COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

Mandataria

Mandanti

PROGETTAZIONE:

MANDATARIA

MANDANTI

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTI 2 e 3 - RADDOPPIO TERMOLI – RIPALTA

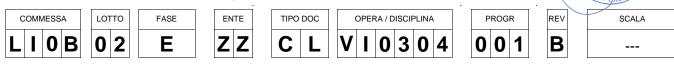
Opere d'arte maggiori - Ponti e Viadotti ferroviari

VI03 da km 7+133,530 a km 7+223,530

Relazione di calcolo Spalla S1,

L'Appaltatore
Ing. Gianguido Babini

Data Dicembre 2022


A.A.D'AGOSTINO COSTRUZIONI GENERALI S.r.I.
Il Direttore Tecnico
(Ing. Gianguido Babini)

Data Dicembre 2022

Il progettisti (il Direttore della progettazione)
Ing. Massimo Facchini

Data Dicembre 2022

firma

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
Α	Prima emissione	Marino	D: 1 0000	Martignoni	Dicembre	Rinaldi	Dicembre	
A	Fillia ellissione		Dicembre 2022		2022		2022	SGEGNERI DEL
В		Marino	00/05/00	Martignoni	24/05/23	Rinaldi	25/05/23	DOTT ING
J	Aggiornamento per RdV		23/05/23		24/05/25		25/05/25	ALBERT TO BUILDING DI
								Sez. A2990 (1234 c) (5)
								0 17200000
								MILANO
	3.0.2.E.ZZ.CL.VI03.0.4.001.B.DOCX							n. Elab.

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	1

INDICE

1	PREI	MESSA	.4
•	DEC	COLZIONE DELL'ODEDA	_
Z. .		CRIZIONE DELL'OPERA	
	2.1	Descrizione della spalla in esame	. /
3	DOC	UMENTAZIONE DI RIFERIMENTO	.8
	3.1	Normativa di riferimento	.8
	3.2	Normativa tecnica nazionale	.8
	3.3	Manuali ITF	.9
	3.4	Bibliografia e altri riferimenti	.9
4	CAR	ATTERISTICHE DEI MATERIALI	10
	4.1	Calcestruzzo	10
	4.2	Acciaio	11
	4.3	Durabilità	12
5	APPI	ROCCIO DI CALCOLO	16
	5.1	Caratteristiche delle opere	16
	5.2	Criteri generali di verifica	16
	5.3	Software di calcolo	23
	5.4	Validazione programmi di calcolo	25
6	CAR	ATTERIZZAZIONE GEOTECNICA	26
	6.1	Categoria di sottosuolo	26
	6.2	Capacità portante dei pali e stratigrafia di progetto	26
7	ANA	LISI DEI CARICHI	27
	7.1	Azioni permanenti strutturali (G ₁)	27
	7.2	Azioni permanenti non strutturali (G ₂)	27
	7.3	Ritiro del calcestruzzo (ε ₂)	30
	7.4	Spinta del terreno (G ₃)	31
	7.5	Azioni variabili verticali (Q)	
	7.6	Azioni Eccezionali (A)	44
	7.7	Azioni variabili orizzontali (Q)	
	7.8	Azione del vento (Q ₆)	
	7.9	Azione sismica (e)	64
	7.10	Variazioni termiche (Q ₇)	78
	7.11	Attrito (Q ₈)	78
	7.12	Scarichi agli appoggi	79

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	2

8 CON	//BINAZIONI DI CARICO	81
8.2	Combinazioni di carico adottate	83
9 VER	IFICHE DEGLI ELEMENTI STRUTTURALI	93
9.1	Elementi in cemento armato	93
10.	MODELLI DI CALCOLO	99
11.	ANALISI GENERALE SPALLA MOBILE S1	101
11.1	Azione impalcati	101
11.2	Sollecitazioni elevazione	107
11.3	Sollecitazioni in fondazione	115
11.4	Sollecitazioni muro paraghiaia	124
11.5	Verifiche Muro Frontale	128
11.6	Verifiche plinto fondazione	139
11.7	Verifiche Muro Paraghiaia	149
12.	ANALISI CARICHI MODELLO TRASVERSALE SPALLA	155
12.1	Azioni permanenti strutturali (G ₁) e non strutturali (G ₂)	155
12.2	Azioni variabili verticali da traffico ferroviario	156
12.3	Carichi sui marciapiedi	159
12.4	Carico eccezionale dovuto al deragliamento	160
12.5	Carico da vento sulla barriera antirumore	163
12.6	Azione aerodinamica da traffico ferroviario	165
	Variazioni termiche (Q ₇)	
12.8	Distorsioni e deformazioni impresse (P) (ε)	168
13.	ANALISI TRASVERSALE SPALLA	172
13.1	Descrizione del modello FEM	172
13.2	Verifiche strutturali	179
14.	ANALISI MURO POSTERIORE SPALLA	193
	Analisi carichi muro posteriore spalla	
14.2	Descrizione del modello FEM	196
14.3	Verifiche strutturali	199
15.	ANALISI CARICHI MURI SCATOLARI ESTERNI	
15.1	Azioni permanenti strutturali (G ₁) e non strutturali (G ₂)	204
	Spinta del terreno (G ₃)	
	Azioni variabili verticali da traffico ferroviario	
	Carichi sui marciapiedi	
15.5	Carico eccezionale dovuto al deragliamento	213

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIF	PLINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	3

15.6	Carico da vento sulla barriera antirumore	213
15.7	Azione aerodinamica da traffico ferroviario	214
15.8	Variazioni termiche (Q ₇)	215
15.9	Distorsioni e deformazioni impresse (P) (ε)	216
16.	ANALISI MURI SCATOLARI ESTERNI	220
16.1	Descrizione del modello FEM	220
16.2	Verifiche strutturali	228
17.	ANALISI MURO POSTERIORE MURI SCATOLARI ESTERNI	248
17.1	Analisi carichi muro posteriore muri scatolari esterni	248
17.2	Spinta del terreno (G ₃)	249
17.3	Descrizione del modello FEM	255
17.4	Verifiche strutturali	258
18.	VERIFICHE LOCALI	263
18.1	Baggioli	263
18.2	Deformabilita' spalla	265
18.3	Ritegni	268
19.	RIEPILOGO INCIDENZE C.A.	270
20.	APPOGGI E GIUNTI	271
20.1	Appoggi	271
20.2	Escursione dei giunti	271
21.	ALLEGATI DI CALCOLO	273

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	4

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al raddoppio ferroviario della Linea Bari - Pescara nella tratta Termoli - Ripalta, per uno sviluppo complessivo di 24.930,52 km.

L'opera oggetto delle analisi riportate nei paragrafi seguenti rientra fra quelle inserite nella categoria denominata "OPERE PRINCIPALI – PONTI E VIADOTTI".

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	5

2. DESCRIZIONE DELL'OPERA

La presente relazione ha per oggetto l'analisi e la verifica della Spalla mobile denominata S01 che sostiene la campata in acciaio da 40 m del viadotto ferroviario denominato VI03, previsto tra le progressive chilometriche. 7+133,530 a km 7+223,530.

Il viadotto, avente lunghezza complessiva pari a circa 90 m, è a doppio binario di cui la prima campata di luce pari a 40m è a struttura mista acciaio-cls e le restanti campate (numero 2) sono in semplice appoggio da 25 m costituite da quattro travi a cassoncino in c.a.p. preteso. La piattaforma ha una larghezza totale di 13.70 m ed ospita due binari posti ad interasse di 4.0 m.

