20 <2,0 <1,0 440 62 <0,00050 <23 15/09/17 TAE \$40	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17 TAE \$40 <220	150 < 2,0 2 2 23 11 < 0,0005 37 12/03/18 TAE \$40/A\$OT9	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE \$40/ASOT9 76	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE S40/ASOT9	200 200 20	410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tricloropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro Alluminio Ferro Nichel	HB/I HB/I HB/I HB/I HB/I HB/I HB/I HB/I		430 11 1,9 51 94 <0,0005 330 20/03/16 TAE \$40 41 330 3,9 <11	280 7,5 4,1 52 47 <0,0005 330 20/06/16 TAE S40 79 1000 11 <1	670 4,1 3,3 570 87 <0,0005 280 07/09/16 TAE \$40 29 330 4,8 2,4	2600 48 4,2 290 35 <0,0005 260 17/11/16 TAE S40 160 310 3,7 39	140 6,1 1,8 11 44 <0,0005 <35 27/01/17 TAE \$40 63 79 4 1,6	33 3,1 <1,0 6,8 28 <0,00050 <18,7 20/04/17 TAE \$40 140 72 2,3 1,2	<20 <2,0 <1,0 440 62 <0,00050 <23 15/09/17 TAE \$40 31 210 2,3 1	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17 TAE 540 <20 <20 <2,0 <1,0	150 < 2,0 2 2 23 11 < < 0,0005 37 12/03/18 TAE S40/ASOT9 910 480	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE \$40/ASOT9 76 42 3,4 <1,0	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE S40/ASOT9 53 460 3,2 27	200 200 20 20 10	410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Piombo Manganese Solfati 1,2,3-Tricloropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro Alluminio Ferro Nichel	mg/l mg/l		430 11 1,9 51 94 <0,0005 330 20/03/16 TAE \$40 41 330 3,9 <1 1300	280 7,5 4,1 52 47 <0,0005 330 20/06/16 TAE \$40 79 1000 11 <1 2400	670 4,1 3,3 570 87 < 0,0005 280 07/09/16 TAE 540 29 330 4,8 2,4 1100	2600 48 4,2 290 35 <0,0005 260 17/11/16 TAE \$40 160 310 3,7 39 430	140 6,1 1,8 11 44 <0,0005 <35 27/01/17 TAE \$40 63 79 4 1,6 270	33 3,1 <1,0 6,8 28 <0,00050 <18,7 20/04/17 TAE S40 140 72 2,3 1,2 32	<20 <2,0 <1,0 440 62 <0,00050 <23 15/09/17 TAE \$40 210 2,3 1 1800	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17 TAE \$40 <20 <20 <1,0 <130	150 <2,0 2 2 3 11 <0,0005 37 12/03/18 TAE \$40/A\$ \$ OT9 910 480 <20,0 <1,0 45	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE \$40/ASOT9 76 42 3,4 <1,0 450	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE \$40/ASOT9 53 460 460 3,2 27	200 200 20 20 10 50	410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,
Alluminio Ferro Nichel Plombo Manganese Solfati 1,2,3-Tridoropropano Idrocarburi totali (espressi come n-esano) Calcolo Data Prelievo Punto di Campionamento Parametro Alluminio Ferro Nichel Plombo Manganese	HB/I HB/I HB/I HB/I HB/I HB/I HB/I HB/I		430 11 1,9 51 94 <0,0005 330 20/03/16 TAE \$40 41 330 3,9 <11	280 7,5 4,1 52 47 <0,0005 330 20/06/16 TAE S40 79 1000 11 <1	670 4,1 3,3 570 87 <0,0005 280 07/09/16 TAE \$40 29 330 4,8 2,4	2600 48 4,2 290 35 <0,0005 260 17/11/16 TAE S40 160 310 3,7 39	140 6,1 1,8 11 44 <0,0005 <35 27/01/17 TAE \$40 63 79 4 1,6	33 3,1 <1,0 6,8 28 <0,00050 <18,7 20/04/17 TAE \$40 140 72 2,3 1,2	<20 <2,0 <1,0 440 62 <0,00050 <23 15/09/17 TAE \$40 31 210 2,3 1	<20 <2,0 <1,0 <5,0 26 <0,00050 69 27/11/17 TAE 540 <20 <20 <2,0 <1,0	150 <2,0 2 2 3 11 <0,0005 37 12/03/18 TAE \$40/A\$OT9 910 480 <2,0 <1,0	110 3,6 1,1 110 31 <0,0005 190 20/06/18 TAE \$40/ASOT9 76 42 3,4 <1,0	2200 <2,0 8,3 1500 47 <0,0005 5,2 29/08/18 TAE S40/ASOT9 53 460 3,2 27	200 200 20 20 10	410 14 1,9 38 49 <0,0005	270 11 4 35 120 < 0,0005	200 2,9 <1 240 100 <0,0005	110 4,9 <1 830 62 <0,0005	57 3,7 1,5 23 42 < 0,0005	34 3 <1,0 130 89 <0,00050	< 20 2,4 < 1,0 550 96 < 0,00050	<20 4,7 <1,0 250 100 <0,00050	96 <2,0 1,4 100 16 <0,0005	38 2,7 1,2 520 280 <0,0005	63 2,4 7,7 330 120 <0,0005		47 <2 <1 65 34 <0,0005	17 5,9 <1 92 54 0,0046	36 <2 <1 37 80 <0,0005	83 <2 <1 46 36 <0,0005	67 2 1,6 26 46 <0,0005	<20 5,8 8 54 49 <0,00050	32 <2,0 <1,0 180 190 <0,00050	<20 <2,0 <1,0 <5,0 55 0 <0,00050	27 2,2 <1,0 <5,0 47 <0,00050	61 < 2,0 1,2 140 23 < 0,00050	76 2 <2,0 21 120 72 2 <0,00050 0,

Tabella 2: tabella di sintesi che riporta tutti gli analiti che hanno mostrato nel tempo superamenti, raggruppati per singolo piezometro.

11ª Campagna di indagini – Agosto 2018

Entrando in un grado ulteriore di dettaglio nella lettura e confronto dei dati, è stata elaborata anche una tabella di interconfronto tra i parametri e i piezometri **comuni** a tutte le indagini finora svolte, compresa la prima campagna svolta a dicembre 2015, che di seguito viene presentata:

11ª Campagna di indagini – Agosto 2018

Data Prelievo		03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	20/03/18	19/06/18	23/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	22/08/18
Punto di Campionamento		S19	S19	S19	S19	S19	S19	S19	S19	S19	S19/ASOT3	S19/ASOT3	S19/ASOT3	S28	S28	S28	S28/ASOT5	S28/ASOT5	S28/ASOTS						
Parametro	UM																								
Arsenico	μg/l	<1	< 1	< 1	< 1	1,2	1,9	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	2,4	< 1	< 1	< 1	< 1	<1	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0
Cadmio	μg/l	1,6	< 0,5	< 0,5	< 0,5	< 0,5	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	0,64	< 0.5	0,59	< 0,5	< 0,5	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50
Cobalto	μg/l	< 5	< 5	< 5	8,9	5,2	6,4	< 5,0	< 5,0	7,4	< 5,0	< 5,0	5,7	< 5	< 5	< 5	< 5	< 5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0
Cromo totale	μg/l	< 5	< 5	< 5	< 5	< 5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5	< 5	< 5	< 5	< 5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0
Cromo (VI)	μg/l	< 0.5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,50	< 0,50	3,3	3,9	< 0,50	< 0.5	3,9	3,9	< 0,5	3,2	< 0,5	< 0,5	< 0,50	2,9	4,3	4,8	< 0,50
Mercurio	μg/l	0,61	0,05	< 0,05	< 0,05	< 0,05	< 0,10	0,34	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	0,22	< 0.05	< 0,05	< 0,05	< 0,05	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10
Nichel	μg/l	13	31	2 9	23	20	25	6,4	9,6	24	16	6,6	17	3,2	18	14	2,5	< 2	4,2	2,9	< 2,0	< 2,0	2,4	3,6	2,8
Piombo	μg/l	<1	2,8	4,4	<1	<1	1,6	5	< 1,0	< 1,0	1,1	< 1,0	17	<1	4,2	5,8	1,4	2,8	1,9	1	< 1,0	< 1,0	1,6	1,8	6,8
Rame	μg/l	18	29	38	26	< 10	< 5,0	5,9	< 5,0	6,9	6,6	< 5,0	< 5,0	46	< 10	13,6	23	< 10	< 5,0	5,9	< 5,0	< 5,0	5,6	12	5,1
Zinco	μg/l	46	120	110	< 30	< 30	34	27	57	88	< 20	48	28	< 30	130	72	< 30	< 30	32	50	31	25	20	100	38
Benzene	μg/l	< 0.1	< 0,01	< 0,01	0,018	< 0,010	< 0,010	0,013	0,011	< 0,010	< 0,010	< 0,01	0,016	< 0.1	< 0.01	< 0,01	0,014	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,014	< 0,01	< 0,010
Etilbenzene	μg/l	<1	< 0,01	< 0,01	< 0,01	< 0,010	< 0,010	< 0,010	0,011	< 0,010	< 0,010	< 0,01	< 0,010	< 1	< 0.01	< 0,01	< 0,01	< 0,010	< 0,010	< 0,010	0,01	< 0,010	< 0,01	< 0,01	< 0,010
Stirene	μg/l	<1	< 0,01	< 0,01	< 0,01	< 0,010	0,019	< 0,010	< 0,010	< 0,010	< 0,010	< 0,01	< 0,010	< 1	< 0.01	< 0,01	< 0,01	< 0,010	0,015	< 0,010	< 0,010	< 0,010	< 0,01	< 0,01	< 0,010
Toluene	μg/l	<1	< 0,01	< 0,01	0,039	< 0,050	< 0,050	0,14	< 0,050	0,13	< 0,050	< 0,05	< 0,050	<1	< 0.01	< 0,01	0,029	< 0,050	< 0,050	0,08	< 0,050	0,28	< 0,05	< 0,05	< 0,050
para - Xilene	μg/l	<1	<1	< 0,02	0,031	< 0,020	< 0,020	< 0,020	0,044	< 0,020	< 0,020	< 0,02	< 0,020	< 1	<1	< 0,02	< 0,02	< 0,020	< 0,020	< 0,020	0,036	< 0,020	0,025	< 0,02	< 0,020
Benzo (a) antracene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,00057	< 0,00056	< 0,00056	< 0.01	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,00076	< 0,00056	< 0,00056
Benzo (a) pirene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00014	< 0,00014	< 0,00014	0,00019	< 0,00014	0,00027	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00014	< 0,00014	< 0,00014	0,00026	< 0,00014	< 0,00014
Benzo (b) fluorantene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0007	< 0.01	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,00078	< 0,00056	< 0,00056
Benzo (k) fluorantene	μg/l	< 0.005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.005	< 0.005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Benzo (g,h,i) perilene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	0,0002	0,00017	< 0,00014	0,0012	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	0,00045	< 0,00014	< 0,00014
Crisene	μg/l	< 0.5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.5	< 0.5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,00056	< 0,00056	< 0,00056	0,00078	< 0,00056	< 0,00056
Dibenzo (a,h) antracene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.001	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Indeno (1,2,3 - c,d) pirene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.01	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,00059	< 0,00056	< 0,00056
Pirene	μg/l	< 5	< 5	< 5	< 5	< 5	< 5	< 0,00056	< 0,00056	< 0,00056	0,0016	0,0011	0,0022	< 5	< 5	< 5	< 5	< 5	< 5	< 0,00056	< 0,00056	< 0,00056	0,0016	< 0,00056	< 0,00056
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo)	μg/l	0,013	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,000003	0,00017	0,0007	0,014	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,000003	< 0,00056	< 0,00056
Idrocarburi totali (espressi come n- esano) Calcolo	μg/l	140	350	350	77	75	< 35	< 18,7	< 23	< 18,7	52	14	< 25	690	660	340	100	< 35	< 35	< 18,7	< 23	< 18,7	< 25,3	20	< 25
Amianto (fibre >10 mm)	ff/I	-	-	-	-	-	< 100000	< 100000	< 100000	< 100000	-	< 100000	< 100000	-	-	-	-	-	<100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000

