

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

E.N.A.C ENTE NAZIONALE per L'AVIAZIONE CIVILE

Committente Principale

AEROPORTO INTERNAZIONALE DI FIRENZE AMERIGO VESPUCCI

Opera

PROJECT REVIEW - PIANO DI SVILUPPO AEROPORTUALE AL 2035

Titolo Documento

PARCO FOTOVOLTAICO

Relazione Tecnica sulla verifica degli impatti di abbagliamento

Livello di Progetto

SCHEDE DI APPROFONDIMENTO PROGETTUALE A LIVELLO MINIMO DI PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

LIV	REV	DATA EMISSIONE	SCALA	CODICE FILE FLR-MPL-PSA-FTV1-002-FV-RT_Rel Tec Abb
PSA	02	MARZO 2024	N/A	TITOLO RIDOTTO Rel Tec Abb

02	03/2024	EMISSIONE PER PROCEDURA VIA-VAS	SEINGIM	A. BONCIANI	L. TENERANI
01	03/2023	EMISSIONE PER APPROVAZIONE IN LINEA TECNICA DI ENAC	SEINGIM	A. BONCIANI	L. TENERANI
00	10/2022	EMISSIONE PER DIBATTITO PUBBLICO	SEINGIM	A. BONCIANI	L. TENERANI
REV	DATA	DESCRIZIONE	REDATTO	VERIFICATO	APPROVATO

REV DATA	DESCRIZIO	NE .	REDATIO	VERIFICATO	APPROVATO
COMMITTENTE F TOSC ACCOUNTABLE M Dott. Vittorio	ana Dorti Ianager	e n g i n DIRETT Ing. Lor	PROGETTAZIONE DSCANA PROPORTI E e r i n g ORE TECNICO enzo Tenerani eri di Massa Carrara n°631		especialistica oscana eroporti neering a Bonciani
POST HOLDER PROC Ing. Lorenzo Te		Ing. An	ONE PRESTAZIONI SPECIALISTICHE drea Bonciani	SUPPORTO S	
POST HOLDER MAN Ing. Nicola D'Ip		Ordine degli Inge	egneri di Firenze n°4150		
POST HOLDER AREA D Geom. Luca E					

È SEVER AMENTE VIETATA LA RIPRODUZIONE E/O LA CESSIONE A TERZI SENZA AUTORIZZAZIONE DELLA COMMITTENTE

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento del Parco Fotovoltaico

Indice

1. PR	EMESSA E SCOPO DEL LAVORO	3
2. ME	ETODOLOGIA PER LA VALUTAZIONE DEGLI EFFETTI DI ABBAGLIAMENTO IN AEROPORTO	6
3. DE	FINIZIONE DEL LAYOUT DEI PANNELLI FOTOVOLTAICI	11
4. DE	FINIZIONE DEI RICETTORI	19
4.1	PROCEDURE DI ATTERRAGGIO PER LA FUTURA PISTA 11	19
4.2	TORRE DI CONTROLLO ED ALTRI PUNTI NOTEVOLI	21
5. RIS	SULTATI	22
5.1	Assunzioni e limitazioni	22
5.2	ÎMPATTO DEI PANNELLI FOTOVOLTAICI	24
5.3	OTTIMIZZAZIONI ORIENTAMENTO PANNELLI	
5.4	CONCLUSIONI	27
ALLEGA	TO 1: REPORT STANDARD FAA PER SOLUZIONE NON OTTIMIZZATA	28
ALLEGAT	TO 2. DEDODT STANDARD EAA DER SOLLIZIONE OTTIMIZZATA	4/

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

1. Premessa e scopo del lavoro

L'aeroporto di Firenze nell'ambito del nuovo Master Plan - che prevede la realizzazione di una nuova RWY 11-29 e la conversione a taxiway dell'attuale RWY 05-23 – sta ipotizzando di realizzare un campo fotovoltaico da circa 14 MW in un'area interna al sedime aeroportuale posta nell'area della pista esistente.

Nella figura seguente si può osservare la prevista collocazione del campo fotovoltaico (evidenziato in nero) posto a Nord Est rispetto alla testata 29 della futura pista 11 29 (cfr. Fig. 1).

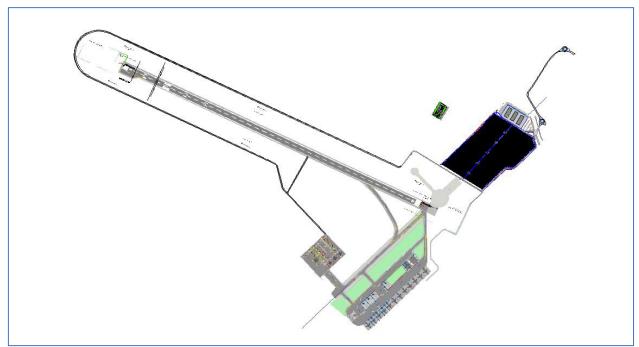


Figura 1 – Localizzazione del campo fotovoltaico

Secondo il documento ENAC "VERIFICA PRELIMINARE VERIFICA POTENZIALI OSTACOLI E PERICOLI PER LA NAVIGAZIONE AEREA" sono da sottoporre a valutazione di compatibilità per il rilascio dell'autorizzazione dell'ENAC, i nuovi impianti/manufatti e le strutture che risultano:

- a. interferire con specifici settori definiti per gli aeroporti civili con procedure strumentali;
- b. prossimi ad aeroporti civili privi di procedure strumentali;
- c. prossimi ad avio ed elisuperfici di pubblico interesse;
- d. di altezza uguale o superiore ai 100 m dal suolo o 45 m sull'acqua;

Toscana Aeroporti engineering

AEROPORTO INTERNAZIONALE DI FIRENZE AMERIGO VESPUCCI

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

e. interferire con le aree di protezione degli apparati COM/NAV/RADAR (BRA – Building Restricted

Areas - ICAO EUR DOC 015);

f. costituire, per la loro particolarità opere speciali - potenziali pericoli per la navigazione aerea (es:

aerogeneratori, impianti fotovoltaici o edifici/strutture con caratteristiche costruttive potenzialmente

riflettenti, impianti a biomassa, etc.)

In particolare per gli impianti fotovoltaici:

IMPIANTI FOTOVOLTAICI - EDIFICI/STRUTTURE CON CARATTERISTICHE COSTRUTTIVE

POTENZIALMENTE RIFLETTENTI Per le strutture in argomento, che possono dare luogo a

fenomeni di riflessione e/o abbagliamento per i piloti, è richiesta l'istruttoria e l'autorizzazione

dell'ENAC quando:

(a) sussista una delle condizioni descritte nei precedenti paragrafi che renda necessaria la

preventiva istruttoria autorizzativa; oppure:

(b) risultino ubicati a una distanza inferiore a 6 Km dall'ARP (Airport Reference Point – dato

rilevabile dall'AIP-Italia) dal più vicino aeroporto e, nel caso specifico di impianti fotovoltaici,

abbiano una superficie uguale o superiore a 500mq, ovvero, per iniziative edilizie che comportino

più edifici su singoli lotti, quando la somma delle singole installazioni sia uquale o superiore a

500 mq ed il rapporto tra la superficie coperta dalle pannellature ed il lotto di terreno interessato

dalla edificazione non sia inferiore ad un terzo. La documentazione trasmessa deve contenere

anche un apposito studio che certifichi l'assenza di fenomeni di abbagliamento ai piloti. NB: Sono

esclusi dall'iter valutativo gli impianti fotovoltaici/solari termici, con previsione di installazione

sul tetto di abitazioni/costruzioni, che, a prescindere dalla distanza dall'aeroporto, hanno una

superficie non superiore a 500 mq e non modificano l'altezza massima del fabbricato.

Quindi riferendosi al punto (b), ed essendo la prevista una estensione del campo FV superiore ai 500 mg -

previsti come limite per l'autorizzazione di ENAC - è opportuno elaborare uno specifico studio che certifichi

l'assenza di fenomeni di abbagliamento critico per i piloti e per i controllori del traffico aereo.