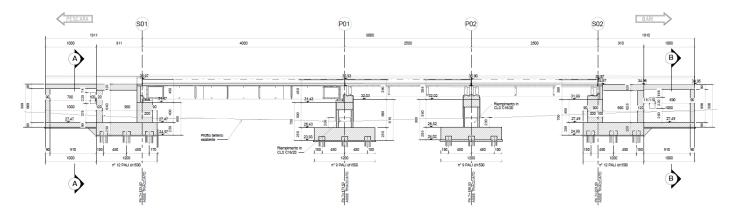


Figura 1 – Profilo longitudinale VI03

Gli impalcati in acciaio-cls da 40.0m sono costituiti da quattro travi in acciaio ad interasse di 2.80 m e altezza pari a 2.70 m in appoggio. Al di sopra delle travi viene realizzata una soletta in calcestruzzo gettata in opera avente spessore variabile da un minimo di 0.37 m ad un massimo di 0.47 m in asse impalcato compressivo dello spessore delle predalles.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	6

SEZIONE TIPO IN CAMPATA -Scala 1:50

(Impalcato acciaio-cls luce 40.00 m)

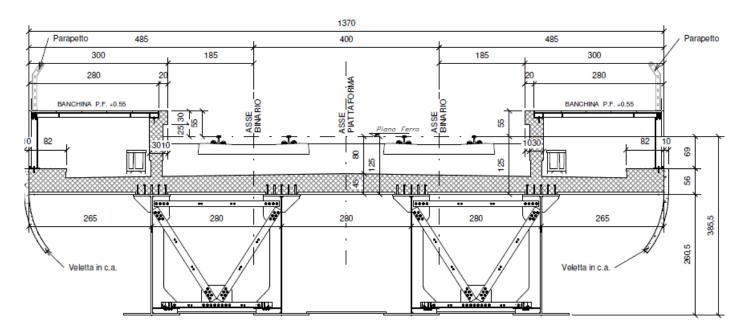


Figura 2 – Sezione trasversale impalcato

Nel presente documento si analizzano alcune delle sottostrutture del viadotto in esame.

						IMPAL	IPALCATI			SI	FONDAZIONE					
WBS	SPALLE	H _{calcolo}	R _{min}	Lato	L	Ann	Lato	L	Ann	Zona	Categoria	D _{pali}	n _{pali}	Stratig.	Liquefaz.	Scalzam.
			[m]	SX	[m]	App.	dx	[m]	App.	Sismica	Sottosuolo	[m]	[m]	Stratig.	Liquelaz.	[m]
VI03	S01	4.00	8	-	-		Acciaio-cls	40	Mobile	S2	С	1.5	12	1	NO	-
V103	S02	4.50	8	C.a.p.	25	Fisso	-	-	-	S2	С	1.5	12	2	NO	-

Tabella 1 – Sintesi delle spalle VI03

Oggetto del presente documento sono quindi le analisi e le verifiche delle spalle, in particolare della spalla S01, relativa all'impalcato in acciaio.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	7

2.1 DESCRIZIONE DELLA SPALLA IN ESAME

Le sottostrutture consistono in due spalle con fondazioni di tipo profondo su pali. La spalla indicata con "S01" è la spalla mobile mentre quella indicata con "S02" è la spalla fissa. Il presente documento contiene le verifiche strutturali e geotecniche della spalla S01. La spalla presenta a prosecuzione della stessa una struttura scatolare in c.a. composta di due vanni interni di dimensioni interne 5.40m (larghezza) x 9,10m (lunghezza) x 6,80m (altezza).

Di seguito si riportano alcune immagini esplicative delle sottostrutture in esame. Per maggiori dettagli si rimanda agli elaborati grafici di progetto.

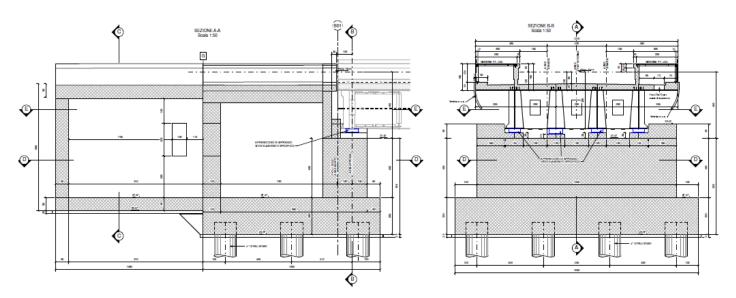


Figura 3 - Sezioni in direzione longitudinale e trasversale

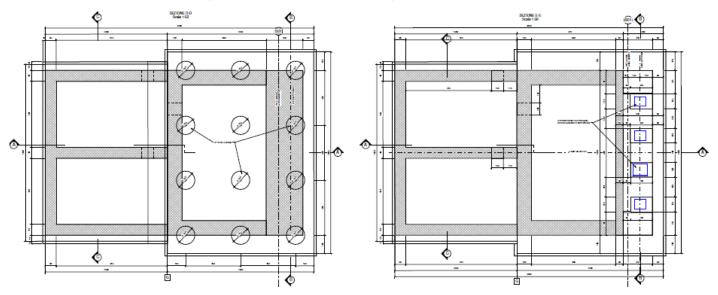


Figura 4 – Vista in pianta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	/1 03 04		001	В	8

3. DOCUMENTAZIONE DI RIFERIMENTO

3.1 NORMATIVA DI RIFERIMENTO

3.1.1 Specifiche tecniche interoperabilità ferroviarie

[1] Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

3.1.2 Materiali

- [2] UNI 11104: 2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206";
- [3] UNI EN 206: 2014 "Calcestruzzo: Specificazione, prestazione, produzione e conformità";

3.1.3 Costruzioni in c.a. e acciaio

Eurocodice 1 - "Azioni sulle strutture"

- [4] UNI EN 1991-1-4:2010 "Parte 1-4: Azioni in generale Azioni del vento";
- [5] UNI EN 1991-1-5:2004 "Parte 1-5: Azioni in generale Azioni termiche";
- [6] UNI EN 1991-1-7:2014 "Parte 1-7: Azioni in generale Azioni eccezionali";
- [7] UNI EN 1991-2:2005 "Parte 2: Carichi da traffico sui ponti";

Eurocodice 2 - "Progettazione delle strutture in calcestruzzo"

- [8] UNI EN 1992-1-1:2015 "Parte 1-1: Regole generali e regole per gli edifici";
- [9] UNI EN 1992-2:2006 "Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi";

Eurocodice 3 - "Progettazione delle strutture in acciaio"

- [10] UNI EN 1993-1-1:2014 "Parte 1-1: Regole generali e regole per gli edifici";
- [11] UNI EN 1993-1-3:2007 "Parte 1-3: Regole generali Regole supplementari per l'impiego dei profilati e delle lamiere sottili piegati a freddo";

3.2 NORMATIVA TECNICA NAZIONALE

- [12] Legge 5 Novembre 1971 n°1086 "Norme per la disciplina delle opere in calcestruzzo cementizio, normale e precompresso ed a struttura metallica";
- [13] Legge 2 Febbraio 1974 n°64 "Provvedimenti per le costruzioni, con particolari prescrizioni per le zone sismiche";
- [14] D.M. 14/01/2008 "Norme tecniche per le costruzioni";

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	9

[15] Circolare LL.PP. n°617 02/02/2009 - "Istruzioni per l'applicazione dell'Aggiornamento delle norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008".

3.3 MANUALI ITF

- [16] RFI DTC SI PS MA IFS 001 E Manuale di progettazione delle opere Civili;
- [17] RFI DTC SI SP IFS 001 C Capitolato generale tecnico di Appalto delle opere civili;
- [18] RFI DINIC MA PO 00 001 B Manuale di progettazione Ponti
- [19] RFI DTC ICI PO SP INF 001 A Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari del 12/10/2009
- [20] RFI DINIC MA PO 00 001 C Prescrizioni tecniche per la progettazione esecutiva ponti Vol.1 e vol.2
- [21] RFI DTC INC PO SP IFS 003 A Specifica per la verifica a fatica dei ponti ferroviari
- [22] RFI DTC INC PO SP IFS 005 A Specifica per il calcolo, l'esecuzione e il collaudo e la posa in opera dei dispositivi di vincolo e dei coprigiunti negli impalcati ferroviari e cavalcavia.