Acque sotterranee 11ª Campagna di indagini – Agosto 2018

Data Prelievo		03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	23/08/18	03/12/15	16/03/16	16/06/16	07/09/16	17/11/16	26/01/17	21/04/17	14/09/17	27/11/17	13/03/18	19/06/18	23/08/18
Punto di Campionamento		S31	S31	S31	S13/ASOT2	S13/ASOT2	S13/ASOT2	S05	S05	S05	S05/ASOT1	S05/ASOT1	S05/ASOT1												
Parametro	UM																								
Arsenico	μg/l	<1	<1	<1	1,1	<1	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	<1	<1	<1	<1	<1	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	< 1,0	1,2
Cadmio	μg/l	0,57	< 0,5	< 0,5	< 0,5	< 0,5	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	0,95	< 0,5	< 0,5	< 0,5	< 0,5	< 0,50	< 0,50	< 0,50	< 0,50	< 0,50	0,71	< 0,50
Cobalto	μg/l	< 5	< 5	<5	< 5	<5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	7,5	< 5	5,9	6,6	< 5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	6,4
Cromo totale	μg/l	< 5	< 5	< 5	< 5	<5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5	< 5	< 5	< 5	< 5	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0	< 5,0
Cromo (VI)	μg/l	< 0.5	0,87	1,3	< 0,5	2,7	< 0,5	< 0,5	< 0,50	< 0,50	3,9	2	< 0,50	< 0.5	< 0,5	< 0,5	< 0,5	2,6	< 0,5	< 0,5	< 0,50	2,4	3,3	2,5	< 0,50
Mercurio	μg/l	0,48	< 0,05	< 0,05	0,17	< 0,05	< 0,10	< 0,10	< 0,10	< 0,10	< 0,10	0,11	< 0,10	0,32	< 0,05	< 0,05	0,16	< 0,05	< 0,10	< 0,10	0,36	0,27	< 0,10	1,5	< 0,10
Nichel	μg/l	< 2	12	8,9	2,9	< 2	2,6	2,7	< 2,0	< 2,0	4,4	< 2,0	2,2	6,5	22	18	11	15	8,3	8,9	13	7,1	4,6	6,5	15
Piombo	μg/l	<1	1,15	3,5	1,5	<1	1,5	< 1,0	< 1,0	< 1,0	1,6	< 1,0	6,9	<1	1,5	3,2	1,2	3,4	1,8	1,3	< 1,0	< 1,0	5,2	2,5	7,2
Rame	μg/l	< 10	24	28	32	< 10	< 5,0	< 5,0	< 5,0	< 5,0	7,8	< 5,0	< 5,0	< 10	22	29	34	< 10	5,7	9,3	< 5,0	5,3	< 5,0	< 5,0	< 5,0
Zinco	μg/l	< 30	75	55	< 30	< 30	< 20	30	29	< 20	36	70	60	< 30	92	75	32	38	32	120	95	81	45	100	89
Benzene	μg/l	< 0.1	< 0,01	< 0,01	0,021	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,029	< 0,01	0,01	< 0.1	< 0,01	< 0,01	0,017	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,016	< 0,01	0,017
Etilbenzene	μg/l	<1	< 0,01	< 0,01	< 0,01	< 0,010	< 0,010	< 0,010	< 0,010	< 0,010	0,012	< 0,01	< 0,010	<1	< 0,01	< 0,01	< 0,01	< 0,010	< 0,010	< 0,010	0,015	< 0,010	0,012	< 0,01	< 0,010
Stirene	μg/l	<1	< 0,01	< 0,01	< 0,01	< 0,010	0,028	0,01	< 0,010	< 0,010	< 0,01	< 0,01	< 0,010	<1	< 0,01	< 0,01	< 0,01	< 0,010	0,014	0,01	< 0,010	< 0,010	< 0,01	< 0,01	< 0,010
Toluene	μg/l	<1	< 0,01	< 0,01	0,05	< 0,050	< 0,050	0,17	< 0,050	0,11	< 0,05	< 0,05	< 0,050	<1	< 0,01	< 0,01	0,049	< 0,050	< 0,050	0,09	< 0,050	< 0,050	< 0,05	< 0,05	< 0,050
para - Xilene	μg/l	<1	< 1	< 0,02	0,035	< 0,020	< 0,020	< 0,020	0,045	< 0,020	0,054	< 0,02	< 0,020	<1	<1	< 0,02	0,033	< 0,020	< 0,020	< 0,020	0,048	< 0,020	0,049	< 0,02	< 0,020
Benzo (a) antracene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,0055	< 0,00056	< 0,00056	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Benzo (a) pirene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00014	< 0,00014	< 0,00014	0,002	< 0,00014	0,00035	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00014	< 0,00014	< 0,00014	< 0,00014	< 0,00014	0,0002
Benzo (b) fluorantene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Benzo (k) fluorantene	μg/l	< 0.005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0.005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,005	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Benzo (g,h,i) perilene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	0,0022	0,0002	< 0,00014	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	< 0,00014	< 0,00014	< 0,00014
Crisene	μg/l	< 0.5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,00056	< 0,00056	< 0,00056	0,0058	< 0,00056	< 0,00056	< 0.5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,5	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Dibenzo (a,h) antracene	μg/l	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	0,0012	< 0.001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Indeno (1,2,3 - c,d) pirene	μg/l	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,00073	< 0,00056	< 0,00056	< 0.01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056	< 0,00056
Pirene	μg/l	< 5	< 5	< 5	< 5	<5	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,0063	0,00061	< 0,00056	< 5	< 5	< 5	< 5	< 5	< 5	< 0,00056	< 0,00056	< 0,00056	0,00079	< 0,00056	< 0,00056
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo)	μg/l	0,013	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,000003	0,0002	< 0,00056	0,013	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,00056	< 0,00056	< 0,00056	0,000003	< 0,00056	< 0,00056
Idrocarburi totali (espressi come n- esano) Calcolo	μg/l	52	300	320	< 35	< 35	350	< 18,7	< 23	< 18,7	< 25,3	16	< 25	49	240	250	290	< 35	130	82	< 23	< 18,7	< 25,3	18	4,1
Amianto (fibre >10 mm)	ff/I	-	-	-	-	-	<100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000	<100000	<100000	<100000	<100000	<100000	<100000	< 100000	< 100000	< 100000	< 100000	< 100000	< 100000

Tabella 3: tabella riepilogativa di interconfronto tra i parametri comuni alle 11 campagne svolte (dic_15, mar_16, giu_16, set_16, nov_16, gen_17, apr_17, set_17, nov_17, mar_18, giu_18).

In rosso i superamenti dei limiti di cui alla tab. 2 all. 5 parte quarta titolo V D.Lgs. 152/06 e ss.mm.ii.

Dal confronto dei dati sopra presentati possono essere fatte le seguenti considerazioni:

- il gruppo degli IPA presenta la quasi totalità dei valori al di sotto del limite di rilevabilità strumentale su tutte le campagne confrontate eccetto che nella campagna svolta nel mese di Dicembre 2015 per il punto S28 con valori appena al di sopra del limite di rilevabilità della strumentazione;
- il gruppo dei BTEXS mostra valori appena al di sopra del limite di rilevabilità strumentale ma con valori decisamente bassi in tutti i punti di prelievo oggetto di confronto; in particolare, si rileva quanto segue:
 - 1. S19/ASOT3: presenza di Benzene nelle campagne di monitoraggio eseguite nei mesi di Settembre 2016, Aprile e Settembre 2017, Agosto 2018; presenza di Etilbenzene esclusivamente nella campagna eseguita nel mese di Settembre 2017; presenza di Stirene esclusivamente nella campagna di Gennaio 2017; presenza di Toluene esclusivamente nella campagna svolta a Settembre 2016, ad Aprile e Novembre 2017; presenza di para-Xilene + meta-Xilene nelle campagne di monitoraggio svolte nei mesi di Settembre 2016 e Settembre 2017; presenza di Benzo (a) pirene e Benzo (b) fluorantene nella campagna di Agosto 2018.
 - 2. S28/ASOT5: presenza di Benzene nella campagna di monitoraggio eseguita nel mese di Settembre 2016 e di Marzo 2018; presenza di Toluene esclusivamente nella campagna svolta ad Aprile 2017 e Novembre 2017; presenza di para-Xilene + meta-Xilene nella campagna di monitoraggio svolta nel mese di Settembre 2017 e Marzo 2018; presenza di Stirene esclusivamente nella campagna di Gennaio 2017.
 - 3. S31/ASOT2: presenza di Etilbenzene esclusivamente nella campagna eseguita nel mese di Marzo 2018; presenza di Toluene nelle campagne svolte a Settembre 2016 e nei mesi di Aprile e Novembre 2017; presenza di para-Xilene + meta-Xilene nelle campagne di monitoraggio svolte nei mesi di Settembre 2016, Settembre 2017 e Marzo 2018; presenza di Stirene esclusivamente nella campagna di Gennaio e Aprile 2017; presenza di Benzene nelle campagne eseguite nei mesi di Settembre 2016 e Marzo 2018.
 - 4. S05/ASOT1: presenza di Benzene nelle campagne svolte a Settembre 2016 e a Marzo ed Agosto 2018; presenza di Toluene nelle campagne svolte a Settembre 2016 e Aprile 2017; presenza di para-Xilene + meta-Xilene nelle campagne di monitoraggio svolte nei mesi di Settembre 2016, Settembre 2017 e Marzo 2018; presenza di Stirene nelle campagne di monitoraggio svolte nei mesi di Gennaio e Aprile 2017; presenza di Etilbenzene nelle campagne di monitoraggio svolte nei mesi di Settembre 2017 e Marzo 2018; presenza di Benzo (a) pirene nella campagna di Agosto 2018.
- il gruppo di metalli/inorganici presenta perlopiù valori al di sotto del limite di rilevabilità strumentale (o, comunque, molto bassi), con superamenti delle CSC dei parametri Nichel, Mercurio e Piombo. Il parametro Nichel è stato rinvenuto in concentrazioni non conformi nei

punti S19/ASOT3 e S05/ASOT1: in S05/ASOT1 presenta un superamento a spot solo nella campagna di marzo 2016, a partire da cui il valore si è assestato intorno ai 10 μ g/l nelle campagne successive; S19/ASOT3, che presentava invece una concentrazione sempre al di sopra del limite CSC nelle campagne svolte da Marzo 2016 a Gennaio 2017 e nella campagna Novembre 2017.

- Il parametro Mercurio è stato rilevato in concentrazioni non conformi nel punto S05/ASOT1 durante l'ultima campagna di monitoraggio di Giugno 2018.
- Il parametro Piombo è stato rilevato in concentrazioni non conformi nel punto S19/ASOT3 durante l'ultima campagna di monitoraggio di Giugno 2018.
- il parametro idrocarburi totali, ha rilevato un andamento discontinuo da campagna a campagna; in particolare, si rileva quanto segue:
 - 1. S19/ASOT3: nella prima campagna, svolta nel mese di Dicembre 2015, si è rilevata la presenza di tale parametro nel campione; nelle 2 campagne successive (Marzo e Giugno 2016) si è riscontrato il superamento delle CSC previste su tale parametro; nelle due campagne successive (Settembre e Novembre 2016) si sono riscontrati valori in linea con quanto rilevato nella prima campagna mentre, nelle 4 campagne svolte nel 2017 si sono rilevati valori inferiori al limite di rilevabilità della strumentazione; nelle campagne di Marzo, Giugno e Agosto 2018 si è rilevata la presenza nel campione al di sotto delle CSC;
 - 2. S28/ASOT5: nelle prime 2 campagne di monitoraggio (Dicembre 2015 e Marzo 2016) si è riscontrato il superamento delle CSC previste su tale parametro; nelle due campagne successive (Giugno 2016 e Settembre 2016) si è rilevata la presenza di tale parametro nel campione analizzato ma inferiori al limite previsto mentre, nelle campagne successive, il valore riscontrato è risultato inferiore al limite di rilevabilità della strumentazione;
 - 3. S31/ASOT2: nelle prime 3 campagne di monitoraggio (Dicembre 2015, Marzo e Giugno 2016) si è rilevata la presenza di tale parametro nel campione analizzato ma inferiori al limite previsto; nelle successive due campagne di monitoraggio (Settembre e Novembre 2016) i valori riscontrati sono risultati inferiori al limite di rilevabilità della strumentazione; nella campagna successiva (Gennaio 2017) si sono rilevati valori di concentrazione in linea con quanto rilevato nelle campagne svolte nei mesi di Marzo e Giugno 2016 mentre, nelle ultime campagne svolte nei mesi di Aprile, Settembre, Novembre 2017 e Marzo, Giugno e Agosto 2018 i valori riscontrati sono nuovamente risultati inferiori al limite di rilevabilità della strumentazione.
 - 4. S05/ASOT1: nelle prime 4 campagne di monitoraggio (Dicembre 2015, Marzo, Giugno e Settembre 2016) si è rilevata la presenza di tale parametro nel campione analizzato ma inferiori al limite previsto; nella successiva campagna di monitoraggio (Novembre 2016) il risultato è stato inferiore ai limiti di rilevabilità; nelle due campagne successive (Gennaio e Aprile 2017) si sono rilevati valori di concentrazione

in linea con quanto rilevato nelle campagne precedenti in cui si è riscontrata la presenza del parametro mentre, nelle ultime campagne svolte nei mesi di Settembre/Novembre 2017 e Marzo, Giugno e Agosto 2018, si è rilevata una presenza del parametro inferiore ai limiti di rilevabilità.

Per concludere la disamina, si riportano alcuni grafici con l'andamento nel tempo delle concentrazioni di alcuni analiti ritenuti significativi, su alcuni piezometri che hanno mostrato criticità:

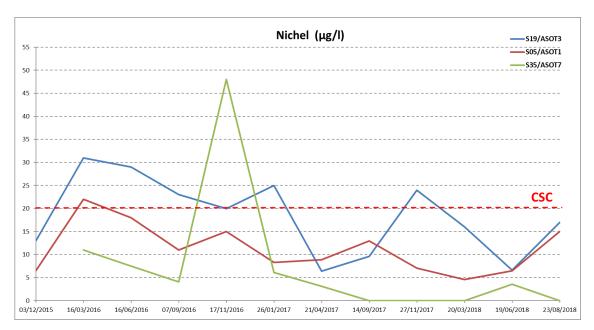


Figura 6: andamento del nichel nei piezometri S19/ASOT3, S05/ASOT1 e S35/ASOT7.

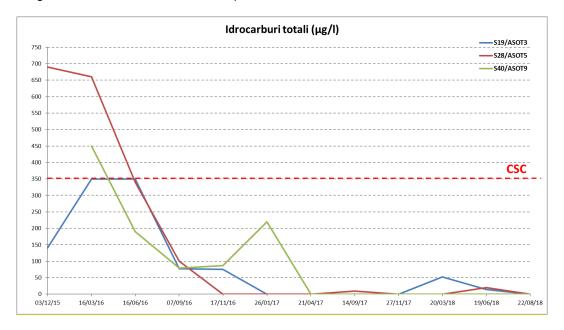


Figura 7: andamento degli idrocarburi totali nei piezometri S19/ASOT3, S28/ASOT5 e S40/ASOT9.

