

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

E.N.A.C ENTE NAZIONALE per L'AVIAZIONE CIVILE

Committente Principale

AEROPORTO INTERNAZIONALE DI FIRENZE AMERIGO VESPUCCI

Opera

PROJECT REVIEW - PIANO DI SVILUPPO AEROPORTUALE AL 2035

Titolo Documento

NUOVO TERMINAL PASSEGGERI

Relazioni Specialistiche - Relazione Geologica Terminal

Livello di Progetto

SCHEDE DI APPROFONDIMENTO PROGETTUALE A LIVELLO MINIMO DI PROGETTO DI FATTIBILITÀ TECNICA ED ECONOMICA

LIV	REV	DATA EMISSIONE	SCALA	CODICE FILE
				FLR-MPL-PSA-TRM2-005-GL-RT_Rel Geo Terminal
PSA	02	MARZO 2024	N/A	TITOLO RIDOTTO
				Rel Geo geologica

02	03/2024	EMISSIONE PER PROCEDURA VIA-VAS	M.SANI	D.PERRI	L.TENERANI
01	03/2023	EMISSIONE PER APPROVAZIONE IN LINEA TECNICA DI ENAC	M.SANI	D.PERRI	L.TENERANI
00	10/2022	EMISSIONE PER DIBATTITO PUBBLICO	M.SANI	D.PERRI	L.TENERANI
REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

GRUPPO DI PROGETTAZIONE	SUPPORTI SPECIALISTICI
Toscana Aeroporti engineering	PROGETTAZIONE SPECIALISTICO
DIRETTORE TECNICO Ing. Lorenzo Tenerani	~ <i>I</i> / <i>U</i>
Ordine degn ingegneri di iviassa cantata ii 031	
	TERRA & OPERE S.R.L.
	SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE
RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE Arch.David Perri Ordine degli Architetti di Lucca N°1157	Dott.Geol. Michele Sani Ordine dei Geologi della Toscana n°383
	Gruine der Geologi della Toscana il 303
	DIRETTORE TECNICO Ing. Lorenzo Tenerani Ordine degli Ingegneri di Massa Carrara n°631 RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE Arch. David Perri

È SEVERAMENTE VIETATA LA RIPRODUZIONE E/O LA CESSIONE A TERZI SENZA AUTORIZZAZIONE DELLA COMMITTENTE

RELAZIONE GEOLOGICA TERMINAL

GRUPPO DI LAVORO

responsabile di commessa e coordinamento dr. geol. Michele Sani

collaborazione testi: dr. geol. Fabio Picchi figure e tavole fuori testo: dr.geol. Paride Bigazzi

RELAZIONE GEOLOGICA TERMINAL

INDICE

1. Premessa	5
1.1. Generalità	5
1.2. Descrizione schematica delle opere e degli interventi	£
1.3. Individuazione dei vincoli presenti	g
2. Fasi di lavoro e indagini	10
3. Geologia	11
3.1. Evoluzione tettonica del Bacino di Firenze-Prato-Pistoia	11
3.2. Geologia e stratigrafia della Piana di Firenze	13
3.2.1. Substrato pre-lacustre	
3.2.2. Depositi pre-lacustri	14
3.2.3. Depositi lacustri e fluviali del bacino villafranchiano	14
3.2.4. Sintema del Bacino di Firenze-Prato-Pistoia	
3.2.4.1. Argille turchine AUCTT	15
3.2.4.2. Depositi clastici di delta e fan-delta dei paleo-torrenti	
3.2.5. Sintema di Firenze (Depositi alluvionali antichi)	
3.2.6. Sintema del Fiume Arno (Depositi alluvionali recenti)	
3.3. Orizzonti "Firenze"	
3.3.1. Orizzonte "Firenze 1"	
3.3.2. Orizzonte "Firenze 2"	
3.3.3. Orizzonte "Firenze 3"	
3.3.4. Orizzonte "Firenze 4"	
3.3.5. Considerazioni sull'andamento degli orizzonti "Firenze"	
3.4. Geologia dell'area di intervento	
3.4.1. Depositi olocenici	
3.4.1.1. Depositi alluvionali recenti terrazzati e non terrazzati (bna1)	
4. Idrogeologia	
4.1. Aspetti idrogeologici generali	
4.2. Permeabilità delle unità litostratigrafiche affioranti nell'area in esame	
4.3. Superficie piezometrica	
5. Geomorfologia e stabilità	
5.1. Introduzione	
6. Classi di pericolosità	
6.1. Pericolosità geologica	
6.2. Pericolosità idraulica	
6.2.1. Piano strutturale e PGRA	
6.2.2. L.R. 41/2018	
6.3. Pericolosità sismica	
7. Classi di fattibilita'	
7.1. R.U. approvato	
7.1.1. Fattibilità geologica	
7.1.2. Fattibilità idraulica	
7.1.3. Fattibilità sismica	
7.2. P.O. adottato	
7.2.1. Fattibilità in aree classificate a pericolosità geologica media G.2 (art. 83 N.T.A.)	
7.2.2. Fattibilità in aree classificate a rischio di alluvioni (art. 84 N.T.A.)	
7.2.3. Fattibilità in aree non soggette a rischio alluvioni (art. 84 N.T.A.)	
7.2.4. Fattibilità in aree classificate a pericolosità sismica media S2 (art. 85 N.T.A.)	
8. Sismicità e definizione dei parametri sismici	
8.1. Zona sismica	

RELAZIONE GEOLOGICA TERMINAL

8.2. Parametri sismici	34
8.2.1. Aspetti generali	
8.2.2. Categoria di di sottosuolo (approccio semplificato)	
8.2.3. Categoria topografica	
8.2.4. Parametri dell'azione sismica locale	
9. Modello geologico del sottosuolo	
10. Modello geotecnico del sottosuolo	
11. Liquefazione	
12. Terre e rocce da scavo	
13. Indicazioni relative alla realizzazione dei lavori	
13.1. Indicazioni inerenti la gestione delle acque di aggottamento	
13.2. Indicazioni sulla necessità di opere provvisionali e loro tipologia	
13.3. Indicazione sulla tutela dei suoli interessati dalle aree di cantiere	
13.4. Indicazione degli interventi di ripristino delle aree a fine cantiere	
14. Conclusioni	
15. Bibliografia	
Figura 1 - Ubicazione dell'area di intervento nella quale sorgerà il nuovo Teri dell'Aeroporto Internazionale Amerigo Vespucci di Firenze e le vasche di autoconter (scala 1:10 000 – estratto dagli elementi 263150 e 275030)	nimento idraulico
(scala 1:10.000 – estratto dagli elementi 263150 e 275030)	
Figura 2 - Ubicazione dell'area di intervento nella quale sorgerà il nuovo Ter	
dell'Aeroporto Internazionale Amerigo Vespucci di Firenze e le vasche di autoconter	
(scala 1:5.000 – estratto dai fogli 19K26, 19K27, 19K34, 19K35)	
Figura 3 - Orizzonti stratigrafici presenti nel sottosuolo dell'area di Firenze (estratto di 1976b).	•
Figura 4 - Carta geologica dell'area in esame.	
Figura 5 - Carta idrogeologica dell'area in esame.	
Figura 6 - Ubicazione del riferimento per la determinazione dei parametri sismici	
Figura 7 - Prova sismica down-hole in S3 DH (dicembre 2016).	
Figura 8 - Spettri di risposta elastici per i diversi stati limite.	
Figura 9 - Sondaggi in area terminal e trincea Guidoni tramvia linea 2	
Figura 10 - Carta di plasticità di Casagrande per i depositi [Dr], in alto, e [Da], in bass	
evidenzia il valore medio)	
INDICE DELLE TABELLE	
Tabella 1 - Classi di permeabilità.	
Tabella 1 - Classi di permeabilità	25
Tabella 1 - Classi di permeabilità	25 46

* * *

RELAZIONE GEOLOGICA TERMINAL

1. Premessa

1.1. Generalità

Il presente documento costituisce la Relazione Geologica dell'intervento relativo alla realizzazione del nuovo Terminal Passeggeri e le relative opere connesse (fra cui gli interventi per la gestione del rischio idraulico comprensivi della Vasca di Autocontenimento idraulico a servizio della Caserma Marescialli, la vasca di autocontenimento idraulico a servizio del Terminal e il canale di gronda per la gestione del rischio derivante dal Canale di Cinta Orientale) (Comune di Firenze, Città Metropolitana di Firenze – figure 1 e 2), parte integrante della Project Review del Piano di Sviluppo Aeroportuale (o Masterplan) al 2035 dell'aeroporto di Firenze, qui sviluppata e dettagliata ad un livello tecnico ritenuto congruo con le finalità della presente fase procedurale, comunque non inferiore a quello del progetto di fattibilità tecnica ed economica di cui all'art. 41 del D. Lgs. n. 36/2023.

Il citato approfondimento tecnico viene previsto ad integrazione della Sezione Generale della Project Review del Piano di Sviluppo Aeroportuale al 2035, predisposta in aderenza alle normative e/o regolamenti specifici del settore aeronautico, rispetto alla quale si pone l'obiettivo di elaborare ulteriori elementi tecnici di studio, dettaglio, analisi e progettazione, ritenuti necessari ai fini del compiuto espletamento dei procedimenti amministrativi (di compatibilità ambientale e di autorizzazione) ai quali risulta per legge assoggettato lo strumento del Piano di Sviluppo Aeroportuale, così integrato in modo da rafforzarne la valenza e la funzione progettuale, strettamente interconnessa con quella pianificatoria e programmatica di investimento.

Le informazioni di seguito riportate vanno, pertanto, analizzate in stretta correlazione rispetto ai più ampi ed estesi aspetti tecnico-economici trattati all'interno dei documenti afferenti alla Sezione Generale del Masterplan, con i quali esse si relazionano secondo un processo capillare di progressivo approfondimento e dettaglio, ritenuto utile per una più completa, consapevole e piena visione dell'insieme delle previsioni di trasformazione dello scalo aeroportuale e delle aree circostanti, e per una più esauriente analisi e comprensione della Project Review del Piano di Sviluppo Aeroportuale.

La citata Project Review costituisce la nuova formulazione tecnica delle previsioni progettuali e di investimento che ENAC prevede di attuare, nel medio-lungo periodo (orizzonte

RELAZIONE GEOLOGICA TERMINAL

2035, coerente con quello del Piano Nazionale degli Aeroporti in fase di aggiornamento), relativamente all'infrastruttura aeroportuale di Firenze, redatta dal Gestore aeroportuale di intesa con l'Ente regolatore in attuazione degli obblighi di miglioramento, ottimizzazione e sviluppo dell'aeroporto insiti nel contratto di concessione che lega lo stesso Gestore alle Istituzioni dello Stato (Ministero delle Infrastrutture e ENAC) per la gestione totale dell'infrastruttura aeroportuale (bene dello Stato). Ne consegue che l'insieme documentale di cui la presente relazione costituisce parte integrante deve essere visto e analizzato nella propria autonomia e indipendenza sostanziale, per quanto inevitabilmente consequenziale rispetto al precedente Masterplan 2014-2029 col quale risultano ancora sussistenti più elementi di dialogo che, tuttavia, ci si pone l'obiettivo di non assurgere a valenza prodromica e a funzionalità necessaria per una completa illustrazione, definizione e comprensione del nuovo Piano di Sviluppo Aeroportuale 2035.

Si auspica, infine, di aver esaurientemente e correttamente tradotto e trasferito, all'interno della documentazione di cui al nuovo Masterplan 2035, quel prezioso bagaglio di esperienza e quell'insieme di utili risultanze derivanti dal dialogo costruttivo e dialettico che, nell'ultimo decennio, ha visto in più momenti la partecipazione di ENAC, del Gestore aeroportuale, degli Enti/Amministrazioni interessati, delle Istituzioni nazionali e regionali, dei vari stakeholders e della cittadinanza attiva intorno ai temi relativi al trasporto aereo, alla multimodalità della mobilità, al ruolo della rete aeroportuale territoriale toscana e al futuro dello scalo aeroportuale di Firenze, che ENAC vede sempre più strategico, integrato e funzionale alla rete nazionale ed europea dei trasporti.

Il presente studio descrive le caratteristiche geologiche (litologiche e stratigrafiche), idrogeologiche, idrauliche, geomorfologiche e di stabilità, di pericolosità (geologica, idraulica e sismica) dell'area in oggetto, riassume i risultati delle indagini geognostiche già disponibili sull'area di progetto (al momento senza farne di nuove), determina i criteri di fattibilità dell'intervento (geologico, idraulico e sismico) e contiene la modellazione geologica, geotecnica e sismica del terreno.

Descrizione schematica delle opere e degli interventi

Il nuovo terminal si svilupperà su una superficie fino a 40.000m² con una impronta dell'edificio che al piano terra occupa un'area di circa 20.000m².

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

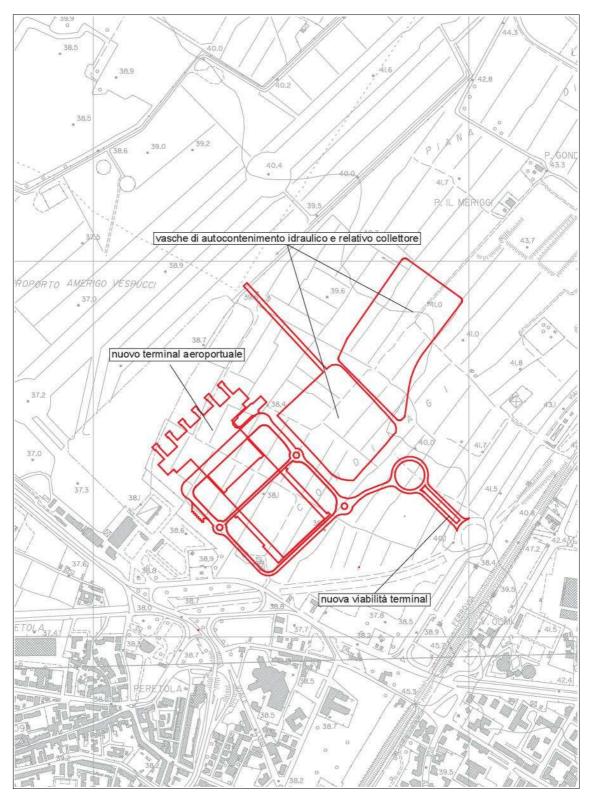


Figura 1 - Ubicazione dell'area di intervento nella quale sorgerà il nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo Vespucci di Firenze e le vasche di autocontenimento idraulico (scala 1:10.000 – estratto dagli elementi 263150 e 275030).

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

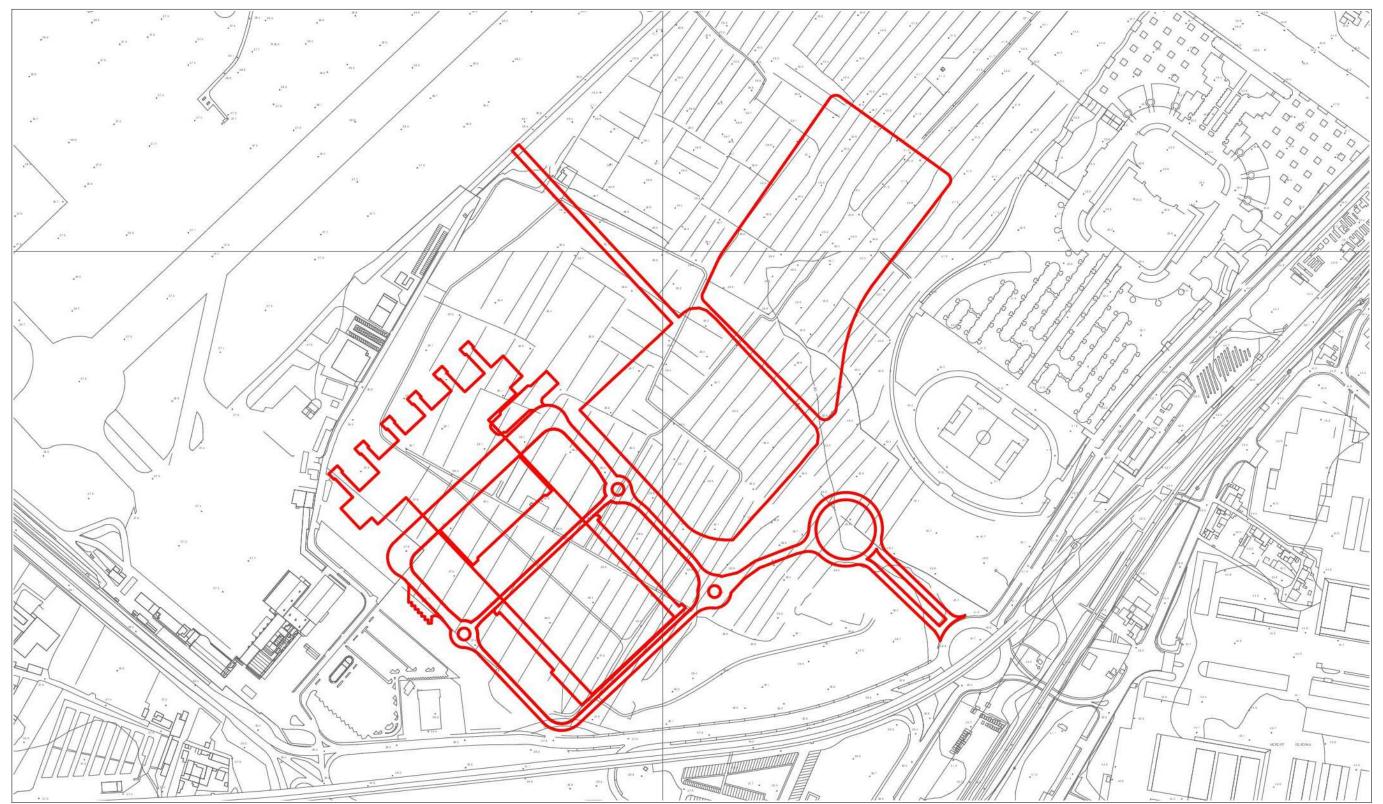


Figura 2 - Ubicazione dell'area di intervento nella quale sorgerà il nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo Vespucci di Firenze e le vasche di autocontenimento idraulico (scala 1:5.000 – estratto dai fogli 19K26, 19K27, 19K34, 19K35).

RELAZIONE GEOLOGICA TERMINAL

Come risulta dagli elaborati progettuali redatti per conto di Toscana Aeroporti Engineering S.r.l., il nuovo Terminal Passeggeri sorgerà a nord est di quello attuale e sarà composto da due corpi di fabbrica, uno destinato agli arrivi e uno destinato alle partenze, che si si svilupperanno su tre livelli fuori terra, che includono un piano mezzanino, e su un livello tecnico interrato che ospita i collegamenti per la gestione dei bagagli outbound. Queste superfici e tutta l'area destinata ai parcheggi saranno sormontate da una copertura verde composta da lunghi filari di vigna autoctona contenuti dentro vasche prefabbricate supportate da travi in cemento composito che si appoggiano a leggere strutture metalliche ramificate, che rappresenta e omaggia l'iconico paesaggio toscano attraverso un'architettura che si integra completamente nella topografia locale. Saranno inoltre realizzati gli interventi per la gestione del rischio idraulico comprensivi della Vasca di Autocontenimento idraulico a servizio della Caserma Marescialli, la vasca di autocontenimento idraulico a servizio del Terminal e il canale di gronda per la gestione del rischio derivante dal Canale di Cinta Orientale.