3.4 BIBLIOGRAFIA E ALTRI RIFERIMENTI

- [23] Lancellotta R. [1991] " Geotecnica" Edizioni Zanichelli.
- [24] Migliacci F. Mola "Progetto agli stati limite delle strutture in c.a." Masson Italia Editori 1985
- [25] C. Cestelli Guidi "Geotecnica e tecnica delle fondazioni" Ulrico Hoepli Editore 1987
- [26] R. Lancellotta "Geotecnica" Edizioni Zanichelli 1987
- [27] Bowles J.E.: "Foundations Analysis and Design" 4th edition McGraw-Hill New York, 1988
- [28] Bustamante M., Gianeselli L. [1982] "Pile bearing capacity prediction by means of static penetrometer CPT" -. Pr. of the 2th European symposium on penetration testing, Amsterdam.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	10

4. CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

4.1.1 Calcestruzzo per magrone sottofondi

Classe minima C12/15
Classe di esposizione ambientale XC0

4.1.2 Calcestruzzo pali e plinti di fondazione

Classe minima	C25/30		
Classe di esposizione ambientale	XC2		
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 30	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	24.90	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	32.90	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{0.3}$	³ =31447	MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	2.56	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	1.79	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γ _C =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC}^* f_{ck} / \gamma_C =$	14.11	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
Valore ultimo della deformazione a compressione	ϵ_{cu} = 3.5 ‰		
Stato limite di esercizio			
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	13.70	MPa
Tensione max di compressione – Comb. Quasi perm.	$\sigma_c = 0.40^* f_{ck} =$	9.96	MPa

4.1.3 Calcestruzzo parti in elevazione pile, spalle e solettoni

C32/40		
XC4 – XS1		
R_{ck}	≥ 40	MPa
$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa
$f_{cm} = f_{ck} + 8 =$	41.20	MPa
$E_c = 22000*(f_{cm}/10)^0$	$^{1.3} = 3364$	3 MPa
$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa
$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa
γ _C =	1.5	
$\alpha_{CC} =$	0.85	
$f_{cd} = \alpha_{CC} * f_{ck} / \gamma_{C} =$	18.81	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa
ϵ_{cu} = 3.5 ‰		
	$ \begin{array}{l} XC4 - XS1 \\ R_{ck} \\ f_{ck} = R_{ck}{}^*0.83 = \\ f_{cm} = f_{ck}{}^*+8 = \\ E_c = 22000{}^*(f_{cm}/10){}^0 \\ f_{ctm} = 0.3{}^*(f_{ck}){}^{2/3} = \\ f_{ctk} = 0.7{}^*f_{ctm} = \\ \\ \\ V_C = \\ \alpha_{CC} = \\ f_{cd} = \alpha_{CC}{}^*f_{ck} / \gamma_C = \\ f_{ctd} = f_{ctk} / \gamma_C = \\ \end{array} $	$\begin{array}{lll} & \text{XC4} - \text{XS1} \\ & R_{ck} & \geq 40 \\ & f_{ck} = R_{ck} ^* 0.83 = & 33.20 \\ & f_{cm} = f_{ck} + 8 = & 41.20 \\ & E_c = 22000 ^* (f_{cm} / 10)^{0.3} = 3364 \\ & f_{ctm} = 0.3 ^* (f_{ck})^{2/3} = & 3.10 \\ & f_{ctk} = 0.7 ^* f_{ctm} = & 2.17 \\ & \forall c = & 1.5 \\ & \alpha_{CC} = & 0.85 \\ & f_{cd} = \alpha_{CC} ^* f_{ck} / \gamma_{C} = & 18.81 \\ & f_{ctd} = f_{ctk} / \gamma_{C} = & 1.45 \\ & \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	11

Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55 * f_{ck} =$	18.26	MPa
Tensione max di compressione - Comb. Quasi pe	erm. $\sigma_c = 0.40^* f_{ck} =$	13.28	MPa

4.1.4 Calcestruzzo per baggioli e ritegni

Classe minima	C32/40			
Classe di esposizione ambientale	XC4 – XS1			
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 40	MPa	
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa	
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	41.20	MPa	
Modulo elastico	$E_c = 22000^*(f_{cm}/10)^0$	$^{1.3} = 3364$	3 MPa	
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa	
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa	
Stato limite ultimo				
Coefficiente parziale di sicurezza	γc =	1.5		
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85		
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC}^* f_{ck} / \gamma_C =$	18.81	MPa	
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa	
Valore ultimo della deformazione a compressione	$\epsilon_{cu} = 3.5 \%$			
Stato limite di esercizio				
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	18.26	MPa	
Tensione max di compressione – Comb. Quasi perm.	$\sigma_c = 0.40^* f_{ck} =$	13.28	MPa	

4.2 ACCIAIO

4.2.1 Acciaio d'armatura in barre per calcestruzzo armato

l'ensione caratteristica di rottura a trazione	$t_{tk} =$	≥ 540 MPa
Tensione caratteristica di snervamento a trazione	$f_{yk} =$	≥ 450 MPa
Modulo elastico	$E_s =$	200000 MPa
Stato limite ultimo		
Coefficiente parziale di sicurezza	γ _S =	1.15
Resistenza di calcolo	$f_{yd} = f_{yk} / \gamma_S =$	391.30 MPa
Valore ultimo della deformazione a trazione	ϵ_{cu} = 10 ‰	
Stato limite di esercizio		
Tensione max di trazione	$\sigma_s = 0.75^* f_{yk} =$	337.50 MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	VI 03 04		001	В	12

4.3 DURABILITÀ

4.3.1 Conglomerati cementizi

Le classi di esposizione e le conseguenti limitazioni sulla composizione del calcestruzzo sono state ricavate ai sensi della normativa UNI EN 206: 2016 e UNI 11104: 2016, delle istruzioni contenute nella C.M. n°7 per l'applicazione delle NTC 2008, a cui si rimanda per ulteriori dettagli.

A seconda dell'esposizione ambientale, per opere con V_N = 50 anni la circolare al punto §C4.1.6.1.3 impone il rispetto dei limiti di copriferro riportati nella tabella successiva.

Per classi di resistenza inferiori a C_{min} i valori sono da aumentare di $\Delta c_{min} = +5$ mm.

Per produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di $\Delta c_{min} = -5$ mm.

A tali valori di tabella vanno aggiunte le tolleranze di posa Δc_{dev} .

Nella norma UNI EN 1992-1-1 sono indicati al §4.4.1.3 i metodi per la valutazione rigorosa dei copriferri in base alla tipologia di armature e altre particolari specifiche di dettaglio previste in progetto.

Nelle tabelle seguenti si indicano i copriferri nominali c_{nom} e i parametri di mix design minimi richiesti dalle normative per ottenere le prestazioni di durabilità minime di progetto.

prospetto 5	vaion iiiiiii	por la cor	iiposiziolio	e le propri	ota dei calci	DOUUZZO												
								(Classi di esp	posizione								
	Nessun Corrosione delle armature indotte da cloruri								A									
UNI 11104:2016	rischio di corrosione dell'armatura	Corrosione delle armature indotte dalla carbonatazione Acqua di mare Cloruri provenienti da						altre fonti	Atta	cchi da cicli	di gelo/dis	gelo	Ambiente aggressivo per attacco chimico					
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,4	15	0,55	0,50	0,45	0,50	,50 0,50 0,45		0,45	0,55	0,50	0,45
Minima classe di resistenza	C12/15	C25	5/30	C30/37	C32/40	C32/40	C35	/45	C30/37	C32/40	C35/45	C32/40	C2	5/30	C30/37	C30/37	C32/40	C35/45
Minimo contenuto in cemento (kg/m ³)	-	3(00	320	340	340	36	0	320	340	360	320	3	40	360	320	340	360
Contenuto minimo in aria (%)												b)		4,0 a)				
Altri requisiti						al	l'utilizzo di ceme l'acqua di mare econdo UNI 918	а										

ndo UNI CENtrS 12390 -9, UNI CENtrR 15177 0 UNI 7087 per la relativa classe di esposizione. 11 valore minima di aria ingiobata del 4% pub ritenersi adeg

