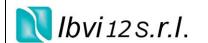
REGIONE: SICILIA

PROVINCIA: CATANIA, ENNA

COMUNI: PIAZZA ARMERINA, CALTAGIRONE, SAN MICHELE GANZARIA E MIRABELLA IMBACCARI


ELABORATO:

OGGETTO:

105.23.01. R.01 IMPIANTO FOTOVOLTAICO
DA 120 MWp

PROGETTO DEFINITIVO

PROPONENTE:

IBVI 12 srl

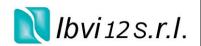
Viale Amedeo Duca d'Aosta 76 39100 Bolzano (BZ) Ibvi12srl@pec.it

PROGETTO DEFINITIVO

3E Ingegneria S.r.l. Via G. Volpe n.92 – cap 56121 – Pisa (PI)

3eingegneria@pec.it www.3eingegneria.it info@3eingegneria.it

Cavidotti AT 36kV Relazione Tecnico Descrittiva



N	\sim	٠	Δ	į
1 1	v	L	ᆫ	į

DATA	REV	DESCRIZIONE	ELABORATO da:	APPROVATO da:
Gennaio 2024	0	Prima emissione	3E Ingegneria Srl	IBVI12

PROPRIETÀ ESCLUSIVA DELLE SOCIETÀ SOPRA INDICATE, UTILIZZO E DUPLICAZIONE VIETATE SENZA AUTORIZZAZIONE SCRITTA

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

SOMMARIO

1	Ρ.	KEMESSA	3
2	0	GGETTO E SCOPO	4
3		ORMATIVA DI RIFERIMENTO	
4		ROGETTO DELL'ELETTRODOTTO	
~	4.1	Generalità	
	4.1	Descrizione del tracciato del cavo	
	4.2		
		2.2 Opere attraversate	
	4.3	Caratteristiche tecniche dell'elettrodotto in progetto	11
	4.4	Dimensionamento del cavidotto	
		-1 Caratteristiche tecniche della linea	
5	C	ONDIZIONI DI POSA ED INSTALLAZIONE	14
	5.1	Premessa	14
	5.2	Cavi	14
	5.3	Modalità di posa	14
	5.4	Giunti e connettori	10
	5.5	Terminali e capocorda	18
	5.6	Canalizzazioni	18
	5.7	Protezione e segnalazione dei CAVI	18
	5.8	Fibre ottiche	18
	5.9	Coesistenza tra cavi elettrici ed altre condutture interrate	19
	5.10	Controlli e verifiche	23
6	R	EALIZZAZIONE DELLA LINEA ELETTRICA IN CAVO INTERRATO	24
	6.1	Fasi di costruzione	
	6.1	.1 Realizzazione delle infrastrutture temporanee di cantiere per la posa del cavo	24
	6.1	1	
	6.1	2 004 441 0	
	6.1 6.1	1 1	
	6.1		
	6.1		

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

1 PREMESSA

Il presente documento fornisce la descrizione generale del progetto definitivo del collegamento in cavo a 36 kV tra le cabine di raccolta, situate all'interno dell'impianto fotovoltaico, e l'edificio di utente a 36 kV dell'impianto fotovoltaico "Mirabella".

Il collegamento alla Rete di Trasmissione Nazionale (RTN) avverrà sfruttando la soluzione, prevista dal Gestore della RTN Terna S.p.A., di allacciamento alla rete tramite un collegamento avente un livello di tensione pari a 36 kV. Per tale tipologia di connessione è richiesto che l'utente convogli l'energia prodotta dai propri impianti ad un edificio di sua proprietà che sarà a sua volta collegato, tramite connessione a 36 kV, ad una nuova stazione elettrica di smistamento della RTN di proprietà del Gestore. In tale stazione avverrà la trasformazione ad un livello di tensione compatibile con la rete di trasmissione. La nuova stazione elettrica della RTN, sarà composta da due livelli di tensione: 36, 150 kV.

La stazione RTN sarà ubicata nel Comune di Belpasso (CT), a circa 5 km a nord del centro abitato di Caltagirone.

L'edificio utente sarà ubicato su terreno agricolo adiacente alla strada provinciale "SP37i". Da esso partiranno tre terne di cavi unipolari a 36 kV interrati, che convoglieranno l'energia prodotta dai campi fotovoltaici all'edificio 36 kV della stazione RTN.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	3	29

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

2 OGGETTO E SCOPO

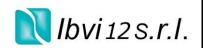
Scopo del documento è quello di descrivere le caratteristiche tecniche e progettuali del cavidotto a 36 kV, dagli impianti del produttore fino all'edificio utente e da questo alla stazione RTN, al fine del rilascio delle autorizzazioni previste dalla legislazione vigente.

Nel seguito si definiscono le scelte tecniche di base per la realizzazione dell'opera in oggetto, comprendenti essenzialmente il tracciato ed il dimensionamento dei cavi tra i due punti terminali. Vengono, altresì, descritte le modalità di protezione e di installazione dei suddetti cavi.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	4	29

Novi 12 s.r.l.

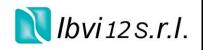
OGGETTO / SUBJECT


CLIENTE / CUSTOMER

3 NORMATIVA DI RIFERIMENTO

- CEI 0-2 Guida per la definizione della documentazione di progetto degli impianti elettrici
- CEI 0-16 Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica
- CEI 11-27 Lavori su impianti elettrici
- CEI 11-1 Impianti elettrici con tensione superiore a 1 kV in corrente alternata
- CEI 11-17 Impianti di produzione, trasmissione e distribuzione di energia elettrica –
 Linee in cavo
- CEI 11-20 + V1 e V2 Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria
- CEI EN 50110-1 CEI (11-48) Esercizio degli impianti elettrici
- CEI EN 50160 CEI (8-9) Caratteristiche della tensione fornita dalle reti pubbliche di distribuzione dell'energia elettrica
- CEI 20-13 Cavi con isolamento estruso in gomma per tensioni nominali da 1 a 30 kV
- Norma CEI 0-14 "Guida all'applicazione del DPR 462/01 relativa alla semplificazione del procedimento per la denuncia di installazioni e dispositivi di protezione contro le scariche atmosferiche, di dispositivi di messa a terra degli impianti elettrici e di impianti elettrici pericolosi"
- Norma CEI 11-4 "Esecuzione delle linee elettriche aeree esterne"
- Norma CEI 11-32 "Impianti di produzione di energia elettrica connessi a sistemi di III categoria"
- Norma CEI 11-46 "Strutture sotterranee polifunzionali per la coesistenza di servizi a rete diversi – Progettazione, costruzione, gestione ed utilizzo – Criteri generali di posa"
- Norma CEI 11-47 "Impianti tecnologici sotterranei Criteri generali di posa"
- Norma CEI 11-61 "Guida all'inserimento ambientale delle linee aeree esterne e delle stazioni elettriche"
- Norma CEI 11-62 "Stazioni del cliente finale allacciate a reti di terza categoria"
- Norma CEI 11-63 "Cabine Primarie"
- Norma CEI 64-8 "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e a 1500 V in corrente continua"