Viste le caratteristiche del progetto in esame, ai sensi del Decreto del Presidente della Giunta Regionale 19 gennaio 2022 n. 1/R e della Delibera della Giunta Regionale 31 gennaio 2022, n. 81, si evince che l'intervento ricada in classe d'indagine n. 4 (quattro) riferita ad opere di volume totale superiore a seimila metri cubi o, in ogni caso, sempre per opere di volume, se l'altezza in gronda è superiore a venti metri. Con riferimento alla tipologia delle opere in progetto e alla classe di pericolosità sismica (S3), la valutazione dell'azione sismica verrà determinata mediante l'elaborazione della risposta sismica locale (RSL).

1.3. Individuazione dei vincoli presenti

L'area in cui saranno realizzati gli interventi in progetto dal punto della presenza dei principali vincoli territoriali presenta attualmente la seguente situazione:

- l'area di progetto non è interessata dal Vincolo Idrogeologico ai sensi del Regio Decreto Legge n. 3267 del 30 dicembre 1923;
- l'intervento per una piccola porzione ricade all'interno di un'area di notevole interesse pubblico di cui al Decreto Ministeriale 20 maggio 1967 che ha istituito una fascia di vincolo paesaggistico nella fascia di terreno di 300 m di larghezza da ogni lato dell'autostrada Firenze-Mare, ricadente nei territori dei Comuni di Firenze, Sesto Fiorentino, Campi di Bisenzio e Prato. Il bene paesaggistico risulta interferito da un'area destinata

RELAZIONE GEOLOGICA TERMINAL

all'ampliamento del piazzale aeromobili Apron 100, dalla realizzazione del nuovo hangar

adibito alla riprotezione dell'attuale hangar a servizio della scuola di volo e dalla viabilità di

connessione al nuovo Terminal e dai parcheggi già esistenti all'interno del sedime

aeroportuale, mentre non si riscontrano sovrapposizioni con l'area interessata dalla

costruzione del nuovo Terminal passeggeri.

2. Fasi di lavoro e indagini

La presente relazione è stata articolata nelle seguenti fasi di lavoro ed è basata sulle

seguenti indagini:

consultazione delle Indagini geologico-tecniche di supporto al Piano Strutturale del Comune

di Firenze (Variante al P.S. 2010 approvato con Deliberazione C.C. n. 2015/C/00025 del 2

aprile 2015 e nuovo P.S. adottato con D.C.C. n.6 del 2023);

presa visione del Piano di Bacino del Fiume Arno – Stralcio Assetto idrogeologico (PAI -

Norme di attuazione ed allegati) redatto dall'Autorità di Bacino Distrettuale dell'Appennino

Settentrionale;

• presa visione del Piano di Gestione del Rischio Alluvioni (PGRA) redatto dall'Autorità di

Bacino Distrettuale dell'Appennino Settentrionale;

· esecuzione di alcuni sopralluoghi sul posto e nelle aree immediatamente limitrofe, per

prendere visione della situazione attuale, per la comprensione della situazione

geomorfologica e della stabilità generale del sito;

valutazione della fattibilità all'intervento in progetto dal punto di vista geologico, idraulico e

sismico (si veda il § 7);

• consultazione delle relazioni geologiche redatte dal sottoscritto per la nuova pista e per le

opere accessorie dell'Aeroporto Internazionale Amerigo Vespucci di Firenze;

• consultazione della relazione geologica dal titolo "Progetto esecutivo per la realizzazione del

nuovo sistema di accesso all'aerostazione passeggeri" redatta dal sottoscritto in data 12

febbraio 2018;

· consultazione della relazione geologica dal titolo "Pensilina temporanea di protezione

percorso pedonale Terminal Aeroportuale – Stazione Tramvia" redatta dal sottoscritto in data

15 novembre 2018;

· utilizzo delle indagini geognostiche (sondaggi a carotaggio continuo, prove geotecniche di

RELAZIONE GEOLOGICA TERMINAL

laboratorio, indagini geofisiche) eseguite in corrispondenza della Hall Arrivi per conto di Toscana Aeroporti S.p.A.;

- consultazione delle indagini geognostiche che costituiscono la Campagna di indagini geognostiche per la realizzazione della nuova pista e delle opere accessorie dell'Aeroporto Internazionale Amerigo Vespucci di Firenze eseguite dalla società Ambiente sc di Carrara, su incarico di Toscana Aeroporti Engineering S.r.l., nel 2015 e nel 2017;
- · consultazione della relazione geologica-idrogeologica a supporto del progetto di Completamento dei collettori di scarico acque meteoriche ed interventi provvisionali di messa in sicurezza idraulica di cui risulta progettista Politecnica Soc. Coop., eseguita nel 2016;
- consultazione del progetto esecutivo per gli Interventi di riqualifica infrastruttura di volo e aree strip redatto da Toscana Aeroporti Engineering S.r.l. nel gennaio 2021;
- analisi dei risultati delle indagini geognostiche pregresse a disposizione per la caratterizzazione stratigrafica e geotecnica dei terreni di fondazione del manufatto in progetto;
- definizione della categoria di sottosuolo secondo l'approccio semplificato ai sensi del § 3.2.2 del D.M. 17 gennaio 2018 (si veda il § 8.1);
- · determinazione dei parametri sismici;
- elaborazione del modello geologico del sito e del modello geotecnico del sottosuolo (§ 9);
- indicazione dei valori caratteristici dei parametri geotecnici ricavati dalle indagini pregresse (§ 10);
- · valutazioni in merito alla suscettibilità dei terreni nei confronti del fenomeno della liquefazione (§ 11).

3. Geologia

3.1. Evoluzione tettonica del Bacino di Firenze-Prato-Pistoia

Il bacino di Firenze-Prato-Pistoia, posto ad una quota media di 45 m s.l.m., si sviluppa in direzione NW-SE per una lunghezza di 45 km e una larghezza massima di circa 10 km. Esso è delimitato a nord-nord-est dai Monti della Calvana e dal Monte Morello, con un'altitudine di circa 900 m s.l.m. e a sud-sudovest dal Montalbano con un'altitudine di oltre 600 m s.l.m.. In questo contesto geografico è prevista la realizzazione del nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo Vespucci di Firenze. Il bacino di Firenze-Prato-Pistoia

RELAZIONE GEOLOGICA TERMINAL

presenta una geometria a semi-graben fortemente asimmetrica, con il margine nord-orientale molto acclive, in corrispondenza della faglia principale di Fiesole e da una rampa di raccordo poco inclinata localmente interessata da faglie minori sul versante sud-occidentale. I depositi di riempimento del bacino si sono sviluppati con ampi delta e fan-delta clastici, sviluppati alla base del sistema di faglie maggiori. In questo tipo di bacini il sollevamento tettonico dei margini, e il corrispondente allargamento del drenaggio fluviale, portano alla formazione di potenti seguenze sedimentarie clastiche grossolane in corrispondenza delle aree centrali. Nel dettaglio, dal punto di vista tettonico-geometrico, l'area di Firenze è caratterizzata dalla presenza di una fascia interessata da più faglie disposte a gradinata e in parte sepolte al di sotto dei depositi fluvio-lacustri villafranchiani, localizzata nell'area pedemontana a nord della pianura di Firenze, e dalla presenza delle faglie sepolte Castello-Scandicci e Maiano-Bagno a Ripoli che interessano il substrato pre-lacustre, trasversalmente al bacino. Le faglie controllano la morfologia dell'area fiorentina determinando, rispetto al basso morfologico-strutturale della pianura di Firenze, l'alto delle colline di Castello-Trespiano-Fiesole nel settore settentrionale, e delle colline di Bellosguardo-Arcetri-S.Miniato a Monte a sud della città. L'area fiorentina risulta quindi delimitata a nord da lineamenti tettonici paralleli con direzione NNO-SSE, che hanno giocato come faglie a movimento verticale distensivo determinando lo sviluppo del bacino fluvio-lacustre con il ribassamento del blocco meridionale. La principale attività delle faglie è riferita a un periodo anteriore al Pliocene inferiore, periodo in cui si è determinato il maggiore movimento verticale; successivamente si è registrata una ripresa di movimenti al tetto del Pliocene inferiore, a cui è associato il movimento verticale responsabile dell'origine della depressione lacustre, e un'ultima pulsazione al termine del Villafranchiano, che ha determinato il sollevamento del blocco di Firenze rispetto al resto del lago e ha stabilito i rapporti tettonicogeometrici attuali. La master fault, a cui viene attribuito il principale movimento verticale, è manifestata da una scarpata tettonica che ha determinato lo sviluppo dei ripidi versanti meridionali delle colline di Castello-Monte Rinaldi-Fiesole; in realtà si tratta di una zona interessata da varie faglie disposte a gradinata, di cui solo la più orientale affiora con la scarpata degradata dei versanti di Fiesole, mentre le altre sono sepolte sotto i depositi villafranchiani di San Domenico, o addirittura sotto l'area delle Cure-Campo di Marte. Tali faglie sono dislocate da lineamenti tettonici trasversali che interessano il substrato con generali direzioni NNE-SSO, e il cui movimento risulta prevalentemente verticale distensivo. Le faglie a

RELAZIONE GEOLOGICA TERMINAL

carattere prevalentemente distensivo, di Castello-Scandicci a ovest e di Maiano-Bagno a Ripoli a est, sono risultate attive a più riprese a partire dal Pliocene inferiore, giocando successivamente, verso la fine del Villafranchiano, un ruolo determinante per il sollevamento dell'area fiorentina rispetto al restante bacino lacustre. Questi elementi strutturali hanno sollevato la pianura di Firenze, ribassando il blocco a NO nel caso della faglia occidentale, e il blocco a SE per la faglia orientale con un rigetto globale stimabile in alcune centinaia di metri. Nel Villafranchiano sono state documentate due fasi tettoniche lungo tali lineamenti, probabilmente in regime compressivo, in accordo con evidenze regionali. Nella zona nordorientale dell'area fiorentina lungo le colline di Fiesole-Monte Rinaldi, il motivo strutturale è dato da una piega anticlinalica con asse orientato NO-SE, delimitato a SO dalla omonima zona di faglia che mette in contatto le arenarie torbiditiche del Macigno con i depositi recenti fluviolacustri; la struttura è interessata da faglie minori ad andamento NE-SO e prevalente movimento verticale. L'assetto tettonico delle Unità Liguri affioranti a NO di Firenze e nell'area meridionale, è dato da una blanda monoclinale immergente in genere verso N-NE di valori medi (<40°). I depositi lacustri Villafranchiani risultano dislocati dalle faglie sinsedimentarie trasversali al bacino, ma mantengono una giacitura sub-orizzontale su entrambi i blocchi dislocati; i depositi alluvionali recenti e attuali sono ancora in giacitura primaria. Per nessuna delle faglie presenti nella zona ci sono indizi geologici di attività tettonica più recente di circa 500.000 anni.

3.2. Geologia e stratigrafia della Piana di Firenze

Il sottosuolo della piana di Firenze è costituito da sedimenti plio-quaternari di riempimento del bacino fluvio-lacustre formatosi a seguito della fase tettonica distensiva, deposti sulle rocce del paleoinvaso.

Nei paragrafi seguenti si descrivono le unità litostratigrafiche presenti, a partire dai terreni più antichi.

3.2.1. Substrato pre-lacustre

Il substrato pre-lacustre è costituito da rocce appartenenti alle Unità Liguri, ed è composto, in particolare, dai calcari marnosi, dalle calcareniti e dalle argilliti della Formazione di Sillano e dalle arenarie calcaree e dalle argilliti rosse della Formazione della Pietraforte. Il tetto del substrato pre-pliocenico risulta a profondità contenute in corrispondenza del centro

RELAZIONE GEOLOGICA TERMINAL

storico di Firenze (profondità inferiori a 20 m dal piano di campagna). Il corso del Fiume Arno, spostato verso il bordo meridionale del bacino ha portato il fiume a erodere le rocce liguri, creando un terrazzo di erosione lungo tutto il margine meridionale cittadino da est ad ovest. L'attività tettonica collegata alla faglia trasversale Castello-Scandicci ha ribassato di un centinaio di metri il tetto del substrato subito a ovest della linea di faglia, ma l'abbassamento si spinge fino alla profondità di 600 m in corrispondenza della piana di Campi Bisenzio-Sesto Fiorentino. Nelle zone nord-orientali della città il substrato è stato dislocato in modo differenziale dalle faglie trasversali e longitudinali, ed è possibile trovarlo a profondità superiori a 110 m, mentre nelle aree sud orientali l'abbassamento ha avuto minore intensità.

3.2.2. Depositi pre-lacustri

Nel periodo compreso tra il Miocene superiore e il Pliocene inferiore si sono deposti:

 sedimenti pre-lacustri di ambiente fluviale (Depositi del paleo-Mugnone) quando la linea di costa era prossima all'attuale zona di San Casciano Val di Pesa;

• sedimenti residuali delle deposizioni limno-palustri in aree di limitata estensione.

3.2.3. Depositi lacustri e fluviali del bacino villafranchiano

Nell'area interessata dal presente studio si hanno i seguenti complessi sedimentari andando dal più antico e seguendo la classificazione UBSU (Unconformity-bounded Stratigraphic Units):

Sintema del bacino di Firenze-Prato-Pistoia;

· Sintema di Firenze (depositi antichi);

· Sintema dell'Arno (depositi alluvionali recenti).

Con il termine sintema si identifica un corpo sedimentario di origine comune definito alla base e al tetto da superfici di discontinuità o da superfici topografiche. Dal punto di vista sedimentologico il Sintema del bacino di Firenze-Prato-Pistoia è ascrivibile ad ambienti lacustri, lacustri-palustri e di fan-delta, il Sintema di Firenze ad ambienti lacustri e di fan-delta e il Sintema dell'Arno ad ambienti fluvio-alluvionali e limno-palustri.

3.2.4. Sintema del Bacino di Firenze-Prato-Pistoia

E' costituito dai depositi lacustri villafranchiani, a sua volta composto dalle Argille turchine AUCTT. e dai Depositi clastici di delta e fan delta dei paleo-torrenti. Tali unità vengono

RELAZIONE GEOLOGICA TERMINAL

descritte di seguito andando dalla più antica alla più recente.

3.2.4.1. Argille turchine AUCTT.

Questa unità è costituita prevalentemente da massicci corpi di argille e argille limose di colore grigio-azzurro, deposte in ambiente lacustre in condizioni climatiche fredde (periodi glaciali Biber e Donau). Sono presenti livelli e lenti di ghiaie e sabbie, in genere sporchi. Frequenti interdigitazioni avvengono con i depositi di delta e fan-delta dei paleo-corsi d'acqua provenienti dai rilievi posti più a nord, come il paleo-Mugnone, il paleo-Affrico e il paleo-Terzolle. Nella zona del centro cittadino le argille azzurre raggiungono spessori massimi di 90 m,

3.2.4.2. Depositi clastici di delta e fan-delta dei paleo-torrenti

mentre arrivano a 160 m nelle zone ubicate a nord-est della città.

Si tratta di ciottolami e ghiaie prevalentemente sporchi, ghiaie sabbiose, sabbie limose e limi sabbiosi, in corpi più o meno massivi e/o canalizzati, formatisi a opera dei vari torrenti confluenti nel lago. A essi sono riconducibili i depositi del paleo-Affrico/Mensola, del paleo-Mugnone, del paleo-Terzolle e, con provenienze dal bordo meridionale, dal paleo-Ema/Greve. Questi terreni costituiscono i depositi clastici più profondi del bacino di Firenze, riconducibili a periodi caratterizzati da un clima a forte piovosità. Al Sintema del Bacino di Firenze-Prato-Pistoia, in particolare alle Argille turchine AUCTT., Capecchi *et al.* (1976b) hanno fatto corrispondere l'Orizzonte Firenze 4 (si veda il § 3.3.4).

3.2.5. Sintema di Firenze (Depositi alluvionali antichi)

E' costituito da ciottolami e ghiaie d'alveo del paleo-Arno e dei paleo-torrenti, con percentuale di matrice in modo variabile. Nella zona settentrionale urbana della città risultano frammisti a intervalli sabbioso-limosi di colore marrone scuro, mentre nella zona Cascine-Osmannoro-Legnaia risultano essere costituiti prevalentemente da ciottoli e ghiaie. In particolare, i depositi del paleo-Arno hanno costruito il conoide del fiume nel lago di Prato-Pistoia, ben sviluppato nella zona Cascine-Osmannoro con apice nella zona della Fortezza. A questi depositi, Capecchi *et al.* (1976b), hanno fatto corrispondere l'Orizzonte Firenze 3 (si veda il § 3.3.3). Il corpo sedimentario, che è stimato avere una potenza di una ventina di metri, è stato eroso dallo stesso Fiume Arno: di ciò si ha chiara evidenza alle Cascine dove si può osservare il contatto diretto tra il corpo sedimentario in questione e le ghiaie alluvionali recenti

RELAZIONE GEOLOGICA TERMINAL

depositate dal Fiume Arno.

3.2.6. Sintema del Fiume Arno (Depositi alluvionali recenti)

attuali della coltre alluvionale deposta dal Fiume Arno e dei suoi affluenti nell'area fiorentina, in complessi rapporti di eteropie laterali erosive e sedimentarie. I primi metri superficiali (3÷5 m)

Il Sintema del Fiume Arno è costituito dai depositi d'alveo e di esondazione recenti e

sono composti da limi di esondazione sabbiosi. A questo intervallo è da fare corrispondere

l'Orizzonte Firenze 1 di Capecchi et al. (1976b) (si veda il § 3.3.1). I depositi d'alveo sono

costituiti prevalentemente da ciottolami e ghiaie, con percentuale molto variabile della matrice

fine, con intercalati livelli e lenti di sabbie. Le ghiaie compongono il corpo clastico principale,

rilevato sull'intera superficie fiorentina, ed è l'intervallo corrispondente all'Orizzonte Firenze 2

di Capecchi et al. (1976b) (si veda il § 3.3.2), il cui spessore varia da pochi metri fino a 20÷30 m.

La deposizione delle ghiaie è avvenuta su una superficie di erosione sui corpi sedimentari che

possono essere sia i depositi alluvionali antichi che il substrato pre-pliocenico. L'ambiente di

deposizione era tipicamente fluviale a caratterizzato da alta energia. Come già detto, i Depositi

alluvionali recenti sono da ricondurre all'azione sedimentaria sia dell'Arno che degli affluenti

principali (Torrente Mugnone, Torrente Terzolle, Torrente Affrico, Torrente Mensola). Nella

piana fra Campi Bisenzio e Sesto Fiorentino-Castello i Depositi alluvionali recenti sono costituiti

da sedimenti di ambiente limno-palustre, i quali raggiungono uno spessore che va da un paio di metri a nord della piana fino a qualche metro nella parte a sud, con presenza di livelli torbosi

nella piana di Sesto Fiorentino. I Depositi alluvionali recenti costituiscono il principale acquifero

dell'area fiorentina (ghiaie dell'Orizzonte Firenze 2, che si trovano spesso a contatto diretto con

il corpo sedimentario costituito dall'Orizzonte Firenze 3), come esposto dettagliatamente nel

prosieguo.

3.3. Orizzonti "Firenze"

In Capecchi, Guazzone, Pranzini, (1976b), sono stati identificati e definiti quattro livelli

denominati orizzonti Firenze (figura 3), corrispondenti a successive fasi di deposizione. Tale

suddivisione risulta fondamentale per approfondire e comprendere le caratteristiche

geologiche e idrogeologiche del sito in studio.

RELAZIONE GEOLOGICA TERMINAL

3.3.1. Orizzonte "Firenze 1"

Si tratta dello strato superficiale indicato dai vecchi Autori col nome di *pancone* o *gentilone*. E' costituito da sabbia fine con argilla, con le ghiaie e i ciottoli frequentemente dispersi nel banco e più rare piccole lenti di argilla. In varie località l'orizzonte Firenze 1 è composto da sabbie anche grossolane e relativamente pulite come, a esempio, all'Anconella e in altri luoghi in prossimità del Fiume Arno. Da notare che nel centro della città alla composizione di questo strato contribuiscono in buona parte materiali di scarico derivanti dalle rovine di costruzione di varie epoche. Questo strato superficiale, costituito in grande parte da materiale depositato dal Fiume Arno durante le piene, è presente in tutta l'area studiata a eccezione dell'area dell'Osmannoro a nord della Via Pistoiese. Lo spessore dell'Orizzonte Firenze 1 varia da 3 a 9 m ma nel centro città ha una media di 4÷5 m.