Pertanto si ritiene opportuno che, preliminarmente alla realizzazione dell'impianto fotovoltaico descritto, sia

realizzato uno studio di riflessione che dovrà comprendere le verifiche di abbagliamento ai piloti in

atterraggio, per la futura Pista 11-29 (nonché le verifiche di assenza di abbagliamento del personale della

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

torre di controllo dell'aeroporto), secondo quanto prescritto dalle Linee Guida di ENAC "VALUTAZIONE DEGLI

IMPIANTI FOTOVOLTAICI NEI DINTORNI AEROPORTUALI" Numero: 2022/002-APT Ed. n. 1 del 26/04/2022

La presente valutazione di compatibilità aeronautica è relativa alla valutazione degli effetti di abbagliamento

del previsto impianto fotovoltaico di cui si vuole dotare l'Aeroporto di Firenze per i piloti in fase di atterraggio

sulla futura pista RWY 11 dell'aeroporto e per i controllori del traffico aereo in torre all'aeroporto di Firenze

come richiesto dalle disposizioni di ENAC in materia di "Ostacoli e pericoli per la navigazione" e come definito

dal Regolamento ENAC per la Costruzione ed Esercizio Aeroporti.

Al fine della valutazione degli effetti di abbagliamento e delle metodologie di studio si farà riferimento alla

specifica normativa FAA, attualmente riconosciuta per tali studi da ENAC:

FAA 78 FR 63276 "Review of Solar Energy System Projects on Federally Obligated Airports"

FAA "Technical Guidance for Evaluating Selected Solar Technologies on Airports"

E allo specifico software di calcolo "Solar Glare Hazard Analysis Tool v3.0" sviluppato dal Sandia National

Laboratories che risponde ai requisiti FAA sull'analisi da abbagliamento (o versioni successive).

SANDIA "Solar Glare Hazard Analysis Tool (SGHAT) Technical Reference Manual"

• SANDIA "Solar Glare Hazard Analysis Tool (SGHAT) User's Manual v. 3.0"

Pagina 5 di 55

Toscana Aeroporti engineering

AEROPORTO INTERNAZIONALE DI FIRENZE AMERIGO VESPUCCI

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

2. Metodologia per la valutazione degli effetti di abbagliamento in aeroporto

Al fine della valutazione degli effetti di abbagliamento dovuti a sistemi ad energia solare (pannelli fotovoltaici

o solare termico a concentrazione) in prossimità degli aeroporti la FAA ha sviluppato, in collaborazione con il

Dipartimento dell'energia e il Sandia, un apposita metodologia di calcolo che risponde ai requisiti di apposita

circolare emessa (ad interim) dalla stessa FAA.

La circolare stabilisce la policy della FAA sulle proposte per la costruzione di nuovi sistemi ad energia solare

(fotovoltaico e solare termico a concentrazione) sulle proprietà dell'aeroporto. La FAA sta adottando un

policy ad interim perché è nel pubblico interesse migliorare la sicurezza chiarendo e aggiungendo degli

standard per la misurazione dell'impatto oculare dovuto all'installazione di nuovi sistemi a energia solare.

Intento della circolare è quello di garantire la sicurezza eliminando il potenziale impatto oculare ai piloti e al

controllo del traffico aereo causato da abbagliamento dovuto ai sistemi ad energia solare.

Difatti in talune situazioni le superfici dei sistemi ad energia solare possono riflettere la luce del sole e

produrre un luccichio "glint" (un momentaneo lampo di luce brillante) o un riverbero "glare" (una fonte di

luce intensa continua). Gli effetti del luccichio e del riverbero, possono impattare sui piloti e sui controllori

del traffico aereo causando:

Potenziale distrazione;

Temporanea cecità;

Danni permanenti alla retina.

Pertanto in concomitanza con il Dipartimento per l'Energy (DoE), la FAA ha stabilito quale livello di luccichio

e di riverbero può provocare un significativo impatto oculare ai piloti e / o al controllo del traffico aereo (ATC)

e compromettere la sicurezza del sistema del trasporto aereo.

La FAA ha costituito a tale scopo un gruppo di lavoro nel 2012, per stabilire uno standard per la misurazione

delle soglie dell'abbagliamento, e determinare quando il luccichio e/o il riverbero hanno un impatto

significativo sulla sicurezza aerea. Gli standards che questo gruppo di lavoro ha messo a punto sono esposti

nella circolare.

Gli aeroporti che propongono un nuovo progetto per un sistema ad energia solare devono rispettare le

politiche e le procedure descritte in questa circolare e dimostrare alla FAA che il proposto sistema di energia

solare non determinerà una impatto oculare che comprometta la sicurezza del sistema di trasporto aereo.

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Per ottenere l'approvazione della FAA sarà necessario dimostrare che il proposto impianto ad energia solare

rispetti i seguenti requisiti:

1. L'impatto oculare deve essere analizzato nel corso tutto l'anno solare a intervalli di un minuto, dal

momento in cui il sole sorge sopra l'orizzonte fino a quando il sole tramonta sotto l'orizzonte;

. Nessun potenziale riflesso diretto verso la cabina della Torre di controllo di Aeroporto (esistente o

prevista).

3. Nessun rischio di abbagliamento o " basso potenziale di abbagliamento" (mostrato in verde in

Figura 4) lungo il sentiero finale di avvicinamento per qualsiasi soglia di atterraggio (esistenti o

future). L'approccio finale è definito a partire da cinquanta (50) piedi sopra la soglia di atterraggio

fino a due miglia nautiche con un angolo verticale definito dall'angolo di planata della pista e

condotta lungo tutta la fase di approccio.

Al fine di valutare l'impatto oculare secondo i requisiti precedentemente illustrati il Sandia¹ ha sviluppato il

Solar Glare Hazard Analysis Tool (SGHAT).

Il SGHAT è uno strumento basato sul web interattivo che fornisce una valutazione quantitativa di:

1. quando e dove si verificherà l'abbagliamento durante tutto l'anno per un determinato impianto

solare;

2. gli effetti potenziali sulla all'occhio umano in luoghi in cui si verifica l'abbagliamento;

3. una stima della massima produzione annua di energia.

Il SGHAT impiega un sistema interattivo con Google Map in cui l'utente può rapidamente individuare un sito,

disegnare una descrizione del sistema ad energia solare proposto, e specificare le posizioni della cabina della

Torre di controllo e i percorsi finali di avvicinamento, Figura 3. Latitudine, longitudine, e elevazione vengono

registrate automaticamente attraverso l'interfaccia di Google, fornendo informazioni necessarie per la

posizione del sole e relativi calcoli vettoriali.

Inoltre le seguenti informazioni aggiuntive per il calcolo del impatto oculare devono essere inserite nello

strumento di calcolo:

¹ http://www.sandia.gov/about/history/index.html

mip://www.sanaia.go

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

- l'orientamento e l'inclinazione dei pannelli;i
- la riflettenza dei pannelli;
- fattori oculari.

Se viene trovato abbagliamento, lo strumento calcola l'irraggiamento sulla retina e l'angolo sotteso dalla sorgente (mediante dimensioni / distanza) fonte del riverbero per predire il potenziale oculare che va ad impattare sulla retina.

I risultati sono presentato in un report, di facile interpretazione che specifica quando si verificherà l'abbagliamento durante tutto l'anno, con codici colore che indicano il rischio del potenziale oculare (Fig. 6).

Inoltre lo strumento può anche prevedere l'energia relativa prodotta, ed aiutare ad identificare le configurazioni che massimizzano la produzione di energia, mitigando gli impatti di abbagliamento. Si evidenzia l'importanza che tale analisi venga fatta in una fase di progettazione preliminare al fine di poter intervenire preventivamente sulla configurazione dei generatori fotovoltaici.

Le ultime versioni del Software di analisi hanno inoltre introdotto la possibilità di analizzare la riflessione di superfici verticali quali facciate di edifici in vetro o cartelloni pubblicitari.

