

# RILIEVO GEOFISICO SOTTO COSTA PER IL PROGETTO TRANS ADRIATIC PIPELINE (TAP)

Approdo Italiano - San Foca - Italia

# RAPPORTO FINALE OPL00 – FOC- 150 – Y – TRG - 0001 Riferimento Cliente: ST 13573

Preparato per:

Statoil ASA

N- 4035 Stavanger Forus Øst G-4 Att: Sølvi Elisabeth Valheim





| Finale | Rapporto Finale                              | G. Saporito | D. Taliana  | 10 Aprile 2014   |
|--------|----------------------------------------------|-------------|-------------|------------------|
| 0C     | Rapporto Finale per accettazione del cliente | S. Polizzi  | D. Taliana  | 07 Aprile 2014   |
| 0B     | Rapporto Finale per accettazione del cliente | S. Polizzi  | D. Taliana  | 21 Marzo 2014    |
| 0A     | Rapporto Finale per commenti del<br>cliente  | S. Polizzi  | D. Taliana  | 20 Febbraio 2014 |
| Rev    | Descrizione                                  | Preparato   | Controllato | Data             |









#### LOCALIZZAZIONE DELL'AREA DEL RILIEVO

## INDICE

| TAP- TRANS ADRIATIC PIPELINE  |  |
|-------------------------------|--|
| Rilievo Geofisico Sotto Costa |  |

| 1   | INTRO    | DUZIONE                                                     | 1  |
|-----|----------|-------------------------------------------------------------|----|
| 1.1 | Genera   | alità                                                       | 1  |
| 1.2 | Definizi | ioni ed Abbreviazioni                                       | 2  |
| 1.3 | Bibliog  | rafia                                                       | 3  |
| 1.4 | Docum    | ento delle Revisioni                                        | 5  |
| 2   | DESCF    | RIZIONE DEL RILIEVO                                         | 6  |
| 2.1 | Scopo    | del Lavoro                                                  | 6  |
| 2.2 | Lavoro   | Svolto                                                      | 7  |
|     | 2.2.1    | Programma del Rilievo Eseguito dall'Imbarcazione RV Astrea  | 7  |
|     | 2.2.2    | Programma del Rilievo Eseguito dall'Imbarcazione MB Vector  | 8  |
| 2.3 | Parame   | etri Geodetici del Rilievo                                  | 10 |
| 3   | RIASS    | UNTO DEI RISULTATI                                          | 11 |
| 4   | DETTA    | GLIO DEI RISULTATI                                          | 13 |
| 4.1 | Inquad   | ramento Geologico                                           | 13 |
| 4.2 | Batime   | tria                                                        | 17 |
|     | 4.2.1    | Caratteristiche Morfologiche del Fondale                    | 20 |
| 4.3 | Geolog   | ia Superficiale                                             | 23 |
| 4.4 | Rischi ( | Geologici Superficiali e Vincoli per l'INstallazione        | 34 |
|     | 4.4.1    | Rilievo delle Cavità                                        | 34 |
|     | 4.4.2    | Fondale Bioturbato:                                         | 34 |
|     | 4.4.3    | Anomalie Sismiche                                           | 34 |
|     | 4.4.4    | Fratture e Faglie                                           | 34 |
|     | 4.4.5    | Oggetti/Ostacoli ed Infrastutture Preesistenti              | 34 |
| 5   | DETTA    | GLI DELLA ROTTA DEL GASDOTTO                                | 35 |
| 6   | IMBAR    | CAZIONI E STRUMENTAZIONE                                    | 36 |
| 6.1 | Imbarc   | azioni utilizzate per il Rilievo                            | 36 |
| 6.2 | Strume   | entazione del Rilievo - RV Astrea                           | 36 |
|     | 6.2.1    | Posizionamento                                              | 37 |
|     | 6.2.2    | Heading                                                     | 37 |
|     | 6.2.3    | Ecoscandaglio (SBES)                                        | 37 |
|     | 6.2.4    | Ecoscandaglio Multibeam (MBES)                              | 38 |
|     | 6.2.5    | Compensazione per la Rotta ed il Movimento della Nave (MRU) | 39 |
|     | 6.2.6    | Profili della Velocità del Suono nell'Acqua (SVP)           | 39 |
|     | 6.2.7    | Side Scan Sonar                                             | 39 |
|     | 6.2.8    | Sub-Bottom Profiler                                         | 40 |



Page



|     | 6.2.9     | Boomer                                                                     | 40 |
|-----|-----------|----------------------------------------------------------------------------|----|
|     | 6.2.10    | Campionamenti del Sedimento (Day Grab)                                     | 41 |
|     | 6.2.11    | Fotocamera Sottomarina                                                     | 41 |
| 6.3 | Strume    | entazione del Rilievo – MB Vector                                          | 41 |
|     | 6.3.1     | Posizionamento                                                             | 41 |
|     | 6.3.2     | Ecoscandaglio (SBES)                                                       | 42 |
| 6.4 | Offsets   | della Strumentazione Analogica                                             | 42 |
| 7   | OPER/     | AZIONI DEL RILIEVO                                                         | 44 |
| 7.1 | Riassu    | nto delle Operazioni:                                                      | 44 |
| 7.2 | Calibra   | zioni                                                                      | 44 |
|     | 7.2.1     | Posizionamento                                                             | 45 |
|     | 7.2.2     | Ecoscandaglio Multibeam (MBES)                                             | 45 |
|     | 7.2.3     | Misurazione della Velocità Acustica nell'Acqua                             | 46 |
| 7.3 | Elabora   | azione Dati                                                                | 47 |
|     | 7.3.1     | Posizionamento e Navigazione                                               | 47 |
|     | 7.3.2     | Batimetria                                                                 | 47 |
|     | 7.3.3     | Ecoscandaglio (SBES)                                                       | 47 |
|     | 7.3.4     | Ecoscandaglio Multibeam (MBES)                                             | 47 |
|     | 7.3.5     | Side Scan Sonar                                                            | 47 |
|     | 7.3.6     | Dati Sub-Bottom Profiler (SBP) e Boomer                                    | 48 |
| 7.4 | Precisi   | one della Navigazione, della Batimetria e dei Dati Morfologici del Fondale | 48 |
|     | 7.4.1     | Posizionamento e Navigazione                                               | 48 |
|     | 7.4.2     | Batimetria                                                                 | 48 |
|     | 7.4.3     | Side Scan Sonar                                                            | 49 |
| 7.5 | Precisi   | one dei Dati Morfologici del Fondale Marino                                | 49 |
|     | 7.5.1     | Precisione Orizzontale                                                     | 49 |
|     | 7.5.2     | Precisione Verticale                                                       | 50 |
| 8   | INDICE    | E DEI DATI                                                                 | 51 |
| 8.1 | Conse     | gna del Rapporto in Formato Digitale                                       | 51 |
| 8.2 | Indice of | delle Carte                                                                | 52 |
| 8.3 | Indice of | della Lista dei Target                                                     | 53 |



## APPENDICI

- A. PARAMETRI GEODETICI
- B. CALIBRAZIONI
- C. FOGLI DI REGISTRO
- D. RAPPORTI QUOTIDIANI
- E. SCHEDE TECNICHE DELLE IMBARCAZIONI
- F. DETTAGLI DELLA STRUMENTAZIONE
- G. ELABORAZIONE DELL'ECOSCANDAGLIO MULTIBEAM (MBES)
- H. GARANZIA
- I. CARTE



Page

## TABELLE

| Tabella 2.1:Coordinate topografiche dell' area di indagine                | 8  |
|---------------------------------------------------------------------------|----|
| Tabella 2.2: Coordinate dell'approdo proposto                             | 8  |
| Tabella 2.3: Parametri geodetici                                          | 10 |
| Tabella 4.1: Sondaggi all'interno dell'area di rilievo.                   | 20 |
| Tabella 4.2: Video ed immagini EBS all'interno dell'area di rilievo.      | 21 |
| Tabella 4.3: Riassunto geologico lungo la rotta del Gasdotto TAP.         | 23 |
| Tabella 4.4: Spessore dell'Unità A lungo la rotta del Gasdotto TAP.       | 24 |
| Tabella 5.1: Coordinate della rotta del Gasdotto                          | 35 |
| Tabella 6.1: RV ASTREA - Caratteristiche dell'imbarcazione                | 36 |
| Tabella 6.2: MB - Caratteristiche dell'imbarcazione                       | 36 |
| Tabella 6.3: RV ASTREA - Strumentazione                                   | 37 |
| Tabella 6.4: MB Vector - Strumentazione                                   | 41 |
| Tabella 6.5: Offsets della strumentazione riferita alla posizione del CRP | 42 |
| Tabella 7.1: Coordinate dei capisaldi e stazioni di riferimento           | 45 |
| Tabella 7.2: Risultati della calibrazione del Multibeam EM 2040.          | 46 |
| Tabella 7.3: Dettagli sulle misurazioni della velocità acustica.          | 46 |

### FIGURE

## Page

| Figura 2.1: Rotta del Gasdotto e Corridoio del Rilievo Geofisico vicino la costa italiana.         | 9  |
|----------------------------------------------------------------------------------------------------|----|
| Figura 4.1: Carta geologica del Salento (Ref. 7).                                                  | 14 |
| Figura 4.2: Circolazione delle correnti intermedie e profonde nel Mediterraneo centrale (REF. 17). | 16 |
| Figura 4.3: Dati MBES– Evidenze di movimenti di massa gravitativi.                                 | 18 |
| Figura 4.4: Dati MBES – Esempio di rilievi morfologici, probabilmente dovuti a biocostruzioni.     | 18 |
| Figura 4.5: Dati MBES – Esempio di fondale marino ondulato: probabili dune sottomarine.            | 19 |
| Figura 4.6: Dati SSS (Linea TAPM04H) – Ghiagia sabbiosa.                                           | 21 |
| Figura 4.7: Dati SSS (Linea TAPM04H) – Biocostruzioni.                                             | 22 |
| Figura 4.8: Dati SSS (Linea TAPMCLH)– Megaripples                                                  | 22 |
| Figure 4.9 Esempio di dato boomer (Linea TAPMCL) – Centro linea TAPMCL_BOM_202.                    | 26 |
| Figura 4.10: Esempio di dato boomer (Linea TAPMCL) – Centro linea TAPMCL_BOM_202.                  | 27 |
| Figura 4.11: Esempio di dato boomer – Centro linea TAPMCL_BOM_202.                                 | 28 |
| Figura 4.12: Esempio di dato boomer – Centro linea TAPMCL_BOM_202.                                 | 29 |
| Figura 4.15: Esempio di dato boomer – Linea TAPM11_BOM_201 e DTM.                                  | 32 |
| Figura 4.16: Esempio di dato boomer – Centro linea TAPMCL_BOM_202 e DTM.                           | 33 |
| Figura 6.1: Offsets della strumentazione– RV ASTREA                                                | 43 |
| Figura 6.2: Configurazione della strumentazione a bordo – RV ASTREA                                | 43 |



#### 1 INTRODUZIONE

#### 1.1 Generalità

Statoil per conto di TAP (II Cliente) ha contattato la Fugro Oceansismica S.p.A. per svolgere un rilievo marino di dettaglio (DMS) al fine di realizzare un Gasdotto, per il Progetto TAP. In particolare, la Fugro Oceansismica S.p.A. è responsabile dell'esecuzione delle indagini geofisiche sotto costa.

Il lavoro si è svolto sotto costa, a nord di San Foca (Lecce), SE dell'Italia. Il progetto TAP ha spostato di 20 km verso sud, la posizione originaria dell'approdo italiano.

Questo rapporto geofisico finale, mostra i risultati ottenuti dall'interpretazione dei dati MBES, SSS, SBP e Boomer. In particolare, fornisce le informazioni e le caratteristiche principali che potrebbero influenzare la rotta del Gasdotto sotto costa lungo un corridoio di 4000 m.

Il rapporto finale comprende tutte le informazioni sull'acquisizione, l'elaborazione e tutte le carte che insieme al rilievo geotecnico, sono utili per l'analisi tecnica necessaria alla realizzazione dell'approdo.

Tutte le coordinate dei dati sono riferite al Datum WGS84 (ETRF 1989) ed allo Sferoide WGS84, sono espresse in metri e riferite alla Proiezione Universal Transverse Mercator, Zona 34 N, Meridiano Centrale 21°E.

L'interpretazione finale dei dati si basa su tutti i dati disponibili ed è illustrata con figure nel testo e carte (Appendice I).