REPORT DELLE ATTIVITÀ DI MONITORAGGIO AMBIENTALE MATRICE ACQUE SOTTERRANEE

CAMPAGNA N° 11 - AGOSTO 2018

ALLEGATO 1 Rapporti di prova analitici

Rapporto di prova n°: 18LA0031539 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 02

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 02

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06900

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 04/10/2018

arametro fletodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	17,2		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	3922		
pH Analisi effettuata in campo con sonda multiparametrica	upH	6,91		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-148		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	0,89		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	29		
Alluminio EPA 6020B 2014	μg/l	34	±10	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031539 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	140	±41	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	2,2	±0,7	20	
Piombo EPA 6020B 2014	μg/l	6,9	±2,1	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l ▶	2200	±650	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	60	±18	3000	
Boro EPA 6020B 2014	μg/l	85	±26	1000	
Magnesio EPA 6010D 2014	mg/l	95	±29		
Potassio EPA 6010D 2014	mg/l	2,7	±0,8		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	190	±21	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	1,3	±0,1		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,010	±0,003	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031539 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00035	±0,00011	0,01	
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05	
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01	
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5	
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0012	±0,0004	0,01	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,014	±0,004	0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,014	±0,004	10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031539 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031539 del 18/12/2018

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	910
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,35
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,3
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,5
sommatoria PCDD/PCDF (conversione TEF) 4)WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	ug WHO-TEQ/I	0,00000256	0,000004
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,01
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2:	µg/l 2002	< 25	350
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23	
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031539 del 18/12/2018

18LA0031539/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	460	±140	
Sodio EPA 6010D 2014	mg/l	560	±170	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	450	±49	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	970	±110	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031539

Rapporto di prova n°: 18LA0031540 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 01

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 01

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06719

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 10/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	17,3		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	8796		
pH Analisi effettuata in campo con sonda multiparametrica	upH	6,64		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-155		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,21		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	31		
Alluminio EPA 6020B 2014	μg/l	49	±15	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	1,2	±0,4	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	6,4	±1,9	50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031540 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	990	±300	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	15	±5	20	
Piombo EPA 6020B 2014	μg/l	7,2	±2,1	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	89	±27	3000	
Boro EPA 6020B 2014	μg/l	87	±26	1000	
Potassio EPA 6010D 2014	mg/l	5,2	±1,6		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	230	±25	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,10			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,25	±0,06		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,017	±0,005	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031540 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00020	±0,00006	0,01	
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05	
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01	
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5	
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	µg/l ▶	0,65	±0,20	0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,11	±0,03	3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,054	±0,016	1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,82	±0,25	10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15	
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,2	
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031540 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza [[]	D.Lɑs 152/06 A. Falda Tab. 2	
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,3	
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001	
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,13	
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,17	
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		3,5	
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		15	
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		3,7	
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,5	
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		40	
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		270	
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5	
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		190	
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011		1,8	
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028		5	
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01	
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		180	
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		110	
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		5	
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,5	
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		10	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031540 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. ₉₎ EPA 1613B 1994	μg TEQ/I	0,0000005	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	3,7	±1,5		
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l 2:2002	4,1	±1,2	350	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031540 del 18/12/2018

18LA0031540/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 A. Falda Tab. 2	
Manganese EPA 6020B 2014	μg/l	13000	±3800	50	
Magnesio EPA 6010D 2014	mg/l	240	±72		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	1400	±160	250	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	2700	±290		

18LA0031540/02 dil met

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	1000	±310	
Sodio EPA 6010D 2014	mg/l	1200	±360	

- (*) Prova non accreditata ACCREDIA
- (a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A
- ▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031540

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto "Altamente Qualificato" da parte del Ministero della Universitàe Ricerca (MIUR) secondo il Decreto Ministeriale 8 agosto 2000 Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Rapporto di prova n°: 18LA0031541 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 11

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 11

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06718

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 16/11/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	16,5		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	2323		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,31		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-206		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	0,91		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	39		
Alluminio EPA 6020B 2014	µg/l ▶	240	±72	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	1,5	±0,4	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031541 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l ▶	430	±130	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,9	±1,2	20	
Piombo EPA 6020B 2014	μg/l	8,7	±2,6	10	
Rame EPA 6020B 2014	μg/l	7,4	±2,2	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l ▶	1900	±560	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco <i>EPA 6020B 2014</i>	μg/l	30	±9	3000	
Boro EPA 6020B 2014	μg/l	96	±29	1000	
Magnesio EPA 6010D 2014	mg/l	51	±15		
Potassio EPA 6010D 2014	mg/l	3,3	±1,0		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	310	±34	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,10			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,22	±0,06		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,013	±0,004	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031541 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00046	±0,00014	0,01	
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0011	±0,0003	0,1	
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05	
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00091	±0,00027	0,01	
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00097	±0,00029	5	
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0016	±0,0005	50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0020	±0,0003	0,1	
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,043	±0,013	0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,043	±0,013	10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031541 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Lɑs 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031541 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. pp. 1613B 1994	μg TEQ/I	0,00000098	±0,0000003	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l 2:2002	94	±28	350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	86	±35		
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031541 del 18/12/2018

18LA0031541/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	190	±57	
Sodio EPA 6010D 2014	mg/l	400	±120	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l ▶	380	±41	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	360	±39	

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031541

Rapporto di prova n°: 18LA0031542 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 14

Luogo di campionamento: Firenze Ing. Case Passerini

Punto di prelievo: ASOT 14

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06714

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 16/11/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	16,6		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	3102		
pH Analisi effettuata in campo con sonda multiparametrica	upH	11,89		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-312		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/l	1,28		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	42		
Alluminio EPA 6020B 2014	μg/l	120	±36	200
Antimonio EPA 6020B 2014	μg/l	0,92	±0,28	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	1,4	±0,4	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031542 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	92	±28	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,8	±1,1	20	
Piombo EPA 6020B 2014	µg/l ▶	18	±5	10	
Rame EPA 6020B 2014	μg/l	6,4	±1,9	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l	9,8	±2,9	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	< 20		3000	
Boro <i>EPA 6020B 2014</i>	μg/l	140	±41	1000	
Magnesio EPA 6010D 2014	mg/l	1,1	±0,3		
Potassio EPA 6010D 2014	mg/l	25	±8		
Cianuri liberi * APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	300	±33	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,10			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,74	±0,19		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,052	±0,016	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,078	±0,023	15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031542 del 18/12/2018

arametro letodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00022	±0,00007	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0015	±0,0005	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,089	±0,027	0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,14	±0,04	3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,23	±0,07	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031542 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031542 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0036		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. 9) EPA 1613B 1994 + NATO CCMS Report n°176 1988	μg TEQ/I	0,0000058	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l 2:2002	31	±9	350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	28	±12		
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031542 del 18/12/2018

18LA0031542/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	300	±91	
Sodio EPA 6010D 2014	mg/l	380	±110	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	160	±17	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	850	±93	

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova n° 18LA0031542

Rapporto di prova n°: 18LA0031543 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 08

Luogo di campionamento: Firenze zona Aereoporto

Punto di prelievo: ASOT 08

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06713

Data Prelievo: 22/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 22/08/2018 Data Fine Analisi: 16/11/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	17,3		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	1385		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,16		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-37		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/l	0,63		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	63		
Alluminio EPA 6020B 2014	μg/l	61	±18	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031543 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	63	±19	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	2,4	±0,7	20	
Piombo EPA 6020B 2014	μg/l	7,7	±2,3	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	µg/l ▶	330	±99	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco <i>EPA 6020B 2014</i>	μg/l	36	±11	3000	
Boro <i>EPA 6020B 2014</i>	μg/l	84	±25	1000	
Magnesio EPA 6010D 2014	mg/l	32	±10		
Potassio EPA 6010D 2014	mg/l	1,7	±0,5		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	380	±41	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	1,0	±0,1		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031543 del 18/12/2018

arametro fletodo	U.M.	Risultato	Incertezza D.Lus 152/06 A. Falda Tab. 2
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020	10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,05	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01	60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,15

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031543 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031543 del 18/12/2018

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. pp. 1613B 1994 + NATO CCMS Report n°176 1988	μg TEQ/I	0,0000052	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l 2:2002	< 25		350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031543 del 18/12/2018

18LA0031543/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	140	±41	
Sodio EPA 6010D 2014	mg/l	230	±70	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	120	±13	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	120	±13	

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031543

Rapporto di prova n°: 18LA0031544 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 05

Luogo di campionamento: Osmannoro Firenze

Punto di prelievo: ASOT 05

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06712

Data Prelievo: 22/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 22/08/2018 Data Fine Analisi: 16/11/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	18,1		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	1061		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,19		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-99		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/l	2,05		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	31		
Alluminio EPA 6020B 2014	μg/l	43	±13	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto

*Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031544 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	62	±19	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	2,8	±0,9	20	
Piombo EPA 6020B 2014	μg/l	6,8	±2,0	10	
Rame EPA 6020B 2014	μg/l	5,1	±1,5	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	µg/l ▶	430	±130	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	38	±11	3000	
Boro EPA 6020B 2014	μg/l	< 50		1000	
Potassio EPA 6010D 2014	mg/l	1,3	±0,4		
Magnesio EPA 6010D 2014	mg/l	17	±5		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	190	±21	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,10			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	46	±5		
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031544 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza D.Lɑs 152/06 A. Falda Tab. 2
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020	10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,05	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01	60

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031544 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031544 del 18/12/2018

arametro fletodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		10	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. 9) EPA 1613B 1994 + NATO CCMS Report n°176 1988	μg TEQ/I	0,0000055	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l	< 25		350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova n°: 18LA0031544 del 18/12/2018

18LA0031544/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	160	±47	
Sodio EPA 6010D 2014	mg/l	180	±53	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	110	±12	250

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031544

Rapporto di prova n°: 18LA0031545 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 07

Luogo di campionamento: Osmannoro Firenze

Punto di prelievo: ASOT 07

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06717

Data Prelievo: 22/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 22/08/2018 Data Fine Analisi: 16/11/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	17		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	2019		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,32		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-200		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,01		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	28		
Alluminio EPA 6020B 2014	μg/l	54	±16	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	6,1	±1,8	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto

*Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031545 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	µg/l ▶	2200	±650	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	< 2,0		20	
Piombo EPA 6020B 2014	μg/l	8,3	±2,5	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l ▶	1500	±460	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	< 20		3000	
Boro <i>EPA 6020B 2014</i>	μg/l	79	±24	1000	
Magnesio EPA 6010D 2014	mg/l	31	±9		
Potassio EPA 6010D 2014	mg/l	3,1	±0,9		
Cianuri liberi * APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	740	±82	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,10			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	2,6	±0,7		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031545 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01	
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05	
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	µg/l	< 0,00014		0,01	
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5	
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Clorometano EPA 5030C 2003 + EPA 8260D 2017	µg/l	< 0,050		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,075	±0,022	0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,012	±0,004	3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,087	±0,026	10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031545 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031545 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. PEPA 1613B 1994 + NATO CCMS Report n°176 1988	μg TEQ/I	0,0000006	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2	μg/l 2:2002	5,2	±1,6	350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	4,7	±1,9		
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031545 del 18/12/2018

18LA0031545/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	180	±54	
Sodio EPA 6010D 2014	mg/l	370	±110	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	47	±5	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	330	±36	

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031545

Rapporto di prova n°: 18LA0031546 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 16

Luogo di campionamento: San Mauro a Signa

Punto di prelievo: ASOT 16

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06716

Data Prelievo: 22/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 22/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	16,7		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	2410		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,33		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-195		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	0,69		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	29		
Alluminio EPA 6020B 2014	μg/l	110	±32	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	1,2	±0,4	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031546 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l ▶	930	±280	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,5	±1,0	20	
Piombo EPA 6020B 2014	μg/l ▶	23	±7	10	
Rame EPA 6020B 2014	μg/l	6,5	±1,9	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	µg/l ▶	760	±230	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	34	±10	3000	
Boro EPA 6020B 2014	μg/l	230	±69	1000	
Magnesio EPA 6010D 2014	mg/l	50	±15		
Potassio EPA 6010D 2014	mg/l	3,2	±1,0		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	660	±73	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	1,3	±0,1		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,28	±0,07		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031546 del 18/12/2018

arametro fletodo	U.M.	Risultato	Incertezza D.Lus 152/06 A. Falda Tab. 2			
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020	10			
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1			
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01			
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1			
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,05			
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014	0,01			
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	5			
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01			
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1			
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	50			
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1			
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,5			
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15			
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5			
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	3			
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05			
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	1,5			
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	1,1			
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,15			
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,05	10			
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	810			
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01	60			
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,15			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031546 del 18/12/2018

arametro Metodo	U.M.	Risultato	Incertezza D.Lɑs 152/06 A. Falda Tab. 2			
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2			
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001			
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05			
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3			
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001			
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13			
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17			
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5			
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15			
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7			
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5			
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40			
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270			
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5			
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190			
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8			
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5			
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01			
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180			
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110			
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5			
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5			
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031546 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Las 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
sommatoria PCDD/PCDF (conversione TEF) s)WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	ıg WHO-TEQ/I	0,00000372		0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2.	μg/l 2002	< 25		350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031546 del 18/12/2018

18LA0031546/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	160	±49	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l ▶	310	±35	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	340	±37	

18LA0031546/02 DL2 - Second dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Sodio EPA 6010D 2014	mg/l	480	±140	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031546

Rapporto di prova n°: 18LA0031547 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 15

Luogo di campionamento: San Mauro a Signa

Punto di prelievo: ASOT 15

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06715

Data Prelievo: 22/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 22/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	15,9		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	3545		
pH Analisi effettuata in campo con sonda multiparametrica	upH	6,97		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-71		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/l	2,13		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	90		
Alluminio EPA 6020B 2014	μg/l	120	±35	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto

*Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031547 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	150	±46	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,9	±1,2	20	
Piombo EPA 6020B 2014	μg/l ▶	41	±12	10	
Rame EPA 6020B 2014	μg/l	9,9	±3,0	1000	
Selenio EPA 6020B 2014	μg/l	1,8	±0,5	10	
Manganese EPA 6020B 2014	μg/l ▶	680	±200	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	71	±21	3000	
Boro EPA 6020B 2014	μg/l	99	±30	1000	
Magnesio EPA 6010D 2014	mg/l	91	±27		
Potassio EPA 6010D 2014	mg/l	3,8	±1,1		
Cianuri liberi * APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	420	±46	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	3,8	±0,4		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,013	±0,004	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031547 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Las 152/06 A. Falda Tab. 2
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00019	±0,00006	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	µg/l	< 0,00014		0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0011	±0,0003	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	µg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,05		10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,035	±0,010	810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031547 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Lɑs 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031547 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza D.Los 152/06 A. Falda Tab. 2
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	910
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,35
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,3
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,5
sommatoria PCDD/PCDF (conversione TEF) 4)WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	ıg WHO-TEQ/I	0,00000299	0,000004
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,01
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2.	μg/l 2002	< 25	350
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23	
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031547 del 18/12/2018

18LA0031547/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	260	±77	
Sodio EPA 6010D 2014	mg/l	410	±120	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	290	±32	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	710	±78	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031547

Rapporto di prova n°: 18LA0031548 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 13

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 13

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06730

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	18,2		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	2526		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,24		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	1,6		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,21		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	33		
Alluminio EPA 6020B 2014	μg/l	57	±17	200
Antimonio EPA 6020B 2014	μg/l	0,63	±0,19	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031548 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	63	±19	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,3	±1,0	20	
Piombo EPA 6020B 2014	μg/l ▶	18	±6	10	
Rame EPA 6020B 2014	μg/l	6,0	±1,8	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l ▶	1800	±550	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco <i>EPA 6020B 2014</i>	μg/l	35	±10	3000	
Boro EPA 6020B 2014	μg/l	86	±26	1000	
Magnesio EPA 6010D 2014	mg/l	52	±16		
Potassio EPA 6010D 2014	mg/l	2,7	±0,8		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	590	±65	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	0,25	±0,03		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,027	±0,008	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031548 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01	
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05	
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01	
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5	
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01	
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		50	
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5	
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,028	±0,008	0,15	
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5	
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,052	±0,016	3	
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05	
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5	
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,35	±0,11	1,1	
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15	
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,43	±0,13	10	
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810	
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,019	±0,006	60	
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,041	±0,012	0,15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031548 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031548 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
sommatoria PCDD/PCDF (conversione TEF) 9WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	ug WHO-TEQ/I	0,00000033		0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2.	µg/l 2002	< 25		350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031548 del 18/12/2018