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	5	29


OGGETTO / SUBJECT

CLIENTE / CUSTOMER

- Norma CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di quasto"
- Norma CEI EN 50086 2-4 "Sistemi di tubi ed accessori per installazioni elettriche Parte
 2-4: Prescrizioni particolari per sistemi di tubi interrati"
- Decreto Legislativo 9 Aprile 2008 n. 81 "Attuazione dell'articolo 1 della legge 3 agosto 2007, n. 123, in materia di tutela della salute e della sicurezza nei luoghi di lavoro"
- D.P.R. 22 Ottobre 2001 n. 462 "Regolamento di semplificazione del procedimento per la denuncia di installazioni e dispositivi di protezione contro le scariche atmosferiche, di dispositivi di messa a terra di impianti elettrici e di impianti elettrici pericolosi"
- Decreto Legislativo 1 agosto 2003 n. 259 "Codice delle comunicazioni elettroniche"
- D.M. 12 Settembre 1959 "Attribuzione dei compiti e determinazione delle modalità e delle documentazioni relative all'esercizio delle verifiche e dei controlli previste dalle norme di prevenzione degli infortuni sul lavoro"
- Testo Unico di Leggi sulle Acque e sugli Impianti Elettrici (R.D. n. 1775 del 11/12/1933);
- Norme per l'esecuzione delle linee aeree esterne (R.D. n. 1969 del 25/11/1940) e successivi aggiornamenti (D.P.R. n. 1062 del 21/6/1968 e D.M. n. 449 del 21/3/1988);
- "Approvazione delle norme tecniche per la progettazione l'esecuzione e l'esercizio delle linee aeree esterne" (D.M. n. 449 del 21/03/1988);
- "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne" (D.M. 16/01/1991) e successivi aggiornamenti (D.M. 05/08/1998);
- Codice Civile (relativamente alla stipula degli atti di costituzione di servitù);
- "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz)" (D.P.C.M del 8/07/2003);
- "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8" (D.M. 24.11.1984 e s.m.i.);
- Codice della strada (D.Lgs. n. 285/92) e successive modificazioni;

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	6	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

 Leggi regionali e regolamenti locali in materia di rilascio delle autorizzazioni alla costruzione degli elettrodotti, qualora presenti ed in vigore.

I riferimenti di cui sopra possono non essere esaustivi. Ulteriori disposizioni di legge, norme e deliberazioni in materia, anche se non espressamente richiamati, si considerano applicabili.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	7	29

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

4 PROGETTO DELL'ELETTRODOTTO

4.1 Generalità

Il tracciato è stato studiato in armonia con quanto dettato dall'art.121 del T.U. 11-12-1933 n.1775, comparando le esigenze di pubblica utilità dell'opera con gli interessi sia pubblici che privati.

Nella definizione dell'opera sono stati adottati i seguenti criteri progettuali:

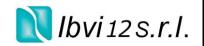
- contenere per quanto possibile la lunghezza del tracciato sia per occupare la minor porzione possibile di territorio, sia per non superare certi limiti di convenienza tecnico economica;
- mantenere il tracciato del cavo il più possibile all'interno delle strade esistenti, soprattutto in corrispondenza dell'attraversamento di nuclei e centri abitati (ove presenti), tenendo conto di eventuali trasformazioni ed espansioni urbane future;
- evitare per quanto possibile di interessare case sparse e isolate, rispettando le distanze minime prescritte dalla normativa vigente;
- minimizzare l'interferenza con le eventuali zone di pregio naturalistico, paesaggistico e archeologico;

Inoltre, per quanto riguarda l'esposizione ai campi magnetici, in linea con il dettato dell'art. 4 del DPCM 08-07-2003 di cui alla Legge. n° 36 del 22/02/2001, i tracciati sono stati progettati tenendo conto dell'obiettivo di qualità di $3 \mu T$.

4.2 Descrizione del tracciato del cavo

L'elettrodotto in oggetto avrà una lunghezza complessiva di circa 17,52 km (da intendersi come lunghezza complessiva delle terne di cavi a 36 kV) sul territorio comunale di Caltagirone e San Michele di Ganzaria in provincia di Catania (CT). Sarà realizzato in cavo interrato con tensione nominale di 36 kV e collegherà l'impianto fotovoltaico in oggetto con l'edificio di raccolta a 36 kV di utenza e quest'ultimo alla stazione RTN.

L'impianto in oggetto è suddiviso in n. 2 campi, denominati:


- MIRABELLA A
- MIRABELLA B

Per l'ubicazione geografica di tali campi si veda la planimetria su CTR allegata.

Il tracciato, in partenza dalla cabina di raccolta del campo **MIRABELLA 1** ubicato a circa 2,3 km EST della SP37I, percorre per circa 1385 m in direzione ovest lungo la viabilità agricola che costeggia i campi del campo MIRABELLA 1, per poi percorre 900m su strada asfalta e

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	8	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

successivamente percorre per circa 500 m la strada SP37I per poi percorre circa 500m di strada agricola in direzione sud per attestarsi alla cabina di impianto. Il tracciato, in partenza dalla cabina di raccolta del campo **MIRABELLA 2** percorre 1100m in direzione sud su viabilità agricola, per poi percorrere circa 1300m in direzione est, per poi svoltare su strada agricola in direzione nord est fino ad attestarsi alla cabina di impianto.

Dalla cabina di impianto dopo un breve tratto su viabilità agricola il cavidotto si immetterà sulla SP37/I che percorrerà in direzione sud per circa 2760m, per poi immettersi su una strada adiacente alla provinciale che percorrerà in direzione est per circa 2225m, infine percorrerà su viabilità agricola un tratto di circa 700m fino ad arrivare alla nuova stazione elettrica.

Il tracciato sarà sia su strade asfaltate che sterrate.

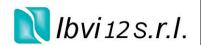
4.2.1 Comuni interessati

Il tracciato interesserà i comuni di:

- San Michele di Ganzaria
- Mirabella Imbaccari
- Caltagirone

Entrambi nella provincia di Catania (CT).

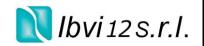
Piazza Armerina


Entrambi nella provincia di Enna (EN).