## 1.2 Definizioni ed Abbreviazioni

| CRP      | Common Reference Point (Posizione di Riferimento Comune)                                 |
|----------|------------------------------------------------------------------------------------------|
| CTD      | Conduttività, Temperatura e Densità                                                      |
| DGPS     | Differential Global Positioning System (Sistema di Posizionamento Globale Differenziale) |
| DPR      | Daily Progress Report (Rapporti di lavoro giornalieri)                                   |
| DTM      | Digital Terrain Model (Modello digitale del terreno)                                     |
| FOSPA    | Fugro Oceansismica S.P.A.                                                                |
| GEOS     | Fugro Global Environmental and Ocean Sciences                                            |
| GPS      | Global Positioning System (Sistema di Posizionamento Globale)                            |
| HF       | High Frequency (Alta frequenza)                                                          |
| HP       | High Precision (Alta precisione)                                                         |
| HSE      | Health, Safety and the Environment (Salute e Sicurezza ed Ambiente)                      |
| Hz - kHz | Hertz – kiloHertz                                                                        |
| J - kJ   | Joule – kiloJoule                                                                        |
| KP       | Kilometre Post (Progressiva Chilometrica)                                                |
| LAT      | Lowest Astronomical Tide                                                                 |
| LF       | Low Frequency (Bassa frequenza)                                                          |
| m - km   | Metres – kilometres (Metri-Chilometri)                                                   |
| MBES     | Multibeam echo sounder (Ecoscandaglio Multifascio)                                       |
| MSL      | Mean Sea Level (Livello medio del mare)                                                  |
| MRU      | Motion Reference Unit (Sensore di compensazione del moto ondoso)                         |
| QC       | Quality Control (Controllo della qualità)                                                |
| RTK      | Real Time Kinematic (Tempo reale cinematico)                                             |
| s - ms   | seconds – milliseconds (secondi-millisecondi)                                            |
| SBES     | Single beam echo sounder (Ecoscandaglio)                                                 |
| SBP      | Sub-bottom profiler (Profilatore di sedimenti)                                           |
| SPK      | Sparker                                                                                  |
| SSS      | Side scan sonar (Sonar a Scansione Laterale)                                             |
| SVP      | Sound Velocity Profiler (Profilo della Velocità del Suono nell'acqua)                    |
| TWTT     | Two Way Travel Time (Tempi doppi)                                                        |
| UCF      | Unconformity (Non conformità)                                                            |
| UTM      | Universal Transverse Mercator (Universale Trasversa di Mercatore)                        |
| UVC      | Underwater video camera (Video camera sottomarina)                                       |
| wd       | water depth (profondità dell'acqua)                                                      |
| WGS84    | World Geodetic System 84                                                                 |



#### 1.3 Bibliografia

REF 1 Aiello, G., Bravi, S., Budillon, F., Cristofalo, G.C., D'Argenio, B., De Lauro, M., Ferraro, L., Marsella, E., Molisso, F., Pelosi, N., Tramontano, M.A., 1995. Giornale di Geologia, vol 57, no 1.2, 17-40.

REF 2 Artegiani A., Azzolini R. and Salusti E., 1989, On the dense water in the Adriatic Sea. Oceanoligica Acta, 12, 151-160.

REF 3 Ciaranfi N., Pieri P. and Ricchetti G., 1992, Note alla carta geologica delle Murge e del Salento (Puglia centro-meridionale). Memorie Società Geologica Italiana, 41, 449-460.

REF 4 Chiocci, F. L., D'Angelo, S., Romagnoli, C., 2004, Atlas of submerged Depositional Terrace along the italian coasts. Memorie descrittive della carta d'Italia, Volume LVIII, pp 120.

REF 5 D'Argenio B., Pescatore T. and Scandone P., 1973, Schema geologico dell'Appennino meridionale (Campania e Lucania). Proc. Congr. " Moderne vedute sulla geologia dell'Appennino". Accademia Nazionale dei Lincei, 183, 49-72.

REF 6 D'Argenio B. and Horvath F., 1984, Some remarks on the deformation history of Adria, from the Mesozoic to the Tertiarty. Ann. Geophys. 2, 143-146.

REF 7 Doglioni C., Mongelli F. & Pieri P., 1994, The Apulia Uplift (SE Italy): An anomaly in the foreland of the Apenninic subduction due to buckling of a thick continental lithosphere. Tectonics, 13 vol 5, pp. 1309-1321.

REF 8 Emery, D. and Myers, K.J., 1996, Sequence Stratigraphy, Blackwell Science Ltd., pp.297.

REF 9 Geletti R., Del Ben A., Beseti M., Ramella R. and Volpi V., 2008, Gas seeps linked to salt structures in the Central Adriatic Sea. Basin Research 1-15.

REF 10 Malanotte - Rizzoli P. and Bergamasco A., 1983. The dynamics of the costal region of the Northern Adriatis Sea. Journal Physical Oceanography, 13, 1105-1130.

REF 11 Margiotta, S. and Negri, S., 2005, Geophysical and stratigraphical research into deep groundwater and intruding seawater in the Mediterranean area (the Salento Peninsula, Italy). Natural Hazards and Earth System Sciences, vol 5, pp. 127–136.

REF 12 Newton R. and Stefanon A., 1982, Side Scan Sonar and subbottom profiling i the northern Adriatic Sea. Marine Geology, 46, 279-306.

REF 13 Pieri, P., Festa, V., Moretti, M. Tropeano, M., 1997, Quaternary tectonic activity of the Murge area (Apulian foreland - Southern Italy). Annali di Geofisica, vol.XL, no 5, October, pp. 1395-1404.



REF 14 Ricchetti G., Ciaranfi N., Luperto Sinni E., Mongelli F. and Pieri P., 1992. Geodinamica ed evoluzione stratigrafico-tettonica dell'avampaese apulo. Memorie Società Geologia Italiana, 41, 57-82.

REF 15 Ridente D. and Trincardi F., 2006, Active foreland deformation evidenced by shallow folds and faults affecting late Quaternary shelf-slope deposits (Adriatic Sea, Italy). Basin Research 18, 171 - 188.

REF 16 Selleri, G., 2007, Karstic landscape evolution of southern Apulia Foreland during the Pleistocene. Geogr. Fis. Dinam. Quat., vol 30, pp. 77-86.

REF 17 Verdicchio G. and Trincardi F., 2008, Mediterranean shelf-edge muddy contourites: examples from the Gela and South Adriatic basins. Geo-Mar Lett 28:137-151.



## 1.4 Documento delle Revisioni

| Rev | Descrizione                                  | Preparato  | Controllato | Data             |
|-----|----------------------------------------------|------------|-------------|------------------|
| 0A  | Rapporto Finale per commenti del cliente     | S. Polizzi | D. Taliana  | 20 Febbraio 2014 |
| 0B  | Rapporto Finale per accettazione del cliente | S. Polizzi | D. Taliana  | 21 Marzo 2014    |
| 0C  | Rapporto Finale per accettazione del cliente | S. Polizzi | D. Taliana  | 07 Aprile 2014   |



#### 2 DESCRIZIONE DEL RILIEVO

#### 2.1 Scopo del Lavoro

Il Progetto Trans Adriatic Pipeline (TAP) ha lo scopo di costruire un Gasdotto sottomarino per il trasporto di gas naturale dall'Albania all'Italia attraverso lo Stretto di Otranto.

Il Progetto TAP ha cambiato la posizione originaria dell'approdo in Italia, e la nuova posizione non è coperta da precedenti indagini dettagliate.

Le indagini forniscono informazioni utili per la progettazione e la valutazione di impatto ambientale dell'area di approdo, ed inoltre definiscono la geologia e la stratigrafia superficiale lungo l'asse del microtunnel.

In particolare gli obiettivi dell'indagine geofisica sotto costa sono:

- ottenere una batimetria di dettaglio, individuare tutti gli ostacoli sul fondo marino ed identificare altri fattori che possono influenzare la posa e la stabilità del Gasdotto;
- identificare e mappare le caratteristiche geologiche e/o biologiche o fenomeni che possono influenzare il percorso, l'architettura, la costruzione o la gestione del Gasdotto proposto;
- sviluppare un DTM con isobate e carte degli elementi morfologici presenti sul fondale marino con particolare attenzione alle rocce affioranti ed alle scarpate.
- eseguire un'indagine geofisica lungo il tracciato per identificare la geologia superficiale utile alla valutazione del rischio geologico e alla stabilità del Gasdotto;
- individuare e identificare eventuali altre ostruzioni nelle vicinanze del tracciato del Gasdotto;
- individuare tutti gli eventuali cavi e gasdotti già esistenti, sia operativi che non in uso, lungo il corridoio d'indagine.

L'acquisizione è stata correttamente eseguita lungo tutto la rotta, supportata da sufficienti informazioni raccolte per consentire una corretta interpretazione lungo il corridoio d'indagine.

Al momento del sondaggio, tutti i dati batimetrici sono stati ridotti al LAT (Lowest Astronomical Tide) utilizzando il Mareografo di Otranto (informazioni fornite dal sito dell'ISPRA).



#### 2.2 Lavoro Svolto

Il rilievo geofisico sotto costa è stato svolto usando le imbarcazoni RV ASTREA e MB VECTOR per 12 ore al giorno, dal 16 dicembre 2013 al 4 gennaio 2014.

L'imbarcazione RV ASTREA è stata mobilizzata nel porto di Otranto tra il 16 ed il 18 dicembre 2013 mentre l'imbarcazione MB VECTOR è stata mobilizzata il 24 dicembre 2013.

Durante il rilievo geofisico, è stato indagato un corridoio, lungo circa 4000 m (dal KP 104 al KP 99.5) e largo circa 200. Il KP 0 si trova sulla costa albanese. In particolare, lungo il corridoio tra i 4 m ed i 93 m di profondità è stata utilizzata l'imbarcazione RV ASTREA, con la strumentazione MBES, SBES, SSS, SBP e Boomer, mentre lungo il corridoio tra i 4 m di profondità e la linea di costa è stata utilizzata l'imbarcazione SBES.

#### 2.2.1 Programma del Rilievo Eseguito dall'Imbarcazione RV Astrea

Il rilievo è stato svolto utilizzando la seguente strumentazione: ecoscandaglio a singolo fascio (SBES) ed ecoscandaglio multifascio (MBES), sidescan sonar, sub bottom profiler (SBP) e boomer, lungo un corridoio largo 200 m centrato sulla rotta teorica del Gasdotto. Per ottenere la copertura del corridoio, è stata realizzata una griglia costituita da 20 linee principali centrate sulla rotta del Gasdotto con un'equidistanza di 10 m, e 9 linee trasversali equidistanti 500 m.

La griglia che è stata realizzata con il SBP, Boomer, SBES e MBES consiste in:

- 11 linee principali lungo il corridoio (dal KP 104.1 al KP 99.5), lunghe circa 4000 m, orientate NE-SO, con un'equidistanza di 10 m ed altre 10 linee lungo il corridoio (dal KP 103.4 al KP 99.5), lunghe circa 3000 m, orientate NE-SO con un'equidistanza di 10 m.
- 9 linee trasversali, lunghe circa 200 m, orientate NO-SE ed equidistanti 500 m (dal KP 104.1 al KP 99.5).
- 10 linee di SBP e Boomer (dal KP 103.6 al KP 103.3) orientate NE-SO, equidistanti 5 m e 5 linee trasversali, orientate NO-SE equidistanti 10 m (dal KP 103.6 al KP 103.3).

La griglia realizzata con il SSS è costituita da:

7 linee principali lungo il corridoio (dal KP 104.1 al KP 99.5), lunghe circa 4000 m, orientate NE-SO ed equidistanti 25 m, e 2 linee lungo il corridoio (dal KP 103.4 al KP 99.5), lunghe circa 3000 m, orientate NE-SO ed equidistanti 25 m.



## 2.2.2 Programma del Rilievo Eseguito dall'Imbarcazione MB Vector

Il rilievo è stato eseguito utilizzando l'ecoscandaglio a singolo fascio (SBES).

La griglia eseguita con il SBES è costitiuita da:

- 3 linee principali lunghe circa 230 m, orientate NO-SE con un'equidistanza di 5 m.
- 21 linee trasversali lunghe circa 100 m, orientate NE-SO con un'equidistanza di 5 m e 13 linee trasversali lunghe circa 100 m long con equidistanza di 10 m.

La griglia del rilievo geofisico eseguito con l'imbarcazione RV ASTREA e l'imbarcazione MB Vector è mostrata nella Figura 2.1

Le coordinate dell'area d'indagine geofisica sono elencate nellaTabella 2.1;Tabella 2.2.

|   | Latitudine N: | Longitudine E: | Est (m):  | Nord (m):  |
|---|---------------|----------------|-----------|------------|
| А | 4018'40.99"   | 1823'32.58"    | 278416.54 | 4465582.42 |
| В | 40ๆ8'38.36"   | 1823'35.06"    | 278472.72 | 4465499.63 |
| С | 40°18'54.23"  | 1824'03.75"    | 279164.40 | 4465969.01 |
| D | 40°18'52.91"  | 1824'04.99"    | 279192.47 | 4465927.63 |
| E | 40°19'21.06"  | 1824'55.92"    | 280419.90 | 4466760.45 |
| F | 40°19'19.74"  | 1824'57.13"    | 280447.37 | 4466718.68 |
| G | 40°19'56.86"  | 1825'51.52"    | 281764.32 | 4467825.99 |
| Н | 40°20'00.52"  | 1825'44.53"    | 281602.75 | 4467943.88 |

#### Tabella 2.1:Coordinate topografiche dell' area di indagine

#### Tabella 2.2: Coordinate dell'approdo proposto

|         | Latitudine N: | Longitudine E: | Est (m):   | Nord (m):    |
|---------|---------------|----------------|------------|--------------|
| Approdo | 40°18'27.36"  | 18º23'11.54"   | 277907.489 | 4465176 .606 |

Le coordinate sono riferite al Datum WGS84, Sferoide WGS84, UTM ZONE 34 N.





Figura 2.1: Rotta del Gasdotto e Corridoio del Rilievo Geofisico vicino la costa italiana.



#### 2.3 Parametri Geodetici del Rilievo

La Tabella 2.3 contiene i parametri geodetici utilizzati nel rilievo geofisico sotto costa. Questi parametri sono stati controllati ed accettati dal Cliente a bordo.