3.3.2. Orizzonte "Firenze 2"

Si tratta di depositi fluviali incoerenti che presentano notevoli e rapide variazioni granulometriche sia in senso verticale che orizzontale composti da ciottolami, ghiaie e sabbie. La frazione argillosa è di solito assai scarsa tanto da permettere una buona permeabilità. E' in questo livello, infatti, che trovano alimentazione quasi tutti i pozzi per acqua scavati fin da epoche remote nell'area urbana. Sono presenti in questo intervallo sottili lenti di argilla plastica giallo-rossastra. Le caratteristiche sedimentologiche di questi depositi sono osservabili nelle cave per ghiaia scavate nelle zone delle Piagge, di Mantignano e di Varlungo-Coverciano. Nel corpo sedimentario si possono osservare canali di erosione e stratificazione incrociata. Uno studio granulometrico (Gori, 1970) ha messo in luce una distribuzione bimodale per la maggior parte dei campioni prelevati, un sorting basso e, in generale, indici sedimentologici che confermano la deposizione fluviale. In particolare, il regime doveva essere torrentizio e con notevole capacità di trasporto. La natura litologica dei ciottoli di questo orizzonte non è uniforme su tutta l'area in cui essi affiorano. Nella zona orientale, dall'Anconella al centro città, i ciottoli sono quasi esclusivamente formati da arenarie quarzoso-micacee, probabilmente provenienti dalla formazione Macigno. Lo studio dei campioni prelevati in pozzi situati nelle zone delle Cascine, di Mantignano e delle Piagge, ha messo in luce una maggiore eterogeneità litologica: insieme a quelli di arenaria Macigno, sono presenti ciottoli di calcareniti, spesso fossilifere, calcari di vario tipo e arenarie calcaree provenienti soprattutto dalle formazioni di

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

Monte Morello, di Sillano e della Pietraforte. Lo spessore di questo orizzonte è molto variabile

e diminuisce gradualmente verso i margini della pianura e verso ovest. In Capecchi et al.

(1976b) sono riportate le isobate del tetto di questo orizzonte nell'area urbana che mettono in

risalto, oltre ad una generale pendenza della superficie verso l'asse della valle e nel senso di

scorrimento dell'Arno, alcune fasce di alto relativo piuttosto strette. Esse corrispondono

probabilmente al percorso del Fiume Arno durante le ultime fasi di deposito dell'orizzonte

macroclastico.

3.3.3. Orizzonte "Firenze 3"

L'Orizzonte Firenze 3 è composto da ciottolami, ghiaie e sabbie, con una matrice

argillosa più abbondante che nei sedimenti macroclastici dell'orizzonte Firenze 2 soprastante,

tanto da risultare meno permeabile. L'argilla è presente anche in lenti. Nella zona

dell'Osmannoro una di queste lenti, caratterizzata da uno spessore di circa 3÷4 m, divide

l'orizzonte Firenze 3 in due distinti livelli porosi. Dal punto di vista meramente litologico i

ciottoli sono molto eterogenei: prevalgono infatti calcari e calcareniti provenienti dalle

formazioni di Monte Morello e di Sillano, ma sono presenti anche ciottoli, in genere molto

alterati, delle arenarie Pietraforte e Macigno. L'impossibilità di osservare in affioramento i

sedimenti di questo orizzonte non permette però di definire con sicurezza quello che è stato

l'ambiente di deposizione. La maggiore percentuale della matrice argillosa nei sedimenti più

grossolani fa pensare a un deposito lacustre prossimale, in corrispondenza dello sbocco di un

fiume, con fasi di avanzamento e retrocessione della linea di riva del lago.

L'Orizzonte Firenze 3 è in genere separato dall'Orizzonte Firenze 2 da uno strato di

argilla turchina di probabile origine lacustre; nelle zone dove tale strato argilloso manca i due

orizzonti ciottolosi non possono essere distinti con certezza.

3.3.4. Orizzonte "Firenze 4"

L'Orizzonte Firenze 4 è costituito da argille di origine lacustre, compatte, di colore

turchino, più raramente giallastro, talora con lignite e torba. A vari livelli sono presenti lenti di

ghiaie e ciottoli, più raramente di sabbie; in questi strati la matrice argillosa è quasi sempre

abbondante, tanto da limitarne la permeabilità. La distribuzione areale di queste lenti a

granulometria più grossolana è difficile da ricostruire con precisione, soprattutto perché sono

pochi i sondaggi che hanno raggiunto e attraversato questa unità. Si osserva comunque che

RELAZIONE GEOLOGICA TERMINAL

esse divengono meno frequenti e di minore spessore a valle di Firenze oltre la zona delle Cascine, procedendo verso ovest e nord-ovest. A monte di Firenze, nella zona dell'Anconella-Bandino, queste lenti sono invece più numerose e potenti che altrove e molte contengono solo una bassa percentuale della frazione argillosa. Questo fatto è probabilmente da mettere in relazione con lo sbocco, al margine sud-est della conca lacustre, di uno o più torrenti immissari con notevole trasporto solido.

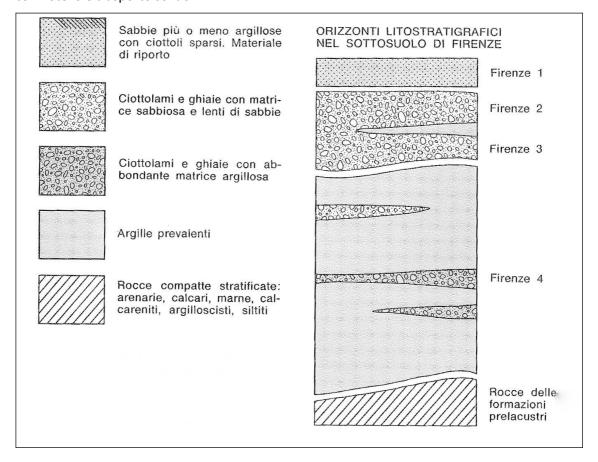


Figura 3 - Orizzonti stratigrafici presenti nel sottosuolo dell'area di Firenze (estratto da Capecchi et al., 1976b).

Nella parte basale dell'Orizzonte Firenze 4, al contatto con le rocce del paleoinvaso, è talora presente un piccolo livello (1÷3 m) di ciottoli anche molto grossi, ossidati e poco arrotondati, che può essere considerato un deposito di pseudo-trasgressione. La maggioranza dei ciottoli è costituita da calcari marnosi bianchi tipo alberese e subordinatamente da arenarie calcaree tipo Pietraforte e calcareniti.

Lo spessore dell'Orizzonte Firenze 4 è determinato dalla quota del fondo lago:

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

all'Anconella è intorno a 70 m mentre nel centro città, nella zona della stazione di Santa Maria Novella, è circa 25 m; esso aumenta rapidamente spostandosi a ovest delle Cascine fino a

superare i 300 m nella zona di San Donnino.

3.3.5. Considerazioni sull'andamento degli orizzonti "Firenze"

Lo strato argilloso-sabbioso superficiale (Orizzonte Firenze 1), che raggiunge una

potenza massima nel centro città, diminuisce di spessore verso la zona di Peretola; più a nord-

ovest e nella zona dell'Osmannoro, il tipo litologico presente nel sottosuolo fin dai primi metri è

costituito da argilla compatta.

L'Orizzonte Firenze 2 è presente in tutte le sezioni idrogeologiche elaborate da

Capecchi et al. (1976b) che mostrano come la terminazione occidentale di questo intervallo

coincida in tutti questi profili con la terminazione dell'Orizzonte Firenze 1. Si può ritenere

quindi che oltre Peretola, a nord della Via Pistoiese, il Fiume Arno non si sia mai spinto a

depositare né le sue alluvioni grossolane (Orizzonte Firenze 2), né quelle più fini recenti

(Orizzonte Firenze 1).

In alcune sezioni verso le colline si osserva la terminazione laterale dell'Orizzonte

Firenze 2. Questi sedimenti fluviali si appoggiano su superfici di erosione dei sedimenti lacustri.

L'Orizzonte Firenze 2 presenta il massimo spessore in una zona corrispondente più o meno col

centro della città (Piazza D'Azeglio - Piazza San Marco). La diminuzione di spessore a partire da

questa zona è evidente sia in senso longitudinale sia in senso trasversale. Come detto, solo in

una sezione l'Orizzonte Firenze 2 risulta separato dall'Orizzonte Firenze 3 da una lente di argilla.

In tutte le altre sezioni vi sono zone di contatto fra i due orizzonti, costituendo un unico

intervallo poroso, interrotto solo localmente da lenti poco estese di argilla. In queste zone o c'è

stata continuità nella sedimentazione grossolana, oppure episodi erosivi hanno distrutto la

continuità dell'intervallo argilloso di separazione. Le sezioni documentano la maggior

frequenza ed estensione dei ciottolami entro le argille lacustri (Orizzonte Firenze 4) nella zona

orientale della conca di Firenze. Nella zona dell'Anconella questi ciottolami sono

particolarmente abbondanti e relativamente puliti. La distinzione dai ciottolami fluviali

sovrastanti si è basata non tanto sulla presenza del piccolo strato argilloso intorno ai 10 m di

profondità, quanto sulle correlazioni granulometriche e litologiche di dettaglio. In particolare,

in un pozzo il diagramma litologico presenta a 10 m un brusco aumento dei calcari e una

RELAZIONE GEOLOGICA TERMINAL

corrispondente diminuzione delle arenarie; la stessa rapida variazione litologica è stata osservata in altri pozzi al passaggio fra i sedimenti fluviali e quelli sicuramente lacustri. Dalla zona delle Cascine procedendo verso ovest, il substrato roccioso scende infatti molto rapidamente, fino a raggiungere la profondità di circa 300 m nella di Brozzi. Questa rapida discesa è determinata da una o più faglie trasversali al profilo che, in tempi relativamente recenti, hanno determinato il sollevamento della conca fiorentina rispetto al resto del bacino lacustre. Una sezione in particolare (Capecchi et al., 1976b) mette bene in evidenza fra le Cascine e il Ponte San Niccolò l'alto relativo del substrato nel tratto urbano. In particolare, il tratto orizzontale del substrato rappresenta una superficie di erosione e testimonia quindi una fase erosiva esercitata dall'Arno. In altre sezioni si può osservare come nel centro città il fondo sia relativamente alto. Tale alto trova una corrispondenza in superficie negli affioramenti del Macigno di Fiesole a nord e della Pietraforte del Piazzale Michelangiolo e di Bellosguardo a sud. In base alle stratigrafie e alle correlazioni nella pubblicazione più volte citata sono state ricostruite le curve di ugual spessore degli Orizzonti Firenze 2 e Firenze 3. Questi orizzonti, costituiti in prevalenza da sedimenti grossolani, sono quelli, in tutta la serie fluvio-lacustre, dotati della migliore permeabilità e rappresentano quindi gli acquiferi più importanti.

Per quanto riguarda l'Orizzonte Firenze 2 si osserva in particolare quanto segue:

- l'orizzonte si estende su tutta la zona pianeggiante, salvo che a nord della linea Rifredi-Novoli-Peretola-Brozzi;
- nelle zone di Badia a Ripoli e Scandicci, rispettivamente a sud-est e a sud-ovest del centro fiorentino, i dati a disposizione indicano che l'Arno ha deposto i suoi sedimenti grossolani fino al margine della pianura;
- l'area di maggior spessore dell'orizzonte è fra piazza D'Azeglio e piazza del Duomo (circa 20 m). Quest'area costituisce il massimo assoluto entro una fascia che corrisponde all'asse centrale della valle;
- l'orizzonte continua a ovest dell'area studiata, con spessori minori e, per quanto si può osservare nelle cave, con diminuzione delle dimensioni medie dei clasti.

Per quanto concerne l'Orizzonte Firenze 3 si osserva invece che:

- esso è limitato alla parte occidentale, a ovest dell'area delle Cascine;
- gli spessori sono minori rispetto a quelli dell'Orizzonte Firenze 2;
- · l'area di massimo spessore corrisponde a una fascia presso l'attuale corso dell'Arno, più o

RELAZIONE GEOLOGICA TERMINAL

meno sul proseguimento di quella dell'Orizzonte Firenze 2 (circa 12 m alle Piagge);

• anche questo orizzonte continua a occidente dell'area studiata, interessando una zona non

occupata dai sedimenti dell'Orizzonte Firenze 2.

3.4. Geologia dell'area di intervento

Nell'area oggetto della presente relazione affiorano i Depositi Olocenici, rappresentati

dai Depositi alluvionali recenti terrazzati (bna1), come mostrato nella carta geologica riportata

nella figura 4 disegnata utilizzando i Fogli n. 263150 e 275030 della Carta Geologica Regionale

della Regione Toscana – Servizio Geologico Regionale (*Progetto Carg*). Nel capitolo 3.2, è stato

descritto il sottosuolo della piana di Firenze, costituito da sedimenti plio-quaternari di

riempimento del bacino fluvio-lacustre formatosi a seguito della fase tettonica distensiva

appenninica, deposti sulle rocce del paleoinvaso. I Depositi alluvionali recenti terrazzati

corrispondono generalmente ai depositi del Sintema del Fiume Arno (Depositi alluvionali

recenti, § 3.2.6), secondo la classificazione UBSU (Unconformity-bounded Stratigraphic Units) e

possono essere correlati all'Orizzonte Firenze 1 e all'Orizzonte Firenze 2 di Capecchi et al.

(1976b) (si veda il § 3.3). Nei paragrafi seguenti si descrivono le formazioni geologiche presenti

(dalla più antica alla più recente).

3.4.1. Depositi olocenici

3.4.1.1. Depositi alluvionali recenti terrazzati e non terrazzati (bna1)

Si tratta di depositi di ambiente continentale, di origine alluvionale costituiti da ghiaie,

sabbie e limi dei terrazzi fluviali di 1° ordine (bna1) che compongono la quasi totalità dei terreni

affioranti nell'area della carta geologica.

L'intervento oggetto della presente relazione sarà realizzato su questi depositi.

Dall'esame della documentazione inerente le indagini si evince che, dal punto di vista litologico,

nell'area interessata dai lavori in progetto affiorano, al di sotto di alcuni decimetri di terreno

vegetale o in alcuni casi, di terreno di riporto, limi argillosi e argille limose, a tratti debolmente

sabbiosi. Il colore del terreno in posto nelle porzioni più superficiali è ocra, beige o bruno.

RELAZIONE GEOLOGICA TERMINAL

4. Idrogeologia

4.1. Aspetti idrogeologici generali

Con riferimento agli orizzonti descritti al § 3.3, dal punto di vista idrogeologico, l'Orizzonte Firenze 1 può essere considerato un acquitardo con permeabilità nell'ordine di 10⁻⁷ m/s. L'Orizzonte Firenze 2, invece, per le sue peculiari caratteristiche granulometriche e tessiturali, costituisce il corpo dell'acquifero principale dell'area fiorentina, con delle permeabilità che possono anche essere fortemente variabili, nell'ordine dei 10⁻³÷10⁻⁷ m/s..

L'Orizzonte Firenze 3 presenta permeabilità generalmente più basse dell'Orizzonte Firenze 2, ma può comunque ospitare una significativa circolazione idrica.

L'Orizzonte Firenze 4, infine, può essere sede di limitati acquiferi (in pressione) ubicati nelle lenti di ghiaie e sabbie che si trovano disperse all'interno del corpo costituito dalle argille turchine; tali acquiferi non sono ovviamente di interesse ai fini dello sfruttamento idrico.

La falda nell'area fiorentina è posizionata in corrispondenza dei Depositi Alluvionali Recenti (Orizzonte Firenze 2); oppure, nella zona delle Cascine-Osmannoro, nei Depositi Alluvionali Antichi (Orizzonte Firenze 3). L'acquifero più superficiale (Orizzonte Firenze 2) può essere rinvenuto nella maggior parte della pianura. Solo a ovest della città, lungo una linea pressappoco coincidente con la Via Pistoiese, i ciottolami e le ghiaie alluvionali recenti lasciano spazio, verso nord, ai limi e alle argille di natura lacustre o palustre. Il Fiume Arno non ha infatti scavato ed eroso i sedimenti fluvio-lacustri precedenti (Capecchi et al. 1976b). Il primo acquifero riscontrabile nell'area dell'Osmannoro è ubicato nei Depositi Alluvionali Antichi. Gli acquiferi sopra elencati sono caratterizzati da porosità primaria e dal punto di vista granulometrico sono composti da ciottoli, ghiaia e sabbia, con una percentuale variabile di matrice limoso-argillosa. Quest'ultima componente influenza indubbiamente il valore della conducibilità idraulica (permeabilità). Tramite diverse tipologie di indagine, sono stati calcolati valori di permeabilità risultati variabili tra $10^{-3} \div 10^{-7}$ m/s. La falda è di tipo libero nella maggior parte della piana di Firenze, quindi il livello freatico e quello piezometrico corrispondono. Invece, ai margini della piana, dove sono presenti maggiori spessori degli intervalli superficiali composti dai limi di esondazione, la falda è di tipo semi-confinato (o addirittura confinato) e la superficie freatica si attesta a quote prossime alla superficie topografica. A Nord della via Pistoiese la prima falda può essere considerata confinata, dato che le ghiaie dell'Orizzonte

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

Firenze 3 sono coperte da almeno 16 m di terreno a bassa permeabilità (riconducibile

all'Orizzonte Firenze 1 passante verso nord ai sedimenti limno-palustri dei Depositi alluvionali

recenti della piana di Sesto Fiorentino). Ugualmente confinate sono le falde ubicate nei livelli

permeabili della successione fluvio-lacustre presente al di sotto dell'Orizzonte Firenze 2

(Orizzonte Firenze 4 corrispondente al Sintema del Bacino di Firenze-Prato-Pistoia), costituiti da

ghiaie e sabbie, spesso con matrice limosa abbondante. Come detto precedentemente, nelle

lenti di ghiaie e sabbie che si rinvengono all'interno dei depositi lacustri delle argille azzurre,

appartenenti al Sintema del Bacino di Firenze-Prato-Pistoia, sono ubicate falde confinate,

peraltro alimentate con difficoltà dal fatto di essere disperse in potenti serie argillitiche.

Nella piana di Firenze le isofreatiche indicano, come andamento generale, un flusso di

falda che dai rilievi collinari si dirige verso il Fiume Arno, con una componente verso ovest in

modo concorde con la direzione di flusso dell'Arno. Il gradiente idraulico diminuisce dalle zone

pedecollinari verso il centro della valle (da 1,0÷1,5 % a 0,2 %), dovuta all'aumento dei valori di

trasmissività dei sedimenti.

4.2. Permeabilità delle unità litostratigrafiche affioranti nell'area in

esame

Per quanto riguarda le caratteristiche idrogeologiche delle unità geologiche presenti

(bna1 e bna2), è possibile stimare la permeabilità su base qualitativa, in funzione degli

elementi da cui essa dipende (caratteristiche litologiche dei terreni, presenza di pozzi, densità

del reticolo idrografico - figura 5).

Nel dettaglio, i terreni di origine alluvionale presenti nelle aree di pianura sono dotati

di permeabilità per porosità primaria legata alla presenza di pori tra le particelle, acquisita al

momento della loro formazione. Tale permeabilità per i Depositi alluvionali recenti terrazzati

(bna) è in genere bassa e varia in corrispondenza sia dei livelli fini che grossolani.