4.2.2 Opere attraversate

Il cavidotto in oggetto attraversa le seguenti opere. La localizzazione delle opere è riportata nella corografia allegata.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	9	29


OGGETTO / SUBJECT

CLIENTE / CUSTOMER

NUM ATTRAVERSAMENTO	DESCRIZIONE OPERA ATTRAVERSATA	ENTE INTERESSATO
	COMUNE DI MIRABELLA IMBACCAR	
1	Linea BT	e-distribuzione
2	Aquedotto	Comune di Mirabella Imbaccari
3	Linea MT	e-distribuzione
4	Strada Provinciale 37/1	ANAS S.P.A.
	COMUNE DI CALTAGIRONE	
5	Linea MT	e-distribuzione
6	Linea MT	e-distribuzione
7	Linea BT	e-distribuzione
8	Linea MT	e-distribuzione
	COMUNE DI SAN MICHELE DI GANZA	RIA
9	Fiume del Tempio	Autorità di Bacino
10	Aquedotto	Comune di San Michele di Ganzaria
11	Aquedotto	Comune di San Michele di Ganzaria
12	Linea BT	e-distribuzione
13	Fiume del Tempio	Autorità di Bacino
	COMUNE DI CALTAGIRONE	
14	Linea BT	e-distribuzione
15	Fiume del Tempio	Autorità di Bacino
	COMUNE DI SAN MICHELE DI GANZAI	RIA
16	Aquedotto	Comune di San Michele di Ganzaria
17	Linea BT	e-distribuzione
18	Linea BT	e-distribuzione
19	Linea BT	e-distribuzione
20	Linea MT	e-distribuzione
21	Linea BT	e-distribuzione
22	Aquedotto	Comune di San Michele di Ganzaria
23	Linea BT	e-distribuzione
	COMUNE DI CALTAGIRONE	
24	Linea MT	e-distribuzione
25	Linea BT	e-distribuzione
26	STRADA PROVINCIALE 37/2	Provincia di Catania

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	10	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

4.3 Caratteristiche tecniche dell'elettrodotto in progetto

L'elettrodotto in oggetto costituisce l'elemento di collegamento tra le cabine di raccolta, situate all'interno del perimetro dei campi fotovoltaici e l'edificio di raccolta utente. Vi sarà inoltre un collegamento tra l'edificio utente e l'edificio a 36 kV ubicato nella stazione RTN stessa. All'interno della stazione RTN la tensione sarà innalzata da 36 kV a 150 kV per poi essere smistata alla Rete di Trasmissione Nazionale.

Per il collegamento al quadro dell'edificio utente, è prevista la partenza delle seguenti terne di cavi posati a trifoglio, con conduttore in rame:

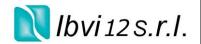
Collegamento	Formazione	Lunghezza (km)	I _b (A)	I _z (A)
Mirabella 1 - Edificio utente 36 kV	2x(3x1x400)	3,300	684	862 (*)
Mirabella 1 - Edificio utente 36 kV	2x(3x1x630)	5,140	1026	1123 (*)
Edificio utente 36 kV - SE RTN	4x(3x1x630)	5570	1711	1857 (**)

- (*) Portata ridotta per la presenza di due terne nello stesso scavo
- (**) Portata ridotta per la presenza di quattro terne nello stesso scavo

Dove I_b è la corrente di impiego e I_z la portata del cavo opportunamente ridotta per tener conto delle condizioni di posa, nel caso di presenza di più cavi nello stesso scavo, e di opportuni coefficienti di sicurezza.

La corrente massima che può interessare la linea di collegamento a 36 kV per l'impianto in oggetto è la seguente:

$$I_n = 1711 A$$

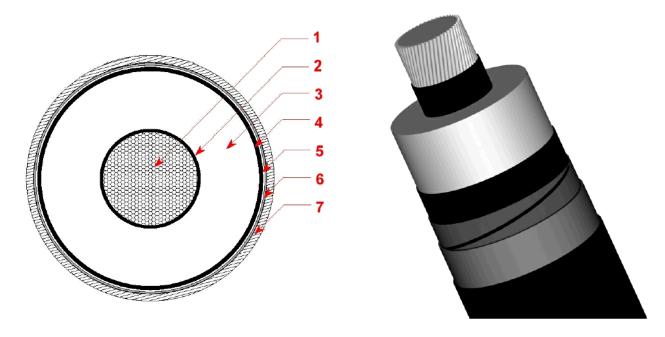

Calcolata con al seguente formula:

$$In = \frac{P_{max}}{\sqrt{3} \, V_n \cos \varphi}$$

Dove $\cos\varphi=0.9$ e la potenza elettrica in immissione è stata considerata la potenza totale dell'impianto lato a.c., circa 96 MWac. E poiché il cavo avente la sezione massima disponibile (630 mm²) ha una portata inferiore a tale valore, sarà necessario l'utilizzo di quattro terne di cavi da 630 mm² in parallelo.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	11	29

OGGETTO / SUBJECT

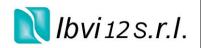

CLIENTE / CUSTOMER

4.4 Dimensionamento del cavidotto

La linea sarà realizzata interamente in cavo interrato, in modo da ridurre al minimo l'impatto ambientale.

4.4.1 Caratteristiche tecniche della linea

Ciascun cavo d'energia a 36 kV sarà costituito da un conduttore in alluminio compatto di sezione pari a 630 mm2 tamponato (1), schermo semiconduttivo sul conduttore (2), isolamento in politenereticolato (XLPE) (3), schermo semiconduttivo sull'isolamento (4), nastri in materiale igroespandente (5), guaina in alluminio longitudinalmente saldata (6), rivestimento in politene con grafitatura esterna (7).



1	Conduttore compatto di Alluminio
2	Schermo del conduttore (Strato semiconduttivo interno)
3	Isolante
4	Schermo dell'isolante (Strato semiconduttivo esterno)
5	Barriera igroscopica
6	Schermo metallico
7	Guaina esterna termoplastica

Schema tipico del cavo

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	12	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

DATI TECNICI DEL CAVO

Tipo di conduttore	Unipolare in XLPE (polietilene reticolato)			
Sezione	630 mm ²			
Materiale del conduttore	Corde di alluminio compatta			
Schermo semiconduttore interno	A base di polietilene drogato			
Materiale isolamento	Polietilene reticolato			
Schermo semiconduttore esterno (sull'isolante)	A base di polietilene drogato			
Materiale della guaina metallica	Rame corrugato			
Materiale della blindatura in guaina anticorrosiva	Polietilene, con grafite refrigerante (opzionale)			
Materiale della guaina esterna	Polietilene			
Tensione di isolamento	170 kV			

Tali dati potranno subire adattamenti comunque non essenziali dovuti alla successiva fase di progettazione esecutiva e di cantierizzazione, anche in funzione delle soluzioni tecnologiche adottate dai fornitori e/o appaltatori.