#### Tabella 2.3: Parametri geodetici

| Paramentr                 | i Geodetici     | 1)             |                         |                       |                |                        |          |  |  |
|---------------------------|-----------------|----------------|-------------------------|-----------------------|----------------|------------------------|----------|--|--|
| Sferoide:                 |                 |                | World Geodeti           | c System 7            | 1984           |                        |          |  |  |
| Datum:                    |                 |                | World Geodeti           | c System <sup>2</sup> | 1984 (WGS84    | )                      |          |  |  |
| Semi asse                 | maggiore:       |                | a = 6378137.000 m       |                       |                |                        |          |  |  |
| Schiacciam                | iento inverso   | )              | $^{1}/_{f} = 298.25722$ | 23563                 |                |                        |          |  |  |
| Parametri                 | Geodetici D     | atum Locale    | 2)                      | )                     |                |                        |          |  |  |
| Sferoide:                 |                 |                | World Geodeti           | c System 7            | 1984 (WGS84    | )                      |          |  |  |
| Datum:                    |                 |                | World Geodeti           | c System 7            | 1984           |                        |          |  |  |
| Semi asse                 | maggiore        |                | 6 378 137.000           | m                     |                |                        |          |  |  |
| Schiacciam                | iento inverso   | )              | 1/f = 298.257 2         | 223 563               |                |                        |          |  |  |
| Parametri                 | di Trasform     | azione Datu    | m da WGS84 a            | Hayford 2             | 1909 - Interna | tional 1924            |          |  |  |
| Shift dX:                 | 0.00            | М              | Rotation rX:            | 0.00                  | arcsec         | Scale Factor:          | 0.00 ppm |  |  |
| Shift dY:                 | 0.00            | М              | Rotation rY:            | 0.00                  | arcsec         |                        |          |  |  |
| Shift dZ:                 | 0.00            | М              | Rotation rZ:            | 0.00                  | arcsec         |                        |          |  |  |
| Parametri                 | della Proiez    | ione del Pro   | getto                   |                       |                |                        |          |  |  |
| Tipo di proi              | ezione:         |                | Universale T            | ransversa             | di Mercatore,  | Emisfero Nord          |          |  |  |
| Zona UTM:                 |                 |                | 34 N                    |                       |                |                        |          |  |  |
| Meridiano d               | centrale (CM    | ):             | 21°00' 00" E            |                       |                |                        |          |  |  |
| Latitudine o              | li Origine:     |                | 0°00' 00" Eq            | uatore                |                |                        |          |  |  |
| Falso Est:                |                 |                | 500 000 m               |                       |                |                        |          |  |  |
| Falso Nord                | :               |                | 0 m                     |                       |                |                        |          |  |  |
| Fattore di s              | cala sul CM     |                | 0.9996                  |                       |                |                        |          |  |  |
| Unità:                    |                 |                | Metri                   |                       |                |                        |          |  |  |
| Nota:<br>1. II s<br>2. Fo | software di nav | vigazione Fugr | o usa sempre WC         | SS84 come             | datum primario | per ogni calcolo geode | etico.   |  |  |



#### 3 RIASSUNTO DEI RISULTATI

| •                        | Proiezione Ur                                                                                                          | 84, Sferoide Wgs8<br>hiversale Transvers                                                                                                                                                                                                             | 4. Tutte le co<br>sa di Mercato                                                                                                                                       | ordinate<br>re , Zona                                                                          | dei dati sono espr<br>1 34N, Meridiano (                                                                                        | esse in metri riferiti al<br>Centrale 21°E.                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Coordinate               |                                                                                                                        | Latitudine N:                                                                                                                                                                                                                                        | Longitud                                                                                                                                                              | line E:                                                                                        | Est (m):                                                                                                                        | Nord (m):                                                                     |
| topografiche             | А                                                                                                                      | 4098'40.99"                                                                                                                                                                                                                                          | 1823'32.5                                                                                                                                                             | 58"                                                                                            | 278416.54                                                                                                                       | 4465582.42                                                                    |
| dell'area di<br>Indagine | В                                                                                                                      | 40°18'38.36"                                                                                                                                                                                                                                         | 1823'35.0                                                                                                                                                             | )6"                                                                                            | 278472.72                                                                                                                       | 4465499.63                                                                    |
|                          | С                                                                                                                      | 40°18'54.23"                                                                                                                                                                                                                                         | 18º24'03.7                                                                                                                                                            | 75"                                                                                            | 279164.40                                                                                                                       | 4465969.01                                                                    |
|                          | D                                                                                                                      | 40°18'52.91"                                                                                                                                                                                                                                         | 1824'04.9                                                                                                                                                             | 99"                                                                                            | 279192.47                                                                                                                       | 4465927.63                                                                    |
|                          | E                                                                                                                      | 40°19'21.06"                                                                                                                                                                                                                                         | 1824'55.9                                                                                                                                                             | 92"                                                                                            | 280419.90                                                                                                                       | 4466760.45                                                                    |
|                          | F                                                                                                                      | 40°19'19.74"                                                                                                                                                                                                                                         | 1824'57.1                                                                                                                                                             | 13"                                                                                            | 280447.37                                                                                                                       | 4466718.68                                                                    |
|                          | G                                                                                                                      | 40°19'56.86"                                                                                                                                                                                                                                         | 1825'51.5                                                                                                                                                             | 52"                                                                                            | 281764.32                                                                                                                       | 4467825.99                                                                    |
|                          | Н                                                                                                                      | 40°20'00.52"                                                                                                                                                                                                                                         | 1825'44.5                                                                                                                                                             | 53"                                                                                            | 281602.75                                                                                                                       | 4467943.88                                                                    |
|                          |                                                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                |                                                                                                                                 |                                                                               |
| Coordinate               |                                                                                                                        | Latitudine N:                                                                                                                                                                                                                                        | Longitud                                                                                                                                                              | line E:                                                                                        | Est (m):                                                                                                                        | Nord (m):                                                                     |
| dell'approdo             | Approdo                                                                                                                | 400007.000                                                                                                                                                                                                                                           |                                                                                                                                                                       |                                                                                                |                                                                                                                                 |                                                                               |
| Batimetria:              |                                                                                                                        | 40°18'27.36"                                                                                                                                                                                                                                         | 1823'11.5                                                                                                                                                             | 54"                                                                                            | 277907.489                                                                                                                      | 4465176 .606                                                                  |
| Batimetria:              | Profondità mi<br>Profondità ma<br>Minimo gradie<br>Massimo grad                                                        | 401827.36<br>nima: -2 m (KP 104<br>assima: -93 m (KP<br>ente lungo la rotta:<br>diente lungo la rotta<br>diente lungo la rotta<br><b>Caratteris</b><br>batimetric                                                                                    | 1823'11.{<br>4.2)<br>100.3).<br>0.5° (at 101.9<br>a: 4.8° (at KP<br>tiche<br>i                                                                                        | 54" ;<br>9)<br>103.4)<br>Note                                                                  | 277907.489                                                                                                                      | 4465176 .606                                                                  |
| Batimetria:              | Profondità mi<br>Profondità ma<br>Minimo gradie<br>Massimo grad                                                        | 401827.36<br>nima: -2 m (KP 104<br>assima: -93 m (KP<br>ente lungo la rotta:<br>diente lungo la rotta<br><b>Caratteris</b><br><b>batimetric</b><br>Depression                                                                                        | 1823'11.8<br>4.2)<br>100.3).<br>0.5°(at 101.9<br>a: 4.8°(at KP<br>tiche<br>i<br>ne allungata                                                                          | 54" ;<br>103.4)<br>Note<br>Lunghe<br>-13.5 m<br>Direzio                                        | 277907.489<br>                                                                                                                  | 4465176 .606                                                                  |
| Batimetria:              | Profondità mi<br>Profondità ma<br>Minimo gradie<br>Massimo grad<br><b>Kp (m):</b><br>103.67<br>103.4                   | AUTR 27.36<br>nima: -2 m (KP 104<br>assima: -93 m (KP<br>ente lungo la rotta:<br>diente lungo la rotta:<br>diente lungo la rotta<br><b>Caratteris</b><br><b>batimetric</b><br>Depression<br>Rottura di                                               | 1823'11.8<br>4.2)<br>100.3).<br>0.5° (at 101.9<br>a: 4.8° (at KP<br>tiche<br>i<br>ne allungata                                                                        | 9)<br>103.4)<br>Note<br>Lunghe<br>-13.5 m<br>Direzio<br>Profone                                | 277907.489<br><br>ne NNE-SSO orie<br>dità -20.5 m                                                                               | 4465176 .606<br>zza 18 m, profondità<br>nted                                  |
| Batimetria:              | Profondità mi<br>Profondità ma<br>Minimo gradie<br>Massimo grad<br><b>Kp (m):</b><br>103.67<br>103.4<br>103.3          | 401827.36*      nima: -2 m (KP 104      assima: -93 m (KP      ente lungo la rotta:      diente lungo la rotta      diente lungo la rotta      Depression      Rottura di      Depression      (dovuto pre<br>a movimer<br>gravitativi)              | 18°23'11.8<br>4.2)<br>100.3).<br>0.5° (at 101.9<br>a: 4.8° (at KP<br>tiche<br>i<br>ne allungata<br>pendenza<br>ne allungata<br>babilmente<br>at di massa              | 54"<br>103.4)<br>Note<br>Lunghe<br>-13.5 m<br>Direzio<br>Profond<br>Lunghe<br>-5 m.<br>Direzio | 277907.489<br>ezza 66 m; larghez<br>n.<br>ne NNE-SSO orie<br>dità -20.5 m<br>ezza 120 m, larghe<br>ne NNE-SSO e N               | 4465176 .606<br>zza 18 m, profondità<br>nted<br>zzza 20 m; profondità<br>D-SE |
| Batimetria:              | Profondità mi<br>Profondità ma<br>Minimo gradie<br>Massimo grad<br><b>Kp (m):</b><br>103.67<br>103.4<br>103.3<br>103.1 | 401827.36*      nima: -2 m (KP 10-4      assima: -93 m (KP      ente lungo la rotta:      diente lungo la rotta:      diente lungo la rotta:      Depression      Rottura di      Depression      (dovuto pre a movimer gravitativi)      Rottura di | 18°23'11.8<br>4.2)<br>100.3).<br>0.5° (at 101.9<br>a: 4.8° (at KP<br>tiche<br>i<br>ne allungata<br>pendenza<br>ne allungata<br>obabilmente<br>ti di massa<br>pendenza | 54" ;<br>103.4)<br>Note<br>Lunghe<br>-13.5 m<br>Direzio<br>Profone<br>Profone                  | 277907.489<br>ezza 66 m; larghez<br>n.<br>ne NNE-SSO orie<br>dità -20.5 m<br>ezza 120 m, larghe<br>ne NNE-SSO e N<br>dità -31 m | 4465176 .606<br>zza 18 m, profondità<br>nted<br>ezza 20 m; profondità<br>D-SE |



|                                               | Kp (m):                                                                                                                                                | Caratteristic<br>batimetriche                                                                                       | he                   | Note                                               |                                     |                                                                                               |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|
|                                               | 101.5                                                                                                                                                  | Cresta della<br>duna<br>sottomarina                                                                                 |                      | Profondità -79 m, altezza 1 m<br>Direzione NNO-SSE |                                     | m                                                                                             |
|                                               | 101.2                                                                                                                                                  | Cresta della<br>duna<br>sottomarina                                                                                 | Cresta della<br>duna |                                                    | -81 m, altezza 1<br>NNO-SSE         | m.                                                                                            |
|                                               | 101                                                                                                                                                    | Cresta della<br>duna<br>sottomarina                                                                                 |                      | Profondità<br>Direzione I                          | -85 m, altezza 1<br>NNO-SSE         | m.                                                                                            |
|                                               |                                                                                                                                                        |                                                                                                                     |                      |                                                    |                                     |                                                                                               |
| Caratteri                                     | Kp (m):                                                                                                                                                | Caratteristic                                                                                                       | he<br>e              | Note                                               |                                     |                                                                                               |
| fondale                                       | 104.24 - 103.4                                                                                                                                         | Area a sabbia<br>densa                                                                                              | ì                    | Lunghezza                                          | 1 55-60 m e largh                   | ezza 40-45 m                                                                                  |
|                                               | 103.4 - 103.1                                                                                                                                          | Area con ghia<br>sabbiosa                                                                                           | aia                  | Lunghezza                                          | ı 110 m e larghez                   | za 90 m,                                                                                      |
|                                               | 103.1 - 101.87                                                                                                                                         | Rilievi circolar<br>(probabili<br>biocostruzioni                                                                    | ri<br>i)             | Diametro 2                                         | 2-10 m e altezza (                  | ).5-3 m.                                                                                      |
|                                               | 101.87 - 100.27                                                                                                                                        | Campo di<br>Megaripples                                                                                             | /                    | Lunghezza<br>ESE e NE-                             | d'onda 2.5-3 m<br>SO.               | and direzione ONO-                                                                            |
| Geologia<br>superficiale:                     | La geologia superfi<br>Pleistocene inf.: Ur                                                                                                            | superficiale lungo la rotta del Gasdotto TAP comprende tre unità, dall'Olocene al inf.: Unità A, Unità B e Unità C. |                      |                                                    |                                     |                                                                                               |
|                                               | Età                                                                                                                                                    | Unità/<br>Orizzonti                                                                                                 | Pro<br>ba:<br>bL     | ofondità di<br>se (m<br>AT)                        | Profondità di<br>base (m bsb)       | Litologia<br>predominante                                                                     |
|                                               | OLOCENE                                                                                                                                                | A<br>(dal Fondo<br>mare al H10)                                                                                     | (ł<br>K              | 17- 110<br>KP 103.9 -<br>IP 100.15)                | 7 -12<br>(KP 103.9 -<br>KP 100.15)  | Sabbia fine calcarea da<br>sciolta a densa,<br>leggermente limosa<br>con frammenti di bivalvi |
|                                               | PLEISTOCENE<br>medio-sup.                                                                                                                              | B<br>(H10<br>-H20)                                                                                                  | (Ki                  | 67- 157<br>9 103.1- KP<br>100.15)                  | 34- 59<br>(KP 103.1 -<br>KP 100.15) | Limo sabbioso siliceo-<br>calcareo mediamente<br>denso, con frammenti<br>di bivalvi           |
|                                               | PLEISTOCENE<br>inf.                                                                                                                                    | C<br>(< H20)                                                                                                        | Re                   | Sotto il<br>cord lenght                            | Sotto il<br>Record lenght           | Sabbia e ghiaia<br>calcarea                                                                   |
| Rischio<br>geologico                          | Rilievo delle cavità:<br>All'interno dell'area<br>Fondale bioturbato<br>Dal KP 103.1 al KR                                                             | di indagine non<br>:<br>2 101.87 la rotta                                                                           | è sta<br>a del       | ata rilevata n<br>Gasdotto TA                      | essuna cavità.<br>.P incrocia un ca | mpo di sedimenti bioturbati                                                                   |
| superficiale e<br>vincoli<br>d'installazione: | biocostruzioni.<br><u>Gas superficiale</u><br>All'interno dell'area non sono state riconosciute anomalie sismiche.<br><u>Faglie</u>                    |                                                                                                                     |                      |                                                    |                                     |                                                                                               |
|                                               | All'interno dell'Unità A non sono state riconosciute faglie<br><u>Ostacoli</u><br>Lungo la rotta del Gasdotto TAP non sono stati riconosciuti ostacoli |                                                                                                                     |                      |                                                    |                                     |                                                                                               |