Tabella 2 - Prospetto requisiti di mix-design (UNI 11104)

Tabella C4.1.IV - Copriferri minimi in mm

				barre da c.a. barre da c.a. cavi da c.a.p. elementi a piastra altri elementi elementi a piastra				cavi da c.a.p. altri elementi		
C _{min}	Co	ambiente	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

La classe di resistenza minima C_{min} indicata in tabella deve comunque intendersi riferita alla pertinente classe di esposizione di cui alla UNI EN 206:2016 richiamata nella Tabella 4.1.III delle NTC.

nte aumentato (ad esempio 5% per Dupper tra 12 mm e 16 mm). se di esposizione XFI si adotano le specifiche di composizione pre

poper zoutini, per cupper interno misse minina activa opportunatement autheritato (act exempto to se per upper int zi min e i to i mini, per activa esta activa esta activa esta activa esta activa esta esta esta servicione XFI si adotano le specifiche de compositione presente per le classi XF2 e XF3. mendr estatent ai solfati sono definit dalla UNI EN 197-1 e su base nazionale dalla UNI 9105, La UNISTO dissilica i cemerif resistenti ai solfati in tre classif moderata ca. La classe di resistenza solfati ad cemerno deve eserve prescota in relationa alla classe di esposizione del catedantizo secondo il criterio di corrispondenza di arando si applica il concide di valore ki il rapporto massimo alc e il contenuto minima di cementa sono calcolati in conformita al punto 5.2.2.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	13

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4 - Condizioni ambientali e classi di esposizione

NOME: FONDAZIONI	REQUISIT	DURABILITA' CALCES	TRUZZI (UNI EN 2	206, UNI 1	1104, UNI EN 1992-1-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE						
Corrosione da carbonatazione	XC2	Ambiente prevalentemer	te acquoso o satu	ıro d'acqua	, raramente secco.	
		Cls a contatto con acqua fondazioni.	a per lungo tempo.	. Cls di stri	utture di contenimento acqua. Cls di mo	lte
- Valori raccomandati per il mix-desi	gn (UNI EN 206: 2	2016)			Mix design	di progetto:
		XC2				XC2
R	apporto max A/C	0,60				0,6
Classe di re	esistenza minima	C25/30				C25/30
Contenuto minimo di	cemento (kg/m³)	300				300
Contenuto n	ninimo di aria (%)	-				-
Aggregati resistenti al gelo/dis	sgelo (EN 12620)	-				-
Cemento re	sistente ai solfati	-				-
Cemento resistente	all'acqua di mare	-				-
- Margine di scostamento Δc _{dev} (4.4	.1.3 Annesso itali	ano UNI EN 1992-1-1)			Δc_{dev} (mm)	10
- Margine di scostamento Δc _{dev} (4.4	.1.3 Annesso itali	ano UNI EN 1992-1-1)			Δc_{dev} (mm)	10
- Copriferro minimo per messa in ope	·		so italiano UNI EN	N 1992-1-1)	c _{nom,min} (mm)	
- Copriferro minimo per aderenza (Pr	ospetto 4.2 UNI E	N 1992-1-1)			c _{min,b} (mm)	26
Tipo di acciai						
Ø (mm	,		, .	Øn (raggru	ppate, vedi §8.9)	
D _{upper} (mm) 25	dimensione max aggre	egato			
- Copriferro minimo per durabilità (Ta	bella C4.1.IV NTC	2008)			c _{min,dur} (mm)	30
Ambient	e Ordinario					
Vita nominal		valori tabella +5 mm	С	C25/30	Classe di resistenza utilizzata	
	s NO	valori tabella	C_0	C35/45		
Controllo qualità speciale cl						
Controllo qualità speciale cla Elemento a piastra			C_{min}	C25/30		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	14

	REQUISI	TI DURABILITA' CA	LCESTRUZZI (UNI EN	206, UNI 1	1104, UNI EN 1992-1	I-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE							
Corrosione da carbonatazione	XC4	Ambiente ciclicam	nente secco e acquoso	o saturo d'a	acqua.		
			superfici soggette ad a			•	acqua. Cls
		ciclicamente espo	sto all'acqua in condizi	oni che non	ricadono nella class	e XC2.	
Corrosione da cloruri marini	XS1		he trasporta salsedine	marina in a	ssenza di contatto c	on l'acqua di mare.	
		Cls di strutture in z	zone costiere.				
· Valori raccomandati per il mi	x-design (UNI EN 206:	2016)				Mix design	di progetto:
		XC4	X	S1			XC4+XS1
	Rapporto max A/		0	,50			0,5
	se di resistenza minim			32/40			C32/40
	nimo di cemento (kg/m	,	3	40			340
	enuto minimo di aria (%	*	-				-
Aggregati resistenti al o	• • •	•	-				-
	ento resistente ai solfa		-				-
Cemento resis	stente all'acqua di mar	е -	S	ol .			SI
COPRIFERRO NOMINALE c _{min} = max(c _{min,b} ; c _{min,dur}	+ Δc _{dur,γ} - Δc _{dur,st} - Δc	_{dur,add} ; 10 mm)	(Formula 4.2 L	JNI EN 1992	2-1-1)		
$c_{min} = max(c_{min,b}; c_{min,dur})$	C _{nom}	$= c_{min} + \Delta c_{dev}$	(Formula 4.1 L		•	Δc _{dev} (mm)	10
COPRIFERRO NOMINALE $c_{min} = max(c_{min,b}; c_{min,dur})$ · Margine di scostamento Δc_d · Copriferro minimo per messa	c _{nom}	= c_{min} + Δc_{dev}	(Formula 4.1 L	JNI EN 1992	2-1-1)	Δc _{dev} (mm) c _{nom,min} (mm)	10
$c_{min} = max(c_{min,b};c_{min,dur}$	C _{nom} l _{ev} (4.4.1.3 Annesso ita a in opera su superfici i	= c_{min} + Δc_{dev} diano UNI EN 1992-1 rregolari (4.4.1.3 (4)	(Formula 4.1 L	JNI EN 1992	2-1-1)	c _{nom,min} (mm)	10
$c_{min} = max(c_{min,b}; c_{min,dur})$ Margine di scostamento Δc_d Copriferro minimo per messa Copriferro minimo per aderen	c _{nom} ev (4.4.1.3 Annesso ita a in opera su superfici i nza (Prospetto 4.2 UNI	= c_{min} + Δc_{dev} liliano UNI EN 1992-1 rregolari (4.4.1.3 (4) Δ EN 1992-1-1)	(Formula 4.1 L	JNI EN 1992	2-1-1)		
$c_{min} = max(c_{min,b}; c_{min,dur})$ • Margine di scostamento Δc_d • Copriferro minimo per messa • Copriferro minimo per aderen Tipo di	c _{nom} (4.4.1.3 Annesso ita in opera su superfici i iza (Prospetto 4.2 UNI acciaio Ordinari	= c_{min} + Δc_{dev} Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) Δc_{min} EN 1992-1-1)	(Formula 4.1 L	INI EN 1992 EN 1992-1-1))	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,dur})$ • Margine di scostamento Δc_d • Copriferro minimo per messa • Copriferro minimo per aderen Tipo di	c _{nom} c _{nom} (4.4.1.3 Annesso ita in opera su superfici i iza (Prospetto 4.2 UNI acciaio Ordinari Ø (mm) 2	= c_{min} + Δc_{dev} Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) Δc_{min} EN 1992-1-1)	(Formula 4.1 L I-1) Annesso italiano UNI E Ø (isolata) o equivalente	INI EN 1992 EN 1992-1-1))	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,dur})$ - Margine di scostamento Δc_d - Copriferro minimo per messa - Copriferro minimo per aderen Tipo di Dupp	c _{nom} c _{nom} (4.4.1.3 Annesso ita i in opera su superfici i nza (Prospetto 4.2 UNI acciaio Ordinari Ø (mm) 2 ner (mm) 2	= $c_{min} + \Delta c_{dev}$ Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) decended by the second	(Formula 4.1 L I-1) Annesso italiano UNI E Ø (isolata) o equivalente	INI EN 1992 EN 1992-1-1))	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,dur})$ - Margine di scostamento Δc_d - Copriferro minimo per messa - Copriferro minimo per aderen Tipo di D _{upp} - Copriferro minimo per durabil	c _{nom} c _{nom} (4.4.1.3 Annesso ita i in opera su superfici i nza (Prospetto 4.2 UNI acciaio Ordinari Ø (mm) 2 ner (mm) 2	= $c_{min} + \Delta c_{dev}$ Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) decended by the second	(Formula 4.1 L I-1) Annesso italiano UNI E Ø (isolata) o equivalente	INI EN 1992 EN 1992-1-1))	c _{nom,min} (mm)	26
$c_{min} = max(c_{min,b}; c_{min,dur})$ Margine di scostamento Δc_d Copriferro minimo per messa Copriferro minimo per aderen Tipo di D _{upp} Copriferro minimo per durabil Ar	C _{nom} c _{nom} (4.4.1.3 Annesso ita in opera su superfici i nza (Prospetto 4.2 UNI acciaio Ordinari (mm) 2 (mm) 2 ità (Tabella C4.1.IV NT mbiente Aggressivo	= $c_{min} + \Delta c_{dev}$ Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) decended by the second	(Formula 4.1 L I-1) Annesso italiano UNI E Ø (isolata) o equivalente a aggregato	INI EN 1992 EN 1992-1-1	2-1-1)) ppate, vedi §8.9)	c _{nom,min} (mm) c _{min,b} (mm)	26
$c_{min} = max(c_{min,b}; c_{min,dur})$ Margine di scostamento Δc_d Copriferro minimo per messa Copriferro minimo per aderen Tipo di D _{upp} Copriferro minimo per durabil Ar	C _{nom} c _{nom} c _{nom} c(4.4.1.3 Annesso ital in opera su superfici i nza (Prospetto 4.2 UNI acciaio Ordinari (mm) 2 ità (Tabella C4.1.IV NT mbiente Aggressivo ominale 7	= c _{min} + Δc _{dev} Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4)) EN 1992-1-1) o diametro barra θ dimensione max	(Formula 4.1 L 1-1) Annesso italiano UNI E	JNI EN 1992 EN 1992-1-1∫ e Øn (raggru	2-1-1)) ppate, vedi §8.9)	c _{nom,min} (mm) c _{min,b} (mm)	26
c _{min} = max(c _{min,b} ; c _{min,dur} · Margine di scostamento Δc _d · Copriferro minimo per messa · Copriferro minimo per aderen Tipo di D _{upp} · Copriferro minimo per durabil Ar Vita no	C _{nom}	= c _{min} + Δc _{dev} Iliano UNI EN 1992-1 rregolari (4.4.1.3 (4) de EN 1992-1-1) de diametro barra θe dimensione max C 2008) 5 valori tabella +5 r	(Formula 4.1 L I-1) Annesso italiano UNI E Ø (isolata) o equivalente a aggregato	:N 1992-1-1 : M (raggru	2-1-1)) ppate, vedi §8.9)	c _{nom,min} (mm) c _{min,b} (mm)	26