DATI CONDIZIONI DI POSA E DI INSTALLAZIONE

Posa	Interrata in letto di sabbia a bassa resistività termica			
Messa a terra degli schermi	"Cross bonding" o "single point bonding"			
Profondità di posa del cavo	Minimo 1,70 m			
Formazione	Una terna a trifoglio			
Tipologia di riempimento	Con sabbia a bassa resistività termica o letto di cemento magro h 0,50 m			
Profondità del riempimento	Minimo 1,10 m			
Copertura con piastre di protezione in C.A. (solo per riempimento con sabbia)	Spessore minimo 5 cm			
Tipologia di riempimento fino a piano terra	Terra di riporto adeguatamente selezionata			
Posa di nastro monitore in PVC – profondità	1,00 m circa			

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	13	29

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

5 CONDIZIONI DI POSA ED INSTALLAZIONE

5.1 Premessa

La linea elettrica interrata a tensione 36 kV dovrà rispondere alle caratteristiche di norma per quanto riguarda le caratteristiche dei materiali utilizzati nonché la modalità di costruzione dei cavidotti e di posa dei cavi elettrici.

5.2 Cavi

Il cavo a 36 kV avrà le seguenti caratteristiche:

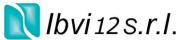
Codice cavo: A2XS(FL)2Y 26/45, in alluminio

Formazione e sezione: 4x(1x630) mm²

5.3 Modalità di posa

L'elettrodotto in oggetto, come in precedenza specificato, è composto da linee in cavo interrato. Facendo riferimento alla tabella riportata al paragrafo 4.3:

- due terne da 400 mm² dalla cabina di raccolta del campo Mirabella 1 all'edificio di raccolta utente a 36 kV;
- due terne da 630 mm² dalla cabina di raccolta del campo Mirabella 2 all'edificio di raccolta utente a 36 kV;
- quattro terne da 630 mm² dall'edificio di raccolta utente alla **stazione RTN**.


Le linee saranno posate all'interno di uno scavo opportunamente dimensionato.

La profondità minima di posa dei tubi, deve essere tale da garantire almeno 1 m, misurato dall'estradosso superiore del tubo.

Vedi figure sezioni tipiche di posa riportate sotto per scavi su sterrato e su strade asfaltate.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	14	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

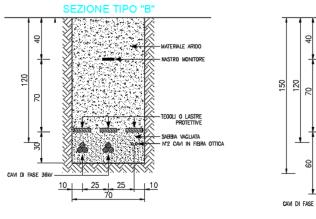


Figura 1: Sezione tipica di posa della linea in cavo su strade sterrate

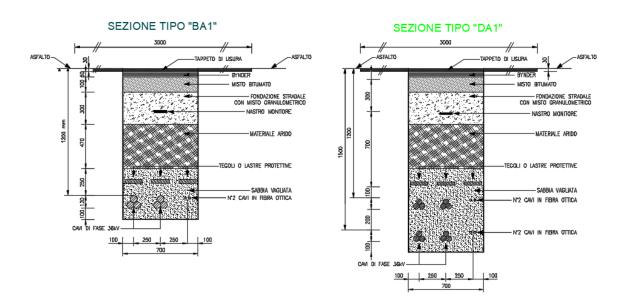
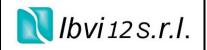



Figura 2: Sezione tipica di posa della linea in cavo su sede stradale

I cavi saranno interrati ed installati normalmente in una trincea della profondità di 1,4 m, con disposizione delle fasi a trifoglio e configurazione degli schermi cross bonded.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	15	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

Tutti i cavi verranno alloggiati in terreno di riporto, la cui resistività termica, se necessario, verrà corretta con una miscela di sabbia vagliata.

La restante parte della trincea verrà ulteriormente riempita con materiale di risulta e di riporto.

Altre soluzioni particolari, quali l'alloggiamento dei cavi in cunicoli prefabbricati o gettati in opera od in tubazioni di PVC della serie pesante o di ferro, potranno essere adottate per attraversamenti specifici.

Gli attraversamenti delle opere interferenti saranno eseguiti in accordo a quanto previsto dalla Norma CEI 11-17.

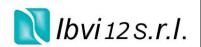
Per evitare danneggiamenti meccanici sul cavo, durante la posa, si dovrà tenere conto dello sforzo massimo del cavo e del raggio di curvatura minimo (0,9 m).

In caso di presenza di acqua occorrerà prestare particolare attenzione per evitare che possa entrare acqua o umidità alle estremità dei cavi: dovrà essere effettuata la spelatura del cavo per 30cm, la sigillatura mediante coni di fissaggio in corrispondenza dell'inizio dell'isolante e la sigillatura mediante calotte termo-restringenti in caso di interramento del cavo prima della realizzazione di giunzioni o terminazioni.

5.4 Giunti e connettori

I giunti servono a collegare tra loro due pezzature contigue di cavo e devono provvedere:

- Alla connessione dei conduttori di due pezzature di cavo mediante manicotti metallici chiamati connettori;
- All'isolamento del conduttore e al ripristino dei vari elementi del cavo;
- A controllare la distribuzione del campo elettrico, per evitare concentrazioni localizzate che possono provocare in breve tempo alla perforazione del giunto;
- Al mantenimento della continuità elettrica tra gli schermi metallici dei cavi;
- Alla protezione dall'ambiente nel quale il giunto è posato.


Nelle giunzioni fra cavi, i connettori sono i componenti deputati alla sola continuità elettrica; essi sono installati sui conduttori dei cavi mediante compressione eseguita con presse idrauliche e con le rispettive matrici a corredo.

I connettori si distinguono per materiali costituenti e foggia, secondo l'impiego a cui sono destinati.

I giunti unipolari saranno posizionati lungo il percorso del cavo, a circa 600-1000 m l'uno dall'altro. Il posizionamento dei giunti sarà determinato in sede di progetto esecutivo in

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	тот.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	16	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

funzione della lunghezza delle pezzature del cavo, delle interferenze sotto il piano di campagna e di eventuali vincoli per il trasporto.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	17	29

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

5.5 Terminali e capocorda

I terminali, che costituiscono generalmente le estremità di una linea in cavo, nonché gli elementi di connessione alle apparecchiature, devono consentire:

- La connessione del conduttore, mediante capocorda;
- La sigillatura del cavo contro il possibile ingresso di acqua o umidità;
- La protezione dell'isolante dalle radiazioni UV, dagli agenti atmosferici e comunque dall'ambiente circostante;
- Per i cavi il controllo della distribuzione del campo elettrico.