Considerando tutte le perforazioni dei sondaggi della campagna geognostica di

realizzata nel 2015 e 2017, alle quali abbiamo assistito, solo in alcuni sporadici casi è stata

rinvenuta acqua. La spiegazione dell'acqua rinvenuta sta nel fatto che il sottosuolo dell'area

esaminata, costituito da terreni fini in massima parte rappresentati da argille e limi, è un

acquicludo in cui si può avere, nelle stagioni delle piogge, presenza di acqua di ritenzione a

causa dell'alta porosità, ma questa acqua non circola in quanto la porosità efficace è molto

bassa, dell'ordine di pochi punti percentuali.

Pagina 24 di 55

RELAZIONE GEOLOGICA TERMINAL

Nella Carta idrogeologica elaborata e riportata nella figura 5, le formazioni geologiche affioranti nell'area di indagine sono state suddivise in base alla permeabilità precedentemente indicata che è riassunta nella successiva tabella 1.

Classe	Terreni permeabili per porosità primaria	Permeabilità
1	Depositi antropici, terreni di riporto, bonifica per colmata (h5)	molto bassa
2	Depositi alluvionali recenti terrazzati (bna1 e bna2)	bassa
3	-	media
4	-	alta
5	-	molto alta

Tabella 1 - Classi di permeabilità.

4.3. Superficie piezometrica

Durante l'esecuzione della quasi totalità dei sondaggi realizzati per lo studio geologico della nuova pista e delle opere accessorie non è stata riscontrata presenza di acqua; è comunque opportuno fare alcune precisazioni in merito alle interferenze eventualmente presenti e prevedibili tra gli interventi in progetto e le acque di sottosuolo.

Come detto nei capitoli precedenti, la zona in studio presenta schematicamente le seguenti caratteristiche idrogeologiche:

- superficialmente è presente un livello dello spessore massimo di un paio di metri al di sotto del piano di campagna, che a seconda della stagione, può essere interessato da saturazione alla profondità compresa tra 0 e 1,5 m; questo livello non ha alcun valore e interesse dal punto di vista della risorsa idrica;
- il livello in cui ha sede la falda principale della pianura fiorentina è identificato con l'Orizzonte Firenze 2 (parte inferiore del Sintema del Fiume Arno), rinvenuto alla profondità di circa 10÷13 m p.c., e con l'Orizzonte Firenze 3 (Sintema di Firenze), rinvenuto alla profondità di circa 25÷32 m p.c. nell'area del terminal esistente.

RELAZIONE GEOLOGICA TERMINAL

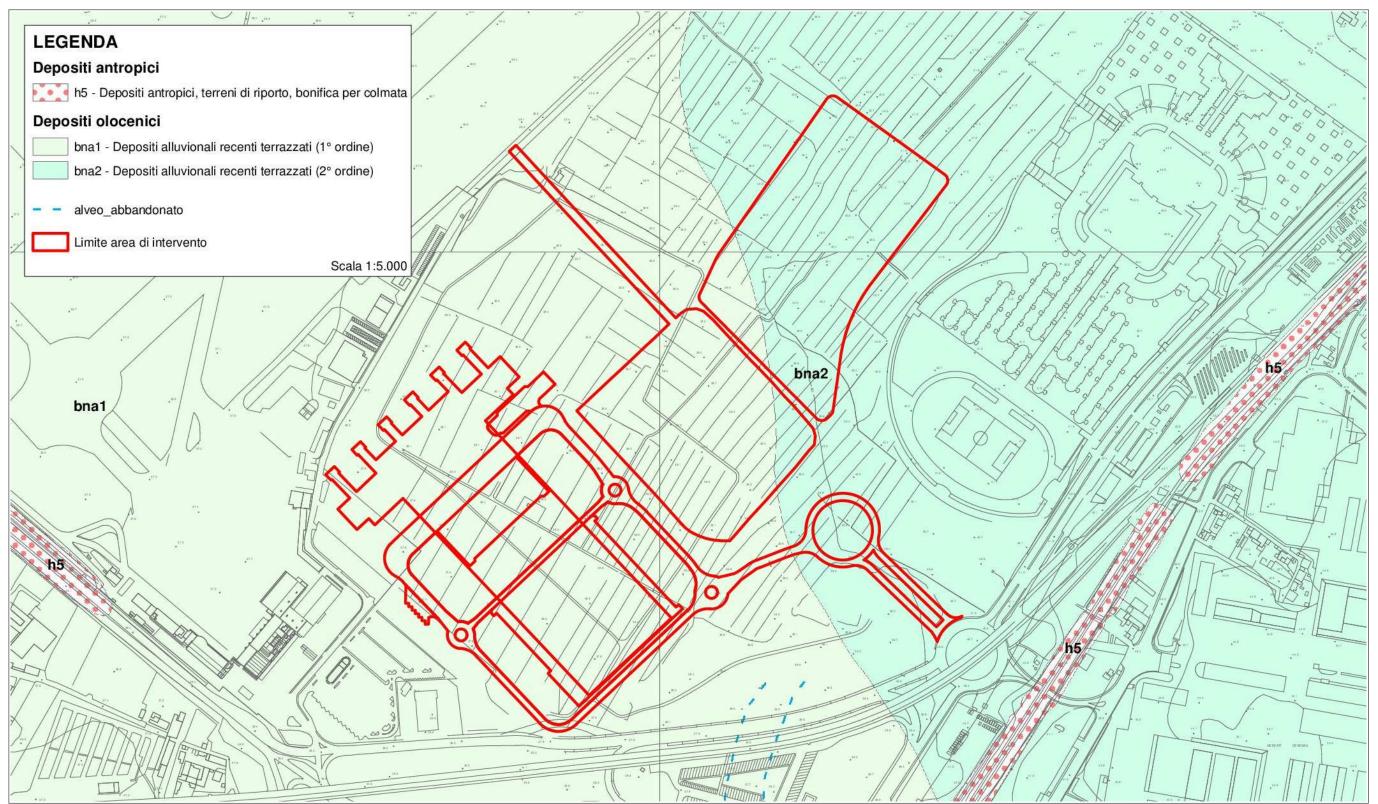


Figura 4 - Carta geologica dell'area in esame.

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

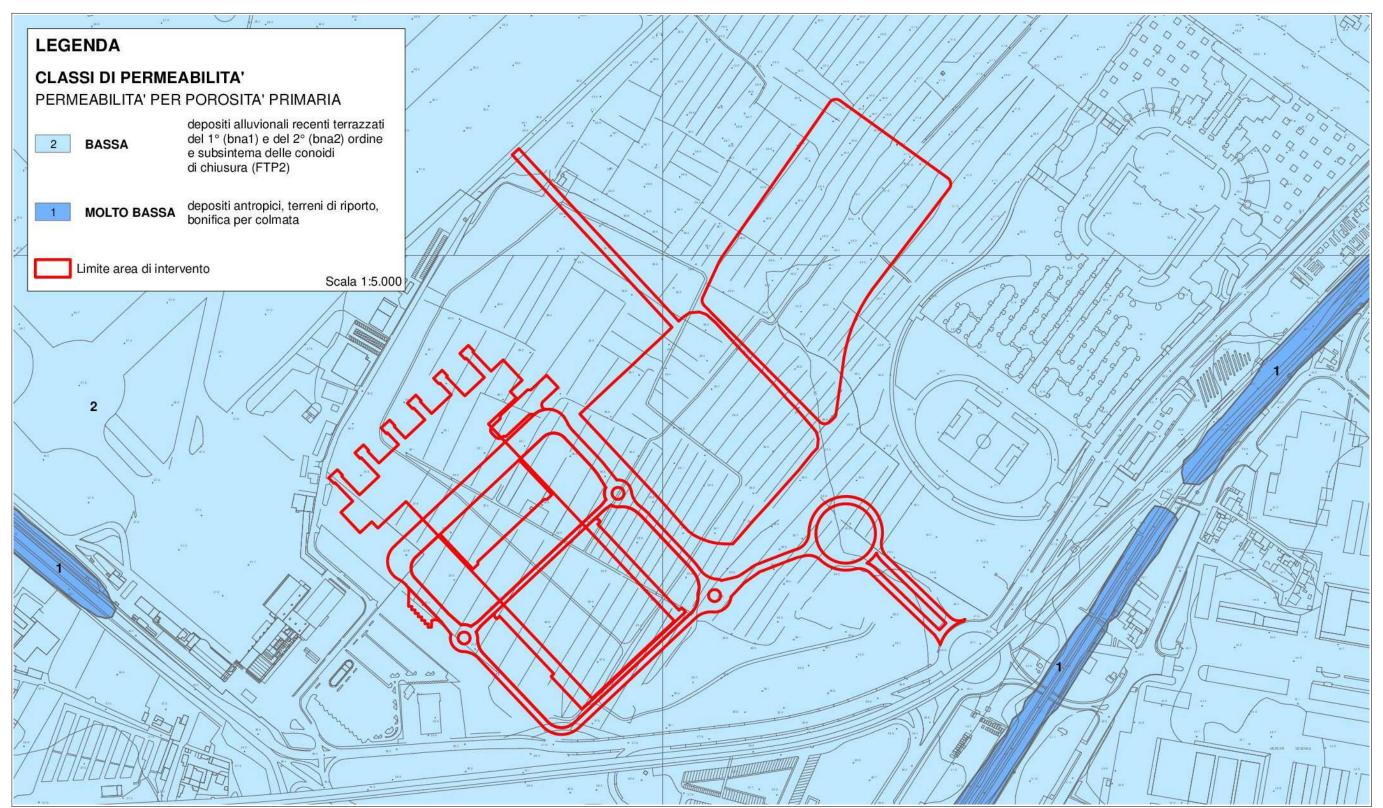


Figura 5 - Carta idrogeologica dell'area in esame.

RELAZIONE GEOLOGICA TERMINAL

5. Geomorfologia e stabilità

5.1. Introduzione

Il nuovo Terminal Passeggeri e l'ampliamento del piazzale degli aeromobili oggetto

della presente relazione geologica preliminare saranno ubicati a nord est dell'attuale Terminal.

L'intera zona è pianeggiante ed è posta a una quota di circa 38 m s.l.m..

La carta geomorfologica non è stata elaborata poiché l'area in esame, in relazione

all'andamento della superficie topografica e all'intensa urbanizzazione, non presenta forme

naturali o antropiche significative.

6. Classi di pericolosità

Il progetto del nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo

Vespucci ricade nel territorio del Comune di Firenze, dotato del Piano Strutturale e del

Regolamento Urbanistico e dunque delle Carte di pericolosità previste dalla normativa vigente

in materia. In data 13/03/2023 è stato inoltre adottato il nuovo Piano Strutturale (PS) ed il

nuovo Piano Operativo (PO) del Comune di Firenze.

6.1. Pericolosità geologica

La porzione che ricade nel territorio comunale di Firenze è classificata in classe di

pericolosità geologica media (G2) sia nella Carta della pericolosità geologica (Tavola 4 della

Variante al Piano Strutturale del 2010) che nella Carta della pericolosità geologica (Tavola 04/1

del nuovo Piano Strutturale adottato).

Per quanto riguarda il Progetto di Piano – PAI Dissesti geomorfologici, redatto

dall'Autorità di Bacino Distrettuale dell'Appennino Settentrionale, la zona in oggetto non è

classificata nella cartografia adottata con Delibera CIP n. 20 del 20 dicembre 2019.

6.2. Pericolosità idraulica

6.2.1. Piano strutturale e PGRA

L'area di progetto ricade in classe di pericolosità idraulica elevata I.3 nella Carta della

pericolosità idraulica (Tavola 5 della Variante al Piano Strutturale del 2010).

RELAZIONE GEOLOGICA TERMINAL

Per quanto riguarda la Carta della pericolosità da alluvioni la zona è classificata in area a pericolosità da alluvioni poco frequenti P.2 per quanto riguarda la parte meridionale e in area

a pericolosità da alluvioni rare P.1 per quella settrionale (Tavola 06/1 del nuovo Piano

Strutturale adottato).

In riferimento al Piano di Gestione del Rischio Alluvioni (PGRA), adottato nella seduta

di Comitato Istituzionale Integrato n. 231 del 17 dicembre 2015 ed entrato in vigore in data 1

gennaio 2016, che rappresenta il riferimento in materia di pericolosità e rischio di alluvioni,

l'area risulta caratterizzata dalla classi di pericolosità idraulica P2. Per quanto riguarda il rischio

di alluvione la zona di intervento è classificata in gran parte in classe R2 e in una piccola

porzione in classe di rischio R3.

6.2.2. L.R. 41/2018

In data 30 settembre 2018 è entrata in vigore la Legge Regionale 24 luglio 2018 n. 41

avente come oggetto Disposizioni in materia di rischio di alluvioni e di tutela dei corsi d'acqua in

attuazione del decreto legislativo 23 febbraio 2010, n. 49 (Attuazione della direttiva

2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni). Modifiche alla I.r.

80/2015 e alla I.r. 65/2014 (pubblicata sul Bollettino Ufficiale della Regione Toscana n. 33 del 1

agosto scorso) che costituisce la nuova norma di riferimento per le aree a rischio alluvioni. Con

tale legge "la Regione, al fine di ridurre le conseguenze negative, derivanti dalle alluvioni, per la

salute umana, l'ambiente, il patrimonio culturale e le attività economiche, nonché al fine di

mitigare i fenomeni di esondazione e dissesto idrogeologico, disciplina la gestione del rischio di

alluvioni in relazione alle trasformazioni del territorio e la tutela dei corsi d'acqua" (art. 1,

comma 1 della legge suddetta).

L'art. 18 della L.R. 41/2018 fornisce le disposizioni transitorie per la classificazione delle

nuove classi di pericolosità: le aree a pericolosità per alluvioni poco frequenti corrispondono

alle aree classificate dai piani strutturali, dai piani regolatori, dai piani di assetto idrogeologico

come aree a pericolosità molto elevata mentre le aree a pericolosità per alluvioni poco

frequenti corrispondono alle aree a pericolosità idraulica elevata.

6.3. Pericolosità sismica

La Carta della pericolosità sismica (Tavola 6 della Variante al Piano Strutturale del 2010)

classifica l'area di progetto in classe di pericolosità sismica elevata (S3), mentre la Carta della

RELAZIONE GEOLOGICA TERMINAL

pericolosità sismica (Tavola 05/1 del nuovo Piano Strutturale adottato) la classifica in pericolosità sismica media S2 con contrasti attesi oltre alcune decine di metri di profondità e f0<1 hz.

7. Classi di fattibilita

Le Norme Tecniche di Attuazione del Piano Strutturale del Comune di Firenze

forniscono le regole per procedere all'assegnazione della classe di fattibilità in funzione del tipo

di intervento edilizio o urbanistico e del grado di pericolosità in relazione agli aspetti legati al

rischio geologico, idraulico e sismico. Tali disposizioni sono contenute nel Volume I, Titolo II,

Disciplina ecologico ambientale, Capo II, Misure di protezione delle NTA. In particolare l'art. 44

disciplina gli interventi di nuova costruzione, ampliamento e recupero nell'area aeroportuale

che, ai sensi del comma 5, sono sempre ammessi purché funzionali alla gestione e sviluppo del

servizio. Trattandosi di un intervento posto al di fuori, al momento, dell'area aeroportuale nei

paragrafi seguenti si assegnerà la fattibilità al nuovo Terminal Passeggeri, evidenziando che per

quanto riguarda le prescrizioni relative alle classi di fattibilità geologica e sismica, il presente

studio geologico è basato su dati ottenuti da indagini geognostiche eseguite in passato

nell'area di intervento o nelle immediate vicinanze. In merito agli aspetti idraulici (art. 75,

comma 3 delle N.T.A. del Comune di Firenze) si rimanda agli altri elaborati progettuali.

Per quanto riguarda il nuovo Piano Operativo, adottato con D.C.C. n.6 del 2023, sono

stati invece definiti i criteri di fattibilità.

7.1. R.U. approvato

7.1.1. Fattibilità geologica

In merito agli aspetti geologici, ai sensi della Matrice della fattibilità geologica delle

opere in funzione della tipologia di intervento e della pericolosità dell'area, viene attribuita alla

costruzione del nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo Vespucci

(gruppo: Servizi pubblici e privati di uso pubblico (parcheggi, impianti sportivi, scuole e

università, servizi collettivi, complessi ospedalieri, housing sociali, cimiteri, aree per impianti

sportivi privati, servizi privati)) una fattibilità geologica condizionata FG3, poiché l'area ricade in

classe G.2. Come riporta l'art. 74 delle N.T.A., tale classe di fattibilità prevede le seguenti

prescrizioni: Sono consentiti gli interventi di ristrutturazione edilizia con demolizione e

Toscana Aeroporti engineering

AEROPORTO INTERNAZIONALE DI FIRENZE "AMERIGO VESPUCCI"

MASTERPLAN – SCHEDE DI APPROFONDIMENTO PROGETTUALE

RELAZIONE GEOLOGICA TERMINAL

ricostruzione, di ristrutturazione urbanistica, nuova edificazione o realizzazione di nuove

infrastrutture, condizionati alla preventiva o contestuale esecuzione di interventi di

consolidamento, bonifica, protezione e sistemazione funzionali alla loro messa in sicurezza a

livello di ambito di influenza inteso come area sede di fenomeni che sia direttamente che

indirettamente potrebbero interessare l'intervento. Tali interventi di messa in sicurezza sono

definiti sulla base di studi geologici, idrogeologici e geotecnici di dettaglio e devono essere

comunque tali da:

non pregiudicare le condizioni di stabilità nelle aree adiacenti;

• non limitare la possibilità di realizzare interventi definitivi di stabilizzazione dei fenomeni

franosi;

• consentire sempre il controllo della funzionalità e la manutenzione delle opere di messa in

sicurezza.

Sono consentiti, a condizione che siano realizzati senza aggravare le condizioni di instabilità e

non compromettano la possibilità di realizzare il consolidamento del movimento franoso e la

manutenzione delle opere di consolidamento, gli interventi di manutenzione ordinaria e

straordinaria, di restauro e risanamento conservativo e ristrutturazione edilizia senza

demolizione e ricostruzione, nonché tutti gli interventi manutentivi necessari a garantire il

corretto funzionamento delle reti dei servizi pubblici e privati. Per gli interventi che prevedono

strutture sotterranee interferenti con la falda, devono essere condotti studi specifici per la

valutazione dell'impatto sia qualitativo che quantitativo sulla falda stessa in fase di

realizzazione ed a regime.

Per gli interventi che prevedono scavi o riporti di profondità o altezza maggiori di tre metri,

devono essere condotti studi specifici per la valutazione della stabilità locale con estensione

anche ad un intorno significativo.

Per gli interventi che prevedono scavi o riporti di profondità o altezza minori di tre metri, sarà

cura del progettista verificare le condizioni di fattibilità degli interventi, in relazione alle

fenomenologie presenti nell'area.

7.1.2. Fattibilità idraulica

Per quanto riguarda la fattibilità idraulica, in base alla Matrice della fattibilità idraulica

delle opere in funzione della tipologia di intervento e della pericolosità dell'area, vista le

RELAZIONE GEOLOGICA TERMINAL

tipologia di intervento precedentemente descritta e la classe di pericolosità presente, viene attribuita ai lavori in oggetto una fattibilità idraulica condizionata – FI3.