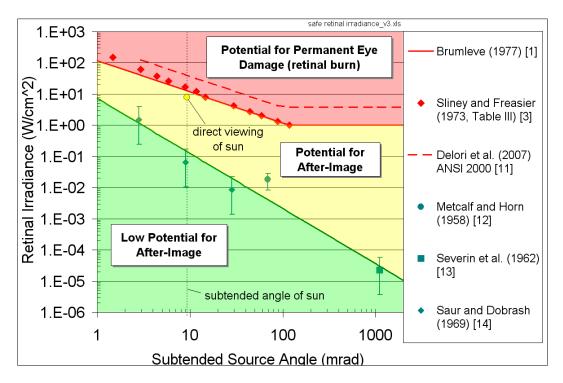


Figura 2 - Diagramma sugli effetti dell' impatto oculare

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento



Figura 3 – Interfacciamento con Google Maps

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

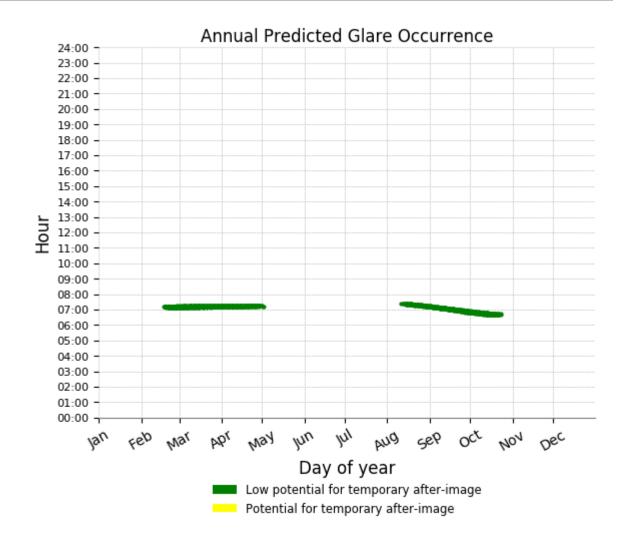


Figura 4 - Esempio di Report del SGHAT

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

3. Definizione del Layout dei pannelli fotovoltaici

In questa fase progettuale è stata elaborata una prima ipotesi di collocazione (cfr. Figura 5) dei pannelli fotovoltaici che saranno montati al suolo mediante una struttura metallica (cfr. Figura 6).

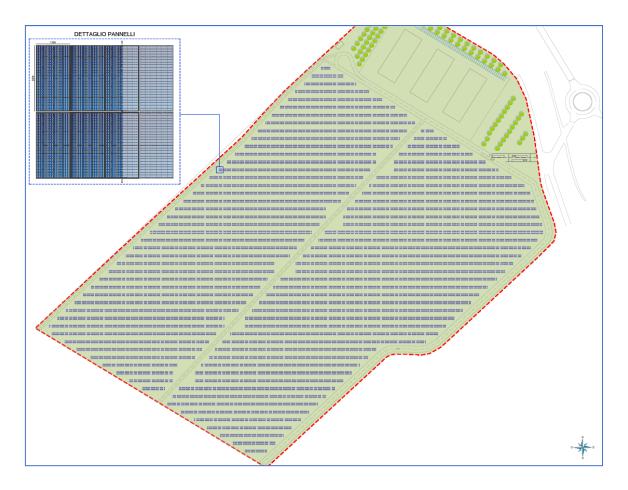


Figura 5 - Layout Impianto Fotovoltaico

Per quanto attiene al layout degli impianti questo è stato desunto approssimativamente dalla sagoma in pianta dell'area a disposizione per l'intervento a seguito della dismissione nella zona a Nord della attuale pista 05-23. Gli array dei pannelli sono costituiti da n pannelli consecutivi di dimensioni 2279 mm x 1134 mm.

In via preliminare sono stati presi in considerazione impianti fotovoltaici fissi con inclinazione (tilt) di 30° e orientamento Sud di 180°.

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

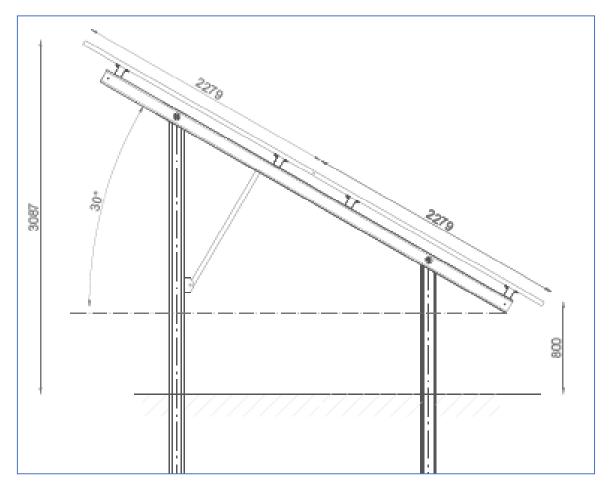


Figura 6 – Dettaglio Sistema di Fissaggio

Nel modello inserito nel SW di calcolo il layout multi array dei pannelli è stato approssimato a superfici PV piene non intervallate dai corridoi liberi.

L'area degli impianti fotovoltaici è ridotta rispetto all'area modellata e assicura -in maniera cautelativa – di non trascurare possibili effetti di abbagliamento la dove la progettazione differisse dall'ipotesi di collocazione degli array. Pertanto l'impianto è stato modellato utilizzando un layout con 10 superfici indicate come:

- PV_01
- PV_02
- PV_03
- PV_04
- PV_05
- PV_06

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

- PV_07
- PV_08
- PV_09
- PV_10

Nella Figura 7 è riportato il layout degli array (in grigio) con indicazione dei blocchi (PV) modellati nel sistema SW (in blu).

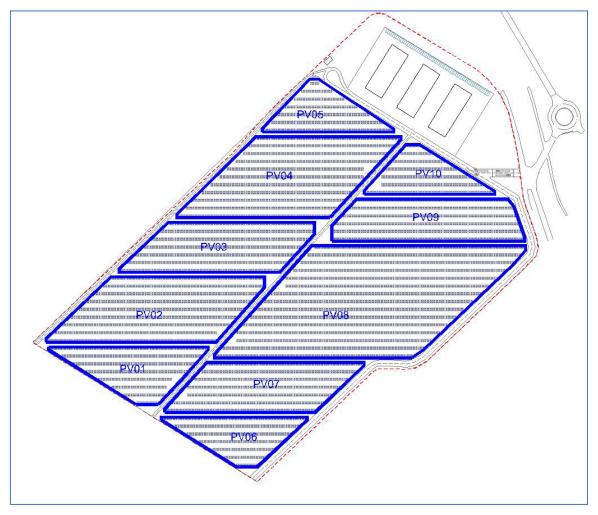


Figura 7 - Layout degli impianti fotovoltaici modellati

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Tutti i pannelli sono stati posti alla quota di riferimento di 40 m.s.l.m.² al quale è stata aggiunta la quota dovuta alla struttura metallica di sostegno pari ad 0,80 m.

Le caratteristiche di modellazione adottate per i 10 moduli/lotti sono riportate di seguito, per ogni modulo sono riportate le caratteristiche, l'estensione, la posizione georeferita in coordinate geografiche WGS84 e la quota³ dei vertici:

² Il livello del terreno varia da 39 a 41 m.s.l.m. si ritiene preliminarmente che a seguito della rimozione della pista e successivo costipamento del terreno si possa assumere per l'area di interesse una quota livellata di 40 m.s.l.m..