Per realizzare le connessioni dei conduttori dei cavi si utilizzano capicorda, che possono essere con attacco ad occhiello o a codolo.

Per i cavi i capicorda sono parte integrante dei terminali.

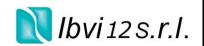
5.6 Canalizzazioni

La canalizzazione utilizzata è normalmente prevista per le strade di uso pubblico, per le quali il Nuovo Codice della Strada fissa una profondità minima di 1 metro dall'estradosso della protezione.

La canalizzazione ad altezza ridotta è prevista solo in casi eccezionali concordati con l'ente gestore della strada.

Il riempimento della trincea e il ripristino della superficie devono essere effettuati secondo le specifiche prescrizioni imposte dal proprietario del suolo.

5.7 Protezione e segnalazione dei CAVI


Per i cavi interrati le Norme CEI 11-17 prevedono una protezione meccanica che può essere intrinseca al cavo stesso oppure supplementare a seconda del tipo di cavo e della profondità di posa. Nel caso in esame sarà utilizzata eventualmente una protezione meccanica mediante utilizzo di cavidotto in tubo flessibile (corrugato) con resistenza all'urto (CEI 23-46) di tipo N (normale) o mediante l'uso di tegole protettive; in alternativa potranno essere utilizzati cavi di tipo armato "AIRBAG". Sarà previsto superiormente il nastro segnaletico posato ad almeno 20cm dalla protezione del cavo. Il diametro nominale interno del tubo sarà maggiore di 1,4 volte il diametro del cavo, ovvero diametro 160mm.

5.8 Fibre ottiche

E' prevista l'installazione di fibre ottiche a servizio del cavidotto, le quali saranno posate contestualmente alla stesura del cavo secondo le modalità descritte nei tipici allegati.

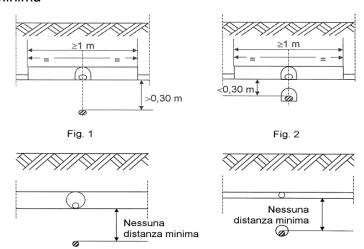
105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	18	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

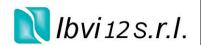
In sede di progetto esecutivo e comunque prima che si dia inizio alla realizzazione dell'opera ed in particolare prima dell'installazione della rete di comunicazioni elettroniche in fibre ottiche a servizio dell'elettrodotto, si procederà all'ottenimento dell'autorizzazione generale espletando gli obblighi stabiliti dal Decreto Legislativo 1 agosto 2003, n. 259, "Codice delle comunicazioni elettroniche"; in particolare si procederà alla presentazione della dichiarazione, conforme al modello riportato nell'allegato n. 14 al suddetto decreto, contenente l'intenzione di installare o esercire una rete di comunicazione elettronica ad uso privato; ciò costituisce denuncia di inizio attività ai sensi dello stesso D.Lgs.259/2003 art. 99, comma 4.

5.9 Coesistenza tra cavi elettrici ed altre condutture interrate


Le prescrizioni in merito alla coesistenza tra i cavidotti MT-BT e le condutture degli altri servizi del sottosuolo derivano principalmente dalle seguenti norme:

- Norme CEI 11-17 "Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica – Linee in cavo";
- DM 24.11.1984 "Norme di sicurezza antincendio per il trasporto, la distribuzione, l'accumulo e l'utilizzazione del gas naturale con densità non superiore a 0,8".

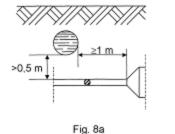
Eventuali prescrizioni aggiuntive saranno comunicate dai vari enti a cui sarà richiesto il coordinamento dei sottoservizi.


Incrocio e parallelismo tra cavi di energia e cavi di telecomunicazione interrati

Nell'eseguire l'incrocio o il parallelismo tra due cavi direttamente interrati, la distanza tra i due cavi non deve essere inferiore a 0,3 m. Quando almeno uno dei due cavi è posto dentro manufatti di protezione meccanica (tubazioni, cunicoli, ecc.) che ne rendono possibile la posa e la successiva manutenzione senza necessità di effettuare scavi, non è necessario osservare alcuna distanza minima

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	19	29

OGGETTO / SUBJECT


CLIENTE / CUSTOMER

<u>Incroci tra cavi di energia e tubazioni metalliche interrate</u>

L'incrocio fra cavi di energia e le tubazioni metalliche adibite al trasporto e alla distribuzione di fluidi [acquedotti, gasdotti, oleodotti e simili] o a servizi di posta pneumatica, non deve essere effettuato sulla proiezione verticale di giunti non saldati delle tubazioni metalliche stesse.

I cavi di energia non devono presentare giunzioni se non a distanze >= 1 m dal punto di incrocio con le tubazioni a meno che non siano attuati i provvedimenti scritti nel seguito.

Nei riguardi delle protezioni meccaniche, non viene data nessuna particolare prescrizione nel caso in cui la distanza minima misurata fra le superfici esterne dei cavi di energia e delle tubazioni metalliche o fra quelle di eventuali loro manufatti di protezione, è superiore a 0,50 m [Fig. 8a e 8b].

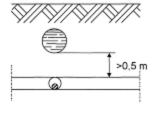
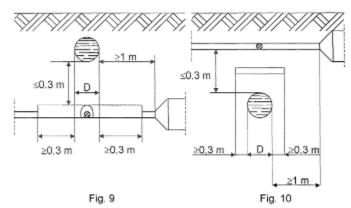
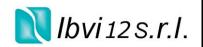



Fig. 8


Tale distanza può essere ridotta fino ad un minimo di 0,30 m nel caso in cui una delle strutture di incrocio è contenuta in un manufatto di protezione non metallico prolungato almeno 0,30 m per parte rispetto all'ingombro in pianta dell'altra struttura [Fig. 9].

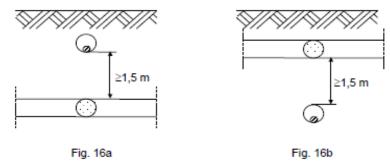
Un'altra soluzione, per ridurre la distanza di incrocio fino ad un minimo di 0,30 m è quella di interporre tra cavi energia e tubazioni metalliche un elemento separatore non metallico [come ad esempio lastre di calcestruzzo o di materiale isolante rigido]; questo elemento deve poter coprire, oltre la superficie di sovrapposizione in pianta delle strutture che si incrociano, quella di una striscia di circa 0.30 m di larghezza ad essa periferica [Fig. 10].