7.1.3. Fattibilità sismica

Relativamente alla fattibilità sismica, secondo l'abaco Matrice della fattibilità sismica delle opere in funzione della tipologia di intervento e della pericolosità dell'area, analogamente a quanto fatto in precedenza (tipologia intervento, area in classe di pericolosità sismica media S.3), si assegna una fattibilità sismica condizionata FS3 all'opera da realizzare. Questa classe di fattibilità sismica, come contenuto nell'art. 76 delle N.T.A., richiede le seguenti norme: Sono consentiti gli interventi di ristrutturazione edilizia con demolizione e ricostruzione, ristrutturazione urbanistica, nuova edificazione o realizzazione di nuove infrastrutture, condizionati all'esecuzione di studi geofisici e geognostici di dettaglio funzionali alla determinazione dell'azione sismica di progetto, facendo riferimento anche alle norme comuni. Per la realizzazione di nuove strutture ad elevata vulnerabilità o classe di esposizione (per es. depositi o esposizioni di beni artistici e culturali, depositi di sostanze pericolose o inquinanti, edifici, strutture ed impianti strategici per la protezione civile, opere ricadenti in classe di indagine 4 di cui al DPGR 36/R/2009 e s.m.i.) deve essere considerato anche il periodo di oscillazione del terreno in relazione a quello delle opere da realizzare. Sono consentiti senza specifici condizionamenti gli interventi di manutenzione ordinaria e straordinaria, di restauro e risanamento conservativo, nonché tutti gli interventi manutentivi necessari a garantire il corretto funzionamento delle reti dei servizi pubblici e privati. Gli interventi di restauro e risanamento conservativo e di ristrutturazione edilizia relativi a emergenze di valore storicoarchitettonico-beni culturali ed emergenze di valore storico-architettonico sono soggetti al DPCM 09.02.2011, "Valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni di cui al decreto del Ministero delle infrastrutture e dei trasporti del 14.01.2008", oltreché alle relative normative di carattere nazionale e regionale ed a quanto contenuto nelle norme comuni.

Per le prescrizioni relative alle condizioni di amplificazione sismica locale contenute al comma 1 del suddetto articolo si veda il § 8.2.4.

RELAZIONE GEOLOGICA TERMINAL

7.2. P.O. adottato

7.2.1. Fattibilità in aree classificate a pericolosità geologica media G.2 (art. 83 N.T.A.)

La fattibilità degli interventi di: nuova costruzione (ai sensi della LR 41/2018); nuova costruzione previa demolizione del patrimonio edilizio esistente; incrementi di superficie coperta e/o di volume; ristrutturazione edilizia, anche a carattere conservativo con mutamento di destinazione d'uso; ampliamento e adeguamento di infrastrutture a sviluppo lineare e a rete; è condizionata alle risultanze di specifiche indagini geologiche, geognostiche e geofisiche da eseguirsi in fase progettuale, al fine di non modificare negativamente le condizioni ed i processi geomorfologici presenti nell'area.

7.2.2. Fattibilità in aree classificate a rischio di alluvioni (art. 84 N.T.A.)

Nelle aree caratterizzate da pericolosità per alluvioni frequenti e poco frequenti la fattibilità degli interventi è perseguita secondo quanto disposto dalla LR 41/2018, oltre a quanto già previsto dalla pianificazione di bacino distrettuale dell'Appennino Settentrionale.

7.2.3. Fattibilità in aree non soggette a rischio alluvioni (art. 84 N.T.A.)

Ad interventi e previsioni esterni ad aree classificate a pericolosità da alluvioni non si attribuiscono prescrizioni specifiche per il conseguimento del titolo abilitativo, salvo opportune indicazioni di misure per il riordino o ripristino del drenaggio superficiale.

7.2.4. Fattibilità in aree classificate a pericolosità sismica media S2 (art. 85 N.T.A.)

Nelle zone classificate a pericolosità sismica S2 si applicano le condizioni di fattibilità previste al paragrafo 3.6.5 dell'Allegato A al DPGR 5/R/2020.

8. Sismicità e definizione dei parametri sismici

8.1. Zona sismica

La nuova classificazione sismica è stata approvata con Deliberazione della Giunta Regionale 26 aprile 2014, n. 421, che ha apportato modifiche (per accorpamento di alcuni Comuni) alla classificazione sismica regionale definita con la Delibera della Giunta Regionale della Toscana n. 878 dell'8 ottobre 2012. L'aggiornamento introdotto con quest'ultima delibera,

RELAZIONE GEOLOGICA TERMINAL

redatto ai sensi dell'O.P.C.M. del 28 aprile 2006 n. 3519 si era reso necessario al fine di recepire le novità introdotte dall'entrata in vigore delle NTC e di rendere la classificazione sismica maggiormente aderente all'approccio "sito-dipendente" introdotto da tali norme. Inoltre, contestualmente all'entrata in vigore della nuova classificazione sismica, è stato approvato il regolamento 58/R del 22 ottobre 2012¹, di attuazione dell'art. 117, comma 2, lettera g) della L.R. 3 gennaio 2005, n. 1 (Norme per il governo del territorio). Il Comune di Firenze è inserito nella "zona sismica 3".

8.2. Parametri sismici

8.2.1. Aspetti generali

La stima della pericolosità sismica, intesa come accelerazione massima orizzontale su suolo rigido, viene definita tramite un approccio sito-dipendente. Come riportato al § 3.2 del D.M. 18 gennaio 2018 e al § C3.2 della Circolare C.S.LL.PP. n. 7/2019, è possibile fare riferimento all'Allegato A del D.M. 14 gennaio 2008 nel quale i parametri necessari per la definizione dell'azione sismica di progetto vengono calcolati attraverso le informazioni disponibili nel reticolo di riferimento (nella Tabella 1 - Allegato B del medesimo decreto NTC2008 vengono forniti, per ciascuno dei 10.751 nodi della griglia che costituisce il reticolo, i valori di ag, F0 e T*c, per nove valori del periodo di ritorno: 30, 50, 72, 101, 140, 201, 475, 975 e 2.475 anni). Nel presente studio si è utilizzato il software fornito da GeoStru S.r.l. che permette di calcolare i coefficienti sismici per un generico sito del territorio nazionale. Mediante questo programma, inserendo le coordinate del sito e le caratteristiche progettuali, è possibile ottenere direttamente i parametri relativi al computo dell'azione sismica.

8.2.2. Categoria di di sottosuolo (approccio semplificato)

Con riferimento alla prova sismica in foro down-hole eseguita a dicembre 2016 (per il Progetto di riconfigurazione ed ampliamento dell'attuale terminal, in Relazione geologico-sismica redatta dal Dott. Geol. Andrea Garuglieri, aprile 2017) nel sondaggio S3-DH si assegna, con approccio semplificato, la categoria di sottosuolo C "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con

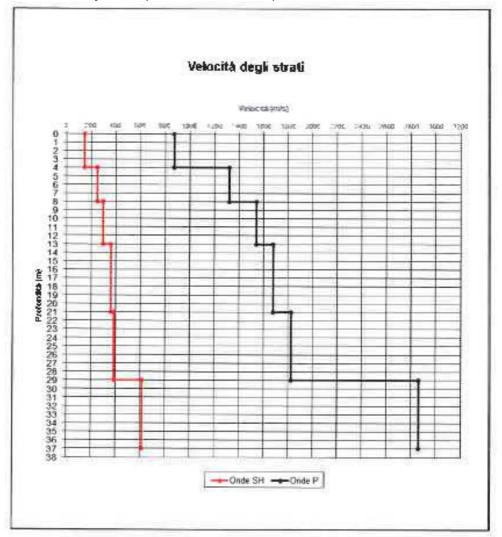
¹ Regolamento di attuazione dell'art. 117, comma 2, lettera g) della L.R. 3 gennaio 2005, n. 1 (Norme per il governo del territorio). Verifiche nelle zone a bassa sismicità. Determinazione del campione da assoggettare a verifica.

RELAZIONE GEOLOGICA TERMINAL

la profondità e da valori di velocità equivalente compresi fra 180 m/s e 360 m/s", da Tab. 3.2.II del D.M. 17 gennaio 2018 e § C3.2.2 della Circolare C.S.LL.PP. n. 7/2019). La prova DH aveva fornito una Vs30 pari a 298 m/s dal piano campagna (NTC 2008): ai sensi delle nuove norme NTC 2018 tale parametro viene confermato come Vseq sulla base della velocità delle onde Vs entro i primi 30 m di sottosuolo dal piano di riferimento (il piano campagna, ma più correttamente sarà da considerare il piano di imposta delle fondazioni, con probabile aumento del valore della Vseq), poiché il bedrock sismico (Vs>800 m/s) in tale spessore di 30 m non era stato rilevato, figura 6). L'assegnazione della categoria C era stata confermata anche da altre prove sismiche attive tipo MASW eseguite nella campagna di indagini a dicembre 2016, con Vs30 pari a 313 m/s per la MASW realizzata presso il "Varco staff e Magazzino". La altre prove MASW eseguite nei pressi avevano fornito valori di Vs30 (equivalente alla Vseq perché bedrock sismico non attraversato nello spessore di 30 m dal p.rif.) pari a 284 m/s (sito A), 291 m/s (sito B). In figura 7 sono riportati il profilo e la Vs dei sismostrati individuati tramite l'indagine sismica DH; da notare il netto aumento di Vs a partire da circa 29 m p.c. (da 390 m/s a 620 m/s), da tenere in considerazione in funzione della profondità del piano di riferimento associato al piano di imposta delle fondazioni del nuovo terminal.

8.2.3. Categoria topografica

In considerazione dell'ubicazione dell'area in esame, ai sensi del § 3.2.2 del D.M. 17 gennaio 2018 e del § C.3.2.2 della Circolare C.S.LL.PP. n. 7/2019, al sito di intervento può essere assegnata la categoria topografica T1 (superficie pianeggiante, pendii e rilievi isolati con inclinazione media i \leq 15°, Tab. 3.2.III del D.M. 17 gennaio 2018), alla quale corrisponde un coefficiente di amplificazione topografica ST pari a 1,0 (Tab. 3.2.V del decreto suddetto).


8.2.4. Parametri dell'azione sismica locale

Per ricavare i valori dei parametri dell'azione sismica locale per l'area di progetto, si è utilizzato il programma fornito da GeoStru S.r.l. assegnando le seguenti coordinate geografiche (WGS84): latitudine 43.804605, longitudine 11.203493 (figura 6).

RELAZIONE GEOLOGICA TERMINAL

Figura 6 - Ubicazione del riferimento per la determinazione dei parametri sismici.

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

Profondità	Vel. Onde SH
(m dal p.c.)	(m/sec)
0.00-4.00	148
4 00-8 00	255
8.00-13.00	300
13.00-21.00	366
21 00-29.00	390
29 00-37.00	620

Figura 7 - Prova sismica down-hole in S3 DH (dicembre 2016).

Per determinare gli spettri di risposta elastici del sito, tenuto conto degli effetti locali dovuti all'amplificazione sia stratigrafica che topografica, vengono assegnati determinati parametri progettuali. Questi ultimi, per la definizione dell'azione sismica, sono adottati come segue, ai sensi del § 2.4 del D.M. 17 gennaio 2018 e del § C2.4 della Circolare n. 7/2019:

- vita nominale di progetto (VN) ≥100 anni (Costruzioni con livelli di prestazioni elevati);
- classe d'uso IV (Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica);
- coefficiente d'uso (CU) pari a 2.0;
- vita o periodo di riferimento per l'azione sismica (VR=VN*CU) pari a ≥200 anni.

Di seguito, parametri e coefficienti sismici per le <u>opere di fondazione</u>:

Parametri sismici

Tipo di elaborazione: Fondazioni

Sito in esame.

RELAZIONE GEOLOGICA TERMINAL

Latitudine: 43,8055621199429 longitudine: 11,2044775891704

Classe: 4

Vita nominale: 100

Siti di riferimento

Sito 1 ID: 19836 Lat: 43,8126 Lon: 11,2039 Distanza: 785,204 Sito 2 ID: 19837 Lat: 43,8139 Distanza: 5584,527 Lon: 11,2731 Sito 3 ID: 20059 Lat: 43,7640 Distanza: 7304,794 Lon: 11,2749 Sito 4 ID: 20058 Lat: 43,7626 Lon: 11,2057 Distanza: 4774,876

Parametri sismici

Categoria sottosuolo: C

Categoria topografica: T1
Periodo di riferimento: 200 anni

Coefficiente Cu: 2

Operatività (SLO):

Probabilità di superamento: 81%

Tr: 120 [anni]

ag: 0,077 g
Fo: 2,594
Tc*: 0,284 [s]

Danno (SLD):

Probabilità di superamento: 63%

Salvaguardia della vita (SLV):

 Probabilità di superamento:
 10
 %

 Tr:
 1898 [anni]

 ag:
 0,205 g

 Fo:
 2,409

Tc*: 0,316 [s]

Prevenzione dal collasso (SLC):

Probabilità di superamento: 5 %
Tr: 2475 [anni]

ag: 0,222 g Fo: 2,418 Tc*: 0,318 [s]

Coefficienti Sismici Fondazioni

SLO:

Ss: 1,500

RELAZIONE GEOLOGICA TERMINAL

Cc: 1,590 St: 1,000 Kh: 0,023 Kv: 0,012

Amax: 1,129 Beta: 0,200

SLD:

Ss: 1,500 Cc: 1,570 St: 1,000 Kh: 0,028 Kv: 0,014

Amax: 1,385 Beta: 0,200

SLV:

Ss: 1,400 Cc: 1,540 St: 1,000 Kh: 0,080 Kv: 0,040

Amax: 2,812 Beta: 0,280

SLC:

Ss: 1,380 Cc: 1,530 St: 1,000 Kh: 0,086 Kv: 0,043

Amax: 3,000 Beta: 0,280

Le coordinate espresse in questo file sono in ED50

Coordinate WGS84

latitudine: 43.804605 longitudine: 11.203493

Di seguito, parametri e coefficienti sismici per le opere di sostegno costituite da terre armate:

Parametri sismici

Tipo di elaborazione: Opere di sostegno NTC 2018

Muro rigido: 0

Sito in esame.

latitudine: 43,806519 longitudine: 11,205462

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

Classe: 4
Vita nominale: 100

Siti di riferimento

ID: 19836 Lat: 43,8126 Lon: 11,2039 Distanza: 689,231 Sito 1 Sito 2 ID: 19837 Lat: 43,8139 Lon: 11,2731 Distanza: 5489,635 Lat: 43,7640 Sito 3 ID: 20059 Lon: 11,2749 Distanza: 7312,205 Sito 4 ID: 20058 Lat: 43,7626 Lon: 11,2057 Distanza: 4880,278

Parametri sismici

Categoria sottosuolo: C
Categoria topografica: T1
Periodo di riferimento: 200anni
Coefficiente cu: 2

Operatività (SLO):

Probabilità di superamento: 81 %

Tr: 120 [anni]

ag: 0,077 g Fo: 2,594

Tc*: 0,284 [s]

Danno (SLD):

Probabilità di superamento: 63 %

Tr: 201 [anni]

ag: 0,094 g Fo: 2,518

Tc*: 0,294 [s]

Salvaguardia della vita (SLV):

Probabilità di superamento: 10 %

[anni]

Tr: 1898 ag: 0,205 g

ag: 0,205 g
Fo: 2,409

Tc*: 0,316 [s]

Prevenzione dal collasso (SLC):

Probabilità di superamento: 5 %

Tr: 2475 [anni] ag: 0,222 g
Fo: 2,418

Tc*: 0,318 [s]

Coefficienti Sismici Opere di sostegno NTC 2018

SLO:

Ss: 1,500 Cc: 1,590 St: 1,000 Kh: 0,000 Kv: 0,000

Amax: 1,130

RELAZIONE GEOLOGICA TERMINAL

Beta: 0,000

SLD:

Ss: 1,500 Cc: 1,570 St: 1,000 Kh: 0,066 Kv: 0,033

Amax: 1,386 Beta: 0,470

SLV:

Ss: 1,400 Cc: 1,540 St: 1,000 Kh: 0,109 Kv: 0,055

Amax: 2,813 Beta: 0,380

SLC:

Ss: 1,380 Cc: 1,530 St: 1,000 Kh: 0,000 Kv: 0,000

Amax: 3,001 Beta: 0,000

Le coordinate espresse in questo file sono in ED50

Geostru

Coordinate WGS84

latitudine: 43.805562 longitudine: 11.204477

9. Modello geologico del sottosuolo

Il modello geologico del sottosuolo dell'area di intervento è stato definito in base ai risultati dei diversi sondaggi eseguiti sia presso l'area aeroportuale (terminal e immobili adibiti a servizi) sia nelle aree limitrofe e reperibili nell'archivio Sistema Informativo Geologico del Sottosuolo (S.I.G.S.) del Comune di Firenze.

L'ubicazione delle indagini prese a riferimento è riportata nella testata delle due sezione geologiche realizzate (1-1' con direttrice SO-NE, 2-2' con direttrice NO-SE) tracciate ortogonalmente sull'area di imposta del nuovo terminal. Nella medesima immagine sono presenti anche le tracce delle sezioni ricostruite (tavola 1 e 2, allegate fuori testo).

L'area di intervento è caratterizzata dalla presenza, a partire dai terreni più recenti, di

RELAZIONE GEOLOGICA TERMINAL

depositi costituenti ben definite e distinte unità stratigrafiche (sintemi e subsintemi, in

associazione alla classificazione USCS Unified Soil Classification System):

1. depositi attuali e recenti, di origine alluvionale [Dr_{a-b} – età: Olocene];

2. depositi antichi, di origine alluvionale [Da_{a-b} – età: Pleistocene sup.];

3. sottostanti depositi di origine lacustre e palustre [FPT - età: Pliocene superiore -

Pleistocene inferiore, "Villafranchiano" Auctt.] come attività di riempimento del bacino di

Firenze-Pistoia.

Le prime due unità sono dovute sia all'evoluzione recente del sistema fluviale dell'Arno

e dei suoi affluenti (Dra, Drb - Sintema dell'Arno), sia all'evoluzione del sistema fluviale del

paleo-Arno (Daa, Dab – Sintema di Firenze); la terza unità (FPTa-b-c – Sintema del Bacino di

Firenze-Pistoia) all'attività di colmamento del bacino lacustre-palustre, con apporti sedimentari

da parte dei paleo-corsi d'acqua - come quelli presenti attualmente nel sistema collinare di

Castello, Quinto, Sesto Fiorentino - che si immettevano nel lago costruendo sistemi

deposizionali tipo fan-delta, a prevalente componente granulometrica granulare grossolana

(ghiaie, sabbie - FPT_b) nelle zone prossimali e a prevalente componente granulometrica coesiva

(limi, argille - FPT₂) nelle zone distali. A distanze non interferenti con tali attività deposizionali, si

andavano a sedimentare granulometrie fini ("Arqille azzurre/turchine" Auctt.) di ambiente

tipicamente lacustre (FPT_c).

Le sezioni geologiche tracciate nell'area di interesse (sezioni 1÷1' e 2÷2') mostrano tale

successione litologica e stratigrafica, con frequenti interdigitazioni in corrispondenza dei

depositi di fan-delta, di cui uno rilavato a notevole profondità (ca. 80 m p.c.) nel sondaggio

1291 (pozzo per acqua).

Sono evidenziati anche due intervalli acquiferi costituiti da terreni ghiaioso-sabbiosi,

uno più superficiale posto nell'unità [Dr] a profondità in genere 8÷13 m p.c. (csd. "Orizzonte

Firenze 2", nei depositi alluvionali del sistema attuale del F. Arno), ed uno più profondo posto

nell'unità [Da] a profondità in genere 20÷30 m p.c. (csd. "Orizzonte Firenze 3", nei depositi

alluvionali del sistema del paleo Arno).

Più in dettaglio, il sottosuolo dell'area d'intervento è composto quasi esclusivamente

da terreni coesivi, in subordine misti, costituenti successioni monotone di limi argillosi ed

argille limose. Le sezioni mostrano spessori di circa una decina di metri per i depositi [Dr], di

15÷20 metri per i depositi sottostanti [Da] e di altrettanti per i depositi [FPT] con l'eccezione dei

Pagina 42 di 55

RELAZIONE GEOLOGICA TERMINAL

sondaggi 1291 (ca. 50 m attraversati) e 831 (ca. 25 m attraversati).