³ Il sistema tiene conto automaticamente della quota derivante dall'angolo di tilt

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV01 Footprint area: 8,962 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Rated power: -Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad



Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.812670	11.206470	40.00	0.80	40.80
2	43.812621	11.209007	40.00	0.80	40.80
3	43.812586	11.209006	40.00	0.80	40.80
4	43.812323	11.208666	40.00	0.80	40.80
5	43.811973	11.208192	40.00	0.80	40.80
6	43.811980	11.207834	40.00	0.80	40.80
7	43.812635	11.206468	40.00	0.80	40.80

Name: PV02 Footprint area: 17,928 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

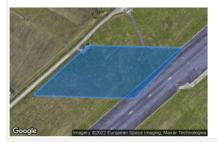
Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.812725	11.206429	40.00	0.80	40.80
2	43.812761	11.206430	40.00	0.80	40.80
3	43.813458	11.207496	40.00	0.80	40.80
4	43.813411	11.209933	40.00	0.80	40.80
5	43.813285	11.209928	40.00	0.80	40.80
6	43.812673	11.209138	40.00	0.80	40.80

Name: PV03 Footprint area: 12,969 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.813509	11.207627	40.00	0.80	40.80
2	43.813545	11.207628	40.00	0.80	40.80
3	43.814068	11.208430	40.00	0.80	40.80
4	43.814023	11.210752	40.00	0.80	40.80
5	43.813886	11.210746	40.00	0.80	40.80
6	43.813460	11.210179	40.00	0.80	40.80



SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV04 Footprint area: 20,169 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Orientation. 180.0 deg Rated power: Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.814072	11.210998	40.00	0.80	40.80
2	43.814947	11.212164	40.00	0.80	40.80
3	43.814982	11.212165	40.00	0.80	40.80
4	43.815027	11.209857	40.00	0.80	40.80
5	43.814155	11.208562	40.00	0.80	40.80
6	43.814119	11.208561	40.00	0.80	40.80

Name: PV05 Footprint area: 6,357 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

		9
Google	Imagery ©2022 European Space Imaging Maxar Tec	hnologies

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.815079	11.209959	40.00	0.80	40.80
2	43.815115	11.209960	40.00	0.80	40.80
3	43.815673	11.210741	40.00	0.80	40.80
4	43.815670	11.210870	40.00	0.80	40.80
5	43.815074	11.212054	40.00	0.80	40.80
6	43.815039	11.212052	40.00	0.80	40.80

Name: PV06 Footprint area: 7,156 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg Rated power: Panel material: Smooth glass with AR coating

Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.811793	11.208227	40.00	0.80	40.80
2	43.811232	11.209397	40.00	0.80	40.80
3	43.811226	11.209741	40.00	0.80	40.80
4	43.811748	11.210549	40.00	0.80	40.80
5	43.811784	11.210551	40.00	0.80	40.80
6	43.811829	11.208228	40.00	0.80	40.80

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV07 Footprint area: 12,774 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Orientation. 1800 deg Rated power: Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.811882	11.208288	40.00	0.80	40.80
2	43.811917	11.208290	40.00	0.80	40.80
3	43.812442	11.208986	40.00	0.80	40.80
4	43.812394	11.211480	40.00	0.80	40.80
5	43.812358	11.211479	40.00	0.80	40.80
6	43.811835	11.210683	40.00	0.80	40.80

Name: PV08 Footprint area: 38,910 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Rated power: Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes

Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.812433	11.212242	40.00	0.80	40.80
2	43.812494	11.209103	40.00	0.80	40.80
3	43.812530	11.209104	40.00	0.80	40.80
4	43.813755	11.210701	40.00	0.80	40.80
5	43.813689	11.214097	40.00	0.80	40.80
6	43.813630	11.214095	40.00	0.80	40.80
7	43.813478	11.213896	40.00	0.80	40.80
8	43.812519	11.212433	40.00	0.80	40.80

Name: PV09 Footprint area: 12,275 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Rated power:

Panel material: Smooth glass with AR coating
Vary reflectivity with sun position? Yes
Correlate slope error with surface type? Yes
Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.813803	11.211017	40.00	0.80	40.80
2	43.813978	11.211023	40.00	0.80	40.80
3	43.814279	11.211436	40.00	0.80	40.80
4	43.814232	11.213830	40.00	0.80	40.80
5	43.814141	11.213927	40.00	0.80	40.80
6	43.813779	11.214086	40.00	0.80	40.80
7	43.813743	11.214085	40.00	0.80	40.80

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV10 Footprint area: 6,148 m^2 Axis tracking: Fixed (no rotation) Tilt: 30.0 deg Orientation: 180.0 deg

Orientation. 180.0 deg Rated power: -Panel material: Smooth glass with AR coating Vary reflectivity with sun position? Yes Correlate slope error with surface type? Yes Slope error: 8.43 mrad

Vertex	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
1	43.814331	11.211553	40.00	0.80	40.80
2	43.814366	11.211554	40.00	0.80	40.80
3	43.814891	11.212248	40.00	0.80	40.80
4	43.814887	11.212448	40.00	0.80	40.80
5	43.814326	11.213633	40.00	0.80	40.80
6	43 814290	11 213632	40.00	0.80	40.80

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

4. Definizione dei ricettori

4.1 Procedure di atterraggio per la futura pista 11

Nell'analisi dei ricettori sensibili ai possibili fenomeni di abbagliamento sono stati presi in considerazione, come da normativa FAA, i percorsi di volo in fase di atterraggio relativi alla fase di approccio dalla THR della futura Pista 11 andando a ritroso indietro fino a 2 Miglia Nautiche.

Questo tipologia di ricettore simula un campo visivo ristretto (solitamente di 100° gradi in orizzontale e 30° gradi verso il basso) per escludere riflessi non realistici, e simulare il campo visivo del pilota in fase in atterraggio.

Pur non essendo ancora disponibili in AIP le procedure strumentali per Pista 11, le informazioni necessarie alla modellazione del ricettore sono riportate nella seguente Tabella:

Tabella 1 Caratteristiche Fisiche Piste 11 e 29

PISTA 11	11
Coordinate THR Lat/Long	43.81917686/ 11.17996461
Dimensioni	2200x45 m
Elevazione THR	37.71 m
МЕНТ	14,7 m
PAPI° o GDP	3°
DIREZIONE AVVICINAMENTO (FINAL APPROCH)	115.0
DH (Pista CAT II/III)	0
PISTA 29	29
Coordinate THR Lat/Long	43.81034328/ 11.20443743
Dimensioni	2200x45 m
Elevazione THR	39.615 m

Gli atterraggi per Pista 29 sono stati esclusi in quanto la pista sarà utilizzata in maniera unidirezionale.

Di seguito sono riportate le caratteristiche introdotte nel modello per la procedure di atterraggio da Pista 11:

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Atterraggio per RWY 11: APP11

Name: APP11
Description:
Threshold height: 14 m
Direction: 115.0 deg
Glide slope: 3.0 deg
Pilot view restricted? Yes
Vertical view restriction: 30.0 deg
Azimuthal view restriction: 50.0 deg

Point	Latitude	Longitude	Ground elevation	Height above ground	Total elevation
	deg	deg	m	m	m
Threshold	43.819177	11.179965	37.71	14.70	52.41
2-mile point	43.831385	11.143598	39.14	181.96	221.09

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

4.2 Torre di controllo ed altri punti notevoli

Oltre ai percorso di atterraggio sono stati analizzati possibili fenomeni di abbagliamento che possano impattare la torre di controllo. Le caratteristiche di modellazione della posizione e altezza (relativa alla sala controllo) della torre di controllo sono le seguenti:

Tabella 2 – Caratteristiche fisiche sala controllo ATC

Number	Latitude	Longitude	Ground elevation	Height above ground	Total Elevation
	[deg]	[deg]	[m]	[m]	[m]
1-ATCT	43.807258 °	11.193667°	0	61.60	61.60

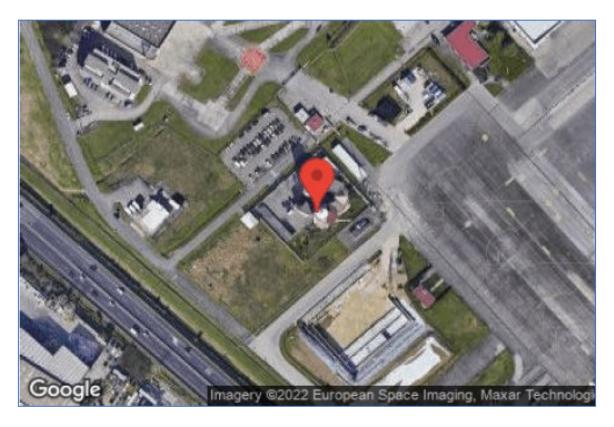


Figura 8 – Ricettore posizionato in corrispondenza della Torre di Controllo

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

5. Risultati

5.1 Assunzioni e limitazioni

I parametri di input utilizzati per la simulazione dei modelli sono riportati nella seguente tabella:

Tabella 3 – Parametri di modellazione

Parametro	Valore
Radiazione solare normale diretta	Variabile
Radiazione solare di picco	1000 W/m ²
Intervallo di simulazione	1 minuto
Coefficiente di trasmissione oculare	0.5
Diametro pupilla	0.002 m
Lunghezza focale oculare	0.017 m
Angolo solare sotteso	9.3 mrad
Time zone	UTC +1

Si riportano inoltre le seguenti limitazioni del SW di calcolo

- Le analisi dell'abbagliamento non tengono conto delle ostruzioni fisiche tra riflettori e recettori. Ciò include edifici, copertura di alberi e ostacoli geografici.
- La geometria dettagliata del sistema non viene simulata in modo rigoroso.
- La determinazione del rischio di abbagliamento si basa su diverse approssimazioni, comprese le caratteristiche dell'occhio dell'osservatore, l'angolo di visione e il tipico tempo di risposta di chiusura delle palpebre. I valori e i risultati effettivi possono variare.
- Il calcolo dell'output del sistema è un'approssimazione basata sul DNI che presuppone cieli sereni e soleggiati tutto l'anno. Non dovrebbe essere utilizzato al posto di metodi di modellazione più rigorosi.
- Diversi calcoli utilizzano il centroide dell'array della superficie riflettente, piuttosto che l'effettiva posizione del punto di abbagliamento, a causa delle limitazioni dell'algoritmo. Ciò può influire sui

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

risultati per impianti con grandi estensioni. Ulteriori analisi delle sottosezioni dell'array possono fornire ulteriori informazioni sull'abbagliamento previsto.

- L'angolo di sorgente sotteso (dimensione del punto di abbagliamento) è vincolato dalle dimensioni dell'impronta della superficie riflettente. La partizione di array di grandi dimensioni in sezioni più piccole ridurrà l'angolo potenziale sotteso massimo, con un potenziale impatto sui risultati se i punti di abbagliamento effettivi sono maggiori della dimensione del sotto-array. Ulteriori analisi dell'area combinata di sotto-array adiacenti possono fornire maggiori informazioni sui potenziali rischi di abbagliamento. (Vedere il punto precedente sulle limitazioni correlate.)
- I confini delle zone di pericolo mostrati nel grafico Pericolo di abbagliamento sono un'approssimazione e un aiuto visivo. I risultati effettivi dell'impatto oculare comprendono uno spettro continuo, non discreto.
- Le posizioni dell'abbagliamento visualizzate sui grafici dei recettori sono approssimative. Le posizioni effettive dei punti di abbagliamento possono differire.

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

5.2 Impatto dei pannelli fotovoltaici

Di seguito si riportano i principali risultati di output dell'elaborazione. I risultati mostrano la possibilità di un abbagliamento con un basso potenziale di un'immagine residua temporanea.

La tabella sottostante riportata i minuti annuali di abbagliamento per singolo modulo.

Tabella 4 – Report degli effetti dei moduli fotovoltaici sui ricettori

PV Name	Tilt	Orientation	"Green" Glare	"Yellow" Glare
	deg	deg	min	min
PV01	30.0	180.0	1,142	0
PV02	30.0	180.0	819	0
PV03	30.0	180.0	334	0
PV04	30.0	180.0	0	0
PV05	30.0	180.0	0	0
PV06	30.0	180.0	1,694	0
PV07	30.0	180.0	1,604	0
PV08	30.0	180.0	1,516	0
PV09	30.0	180.0	1,083	0
PV10	30.0	180.0	715	0

La somma dei minuti su base annuale - dei possibili fenomeni di abbagliamento – su ogni singolo ricettore è riportata nella seguente tabella.

Tabella 5 - Minuti, su base annuale, dei possibili fenomeni di abbaqliamento per ogni ricettore, dovuti ai moduli PV

Receptor	Annual reen Glare (min)	Annual Yellow Glare (min)
APP_11	0	0
1-ATCT	8907	0

L'analisi condotta mostra che :

- 1. Non si hanno mai fenomeni di abbagliamento con un potenziale di immagine residua (yellow glare).
- 2. Non si hanno fenomeni di abbagliamento con un basso impatto (green glare) per la procedura di atterraggio analizzata.
- 3. Si hanno fenomeni di abbagliamento (per 8'907 minuti/anno) con un basso impatto (green glare) sul ricettore Torre di Controllo. La norma FAA non ammette nemmeno questo tipologia di impatto per tale tipo di ricettore. A tale scopo è stata condotta un'ottimizzazione dell'orientamento dei moduli

R.E.A. FI 634743 - Capitale Sociale Euro 80.000,00 i.v. P.IVA e Codice Fiscale: 06521990488

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

fotovoltaici (Cfr. Par. 5.3) per garantire un'assenza di fenomeni di abbagliamento in Torre di Controllo.

5.3 Ottimizzazioni orientamento pannelli

Al fine di evitare possibili fenomeni di abbagliamento in Torre di Controllo si è provveduto ad una ottimizzazione nell'orientamento e nel tilt dei pannelli fotovoltaici.

Il software ha permesso di elaborare diverse soluzioni possibili per giungere a tale risultato. Si è deciso tra le diverse possibilità di optare per una soluzione che permettesse di mantenere l'angolo di Tilt originale di 30° per tutti moduli considerati.

Si premette che non necessariamente questa sia la scelta energeticamente più efficiente – limitandosi in questo studio a dimostrare la possibilità di evitare effetti di abbagliamento in ATCT – si rimanda ad una fase di progettazione più avanzata la possibilità di determinare scelte progettuali che mirino a massimizzare l'efficienza energetica preservando comunque da possibili effetti di abbagliamento.

Nella Tabella successiva sono riportati i diversi orientamenti adottati per ciascuno modulo PV e i minuti annuali di abbagliamento per singolo modulo:

Tabella 6 - Report degli effetti dei moduli fotovoltaici ottimizzati sui ricettori

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Yel	low Glare
	0	0	min	hr	min	hr
PV01	30.0	145.0	0	0.0	0	0.0
PV02	30.0	190.0	0	0.0	0	0.0
PV03	30.0	185.0	0	0.0	0	0.0
PV04	30.0	180.0	0	0.0	0	0.0
PV05	30.0	180.0	0	0.0	0	0.0
PV06	30.0	150.0	0	0.0	0	0.0
PV07	30.0	150.0	0	0.0	0	0.0
PV08	30.0	145.0	0	0.0	0	0.0
PV09	30.0	145.0	0	0.0	0	0.0
PV10	30.0	190.0	172	2.9	0	0.0

La somma dei minuti su base annuale dei possibili fenomeni di abbagliamento su ogni singolo ricettore è riportata nella seguente tabella.

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Tabella 7 - Minuti, su base annuale, dei possibili fenomeni di abbagliamento per ogni ricettore, dovuti ai moduli PV ottimizzati

Receptor	Annual reen Glare (min)	Annual Yellow Glare (min)
APP_11	172	0
1-ATCT	0	0

L'analisi condotta per la soluzione ottimizzata ha permesso di dimostrare che:

- 1. Di non avere alcun fenomeno di abbagliamento sul ricettore Torre di Controllo
- 2. Si hanno possibili fenomeni di abbagliamento (per soli 172 minuti/anno dovuti al modulo PV10) con un basso impatto (green glare) sulla procedura di atterraggio analizzata. La norma (FAA, Linee guida ENAC) ammette questa tipologia di impatto per tale tipo di ricettore.
- 3. Non si hanno mai fenomeni di abbagliamento con un potenziale di immagine residua (yellow glare).

Nell' Allegato 1 si riporta il <u>Report nello standard FAA</u> come elaborato direttamente dal SW di analisi, per i moduli PV non ottimizzati (quindi tutti orientati verso Sud a 180°).

Nell'Allegato 2 si riporta il <u>Report nello standard FAA</u> come elaborato direttamente dal SW di analisi, per i moduli PV ottimizzati come visti nel presente paragrafo.

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

5.4 Conclusioni

L'analisi condotta sui diversi moduli PV ha evidenziato come si possano avere fenomeni di abbagliamento

con un basso potenziale (green glare) verso Torre di Controllo dell'Aeroporto di Firenze.