## 4 DETTAGLIO DEI RISULTATI

#### 4.1 Inquadramento Geologico

La storia geodinamica e sedimentaria del bacino Adriatico mostra l'evoluzione di un margine passivo, durante il Mesozoico, che passa ad un sistema bacinale, durante il Cenozoico (REF. 6).

La geologia del Mar Adriatico meridionale è caratterizzata dalla presenza di un avampaese relativo agli Appennini meridionali ("Avampaese Apulo-Gargano" Aut.) e di un'avanfossa relativa all'orogenesi delle Dinaridi e dell'Ellenidi (Terziaria-Quaternaria in età). L'avampaese è il prolungamento verso mare degli affioramenti carbonatici di mare basso di età Mesozioca, nella regione Apula ("Piattoforma Apula carbonatica) (REF. 5).

L'avampaese Apulo è caratterizzato da un'ampia struttura antiforme fagliata a blocchi (Blocco del Gargano, Murge e Salento) ed orientata ONO-ESE; esso ha subito un sollevamento differenziale durante il Plio-Quaternario (REF. 14). Gli affioramenti di arenarie neritiche del Pleistocene inf-medio nel Blocco delle Murge e del Salento si sono depositati probabilmete sopra lineamenti morfostrutturali. La presenza di una sequenza deposizionale regressiva del Pleistocene sup. su una superficie erosiva, suggerisce un sollevamento non uniforme lungo la regione Apula durante il Pleistocene, come corfermato anche dalla distribuzione di fossili lungo la costa (REF. 3-14).

La regione del Salento fa parte dell'avampaese meridionale della Puglia ed è costituito da uno spesso basamento carbonatico, il quale comprende diverse unità che hanno un'età che va dal Cretaceo sup. al Pleistocene inf. Queste unità sono ricoperte da depositi terrigeni marini del Pleistocene medio-sup. (REF. 16; Figura 4.1). Questi sedimenti si sono formati durante le principali trasgressioni marine; essi sono spessi 15-20 m e sono definiti come depositi di terrazzi marini (REF. 16), ed attualmente si trovano circa 200 m sopra l'attuale linea di costa e livello del mare.

La recente evoluzione geomorfologica della piattaforma continentale dell'Adriatico meridionale è stata controllata principalmente dalle oscillazioni glacio-eustatiche del livello del mare durante il Pleistocene medio-sup. e l'Olocene.

Verso mare, la piattaforma continentale del Salento mostra una stratigrafia caratterizzata da cunei progradanti che si trovano in discordanza su depositi basali costituiti da sabbie e calcareniti Plio-Pleistoceniche (REF. 11). La geometria interna di questi cunei è caratterizzata dalla presenza di parasequenze progradanti e retrogradanti, separate da superfici trasgressive (REF. 1-8). Lo spessore delle sequenze progradanti testimoniano un netto abbassamento del livello del mare avvenuto durante il Pleistocene medio, mentre la presenza di una grande quantità di sedimenti è legata alla recente fase tettonica ed al conseguente sollevamento che ha coinvolto l'avampaese Apulo (REF. 7).

L'approdo italiano del Gasdotto TAP è stato scelto a San Foca a 20 km da Lecce. La geologia affiorante in quest'area è caratterizzata da sedimenti Pliocenici appartenenti alla Formazione Uggiano La Chiesa (sotto i 50 m), ricoperti da sedimenti appartenenti alla Formazione Pietra Leccese e alle Calcareniti di Andrano del Miocene. La Formazione Uggiano La Chiesa è costituita da



sedimenti detritici e carbonatici, che affiorano lungo la costa con uno spessore maggiore di 50 m (REF. 11).

L'aspetto oceanografico dell'Adriatico meridionale è influenzato dal clima, dalla morfologia del fondale marino e dallo scambio di grandi masse d'acqua tra il Mar Ionio ed il Mar Adriatico. Nel Mar Adriatico meridionale sono presenti masse d'acqua profonde locali e masse d'acqua proveniente sia dal Mar Mediterraneo (LIW) che dal Mar Adriatico settentrionale (NADW) (REF. 10) (Figura 4.2).

La corrente levantina (LIW) entra nel Mar Adriatico meridionale attraverso il settore orientale del Canale di Otranto, mentre il deflusso occidentale nel Canale di Otranto avviene in una sezione meno ampia. Sotto l'isobata 100 m, la circolazione oceanografica nel settore occidentale del Canale di Otranto è caratterizzato da un'acqua meno salata, proveniente dal Mar Adriatico settentrionale (REF. 10).



Figura 4.1: Carta geologica del Salento (Ref. 7).



Studi condotti sulla piattaforma continentale del Salento mostrano che quest'area è caratterizzata dalla presenza di biomound. Queste strutture hanno spesso una forma regolare, piatta e circolare e sono costituiti da numerosi piccoli elementi con un elevato backscatter. Queste biocostruzioni recenti, che non sono ricoperte da sedimenti, hanno avuto origine da tre organismi coloniali: alghe calcaree, madrepore e briozoi (REF. 12). I biomound hanno un diametro di circa 70 m ed un'altezza minore di 1 metro, essi si ritrovano ad una profondità tra gli 80-110 m. La forma regolare dei biomound riflette la crescita su accumuli di sedimento grossolano locale (REF. 1 - 9).

Nella piattaforma continentale del Salento sono state riconosciute numerose dune sottomarine e forme di fondo ad esse correlate. In particolare sono stati ritrovati campi di dune sottomarine caratterizzati dalla presenza di due o tre dune con un moderato backscatter (a) oppure campi di dune piu estesi con un bckscatter elevato (b). Il primo tipo di forme di fondo (a) presentano una lunghezza d'onda di 100 m circa ed un'altezza inferiore di 1 m. Le creste hanno una distanza di circa 10 m. Le dune sono orientate E-O, parallelamente alla costa e si ritrovano alla profondità di 90 m. Il secondo tipo di forme di fondo (b) hanno una lunghezza d'onda che varia tra i 100-200 m ed occupano un'area piu grande, l'altezza della cresta è minore di 1 metro. Le creste presentano una distanza minore di 10 m. Queste dune sottomarine sono orientate N-S e si ritrovano alla profondità di 75 m (REF. 1).





Figura 4.2: Circolazione delle correnti intermedie e profonde nel Mediterraneo centrale (REF. 17).



#### 4.2 Batimetria

Lo studio del fondale marino è stato effettuato integrando i dati MBES, SBES e SSS.

Tutta la batimetria è riferita al Lowest Astronomical Tide (LAT).

L'intervallo di profondità lungo la rotta del Gasdotto varia da -2 m (KP 104.2) a -93 m (KP 100.3).

| Minimo gradiente:   | 0.5°(KP 101.9) |
|---------------------|----------------|
|                     |                |
| Massimo gradiente : | 4.8°(KP 103.4) |

L'area di indagine è caratterizzata da numerosi elementi morfologici, che probabilmente si sono formati durante l'ultima variazione del livello del mare ed in seguito all'azione delle correnti di fondo. Alcune di essi rappresentano terrazzi sottomarini, dune, scivolamenti e creeping.

Alla fine del corridoio d'indagine, tra il KP 104.2 ed il KP 103.4, il fondale marino si approfondisce tra -2 m a -20.5 m, e presenta un gradiente medio di 1.2°. In questo settore, sono state rilevate numerose depressioni allungate, orientate NNE-SSO. Le due depressioni principali hanno dimensioni rispettivamente: 1) lunghezza 66 m x larghezza 18 m x profondità -13.5 m; 2) lunghezza 52 m x larghezza 17.5 m x profondità -14.5 m (Figura 4.3). Solo una depressione incrocia la rotta del Gasdotto al KP 103.68. Al KP 103.2 questo settore è delimitato da una rottura di pendio alla profondità di -20.5 m (4.8°).

Dal KP 103.4 al KP 103.1, il fondale marino si approfondisce tra -20.5 m a -32 m, con un gradiente di 2.2<sup>°</sup>. Dal KP 103.5 al KP 103.3 sono stati riconosciuti due rilievi alla profondità di -21.2 m. Questi rilievi sono lughi 55-60 m e larghi 40-45 m.

Dal KP 103.3 al 103.2 la rotta incrocia un'area caratterizzata da depressioni allungate probabilmente dovute a lenti movimenti gravitativi di massa. Queste strutture sono orientate NNE-SSO e NE-SO e sono lunghe circa 120 m, larghe 20 m e profonde 5 m (Figura 4.3). Al KP 103.1 questo settore è delimitato da una rottura di pendio alla profondità di - 31 m.

Dal KP 103.1 al KP 101.9 il fondale marino si approfondisce tra -31 m a -77.5 m, con un gradiente di 2.15°. Questo settore è caratterizzato da un'area molto articolata con numerosi picchi. Queste strutture morfologiche hanno una forma circolare con un diametro variabile tra i 2-10 m ed un'altezza di 0.5-3 m. Quest'area è delimitata da una rottura di pendio alla profontità d'acqua di -77.5 m (3°) (Figura 4.4).

Dal KP 101.9 al KP 100.3 il fondale marino si approfondisce tra -77.5 m a - 93 m, con una gradiente di 0.5°. Questo settore è caratterizzato da un fond ale ondulato. Tra il KP 101.7 m ed il KP 100 sono state indviduate cinque dune sottomarine: tre con le creste orientate NNO-SSE, che si trovano rispettivamente alla profondità di -79 m, -81 m e -85 m e sono alte circa 1 m; e due con le creste orientate NNE-SSO, che si trovano alla profondità tra -79.3m e -80.5m, e sono alte 2 m (Figura 4.5).





Figura 4.3: Dati MBES- Evidenze di movimenti di massa gravitativi.



Figura 4.4: Dati MBES – Esempio di rilievi morfologici, probabilmente dovuti a biocostruzioni.





Figura 4.5: Dati MBES – Esempio di fondale marino ondulato: probabili dune sottomarine.



## 4.2.1 Caratteristiche Morfologiche del Fondale

L'interpretazione degli elementi morfologici che caratterizzano l'area d'indagine è stata integrata con dati MBES, SBES, SSS e dati sismici analogici (SBP e Boomer), inoltre sono stati supportati da tre sondaggi prelevati all'interno del corridoio d'indagine, forniti da D'Appolonia S.p.A. Le coordinate dei sondaggi sono elencati nella Tabella 4.1.

|  | Tabella 4.1: | Sondaggi | all'interno | dell'area | di rilievo. |
|--|--------------|----------|-------------|-----------|-------------|
|--|--------------|----------|-------------|-----------|-------------|

|               | Latitudine N: | Longitudine E: | Est (m):  | Nord (m):   | Profondità (m) |
|---------------|---------------|----------------|-----------|-------------|----------------|
| TAP231S       | 40°18'58.34"  | 18º24'15.01"   | 279433.65 | 4466087.8 9 | 6              |
| TAP2018       | 40°18'55.59"  | 18°24'08.47"   | 279276.87 | 4466007.7 7 | 27             |
| TAP2019-2019a | 40°18'54.85"  | 18°24'06.59"   | 279232.01 | 446 5986.31 | 26             |

L'analisi dei dati Side Scan Sonar è basata sulle varie facies acustiche, che caratterizzano il fondo marino e si differenziano per la forma, le dimensioni, l'intensità del backscatter, l'orientamento, la profondità, ecc.