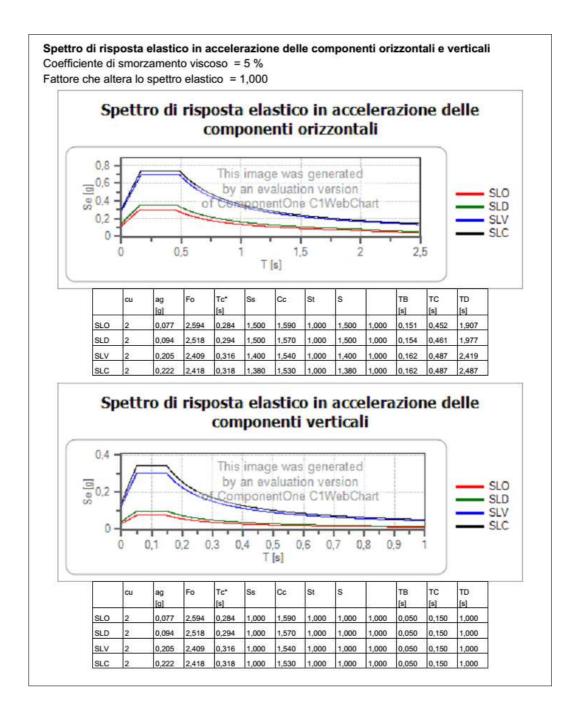


Figura 8 - Spettri di risposta elastici per i diversi stati limite.

Il substrato litoide viene stimato alla profondità di 350÷375 m p.c., ca. 310÷335 m.s.l.m. (*Carta geologico-tecnica per la microzonazione sismica*, Variante 2015 al Piano

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

Strutturale 2010 del Comune di Firenze).

I terreni acquiferi sono ubicati negli intervalli sopra citati, *Orizzonte Firenze 2* ed *Orizzonte Firenze 3* oltre che negli intervalli caratterizzati da minore continuità, sia verticale che orizzontale, costituenti i depositi di fan-delta. Le successioni monotone di limi argillosi ed argille limose costituiscono invece corpi acquicludi ("aquiclude") e/o acquitardi, presentando permeabilità dell'ordine di 10⁻⁹÷10⁻¹⁰ cm/s.

10. Modello geotecnico del sottosuolo

Il modello geotecnico dell'area di progetto, uno schema di massima per questa fase di progettazione, è stato definito in base al modello geologico caratterizzato al paragrafo precedente. I valori dei parametri geotecnici provengono dalle prove di laboratorio eseguite sui campioni prelevati e/o dalle prove in sito (ad esempio prove SPT in foro), relative a sondaggi realizzati per opere sia limitrofe (ad esempio i vari *Progetti per la riconfigurazione e ampliamento dell'attuale terminal*; il *Progetto per la tramvia linea 2 trincea Guidoni*, figura 9) sia in aree circostanti.

Figura 9 - Sondaggi in area terminal e trincea Guidoni tramvia linea 2.

RELAZIONE GEOLOGICA TERMINAL

Inoltre, per quanto riguarda i depositi lacustri [FPT], in considerazione della loro maggiore profondità di rinvenimento, si è fatto riferimento ad opere poste a varia distanza dall'area aeroportuale, in particolare al tracciato ferroviario TAV (stazione FS Rifredi, SMN-Fortezza da Basso-stazione FS Campo Marte), per cercare di caratterizzare in linea di massima tali sedimenti.

Quindi, in base alle indicazioni fornite dal modello geologico descritto al paragrafo precedente, è stato definito il *modello geotecnico preliminare* per l'area di progettazione come riportato di seguito, a partire dai livelli più superficiali (v. anche sezioni geologiche 1-1' e 2-2'):

- un livello geotecnico corrispondente ai sedimenti di origine alluvionale attuali e recenti [Dr_{a-b} età: Olocene], costituito (1) da terreni coesivi [Dr_a] come limi argillosi (Ip) e in misura minore da limi ghiaiosi e limi sabbiosi (Is) con componente granulare scarsa (Ip) o più cospicua (Is); e (2) da terreni prevalentemente incoerenti o misti [Dr_b] come ghiaie in matrice fine variabile, sabbia ghiaiosa e sabbia limosa (gs, gp, ss, sp) con spessore variabile e corrispondenti all'"Orizzonte Firenze 2";
- un livello geotecnico corrispondente ai sedimenti di origine alluvionale antichi [Da_{a-b} età: Pleistocene sup.], costituito (1) da terreni coesivi [Da_a] come limi argillosi (Ip) con scarsa componente granulare e, in misura minore, da terreni misti come limi ghiaiosi e limi sabbiosi (Is); e (2) da terreni prevalentemente incoerenti o misti [Da_b] come ghiaie in matrice fine variabile, sabbia ghiaiosa e sabbia limosa (gs, gp, ss, sp) con spessore variabile e corrispondenti all'"Orizzonte Firenze 3";
- un livello geotecnico corrispondente ai depositi di origine lacustre e palustre [FPT età: Pliocene sup. Pleistocene inf., "Villafranchiano" Auctt.], attraversati da molti sondaggi (ma qui mai campionata) nell'area dell'aeroporto in tutte e tre le facies [FPTa-bc]: la facies [FPTa], prevalentemente coesiva come limi argillosi (lp) e limi ghiaiosi e sabbiosi (ls), con i primi litotipi qui più rappresentati dei secondi, mostra spessori di (almeno) una decina di metri; la facies ghiaioso-sabbiosa [FPTb], qui quasi assente ma rinvenuta per alcuni metri (a fondo foro) nel sondaggio 1291 (pozzo) a profondità di ca.80 m p.c., come sabbie pulite (sp); la facies [FPTc], coesiva ("argille turchine") e qui rinvenuta come limi argillosi ed argille limose (ap) per spessori di (almeno) 15 m in diversi sondaggi, oltre ad uno spessore di ca. 50 m nel sondaggio-pozzo 1291. In quanto unità qui mai campionata, in considerazione della loro maggiore profondità di rinvenimento come detto precedentemente, per cercare di

RELAZIONE GEOLOGICA TERMINAL

caratterizzare in linea di massima tali depositi lacustri [FPT], si è fatto riferimento ad opere poste a varia distanza dall'area aeroportuale, in particolare al tracciato ferroviario TAV (stazione FS Rifredi, SMN-Fortezza da Basso-stazione FS Campo Marte).

Con riferimento agli allegati: Allegato 1 per i dati relativi ai depositi alluvionali [Dr] e [Da] e Allegato 2 per i dati relativi ai depositi lacustri [FPT], in cui sono riportati i parametri geotecnici raccolti per *macro-tipologia di terreni* (ogni macro-unità eventualmente da suddividere e caratterizzare, se necessario, in fase di progettazione definitiva/esecutiva), in base ai sondaggi selezionati per caratterizzare l'area di interesse si possono assegnare, di massima, i seguenti valori per i principali parametri geotecnici (Tabella 2):

livello geotecnico	peso vol nat	Limite liquido	Limite plastico	Indice plasticità	Classificaz. Casagrande	Nspt	φ'	c'	Cu	Eed
sintema	kN/m3	LL%	LP %	IP %			(°)	(kPa)	(kPa)	(kPa)
subsintema									1	98-196 kPε
Dr (Dr-a)	19.85	58.5	24.1	34.4	СН	31	19.0	20.1	121	10284
Da (Da-a)	20.10	61.7	22.6	39.1	СН	55	19.3	24.3	162	n.d.
FPT _a	19.52	56.9	24.4	32.4	СН		19.0	n.d.	n.d.	n.d.
FPT _b						72				
FPTc	19.96	50.1	22.8	27.3	СН		25.6	30.0	n.d.	18051

Tabella 2 - Schema del modello geotecnico preliminare per l'area di progetto.

I valori riportati in tabella sono riferiti ai valori "medi" statistici (media o mediana), negli allegati sono anche riportati i valori dei parametri geotecnici di resistenza a cui è stata applicata una riduzione in base ai valori di covarianza COV mostrati da popolazioni note per il parametro in oggetto (ϕ' , c', Cu), dove COV=dev std/media.

Nonostante la presenza quasi esclusiva di successioni monotone di terreni coesivi, limi argillosi ed argille limose, si possono evidenziare alcune caratteristiche ascrivibili alle singole unità stratigrafiche/sintemi, fra le quali:

- sebbene siano tutte unità ricadenti in "argille inorganiche di alta plasticità" (CH), una differenza nei valori medi del limite liquido e dell'indice di plasticità (figura 10);
- differenza fra il valore medio N_{SPT} (sebbene non normalizzato) mostrato dalle unità [Dr] e

RELAZIONE GEOLOGICA TERMINAL

[Da];

differenza fra il valore medio della resistenza non drenata Cuell mostrato dalle medesime

unità [Dr] e [Da].

Per quanto riguarda la falda, si rimanda alle considerazioni riportate nel paragrafo del

modello geologico.

11. Liquefazione

Ai sensi del § 7.11.3.4 del D.M. 17 gennaio 2018, la verifica a liquefazione può essere

omessa quando si manifesti almeno una delle seguenti condizioni:

L. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di

campo libero) minori di 0.1 g;

2. profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano

campagna sub-orizzontale e strutture con fondazioni superficiali;

3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60}>30$

oppure q_{c1N} >180 dove $(N_1)_{60}$ è il valore della resistenza determinata in prove

penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione

efficace verticale di 100 kPa e q_{c1N} è il valore della resistenza determinata in prove

penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace

verticale di 100 kPa;

4. distribuzione granulometrica esterna alle zone indicate nella Figura 7.11.1a e b delle NTC

2018.

La scarsa presenza di terreni sede di acquifero (presenza di acqua "libera") e di terreni

granulari puliti in falda (sabbie pulite scarsamente o non addensate, sature), di cui ai punti 2 e

4 della tabella 3, sono condizioni che consentono di escludere la verifica a liquefazione. Per una

valutazione delle condizioni espresse al rimanente punto 3, occorreranno indagini in sito come

prove penetrometriche statiche e/o dinamiche.

RELAZIONE GEOLOGICA TERMINAL

§ 7.11.3.4 DM 17-01-18	Criteri per omissione verifica	Valore	Verifica liquefazione	Note
1	Accelerazione max attesa al p.c. < 0.1 g	0.205 g (SLV)	SI	§ Azione sismica
2	Prof. falda > 15 m	n.d.	NO	§ Modello geologico
3	$(N_1)_{60} > 30$ $qc_{1N} > 180$	n.d.	n.d.	
4	Distribuzione granulometrica	n.d.	NO	v. fusi granulometrici

Tabella 3 - Condizioni di esclusione della verifica a liquefazione.

12. Terre e rocce da scavo

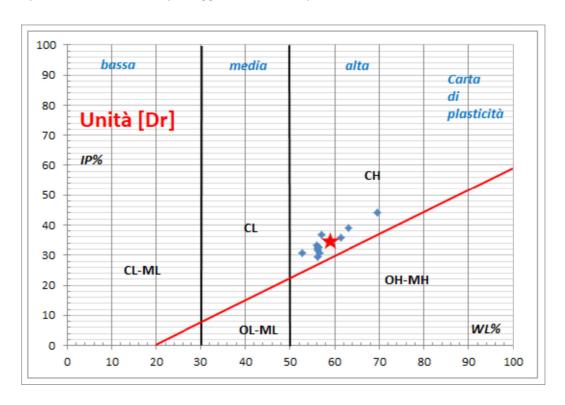
Il terreno scavato nel corso della realizzazione del nuovo Terminal Passeggeri dell'Aeroporto Internazionale Amerigo Vespucci di Firenze sarà interamente utilizzato nello stesso sito quindi come sottoprodotto ai sensi del DPR 120/2017 oppure secondo la lettera c del comma 1 dell'art. 185 del D.Lgs. 152/2006.

13. Indicazioni relative alla realizzazione dei lavori

13.1. Indicazioni inerenti la gestione delle acque di aggottamento

In base a quanto detto nelle pagine che precedono, i primi metri di terreno interessati dagli scavi sono caratterizzati da totale assenza di falda o dalla presenza di sporadici orizzonti idrici non produttivi a carattere del tutto saltuario. Si può prevedere quindi la necessità di aggottare acque soltanto se si avrà il caso di lavori di scavo aperti nelle stagioni piovose e comunque per portate estremamente limitate.

13.2. Indicazioni sulla necessità di opere provvisionali e loro tipologia


Nella stesura della relazione geologica per il progetto esecutivo del nuovo Terminal Passeggeri, a seguito dell'esecuzione delle indagini geognostiche in sito e delle prove di laboratorio sarà valutata l'eventuale necessità di opere provvisionali.

13.3. Indicazione sulla tutela dei suoli interessati dalle aree di cantiere

La sostanziale bassa permeabilità dei suoli che si troveranno sul fondo degli scavi è una naturale garanzia di tutela per i suoli e per le acque sotterranee ben più profonde dei fondo scavi. Resta naturalmente doveroso assumere da parte della Direzione dei Lavori tutti gli accorgimenti tecnici necessari alla protezione del terreno di fondo scavo da possibili fenomeni

RELAZIONE GEOLOGICA TERMINAL

di inquinamento causati dal passaggio dei mezzi d'opera.

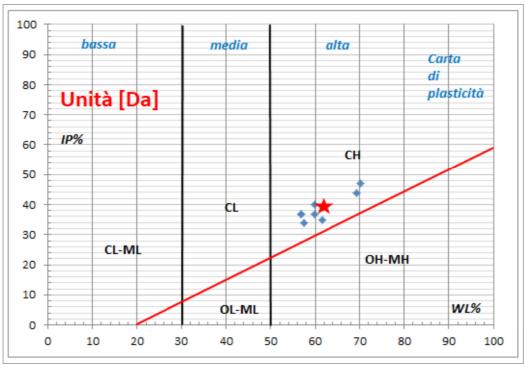


Figura 10 - Carta di plasticità di Casagrande per i depositi [Dr], in alto, e [Da], in basso (la stella rossa evidenzia il valore medio).

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

13.4. Indicazione degli interventi di ripristino delle aree a fine cantiere

Non si ravvisano particolari interventi di ripristino a eccezione delle normali attività di pulizia e smaltimento dei rifiuti prodotti nell'ambito del cantiere.

14. Conclusioni

Lo studio geologico preliminare che è stato effettuato nell'area in cui è prevista la realizzazione del nuovo Terminal Passeggeri e l'ampliamento del piazzale degli aeromobili dell'Aeroporto Internazionale Amerigo Vespucci di Firenze non ha evidenziato la presenza di aspetti geologici, geomorfologici, idrogeologici e sismici contrastanti o limitanti la fattibilità dell'intervento previsto. Per quanto riguarda l'esame delle problematiche idrauliche si rimanda agli altri elaborati progettuali. Viste le caratteristiche di progetto, quelle geologiche e geotecniche e i risultati delle indagini eseguite nel sito di intervento, è stato elaborato il modello geologico e quello geotecnico preliminari del sottosuolo indicando i valori caratteristici dei parametri geotecnici da adottare. A partire dalla categoria di sottosuolo identificata attraverso indagini geofisiche di tipo MASW e Down Hole (Categoria di sottosuolo C) e in base alla vita nominale, alla classe d'uso e al periodo di riferimento, sono stati forniti i parametri dell'azione sismica locale.

marzo 2024

dr. geol. Fabio Picchi

dr. geol. Michele Sani

RELAZIONE GEOLOGICA TERMINAL

15. Bibliografia

Per redigere la parte iniziale della presente relazione sono state consultate e utilizzate le seguenti pubblicazioni:

- AA.VV. (1982) Carta strutturale dell'Appennino Settentrionale in scala 1:250.000. Note illustrative C.N.R., Prog. Fin. Geod., 429, 203 pp.
- Abbate E., Bortolotti V., Passerini P. & Sagri M. (1970) *Introduction to the geology of the Northern Apennines*. Sedimentary Geology 4, 3-4, 207-249.
- Autorità di Bacino del Fiume Arno (2010) Piano di Bacino Stralcio bilancio idrico.
- Bartolini C. & Pranzini G. (1981) *Plio-Quaternary evolution of the Arno Basin drainage*. Zeit. Geomorph. N.F., Suuppl. Bdo 40, 77-91.
- Boccaletti M., Corti G., Gargini A., Gasperini P., Piccardi L., Pranzini G., Vannucci G., Moratti G. (1998) *Geologia urbana di Firenze*. Geologia dell'ambiente, anno VI, n.4/98, 9-20.
- Boccaletti M., Moratti G. & Pranzini G. (1997) *Geologia del bacino di Firenze*, in Geologia Urbana di Firenze, Atti del convegno "Geologia delle grandi aree urbane", Bologna, 4/5 novembre 1997, vol. A, 2-9.
- Briganti R., Ciufegni S., Coli M., Polimeni S. & Pranzini G. (2003) *Underground Florence: Plio-Quaternary evolution of the Florence area*. Boll. Soc. Geol. It., 122, 1-11.
- Canuti P., Pranzini G. & Sestini G. (1966) *Provenienza ed ambiente di sedimentazione dei ciottoli del Pliocene di San Casciano (Firenze)*. Mem. Soc. Geol. It., 5, 340-364.
- Capecchi F., Guazzone G. & Pranzini G. (1976a) Il bacino lacustre di Firenze Prato Pistoia. Geologia del sottosuolo e ricostruzione evolutiva. Boll. Soc. Geol. It., XCVI (4), 1975, 637-660.
- Capecchi F., Guazzone G. & Pranzini G. (1976b) *Ricerche geologiche e idrogeologiche nel sottosuolo della pianura di Firenze*. Boll. Soc. Geol. It., XCVI (4), 1975, 661-692.
- Capecchi F., Guazzone G. & Pranzini G. (1976c) *Gli acquiferi profondi fra Firenze e Pistoia*. Boll. Ingegn. Prov. Firenze, 1975, (12), 1-3.
- Coli M., Pini G., Rubellini P. & Agostini A. (2006) *Firenze Carta litotecnica*. Ricerca cofinanziata dal Comune di Firenze e Università di Firenze Dip.to Scienze della Terra. SELCA Firenze.
- Coli M., Pranzini G. & Rubellini P. (2012) *Idrogeologia dell'area fiorentina*. Comune di Firenze e Università di Firenze Dipartimento Scienze della Terra.
- Coli M. & Rubellini P. (2007) Note di geologia fiorentina. SELCA 2007.
- Gargini A. & Pranzini G. (1994) Map of protection against pollution of acquifers in the Middle Valdarno (Florence-Prato-Pistoia plain). Mem. Soc. Geol. It., 48, 923-928.
- Gori P. (1970) Osservazioni idrogeologiche e sedimentologiche nell'area compresa fra Campi Bisenzio, Scandicci e Lastra a Signa. Tesi di laurea inedita, Istituto di Geologia di Firenze.
- Grigioni A. (2012) Relazione geologica e idrogeologica. Impianto di recupero energia da incenerimento di rifiuti non pericolosi loc. Case Passerini, Sesto Fiorentino (Firenze), 1-158
- Guazzone G. (1971) Ricerca sulle falde acquifere profonde fra Firenze e Pistoia. Parte I. Indagine geologica. Quaderni dell'Istituto di ricerca sulle acque, 6, 42-53.

RELAZIONE GEOLOGICA TERMINAL

Pandeli E. (2008) — La pianura di Firenze-Prato-Pistoia nel quadro dell'evoluzione geologica dell'Appennino Settentrionale. In: Un piano per la Piana: idee e progetti per un parco. Atti del convegno 9-10 maggio 2008 — Polo Scientifico e Tecnologico di Sesto Fiorentino, Università di Firenze, 1-16.

Pranzini G. (1994) - Water resources of the Arno Basin. Mem. Soc. Geol. It., 48, 785-794.