18LA0031548/01 DL1 - First dilution sample

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	230	±69	
Sodio EPA 6010D 2014	mg/l	390	±120	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	180	±20	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	640	±71	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031548

Rapporto di prova n°: 18LA0031549 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 03

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 03

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06731

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	18,1		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	7618		
pH Analisi effettuata in campo con sonda multiparametrica	upH	6,66		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-235		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	0,63		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	43		
Alluminio EPA 6020B 2014	μg/l	64	±19	200
Antimonio EPA 6020B 2014	μg/l	0,66	±0,20	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	2,4	±0,7	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	5,7	±1,7	50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031549 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	1200	±370	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	17	±5	20	
Piombo EPA 6020B 2014	μg/l	. 17	±5	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	28	±8	3000	
Boro EPA 6020B 2014	μg/l	75	±23	1000	
Potassio EPA 6010D 2014	mg/l	5,0	±1,5		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	370	±41	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,1			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,54	±0,14		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,016	±0,005	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031549 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00027	±0,00008	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00070	±0,00021	0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0022	±0,0007	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00070	±0,00011	0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,28	±0,08	1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,28	±0,08	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031549 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	910
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,35

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031549 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,3
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,5
sommatoria PCDD/PCDF (conversione TEF) μς 4)WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	g WHO-TEQ/I	0,0000033	0,000004
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,01
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2:2	μg/I 002	< 25	350
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23	
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031549 del 18/12/2018

18LA0031549/01 DL1 - First dilution sample

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2	
Manganese EPA 6020B 2014	μg/l ▶	11000	±3400	50	
Sodio EPA 6010D 2014	mg/l	1000	±300		
Magnesio EPA 6010D 2014	mg/l	260	±77		
Calcio EPA 6010D 2014	mg/l	890	±270		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l ▶	1100	±120	250	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	2000	±220		

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene.

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031549

Rapporto di prova n°: 18LA0031550 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 12

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 12

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06732

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 10/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	20,1		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	1107		
pH Analisi effettuata in campo con sonda multiparametrica	ирН	7,18		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-240		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/l	0,62		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	51		
Alluminio EPA 6020B 2014	μg/l	52	±16	200
Antimonio EPA 6020B 2014	μg/l	0,64	±0,19	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037)

Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031550 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	210	±62	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	9,0	±2,7	20	
Piombo EPA 6020B 2014	μg/l	. 18	±6	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Manganese EPA 6020B 2014	μg/l	1200	±360	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	< 20		3000	
Boro EPA 6020B 2014	μg/l	93	±28	1000	
Magnesio EPA 6010D 2014	mg/l	27	±8		
Potassio EPA 6010D 2014	mg/l	2,0	±0,6		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	360	±40	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	0,12	±0,01		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	0,52	±0,13		
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031550 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00077	±0,00023	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,020	±0,006	0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,30	±0,09	1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,32	±0,10	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,022	±0,007	60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,016	±0,005	0,15

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031550 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031550 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Las 152/06 A. Falda Tab. 2	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
Sommatoria PCDD, PCDF conversione T.E. ₁₎ EPA 1613B 1994 + NATO CCMS Report n°176 1988	μg TEQ/I	0,0000005	±0,0000002	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-	μg/l 2:2002	< 25		350	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031550 del 18/12/2018

18LA0031550/01 Diluito met

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lgs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	160	±47	
Sodio EPA 6010D 2014	mg/l	160	±48	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	90	±10	250
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	89	±10	

(*) - Prova non accreditata ACCREDIA

(a9) Prova eseguita da Laboratorio esterno Nº Accred. 0334 A

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova n° 18LA0031550

Rapporto di prova n°: 18LA0031551 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 04

Luogo di campionamento: Sesto Fiorentino

Punto di prelievo: ASOT 04

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06724

Data Prelievo: 23/08/2018

Data Accettazione: 23/08/2018

Data Inizio Analisi: 23/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	22,1		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	2419		
pH Analisi effettuata in campo con sonda multiparametrica	upH	6,99		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-218		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,03		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	45		
Alluminio EPA 6020B 2014	μg/l	50	±15	200
Antimonio EPA 6020B 2014	μg/l	< 0,50		5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031551 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	290	±88	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	2,4	±0,7	20	
Piombo EPA 6020B 2014	μg/l ▶	. 15	±5	10	
Rame EPA 6020B 2014	μg/l	< 5,0		1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	< 20		3000	
Boro EPA 6020B 2014	μg/l	69	±21	1000	
Potassio EPA 6010D 2014	mg/l	7,4	±2,2		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	340	±38	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,1			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,025	±0,008	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,015	±0,005	50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25	
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15	
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10	
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0050	±0,0015	0,1	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031551 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0073	±0,0022	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0057	±0,0017	0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0049	±0,0015	0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0046	±0,0014	0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0048	±0,0014	5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0016	±0,0005	0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0033	±0,0010	0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0089	±0,0027	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,019	±0,003	0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,27	±0,08	0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,064	±0,019	3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,25	±0,07	1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,58	±0,18	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031551 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	910
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,35

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0031551 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	µg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) <i>EPA</i> 3510C 1996 + <i>EPA</i> 8270E 2017	μg/l	< 0,00056		0,5	
sommatoria PCDD/PCDF (conversione TEF) 4 WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007		0,0000044	±0,00000069	0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2:	µg/l 2002	< 25		350	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/l	< 100000			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova n°: 18LA0031551 del 18/12/2018

18LA0031551/01 Diluito met

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2	
Manganese EPA 6020B 2014	μg/l ▶	3500	±1000	50	
Magnesio EPA 6010D 2014	mg/l	120	±36		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	180	±20	250	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	420	±46		

18LA0031551/02 dil met

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Calcio EPA 6010D 2014	mg/l	510	±150	
Sodio EPA 6010D 2014	mg/l	690	±210	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0031551

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TFIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto "Altamente Qualificato" da parte del Ministero della Universitàe Ricerca (MIUR) secondo il Decreto Ministeriale 8 agosto 2000 Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

Rapporto di prova n°: 18LA0032200 del 18/12/2018

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 9

Luogo di campionamento: Aereoporto Firenze

Punto di prelievo: ASOT 9

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06723

Data Prelievo: 29/08/2018

Data Accettazione: 30/08/2018

Data Inizio Analisi: 29/08/2018 Data Fine Analisi: 11/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	19,7		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	982		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,38		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-187		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,27		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	29		
Alluminio EPA 6020B 2014	μg/l	53	±16	200
Antimonio EPA 6020B 2014	μg/l	0,75	±0,22	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	1,3	±0,4	10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032200 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l ▶	460	±140	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	3,2	±1,0	20	
Piombo EPA 6020B 2014	μg/l ▶	. 27	±8	10	
Rame EPA 6020B 2014	μg/l	6,7	±2,0	1000	
Selenio EPA 6020B 2014	μg/l	< 1,0		10	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco <i>EPA 6020B 2014</i>	μg/l	29	±9	3000	
Boro EPA 6020B 2014	μg/l	68	±21	1000	
Calcio EPA 6010D 2014	mg/l	93	±28		
Magnesio EPA 6010D 2014	mg/l	18	±5		
Potassio EPA 6010D 2014	mg/l	2,5	±0,8		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	1100	±120	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	< 0,1			
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	49	±5		
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,014	±0,004	1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,013	±0,004	25	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032200 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2		
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15		
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10		
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1		
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01		
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1		
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05		
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00014		0,01		
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5		
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01		
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1			
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	50			
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1		
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5		
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15		
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,017	±0,005	0,5		
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3		
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05		
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5		
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1		
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15		
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,017	±0,005	10		
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810		
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,01		60		

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032200 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza D.Los 152/06 A. Falda Tab. 2
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050	0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050	0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010	0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050	190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011	1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028	5
Esaclorobenzene <i>EPA 3510C 1996 + EPA 8270E 2017</i>	μg/l	< 0,00056	0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	5
Pentaclorofenolo <i>EPA 3510C 1996 + EPA 8270E 2017</i>	μg/l	< 0,0028	0,5

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032200 del 18/12/2018

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza D.Las 152/06 A. Falda Tab. 2
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	10
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	910
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,35
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,3
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,03
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,1
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056	0,5
sommatoria PCDD/PCDF (conversione TEF) b)WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007		0,00000032	0,000004
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028	0,01
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2.	μg/l :2002	< 25	350
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23	
Amianto (fibre >10 mm) DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032200 del 18/12/2018

18LA0032200/01 Diluito

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lqs 152/06 A. Falda Tab. 2	
Manganese EPA 6020B 2014	µg/l ▶	1300	±380	50	
Sodio EPA 6010D 2014	mg/l	130	±38		
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	140	±15	250	

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

Note:

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0032200

Rapporto di prova nº: 18LA0032202 del 18/12/2018

LAB N° 0510

Spett.

TOSCANA AEROPORTI ENGINEERING SRL

VIA DEL TERMINE 11

50127 FIRENZE (FI)

Denominazione del Campione: Campione di acqua di falda - ASOT 10

Luogo di campionamento: Aereoporto Firenze

Punto di prelievo: ASOT 10

Prelevato da: Personale Ambiente s.p.a. - Ing. Ciapetti Carlo Metodo di Campionamento: APAT CNR IRSA 1030 Man 29 2003

Verbale di prelievo nº: 18/06720

Data Prelievo: 29/08/2018

Data Accettazione: 30/08/2018

Data Inizio Analisi: 29/08/2018 Data Fine Analisi: 05/10/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Temperatura dell'acqua Analisi effettuata in campo con sonda multiparametrica	°C	20,7		
Conducibilità elettrica Analisi effettuata in campo con sonda multiparametrica	μS/cm	745		
pH Analisi effettuata in campo con sonda multiparametrica	upH	7,37		
Potere Red-Ox (NHE) Analisi effettuata in campo con sonda multiparametrica	mV	-53		
Ossigeno disciolto Analisi effettuata in campo con sonda multiparametrica	mgO2/I	1,61		
Torbidità Analisi effettuata in campo con sonda multiparametrica	NTU	33		
Alluminio EPA 6020B 2014	μg/l	67	±20	200
Antimonio EPA 6020B 2014	μg/l	0,73	±0,22	5
Argento EPA 6020B 2014	μg/l	< 1,0		10
Arsenico EPA 6020B 2014	μg/l	< 1,0		10
Berillio EPA 6020B 2014	μg/l	< 0,40		4
Cadmio EPA 6020B 2014	μg/l	< 0,50		5
Cobalto EPA 6020B 2014	μg/l	< 5,0		50

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032202 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Cromo totale EPA 6020B 2014	μg/l	< 5,0		50	
Cromo (VI) EPA 7199 1996	μg/l	< 0,50		5	
Ferro EPA 6020B 2014	μg/l	76	±23	200	
Mercurio EPA 6020B 2014	μg/l	< 0,10		1	
Nichel EPA 6020B 2014	μg/l	< 2,0		20	
Piombo EPA 6020B 2014	µg/l ▶	. 21	±6	10	
Rame EPA 6020B 2014	μg/l	5,2	±1,6	1000	
Selenio EPA 6020B 2014	μg/l	1,2	±0,4	10	
Manganese EPA 6020B 2014	μg/l ▶	. 120	±36	50	
Tallio EPA 6020B 2014	μg/l	< 0,20		2	
Zinco EPA 6020B 2014	μg/l	23	±7	3000	
Boro EPA 6020B 2014	μg/l	< 50		1000	
Calcio EPA 6010D 2014	mg/l	85	±25		
Sodio EPA 6010D 2014	mg/l	60	±18		
Potassio EPA 6010D 2014	mg/l	5,6	±1,7		
Magnesio EPA 6010D 2014	mg/l	19	±6		
Cianuri liberi APAT CNR IRSA 4070 Man 29 2003	μg/l	< 5		50	
Fluoruri APAT CNR IRSA 4020 Man 29 2003	μg/l	370	±41	1500	
Nitrati APAT CNR IRSA 4020 Man 29 2003	mg/l	0,81	±0,09		
Nitriti APAT CNR IRSA 4020 Man 29 2003	μg/l	< 50		500	
Azoto ammoniacale (come NH4) APAT CNR IRSA 4030 B Man 29 2003	mg/l	< 0,1			
Benzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1	
Etilbenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		50	

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032202 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
Stirene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		25
Toluene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		15
meta- Xilene + para- Xilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,020		10
Benzo (a) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (a) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00025	±0,00007	0,01
Benzo (b) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Benzo (k) fluorantene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,05
Benzo (g,h,i) perilene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00052	±0,00016	0,01
Crisene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		5
Dibenzo (a,h) antracene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
Indeno (1,2,3 - c,d) pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1
Pirene EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00075	±0,00022	50
Sommatoria IPA 31,32,33,36 Tab.2 D.lgs 152/06 (Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,00052	±0,00008	0,1
Clorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,5
Triclorometano (Cloroformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,029	±0,009	0,15
Cloruro di Vinile EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5
1,2 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		3
1,1 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tricloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		1,5
Tetracloroetilene (PCE) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		1,1
Esaclorobutadiene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,15
Sommatoria Organoalogenati EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,029	±0,009	10
1,1 - Dicloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		810

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032202 del 18/12/2018

Parametro <i>Metodo</i>	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2
1,2 - Dicloroetilene EPA 5030C 2003 + EPA 8260D 2017	μg/l	0,014	±0,004	60
1,2 - Dicloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,15
1,1,2 - Tricloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,2
1,2,3 - Tricloropropano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001
1,1,2,2 - Tetracloroetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,05
Tribromometano (bromoformio) EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,0050		0,3
1,2 - Dibromoetano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,00050		0,001
Dibromoclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,13
Bromodiclorometano EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,17
Nitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		3,5
1,2 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		15
1,3 - Dinitrobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		3,7
Cloronitrobenzeni EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,5
Clorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		40
1,2 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		270
1,4 - Diclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,010		0,5
1,2,4 - Triclorobenzene EPA 5030C 2003 + EPA 8260D 2017	μg/l	< 0,050		190
(1,2,3,5 + 1,2,4,5) - Tetraclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0011		1,8
Pentaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00028		5
Esaclorobenzene EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,01
2 - Clorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		180
2,4 - Diclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		110
2,4,6 - Triclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		5

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF ed FTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032202 del 18/12/2018

Parametro <i>Metod</i> o	U.M.	Risultato	Incertezza	D.Lαs 152/06 A. Falda Tab. 2	
Pentaclorofenolo EPA 3510C 1996 + EPA 8270E 2017	μg/l	0,0040	±0,0012	0,5	
Anilina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		10	
Difenilammina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		910	
p- Toluidina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,35	
Alaclor EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Aldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Atrazina EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,3	
alfa - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
beta - esaclorocicloesano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - esaclorocicloesano (Lindano) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
gamma - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
alfa - Clordano EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056			
DDD, DDT, DDE EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Dieldrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,03	
Endrin EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,1	
Somm.fitofarmaci 76- 85 All.5 Tab.2 D.lgs 152/06(Calcolo) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,00056		0,5	
sommatoria PCDD/PCDF (conversione TEF) WHO-TEQ 2005 EPA 1613B 1994 + UNEP/POPS/COP.3/INF/27 11/04/2007	g WHO-TEQ/I	0,0000032		0,000004	
PCB totali (Aroclor 1242,1248,1254,1260) EPA 3510C 1996 + EPA 8270E 2017	μg/l	< 0,0028		0,01	
Idrocarburi (C10-C40) UNI EN ISO 9377-2:2002	μg/l	< 2,8			
Idrocarburi totali (espressi come n-esano) Calcolo EPA 5021A 2014 + EPA 8015C 2007 + UNI EN ISO 9377-2::	µg/l	< 25		350	
Idrocarburi C<10 EPA 5021A 2014 + EPA 8015C 2007	μg/l	< 23			

Laboratorio Inserito negli elenchi del programma di controllo Qualità dei laboratori che effettuano la determinazione quantitativa delle fibre di amianto per le tecniche MOCF del TTIR promosso dal Ministero della Salute, ai sensi del D.M. 07/07/97 e del D.M. 14/05/96.