Al fine di evitare tale possibile abbagliamento si è provveduto ad un'ottimizzazione nell'orientamento dei

diversi moduli.

L' analisi di ottimizzazione ha permesso di definire orientamenti – ancorchè non ottimali dal punto di vista

energetico – che permettessero l'assenza di possibili fenomeni di abbagliamento in Torre di Controllo.

I moduli – fermo restando il Tilt posto a 30° - sono stati orientati secondo angoli che vanno dai 190° ai 145°

rispetto agli iniziali 180° del posizionamento iniziale.

Pertanto si consiglia di utilizzare in fase di progettazione definitiva i layout come definiti dal processo di

ottimizzazione.

In considerazione di quanto sopra, viste le risultanze delle simulazioni effettuate che hanno evidenziato

l'assenza di significativi fenomeni di abbagliamento, la cui entità è contenuta entro i limiti di tolleranza

previsti dalla normativa di riferimento, il progetto - come da ottimizzazione effettuata - analizzato si ritiene

esente da rischio aeronautico causato da fenomeni di abbagliamento.

Pagina 27 di 55

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Allegato 1: Report standard FAA per soluzione non ottimizzata

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

FORGESOLAR GLARE ANALYSIS

Project: APT FIRENZE
Site configuration: PV_180

Created 16 Sep, 2022
Updated 17 Sep, 2022
Time-step 1 minute
Timezone offset UTC1
Site ID 75960.13437
DNI peaks at 1,000.0 W/m^2
Ocular transmission coefficient 0.5
Pupil diameter 0.002 m
Eye focal length 0.017 m
Sun subtended angle 9,3 mrad
Methodology V2

Glare Policy Adherence

The following table estimates the policy adherence of this glare analysis according to the 2021 U.S. Federal Aviation Administration Policy:

Review of Solar Energy System Projects on Federally-Obligated Airports

This policy may require the following criteria be met for solar energy systems on airport property:

- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics, including 1-minute time step.

ForgeSolar is not affiliated with the U.S. FAA and does not represent or speak officially for the U.S. FAA. ForgeSolar cannot approve or deny projects - results are informational only. Contact the relevant airport and FAA district office for information on policy and requirements.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
ATCT(s)	FAIL	Receptor(s) marked as ATCT receive green and/or yellow glare

The referenced policy can be read at https://www.federalregister.gov/d/2021-09862

Page 1 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Component Data

This report includes results for PV arrays and Observation Point ("OP") receptors marked as ATCTs. Components that are not pertinent to the policy, such as routes, flight paths, and vertical surfaces, are excluded.

PV Arrays

Name: PV01

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.812670	11.206470	40.00	0.80	40.80
2	43.812621	11.209007	40.00	0.80	40.80
3	43.812586	11.209006	40.00	0.80	40.80
4	43.812323	11.208666	40.00	0.80	40.80
5	43.811973	11.208192	40.00	0.80	40.80
6	43.811980	11.207834	40.00	0.80	40.80
7	43.812635	11.206468	40.00	0.80	40.80

Name: PV02

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
	ALMONOSOM SERVICIONES	un a reporta	STATE OF THE STATE		NAME OF THE OWNER
1	43.812725	11.206429	40.00	0.80	40.80
2	43.812761	11.206430	40.00	0.80	40.80
3	43.813458	11.207496	40.00	0.80	40.80
4	43.813411	11.209933	40.00	0.80	40.80
5	43.813285	11.209928	40.00	0.80	40.80
6	43.812673	11.209138	40.00	0.80	40.80

Page 2 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV03

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.813509	11.207627	40.00	0.80	40.80
2	43.813545	11.207628	40.00	0.80	40.80
3	43.814068	11.208430	40.00	0.80	40.80
4	43.814023	11.210752	40.00	0.80	40.80
5	43.813886	11.210746	40.00	0.80	40.80
6	43.813460	11.210179	40.00	0.80	40.80

Name: PV04

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.814072	11.210998	40.00	0.80	40.80
2	43.814947	11.212164	40.00	0.80	40.80
3	43.814982	11.212165	40.00	0.80	40.80
4	43.815027	11.209857	40.00	0.80	40.80
5	43.814155	11.208562	40.00	0.80	40.80
6	43.814119	11.208561	40.00	0.80	40.80

Page 3 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV05

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.815079	11.209959	40.00	0.80	40.80
2	43.815115	11.209960	40.00	0.80	40.80
3	43.815673	11.210741	40.00	0.80	40.80
4	43.815670	11.210870	40.00	0.80	40.80
5	43.815074	11.212054	40.00	0.80	40.80
6	43.815039	11.212052	40.00	0.80	40.80

Name: PV06

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°) Longitude (°)		Ground elevation (m)	Height above ground (m)	Total elevation (m)	
1	43.811793	11.208227	40.00	0.80	40.80	
2	43.811232	11.209397	40.00	0.80	40.80	
3	43.811226	11.209741	40.00	0.80	40.80	
4	43.811748	11.210549	40.00	0.80	40.80	
5	43.811784	11.210551	40.00	0.80	40.80	
6	43.811829	11.208228	40.00	0.80	40.80	

Page 4 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV07

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.811882	11.208288	40.00	0.80	40.80
2	43.811917	11.208290	40.00	0.80	40.80
3	43.812442	11.208986	40.00	0.80	40.80
4	43.812394	11.211480	40.00	0.80	40.80
5	43.812358	11.211479	40.00	0.80	40.80
6	43.811835	11.210683	40.00	0.80	40.80

Name: PV08

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex Latitude (°)		Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)	
1	43.812433	11.212242	40.00	0.80	40.80	
2	43.812494	11.209103	40.00	0.80	40.80	
3	43.812530	11.209104	40.00	0.80	40.80	
4	43.813755	11.210701	40.00	0.80	40.80	
5	43.813689	11.214097	40.00	0.80	40.80	
6	43.813630	11.214095	40.00	0.80	40.80	
7	43.813478	11.213896	40.00	0.80	40.80	
8	43.812519	11.212433	40.00	0.80	40.80	

Page 5 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV09

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.813803	11.211017	40.00	0.80	40.80
2	43.813978	11.211023	40.00	0.80	40.80
3	43.814279	11.211436	40.00	0.80	40.80
4	43.814232	11.213830	40.00	0.80	40.80
5	43.814141	11.213927	40.00	0.80	40.80
6	43.813779	11.214086	40.00	0.80	40.80
7	43.813743	11.214085	40.00	0.80	40.80

Name: PV10

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	tex Latitude (°) Longitude (°)		Ground elevation (m)	Height above ground (m)	Total elevation (m)	
1	43.814331	11.211553	40.00	0.80	40.80	
2	43.814366	11.211554	40.00	0.80	40.80	
3	43.814891	11.212248	40.00	0.80	40.80	
4	43.814887	11.212448	40.00	0.80	40.80	
5	43.814326	11.213633	40.00	0.80	40.80	
6	43.814290	11.213632	40.00	0.80	40.80	

Page 6 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Observation Point ATCT Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (m)	Height (m)
1-ATCT	1	43.807258	11.193667	0.00	61.60

Map image of 1-ATCT

Page 7 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Glare Analysis Results

Summary of Results Glare with low potential for temporary after-image predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Ye	llow Glare	Energy
	0	0	min	hr	min	hr	kWh
PV01	30.0	180.0	1,142	19.0	0	0.0	-
PV02	30.0	180.0	819	13.7	0	0.0	*
PV03	30.0	180.0	334	5.6	0	0.0	-
PV04	30.0	180.0	0	0.0	0	0.0	120
PV05	30.0	180.0	0	0.0	0	0.0	-
PV06	30.0	180.0	1,694	28.2	0	0.0	U
PV07	30.0	180.0	1,604	26.7	0	0.0	=
PV08	30.0	180.0	1,516	25.3	0	0.0	
PV09	30.0	180.0	1,083	18.1	0	0.0	
PV10	30.0	180.0	715	11.9	0	0.0	