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	20	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

I manufatti di protezione e gli elementi separatori in calcestruzzo armato sono da considerarsi strutture non metalliche. Come manufatto di protezione di singole strutture con sezione circolare possono essere utilizzati collari di materiale isolante fissati ad esse.


Parallelismi tra cavi di energia e tubazioni metalliche interrate

In nessun tratto la distanza misurata in proiezione orizzontale fra le due superfici esterne di eventuali altri manufatti di protezione, deve risultare inferiore a 0,3 m.

<u>Incroci e parallelismi tra cavi di energia in tubazione e tubazioni di gas con densità non superiore a 0,8 non drenate con pressione massima di esercizio >5 Bar</u>

Nei casi di sovra e sottopasso tra canalizzazioni per cavi elettrici e tubazioni non drenate, la distanza misurata in senso verticale fra le due superfici affacciate deve essere >= 1,50 m [Fig. 16a e 16b].

Qualora non sia possibile osservare tale distanza, la tubazione del gas deve essere collocata entro un tubo di protezione che deve essere prolungato da una parte e dall'altra dell'incrocio per almeno 1 m nei sottopassi e 3 m nei sovrappassi; le distanze vanno misurate a partire dalle tangenti verticali alle pareti esterne della canalizzazione [Fig. 17 e 18]; in ogni caso deve essere evitato il contatto metallico tra le superfici affacciate.

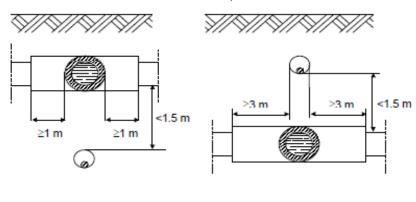
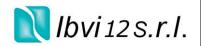



Fig. 18

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	21	29

Fig. 17

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

Nei parallelismi tra canalizzazioni per cavi elettrici e tubazioni non drenate, la distanza minima tra le due superfici affacciate non deve essere inferiore alla profondità di interramento della condotta del gas [Fig. 19], salvo l'impiego di diaframmi continui di separazione [Fig. 20].

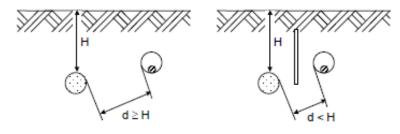
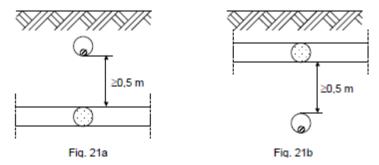
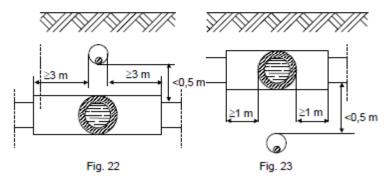
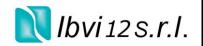



Fig. 19 Fig. 20


<u>Incroci e parallelismi tra cavi di energia in tubazione e tubazioni di gas con densità non superiore a 0,8 non drenate con pressione massima di esercizio 5 Bar</u>

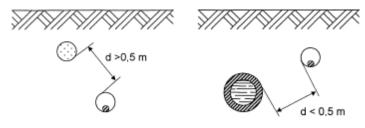
Nel caso di sovra e sottopasso tra canalizzazioni per cavi elettrici e tubazioni del gas la distanza misurata tra le due superfici affacciate deve essere:

- per condotte di 4<sup> e 5 Specie: >0,50 m [Fig. 21a e 21b];
 </sup>
- per condotte di 6[^] e 7[^] Specie: tale da consentire gli eventuali interventi di manutenzione su entrambi i servizi interrati.



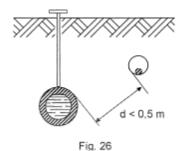
Qualora per le condotte di 4^ e 5^ Specie, non sia possibile osservare la distanza minima di 0,5 m, la condotta del gas deve essere collocata entro un manufatto o altra tubazione di protezione e detta protezione deve essere prolungata da una parte e dall'altra dell'incrocio stesso per almeno 3 m nei sovrappassi [Fig. 22] e 1 m nei sottopassi [Fig. 23], misurati a partire dalle tangenti verticali alle pareti esterne dell'altra canalizzazione.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	22	29



OGGETTO / SUBJECT

CLIENTE / CUSTOMER


Nei casi di percorsi paralleli tra canalizzazioni per cavi elettrici e tubazioni del gas la distanza misurata tra la due superfici affacciate deve essere:

- per condotte di 4^ e5^ specie: > 0.50 m [Fig. 24];
- per condotte di 6^ e 7^ tale da consentire gli eventuali interventi di manutenzione su entrambi i servizi interrati.

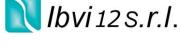
. 24 Fig. 25

Qualora per le condotte di 4^ e 5^ specie non sia possibile osservare la distanza minima di 0,50 m, la tubazione dei gas deve essere collocata entro un manufatto o altra tubazione [Fig. 25]; nei casi in cui il parallelismo abbia lunghezza superiore a 150 m la condotta dovrà essere contenuta in tubi o manufatti speciali chiusi, in muratura o cemento, lungo i quali devono essere disposti diaframmi a distanza opportuna e dispositivi di sfiato verso l'esterno. Detti dispositivi di sfiato devono essere costruiti con tubi di diametro interno non inferiore a 20mm e devono essere posti alla distanza massima tra loro di 150m e protetti contro l'intasamento [Fig. 26].

5.10 Controlli e verifiche

Le verifiche da effettuare saranno di due tipologie:

- controlli in corso d'opera;
- controlli ai fini del collaudo comprese le verifiche elettriche.


Per quanto riguarda la prova di tensione applicata sui cavi a 36 kV, se espressamente richiesto, sarà effettuata la prova alla tensione a Norma CEI di 3Uo (efficaci) ed alla frequenza di 0,1 Hz applicata tra conduttore e lo schermo metallico per la durata di 15 minuti.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	23	29

lbvi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

REALIZZAZIONE DELLA LINEA ELETTRICA IN CAVO INTERRATO 6

6.1 Fasi di costruzione

La realizzazione dell'opera avverrà per fasi sequenziali di lavoro che permettano di contenere le operazioni in un tratto limitato della linea in progetto, avanzando progressivamente sul territorio.

In generale le operazioni si articoleranno secondo le fasi elencate nel modo sequente:

- realizzazione delle infrastrutture temporanee di cantiere;
- apertura della fascia di lavoro e scavo della trincea;
- posa dei cavi e realizzazione delle giunzioni;
- ricopertura della linea e ripristini;

In alcuni casi particolari e comunque dove si renderà necessario, in particolare per tratti interni ai centri abitati e in corrispondenza di attraversamenti, si potrà procedere anche con modalità diverse da quelle su esposte.