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

L	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	15

NOME: BAGGIOLI E RITEGNI	REQUISITI	DURABILITA' CALCESTR	Ruzzi (uni en 20)6, UNI 11	1104, UNI EN 1992-1-1	1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE							
Corrosione da carbonatazione	XC4	Ambiente ciclicamente sec	cco e acquoso o	saturo d'a	icqua.		
		Cls in esterni con superfici				•	acqua. Cls
		ciclicamente esposto all'ac	cqua in condizion	i che non	ricadono nella classe	XC2.	
Corrosione da cloruri marini		Ambiente di aria che traspo		arina in as	ssenza di contatto con	l'acqua di mare.	
		Cls di strutture in zone cos	stiere.				
- Valori raccomandati per il mix-des	ign (UNI EN 206: 2	016)				Mix design of	di progetto:
		XC4	XS1				XC4+XS1
	Rapporto max A/C	0,50	0,50				0,5
	resistenza minima	C32/40	C32				C32/40
Contenuto minimo o	()	340	340				340
	minimo di aria (%)	-	-				-
Aggregati resistenti al gelo/d	,	-	-				-
	esistente ai solfati	-	- SI				-
Cemento resistente	all acqua di mare	-	31				SI
	dur v - ΔC_{dur} st - ΔC_{dur}	r add; 10 mm)	(Formula 4.2 UNI	EN 1992	-1-1)	I	
$c_{min} = max(c_{min,b}; c_{min,dur} + \Delta c$	c _{nom} =	c _{min} + ∆c _{dev}	(Formula 4.2 UNI (Formula 4.1 UNI		,	Δc _{dev} (mm)	10
$c_{min} = max(c_{min,b}; c_{min,dur} + \Delta c$ - Margine di scostamento Δc_{dev} (4.	c _{nom} = 4.1.3 Annesso italia	c_{min} + Δc_{dev} ano UNI EN 1992-1-1)	(Formula 4.1 UNI	EN 1992	-1-1)	$\Delta c_{ m dev}$ (mm) $c_{ m nom,min}$ (mm)	10
$c_{min} = max(c_{min,b}\;;\; c_{min,dur} + \Delta c$ - Margine di scostamento Δc_{dev} (4 Copriferro minimo per messa in op	c _{nom} = 4.1.3 Annesso italia pera su superfici irre	c_{min} + Δc_{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso	(Formula 4.1 UNI	EN 1992	-1-1)	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,dur} + \Delta c_{$	c _{nom} = 4.1.3 Annesso italia pera su superfici irre rospetto 4.2 UNI E	c_{min} + Δc_{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso	(Formula 4.1 UNI	EN 1992	-1-1)	,	10
$c_{min} = max(c_{min,b};c_{min,dur} + \Delta c_{min,dur} + \Delta c_$	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1)	(Formula 4.1 UNI o italiano UNI EN	EN 1992 1992-1-1)	-1-1)	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,dur} + \Delta c_{$	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26	c_{min} + Δc_{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso	(Formula 4.1 UNI o italiano UNI EN a) o equivalente Ø	EN 1992 1992-1-1)	-1-1)	c _{nom,min} (mm)	
c _{min} = max(c _{min,b} ; c _{min,dur} + Δc - Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in op - Copriferro minimo per aderenza (P Tipo di accia Ø (mr D _{upper} (mr	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26 n) 25	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1) diametro barra Ø (isolata dimensione max aggrega	(Formula 4.1 UNI o italiano UNI EN a) o equivalente Ø	EN 1992 1992-1-1)	-1-1)	c _{nom,min} (mm) c _{min,b} (mm)	
c _{min} = max(c _{min,b} ; c _{min,dur} + Δc - Margine di scostamento Δc _{dev} (4. - Copriferro minimo per messa in op - Copriferro minimo per aderenza (P Tipo di accia Ø (mr D _{upper} (mr - Copriferro minimo per durabilità (Ta	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26 n) 25 abella C4.1.IV NTC	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1) diametro barra Ø (isolata dimensione max aggrega	(Formula 4.1 UNI o italiano UNI EN a) o equivalente Ø	EN 1992 1992-1-1)	-1-1)	c _{nom,min} (mm)	26
 Margine di scostamento Δc_{dev} (4 Copriferro minimo per messa in op Copriferro minimo per aderenza (P Tipo di accia Ø (mr D_{upper} (mr Copriferro minimo per durabilità (Ta 	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26 n) 25 abella C4.1.IV NTC te Aggressivo	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1) diametro barra Ø (isolata dimensione max aggrega	(Formula 4.1 UNI o italiano UNI EN a) o equivalente Ø	EN 1992 1992-1-1)	-1-1)	c _{nom,min} (mm) c _{min,b} (mm) c _{min,dur} (mm)	26
c _{min} = max(c _{min,b} ; c _{min,dur} + Δc - Margine di scostamento Δc _{dev} (4. - Copriferro minimo per messa in op - Copriferro minimo per aderenza (P Tipo di accia Ø (mr D _{upper} (mr - Copriferro minimo per durabilità (Ta	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26 n) 25 abella C4.1.IV NTC te Aggressivo lle 75	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1) diametro barra Ø (isolata dimensione max aggrega	(Formula 4.1 UNI o italiano UNI EN a) o equivalente Ø ato	EN 1992 1992-1-1) in (raggru	-1-1) ppate, vedi §8.9)	c _{nom,min} (mm) c _{min,b} (mm) c _{min,dur} (mm)	26
c _{min} = max(c _{min,b} ; c _{min,dur} + Δc - Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in op - Copriferro minimo per aderenza (P Tipo di accia Ø (mr D _{upper} (mr - Copriferro minimo per durabilità (Ti Ambien Vita nomina	c _{nom} = 4.1.3 Annesso italia era su superfici irre rospetto 4.2 UNI E io Ordinario n) 26 n) 25 abella C4.1.IV NTC te Aggressivo lle 75 ls SI	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Annesso N 1992-1-1) diametro barra Ø (isolata dimensione max aggrega 2008) valori tabella +5 mm	(Formula 4.1 UNI	EN 1992 1992-1-1) in (raggrup C32/40	-1-1) ppate, vedi §8.9)	c _{nom,min} (mm) c _{min,b} (mm) c _{min,dur} (mm)	26