Laboratorio di ricerca riconosciuto
"Altamente Qualificato" da parte del
Ministero della Universitàe Ricerca (MIUR)
secondo il Decreto Ministeriale 8 agosto
2000

Agenzia Formativa accreditata dalla Regione Toscana ai sensi della DGR 968/07 per gli ambiti Formazione Superiore e Formazione Continua (n.MS0037) Laboratorio riconosciuto dal Ministero della Sanità (prot. 600.5/59.619/1773) e iscritto al n. 017 dell'elenco regionale dei laboratori che effettuano analisi di autocontrollo delle industrie alimentari ai sensi della LR 9 marzo 2006, n. 9 (decreto 1236 del 20.03.2007)

segue Rapporto di prova nº: 18LA0032202 del 18/12/2018

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Amianto (fibre >10 mm) * DM 06/09/1994 GU n° 288 10/12/1994 All 2 A	ff/I	< 100000			

18LA0032202/01 dil anioni

Parametro Metodo	U.M.	Risultato	Incertezza	D.Lɑs 152/06 A. Falda Tab. 2	
Solfati APAT CNR IRSA 4020 Man 29 2003	mg/l	72	±8	250	
Cloruri APAT CNR IRSA 4020 Man 29 2003	mg/l	91	±10		

(*) - Prova non accreditata ACCREDIA

(a4) Prova eseguita da Laboratorio esterno Nº Accred. 1262

▶ Valore uguale o superiore al limite indicato per il parametro

Tutte le procedure, i metodi utilizzati per le determinazioni analitiche e le incertezze delle misure sono quelli definiti nei metodi di prova; non sono state effettuate aggiunte, esclusioni e derivazioni rispetto alle specifiche richieste. Con il termine Incertezza si intende incertezza estesa (espressa con livello di fiducia del 95%), fattore di copertura utilizzato K = 2; il recupero non è utilizzato nel calcolo del valore analitico.

Il confronto dei risultati con i limiti indicati non considera l'incertezza di misura.

Le sommatorie di più composti, se non diversamente indicato, sono calcolate con il criterio del Lower Bound

Il laboratorio ambiente esegue la determinazione del parametro meta+para xilene confrontando il valore ottenuto con il limite di legge riportato in Tabella 2 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro para xilene.

Il laboratorio ambiente esegue la determinazione del parametro (1,2,3,5 + 1,2,4,5) - Tetraclorobenzene confrontando il valore ottenuto con il limite di legge riportato in Tabella 1 Allegato V al Titolo V della Parte Quarta del D.Lgs n. 152/06 e riferito al solo parametro 1,2,4,5 - Tetraclorobenzene. Limiti:

D.Lgs 152/06_A. Falda_Tab. 2: Tabella 2 Allegato V al Titolo V della Parte Quarta del Decreto Legislativo n. 152 del 03/04/06 e s.m.i.. Concentrazione Soglia di contaminazione nelle acque sotterranee

File firmato digitalmente da:

Responsabile di Laboratorio Dott. Galatà Riccardo N° 543 A - Ordine dei Chimici della provincia di Catania

Fine del rapporto di prova nº 18LA0032202

REPORT DELLE ATTIVITÀ DI MONITORAGGIO AMBIENTALE

MATRICE ACQUE SOTTERRANEE

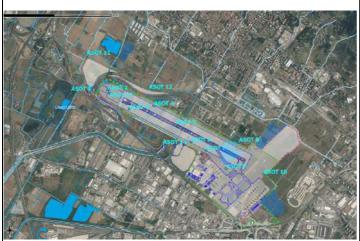
CAMPAGNA N° 11 - AGOSTO 2018

ALLEGATO 2 Schede monografiche

Firenze "Amerigo Vespucci"

Piezometro

ASOT1


SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT1

Coordinate Gauss-Boaga: 1674449; 4854503

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC - protezione a "funghetto"

Profondità piezometro:

15 m

Fenestratura

Tra 9 e 12 m

Accessibilità:

con auto, senza particolari impedimenti (stradello)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT2

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT2

Coordinate Gauss-Boaga: 1674746; 4854526

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC - protezione a "funghetto"

Profondità piezometro:

10 m

Fenestratura

Tra 7 e 9 m

Accessibilità:

con auto, senza particolari impedimenti (stradello e argine)

Tipologia campioni prelevati:

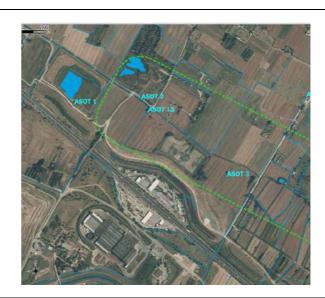
acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT3

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE


DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT3

Coordinate Gauss-Boaga: 1675124; 4854187

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC - protezione a "funghetto"

Profondità piezometro:

10 m

Fenestratura

Tra 7 e 9 m

Accessibilità:

senza particolari impedimenti

Tipologia campioni prelevati:

acque sotterranee

COMMITTENTE: Toscana Aeroporti Engineering

LOCALITA': aeroporto internazionale di

Firenze "Amerigo Vespucci"

Piezometro

ASOT4

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT4

Coordinate Gauss-Boaga: 1675559; 4854246

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC - protezione a "funghetto"

Profondità piezometro:

10 m

Fenestratura

Tra 6 e 9 m

Accessibilità:

con auto, senza particolari impedimenti (stradello)

Tipologia campioni prelevati:

acque sotterranee

COMMITTENTE: Toscana Aeroporti Engineering

LOCALITA': aeroporto internazionale di Firenze "Amerigo Vespucci"

ASOT5

Piezometro

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

piezometro ambientale per campionamento acque sotterranee DESCRIZIONE:

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT5

Coordinate Gauss-Boaga: 1675945; 4853912

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

10 m

Fenestratura

Tra 6 e 9 m

Accessibilità:

senza particolari impedimenti (a piedi da strada adiacente)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT7

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT7

Coordinate Gauss-Boaga: 1676470; 4853453

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

35 m

Fenestratura

Tra 26 e 35 m

Accessibilità:

con auto, senza particolari impedimenti (stradello e spiazzo)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT8

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT8

Coordinate Gauss-Boaga: 1677061; 4853593

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

10 m

Fenestratura

Tra 5 e 10 m

Accessibilità:

con auto, senza particolari impedimenti

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT9

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT9

Coordinate Gauss-Boaga: 1676832; 4853128

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

4 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

20 m

Fenestratura

Tra 14 e 20 m

Accessibilità:

senza particolari impedimenti

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT10

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT10

Coordinate Gauss-Boaga: 1677500; 4853035

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

10 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con auto, senza particolari impedimenti (ciglio strada)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT11

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT11

Coordinate Gauss-Boaga: 1674371; 4855138

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

10 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con auto, senza particolari impedimenti (ciglio strada)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT12


SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT12

Coordinate Gauss-Boaga: 1675473; 4854539

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

14,5 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con auto, senza particolari impedimenti (ciglio strada)

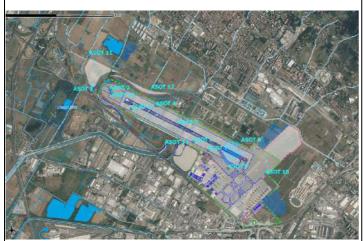
Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT13


SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT13

Coordinate Gauss-Boaga: 1674773; 4854466

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

27,5 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con impedimenti (accesso da un campo)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT14

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT14

Coordinate Gauss-Boaga: 1675722; 4853561

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

32 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con auto, senza particolari impedimenti (ciglio strada)

Tipologia campioni prelevati:

acque sotterranee

Firenze "Amerigo Vespucci"

Piezometro

ASOT15

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT15

Coordinate Gauss-Boaga: 1669759; 4851047

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

14,5 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

in un campo a circa 100 m da strada accessibile con mezzo adeguato

Tipologia campioni prelevati:

acque sotterranee

COMMITTENTE: Toscana Aeroporti Engineering

LOCALITA': aeroporto internazionale di

Firenze "Amerigo Vespucci"

Piezometro

ASOT16

SCHEDA MONOGRAFICA DEL PUNTO DI INDAGINE

DESCRIZIONE: piezometro ambientale per campionamento acque sotterranee

ELEMENTI GEODETICI O TOPOGRAFICI

PUNTO ASOT16

Coordinate Gauss-Boaga: 1670256; 4851741

DETTAGLI PUNTO

FOTO DI DETTAGLIO

Note:

Diametro piezometro:

3 pollici

Tipologia piezometro:

PVC

Profondità piezometro:

15 m

Fenestratura

Tra 0 e 3 m

Accessibilità:

con auto, senza particolari impedimenti (ciglio strada)

Tipologia campioni prelevati:

acque sotterranee

REPORT DELLE ATTIVITÀ DI MONITORAGGIO AMBIENTALE MATRICE ACQUE SOTTERRANEE

CAMPAGNA N° 11 - AGOSTO 2018

ALLEGATO 3 Rapporti di intervento, catene di custodia e

verbali di prelievo

All.1 PO-AMB-44

Data 22/28 / 2018

Rev.00 del 16/05/2016

Tecnico COSPECTI

3
CASN
C.
Luogo

Orario inizio campionamento: 7:30

Orario fine campionamento: 45. a.o.

strumento	M. Az	Controllo	Controllo	Controllo	Controllo	Controllo	Controllo
pHmetro	950639	4.07七)					
Conducimetro	950639	7446					
Ossimetro	950639	108					
Sonda Redox	950639	152					

Orario inizio campionamento:

Orario fine campionamento:

strumento	M. Az	Controllo	Controllo	Controllo	Controllo	Controllo	Controllo
pHmetro							
Conducimetro							
Ossimetro							
Sonda Redox							

pHmetro: I controlli di taratura si effettuano su tampone pH 7 con un margine di accettazione di +/- 0.2 upH. (6,8-7,2)

Conducimetro: I controlli di taratura si effettuano su tampone a 1413 µS/cm con un margine di accettazione di +/- 10% (1271-1554 µS/cm)

Ossimetro: la taratura è accettabile quando il valore di saturazione rilevato dallo strumento all'aria è compreso fra 104% e 112%

Sonda Redox: I controlli si effettuano su soluzione a potere redox 220 mV con un margine di accettazione di +/- 10% (198-242 mV)

n.b. In caso il controllo non rientri nei margini di accettabilità si effettua nuovamente la taratura dello strumento e si effettua nuovamente una verifica

ambientale e laboratori

LABORATORI:

CARHARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggemi, 57 Tel. +39 0931 1805351

SAPPORTO DI INTERVENTO E CHAIN OF CUSTODY

ODL:

Chain of Custody n. 18/	04965					3	-	OISH	ANALISLO PLINTO DEFERTA COME DA PROPOSTA	FERTA CC	ME DA	PROPOST		
DUTA TAE	Intestazione RdP:		00			, euc	_	TEC	TECNICO/ECONOMICA ALLEGATA [VOMICA A	LLEGA	LAD		NOTE
INDRIZZO:						_								
SITY FIRE A	A7					_								
TEL	FAX				оцо	-								
REFERENTE DITTA:					dse	-								
RIF TO OFFERTAN*	RIF TO CONTRATTO Nº*		姐)1 P									
	LUDGO DI CAMPIONAMENTO:				euc									
SATTIVITA' DI CAMPIONAMENTO DA	TIVITY DI RITIRO CAMPIONI DATA DI CAMPIONAMENTO:				oizibi	edm								
	NOTE AGGULTIVE				no)								,	
C AMAIS!	☐ UBORATORIO ☐ CONSULENZA					H								
RAPPORTO DI PROYA Emissioni DAGC da + a	DENOMBLYZIONE DEL CAMPIONE	Verbela di preferro:	DATA	ORA	regintessi residma									
	ASOT 2		73/09	9:30	0 0									
	ASOT 7		Z	3.50	0			- 1						
	A50T 11		,	4/10	0									
	A 507 41.		2	6.30	0									
	l		20/15	10:00	_ _									
			12/24	0 1/2	0									
	20 00		2,7,7	Ø . /c	0								-	
				J . L										
	ACOT 15			12										i
	-10		2/00	44.97										
	Asor 03		13/08	7.0										
	ALOT 12		20/27	11:40										
	450T 04		75/08	12:30	0									
NOTE ALLE ATTIMITY SWOLTE							I							
CATE DAY	LAIMES WALD ESI	2			F	k								
						Conformitä	13							
Campional Cas (Firms)	Data:	N		14.152	01/4	S C				Km Tot:	Section 1	Н	One Tot.	1001
art would.	3/-8/18 Com			100	2	- 1		CAMPIONATORI		CAIA	December 1	WIEGEL OF	montesso	200
Presentino de (Ferra)	Umfat: Presa án carieg da: (Firms)					S D	0				<i>a</i>			
Presa m carico da (Firms)	Deta: (Firms)			Outs.		Si No								
		1					_							
		,												
AL 4 P.G. AMB 00.1 PAG. 1 DI 1				PRES	PLESSO DA	SAME)(TI								1,00