Numerose facies acustiche sono state riconosciute:

Dalla fine del corridoio di indagine, tra il KP 104.2 (profondità dell'acqua -2 m) ed il KP 103.4 (profondità dell'acqua -20.5 m), il fondale marino è caratterizzato da un backscatter moderato. In questo settore sono state rilevate due aree con sabbia densa (dai songaggi TAP 231S- TAP2018-TAP2019-2019a) (Figura 4.6). Le aree con sabbia densa cementata hanno una lunghezza di 55-60 m ed una larghezza di 40-45 m. Questo settore è delimitato da una scarpata al KP 103.4.

Dal KP 103.4 (profondità dell'acqua -20.5 m) al KP 103.1 (profondità dell'acqua-31 m) la rotta incrocia un'area con un backscatter moderato, riconducibile alla presenza di ghiaie sabbiose (Figura 4.6). Al KP 103.1 l'area è delimitata da una scarpata alla profondità di -31 m.

Dal KP 103.1 (profondità dell'acqua -31 m) al KP 101.9 (profondità dell'acqua -77.5 m) il fondale marino è caratterizzato da un'area con un backscatter che va da moderato ad alto, questo è dovuto alla presenza di numerosi rilievi interpretabili come biocostruzioni (Figura 4.6). Queste strutture mostrano una forma circolare e regolare. Essi hanno un diamentro di 2-10 m ed un'altezza di 0.5-3 m (Figura 4.7). Al KP 101.9 quest'area è delimitata da una scarpata alla profondità di -77.5 m.

Dal KP 101.87 (profondità dell'acqua -77.5 m) al KP 100.3 (profondità dell'acqua -93 m), il fondale marino è caratterizzato da un'area con un backscatter da basso a moderato, che protrebbe essere correlato ad un'area con sabbia (sondaggi: TAP 231S- TAP2018- TAP2019-2019a). Quest'area è caratterizzata da un fondale ondulato, probabilmente dovuto alla presenza di un campo di megaripples con lunghezza d'onda 2.5-3 m ed orientati NNO-SSE (Figura 4.8).

Tutti questi caratteri morfologici sono confermati dalle immagini e dai video EBS. L'ubicazione delle immagini e dei video EBS all'interno dell'area d'indagine sono elencati nella Tabella 4.2.

|      | Latitudine N: | Longitudine E: | Est (m):  | Nord (m):  | Profondità (m) |
|------|---------------|----------------|-----------|------------|----------------|
| ES01 | 40°18'55.73"  | 18°24'03.60"   | 279163.85 | 4466046.43 | - 21.2         |
| ES03 | 40°18'54.09"  | 18°24'06.08"   | 279220.00 | 4465963.68 | - 20.8         |
| ES04 | 40°18'59.60"  | 18°24'08.83"   | 279289.01 | 4466131.35 | - 30.18        |
| ES06 | 40°18'56.97"  | 1824'11.29"    | 279345.16 | 4466048.60 | - 29.5         |
| ES07 | 40°19'04.78"  | 18°24'19.92"   | 279555.76 | 4466283.19 | - 37.4         |
| ES08 | 40°19'13.85"  | 18°24'37.47"   | 279978.35 | 4466550.41 | - 60.8         |
| ES09 | 40°19'22.37"  | 1824'55.46"    | 280410.95 | 4466801.13 | - 76.7         |
| ES10 | 40°19'30.92"  | 1825'13.48"    | 280843.22 | 4467052.41 | - 79.8         |
| ES11 | 40°19'40.81"  | 1825'30.23"    | 281247.81 | 4467345.26 | - 86.8         |
| ES12 | 40°19'52.60"  | 1825'44.73"    | 281247.81 | 4467699.28 | - 92           |

Tabella 4.2: Video ed immagini EBS all'interno dell'area di rilievo.



Figura 4.6: Dati SSS (Linea TAPM04H) – Ghiagia sabbiosa.





Figura 4.7: Dati SSS (Linea TAPM04H) – Biocostruzioni.



Figura 4.8: Dati SSS (Linea TAPMCLH)– Megaripples



#### 4.3 Geologia Superficiale

La geologia superficiale lungo la rotta del Gasdotto è stata interpretata sulla base dei dati SBP e Boomer, caricati nel software SMT Kingdom Suite Versione 8.6. E' stata applicata la velocità di 1600 m/s per la conversione dei tempi in profondità (m).

L'interpretazione dei dati analogici si è basata su attributi sismici, supportati dalla stratigrafia di tre sondaggi forniti da D'Appolonia S.p.A. (Tabella 4.1). I risultati del'interpretazione sono illustrati con figure nel testo e nelle carte (Appendice I).

A causa della presenza di sabbia densa, i profili SBP raggiungono una penetrazione di circa 5 m (6 ms) sotto il fondo mare con una risoluzione verticale di circa 50 cm, dove possibile. I profili boomer hanno una penetrazione di circa 36 m (45ms) sotto il fondo mare con una risoluzione verticale di 1.5 m.

La geologia superficiale lungo la rotta del Gasdotto comprende tre unità sismiche, di età che variano dall'Olocene al Pleistocene inferiore: Unità A, Unità B ed Unità C. La geologia lungo la rotta del Gasdotto è sintetizzata nella Tabella 4.3.

| Età                                     | Unità/                    | Profondità della                      | Profondità della                     | Litologia                                                                                     |
|-----------------------------------------|---------------------------|---------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|
|                                         | Orizzonte                 | base (m bLAT)                         | base (m bsb)                         | predominante                                                                                  |
| OLOCENE                                 | A<br>(Fondo mare-<br>H10) | 17 - 110<br>(KP 103.9 - KP<br>100.15) | 7 - 12<br>(KP 103.9- KP<br>100.15)   | Sabbia fine calcarea da<br>sciolta a densa,<br>leggermente limosa con<br>frammenti di bivalvi |
| PLEISTOCENE<br>superiore-<br>intermedio | B<br>(H10-H20)            | 67 - 157<br>(KP 103.1 – KP<br>100.15) | 34 - 59<br>(KP 103.1 - KP<br>100.15) | Limo sabbioso siliceo-<br>carbonatico<br>mediamente denso, con<br>frammenti di bivalvi        |
| PLEISTOCENE                             | C                         | Sotto il Record                       | Sotto il Record                      | Sabbia e ghiaia                                                                               |
| inferiore                               | (< H20)                   | lenght                                | lenght                               | calcarea                                                                                      |

Tabella 4.3: Riassunto geologico lungo la rotta del Gasdotto TAP.

#### Unità A (Fondo mare - H10):

Dal fondo mare all'orizzonte H10, l'unità simica (Unita A) è caratterizzata da un'ampiezza moderata, riflettori continui ed una frequenza media.

L'Unità A è costituita da sabbia calcarea densa, leggermente limosa con bivalvi e frammenti di bivalvi e potrebbe essere correlata all'Olocene. (REF. 7).

Dal KP 103.9 al 100.4 è stato rilevato un riflettore continuo, l'orizzonte H02, all'interno dell'Unità A, costituito da sabbia calcarea sciolta, leggermente limosa con bivalvi e frammenti di bivalvi.

L'Orizzonte H02 si trova ad una profondità che varia tra i 2.5 m bsb (15 ms bLAT) a 1 m bsb (32 ms bLAT) (Figure 4.9), ed è stato confermato dai sondaggi presenti nell'area (Tabella 4.1).

Dal KP 101.1 al 100.1 è stato rilevato un riflettore sub-orizzontale (H05) all'interno dell'Unità A. L'orizzonte H05 potrebbe essere interpretato come una superficie erosiva (probabilmente un terrazzo erosionale) parzialmente ricoperta da depositi di dune sottomarine. (Figura 4.10, Figura 4.11). La profondità dell'orizzonte H05 varia tra i 7 m bsb (119 ms bLAT) ed i 3 m bsb (126 ms). Sotto l'orizzonte H05, l'Unità A è caratterizzata da rflettori variabili (da clinoformi a sub-orizzantali).

Dal KP 102.7 al KP 101.9, al top dell'Unità A, sono stati riconosciuti numerosi corpi circolari con una facies sismica trasparente. Queste strutture probabilmete corrispondono a biocostruzioni. (Figura 4.15).

Dal KP 101.67 al KP 100.79 l'Unità A è caratterizzata da una facies sismica con una geometria esterna a forma di lente, delimitata alla base da un riflettore netto ed orizzontale, ed alla sommità da un riflettore ondulato, probabilmete dovuto alla presenze di dune sottomarine (Figura 4.16).

Lungo la rotta del Gasdotto, l'Unità A è caratterizzata da uno spessore variabile. Inoltre sono stati individuati due depocentri: il primo al KP 103.5 ed il secondo al KP 100.15.

Lo spessore dell'Unità A lungo la rotta è descritta nella Tabella 4.4.

| Intervallo (da KP al KP) | Spessore in m (bsb) | Note                       |
|--------------------------|---------------------|----------------------------|
| 103.9 – 103.5            | 6 – 12              | Primo depocentro (12 m)    |
| 103.5 – 103              | 12 – 2.5            |                            |
| 103 – 102.7              | 2.5 4.5             |                            |
| 102.7 – 102.4            | 4.5 – 1.5           |                            |
| 102.4 -102.2             | 1.5 – 2.5           |                            |
| 102.2 - 101.9            | 2.5 – 0.5           | Minimo spessore (0.5 m)    |
| 101.9 – 101.3            | 0.5 - 9             |                            |
| 101.3 - 101.2            | 9 – 12.5            | Secondo depocentro (12.5m) |

Tabella 4.4: Spessore dell'Unità A lungo la rotta del Gasdotto TAP.

L'orizzonte H10 segna la base dell'Unità A. Questo riflettore è caratterizzato da un'ampiezza che varia tra moderata ed alta e da un'elevata continuità, ad una profondità che varia tra i 7 m bsb (20 ms bLAT) e 12 m bsb (140 ms bLAT) (Appendice I). Questo riflettore indica una superficie erosiva che potrebbe essersi formata durante l'ultimo abbassamento del livello del mare (Pleistocene).

## <u>Unità B (H10 - H20)</u>

L'Unità B può essere suddivisa in due sub-unità, B1 e B2, delimitate da una superficie di discontinuità, l'orizzonte H15.

La Subunità B1, delimitata dall'Orizzonte H10 alla sommità e dall'Orizzonte H15 alla base, è caratterizzata da un'ampiezza alta, riflettori discontinui e da una frequenza moderata.

L'orizzonte H15, base della Subunità B1, è caratterizzato da una media ampiezza ed un'elevata continuità. L'orizzonte H15 si trova ad una profondità che varia tra 10 m bsb (47 ms bLAT) ed 3 m bsb (105 ms bLAT), come si vede dalla Figura 4.12 e nelle carte (Appendice I).

La Subunità B2, delimitata dall'Orizzonte H15 al top e dall'Orizzonte H20 alla base, è caratterizzata da un'ampiezza medio-alta, una frequenza moderata e da riflettori piegati e fagliati.

Il sistema di pieghe e le principali faglie che interessano la Subunità B2 sono orientate NO-SE.

L'Unità B è composta da silt sabbioso calcareo mediamente denso, probabilmente risalente al Pleistocene superiore-medio. <u>(REF.7)</u>.

L'Orizzonte H20 è la base dell'Unità B, esso è caratterizzato da bassa ampiezza e frequenza e si trova ad una profondità che varia tra 34 m bsb (82 ms bLAT) ed 59 m bsb (197 ms bLAT).

## Unità C (H20 - fine del dato interpretabile)

Sotto l'Orizzonte H20, l'Unità C è caratterizzata da un'ampiezza da moderata a bassa, riflettori discontinui e bassa frequenza.

Questa unità è costituita probabilmete da sabbia e ghiaia calcarea e risale probabilmete al Pleistocene. (REF. 7).

Dal KP 102.4 al KP 101, l'Unità C è caratterizzata da riflettori caotici che probabilmete indicano la presenza di depositi di una paleo-frana. (Figura 4.10, Figura 4.11).

Alcuni esempi dei dati boomer sono mostrati nelle Figure 4.9 fino a Figura 4.16.





Figure 4.9 Esempio di dato boomer (Linea TAPMCL) – Centro linea TAPMCL\_BOM\_202.





Figura 4.10: Esempio di dato boomer (Linea TAPMCL) – Centro linea TAPMCL\_BOM\_202.





Figura 4.11: Esempio di dato boomer – Centro linea TAPMCL\_BOM\_202.





Figura 4.12: Esempio di dato boomer – Centro linea TAPMCL\_BOM\_202.



Figura 4.13:Esempio di dato boomer – Linea TAPM13\_BOM\_201 con tre sondaggi.







Figura 4.14: Esempio di dato boomer – Linea TAPM13\_BOM\_201 con il sondaggio TAP 2019-2019a.





Figura 4.15: Esempio di dato boomer – Linea TAPM11\_BOM\_201 e DTM.





Figura 4.16: Esempio di dato boomer – Centro linea TAPMCL\_BOM\_202 e DTM.



#### 4.4 RISCHI GEOLOGICI SUPERFICIALI E VINCOLI PER L'INSTALLAZIONE

#### 4.4.1 Rilievo delle Cavità

All'interno dell'area di indagine non è stata rilevata nessuna cavità.

#### 4.4.2 Fondale Bioturbato:

Dal KP 103.1 al KP 101.87 la rotta del Gasdotto TAP incrocia un campo di sedimenti bioturbati e biocostruzioni.

#### 4.4.3 Anomalie Sismiche

All'interno dell'area non sono state riconosciute anomalie sismiche.

#### 4.4.4 Fratture e Faglie

All'interno dell'Unità A non sono state riconosciute faglie.