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	16

5. APPROCCIO DI CALCOLO

5.1 CARATTERISTICHE DELLE OPERE

Le opere oggetto della presente relazione sono state progettate e calcolate secondo i metodi della scienza delle costruzioni, adottando per le verifiche il criterio degli stati limite (S.L.).

I criteri generali di sicurezza, le azioni di calcolo e le caratteristiche dei materiali sono stati assunti in conformità con il D.M. 14.01.2008 – "Norme tecniche per le costruzioni" e relativa circolare esplicativa (Circolare 02.02.2009 n. 617/C.S.LL.PP.).

Con riferimento alle NTC, per le opere in oggetto si considerano i seguenti parametri di calcolo:

Vita nominale $V_N = 75$ anni

(§ 2.4.1 "Costruzioni con livelli di prestazioni ordinari")

Classe d'uso III

(§ 2.4.2, "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.

Dighe rilevanti per le conseguenze di un loro eventuale collasso.")

Coefficiente d'uso $C_U = 1.5$

Periodo di riferimento $V_R = V_N \cdot C_U = 112.5$ anni

5.2 CRITERI GENERALI DI VERIFICA

In accordo con quanto definito nel §2.3 delle NTC 2008, devono essere svolte le verifiche di sicurezza e delle prestazioni attese per Stati Limite Ultimi (SLU) e Stati Limite d'Esercizio (SLE) secondo opportune combinazioni di carico delle azioni.

5.2.1 Combinazioni di carico

Come riportato al §2.5.3 delle NTC 2008, si considerano le seguenti combinazioni delle azioni:

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \sum_{i=3}^n \Psi_{0j} \cdot Q_{kj} \qquad \text{Combinazione fondamentale SLU}$

 $G_1+G_2+P+Q_{k1}+\Psi_{02}\cdot Q_{k2}+\sum_{j=3}^n \Psi_{0j}\cdot Q_{kj}$ Combinazione caratteristica rara SLE

 $G_1 + G_2 + P + \Psi_{11} \cdot Q_{k1} + \sum_{j=2}^{n} \Psi_{2j} \cdot Q_{kj}$ Combinazione frequente SLE

 $G_1+G_2+P+\sum_{j=1}^n \Psi_{2j}\cdot Q_{kj}$ Combinazione quasi permanente SLE

 $\begin{array}{ll} E+G_1+G_2+P+\sum_{j=1}^n \Psi_{2j}\cdot Q_{kj} & \text{Combinazione sismica SLE e SLU} \\ G_1+G_2+P+A_d+\sum_{i=1}^n \Psi_{2i}\cdot Q_{ki} & \text{Combinazione eccezionale SLU} \end{array}$

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali

P precompressione e pretensione Q_{ki} masse dei carichi accidentali

E azione sismica A_d azione eccezionale

ψ₀, ψ₁, ψ₂ coefficienti di contemporaneità delle azioni (Tab.. 2.5.I oppure Tab.. 5.1.VI per i ponti stradali

e Tab.. 5.2.VII per i ponti ferroviari)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	17

5.2.2 Stati limite ultimi

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione:

 $R_d \ge E_d$ (Eq. 2.2.1)

E_d = E(F_d; X_d; a_d) valore di progetto della domanda, funzione dei valori di progetto delle azioni (F_d)

e dei valori nominali delle grandezze geometriche della struttura interessate (a_d)

R_d = R(F_d; X_d; a_d) capacità di progetto in termini di resistenza, duttilità e/o spostamento della

struttura, funzione delle caratteristiche meccaniche dei materiali che la compongono (X_d) e dei valori nominali delle grandezze geometriche interessate

 (a_d)

 $F_d = y_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ proprietà del materiale di progetto a_d parametri geometrici di progetto

y_M coefficiente parziale di sicurezza del materiale

Nelle verifiche agli stati limite ultimi si distinguono:

stato limite di equilibrio come corpo rigido: EQU

stato limite di resistenza della struttura compresi gli elementi di fondazione: STR

stato limite di resistenza del terreno: GEO

5.2.3 Strutture non geotecniche

Fatte salve le prescrizioni specifiche e con riferimento alle tabelle seguenti, per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, i valori dei coefficienti parziali γ_F da assumersi per la determinazione degli effetti delle azioni per le verifiche di equilibrio (SLU EQU) sono quelle della colonna EQU mentre per le verifiche strutturali (SLU STR) sono quelle della colonna A1.

Tab. 5.2.IV -Valutazione dei carichi da traffico

	to our view to the test the stage of										
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali						
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti					
Gruppo 1 (2)	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale					
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale					
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale					
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione					

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	18

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	ente		EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γG2	0,00 1,50	0,00 1,50	0,00 1,30
Ballast ⁽³⁾	favorevoli sfavorevoli	ΥВ	0,90 1,50	1,00 1,50	1,00 1,30
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	ΥQ	0,00 1,45	0,00 1,45	0,00 1,25
Azioni variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Precompressione	favorevole sfavorevo- le	γP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00 1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tabella 6 - Coefficienti parziali per le azioni nelle verifiche SLU (NTC 2008) - Ponti ferroviari

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		ψο	ψ1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{(6) 1,20} per effetti locali

Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	19

5.2.4 Strutture geotecniche

Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche strutturali (SLU STR) e geotecniche (SLU GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi.

Approccio 1

Le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali per le azioni (γ_F), la resistenza dei materiali (γ_M) e eventualmente la resistenza globale del sistema (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti della colonna A1 per una *Combinazione 1* e i coefficienti della colonna A2 per una *Combinazione 2*.

In tutti i casi, sia nei confronti del dimensionamento strutturale che per quello geotecnico si deve utilizzare la combinazione più gravosa fra le due precedenti.

Approccio 2

Le verifiche si conducono con un'unica combinazione dei gruppi di coefficienti parziali per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e eventualmente per la resistenza globale (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti γ_F riportati nella colonna A1.