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.lt www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 98010 Contrada Biggemi, 57 Tel. +39 0931 1805351

Eseguito da: Tecnico CAMPIONATORE SPECIALIZZATO

WPCTT1

ACQUA - Verbale di prelievo N. 18/ 06900 Accettazione (da compilarsi all'arrivo in laboratorio) Intestatario RdP (A) Sede ☐ RELAZIONE Referente Rif. Committente Rif. Offerta: Denominazione del campione SESTO F.NO Luogo di campionamento Punto di campionamento______ Presenti al prelievo Sotterranea Tipologia acqua: ☐ Superficiale ☐ Di scarico (reflua) ☐ Potabile ☐ Altro_ Metodo o procedura di campionamento APAT IRSA 1030 ☐ ISTISAN 2007/05 ☐ ISTISAN 2007/31 ☐ ICRAM ☐ Pozzetto ☐ Vasca Punto di prelievo: ☐ Rubinetto Piezometro ☐ Altro____ Coordinate GPS__ Na Prelievo istantaneo – Ora di campionamento 8:30 Modalità di prelievo: ☐ Prelievo medio composto da prelievi istantanei ogni ______ minuti, dalle ore ______alle ore _____ ☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore ______alle ore ______ S2'Low flow ☐ Bailer ☐ Altro Caratteristiche dell'acqua al momento del prelievo: Natura: ☐ Organica □ Inorganica ☐ Limpido Aspetto: A:Leggermente torbido ☐ Torbido ☐ Altro_ □ Inodore Orlore-☐ Materiale in fermentazione ☐ Sgradevole ☐ Pungente e/o irritante (ammoniaca) ☐ Solvente ☐ Idrocarburico ☐ Altro Colore: Lincolore ☐ Altro Temperatura Dati di campo: Conducibilità Potenziale Redox __ Ossigeno disciolto __ Altro___ Surnatante/Materiale in sospensione Portata spurgo Litri Spurgati _____T. Amb "C_ Condizioni atmosferiche Profondità fondo piezometro Il campione è costituito da: aliquote in bottiglia sterile con tiosolfato per microbiologia Filtrazione IPSI I NO aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli ☐ Con sigillo __aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso: aliquote in bottiglia in vetro silanizzato per analisi di diossine ☐ ambiente sc __aliquote in vials in vetro da 40ml per analisi di composti organici volatili ☐ Cliente aliquote in bottiglia in vetro scuro da 11 ☐ Ente di controllo Campione costituito da ☑-Aliquota/e n° ☐ Aliquota/e con sigillo n* NOTE: Il presente documento è da riferirsi alla Chain of Custody nº 10/14965

Firma Tecnico ambiente Sc

Cul GM

1

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 95010 Contrada Biggerni, 57 3el. +39 0931 1805351

Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO

CAPETTI

N. 18/ ACQUA - Verbale di prelievo_ Accettazione (da compilarsi all'arrivo in laboratorio) Intestatario RdP ☐ RELAZIONE Referente Rif. Committente Rif. Offerta: Denominazione del campione ☐ Foto Luogo di campionamento ASOT OY Punto di campionamento_____ Presenti al prelievo____ Tipologia acqua: ☐ Superficiale ☐ Di scarico (reflua) ∰ Sotterranea ☐ Potabile ☐ Altro_ Metodo o procedura di campionamento 🔑 APAT IRSA 1030 ☐ ISTISAN 2007/05 ☐ ISTISAN 2007/31 ☐ ICRAM ☐ Pozzetto Punto di prelievo: Piezometro ☐ Vasca ☐ Rubinetto ☐ Altro____ Coordinate GPS Prelievo istantaneo – Ora di campionamento 7:50 Modalità di prelievo: □ Prelievo medio composto da prelievi istantanei ogni _____ minuti, dalle ore _____alle ore _____ ☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore _____alle ore ____ Low flow ☐ Bailer ☐ Altro Caratteristiche dell'acqua al momento del prelievo: Natura: ☐ Organica ☐ Inorganica ☐ Limpido Aspetto: Leggermente torbido ☐ Torbido ☐ Altro_ Odore: ☐ Inodore ☐ Materiale in fermentazione ☐ Pungente e/o irritante (ammoniaca) ☐ Sgradevole ☐ Idrocarburico ☐ Solvente ☐ Altro Colore: ☐ Incolore ☐ Altro_ Temperatura 17,3 °C Dati di campo: 796 µS/cm TDS Potenziale Redox - 1 Ossigeno disciolto 17 % 7,71 mg/L Altro___ Surnatante/Materiale in sospensione Litri Spurgati Lettura freatimetrica 2.3/ Portata spurgo ____T, Amb °C Condizioni atmosferiche Profondità fondo piezometro _ Il campione è costituito da: N°____aliquote in bottiglia in PET per un totale di ______litri. In dettaglio:_____ __aliquote in bottiglia sterile con tiosoifato per microbiologia Filtrazione - SISI NO N°____aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli ☐ Con sigillo N°____aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso: _aliquote in bottiglia in vetro silanizzato per analisi di diossine ☐ ambiente sc ___aliquote in vials in vetro da 40ml per analisi di composti organici volatili ☐ Cliente N° Saliquote in bottiglia in vetro scuro da 11 ☐ Ente di controllo Campione costituito da Aliquota/e n° -1 ☐ Aliquota/e con sigillo nº__ NOTE: Il presente documento è da riferirsi alla Chain of Custody n° 70 / 044 64

Firma Tecnico ambiente Sc

Col get

ingegnaria ambientale e laboratori PEC: ambientesc@messaggipec.lt www.ambientesc.it LABORATORI:

Firma Tecnico ambiente Sc

Contohno

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggemi, 57 Tel. +39 0931 1805351

Data 73 /08/2018
Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO

CAPETT,

ACQUA – Verbale di prelievo N. 18/ 0671	Accettazione/			
Intestatario RdP (da compilarsi all'arrivo in laboratorio)				
Sede Referente □ RELAZIONE				
Rif. Committente Rif. Offerta:				
Denominazione del campione / SCOT 11				
Luogo di campionamento 5 ES ZU F.				
Talico di Campionamento	17			
Presenti al prelievo				
Tipologia acqua: Superficiale	Di scarico (reflua) स्रि Sotterranea			
	Altro			
□ ICRAM □ /	STISAN 2007/05			
Punto di prelievo:	□ Vasca □ Rubinetto			
Grandleste CDS				
Coordinate GPS				
Modalità di prelievo: ➤ Prelievo istantaneo – Ora di campionamento 17:10				
☐ Prelievo medio composto da prelievi istantanei ogni minuti, dalle ore alle ore				
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle orealle ore				
☐ Low flow ☐ Bailer ☐ Altro				
Caratteristiche dell'acqua al momento del prelievo:				
Natura: Organica Mista Inorganica				
Aspetto: ☐ Limpido ☐ Limpido ☐ To	rbido 🗆 Altro			
Odore: ☐ Inodore ☐ Materiale in fermentazione	☐ Sgradevole ☐ Pungente e/o irritante (ammoniaca)			
☐ Solvente ☐ Idrocarburico	□ Altro			
Colore:				
Dati di campo: Temperatura 16.5 °C pH	Torbidità 59 FTU-NTU			
Conducibilità 7 3 7 3 µS/cm TDS	g/L Potenziale Redox mV			
Ossigeno disciolto 4 % Q 4 mg/l. Altro				
Falda Surnatante/Materiale in sospensione SI NO				
Portata spurgoLitri Spurgati	Lettura freatimetrica 7,70 b.p. m			
Condizioni atmosfericheT. Amb °C Profondità fondo piezometro m				
Il campione è costituito da:				
N°aliquote in bottiglia in PET per un totale di	dettaglio:			
N°aliquote in bottiglia sterile con tiosolfato per microbiologia Filtrazione ☑51 ☐ NO				
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli □ Con sigillo				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso:				
N°aliquote in bottiglia în vetro silanizzato per analisi di diossine	☐ ambiente sc			
N°allquote in vials in vetro da 40ml per analisi di composti organici v	olatili 🔲 Cliente			
N°allquote in bottiglia in vetro scuro da 1	☐ Ente di controllo			
Campione costituito da Aliquota/e nº	☐ Aliquota/e con sigillo n°			
NOTE:				
40	8/5			
Il presente documento è da riferirsi alla Chain of Custody n° 18 10 4	767			

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it

LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351

1	Data 2.3 10812278
ı	Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO
	1NX PE 771

ACQUA – Verbale di prelievo N. 18/ 06714	Accettazione/			
Intestatario RdP (da compilarsi all'arrivo in laboratorio)				
Sede Referente 🗆 RELAZIONE				
Rif. Committente Rif. Offerta:				
Denominazione del campione Luogo di campionamento Luogo di campionamento				
Punto di campionamento	14			
Presenti al prelievo				
Tipologia acqua: D Superficiale D D	i scarico (reflua) – 🖊 Sotterranea			
☐ Potabile ☐ A	ltro			
Metodo o procedura di campionamento ∠Z APAT IRSA 1030 ☐ IS	STISAN 2007/05			
Punto di prelievo:	□ Vasca □ Rubinetto			
□ Altro				
Coordinate GPS				
Modalità di prelievo: 🔎 Prelievo istantaneo – Ora di campionamento 6.30				
Prelievo medio composto da prelievi istantanei ogni minuti, dalle orealle ore				
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore				
Salton flow Bailer Altro				
Caratteristiche dell'acqua al momento del prelievo:				
Natura:	rganica			
Aspetto: 🗆 Limpido 😕 Leggermente torbido 🗅 Tor	rbido 🗆 Altro			
Odore: 🔲 Inodore 🔲 Materiale in fermentazione				
☐ Solvente ☐ Idrocarburico	□ Altro			
Colore:				
Dati di campo: Temperatura 16,6 °C pH 17,	89 Torbidità 47 FTU-NTU			
Conducibilità 3102 µS/cm TDS	_g/L Potenziale Redox3_1 2mV			
Ossigeno disciolto 13 % 1,7 8 mg/L Altro				
Falda	Surnatante/Materiale in sospensione SI NO			
Portata spurgo Litri Spurgati	Lettura freatimetrica 2,33 b m m			
Condizioni atmosfericheT. Amb *C	Profondità fondo piezometro m			
Il campione è costituito da:				
N'litri. In dettaglio:				
N°aliquote in bottiglia in PET per un totale di/ itri. In dettaglio:				
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso: N°aliquote in bottiglia in vetro silanizzato per analisi di diossine				
N'aliquote in bottiglia in vetro silanizzato per analisi di diossine				
N'aliquote in vials in vetro da 40ml per analisi di composti organici vo				
N'aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo			
Campione costituito da	☐ Aliquota/e con sigillo n"			
NOTE:				
Il presente documento è da riferirsi alla Chain of Custody n° 18 / 04	965			

Firma Tecnico ambiente Sc

Cul GMA

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.lt www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggemi, 57 Tel. +39 0931 1805351

Data 27 /08/2018
Eseguito da: TECNICO CAMPIONATORE SPECIALIZATO

(MA PC 77/

ACQUA – Verbale di prelievo N.18/ 06713	Accettazione/			
Intestatario RdP (da compilarsi all'arrivo in laboratorio)				
SedeReferente □ RELAZIONE				
Rif. Committente Rif. Offerta:				
Denominazione del campione A SOT DO Foto				
Luogo di campionamento SPSTO F.NO	FI			
Punto di campionamento ASOCO R				
Presenti al prelievo				
Tipologia acqua: Superficiale Di scarico	(reflua) Sotterranea			
☐ Potabile ☐ Altro				
Metodo o procedura di campionamento ☐ APAT IRSA 1030 ☐ ISTISAN 20 ☐ ICRAM ☐ Altro				
Punto di prelievo: □ Pozzetto SEI,Piezometro	□ Vasca □ Rubinetto			
□ Altro				
Coordinate GPS 40'0.2				
Modalità di prelievo: Prelievo Istantaneo – Ora di campionamento 10.00				
Prelievo medio composto da prelievi istantanei ogni minuti, dalle ore alle ore				
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore				
□ Low flow □ Bailer □ Altro □				
Caratteristiche dell'acqua al momento del prelievo:				
Natura:				
Aspetto:	□ Altro			
Odore: Inodore Materiale in fermentazione Sgra	devole Pungente e/o irritante (ammoniaca)			
☐ Solvente ☐ Idrocarburico ☐ Altro				
Colore:				
Dati di campo: Temperatura 17,3 °C pH 7,16	Torbidità FTU-NTU			
Conducibilità 1385 µS/cm TDS g/L	Potenziale Redox 3 7 mV			
Ossigeno disciolto 65% 0,63 mg/L Altro				
FaldaSurnatar	nte/Materiale in sospensione			
Portata spurgo Litri Spurgati Lettura f	reatimetrica 7,07 A, P m			
	ità fondo piezometro m			
Il campione è costituito da:				
N° 1 aliquote in bottiglia in PET per un totale di 0;5 litri. In dettaglio:				
N°aliquote in bottiglia sterile con tiosolfato per microbiologia Filtrazione Ø51 □ NO				
N° 1 aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli □ Con sigillo				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso:				
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	☐ ambiente sc			
N° Z aliquote in vials in vetro da 40ml per analisi di composti organici volatili	□ Cliente			
N°aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo			
Campione costituito da Aliquota/e nº	☐ Aliquota/e con sigillo n*			
NOTE:				
Il presente documento è da riferirsi alla Chain of Custody n° 1810 04969				

Firma Tecnico ambiente Sc

Culled.