Nell'Unità B è stata rilevato un sistema di pieghe e faglie orientato NO-SE, riconducibile alle deformazioni tettoniche regionali del Salento. Questo sistema tettonico è caratterizzato da faglie superificiali che interessano unità stratigrafiche relativamente sottili e sembrano associate a pieghe che deformano i depositi recenti. Questo sistema di faglie che si sviluppa lungo la piattaforma continentale del Mar Adriatico meridionale, coinvolge i deposi olocenici. Queste faglie mostrano spostamenti verticali ridotti, inferiori al metro all'interno delle unità Oloceniche (REF. 15).

#### 4.4.5 Oggetti/Ostacoli ed Infrastutture Preesistenti

Lungo la rotta del Gasdotto TAP non sono stati riconosciuti ostacoli.



## 5 DETTAGLI DELLA ROTTA DEL GASDOTTO

Le coordinate della rotta del Gasdotto TAP sono elencate nella Tabella 5.1.

| Tabella 5.1: Coor | dinate della | rotta del | Gasdotto |
|-------------------|--------------|-----------|----------|
|-------------------|--------------|-----------|----------|

| Coordinate della rotta del Gasdotto (TAP Central 05) |            |             |                 |                  |  |
|------------------------------------------------------|------------|-------------|-----------------|------------------|--|
| Punto                                                | Est [m]    | Nord [m]    | Latitudine [N]  | Longitudine [E]  |  |
| Albania LTE                                          | 363424.10  | 4517167.905 | 40%47'38.97104" | 19°22'52.022 27" |  |
| <b>TG</b> ' V.1                                      | 360055.384 | 4516919.810 | 40°47'28.88698" | 19°20'28.52890"  |  |
| V.1                                                  | 359052.238 | 4516919.810 | 40°47'28.26956" | 19°19'45.74194"  |  |
| TG"V.1                                               | 358296.377 | 4516182.280 | 40°47'03.89299" | 1999'14.10499"   |  |
| TG'V.2                                               | 341668.231 | 4501582.280 | 40°38'59.72194" | 1907'38.27372"   |  |
| V.2                                                  | 339615.680 | 4499780.496 | 40°37'59.89299" | 19°06'12.57566"  |  |
| TG"V.2                                               | 337059.617 | 4498817.550 | 40°37'26.87974" | 1904'24.72171"   |  |
| TG'V.3                                               | 334351.485 | 4497797.314 | 40°36'51.87254" | 1902'30.48434"   |  |
| V.3                                                  | 332498.795 | 4497099.350 | 40°36'27.90594" | 1901'12.35178"   |  |
| TG"V.3                                               | 330519.921 | 4497159.959 | 40°36'28.41872" | 1859'48.13482"   |  |
| TG'V.4                                               | 329500.554 | 4497191.181 | 4036'28.67615"  | 1859'04.75271"   |  |
| V.4                                                  | 328033.880 | 4497236.102 | 40°36'29.03861" | 1858'02.33 469"  |  |
| TG"V.4                                               | 326596.675 | 4496940.140 | 4036'18.36565"  | 1857'01.50780"   |  |
| TG'V.5                                               | 323961.341 | 4496397.449 | 4035'58.77226"  | 18°55'09.98670"  |  |
| V.5                                                  | 319684.434 | 4495516.711 | 4035'26.91108"  | 18°52'09.03954"  |  |
| TG"V.5                                               | 316548.511 | 4492478.024 | 40°33'45.94900" | 18°49'58.90117"  |  |
| TG'V.6                                               | 309660.798 | 4485803.880 | 40°30'04.06260" | 1845'13.44 737"  |  |
| V.6                                                  | 307483.920 | 4483694.501 | 40°28'53.89649" | 18º43'43.33761"  |  |
| TG"V.6                                               | 304658.777 | 4482595.936 | 40°28'15.92150" | 18º41'44.65576"  |  |
| TG'V.7                                               | 304462.721 | 4482519.699 | 40°28'13.28482" | 18º41'36.42087"  |  |
| V.7                                                  | 302109.956 | 4481604.820 | 40º27'41.63226" | 1839'57.61493"   |  |
| TG"V.7                                               | 299585.778 | 4481636.961 | 40°27'40.49645" | 1838'10.48805"   |  |
| TG'V.8                                               | 294807.256 | 4481697.808 | 40°27'38.27092" | 18°34'47.69284"  |  |
| V.8                                                  | 293054.157 | 4481720.131 | 40°27'37.42953" | 18°33'33.29535"  |  |
| TG"V.8                                               | 291748.038 | 4480550.555 | 40°26'58.35775" | 18°32'39.26772"  |  |
| TG'V.9                                               | 290838.822 | 4479736.389 | 40°26'31.15493" | 1832'01.66815"   |  |
| V.9                                                  | 289897.071 | 4478893.089 | 40°26'02.97548" | 1831'22.73226"   |  |
| TG"V.9                                               | 289532.230 | 4477682.742 | 40°25'23.42525" | 1831'08.70345"   |  |
| TG'V.10                                              | 289216.194 | 4476634.301 | 40°24'49.16538" | 18°30'56.55452"  |  |
| V.10                                                 | 288779.904 | 4475186.922 | 40°24'01.86885" | 18°30'39.78833"  |  |
| TG"V.10                                              | 287495.388 | 4474389.881 | 40°23'34.86700" | 1829'46.30436"   |  |
| TG'V.11                                              | 285429.668 | 4473108.104 | 40°22'51.42955" | 18°28'20.31798"  |  |
| V.11                                                 | 284405.194 | 4472472.419 | 40°22'29.88109" | 18°27'37.68519"  |  |
| TG"V.11                                              | 283783.035 | 4471439.675 | 40°21'55.83917" | 18º27'12.58791"  |  |
| TG'V.12                                              | 281803.532 | 4468153.825 | 40°20'07.51961" | 1825'52.78081"   |  |
| V.12                                                 | 281463.495 | 4467589.384 | 40°19'48.91089" | 1825'39.07896"   |  |
| TG"V.12                                              | 280918.212 | 4467219.405 | 40°19'36.40930" | 1825'16.44989"   |  |
| Italian LTE                                          | 277907.489 | 4465176.606 | 40°18'27.36051" | 18º23'11.55007"  |  |



### 6 IMBARCAZIONI E STRUMENTAZIONE

#### 6.1 Imbarcazioni utilizzate per il Rilievo

Le imbarcazioni usate dalla Fugro Oceansismica S.p.A per il rilievo geofisico sotto costa del Progetto TAP sono state RV ASTREA e MB VECTOR. Entrambe le imbarcazioni sono state utilizzate per 12 ore al giorno.

Le principali caratteristiche di queste imbarcazioni sono descritte nella Tabella 6.1 e nella Tabella 6.2.

#### Tabella 6.1: RV ASTREA - Caratteristiche dell'imbarcazione

| Тіро          | Passenger professional, pleasure |
|---------------|----------------------------------|
| Bandiera      | Italy                            |
| Gross Tonnage | 87.35                            |
| Lunghezza     | 23.78 m                          |
| Larghezza     | 5.90 m                           |
| Massimo draft | 2.86 m                           |

#### Tabella 6.2: MB - Caratteristiche dell'imbarcazione

| Тіро          | Fiberglass boat |
|---------------|-----------------|
| Bandiera      | Italy           |
| Lunghezza     | 5.5 m           |
| Larghezza     | 2.3 m           |
| Massimo Draft | ~1.75 m         |

Le liste della strumentazione mobilizzata a bordo dell'imbarcazione RV ASTREA e dell'imbarcazione MB VECTOR sono elencate nella Tabella 6.3 e nella Tabella 6.4.

#### 6.2 Strumentazione del Rilievo - RV Astrea

Tutta la strumentazione, concordata nello scopo del lavoro è stata installata a bordo dell'imbarcazione RV ASTREA.

La strumentazione utilizzata per effettuare l'indagine è elencata nella Tabella 6.3.



| Posizionamento       | RTK Leica GPS 1200 e Starfix 8200 HP con Fugro Starfix. Seis navigation suite                            |
|----------------------|----------------------------------------------------------------------------------------------------------|
| SBES                 | Odom Echotrac CV 200                                                                                     |
| Gyro compass and MRU | Anschutz Standard 22                                                                                     |
| MBES                 | Hull mounted Kongsberg EM 2040                                                                           |
| SBES                 | Odom Echotrac CV 200; sistema di acquisizione GLog/GPlot                                                 |
| MRU                  | Anschutz Standard 22                                                                                     |
| SSS                  | Edgetech 4200SF towel fish                                                                               |
| SBP                  | Datasonics 3710 Pole mounted 4 transceiver + Triton SB Logger                                            |
| USBL                 | Link Quest                                                                                               |
| Boomer               | Applied Acoustic Boomer + Applied Acoustic CSPUnit + Applied Acoustic<br>ministreamer + Triton SB Logger |
| SVP                  | CTD Sea – Bird Electronic SBE 911 plus                                                                   |
| Elaborazione Nav     | 1 PC with Starfix Suite 9.1 for Nav Proc                                                                 |
| Elaborazione MBES    | 1 PC with CARIS                                                                                          |

#### Tabella 6.3: RV ASTREA - Strumentazione

#### 6.2.1 Posizionamento

Il sistema di posizionamento primario utilizzato è stato Leica GPS 1200 dotato di una doppia frequenza, un sistema geodetico ed un ricevitore cinematico in tempo reale. Il secondo sistema di posizionamento utilizzato è stato HP STARFIX 8200.

I sistemi di posizionamento sono stati affidabili e conformi alle specifiche.

La posizione è stata inviata al software Starfix Versione 10.1 ed è stata registrata durante tutta la fase di acquisizione dei dati.

Durante l'acquisizione, il software Starfix Suite ha eseguito tutte le normali procedure per l'acquisizione della navigazione ed ha generato i fix, ogni 10 m. Inoltre è stato usato per controllare la qualità dei dati della navigazione.

#### 6.2.2 Heading

I valori di Heading sono stati forniti dal sensore Anschutz Standard 22, unità di riferimento interfacciata alla suite di navigazione.

#### 6.2.3 Ecoscandaglio (SBES)

L'imbarcazione RV ASTREA è stata dotata di un ecoscandaglio SBES Odom Hydrotrac, settato per lavorare con una frequenza di 200 kHz. Il sistema Starfix.Seis è stato configurato con la stessa frequenza che è stata registrata durante tutta il rilievo. I dati del SBES sono stati acquisiti lungo tutte le linee.



Il trasduttore dell'ecoscandaglio è stato montato sotto la chiglia della nave. La profondità del trasduttore (draft) è stata misurata ed è stata inserita nell'unità di registrazione dell'ecoscandaglio. E' stato misurato anche l'offset orizzontale del trasduttore dall'antenna di navigazione, ed il valore è stato inserito nel software di navigazione Starfix.Seis, il quale ha calcolato la vera posizione per ogni registrazione. La precisione del draft e dell'offset è stato controllato periodicamente.

L'ecoscandaglio è stato calibrato usando una velocità media del suono ottenuta dai profili CTD - Bird Electronic SBE 911 plus- eseguite durante il rilievo. Questi valori sono stati applicati durante tutta l'acquisizione, nell'area di indagine.

I dati batimetrici ottenuti dal SBES sono stati corretti con la profondità registrata digitalmete dal software di navigazione Starfix.Seis e sulle tracce dell'ecoscandaglio.

Ogni traccia è stata annotata all'inizio e alla fine di ogni rilievo con il nome, numero dei fix, tempo e dettagli rilevanti.

I principali parametri del SBES sono riportati qui sotto:

- Frequenza: 33-200 kHz
- Scala: 0-80 m
- Y Offset dal CRP: -1.670 m
- X Offset dal CRP: +0.710 m
- Z Offset dal CRP: -2.266 m

#### 6.2.4 Ecoscandaglio Multibeam (MBES)

La batimetria è stata acquisita usando l'ecoscandaglio multibeam Kongsberg EM 2040, che ha utilizzato una frequenza tra i 200-400 kHz. Questo sistema comprende 400 beams ed un angolo di apertura due volte superiore la profondità dell'acqua.

Durante la fase di elaborazione del dato MBES sono stati rimossi gli spikes, il rumore ed i gap, registrati durante la navigazione.

I parametri dell'ecoscandaglio MBES sono riportati qui sotto:

- Frequenza: 200 kHz to 400 kHz
- Beam: 1\*1<sup>0</sup> at 400kHz
- Max ping rate: 50 Hz
- Swath Coverage: 130°(single head) / 200°(dual he ad)
- Sounding patterns: Equiangulare, equidistantit e alta densità
- Numero of Beams: 400
- No of sounding per ping: 400 (singolo head, singolo swath), 800 (singolo head, doppio swath), 1600 (doppio head, doppio swath)
- Roll stabilized beams: +/- 15<sup>0</sup>
- Pich stabilized beams: +/- 10<sup>0</sup>
- Pulse length: 25 µs to 12 ms



- X Offset al CRP: -0.155 m
- Y Offset al CRP: +3.112 m
- Z Offset al CRP: -2.616 m

La calibrazione della velocità del suono è stata di primaria importanza sia per il SBES che per il MBES per fornire una sufficiente precisione. L'imbarcazione RV ASTREA è stata dotata di una sonda CTD-Bird elettronici SBE 911 plus- che ha misura la salinità, la temperatura e la profondità (pressione). I dati acquisiti dalla sonda CTD sono stati scaricati per mezzo di un software che ha calcolato la velocità del suono in acqua per ogni intervallo di profondità. Successivamente i profili di velocità sono stati inseriti nei sistemi di SBES e MBES per correggere il raggio di curvatura.