Pranzini G. (2008) – *Idrogeologia della piana fiorentina*. In: *Un piano per la Piana: idee e progetti per un parco*. Atti del convegno 9-10 maggio 2008 – Polo Scientifico e Tecnologico di Sesto Fiorentino, Università di Firenze, 1-15.

* * *

RELAZIONE GEOLOGICA TERMINAL

16. Allegati

P.IVA E CODICE FISCALE: 06521990488

RELAZIONE GEOLOGICA TERMINAL

A - Dati relativi ai depositi alluvionali

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio	p.c.	camp/indag	camp/indag	camp/indag	sintema/subsintema	granulometria (%) e classificazione			Cara	tteristiche fis	iche		
id	m.s.l.m.	id	m p.c.	m.s.l.m.	(U.S.C.S.)	Raccomandazioni A.G.I., 1977	peso vol nat	peso vol sec	peso vol sat	peso specif	ind vuoti	grado satur	Contenuto acq
						(descrizione campione)	kN/m3	kN/m3	kN/m3	kN/m3	(-)	%	W %

Depositi alluvionali attuali e recenti (Sintema dell'Arno): Dr

S1A (apr 2007)	38,2	C1	2.00-2.50	36.20-35.70	Dr-a (lp)	Argilla (38) con limo (37.5) ghiaiosa (15.9) deb sabbiosa (8.6) (argilla limosa, molto consistente)	19,50	17,70					21,00
S6-pz (feb 2017)	38,1	C1	2.00-2.50	36.10-35.60	Dr-a (lp)	Argilla (55.4) con limo (39.1) [sabbia (3.7), ghiaia (1.8)] (argilla con limo, tracce torbose, molto consistente)	20,10	16,40	20,20	26,50	0,609	97,8	22,10
S3-DH (dic 2016)	37,7	SPT1	2.00-2.45	35.70-35.25	Dr-a (lp)	(argilla limosa poco consistente)							
S4 (feb 2017)	37,8	C1	2.50-3.00	35.30-34.80	Dr-a (lp)	Argilla (70.1) con limo (28.9) [sabbia (1.0)] (argilla con limo, molto consistente)	19,40	15,80	19,80	26,50	0,674	90,5	22,60
S1B (nov 2009)	38,2	C1	3.00-3.50	35.20-34.70	Dr-a (lp)	(argilla limosa, marrone oliva, chiazze Fe-Mn)	20,00	16,20					23,52
S02 tramvia (2007)	38,5	C1	3.00-3.50	35.50-35.00	Dr-a (lp)								
SA tramvia (2014)	38,5	SPT1	3.00-3.45	35.50-35.05	Dr-b (ss)	(sabbia limosa, marrone chiara, poco addensata-sciolta)							
S6-pz (feb 2017)	38,1	SPT1	4.00-4.45	34.10-33.65	Dr-a (lp)	(argilla limosa poco consistente)							
1423 (SIGS)	36,62	C1	4.15-4.60	32.47-32.02	Dr-a (ls)	Limo (51.20) con argilla (47.31) [sabbia (1.31), ghiaia (0.19)] (limo argilloso nocciola-grigio-turchino)	19,12						28,72
S1B (nov 2009)	38,2	SPT1	5.00-5.45	33.20-32.75	Dr-a (lp)	(limo argilloso, da molto consistente a duro)							
S6-pz (feb 2017)	38,1	C2	5.00-5.50	33.10-32.60	Dr-a (lp)	Argilla (75.5) limosa (20.6) [sabbia (3.9)] (argilla limosa, molto consistente)	19,80	16,10	20,00	26,50	0,639	96,0	22,70
S3-DH (dic 2016)	37,7	C1	5.00-5.50	32.70-32.50	Dr-a (lp)	Argilla (62.2) con limo (33.7) [sabbia (4.1)] (argilla con limo, tracce torbose, molto consistente)	19,80	16,30	20,10	26,50	0,626	93,9	21,80
S3-DH (dic 2016)	37,7	SPT2	6.00-6.45	31.70-31.25	Dr-a (lp)	(argilla limosa compatta)							
SA tramvia (2014)	38,5	SPT2	6.00-6.45	32.50-32.05	Dr-a (lp)	(argilla limosa, localm debolm sabbiosa, 7.1-7.3 ghiaiosa, marrone nocciola, molto consistente)							
S4 (feb 2017)	37,8	C2	7.00-7.50	30.80-30.30	Dr-a (lp)	Argilla (60.5) con limo (35.3) [sabbia (4.2)] (argilla con limo, dura)	20,30	17,00	20,50	26,50	0,560	95,7	19,80
S1B (nov 2009)	38,2	C2	7.50-8.00	30.70-30.20	Dr-a (lp)	(argilla limosa, marrone oliva, chiazze Fe-Mn)	19,90	16,10					23,60
S6-pz (feb 2017)	38,1	SPT2	7.50-7.95	30.60-30.15	Dr-a (lp)	(argilla limosa consistente)							
S3-DH (dic 2016)	37,7	SPT3	7.50-7.95	30.70-30.25	Dr-a (lp)	(argilla limosa compatta)							
S1A (apr 2007)	38,2	C2	8.00-8.50	30.20-29.70	Dr-a (lp)	Argilla (45.9) con limo (38.3) ghiaiosa (10.8) deb sabbiosa (5) (argilla limosa, molto consistente)	20,10	18,00					23,05
1425 (SIGS)	37,86	C1	8.60-9.00	35.30-34.80	Dr-a (lp)	Argilla (45.52) con limo (33.94) debolm sabbiosa (14.49) deb ghiaiosa (6.05)] (argilla lim nocciola, nod Fe-Mn)	20,10						20,11
S1B (nov 2009)	38,2	SPT2	9.00-9.45	29.20-28.75	Dr-a (lp)	(limo argilloso, duro)							
S3-DH (dic 2016)	37,7	C2	9.00-9.60	28.70-28.10	Dr-a (lp)	Argilla (61.9) con limo (28.4) deb sabbiosa (5.4) [ghiaia (4.3)] (argilla con limo deb sabbiosa, molto consist.)	19,90	16,30	20,10	26,50	0,623	95,0	21,90
S02 tramvia (2007)	38,5	C2	9.00-9.50	29.50-29.00	Dr-a (lp)								
SA tramvia (2014)	38,5	SPT3	9.00-9.45	29.50-29.05	Dr-a (lp)	(argilla limosa, localm debolm sabbiosa, 7.1-7.3 ghiaiosa, marrone nocciola, molto consistente)							
SA tramvia (2014)	38,5	C1	9.45-10.00	29.05-28.50	Dr-a (lp)	(limo argilloso, molto consistente, marrone verdastro)	19,79	16,60	20,24	26,38	0,590	88,0	19,20
S6-pz (feb 2017)	38,1	SPT3	10.00-10.45	28.10-27.65	Dr-a (lp)	(argilla limosa consistente)							
S03 tramvia (2007)	38,5	C1	11.00-11.50	27.50-27.00	Dr-a (lp)								
SA tramvia (2014)	38,5	C2	11.40-12.00	27.10-26.50	Dr-a (lp)	(limo argilloso, molto consistente, marrone verdastro)	19,50	15,80	19,75	26,45	0,670	93,0	23,30
S3-DH (dic 2016)	37,7	SPT4	12.00-12.45	25.70-25.25	Dr-b (ss)	(limo sabbioso-argilloso compatto)							
media							19,81	16,53	20,09	26,48	0,624	93,7	22,39
mediana							19,85	16,30	20,10	26,50	0,625	94,5	22,35

formula statistica semplificata con COV secondo Schneider: Xk=Xmed · (1-COV/2) (per numero limitato di campioni) (COV 10% per \(\phi' \) e c', 40% per Cu)

formula statistica semplificata con COV secondo Cherubini & Orr: Xk=Xmed · (1-COV/2) (per numero limitato di campioni) (COV 10%-15%-30% per φ' sabbia-limo-argilla; 45% per c', 55% per Cu)

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio			Limiti di	Atterberg			Classificaz	z. UNI 10006	Tx UU	Tx CU	Tx CU	Tx CU	Tx CU	Tx CD	Tx CD	ELL	ELL	ELL	tg dir CD	tg dir CD	cella tx	SPT	SPT
id	Limite liq	Limite plast LP %	Indice plast IP %	Indice consist IC (-)	Indice attiv	Classificaz. Casagrande	Gruppo	Indice grup	Cu (kPa)	φ .	c (kPa)	φ'	c' (kPa)	φ' 。	c' (kPa)	σ (kPa)	Cu (kPa)	Eti (kPa)	φ' 。	c' (kPa)	k (m/sec)	id	colpi
Depositi alluvionali					1	1				1	1	1	I				I	ı					
S1A (apr 2007)	61,4	25,5	35,9	1,13	0,77	СН													21,5	15,0			
S6-pz (feb 2017)	56,3	26,7	29,6	1,16		СН	A7-6	19								326	163,0		20,1	19,7			
S3-DH (dic 2016)																						SPT1	2-4-4
S4 (feb 2017)	56,0	22,7	33,3	1,00		СН	A7-6	19								321	161,0		15,0	21,6			
S1B (nov 2009)										18,4	36,4	22,3	20,6				110,9	5619					
S02 tramvia (2007)																							
SA tramvia (2014)																						SPT1	1-4-1
S6-pz (feb 2017)																						SPT1	7-10-14
1423 (SIGS)	56,3	24,0	32,3			СН											52,0	2079					
S1B (nov 2009)																						SPT1	5-7-8
S6-pz (feb 2017)	56,3	24,5	31,8	1,06		СН	A7-6	19								239	119,0		21,5	17,9			
S3-DH (dic 2016)	52,7	21,9	30,8	1,00		СН	A7-6	19									101,0		15,3	23,8			
S3-DH (dic 2016)																						SPT2	12-16-19
SA tramvia (2014)																						SPT2	7-11-17
S4 (feb 2017)	63,1	24,0	39,1	1,11		СН	A7-6	20								288	144,0		19,3	12,1			
S1B (nov 2009)									160,6										20,1	26,4			
S6-pz (feb 2017)																						SPT2	14-16-19
S3-DH (dic 2016)																						SPT3	23-27-30
S1A (apr 2007)	69,5	25,5	44,0	1,05	0,84	СН													16,0	31,9			
1425 (SIGS)	57,0	20,2	36,8			СН																	
S1B (nov 2009)																						SPT2	11-13-16
S3-DH (dic 2016)	56,6	25,8	30,8	1,13		СН	A7-6	19									118,0		22,0	12,7			
S02 tramvia (2007)																							
SA tramvia (2014)																						SPT3	11-15-18
SA tramvia (2014)																							
S6-pz (feb 2017)																						SPT3	17-20-23
S03 tramvia (2007)																							
SA tramvia (2014)																							
S3-DH (dic 2016)																						SPT4	21-26-31
media	58,5	24,1	34,4	1,08	0,81					·						293,5	121,1	3849	19,0	20,1			

formula statistica semplificata con COV secondo Schneider: Xk=Xmed · (1-COV/2) (per numero limitato di campioni) (COV 10% per \(\phi' \) e c', 40% per Cu)

formula statistica semplificata con COV secondo Cherubini & Orr: Xk=Xmed · (1-COV/2) (per numero limitato di campioni) (COV 10%-15%-30% per ф' sabbia-limo-argilla; 45% per c', 55% per Cu)

304,5

118,5

96,9

87,8

20,1

18,0

19,7

19,1

15,6

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio	NSPT										P	rova edometri	ca								
id	N2+N3	Rapp ricompr	Rapp compres	Rapp rigonf	Press precons Co	eff cons vert	Permeab k	Coeff cons vert	Permeab k	Coeff cons ve	t Permeab k	Coeff cons ver	t Permeab k	Coeff cons ver	t Permeab k	Eed	Eed	Eed	Eed	Eed	Coeff compr
		RR'	CR	SR	σ' vmax (kPa) C	v (cm2/sec)	cm/sec	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	kPa	kPa	kPa	kPa	kPa	Mv (cm2/kg)
					(gr	rad 0.5-1) (grad 0.5-1)	(grad 1-2)	(grad 1-2)	(grad 2-4)	(grad 2-4)	(grad 4-8)	(grad 4-8)	(grad 8-16)	(grad 8-16)	(grad 0.5-1)	(grad 1-2)	(grad 2-4)	(grad 4-8)	(grad 8-16	5)
												(in corsivo	valori ner gra	dino di carico noi	n definito)						

Depositi alluvionali attuali e recenti (Sintema dell'Arno): Dr

mediana	31,0	0,02638	0,12216	0,05093	442,9	2,24E-04	1,66E-09	2,18E-04	1,70E-09	1,60E-04	1,53E-09	1,46E-04	8,81E-10	1,24E-04	4,77E-10	10968	10284	11671	17224	25650	0,01126
media	30,8	0,02638	0,12216	0,05093	442,9	6,98E-04	2,46E-09	2,46E-04	2,01E-09	1,85E-04	1,39E-09	1,55E-04	8,87E-10	1,36E-04	5,05E-10	10840	11398	12595	17655	26494	0,01126
S3-DH (dic 2016)	57																				
SA tramvia (2014)																8105	9906	10032	16516	22839	
S03 tramvia (2007)																					
S6-pz (feb 2017)	43																				
SA tramvia (2014)																					
SA tramvia (2014)	33																				
S02 tramvia (2007)																					
S3-DH (dic 2016)						0,000224	1,66E-09	0,00051	3,94E-09	0,000302	2,27E-09	0,000267	1,46E-09	0,000202	7,93E-10	13183	12705	13077	17931	24925	
S1B (nov 2009)	29																				
1425 (SIGS)																					
S1A (apr 2007)		0,03146	0,1341	0,06031	663,5	3,60E-03	6,20E-09	2,30E-04	9,00E-10	0,000115	4,00E-10										
S3-DH (dic 2016)	57																				
S6-pz (feb 2017)	35																				
S1B (nov 2009)																					
S4 (feb 2017)																					
SA tramvia (2014)	28																				
S3-DH (dic 2016)	35																				
S3-DH (dic 2016)						0,000331	2,88E-09	0,000335	3,08E-09	0,000246	1,92E-09	0,00015	8,14E-10	0,000124	4,03E-10	11274	10661	12534	18038	30237	
S6-pz (feb 2017)						4,2E-05	3,04E-10	0,000131	7,21E-10	0,000137	6,62E-10	8,6E-05	3,52E-10	0,000106	3,22E-10	13436	17833	20223	23777	32423	
S1B (nov 2009)	15																				
1423 (SIGS)																					0,01126
S6-pz (feb 2017)	24																				
SA tramvia (2014)	5																				
S02 tramvia (2007)																					
S1B (nov 2009)						1,03E-04	1,20E-09	1,19E-04	1,54E-09	1,2/E-04	1,401-09	1,2/E-04	9,20E-10	1,2015-04	3,29E-10	6363	7374	8890	13390	22103	
S4 (feb 2017)	0					1,03E-04	1,20E-09	1,19E-04	1,54E-09	1,27E-04	1,40E-09	1,27E-04	9,28E-10	1,20E-04	5,29E-10	8383	7574	8896	13390	22165	
S6-pz (feb 2017) S3-DH (dic 2016)	8					1,81E-04	1,00E-09	2,18E-04	2,20E-09	1,83E-04	1,00E-09	1,40E-04	8,81E-10	1,26E-04	4,77E-10	10001	9/11	10000	102/9	20374	
S1A (apr 2007)		0,02129	0,11022	0,04154	222,2	4,02E-04 1,81E-04	3,30E-09 1,66E-09	1,77E-04	1,70E-09	1.025.04	1,66E-09	1,46E-04	8,81E-10	1,28E-04	4.77E 10	10661	9711	10808	16279	26374	

formula statistica sem formula statistica sem

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio	p.c.	camp/indag	camp/indag	camp/indag	sintema/subsintema	granulometria (%) e classificazione			Cara	tteristiche fis	iche		
id	m.s.l.m.	id	m p.c.	m.s.l.m.	(U.S.C.S.)	Raccomandazioni A.G.I., 1977	peso vol nat	peso vol sec	peso vol sat	peso specif	ind vuoti	-	Contenuto ac
Depositi alluvionali	antichi (Si	⊥ ntema di Fi	renze): <mark>Da</mark>			(descrizione campione)	kN/m3	kN/m3	kN/m3	kN/m3	(-)	%	W %
SA tramvia (2014)	38,5	SPT4	12 00-12 45	26.50-26.05	Da-a (lp)	(argilla limosa, localm debolm sabbiosa, 7.1-7.3 ghiaiosa, marrone nocciola, molto consistente)							
SA tramvia (2014)	38,5	C3	12.45-13.00		Da-a (lp)	(limo argilloso, molto consistente, marrone giallastro)	20,01	16,60	20,19	26,29	0,590	95,0	20,90
S6-pz (feb 2017)	38,1	C3	12.50-13.00		Da-a (lp)	Argilla (69.1) limosa (22.7) debolm ghiaiosa (5.8) [sabbia (2.4)] (argilla limosa, tracce torbose, molto consist.)	19,70	15,90	19,80	26,50	0,669	97,7	24,20
S1B (nov 2009)	38,2	C3			Da-a (lp)	(argilla limosa, marrone oliva, chiazze Fe-Mn)	20,30	16,90	17,00	20,50	0,007	77,7	19,86
S6-pz (feb 2017)	38,1	SPT4		25.10-24.65	Da-a (lp)	(argilla limosa consistente)	20,50	10,50					17,00
1424 (SIGS)	37,61	C1			Da-a (lp)	(argilla limosa ocra, nod Fe-Mn, concrez calcaree)	20,59						20,96
1423 (SIGS)	36,62	C2	14.00-14.50		Da-a (lp)	(argilla limosa ocra, nod Fe-Mn, concrez calcaree)	19,81						20,96
S04 tramvia (2007)	38,5	C1	14.00-14.50		Da-a (lp)	angina timosa ocra, noa re-min, concrez carcaree)	19,01						20,50
1425 (SIGS)	37,86	C2	14.50-15.00	23.36-22.86	1.51	(argilla limosa ocra-grigio-verde e concrezioni calcaree)	20,10						21,34
	38,2	SPT3	15.00-15.45	23.20-22.75	Da-a (lp)	(limo argilloso, da molto consistente a duro)	20,10						21,34
S1B (nov 2009)		C3	15.00-15.50		Da-a (lp)		20.10	17,00	20,50	26,50	0,560	89,9	10.60
S3-DH (dic 2016)	37,7	SPT5	15.00-15.30		Da-a (lp)	Argilla (50.6) con limo (43.8) [sabbia (4.6), ghiaia (1.0)] (argilla limosa, molto consistente)	20,10	17,00	20,30	20,50	0,560	89,9	19,60
SA tramvia (2014)	38,5				Da-a (lp)	(argilla limosa, localm debolm sabbiosa, 7.1-7.3 ghiaiosa, marrone nocciola, molto consistente) (argilla limosa consistente)							
S6-pz (feb 2017)	38,1	SPT5	16.00-16.45		Da-a (lp)		20.50						22.77
1425 (SIGS)	37,86	C3	16.00-16.40		Da-a (lp)	(argilla limosa marrone turchino, nod Fe-Mn, concrez calcaree, molto consistente)	20,50						23,77
S03 tramvia (2007)	38,5	C2	16.50-17.00	22.00-21.50	Da-a (lp)			1410				0.0	
SA tramvia (2014)	38,5	C4	17.00-17.60		Da-a (lp)	(limo argilloso, molto consistente, marrone giallastro)	19,76	16,10	19,91	26,32	0,630	96,0	22,70
S3-DH (dic 2016)	37,7	SPT5	17.50-17.95	20.20-19.75	Da-a (lp)	(argilla limosa compatta)							
S04 tramvia (2007)	38,5	C2	17.50-18.00	21.00-20.50	Da-a (lp)								
SA tramvia (2014)	38,5	SPT6	17.60-18.05	20.90-20.45	Da-a (lp)	(argilla limosa, localm debolm sabbiosa, 7.1-7.3 ghiaiosa, marrone nocciola, molto consistente)							
S1A (apr 2007)	38,2	C3	19.50-20.00	18.70-18.20	Da-a (lp)	Argilla (52.4) con limo (42.5) debolm sabbiosa (5.0) (argilla limosa, molto consistente)	20,30	18,20					23,55
S03 tramvia (2007)	38,5	C3	19.50-20.00	19.00-18.50	Da-a (lp)								
S6-pz (feb 2017)	38,1	SPT6	20.00-20.45	18.10-17.65	Da-a (lp)	(argilla limosa consistente)							
S3-DH (dic 2016)	37,7	SPT6	21.00-21.45	16.70-16.25	Da-a (lp)	(argilla limosa compatta)							
1424 (SIGS)	37,61	C2	21.50-22.00	16.61-16.11	Da-a (lp)	Argilla (46.42) con limo (35.79) sabbiosa (17.73) [ghiaia (0.06)] (argilla lim ocra-grigio-verde, molto consist.)							22,93
1425 (SIGS)	37,86	C4	22.00-22.50	15.86-15.36	Da-a (lp)	(argilla limosa ocra-grigio-verde)	20,79						20,12
media							20,18	16,78	20,10	26,40	0,612	94,7	21,74
mediana							20,10	16,75	20,05	26,41	0,610	95,5	21,15