Per ogni stato limite per perdita di equilibrio (SLU EQU), come definito al §2.6.1, impiegando come fattori parziali per le azioni i valori γ_F riportati nella colonna EQU della tabella 6.2.I, deve essere rispettata la condizione:

 $E_{inst,d} \le E_{stb,d}$

E_{inst,d} valore di progetto dell'azione instabilizzante E_{stb,d} valore di progetto dell'azione stabilizzante

Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (SLU STR) o del terreno (SLU GEO), come definiti al §2.6.1, impiegando diverse combinazioni di gruppi di coefficienti parziali per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3), deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F^*F_k; X_k/\gamma_M; a_d)$ valore di progetto dell'azione

 $E_d = \gamma_E * E(F_k ; X_k/\gamma_M ; a_d)$ valore di progetto dell'effetto dell'azione

 $R_d = 1/\gamma_R * R(\gamma_F * F_k ; X_k/\gamma_M; a_d)$ valore di progetto della resistenza del sistema geotecnico

 $F_d = \gamma_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ parametri geotecnici di progetto a_d parametri geometrici di progetto

γ_E coefficiente parziale di sicurezza sugli effetti delle azioni

γ_M coefficiente parziale di sicurezza del materiale

y_R coefficiente parziale di sicurezza globale sulle resistenze

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	20

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	ΥG1	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	8,0	8,0
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Tabella 8 - Coefficienti parziali per le azioni nelle verifiche SLU (NTC 2008) - Strutture geotecniche

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γε	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 9 - Coefficienti parziali per le resistenze nelle verifiche SLU (NTC 2008) - Strutture geotecniche

5.2.5 Stati limite di esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 del [14], la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $C_d \ge E_d$ (Eq. 2.2.2)

 $E_d = E(F_d; X_d; a_d)$ valore di progetto dell'effetto delle azioni

C_d = C(F_d; X_d; a_d) valore limite di progetto associato a ciascun aspetto di funzionalità esaminato

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

Il prescritto valore limite dell'effetto delle azioni deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

5.2.6 Stati limite ultimi e di esercizio sismici

Con riferimento al §3.2.1 delle NTC 2008, nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

Gli Stati limite di esercizio (SLE) comprendono:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	21

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo
 gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione,
 non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Con riferimento al §3.2.1 delle NTC 2008, per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto. Le verifiche degli *elementi strutturali primari (ST)* si eseguono, come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU):

- nel caso di <u>comportamento strutturale non dissipativo</u>, in termini di *rigidezza (RIG)* e di *resistenza (RES)*,
 senza applicare le regole specifiche dei dettagli costruttivi e della progettazione in capacità;
- nel caso di comportamento strutturale dissipativo, in termini di rigidezza (RIG), di resistenza (RES) e di duttilità (DUT) (quando richiesto), applicando le regole specifiche dei dettagli costruttivi e della progettazione in capacità.

Le verifiche degli elementi strutturali secondari si effettuano solo in termini di duttilità, mentre le verifiche degli elementi non strutturali (NS) e degli impianti (IM) si effettuano in termini di funzionamento (FUN) e stabilità (STA), come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU).

Per le verifiche dettagliate di ogni parte strutturale si rimanda al capitolo §7 delle NTC 2018.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	22

Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti

		CUI		CU II			CU III e IV	
STATI	LIMITE	ST	ST NS IM		IM	ST	NS	IM ^(*)
CLE	SLO					RIG		FUN
SLE	SLD	RIG	RIG			RES		
CIII	SLV	RES	RES	STA	STA	RES	STA	STA
SLU SLC			DUT(**)			DUT ^(**)		

[🖱] Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

Tabella 10 – Schema delle verifiche da attuare per gli elementi strutturali primari in base alla tipologia, allo stato

^(**) Nei casi esplicitamente indicati dalle presenti norme.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	23

5.3 SOFTWARE DI CALCOLO

Sono stati utilizzati i programmi di calcolo elencati nel seguito. La scrivente ha esaminato preliminarmente la documentazione a corredo dei software per valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. Tale documentazione, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati. Il sottoscritto, inoltre, ha verificato l'affidabilità dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.3.1 Analisi strutturale generica

Titolo:

Caratteristiche: Programma di calcolo strutturale agli elementi finiti che esegue il calcolo di strutture

spaziali composte da elementi mono e/o bidimensionali anche con non linearità di

materiale o con effetti dinamici

Autore: G + D Computing Pty Limited - Sidney NSW 2000 Australia

Distribuzione: HSH srl - Padova Italia

Versione: 2.4.6

5.3.2 Verifiche sezioni strutturali

Titolo:

Caratteristiche: Programma per la verifica di sezioni generiche Autore: Aztec Informatica – Casole Bruzio, Cosenza

Distribuzione: Aztec Informatica S.r.l.

Versione: 10.05a

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMM	ESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIC	В	02	Ε	ZZ	CL	VI	03	04	001	В	24

Titolo:

Sezione generica in C.A. e C.A.P. VERIFICHE A PRESSO-FLESSIONE Stato Limite Ultimo Metodo n

Progetto a flessione e taglio di sezione rettangolare

Progetto pilastri in zona sismica

Il modulo Progetto Sezione Rettangolare è stato sviluppato nella tesi di laurea dell'Ing. Davide Pari (2001)

Il modulo Sismica è stato parzialmente sviluppato nella tesi di laurea degli Ingg. Alberto Antonini e Giovanni Tanghetti (2006)

by Prof. Piero Gelfi

VERSIONE 7.8 (novembre 2021)

Aggiornamnento sviluppato da Ing. Paolo Bertacchini con il supporto dell'Ordine degli Ingegneri della Provincia di Brescia. Supervisione Prof. Giovanni Metelli.

free distribution

vietata la vendita

Caratteristiche: Programma per la verifica di sezioni generiche

Autore: Prof. Piero Gelfi Distribuzione: Distribuzione libera

Versione: 7.8

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	25

5.4 VALIDAZIONE PROGRAMMI DI CALCOLO

5.4.1 Analisi e verifiche svolte con l'ausilio di codici di calcolo

Ai sensi del §10.2 delle NTC 2008 si dichiara quanto segue.

5.4.2 Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di più codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. Per quanto riguarda i criteri di modellazione e le caratteristiche dei programmi utilizzati si rimanda ai relativi paragrafi.

5.4.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza dei codici di calcolo sono garantite attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.4.4 Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

5.4.5 Informazioni generali sull'elaborazione

I software prevedono una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

5.4.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	26

6. CARATTERIZZAZIONE GEOTECNICA

6.1 CATEGORIA DI SOTTOSUOLO

Dalle indagini sismiche (M21, M22) è possibile determinare la categoria di sottosuolo di riferimento per la definizione dell'azione sismica; per l'opera in esame si assume una categoria di sottosuolo C.

6.2 CAPACITÀ PORTANTE DEI PALI E STRATIGRAFIA DI PROGETTO

Vedi relazioni di calcolo di verifica pali.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	27

7. ANALISI DEI CARICHI

7.1 AZIONI PERMANENTI STRUTTURALI (G1)

Nome	γ _G	ψο	Ψ1	Ψ2
	(Fav / Sfav)			
PP (cat. G ₁)	1.00 / 1.30	-	-	
PP (ponti stradali)	1.00 / 1.35	-	-	-

Per gli elementi in c.a. si considera un peso specifico $\gamma c = 25 \text{ kN/m}^3$, per gli elementi in acciaio $\gamma s = 78.5 \text{ kN/m}^3$.

Per le valutazioni sul calcolo degli scarichi agli appoggi delle singole campate fare riferimento alle rispettive relazioni di calcolo impalcato associate, per i valori delle azioni vedi tabella di riepilogo.

Le azioni permanenti strutturali comprendono il peso proprio della carpenteria metallica e il peso proprio della soletta.

Per il peso proprio della carpenteria metallica è stata considerata una incidenza di 400 kg/m3, che si traduce come un peso di 270 kN.