## 6.2.5 Compensazione per la Rotta ed il Movimento della Nave (MRU)

Anschutz Standard 22 è stato utilizzato come unità di riferimento per la compensazione del movimento primario. L'MRU è stato interfacciato al sistema di navigazione al fine di fornire precisi valori di roll, picth e heave e consentire la compensazione del movimento dei beams nei sistemi MBES e SBES.

L'MRU ha ottenuto le misure di movimento con un'elevata precisione ed affidabilità, utilizzando sensori a stato solido non in movimento e un dispositivo elettronico e meccanico collaudato.

#### 6.2.6 Profili della Velocità del Suono nell'Acqua (SVP)

Per calibrare il SBES ed il MBES sono stati effettuati quattro profili di velocità del suono in acqua, durante il rilievo geofisico usando il CTD Sea-Bird Electronic SBE 911 plus. Il corretto valore di velocità del suono in acqua è stato applicato al SBES ed al MBES per ottenere valori batimetrici precisi (Tabella 7.2).

I profili di velocità acustici si trovano nell'Appendice B.

#### 6.2.7 Side Scan Sonar

I caratteri morfologici del fondale marino sono stati acquisiti per mezzo del Discovery Side Scan Sonar, dotato di un towfish con doppia frequenza ed un'unità ricetrasmittente.

Il towfish del Side Scan Sonar è stato collegato alla poppa dell'imbarcazione. E' stato utilizzato l'algoritmo Starfix Variable Offset per il posizionamento del towfish. Per ottenere la massima precisione del posizionamento, nel sistema Starfix, sono stati inseriti le misure della lunghezza del cavo, la profondità dell'acqua ed i valori di altitudine.

#### SSS: dati tecnici

Per garantire la copertura del 100%, l'apertura del canale è stata settato a 25 m. La sovrapposizione delle linee è stata di 25 m. L'altezza consigliata per ottenere migliori risultati su un fondale regolare è stata il 10% dell'intervallo utilizzato.



In fase di acquisizione, le linee Side Scan Sonar sono state esaminate per controllare i target e la qualità del backscatter del fondale marino. Il SSS ha lavorato con una frequenza di 100/400 kHz.

Le caratteristiche tecniche e l'offset del Discovery Side Scan Sonar sono riportate qui sotto: (il punto di riferimento è il CRP).

- Frequenza: 100-400 kHz low/high frequency
- Range: 25 m
- Altitudine: about 10% of Range
- Cable out: 5-90 m
- X Offset dal CRP: 0.000 m
- Copertura
  100% of the entire route corridor

#### 6.2.8 Sub-Bottom Profiler

Il sub bottom profiler Datasonics 3710 è stato utilizzato per un'indagine di dettaglio della geologia superficiale. Il sistema di trasmissione è stato utilizzato con una frequenza di 3.5 kHz.

La strumentazione è stata montata su un palo a dritta dell'imbarcazione ed è stata configurata con il compensatore del moto Anschutz Standard 22.

La strumentazione SBP è stata collegata al sistema di acquisizione Glog/Gplot. Questo sistema digitale è stato utilizzato per tutto il rilievo. I dati SBP sono stati registrati in formato SEG-Y.

#### <u>SBP: dati tecnici</u>

Le caratteristiche tecniche del SBP sono riportate qui sotto:

- Trigger delay: variable
- Range: 250 ms
- Frequenza: 3.5 kHz
- Rate shot: 300 ms
- Y Offset dal CRP: -1.670 m
- X Offset dal CRP: +2.530
- Z Offset dal CRP: -2.630 m

#### 6.2.9 Boomer

Per l'acquisizione dei dati sismici monocanale superficiali è stata utilizzata una sorgente boomer. In generale il sistema è caratterizzato da una sorgente Applied Acoustic, un alimentatore Applied Acoustic CSP 1500 ed un ricevitore con 10 singoli canali. I parametri tecnici del sistema boomer utilizzato sono descritti qui sotto:

| • | Power      | 300 J  |
|---|------------|--------|
| • | Range      | 300 ms |
| • | Rate shot: | 700 ms |



- Delay
- 0 ms
- Filter Frequency: bassa 500 Hz
  - alta 2000 Hz

## 6.2.10 Campionamenti del Sedimento (Day Grab)

La strumentazione utilizzata, sull'imbarcazione RV ASTREA, per il campionamento del sedimento è costituita dal Day Grab e dal Double Day Grab, i quali sono stati montati sulla poppa della nave.

Sono state effettuate 20 stazioni durante il rilievo per un totale di 20 campionamenti.

In queste 20 stazioni sono state eseguite: un'analisi dei sedimenti (analisi macrospopica, granulometria e mineralogia), un'analisi chimica ed un'analisi microbiologica.

## 6.2.11 Fotocamera Sottomarina

La fotocamera sottomarina OE 14 208 è stata utilizzata per controllare la presenza di Poseidonia Oceanica nell'area d'indagine. La fotocamera è stata trainata a poppa dell'imbarcazione. La fotocamera è stata collegata ad un ombelicale KLevlar per permettere la gestione dello strumento, come il settaggio della velocità dell'otturatore, l'intensità del flash e la lunghezza focale fissa.

## 6.3 Strumentazione del Rilievo – MB Vector

Tutta la strumentazione, approvata nello scopo del lavoro, è stata installata a bordo dell'imbarcazione MB VECTOR.

La strumentazione utilizzata durante il rilievo è elencata nella Tabella 6.4

| Posizionamento | RTK Leica GPS1200 with Fugro Starfix.Seis navigation suite |  |  |
|----------------|------------------------------------------------------------|--|--|
| SBES           | Odom Echotrac CV 200                                       |  |  |

## 6.3.1 Posizionamento

Il sistema Leica GPS 1200, ricevitore cinematico in tempo reale è stato utilizzato come sistema di posizionamento a bordo dell'imbarcazione MB VECTOR. Questo sistema di posizionamento è stato gestito per mezzo del software Starfix.Seis.

Il sistema di navigazione è stato affidabile e conforme alle specifiche.

La posizione è stata inviata al software di navigazione Starfix.Seis version 10.1 ed è stato registrato durante le operazioni di acquisizione.



## 6.3.2 Ecoscandaglio (SBES)

Sull'imbarcazione MB VECTOR è stato montato l'ecoscangaglio SBES Odom Echotrac CV con una frequenza di 200 kHz. La frequenza è stata configurata nel software Starfix.Seis ed è stata registrata durante l'acquisizione. I dati di SBES sono stati acquisiti lungo tutte le linee.

Il trasduttore SBES è stato montato sul lato a dritta dell'imbarcazione. E' stata misurata la profondità (draft) del trasduttore in acqua. E' stato misurato l'offset orizzontale del trasduttore dall'antenna, ed il valore è stato inserito nel software Starfix.Seis, il quale ha calcolato la posizione reale. La precisione del draft e dell'offset è stata controllata periodicamente. L'ecoscandaglio è stato calibrato utilizzando una velocità media, derivante dalle velocità misurate con la sonda SVP durante il rilievo geofisico. Questa velocità è stata applicata a tutta l'area di indagine. I dati batimetrici sono stati corretti secondo l'heave e la profondità, che sono stati registrati digitalmente dal software di navigazione Starfix.Seis e sulle tracce dell'ecoscandaglio.

#### 6.4 Offsets della Strumentazione Analogica

Gli offset della strumentazione sono elencati nella Tabella 6.5. Gli offset orizzontali sono stati riferiti alla posizione del CRP. Gli offset verticali sono stati riferiti al livello del mare. Tutti gli offset della strumentazione sono stati misurati con Leica Total Station ed un punto di riferimento sulla banchina.

| RV ASTREA                     |                           |                     |                          |  |  |  |
|-------------------------------|---------------------------|---------------------|--------------------------|--|--|--|
| Descrizione                   | X [m] [+ve<br>Starboard]  | Y [m] [+ve Forward] | Z [m] [+ve<br>Downwards] |  |  |  |
| CRP (Central Reference Point) | 0.000 m                   | 0.000 m             | 0.000 m                  |  |  |  |
| MRU                           | 0.00m                     | 0.00m               | 0.0m0                    |  |  |  |
| RTK Leica GPS 1200 I NAV      | -0.230 m                  | 4.330 m             | 9.040 m                  |  |  |  |
| MBES-Kongsberg EM 2040        | -0.155 m                  | 3.112 m             | -2.616 m                 |  |  |  |
| SBES Odom Echotrac CV 200     | 0.710m                    | -1.670 m            | -2.266 m                 |  |  |  |
| Anschutz Standard 22 Gyro     | 0.610 m                   | 4.530 m             | 6.170 m                  |  |  |  |
| Side scan sonar (SSS)         | -0.950 m                  | -10.730             | VO Manual                |  |  |  |
| Sub-bottom profiler (SBP)     | 2.530 m                   | -1.670 m            | -2.630 m                 |  |  |  |
| Boomer                        | +1.200 m                  | -9.730 m            | 0.00 m                   |  |  |  |
| MB Vector                     |                           |                     |                          |  |  |  |
| Descrizione                   | X [m] [+ ve<br>Starboard] | Y [m] [+ve Forward] | Z [m] [+ve<br>Downwards] |  |  |  |
| RTK Leica 1200                | 0.000 m                   | 0.000 m             | 0.000 m                  |  |  |  |
| SBES Odom Hydrotrac           | 0.000 m                   | 0.000 m             | -2.3 m                   |  |  |  |
| GPS                           | -1.25 m                   | 0.430 m             | 0.000 m                  |  |  |  |

Tabella 6.5: Offsets della strumentazione riferita alla posizione del CRP

I diagrammi che mostrano la posizione della strumentazione analogica relativa al CRP (punto di riferimento centrale) e la disposizione delle apparecchiature all'interno dell'imbarcazione RV ASTREA sono illustrati nelle Figura 6.1 e Figura 6.2.



Figura 6.1: Offsets della strumentazione- RV ASTREA



Figura 6.2: Configurazione della strumentazione a bordo – RV ASTREA





#### 7 OPERAZIONI DEL RILIEVO

#### 7.1 Riassunto delle Operazioni:

Le imbarcazioni RV ASTREA e MB VECTOR sono state utilizzate dalla Fugro Oceansismica S.p.A. tra il 15 dicembre 2013 ed il 5 gennaio 2014 per eseguire il rilievo geofisico sotto costa, per la realizzazione del Gasdotto TAP.

Le operazioni di mobilitazione dell'imbarcazione RV ASTREA sono state eseguite tra il 16 ed il 18 dicembre 2013, mentre la mobilitazione dell'imbarcazione MB VECTOR è avvenuta il 24 dicembre 2013. Entrambe le imbarcazioni sono state mobilizzata nel porto di Otranto. Durante le operazioni di mobilitazione della strumentazione sono stati testati il sistema di acquisizione GPS/DGPS e la girobussola.

Il 21 dicembre, è stato calibrato l'ecoscandaglio MBES. Il rapporto completo della calibrazione del MBES si trova nell'Appendice B.

Il 22 dicembre l'imbarcazione RV ASTREA ha iniziato l'acquisizione dei dati geofisici analogici: SSS, SBP e boomer.

Il 24-25 dicembre l'imbarcazione MB VECTOR ha acquisito i dati batimetrici con l'ecoscandaglio SBES, nell'area di indagine tra i 2-4 metri di profondità.

Le operazioni di demobilitazione dell'imbarcazione VECTOR sono state eseguite il 25 dicembre 2013 nel porto di Otranto.

Le indagini geofisiche con l'imbarcazione RV ASTREA si sono concluse il 4 gennaio 2014

Le operazioni di demobilitazzione della parte geofisica e la mobilitazione della parte ambientale nell'imbarcazione RV ASTREA sono avvetute il 5 gennaio 2014 nel porto di Otranto.

Durante il rilievo sono state effettuate quattro misure dell'SVP al fine di verificare la velocità del suono nell'acqua.

Tutti i dettagli tecnici si trovano nei DPR (Appendice D).

#### 7.2 Calibrazioni

Il 20 dicembre sono state eseguite le seguenti calibrazioni e controlli nel porto di Otranto:

- Verifica del funzionamento del DGPS
- Verifica di un punto conosciuto del DGPS
- Rub test del Side scan sonar
- Test del Sub-bottom profiler



Il 21 dicembre, sono state eseguite le seguenti calibrazioni e controlli:

- Profilo SVP e CTD
- Calibrazione dell'ecoscandaglio MBES (i dettagli sono riportati nell'Appendice B)
- Acquisizione di una linea test e controllo del QC per confermare che l'acquisizione del dato era conforme alle richieste contenute nella scopo del lavoro.

#### 7.2.1 Posizionamento

I sistemi di posisionamento Leica1200 GPS RTK (sistema primario) e Fugro Starfix 8200HP (sistema secondario) sono stati utilizzati durante il rilievo.

Il 21 dicembre il personale Fugro ha eseguito, nel porto di Otranto, le operazioni di calibrazione e controllo del sistema di posizionamento, utilizzando il sistema LEICA total station e l'antenna Leica RTK montata a bordo dell'ASTREA.

Le differenze delle letture tra il caposaldo ed i dati registrati hanno mostrato una differenza assoluta di 0.02 m, il quale corrisponde all'errore del sistema RTK.