In particolare si evidenzia che in alcuni casi specifici potrebbe essere necessario procedere alla posa del cavo con:

- Perforazione teleguidata
- Staffaggio su ponti o strutture pre-esistenti;
- Posa del cavo in tubo interrato;
- Realizzazione manufatti per attraversamenti corsi d'acqua

Al termine dei lavori civili ed elettromeccanici sarà effettuato il collaudo della linea.

6.1.1 Realizzazione delle infrastrutture temporanee di cantiere per la posa del

Prima della realizzazione dell'opera sarà necessario realizzare le piazzole di stoccaggio per il deposito delle bobine contenenti i cavi; di norma vengono predisposte piazzole circa ogni 500-800 metri.

Tali piazzole sono, ove possibile, realizzate in prossimità di strade percorribili dai mezzi adibiti al trasporto delle bobine e contigue alla fascia di lavoro, al fine di minimizzare le interferenze con il territorio e ridurre la conseguente necessità di opere di ripristino.

Si eseguiranno, se non già presenti, accessi provvisori dalla viabilità ordinaria per permettere l'ingresso degli autocarri alle piazzole stesse.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	24	29

Novi 12 s.r.l.

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

6.1.2 Apertura della fascia di lavoro e scavo della trincea

Le operazioni di scavo e posa dei cavi richiedono l'apertura di un'area di passaggio, denominata "fascia di lavoro". Questa fascia dovrà essere la più continua possibile ed avere una larghezza tale da consentire la buona esecuzione dei lavori ed il transito dei mezzi di servizio.

6.1.3 Posa del cavo

In accordo alla normativa vigente, l'elettrodotto interrato sarà realizzato in modo da escludere, o rendere estremamente improbabile, la possibilità che avvenga un danneggiamento dei cavi in tensione provocato dalle opere sovrastanti (ad esempio, per rottura del sistema di protezione dei conduttori).

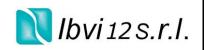
Una volta realizzata la trincea si procederà con la posa dei cavi, che arriveranno nella zona di posa avvolti su bobine. La bobina viene comunemente montata su un cavalletto, piazzato ad una certa distanza dallo scavo in modo da ridurre l'angolo di flessione del conduttore quando esso viene posato sul terreno. Durante le operazioni di posa o di spostamento dei cavi saranno adottate le seguenti precauzioni:

si opererà in modo che la temperatura dei cavi, per tutta la loro lunghezza e per tutto il tempo in cui essi possono venire piegati o raddrizzati, non sarà inferiore a 0°C;

i raggi di curvatura dei cavi, misurati sulla generatrice interna degli stessi, non saranno mai inferiori a 15 volte il diametro esterno del cavo.

6.1.4 Ricopertura e ripristini

Al termine delle fasi di posa e di rinterro si procederà alla realizzazione degli interventi di ripristino. La fase comprende tutte le operazioni necessarie per riportare il territorio attraversato nelle condizioni ambientali precedenti la realizzazione dell'opera.


Le opere di ripristino previste possono essere raggruppate nelle seguenti due tipologie principali:

- ripristini geomorfologici ed idraulici;
- ripristini della vegetazione.

Preliminarmente si procederà alle sistemazioni generali di linea, che consistono nella riprofilatura dell'area interessata dai lavori e nella ri-configurazione delle pendenze preesistenti, ricostruendo la morfologia originaria del terreno e provvedendo alla riattivazione di fossi e canali irrigui, nonché delle linee di deflusso eventualmente preesistenti.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	25	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

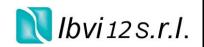
La funzione principale del ripristino idraulico è essenzialmente il consolidamento delle coltri superficiali attraverso la regimazione delle acque, evitando il ruscellamento diffuso e favorendo la ricrescita del manto erboso.

Successivamente si passerà al ripristino vegetale, avente lo scopo di ricostituire, nel più breve tempo possibile, il manto vegetale preesistente i lavori nelle zone con vegetazione naturale.

Il ripristino avverrà mediante:

- ricollocazione dello strato superficiale del terreno se precedentemente accantonato;
- inerbimento;
- messa a dimora, ove opportuno, di arbusti e alberi di basso fusto.

Per gli inerbimenti verranno utilizzate specie erbacee adatte all'ambiente pedoclimatico, in modo da garantire il migliore attecchimento e sviluppo vegetativo possibile. Le aree agricole saranno ripristinate al fine di restituire l'originaria fertilità.


Per ciò che concerne i ripristini si ipotizza di allontanare a discarica circa il 35% del materiale di scavo. La seguente tabella mostra il quantitativo di materiale da allontanare e recuperare, per ciascuna sezione (per comodità di confronto, si riporta anche la sezione del cavo AT, oggetto di specifica relazione).

Sezione	Lunghezza (m)	n. terne	Ampiezza (m)	Profondità (m)	Scavo (mc)	Materiale da allontanare (mc)	Recupero (mc)
В	5570	2	0.70	1.4	5459	1911	3548
D	850	4	1.00	1.7	1445	506	939
BA1	2880	2	0.70	1.4	2822	988	1835
DA1	4990	4	0.70	1.7	5938	2078	3860
				Totale	15664	5482	10182
				Totale MT	15664	4699	10965

6.1.5 Scavo della trincea in corrispondenza dei tratti lungo percorso stradale Tenendo conto che il tracciato si sviluppa quasi interamente su percorso stradale si nota che quando la strada lo consenta (cioè nel caso in cui la sede stradale permetta lo scambio di due mezzi pesanti) sarà realizzata, come anticipato, la posa in scavo aperto, mantenendo aperto lo scavo per tutto il tratto compreso tra due giunti consecutivi e istituendo per la circolazione stradale un regime di senso unico alternato mediante semafori iniziale e finale, garantendo la opportuna segnalazione del conseguente restringimento di corsia e del possibile rallentamento della circolazione. In casi particolari e solo quando si renderà necessario potrà essere possibile interrompere al traffico, per brevi periodi, alcuni tratti

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	26	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

stradali particolarmente stretti, segnalando anticipatamente ed in modo opportuno la viabilità alternativa e prendendo i relativi accordi con i comuni e gli enti interessati.