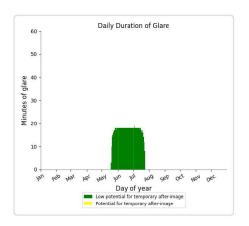
Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	8,907	148.4	0	0.0

PV: PV01

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	1,142	19.0	0	0.0

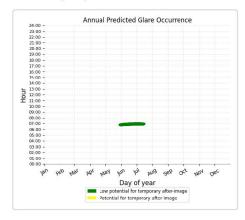
Page 8 of 15

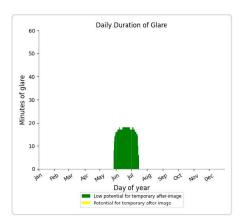

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV01 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 1,142 minutes of green glare




PV: PV02

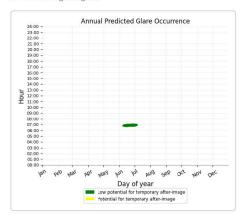
Receptor	Annual Gr	een Glare	Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	819	13.7	0	0.0

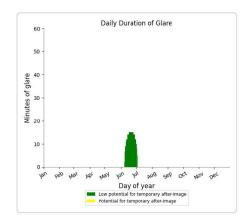
PV02 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 819 minutes of green glare

Page 9 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035


Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento


PV: PV03

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	334	5.6	0	0.0

PV03 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 334 minutes of green glare

PV: PV04

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV04 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV05

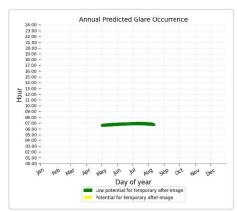
Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

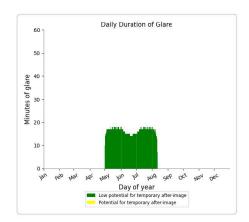
Page 10 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV05 and 1-ATCT


Receptor type: ATCT Observation Point No glare found


PV: PV06

Receptor	Annual Gr	een Glare	Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	1,694	28.2	0	0.0

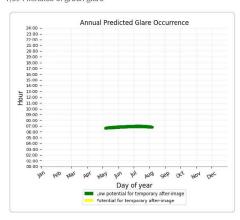
PV06 and 1-ATCT

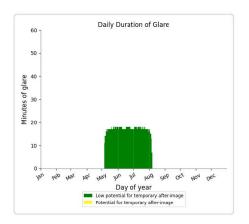
Receptor type: ATCT Observation Point 0 minutes of yellow glare 1,694 minutes of green glare

PV: PV07

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	1,604	26.7	0	0.0

Page 11 of 15

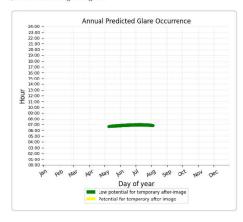


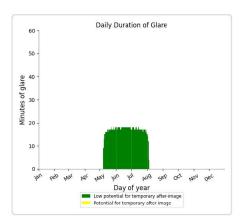

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV07 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 1,604 minutes of green glare




PV: PV08

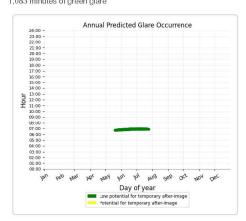
Receptor	Annual Gr	een Glare	Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	1,516	25.3	0	0.0

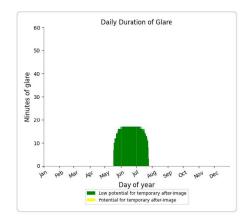
PV08 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 1,516 minutes of green glare

Page 12 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035


Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento


PV: PV09

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	1,083	18.1	0	0.0

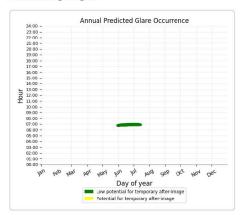
PV09 and 1-ATCT

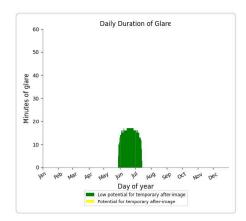
Receptor type: ATCT Observation Point 0 minutes of yellow glare 1,083 minutes of green glare

PV: PV10

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	715	11.9	0	0.0

Page 13 of 15




SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV10 and 1-ATCT

Receptor type: ATCT Observation Point 0 minutes of yellow glare 715 minutes of green glare

Page 14 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

"Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more rigorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- Pupil diameter: 0.002 meters
- Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Page 15 of 15

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Allegato 2: Report standard FAA per soluzione ottimizzata

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

FORGESOLAR GLARE ANALYSIS

Project: **APT FIRENZE**Site configuration: **PV_OPT**

Created 17 Sep, 2022
Updated 17 Sep, 2022
Time-step 1 minute
Timezone offset UTC1
Site ID 75994.13437
DNI peaks at 1,000.0 W/m*2
Ocular transmission coefficient 0.5
Pupil diameter 0.002 m
Eye focal length 0.017 m
Sun subtended angle 9.3 mrad
Methodology V2

Glare Policy Adherence

The following table estimates the policy adherence of this glare analysis according to the 2021 U.S. Federal Aviation Administration Policy:

Review of Solar Energy System Projects on Federally-Obligated Airports

This policy may require the following criteria be met for solar energy systems on airport property:

- No glare of any kind for Air Traffic Control Tower(s) ("ATCT") at cab height.
- Default analysis and observer characteristics, including 1-minute time step.

ForgeSolar is not affiliated with the U.S. FAA and does not represent or speak officially for the U.S. FAA. ForgeSolar cannot approve or deny projects - results are informational only. Contact the relevant airport and FAA district office for information on policy and requirements.

COMPONENT	STATUS	DESCRIPTION
Analysis parameters	PASS	Analysis time interval and eye characteristics used are acceptable
ATCT(s)	PASS	Receptor(s) marked as ATCT do not receive glare

The referenced policy can be read at https://www.federalregister.gov/d/2021-09862

Page 1 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Component Data

This report includes results for PV arrays and Observation Point ("OP") receptors marked as ATCTs. Components that are not pertinent to the policy, such as routes, flight paths, and vertical surfaces, are excluded.

PV Arrays

Name: PV01

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 145.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.812670	11.206470	40.00	0.80	40.80
2	43.812621	11.209007	40.00	0.80	40.80
3	43.812586	11.209006	40.00	0.80	40.80
4	43.812323	11.208666	40.00	0.80	40.80
5	43.811973	11.208192	40.00	0.80	40.80
6	43.811980	11.207834	40.00	0.80	40.80
7	43.812635	11.206468	40.00	0.80	40.80

Name: PV02

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 190.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.812725	11.206429	40.00	0.80	40.80
2	43.812761	11.206430	40.00	0.80	40.80
3	43.813458	11.207496	40.00	0.80	40.80
4	43.813411	11.209933	40.00	0.80	40.80
5	43.813285	11.209928	40.00	0.80	40.80
6	43.812673	11,209138	40.00	0.80	40.80

Page 2 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV03

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 185.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.813509	11.207627	40.00	0.80	40.80
2	43.813545	11.207628	40.00	0.80	40.80
3	43.814068	11.208430	40.00	0.80	40.80
4	43.814023	11.210752	40.00	0.80	40.80
5	43.813886	11.210746	40.00	0.80	40.80
6	43.813460	11.210179	40.00	0.80	40.80

Name: PV04

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.814072	11.210998	40.00	0.80	40.80
2	43.814947	11.212164	40.00	0.80	40.80
3	43.814982	11.212165	40.00	0.80	40.80
4	43.815027	11.209857	40.00	0.80	40.80
5	43.814155	11.208562	40.00	0.80	40.80
6	43.814119	11.208561	40.00	0.80	40.80

Page 3 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV05

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 180.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.815079	11.209959	40.00	0.80	40.80
2	43.815115	11.209960	40.00	0.80	40.80
3	43.815673	11.210741	40.00	0.80	40.80
4	43.815670	11.210870	40.00	0.80	40.80
5	43.815074	11.212054	40.00	0.80	40.80
6	43.815039	11.212052	40.00	0.80	40.80