Le coordinate dei capisaldi e le stazioni di riferimento sono elencate nella Tabella 7.1

| Canicaldi | Coordinate geografiche WGS84 |                   | Coordinate metriche<br>WGS84 UTM 34 |           | Elevatione (m) |                |
|-----------|------------------------------|-------------------|-------------------------------------|-----------|----------------|----------------|
| Capisalui | Latitudine                   | Longitudine       | Nord                                | Est       | Ellipsoida     | Geodet<br>iche |
| SF01      | 40°18' 38.12165"             | 18°23' 33.58711"  | 4465493.1 1                         | 278437.52 | 39.16          | 0.57           |
| SF02      | 40°18' 50.98323"             | 18°23' 14.99961'' | 4465902.6 7                         | 278010.43 | 42.43          | 3.84           |
| SF03      | 40°19' 00.90719"             | 18°23' 04.65721"  | 4466215.9 1                         | 277775.33 | 42.51          | 3.92           |
| SF04      | 40°18' 46.49797"             | 18°23' 04.65721'' | 4465769.0 3                         | 277848.08 | 53.53          | 15.94          |
| SF05      | 40°18' 46.23936"             | 18°23' 08.22553'' | 4465763.9 1                         | 277847.36 | 48.720         |                |

Tabella 7.1: Coordinate dei capisaldi e stazioni di riferimento

I dettagli dei capisaldi di riferimento usati per la calibrazione della giro-bussola ed il posizionamento sono riportati nell'Appendice B.

Il confronto tra i valori dell' RTK, il sistema di posizionamento primario (Leica 1200 RTK) e quello secondario (Fugro Starfix HP 8200) sono riportati nell'Appendice B.

#### 7.2.2 Ecoscandaglio Multibeam (MBES)

La calibrazione dell'ecoscandaglio MBES è stata eseguito il 21 dicembre 2013. Le operazioni di calibrazioni sono state effettuate in un'area con una rottura di pendio, vicino all'area di indagine. I valori di calibrazione ottenuti sono elencati nella tabella seguente (Tabella 7.2).



| Data di<br>calibrazione | Motion Sensor        | Pitch Error ( °) | Roll Error ( °) | Heading Error ( °) |
|-------------------------|----------------------|------------------|-----------------|--------------------|
| 21/12/13                | Anschutz Standard 22 | -0.7             | -1.5            | -0.8               |

#### Tabella 7.2: Risultati della calibrazione del Multibeam EM 2040.

Le linee di calibrazione del MBES sono state effettuate in modo da compensare eventuali disallineamenti e ritardi dei processori durante l'installazione della testa del dispositivo. Le linee di calibrazione sono state progettate secondo una particolare geometria di acquisizione e su un fondale adeguato.

Per la calibrazione del tempo, del pich e del yaw sono state utilizzate delle linee percorse al di sopra di un target sul fondo marino (un canale, un rilievo ecc), mentre quelle utilizzate per consentire la calibrazione del roll sono state effettuate su un fondale piatto.

I valori di calibrazione sono stati calcolati dal software di acquisizione ed elaborazione Starfix Suite, usando le linee di calibrazione, ed utilizzati per settare in tempo reale il software di acquisizione prima dell'inizio del rilievo.

I risultati ottenuti sono descritti nell'Appendice B.

## 7.2.3 Misurazione della Velocità Acustica nell'Acqua

Durante il rilievo geofisico sono stati effettuati quattro profili di velocità acustica nell'acqua, che sono stati utilizzati per calibrare l'ecoscandaglio SBES ed il MBES. I risultati sono elencati nella Tabella 7.3.

| Nome         | Est [m] | Nord [m] | Latitudine [N] | Longitudine [E] | Max<br>profondità<br>dell'acqua [m] | Velocità<br>[m/s] |
|--------------|---------|----------|----------------|-----------------|-------------------------------------|-------------------|
| 211213_7.00  | 2800633 | 4465790  | 40°18' 49.30'' | 18°24' 42.00"   | 48.9                                | 1509.24           |
| 221213_7.00  | 279952  | 4466584  | 40°19' 14.90'' | 18°24' 36.33"   | 61.1                                | 1509.90           |
| 221213_15.00 | 281954  | 4468155  | 40°20' 07.72'' | 18°25' 59.19"   | 81.7                                | 1511.91           |
| 040114_7.30  | 281815  | 4468234  | 40°20' 10''    | 18°25' 53"      | 62                                  | 1512.65           |

Tabella 7.3: Dettagli sulle misurazioni della velocità acustica.

I dettagli dei profili delle velocita acustiche sono presenti nell'Appendice B.



#### 7.3 Elaborazione Dati

#### 7.3.1 Posizionamento e Navigazione

Tutti i dati raw DGPS sono stati elaborati per rimuovere gli errori. Durante l'acquisizione non è stato applicato nessuun filtro ai dati.

La posizione dell'antenna è stata corretta rispetto al CRP dell'imbarcazione secondo la misurazione degli offset.

Per l'acquisizione in tempo reale dei dati di navigazione e batimetrici (profondità dell'acqua) è stato utilizzato il sistema Starfix.Seis della Fugro.

L'elaborazione dei dati di navigazione è stata effettuata con il software Starfix Proc.

I dati sono stati processati utilizzando gli offset di tutti i sensori rispetto al veretical datum

I dati del sounding (profondità dell'acqua) sono stati elaborati utilizzando la posizione fornita dal trasduttore del SBES e del MBES (x, y e z).

#### 7.3.2 Batimetria

Durante le operazioni del rilievo i dati batimetrici sono stati ricondotti al LAT per effettuare una corretta interpretazione del fondale marino. Durante l'elaborazione del dato batimetrico a bordo, sono stati applicati i valori di marea predetta.

#### 7.3.3 Ecoscandaglio (SBES)

I dati dell'ecoscandaglio SBES sono stati elaborati ed esportati in formato XYZ, successivamente sono stati utilizzati per creare un grid e le linee batimetriche.

L'ecoscandaglio SBES è stato interfacciato con il sistema di navigazione, che ha calcolato la posizione di ciascun sounding usando i valori degli offset. I dati batimetrici sono stati monitorati e controllati rispetto alle informazioni bibliografiche per confermare l'esattezza del dato.

### 7.3.4 Ecoscandaglio Multibeam (MBES)

I dati batimetrici sono stati elaborati utilizzando i valori di marea predetta riferiti al LAT.

I dati MBES sono stati elaborati per mezzo del software Caris. Il processo di elaborazione è riportato nell'Appendice G

#### 7.3.5 Side Scan Sonar

I dati SSS sono stati registrati in formato digitale .XTF, all'interno di un hard disk utilizzando il software di acquisizione Discovery.



I dati XTF sono stati elaborati con il software Sonar Wiz 5 dove è stato effettuato il controllo della qualità di ogni linea acquisita. Allo stesso tempo i dati sono stati analizzati per controllare la copertura del dato.

In ogni linea è stato corretto lo slante range prima dell'interpretazione, e i caratteri morfologici riconosciuti sono stati mappati nelle carte (Asppendice I).

I dati del SSS sono stati accuratamente esaminati per l'individuazione dei target e per la determinazione della natura del sedimento del fondale marino. L'interpretazione è stata effetuata attraverso l'analisi delle facies acustiche.

## 7.3.6 Dati Sub-Bottom Profiler (SBP) e Boomer

I dati sono stati registrati nel formato digitale .seg-y.

I dati SBP e Boomer sono stati controllati esaminando gli orizzonti più significativi. Per una corretta interpretazione dei dati SBP e Boomer, la profondità espressa in tempi doppi è stata convertita in metri assumendo una velocità del suono all'interno dei sedimenti di 1600 m/s (considerato valore ragionevole per i tipi di sedimenti interpretati). Tutti i dati sono stati interpretati utilizzando il software Kingdom-32 (Versione 8.6 – Seismic Micro Technology).

#### 7.4 Precisione della Navigazione, della Batimetria e dei Dati Morfologici del Fondale

#### 7.4.1 Posizionamento e Navigazione

I sistemi di posizionamento RTK e Starfix.HP sono risultati affidabili durante il rilievo. In generale, il numero di satelli disponibili può influenzare la precisione dei dati, la quantità minima è di 4 satelliti.La precisione dell'RTK Leica GPS 1200 (Sistema primario) è >0.02 m e per lo Starfix 8200HP (Sistema secondario) è >0.2 m.

#### 7.4.2 Batimetria

Con l'ecoscandaglio SBES e l'ecoscandaglio MBES sono stati acquisiti dei buoni dati lungo tutto il rilievo, anche se numerosi fattori hanno influenzano la qualità dei dati batimetrici. In generale, gli errori di profondità possono dipendere da:

- Variazione della velocità del suono
- Condizioni climatiche
- Precisione dello strumento (0.2% of depth)
- Movimento dell'imbarcazione
- Morfologia del fondale marino

Ulteriori dettagli sul mareografo e la calibrazione sono riportati in Appendice B.

Durante l'elaborazione, i dati batimetrici sono stati ricondotti al LAT, per garantire una corretta interpretazione dei dati.



I dati SBES e MBES sono stati elaborati ed esportati in formato XYZ per permettere la creazione del grid e delle linee batimetriche.

#### 7.4.3 Side Scan Sonar

La qualità dei dati di Side Scan Sonar è buona. La frequenza utilizzata è stata di 300 kHz. La risoluzione laterale del dato è circa di 0.2-0.3 m. Gli oggetti inferiori a questo valore non possono essere rilevati.

L'altezza degli oggetti rilevati sul fondale marino, ha una precisione di 0.2-0.3 m. La precisione della posizione degli elementi morfologici, riconosciuti dal SSS, dipende dalla combinazione della posizione dell'imbarcazione e della posizione acustica del towfish relativo alla nave. Per tutti questi fattori la precisione della posizione è stimata di  $\pm 5$  m.

#### 7.5 Precisione dei Dati Morfologici del Fondale Marino

#### 7.5.1 Precisione Orizzontale

La precisione della posizione dei dati morfologici del fondale marino dipende da alcuni fattori:

- Precisione del posizionemneto dell'imbarcazione
- Movimento dell'imbarcazione
- Precisione della posizione della strumentazione del tow fish
- Precisione orizzontale dei dati sismici

In generale la riflessione del dato sismico è prodotta da una zona e non da un punto. Questa area è chiamata Zona di Fresnel. Il raggio della zona di Fresnel può essere calcolato dalla frequenza dei dati sismici e fornisce una stima della precisione orizzontale dei dati sismici a diverse profondità.

La distanza minima tra le linee è di circa 5 m lungo la direzione principale di navigazione è di circa 50 m per le linee trasversali. I caratteri morfologici più piccoli di questi valori, o che si trovano tra le linee non possono essere rilevati. Le profondità e la posizione degli strati tra le linee sismiche sono state interpolate, e la loro affidabilità dipende dalla complessità geologica.

Le profondità sotto il fondale marino sono state stimate assumendo una velocità acustica di 1600 m/s, ragionevole per i tipi di sedimenti presenti. La precisione della profondità dipende dalla risoluzione verticale dei dati e dalla velocità acustica utilizzata per convertire i tempi doppi in profondità, questo è di circa ±1% della profondità sotto il fodale marino.



#### 7.5.2 Precisione Verticale

#### Sub-Bottom profiler

Lungo l'area di indagine è stata ottenuta una penetrazione acustica di circa 5 m (6 ms) sotto il fondale marino. La risoluzione verticale è stata stimata circa 0.5 m, gli strati più sottili di questo valore non possono essere rilevati.

#### <u>Boomer</u>

La penetrazione dei dati boomer arriva fino a circa 36 m (45 ms) sotto il fondale marino. La risoluzione verticale dei dati boomer è di circa 1.5 m, gli strati più sottili di questo valore non possono essere rilevati.

**FUGRO** 

## 8 INDICE DEI DATI

8.1 Consegna del Rapporto in Formato Digitale



## 8.2 Indice delle Carte

| Drawing No.                           | Description                                         | KP Range      | Scale  |
|---------------------------------------|-----------------------------------------------------|---------------|--------|
| OPL00-FOC-150-Y-DYG-0003-01<br>rev.0A | Carta Bati-morfologica                              | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0004-01<br>rev.0A | Hill shade con lineamenti morfologici               | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0005-01<br>rev.0A | Backscatter con lineamenti<br>morfologici           | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0006-01<br>rev.0A | Morfologia con Mosaico Side Scan<br>Sonar           | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0007-01<br>rev.0A | Isopaca dell'unità A (Dati Boomer )                 | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0007-02<br>rev.0A | Profondità della base dell'unità B<br>(Dati Boomer) | 104.92-99.54  | 1:5000 |
| OPL00-FOC-150-Y-DYG-0008-01<br>rev.0A | Profilo sismico interpretato<br>(Dati boomer)       | 103.90-100.14 | 1:5000 |
| OPL00-FOC-150-Y-DYG-0009-01<br>rev.0A | Tavola A                                            | 104.24-102.28 | 1:5000 |
| OPL00-FOC-150-Y-DYG-0009-02<br>rev.0A | Tavola B                                            | 102.66-100.27 | 1:5000 |



## 8.3 Indice della Lista dei Target

Non sono stati riconosciuti anomalie magnetiche e oggetti antropici all'interno dell'area di indagine.



APPENDICI



A. PARAMETRI GEODETICI



## B. CALIBRAZIONI



C. FOGLI DI REGISTRO



D. RAPPORTI QUOTIDIANI



## E. SCHEDE TECNICHE DELLE IMBARCAZIONI



## F. DETTAGLI DELLA STRUMENTAZIONE



## G. ELABORAZIONE DELL'ECOSCANDAGLIO MULTIBEAM (MBES)



H. GARANZIA

I. CARTE