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio			Limiti di	Atterberg			Classificaz	z. UNI 10006	Tx UU	Tx CU	Tx CU	Tx CU	Tx CU	Tx CD	Tx CD	ELL	ELL	ELL	tg dir CD	tg dir CD	cella tx	SPT	SPT
id	Limite liq	Limite plast	•	Indice consist		Classificaz.	Gruppo	Indice grup	Cu	φ	c	φ'	c'	φ'	c'	σ	Cu	Eti	φ'	c'	k	id	colpi
	LL %	LP %	IP %	IC (-)	(-)	Casagrande			(kPa)	0	(kPa)	0	(kPa)	•	(kPa)	(kPa)	(kPa)	(kPa)	0	(kPa)	(m/sec)		
Depositi alluvionali	i antichi (Si	ntema di Fi	renze): <mark>Da</mark>																				
SA tramvia (2014)																						SPT4	10-16-23
SA tramvia (2014)																					1,7E-11		
S6-pz (feb 2017)	61,6	26,7	34,9	1,07		СН	A7-6	20								223,0	112,0		15,8	11,2			
S1B (nov 2009)																	150,9	11390	21,1	29,8			
S6-pz (feb 2017)																						SPT4	24-27-32
1424 (SIGS)	56,8	19,9	36,9			СН											206,9	23016					
1423 (SIGS)	56,8	19,9	36,9			СН											77,5	7149					
S04 tramvia (2007)																							
1425 (SIGS)																							
S1B (nov 2009)																						SPT3	19-21-23
S3-DH (dic 2016)	57,5	23,5	34,0	1,14		СН	A7-6	20									233,0		18,5	31,7			
SA tramvia (2014)																						SPT5	19-25-30
S6-pz (feb 2017)																						SPT5	23-25-29
1425 (SIGS)	70,2	23,3	46,9			СН											200,1	12572					
S03 tramvia (2007)																							
SA tramvia (2014)																							
S3-DH (dic 2016)																						SPT5	24-28-32
S04 tramvia (2007)																							
SA tramvia (2014)																						SPT6	22-22-26
S1A (apr 2007)	69,4	25,5	43,9	1,04	0,83	СН													16,4	30,7			
S03 tramvia (2007)																							
S6-pz (feb 2017)																						SPT6	25-28-30
S3-DH (dic 2016)																						SPT6	25-27-31
1424 (SIGS)	59,8	19,7	40,1			СН											154,0	7129	19,8	24,5			
1425 (SIGS)																			24,3	17,7			
media	61,7	22,6	39,1	1,08	0,83											223,0	162,0	12251	19,3	24,3	1,7E-11		
mediana	59,8	23,3	36,9	1,07	0,83											223,0	154,0	11390	19,2	27,2	1,7E-11		
formula statistica sen	nplificata co	n COV secon	ndo Schneid	er: Xk=Xme	d · (1-COV/	(2) (per nume	ero limitato d	li campioni) (C	OV 10% pe	er of e c', 40%	per Cu)						129,6		18,4	23,0			
formula statistica sen	nplificata co	n COV secon	ndo Cherubi	ini & Orr: X	k=Xmed · (1	1-COV/2) (p	er numero li	mitato di camp	oioni) (COV	10%-15%-3	0% per φ' sab	obia-limo-arg	illa; 45% per	c', 55% per	Cu)		117,5		17,1	18,8			

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

sondaggio	NSPT										Pre	ova edometric	a								
id	N2+N3							Coeff cons vert								Eed	Eed	Eed	Eed	Eed	Coeff compr
D 1.1 11 1 11	. 1 . (0)	RR'	CR	SR	σ' vmax (kPa)	Cv (cm2/sec)	cm/sec	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	Cv (cm2/sec)	(cm/sec)	kPa	kPa	kPa	kPa	kPa	Mv (cm2/kg)
Depositi alluvionali	antichi (Si	ntema di Fi	irenze): <mark>Da</mark>																		
SA tramvia (2014)	39																				
SA tramvia (2014)																					
S6-pz (feb 2017)																					
S1B (nov 2009)																					
S6-pz (feb 2017)	59																				
1424 (SIGS)																					0,00782
1423 (SIGS)																					
S04 tramvia (2007)																					
1425 (SIGS)																					
S1B (nov 2009)	44																				
S3-DH (dic 2016)																					
SA tramvia (2014)	55																				
S6-pz (feb 2017)	54																				
1425 (SIGS)																					0,00677
S03 tramvia (2007)																					
SA tramvia (2014)																					
S3-DH (dic 2016)	60																				
S04 tramvia (2007)																					
SA tramvia (2014)	48																				
S1A (apr 2007)		0,03307	0,11916	0,05802	621,6	2,07E-03	3,70E-09	1,21E-04	5,00E-10	9,60E-05	3,00E-10										
S03 tramvia (2007)																					
S6-pz (feb 2017)	58																				
S3-DH (dic 2016)	58																				
1424 (SIGS)																					0,01017
1425 (SIGS)																					0,00700
media	52,8	0,03307	0,11916	0,05802	621,6	2,07E-03	3,70E-09	1,21E-04	5,00E-10	9,60E-05	3,00E-10										0,00794
mediana	55,0	0,03307	0,11916	0,05802	621,6	2,07E-03	3,70E-09	1,21E-04	5,00E-10	9,60E-05	3,00E-10										0,00741
formula statistica sen formula statistica sen																					

RELAZIONE GEOLOGICA TERMINAL

B - Dati relativi ai depositi lacustri

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

			camp.	indag. analisi granulometrica (R	icc.				Gra	ndezze fis	iche e pro	prietà in	dici		I	Limiti di A	Atterber	g		tg dir CD	tg dir CD	TxUU	TxUU	TxCU	TxCU	TxCU	TxCU	TxCD	TxCD	ELL			prova edon	netrica	
sondaggio	ubicazione	quota p.c. m s.l.m.	ciala	m pc AGI 1977)	sintema- subsintema (cod USCS)		N_{SPT}	peso vol nat	densità secca	peso specif	ind vuoti	porosità	grado satur	umid nat I	Limite liq	Limite plast	Indice plast	Indico		φ'	c'	φ	c	φ	c	φ'	c'	φ'	c'	$\sigma_{ m rott}$		Cs ind rigonf	press mo	coett od. Eed¹ consolid ert	
				(granulometria in %) descrizione campione)	(0)			kN/m3	kN/m3	kN/m3	(-)	(-)	%	W %	LL %	LP %	IP %	IC (-)	-) Casagrande	(°)	(kPa)	(°)	(kPa)	(°)	(kPa)	(°)	(kPa)	(°)	(kPa)	(kPa)	-	-	()		/s) cm/s
Depositi di d	origine lacustr	re e palust	re [FPT	– età: Pliocene sup Pleistoc	ene inf., "Villa	ifranchiano'	' Auctt.]: F	PT-a																									1 E	Eed: gradino 250 k	:Pa
1422	Peretola	44,2	C4	30.20 (argilla limosa verde turchino 30.70 consistente)	FPT-a (lp)																									96,1					
2	nodo TAV Fortezza da Basso	50,19	C1	29.20 sabbia(63.6) argillosa(22.4) 29.40 limosa(13.0) (ghiaia 1.0)	FPT-a (lp)									67,0	54,0	24,0	30,0	0	СН																
11	nodo TAV Staz. Belfiore Foster	50,87	C1	18.40 limo(42.3) con argilla(39.3) 18.75 sabbioso(17.3) (ghiaia1.1)	FPT-a (lp)			20,01						19,8	50,0	23,0	27,0	0	СН	19,0	121,6														
12	nodo TAV Staz. Belfiore Foster	46,05	С6	33.60 argilla(57.1) limosa(24.3) 34.00 sabbiosa(12.6) e ghiaiosa(6.0)	FPT-a (lp)			19,12						25,0	78,0	28,0	50,0	0	СН	19,0	71,59														
			C2	18.00 argilla(46.3) con sabbia(30.2) 18.60 limosa(15.6) deb ghiaioso(7.9)	FPT-a (lp)			20,30						19,1	53,0	23,0	30,0	0	СН																
19	nodo TAV Fra' Bartolommeo	56,18	C3rim	20.00 ghiaia(51.1) sabbiosa(21.1) 20.30 argillosa(16.8) limosa(11.0)	FPT-a (lp)										39,0	21,0	18,0	0	CL																
19	Masaccio	30,18	C4	22.50 argilla(53.0) con limo(28.1) 23.10 sabbiosa(18.4) [(ghiaia(0.5)]	FPT-a (lp)			19,52						22,4	68,0	27,0	41,0	0	СН	12,0	120,6														
			С6	27.20 argilla(35.6) limosa(23.3) 27.55 sabbiosa(21.5) ghiaiosa(19.6)	FPT-a (lp)			18,93						26,4	56,0	25,0	31,0	O	СН																
nedia				·				19,57						22,5	56,9	24,4	32,4	4	СН	16,7	104,6														
nediana								19,52						23,7	54,0	24,0	30,0	9	CH																
	-			o Schneider: Xk=Xmed · (1-CC				-		-										15,8	99,4														
ormula stati	stica semplifica	ata con CC	OV second	o Cherubini & Orr: Xk=Xmed	· (1-COV/2) (pe	r numero limi	tato di camp	ioni) (COV	10%-15	%-30% pe	r φ' sabbi	ia-limo-a	rgilla; 459	% per c', 5	5% per (Cu)				14,8	81,1														

Depositi di origine lacustre e palustre [FPT – età: Pliocene sup. - Pleistocene inf., "Villafranchiano" Auctt.]: FPT-b

SPT4 28.00 Ghiaia da argilloso-limosa FPT-b (gs) 1	72								edia
1845 3.0 m a gniala sabo-lim	8-55 129	47-68-55	FPT-b (sp)	sabbia bruno-giallastra con ghiaia	25.00 25.45	SPT4	31,99	d'Arrigo	031
SPT4 28.00 Ghiaia da argilloso-limoso- SPT5 34.00 Ghiaia da argilloso-limoso- SPT6 39.00 Ghiaia da argilloso-limoso- SPT7 45.00 Ghiaia da argilloso-limoso- SPT7 45.00 Ghiaia da argilloso-limoso- SPT8 SPT7 45.00 Ghiaia da argilloso-limoso- SPT8 SPT8 SPT9 SPT9	-6-6	6-6-6	FPT-b (sp)	sabbia gialla	7.00 7.45	SPT1	51 99		651
SPT4 28.00 Ghiaia da argilloso-limoso SPT-b (gs) 1412 nodo TAV CM Campo d'Arrigo SPT5 34.00 Ghiaia da argilloso-limoso SPT-b (gs) 15 34.00 Ghiaia da argilloso-limoso SPT-b (gs) 16 39.00 Ghiaia da argilloso-limoso SPT-b (gs) 17 39.00 Ghiaia da argilloso-limoso SPT-b (gs) 17 39.00 Ghiaia da argilloso-limoso SPT-b (gs) 18 39.00 Ghiaia da argilloso-limoso SPT-b (gs) 19 39.00 39.0	2-30 72	24-42-30	FPT-b (gs)			SPT7			
SPT4 28.00 Ghiaia da argilloso-limoso SPT-b (gs) 12.11 14.12 nodo TAV CM S2.70 SPT-5 34.00 Ghiaia da argilloso-limoso SPT-b (gs) 12.11 14.12 nodo TAV CM S2.70 SPT-5 34.00 Ghiaia da argilloso-limoso SPT-b (gs) 14.12 14.13 14.14 14.	8-34 72	18-38-34	FPT-b (gs)			SPT6			
SPTA 28.00 Ghiaia da argilloso-limoso-	0-37 67	18-30-37	FPT-b (gs)			SPT5	52,79		1412
18.45 3.0 m a ghiaia sabb-lim	9-41 80	15-39-41	FPT-b (gs)			SPT4			
SPT3 18.00 Sabbia con limo ± ghiaiosa, da ca. FPT-b (gs)	9-42 71	16-29-42	FPT-b (gs)	Sabbia con limo ± ghiaiosa, da ca. 5.0 m a ghiaia sabb-lim		SPT3			

SOCIETÀ D'INGEGNERIA CONSULENZE GEOLOGICHE

Depositi di origine lacustre e palustre [FPT – età: Pliocene sup. - Pleistocene inf., "Villafranchiano" Auctt.]: FPT-c

				_																	 	
2	nodo TAV Fortezza da Basso		C2	30.00 argilla(33.9) con sabbia(32.5) e 30.60 limo(32.2) [ghiaia(1.4)]	FPT-c (lp)		20,01		20,3	46,0	21,0	25,0	CL									
3	nodo TAV Fortezza da		C2	28.10 argilla(38.4) con sabbia(30.7) e 28.60 limo(29.0) [ghiaia(1.9)]	FPT-c (ap)		19,02		22,7	55,0	23,0	32,0	СН									
9	Basso Strozzi Beslan nodo TAV Belfiore Redi		C5	31.15 argilla(43.3) con limo(29.3) e 31.60 sabbia(26.9) [ghiaia(0.5)]	FPT-c (ap)		19,71		21,3	59,0	25,0	34,0	СН					2	4,0			
			C2	30.20 argilla(51.6) con limo(26.2) 30.60 sabbiosa(18.3) [ghiaia(3.9)]	FPT-c (lp)		19,22		23,3	65,0	27,0	38,0	СН					2	5,0 8,	3		
			С3	34.40 sabbia(43.0) con argilla(30.0) e 34.80 limo(25.9) [ghiaia (1.1)]	FPT-c (lp)		20,01		20,0	41,0	22,0	19,0	CL									
			C2	26.00 limo(42.6) con argilla(41.0) 26.40 sabbioso(16.2) [ghiaia(0.2)]	FPT-c (ap)		20,10		19,2	46,0	22,0	24,0	CL	21,0	89,24							
11	nodo TAV Staz. Belfiore Foster		С3	30.00 argilla(42.9) con sabbia(30.4) e 30.50 limo(26.3) [ghiaia(0.4)]	FPT-c (ap)		19,91		20,3	46,0	22,0	24,0	CL					2	6,0 1,0)		
			C4	36.30 limo(42.2) con argilla(37.0) sabbioso(20.1) [ghiaia(0.7)]	FPT-c (ap)		20,01		18,8	44,0	23,0	21,0	CL	36,0	4,90							
			C1	15.00 argilla(34.0) con sabbia(32.7) e 15.60 limo(28.4) [ghiaia(4.9)]	FPT-c (ap)		19,61		23,4	54,0	23,0	31,0	СН	25,0								
			C2	18.00 limo(40.7) con argilla(30.4) e 18.60 sabbia(28.3) [ghiaia(0.6)]	FPT-c (ap)		20,40		18,4	40,0	21,0	19,0	CL									
	nodo TAV Staz. Belfiore Foster		С3	21.00 limo(44.4) con argilla(33.9) 21.60 sabbioso(21.7) [ghiaia(0.0)]	FPT-c (ap)		19,52		22,8	45,0	22,0	23,0	CL	33,0	1,96							
			C4	24.00 limo(33.9) con argilla(32.6) e 24.60 sabbia(29.3) [ghiaia(4.2)]	FPT-c (ap)		20,10		19,0	41,0	20,0	21,0	CL				27,0					
			C5	27.00 argilla(49.0) con limo(33.8) 27.50 sabbiosa(16.4) [ghiaia(0.8)]	FPT-c (ap)		19,52		23,7	65,0	25,0	40,0	СН					1	8,0			
34	nodo TAV Via Pippo Spano Parterre		C5	16.70 argilla(36.0) con sabbia(34.4) e 17.20 limo(26.6) [ghiaia(3.0)]	FPT-c (ap)		19,22		23,7	47,0	25,0	22,0	CL	32,0	0,98							
743 F			СС	24.20 limo(53.5) con argilla(40.0) deb sabbioso(6.50) [(ghiaia 0)]	FPT-c (ap)		20,40		20,0	49,0	20,0	29,0	CL				21,0	40,0			13465	
	ponte Mugnone tramvia Redi		CD	33.80 limo(55.0) con argilla(43.0) 34.40 [sabbia(2.0), (ghiaia 0)]	FPT-c (ap)		20,30		21,0	49,0	21,0	28,0	CL									
			CE	37.50 limo(57.0) con argilla(43.0) 38.10 [sabbia(0.0), (ghiaia 0)]	FPT-c (ap)		20,01		24,0	59,0	24,0	35,0	СН				25,0	30,0			12210	
			СС	22.70 limo(57.0) con argilla(38.0) deb 23.05 sabbioso(5.0) [(ghiaia 0)]	FPT-c (ap)		19,52		26,0	56,0	22,0	34,0	СН									
	ponte Mugnone tramvia Redi		CD	24.20 limo(60.0) con argilla(34.0) deb 24.70 sabbioso(6.0) [(ghiaia 0)]	FPT-c (ap)		19,61		23,0	50,0	24,0	26,0	CL				28,0	0,0			22636	
			CE	30.30 limo(54.0) con argilla(33.0) 30.90 sabbioso(13.0) [(ghiaia 0)]	FPT-c (ap)		20,30		21,0	44,0	24,0	20,0	CL				27,0	50,0			24225	
651	Via Campo d'Arrigo	51,99	SPT2	8.80 sabbia gialla con ghiaia	FPT-c (ap)	22-23																
	d Amgo		SPT3	15.00 15.45 sabbia gialla con ghiaia	FPT-c (ap)	30-34-44																
lia							19,82		21,6	50,1	22,8	27,3	СН	31,3	3,4		25,6	30,0 2	3,3 4,)	18134	
liana							19,96		21,2	48,0	22,5	25,5	CL	33,0	3,4		27,0	35,0 2	4,5 4,5	,	18051	
nula sta	istica semplifica	ata con CC	OV second	lo Schneider: Xk=Xmed · (1-COV	7/2) (per numero limitato di can	npioni) (CO	V 10% per ¢' e c', 40% per Cu)							29,8	3,3		24,3	28,5 2	2,1 4,	,		
nula sta	istica semplifica	ata con CO	OV second	lo Cherubini & Orr: Xk=Xmed · ((1-COV/2) (per numero limitat	o di campior	ni) (COV 10%-15%-30% per φ'	sabbia-limo-argilla; 45°	% per c', 55	% per C	u)			27,8	2,7		22,7	23,3 2	0,6 3,6	3		

da archivio S.I.G.S. del Comune di Firenze