TUTTI I CAMPI DEL SEGUENTE MODELLO DEVONO ESSERE COMPILATI O BARRATI - MOD. PG-AMB 08.1 ALL.23 Rev.3

LABORATORI: Data 72 / 08 / 201 P

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351

Eseguito da: TECHICO CAMPIONATORE SPECIALIZZATO

CUPETEI

ACQUA – Verbale di prelievo N. 18/ 06712	Accettazione/			
Intestatario RdP	(da compilarsi all'arrivo in laboratorio)			
SedeReferente	I RELAZIONE			
Rif. Committente				
Denominazione del campione Luogo di campionamento ASOTOS Luogo di campionamento	□ Foto			
Punto di campionamento				
Presenti al prelievo				
Tipologia acqua: ☐ Superficiale ☐ Di scarico (reflua ☐ Potabile ☐ Altro				
Metodo o procedura di campionamento □ EAPAT IRSA 1030 □ ISTISAN 2007/05 □ ICRAM □ Altro				
Punto di prelievo:	asca 🔲 Rubinetto			
□ Altro				
Coordinate GPS				
Modalità di prelievo: SE Prelievo istantaneo – Ora di campionamento	0			
☐ Prelievo medio composto da prelievi istantanel ogni minuti, dalle ore alle ore				
Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore				
Q Low flow				
Caratteristiche dell'acqua al momento del prelievo:				
Natura: Organica Mista Inorganica				
	Altro			
Odore:				
Colore: Incolore Altro Dati di campo: Temperatura 12,1 °C pH 7,15	7/			
	Torbidità 3/			
Conducibilità 106 1 µS/cm TDS g/L	Potenziale Redox — 99 mV			
Ossigeno disciolto 71 % 71, O 5 mg/L Altro				
	ateriale in sospensione SI NO			
Portata spurgo Litri Spurgati Lettura freatin	netrica 2,80 b,p. m			
Condizioni atmosfericheT. Amb *C Profondità fondo piezometro m				
Il campione è costituito da:				
N°litri. In dettaglio:				
Ni aliquote in bottiglia sterile con tiosolfato per microbiologia Filtrazione SI NO Aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli				
aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri	Controcampione presso:			
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	☐ ambiente sc			
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili	□ Cliente			
N°aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo			
Campione costituito da Aliquota/e nº	☐ Aliquota/e con sigillo n*			
NOTE:				
Il presente documento è da riferirsi alla Chain of Custody n° 18 / 04965				

Firma Tecnico ambiente Sc Coul Cort

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it LABORATORI: 👞 🚉 🔩

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855824 - Fax +39 0585 855617

PRICLO GARGALLO (SR) - 98010 Contrada Biggerni, 57 Tel. +39 0931 1805351 Data 22 /08/2018

Eseguito da: Tecnico CAMPIONATORE SPECIAUZZATO

CAPE [71

ACQUA – Verbale di prelievo N. 18/ 06717	Accettazione/			
Intestatario RdP (// C	(da compilarsi all'arrivo in laboratorio)			
SedeReferente	☐ RELAZIONE			
Rif. Committente Rif. Offerta:				
Denominazione del campione ASOT 07	□ Foto			
Luogo di campionamento SES70 FINU				
Punto di campionamento 1507 109				
Presenti al prelievo				
Tipologia acqua: ☐ Superficiale ☐ Di scarico (re	eflua) E-Sotterranea			
Metodo o procedura di campionamento ☑ APAT IRSA 1030 ☐ ISTISAN 200 ☐ ICRAM ☐ Altro	7/05 🗆 ISTISAN 2007/31			
Punto di prelievo: Pozzetto -El-Piezometro	□ Vasca □ Rubinetto			
□ Altro				
Coordinate GPS				
Modalità di prelievo: Al Prelievo istantaneo – Ora di campionamento 8, 25				
☐ Prelievo medio composto da prelievi istantanei ogni minuti, dalle ore alle ore				
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore				
_⊒(Low flow □ Bailer □ Altro				
Caratteristiche dell'acqua al momento del prelievo:				
Natura:				
The state of the s	□ Altro			
	evole Pungente e/o irritante (ammoniaca)			
Colore: 🗆 Incolore 🗀 Altro				
Dati di campo: Temperatura 17 - °C pH 7 32	Torbidità 28 FTU-NTU			
Conducibilità 2019 µS/cm TDS g/L	Potenziałe Redox — 200 mV			
Ossigeno disciolto 18 % 1/81 mg/L Altro	Potenziale Redox 2 2 3 111			
	e/Materiale in sospensione			
	eatimetrica 2,70 b, p m			
	fondo piezometro m			
Il campione è costituito da: N° 4 aliquote in bottiglia in PET per un totale di 0,5 litri. In dettaglio:				
N°aliquote in bottiglia sterile con tiosolfato per microbiologia Filtrazione ⊅SI □ NO				
N"aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi del cian				
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	🛘 ambiente sc			
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili	☐ Cliente			
N°aliquote in bottiglia in vetro scuro da 11	☐ Ente di controllo			
Campione costituito da DAliquota/e n'	☐ Aliquota/e con sigillo n°			
NOTE:				
18 00018				
Il presente documento è da riferirsi alla Chain of Custody n° 18 / 04965				

Firma Tecnico ambiente Sc

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it

LABORATORI:

CARRARA (MS) 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Bigge Tel. +39 0931 1805351

101

	Data (7 / 01 / 29-11)
	Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO
mi, 57	en Pett

ACQUA – Verbale di prelievo N. 18/ 06716	Accettazione			
Intestatario RdP	(da compilarsi all'arrivo in laboratorio)			
Sede Referente	D RELAZIONE			
Rif. Committente Rif. Offerta: Penominazione del campione				
Denominazione del campione ASOTAS				
Luogo di campionamento 5 17 0 17 0 17 0 17 0 17 0 17 0 17 0 17	NA			
Punto di campionamento ASDT 45				
Presenti al prelievo				
Tipologia acqua: ☐ Superficiale ☐ Di scarico (re ☐ Potabile ☐ Aftro	flua) Sotterranea			
Metodo o procedura di campionamento ☐ APAT IRSA 1030 ☐ ISTISAN 2007 ☐ ICRAM ☐ Altro	/05 🔲 ISTISAN 2007/31			
] Vasca ☐ Rubinetto			
□ Altro				
Coordinate GPS				
Modalità di prelievo:				
☐ Prelievo medio composto da prelievi istantanei ogni minuti, dalle orealle ore				
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore				
-E1ow flow □ Bailer □ Altro				
Caratteristiche dell'acqua al momento del prelievo:				
Natura: ☐ Organica ☐ Mista ☐ Inorganica				
	□ Altro			
	/ole ☐ Pungente e/o irritante (ammoniaca)			
Colore:				
Dati di campo: Temperatura 16,7 °C pH 7,33	Torbidità 7 9 FTU-NTU			
Conducibilità 24/0 µS/cm TDS g/L	Potenziale Redox 195 mV			
Ossigeno disciolto 17.2 % 0.69 mg/L Altro	Foteliziale neutox — 175			
	/Materiale in sospensione			
	atimetrica 3,68 b. p. m			
Condizioni atmosfericheT. Amb °C Profondità fondo piezometro m m				
Il campione è costituito da:				
N°aliquote in bottiglia in PET per un totale dilitri. In dettaglio:				
	Filtrazione -E/SI 🗆 NO			
N° aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli				
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso:				
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	☐ ambiente sc			
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili	☐ Cliente			
N'aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo			
Campione costituito da Aliquota/e n' Aliquota/e n'	☐ Aliquota/e con sigillo n*			
NOTE:				
Il presente documento è da riferirsi alla Chain of Custody n° 18/04565				

Firma Tecnico ambiente Sc hel Coppa.

TUTTI I CAMPI DEL SEGUENTE MODELLO DEVONO ESSERE COMPILATI O BARRATI - MOD. PG-AMB 08.1 ALL.23 Rev.3

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57
Tel. +39 0931 1805351

Data 77 /08/Lory
Eseguito da: TECNICO CAMPIONATORE SPECIALIZATO

CAPS 171

ACQUA – Verbale di prelievo N.18/ 06715	Accettazione / (da compilarsi all'arrivo in laboratorio)
Intestatario RdP	☐ RELAZIONE
Sede Referente	
Rif. Committente Rif. Offerta	□ Foto
Denominazione dei campione	
ASDT 15	
Punto di campionamento	
Presenti al prelievo	reflua) Sotterranea
Tipologia acqua.	
	07/05
☐ ICRAM ☐ Altro	
Punto di prelievo: Pozzetto Piezometro	□ Vasca □ Rubinetto
□ Altro	
Coordinate GPS	3.0
Modalità di prelievo: Asi Prelievo istantaneo – Ora di campionamento 6	70
☐ Prelievo medio composto da prelievi istantanei ogni minuti,	dalle orealle ore
Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore	alle ore
-ELLow flow □ Bailer □ Altro	
Caratteristiche dell'acqua al momento del prelievo:	
Natura: 🗆 Organica 🗆 Mista 🖂 Inorganica	
Aspetto: Limpido Se Leggermente torbido 🗆 Torbido	□ Altro
	devole Pungente e/o irritante (ammoniaca)
☐ Solvente ☐ Idrocarburico ☐ Altr	0
Colore:	
Dati di campo: Temperatura 15,0 °C pH 6,97	TorbiditàFTU-NTU
Conducibilità 3545 uS/cm TDS g/L	Potenziale Redox 7 1 mV
Ossigeno disciolto 7 2 % 7 13 mg/L Altro	
Falda Surnata	nte/Materiale in sospensione
Portata spurgo < 1,0 l/m Litri Spurgati Lettura	freatimetrica 5, 42 6, Pr m
Condizioni atmosfericheT. Amb °C Profond	lità fondo piezometro
Il campione è costituito da:	
N° 1 aliquote in bottiglia in PET per un totale di 0,5 litri. In dettaglio	
N° aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione - TSI II NO
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei mi	etalli 🗆 Con sigillo
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei c	
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	☐ ambiente sc
N° 2 aliquote in vials in vetro da 40ml per analisi di composti organici volatili	☐ Cliente
N° 5 aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo
	☐ Aliquota/e con sigillo n°
NOTE:	
Il presente documento è da riferirsi alla Chain of Custody n° 18 / 0 4 3 6	5

Firma Tecnico ambiente Sc

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it

CARRAHA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351

CAPETTI

Intestatario RdP	Accettazione /
Sede Referente	□ RELAZIONE
Rif. Committente	Rif. Offerta:
	13 □ Foto
Luogo di campionamento SESTO F. /	
Punto di campionamentoASOT	
Presenti al prelievo	
Tipologia acqua:	☐ Di scarico (reflua)
□ Potabile	□ Altro
Metodo o procedura di campionamento	□ Altro
Punto di prelievo:	□ Vasca □ Rubinetto
□ Altro	
Coordinate GPS	
Modalità di prelievo: Exerelievo istantaneo – Ora di campionam	ento
☐ Prelievo medio composto da prelievi istantanei ogni	
Prelievo medio continuo con pompa peristaltica/autocampionatore d	
	Altro
Caratteristiche dell'acqua al momento del prelievo:	
Natura: Organica Mista	
Aspetto: Limpido ÆLeggermente torbido	
Odore:	
□ Solvente □ Idrocarburico	□ Altro
Colore: Incolore 18,2 Altro Dati di campo: Temperatura 18,2 °C pH 7	21 73
Conducibilità 7526 µ5/cm TDS	
Ossigeno disciolto 12 % 1/1 mg/L Altro	
Falda	
Portata spurgo Litri Spurgati	
Condizioni atmosfericheT. Amb *CT. Amb *CT.	Profondità fondo piezometro m
N°aliquote in bottiglia in PET per un totale di	i In detterilin
N° aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione ZKI 🗆 NO
N° 1 aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per	
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH pe	
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	□ ambiente sc
N°aliquote in vials in vetro da 40ml per analisi di composti organ	
N° 5 aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo
Campione costituito da Aliquota/e n°	☐ Aliquota/e con sigillo n°
NOTE:	
Il presente documento è da riferirsi alla Chain of Custody n° 15 16	N. 14 (=

Firma Tecnico ambiente Sc

Per la Ditta (Nome e Cognome)

he Cong

TUTTI I CAMPI DEL SEGUENTE MODELLO DEVONO ESSERE COMPILATI O BARRATI - MOD. PG-AMB 08.1 ALL.23 Rev.3

ambiente

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855824 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351 Data 23/03/2018

Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO

CMPETTI

ACQUA – Verbale di prelievo N. 18/ 06731	Accettazione/
Intestatario RdP A E	(da compilarsi all'arrivo in laboratorio)
SedeReferente	RELAZIONE
Rif. Committente Rif. Offerta:	
Denominazione del campione ASOT 03	D Foto
Luogo di campionamento SESTO F. NO	
Punto di campionamento A SOT 03	
Presenti al prelievo	
Tipologia acqua: ☐ Superficiale ☐ Di scarico (reflu	
Metodo o procedura di campionamento	5 🔲 ISTISAN 2007/31
	/asca Rubinetto
□ Altro	
Coordinate GPS	
Modalità di prelievo: Sa Prelievo istantaneo – Ora di campionamento 77	00
☐ Prelievo medio composto da prelievi istantanei ogni minuti, dalle	ore alle ore
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore	
Control of the Contro	
Caratteristiche dell'acqua al momento del prelievo:	
Natura: ☐ Organica ☐ Mista ☐ Inorganica	
	Altro
Odore:	
	The state of the s
E tour	
Colore: U Incolore 18,1 C pH 6/66	
	Torbidità 43 FTU-NTU
Conducibilità	Potenziale Redox — 755 mV
Ossigeno disciolto 645 % 0,615 mg/L Altro	
	Materiale in sospensione SI NO
	metrica 7,40 m
Condizioni atmosfericheT. Amb °CProfondità fo	ndo piezometro m
Il campione è costituito da:	
N°litri. In dettaglio:	
N°aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione ÆSI □ NO
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli	☐ Con sigillo
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri	Controcampione presso:
N°aliquote in bottigila in vetro silanizzato per analisi di diossine	ambiente sc
N° 2 aliquote in vials in vetro da 40ml per analisi di composti organici volatili	□ Cliente
N° 5 aliquote in bottiglia in vetro scuro da 11	☐ Ente di controllo
Campione costituito da ——Aliquota/e n*	☐ Aliquota/e con sigillo n*
NOTE:	
265 - 201 N	
If presente documento è da riferirsi alla Chain of Custody n° 18 104965	

Firma Tecnico ambiente Sc

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggemi, 57 Tel. +39 0931 1805351 Data 23 / 08/ 2018

Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO

MPETTI

ACQUA – Verbale di prelievo N. 18/ 06732	Accettazione (da compilarsi all'arrivo in laboratorio)
Sede Referente	□ RELAZIONE
Rif. Committente Rif. Offerta:	
Denominazione del campione ASOT 12	□ Foto
Luogo di campionamento (ESTO F.NO	
Punto di campionamento	
Presenti al prelievo	
Tipologia acqua: ☐ Superficiale ☐ Di scarico (ref	lua) 🔲 🖂 Sotterranea
☐ Potabile ☐ Altro_	
Metodo o procedura di campionamento □ ETAPAT IRSA 1030 □ ISTISAN 2007. □ ICRAM □ Altro	
Punto di prelievo: Pozzetto Piezometro	Vasca
□ Altro	
Coordinate GPS	
Modalità di prelievo: ** Prelievo istantaneo – Ora di campionamento	
□ Prelievo medio composto da prelievi istantanei ogni minuti, dal	
Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore	alle ore
Caratteristiche dell'acqua al momento del prelievo:	
Natura: Organica Mista Inorganica	
	Altro
Odore:	ole
☐ Solvente ☐ Idrocarburico ☐ Altro_	
Colore:	
Dati di campo: Temperatura 201/ °C pH 17.18	
Conducibilità 110 7 µS/cm TDS g/L	Potenziale Redox 247 mV
Ossigeno disciolto 68% 0,62 mg/L Altro	
	Materiale in sospensione
	timetrica Zi 89 m
	fondo piezometro m
Il campione è costituito da:	
N° aliquote in bottiglia în PET per un totale di	
N°aliquote in bottiglia sterile con tlosolfato per microbiologia	Filtrazione - E SI I NO
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli	
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianu	
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	□ ambiente sc
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili	☐ Cliente
N°aliquote in bottiglia in vetro scuro da 1l	☐ Ente di controllo
Campione costituito da PS Aliquota/e n°	☐ Aliquota/e con sigillo n'
NOTE:	
Il presente documento è da riferirsi alla Chain of Custody n° 18 104965	

Firma Tecnico ambiente Sc

TUTTI I CAMPI DEL SEGUENTE MODELLO DEVONO ESSERE COMPILATI O BARRATI - MOD. PG-AMB 08,1 ALL 23 Rev.3

ambiente

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.lt www.ambientesc.it

LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351

TEST CONTRACTOR OF THE CONTRAC
Data 23 108 12018
Eseguito da: TECNICO CAMPIONATORE SPECIALIZZATO
CUPETE,

ACQUA – Verbale di prelievo N. 18/ 06724	Accettazione/_
Intestatario RdP	(da compilarsi all'arrivo in laboratorio)
Sede Referente	☐ RELAZIONE
Rif. Committente Rif. Offerta:	T Case
Luogo di campionamento OSM NNONO	Foto
Punto di campionamento ASDT 0 9	
Presenti al prelievo	
Tipologia acqua: Superficiale Di scarico (reflu	ia) Potterranea
□ Potabile □ Altro_	asotterranea
Metodo o procedura di campionamento ➢ APAT IRSA 1030 ☐ ISTISAN 2007/0	05
Punto di prelievo: Pozzetto Piezometro	√asca □ Rubinetto
□ Altro	vasca Li Rubinetto
Coordinate GPS	
Modalità di prellevo: Sièrelievo istantaneo – Ora di campionamento 13	*3.0
☐ Prelievo medio composto da prelievi istantanel ogni minuti, dalle	
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle ore	
□ Low flow □ Bailer □ Altro	
Caratteristiche dell'acqua al momento del prelievo:	
Natura: ☐ Organica ☐ Mista ☐ Inorganica	
	Altro
Odore: 🗆 Inodore 🗆 Materiale in fermentazione 🖼 Sgradevo	
	at angente of a meant farminance,
Colore:	
Dati di campo: Temperatura 27,1 °C pH 6,99	Torbidità 45 FTU-NTU
Conducibilità / 6 / 9 µS/cm TD5 g/L	Potenziale Redox - 2/8 mV
Ossigeno disciolto 10.1 % 1.03 mg/L Altro	
	/lateriale in sospensione , □ SI □ NO
Portata spurgo Litri Spurgati Lettura freat	metrica 4,0 b. P. m
	ndo piezometro m
Il campione è costituito da:	
N°aliquote in bottiglia in PET per un totale di	
N°aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione - SI 🗆 NO
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli	☐ Con sigillo
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri	Controcampione presso:
N°aliquote in bottiglia in vetro silanizzato per analisi di diossine	ambiente sc
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili	☐ Cliente
N°aliquote in bottiglia in vetro scuro da 11	☐ Ente di controllo
Campione costituito da Aliquota/e nº	☐ Aliquota/e con sigillo n°
NOTE:	
Il presente documento è da riferirsi alla Chain of Custody n° 18 104965	

Firma Tecnico ambiente Sc

4	
4	
à	
5	
7	
7	
0	
۵	
\leftarrow	
_	
\equiv	

Rev.00 del 16/05/2016

de	
2	
7.2	
Luogo	

Orario inizio campionamento: 4 5 9 0

Data 2 4 Cod (vor d

Tecnico (MPPE (TI

Orario fine campionamento/17/2

	74	Controllo	Controllo	Controllo	Controllo	Controllo	Controllo
strumento	1VI. 742						
pHmetro	950639	5679					
Conducimetro	950639	2071					
Ossimetro	950639	You					
Sonda Redox	950639	652					

Orario inizio campionamento:

Orario fine campionamento:

strumento	M. Az	Controllo	Controllo	Controllo	Controllo	Controllo	Controllo
pHmetro							
Conducimetro							
Ossimetro							
Sonda Redox							

pHmetro: I controlli di taratura si effettuano su tampone pH 7 con un margine di accettazione di +/- 0.2 upH. (6,8-7,2)

Conducimetro: I controlli di taratura si effettuano su tampone a 1413 µS/cm con un margine di accettazione di +/- 10% (1271-1554 µS/cm)

Ossimetro: la taratura è accettabile quando il valore di saturazione rilevato dallo strumento all'aria è compreso fra 104% e 112%

Sonda Redox: I controlli si effettuano su soluzione a potere redox 220 mV con un margine di accettazione di +/- 10% (198-242 mV)

n.b. In caso il controllo non rientri nei margini di accettabilità si effettua nuovamente la taratura dello strumento e si effettua nuovamente una verifica

ambientale a laboratori

LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggenti, 57 Tel: +39 0931 1805351

RAPPORTO DUNTERVENTO E CHAIN OF CUSTODY

ODL

Chain of Custody n. 18/	04966						0.		ALISI (ANALISI O PUNTO OFFERTA COME DA PROPOSTA	FERTA	OME DA	PROPOST		
1,000	Intestazione RdP	4					-		二二	TECNICO/ECONOMICA ALLEGATA	NOMICA	ALLEGA	TAD	-	Note
)							e ile	NAID!							
Thense						4	noisa soe Ih	ade in							
	T/A.	E-Wolf.				pod	_	auni						_	
	RIF TO CONTRATTO Nº	RATTO N°			T	isiT i		Spc p	-						ŀ
					T	įp a	-								
	LUGGO DI CAMPIONAMENTO:	PIONAMENTO	-	I		nois	-	O'E I C					- 11	-	
	NOTE ASSUMPTIVE.	TVE.				Condi	meT qmeT	dub							
	LABORATORIO	CONSILENZA	- 602			_								Ę	
RAPPORTO DI PROVA Enissioni DADC da a	DENOMINAZIONE DEL CAMPIONE		Verbale of prefievo	DATA	ORA	Refriger Amblen									
	Cat ON		7	460							100				
	0 T T O T		7	dolo		0									
	Service		2	11		0 0									
						0									
						0									
														28	
						0	H								
						0								1995	
						_									
															H
	100					0	1								
ALIE			4.14	_ \		7001	770	8						100000	
A STRIONAMENTO	A THE STATE	10 Set	ANA	1	7	> CALVINA ACE		7							
							Conformitä	響			-				
. 11	Down.	Presentin carico das (Firms)	76	0	July of	N //s	迈口	-			Kin Tol.		-	One Fos.	
All States	100000	(willy	11		27/01	01	- 1	Ser C	CAMPIONATORI	FI.	DATA	TA INCRESSO	SQ CIBICITA	INGRESSO	USCTA
	Dela.	Presa in carico da: (Firms)			100		in i	2 1	100						
								 -							
	Deta:	Presa in carico de. (Fronte)			Deta		2 C	2 0			-				
100							ш								
					1 H	EMESSO DA HESP. SEZ. EMPONMENTI	NAMENT								NEV.

LABORATORI:

CARRARA (MS) - 54033 VIa Frassina, 21

CARRARA (MS) - 54033 VIa Frassina, 21

Eseguito da: Tecnico Campionatore specializzato

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.it www.ambientesc.lt

Firma Tecnico ambiente Sc

Colo Cyll

Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) 96010 Contrada Biggerni, 57 Tel. +39 0931 1805351

Per la Ditta (Nome e Cognome)

MPETTI

ACQUA – Verbale di prelievo N. 18/ 06723	Accettazione//	
Intestatario RdP(A-E	(da compilarsi all'arrivo in laboratorio)	
Sede FIRENZE Referente	☐ RELAZIONE	
Rif. Committente Rif. Offerta:		
Denominazione del campione ASOT 00		
Luogo di campionamento AENOPONTO (FI)		
Punto di campionamento ASOT 09		
Presenti al prelievo		
Tipologia acqua: ☐ Superficiale ☐ Di scarico (reflu	a) ESotterranea	
□ Potabile □ Altro		
Metodo o procedura di campionamento SE APAT IRSA 1030 ☐ ISTISAN 2007/0		
□ ICRAM □ Altro		
Punto di prelievo: 🗆 Pozzetto 🔁 Piezometro 🗀 Vasca 🗀 Rubinetto		
□ Altro		
Coordinate GPS		
Modalità di prelievo: 😕 Prelievo istantaneo – Ora di campionamento 🗸 O O		
☐ Prelievo medio composto da prelievi istantanei ogni minuti, dalle ore alle ore		
☐ Prelievo medio continuo con pompa peristaltica/autocampionatore dalle orealle ore		
EPLow flow Bailer Altro		
Caratteristiche dell'acqua al momento del prelievo:		
Natura: ☐ Organica ☐ Mista ☐ Inorganica		
	Altro	
Odore:		
Colore: Incolore Altro Dati di campo: Temperatura 197 C pH 738 Torbidità 29 FTU-NTU		
Conducibilità OSZ µS/cm TDS g/L Potenziale Redox — 182 mV		
Ossigeno disciolto 43 % 1,72 mg/L Altro		
FaldaSurnatante/Materiale in sospensione		
Portata spurgo Litri Spurgati Lettura freatir	metrica 2,90 b, p, m	
Condizioni atmosfericheT. Amb °C Profondità fondo piezometro m		
Il campione è costituito da:		
N°aliquote in bottiglia in PET per un totale dilitri. In dettaglio:		
N°aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione ÆSI 🗆 NO	
N°allquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli		
N°allquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso:		
N°aliquote in bottiglia in vetro sitanizzato per analisi di diossine		
N°aliquote in vials in vetro da 40ml per analísi dí composti organici volatili		
N°aliquote in bottiglia in vetro scuro da 1	☐ Ente di controllo	
Campione costituito da 🔲 Aliquota/e nº 🔝 🔲 Aliquota/e con sigillo nº 🔝		
NOTE:		
Il presente documento è da riferirsi alla Chain of Custody n°		

TUTTI I CAMPI DEL SEGUENTE MODELLO DEVONO ESSERE COMPILATI O BARRATI - MOD. PG-AMB 08.1 ALL.23 Rev.3

ambiente

ingegneria ambientale e laboratori PEC: ambientesc@messaggipec.il www.ambientesc.it LABORATORI:

CARRARA (MS) - 54033 Via Frassina, 21 Tel. +39 0585 855624 - Fax +39 0585 855617

PRIOLO GARGALLO (SR) - 96010 Contrada Biggemi, 57 Tel. +39 0931 1805351

Data (9 /08/2018

Eseguito da: Tecnico Campionatore Specializzato

— CM PE77/

ACQUA – Verbale di prelievo N. 18/ 06720	Accettazione/	
Intestatario RdP (AC	(da compilarsi all'arrivo in laboratorio)	
SedeReferente	☐ RELAZIONE	
Rif. Committente		
Denominazione del campione ASOT 10		
Luogo di campionamento AE NO PO 170 #1		
Punto di campionamento ASOT 1.0		
Presenti al prelievo □ Superficiale □ Di scarico {re	flua) ESotterranea	
Tipologia acqua: Superficiale Di scarico (reflua) Altro		
Metodo o procedura di campionamento CAPAT IRSA 1030 🔲 ISTISAN 2007	7/05 ISTISAN 2007/31	
Punto di prelievo:	□ Vasca □ Rubinetto	
	a vasca Li Rubinetto	
Coordinate GPS		
Modalità di prelievo: Prelievo istantaneo – Ora di campionamento 11:20		
Prelievo medio composto da prelievi istantanei ogni minuti, dalle ore alle ore		
Prelievo medio contínuo con pompa peristaltica/autocampionatore dalle orealle orealle ore		
Clow flow Bailer Altro		
Caratteristiche dell'acqua al momento del prelievo:		
Natura: ☐ Organica ☐ Mista ☐ Inorganica		
	□ Altro	
	vole Pungente e/o irritante (ammoniaca)	
Colore: 🗆 Incolore 🗆 Altro		
Dati di campo: Temperatura 7017 °C pH 4.37 Torbidità 33 FTU-NTU		
Conducibilità 7-45 µS/cm TDS g/L Potenziale Redox 53 mV		
Ossigeno disciolto 46 % 1, 61 mg/L Altro		
Falda Surnatante/Materiale in sospensione		
Portata spurgoLitri SpurgatiLettura free	atimetrica 770 b p. m	
	fondo piezometro m	
Il campione è costituito da:		
N°aliquote in bottiglia in PET per un totale di		
N°aliquote in bottiglia sterile con tiosolfato per microbiologia	Filtrazione X SI □ NO	
N°aliquote in bottiglia in PE da 100ml con aggiunta di HNO3 per analisi dei metalli		
N°aliquote in bottiglia in PET da 100ml con aggiunta di NaOH per analisi dei cianuri Controcampione presso:		
N°aliquote în bottiglia în vetro sifanizzato per analisi di diossine □ ambiente sc		
N°aliquote in vials in vetro da 40ml per analisi di composti organici volatili Cliente		
N°aliquote in bottiglia in vetro scuro da 11 Ente di controllo		
Campione costituito da	☐ Aliquota/e con sigillo n°	
NOTE:		
Il presente documento è da riferirsi alla Chain of Custody n°		

Per la Ditta (Nome e Cognome)

Firma Tecnico ambiente Sc

are my