Per i tratti su strade strette o in corrispondenza dei centri abitati, tali da non consentire l'istituzione del senso unico alternato, ovvero laddove sia manifesta l'impossibilità di interruzione del traffico si potrà procedere con lo scavo di trincee più brevi (30÷50 m) all'interno delle quali sarà posato il tubo di alloggiamento dei cavi, da ricoprire e ripristinare in tempi brevi, effettuando la posa del cavo tramite sonda nell'alloggiamento sotterraneo e mantenendo aperti tratti di scavo in corrispondenza di eventuali giunti *·

6.1.6 Staffaggi su ponti o strutture pre-esistenti

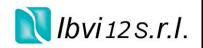
Qualora il tracciato del cavo prevedesse l'attraversamento di ponti pre-esistenti, sarà valutata la possibilità di effettuare lo staffaggio sotto la soletta in c.a. del ponte stesso o sulla fiancata della struttura mediante apposite staffe in acciaio, realizzando cunicoli inclinati per raccordare opportunamente la posa dei cavi realizzati lungo la sede stradale (in profondità circa 1,2 m) con la posa mediante staffaggio.

6.1.7 Trivellazione orizzontale controllata

Questo tipo di perforazione consiste essenzialmente nella realizzazione di un cavidotto sotterraneo mediante il radio-controllo del suo andamento plano-altimetrico. Il controllo della perforazione è reso possibile dall'utilizzo di una sonda radio montata in cima alla punta di perforazione, questa sonda dialogando con l'unità operativa esterna permette di controllare e correggere in tempo reale gli eventuali errori.

Indagine del sito e analisi dei sottoservizi esistenti

L'indagine del sito e l'attenta analisi dell'eventuale presenza di sottoservizi e/o qualsiasi impedimento alla realizzazione della perforazione, è una fase fondamentale per la corretta progettazione di una perforazione orizzontale. Per analisi dei sottoservizi, e per la mappatura degli stessi, soprattutto in ambiti urbani fortemente compromessi, è consigliabile l'utilizzo del sistema "Georadar". Mentre in ambiti suburbani, dove la presenza di sottoservizi è minore è possibile, mediante indagini da realizzare c/o gli enti proprietari dei sottoservizi, saperne anticipatamente l'ubicazione.


Realizzazione del foro pilota

La prima vera e propria fase della perforazione è la realizzazione del "foro pilota", in cui il termine pilota sta ad indicare che la perforazione in questa fase è controllata ossia "pilotata".

* NB: Non sono ammessi pozzetti su canalizzazioni a 36 kV, il cavo non deve essere ispezionabile.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE – DESCRIPTION Gen 2024		27	29

OGGETTO / SUBJECT

CLIENTE / CUSTOMER

La "sonda radio" montata sulla punta di perforazione emette delle onde radio che indicano millimetricamente la posizione della punta stessa. I dati rilevabili e sui quali si può interagire sono:

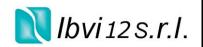
- Altezza;
- Inclinazione;
- · Direzione;
- Posizione della punta.

Il foro pilota viene realizzato lungo tutto il tracciato della perforazione da un lato all'altro dell'impedimento che si vuole attraversare (strada, ferrovia, canale, pista aeroportuale ecc.). La punta di perforazione viene spinta dentro il terreno attraverso delle aste cave metalliche, abbastanza elastiche così da permettere la realizzazione di curve altimetriche. All'interno delle aste viene fatta scorrere dell'aria ad alta pressione ed eventualmente dell'acqua. L'acqua contribuirà sia al raffreddamento della punta che alla lubrificazione della stessa, l'aria invece permetterà lo spurgo del materiale perforato ed in caso di terreni rocciosi, ad alimentare il martello "fondo-foro".

Generalmente la macchina teleguidata viene posizionata sul piano di campagna ed il foro pilota emette geometricamente una "corda molla" per evitare l'intercettazione dei sottoservizi esistenti. In alcuni casi però, soprattutto quando l'impianto da posare è una condotta fognaria non in pressione, è richiesta la realizzazione di una camera per il posizionamento della macchina alla quota di perforazione desiderata.

Allargamento del foro pilota

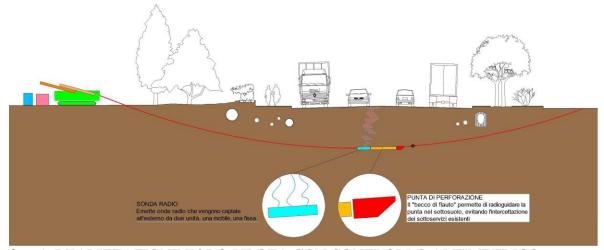
La seconda fase della perforazione teleguidata è l'allargamento del "foro pilota", che permette di posare all'interno del foro, debitamente aumentato, un tubo camicia o una composizione di tubi camicia generalmente in PEAD.

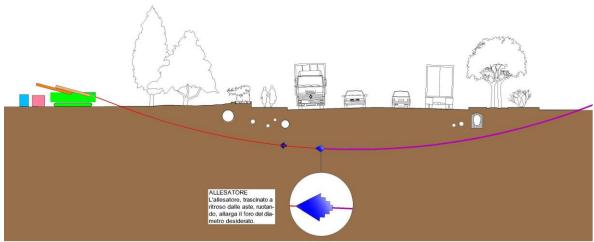

L'allargamento del foro pilota avviene attraverso l'ausilio di strumenti chiamati "Alesatori" che sono disponibili in diverse misure e adatti ad aggredire qualsiasi tipologia di terreno, anche rocce dure. Essi vengono montati al posto della punta di perforazione e tirati a ritroso attraverso le aste cave, al cui interno possono essere immesse aria e/o acqua ad alta pressione per agevolare l'aggressione del terreno oltre che lo spurgo del materiale.

Posa in opera del tubo camicia

La terza ed ultima fase che in genere, su terreni morbidi e/o incoerenti, avviene contemporaneamente a quella di "alesaggio", è l'infilaggio del tubo camicia all'interno del foro alesato.

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	28	29




OGGETTO / SUBJECT

CLIENTE / CUSTOMER

La tubazione camicia generalmente in PEAD, se di diametro superiore ai 110 mm, viene saldata a caldo preventivamente, e ancorata ad uno strumento di collegamento del tubo camicia all'asta di rotazione. Questo strumento, chiamato anche "girella", evita durante il tiro del tubo camicia che esso ruoti all'interno del foro insieme alle aste di perforazione.

fase 1: REALIZZAZIONE FORO PILOTA CON CONTROLLO ALTIMETRICO

fase 2: ALESAGGIO DEL FORO PILOTA E TIRO TUBO CAMICIA

105.23.01.R01	0	Prima emissione	Data-Date.	Pag.	TOT.
SIGLA-TAG	REV	DESCRIZIONE - DESCRIPTION	Gen 2024	29	29