Name: PV06

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 150.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.811793	11.208227	40.00	0.80	40.80
2	43.811232	11.209397	40.00	0.80	40.80
3	43.811226	11.209741	40.00	0.80	40.80
4	43.811748	11.210549	40.00	0.80	40.80
5	43.811784	11.210551	40.00	0.80	40.80
6	43.811829	11.208228	40.00	0.80	40.80

Page 4 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV07

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 150.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.811882	11.208288	40.00	0.80	40.80
2	43.811917	11.208290	40.00	0.80	40.80
3	43.812442	11.208986	40.00	0.80	40.80
4	43.812394	11.211480	40.00	0.80	40.80
5	43.812358	11.211479	40.00	0.80	40.80
6	43.811835	11.210683	40.00	0.80	40.80

Name: PV08

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 145.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.812433	11.212242	40.00	0.80	40.80
2	43.812494	11.209103	40.00	0.80	40.80
3	43.812530	11.209104	40.00	0.80	40.80
4	43.813755	11.210701	40.00	0.80	40.80
5	43.813689	11.214097	40.00	0.80	40.80
6	43.813630	11.214095	40.00	0.80	40.80
7	43.813478	11.213896	40.00	0.80	40.80
8	43.812519	11.212433	40.00	0.80	40.80

Page 5 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Name: PV09

Axis tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 145.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun
Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.813803	11.211017	40.00	0.80	40.80
2	43.813978	11.211023	40.00	0.80	40.80
3	43.814279	11.211436	40.00	0.80	40.80
4	43.814232	11.213830	40.00	0.80	40.80
5	43.814141	11.213927	40.00	0.80	40.80
6	43.813779	11.214086	40.00	0.80	40.80
7	43.813743	11.214085	40.00	0.80	40.80

Name: PV10

AxIs tracking: Fixed (no rotation)

Tilt: 30.0° Orientation: 190.0° Rated power: -

Panel material: Smooth glass with AR coating

Reflectivity: Vary with sun Slope error: correlate with material

Vertex	Latitude (°)	Longitude (°)	Ground elevation (m)	Height above ground (m)	Total elevation (m)
1	43.814331	11.211553	40.00	0.80	40.80
2	43.814366	11.211554	40.00	0.80	40.80
3	43.814891	11.212248	40.00	0.80	40.80
4	43.814887	11.212448	40.00	0.80	40.80
5	43.814326	11.213633	40.00	0.80	40.80
6	43.814290	11.213632	40.00	0.80	40.80

Page 6 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Observation Point ATCT Receptors

Name	ID	Latitude (°)	Longitude (°)	Elevation (m)	Height (m)
1-ATCT	1	43.807258	11.193667	0.00	61.60

Map image of 1-ATCT

Page 7 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

Glare Analysis Results

Summary of Results No glare predicted

PV Array	Tilt	Orient	Annual Gr	een Glare	Annual Ye	llow Glare	Energy
	0	0	min	hr	min	hr	kWh
PV01	30.0	145.0	0	0.0	0	0.0	-
PV02	30.0	190.0	0	0.0	0	0.0	140
PV03	30.0	185.0	0	0.0	0	0.0	
PV04	30.0	180.0	0	0.0	0	0.0	-
PV05	30.0	180.0	0	0.0	0	0.0	120
PV06	30.0	150.0	0	0.0	0	0.0	·
PV07	30.0	150.0	0	0.0	0	0.0	-
PV08	30.0	145.0	0	0.0	0	0.0	
PV09	30.0	145.0	0	0.0	0	0.0	-
PV10	30.0	190.0	0	0.0	0	0.0	(=)

Total annual glare received by each receptor; may include duplicate times of glare from multiple reflective surfaces.

Receptor	Annual Gr	Annual Green Glare		llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV: PV01

Receptor	Annual Gr	Annual Green Glare		llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV01 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV02

Receptor	Annual Gr	een Glare	Annual Yel	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

Page 8 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV02 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV03

Receptor	Annual Gr	Annual Green Glare Annua		l Yellow Glare	
	min	hr	min	hr	
1-ATCT	0	0.0	0	0.0	

PV03 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV04

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV04 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV05

Receptor	Annual Green Glare		Annual Yellow Glare	
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV05 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV06

1-ATCT	0	0.0	0	0.0

Page 9 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV06 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV07

Receptor	Annual Gr	een Glare	Annual Ye	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV07 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV08

Receptor	Annual Gr	een Glare	Annual Yel	llow Glare
	min	hr	min	hr
1-ATCT	0	0.0	0	0.0

PV08 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV09

Receptor	Annual Green Glare		Annual Ye	Annual Yellow Glare	
	min	hr	min	hr	
1-ATCT	0	0.0	0	0.0	

PV09 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

PV: PV10

1-ATCT	0	0.0	0	0.0
174101	<u> </u>	0.0	•	0.0

Page 10 of 11

SCHEDE DI APPROFONDIMENTO PROGETTUALE MASTERPLAN 2035

Parco Fotovoltaico - Relazione Tecnica sulla Verifica degli Impatti da Abbagliamento

PV10 and 1-ATCT

Receptor type: ATCT Observation Point No glare found

Assumptions

"Green" glare is glare with low potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

"Yellow" glare is glare with potential to cause an after-image (flash blindness) when observed prior to a typical blink response time.

Times associated with glare are denoted in Standard time. For Daylight Savings, add one hour.

The algorithm does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results. However, we have validated our models against several systems, including a PV array causing glare to the air-traffic control tower at Manchester-Boston Regional Airport and several sites in Albuquerque, and the tool accurately predicted the occurrence and intensity of glare at different times and days of the year. Several V1 calculations utilize the PV array centroid, rather than the actual glare spot location, due to algorithm limitations. This may affect results for large PV footprints. Additional analyses of array sub-sections can provide additional information on expected glare. This primarily affects V1 analyses of path receptors.

Random number computations are utilized by various steps of the annual hazard analysis algorithm. Predicted minutes of glare can vary between runs as a result. This limitation primarily affects analyses of Observation Point receptors, including ATCTs. Note that the SGHAT/ForgeSolar methodology has always relied on an analytical, qualitative approach to accurately determine the overall hazard (i.e. green vs. yellow) of expected glare on an annual basis.

The analysis does not automatically consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, hills, buildings, etc.

The subtended source angle (glare spot size) is constrained by the PV array footprint size. Partitioning large arrays into smaller sections will reduce the maximum potential subtended angle, potentially impacting results if actual glare spots are larger than the sub-array size. Additional analyses of the combined area of adjacent sub-arrays can provide more information on potential glare hazards. (See previous point on related limitations.)

The variable direct normal irradiance (DNI) feature (if selected) scales the user-prescribed peak DNI using a typical clear-day irradiance profile. This profile has a lower DNI in the mornings and evenings and a maximum at solar noon. The scaling uses a clear-day irradiance profile based on a normalized time relative to sunrise, solar noon, and sunset, which are prescribed by a sun-position algorithm and the latitude and longitude obtained from Google maps. The actual DNI on any given day can be affected by cloud cover, atmospheric attenuation, and other environmental factors.

The ocular hazard predicted by the tool depends on a number of environmental, optical, and human factors, which can be uncertain. We provide input fields and typical ranges of values for these factors so that the user can vary these parameters to see if they have an impact on the results. The speed of SGHAT allows expedited sensitivity and parametric analyses.

The system output calculation is a DNI-based approximation that assumes clear, sunny skies year-round. It should not be used in place of more ricorous modeling methods.

Hazard zone boundaries shown in the Glare Hazard plot are an approximation and visual aid based on aggregated research data. Actual ocular impact outcomes encompass a continuous, not discrete, spectrum.

Glare locations displayed on receptor plots are approximate. Actual glare-spot locations may differ.

Refer to the Help page at www.forgesolar.com/help/ for assumptions and limitations not listed here.

Default glare analysis parameters and observer eye characteristics (for reference only):

- Analysis time interval: 1 minute
- Ocular transmission coefficient: 0.5
- · Pupil diameter: 0.002 meters
- Eye focal length: 0.017 meters
- · Sun subtended angle: 9.3 milliradians

2016 © Sims Industries d/b/a ForgeSolar, All Rights Reserved.

Page 11 of 11