Per il peso proprio della soletta, si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 40 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in acciaio di luce L=40 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

Nome	R₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP carpenteria metallica	270	270	270	270
Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
PP soletta	52	20	20	52

Reazioni totali appoggio	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G ₁)	1310	670	670	1310

7.2 AZIONI PERMANENTI NON STRUTTURALI (G₂)

Nome	Υ G (Fav / Sfav)	Ψο	Ψ1	Ψ2
PP (ponti ferroviari)	1.00 / 1.50	-	-	-

Per le valutazioni sul calcolo degli scarichi agli appoggi delle singole campate si fa riferimento all'analisi dei carichi impalcato, che sono ricavate del modello locale usato per l'analisi della soletta, riportate sulla relazione di calcolo dell'impalcato in acciaio di luce L=40 m.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	28

Si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 40 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in acciaio di luce L=40 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

7.2.1 Ballast (G_{2,1})

	Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
-	Ballast	26	40	40	26

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	320	980	980	320

Inoltre, sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal peso del cassonetto di ballast, di larghezza circa 9.00 m, spessore 0.80 m e peso specifico 20 kN/m³.

Si valuta come carico permanente associato una pressione uniforme mediata sulla larghezza della spalla di 13.50 m, come di seguito esposto:

G2 = (0.80*20*8.2)/(13.50) = 9.72 kPa

Si ha pertanto una spinta a riposo distribuita sull'altezza libera fuori terra della spalla e di larghezza pari alle elevazioni spalle.

7.2.2 Velette (G_{2,2})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Velette	14	-7	-7	14

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R₄ [kN]
PP (cat. G _{2,2})	280	-140	-140	280

7.2.3 Arredi (G_{2,3})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Arredi	26	-5	-5	26
Grigliati	1	2	2	1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	29

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,3})	540	-60	-60	540

7.2.4 Barriere antirumore (G_{2,4})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Barriere	35	-15	-15	35

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,4})	700	-300	-300	700

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	30

7.3 RITIRO DEL CALCESTRUZZO (E2)

Nome	Tipo	Υ ε2	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
RITIRO (ponti ferroviari)	Ritiro, viscosità,	EQU 0.00 / 1.20	-	-	-
	cedimenti imposti	(A1) 0.00 / 1.20			
		(A2) 0.00 / 1.00			

Dato che il ritiro dipende dal tempo di maturazione del calcestruzzo, dalla resistenza e dalle condizioni ambientali, gli effetti possono evidenziarsi sia in fase di costruzione sulla sezione mista composta da due materiali di diverso modulo elastico (ritiro primario) sia a lungo termine sulla statica globale dell'impalcato (ritiro secondario).

Nel primo caso l'accorciamento primario della soletta determina l'insorgenza di tensioni di scorrimento all'interfaccia soletta-trave e uno stato di pressoflessione della sezione mista.

Nel secondo caso l'accorciamento secondario della soletta determina l'insorgenza di reazioni iperstatiche sulla statica globale dell'impalcato.

Nel caso in cui l'impalcato presenti uno schema isostatico, il ritiro secondario viene interamente assorbito dalle sezioni resistenti longitudinali con l'insorgenza di sole deformazioni cinematiche e nessuna tensione aggiuntiva, pertanto tale azione non viene trattata direttamente per il calcolo delle sottostrutture in oggetto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	31

7.4 SPINTA DEL TERRENO (G₃)

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

Nome	Tipo	γ G1	ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
TERRENO, FALDA	Permanente	EQU 0.90 / 1.10 (A1) 1.00 / 1.30 (A2) 1.00 / 1.00	-	-	-

Le condizioni di spinta sono assunte in base agli spostamenti delle pareti, ovvero del grado di mobilitazione necessario per innescare il regime di spinta, vedi a riguardo le indicazioni contenute nell'EC7.

Table C.1 — Ratios v₂/h

Kind		v₂/h	v₂/h						
wall	movement	loose soil	dense soil						
		%	%						
a)	V _a	0,4 to 0,5	0,1 to 0,2						
b)	V _a c	0,2	0,05 to 0,1						
c)	v _a	0,8 to 1,0	0,2 to 0,5						
d)	V ₂	0,4 to 0,5	0,1 to 0,2						
where: v _a is the wall motion to mobilise active earth pressure h is the height of the wall									

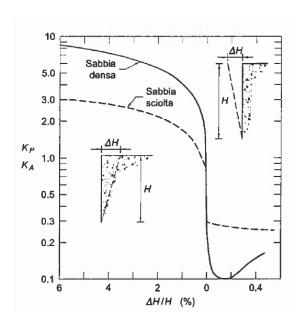


Figura 5 - Spostamenti relativi muro-terreno necessari per il raggiungimento di un regime di spinta attiva secondo EC7 Annex C e Lancellotta (1999)

7.4.1 Spinta a riposo

La spinta statica totale sulla parete S_{0h} si calcola secondo le seguenti relazioni:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	32

$$S_{0h} = \int_0^H \sigma_h(z) dz$$

spinta a riposo statica totale sul muro

$$\sigma_h(z) = \sigma_v(z)^* k_0$$

pressione orizzontale di spinta del terreno

Per piano campagna orizzontale si fa riferimento alla seguente correlazione (Jaky, 1944 e Schmidt, 1966):

$$k_o = 1-sen(\phi')*OCR^{\alpha}$$

$$OCR = 1$$

grado di sovraconsolidazione

$$\alpha = 0.5$$

Per pendio inclinato (β) si può considerare che la spinta a riposo sia parallela al p.c. e che il coefficiente k_o valga:

$$k_o = (1-sen(\phi')*OCR^{\alpha})*(1+sen \beta)$$

$$\beta = 0$$

angolo inclinazione tra profilo e piano orizzontale

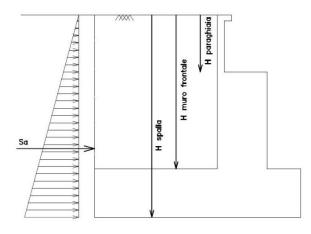


Figura 6: Schema per il calcolo degli effetti della spinta statica del terreno

7.4.2 Spinta attiva

Il coefficiente di spinta attiva (K_a) viene valutato ricorrendo alla correlazione generale di Mueller-Breslau basata sulla teoria di Coulomb e riferita a superfici di rottura piane. In questo caso l'approssimazione (rispetto a quanto si sarebbe ottenuto considerando superfici di rottura di geometria complessa) risulta molto contenuta e a favore di sicurezza.

La spinta attiva statica totale sulla parete Sah si calcola secondo le seguenti relazioni:

$$S_{ah} = \int_0^H \sigma_h(z) dz$$

spinta attiva statica totale sul muro

$$K_{a} = \frac{\text{sen}^{2}(\psi + \phi)}{\text{sen}^{2}\psi \cdot \text{sen}(\psi - \delta) \left[1 + \sqrt{\frac{\text{sen}(\phi + \delta) \cdot \text{sen}(\phi - \beta)}{\text{sen}(\psi - \delta) \cdot \text{sen}(\psi + \beta)}}\right]^{2}}$$

coefficiente di spinta attiva

$$\begin{split} &\sigma_{h}(z) = \sigma_{h}(z) \cdot \mathsf{K}_{a} \text{-} 2 \cdot c \cdot \sqrt{\mathsf{K}_{a}} \\ &\sigma_{v}(z) \\ &\mathsf{H} \end{split}$$

pressione orizzontale di spinta del terreno pressione verticale del terreno altezza della parete di spinta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	33

 $\phi \\ \delta = 0 \\ \psi = 90^{\circ} \\ \beta \\ c$

angolo attrito del terreno attrito tra terreno e parete angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale coesione del terreno

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni, viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

 $\gamma' = \gamma_{sat} - \gamma_{w}$

 $\sigma'_{v}(z)$

 E_{ws}

 E_{wd}

γ_{sat} peso di volume saturo del terreno (dipendente dall'indice dei pori)

yw peso di volume dell'acqua

 $S_{ah} = \int_0^H \sigma'_h(z) dz + E_{ws} + E_{wd}$ spinta attiva statica totale efficace sul muro

 $\sigma'_h(z) = \sigma'_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$ pressione orizzontale di spinta efficace del terreno

pressione verticale efficace del terreno

spinta idrostatica spinta idrodinamica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	34

7.5 AZIONI VARIABILI VERTICALI (Q)

7.5.1 Azioni da traffico ferroviario (Q₁)

Nome	Tipo	γα		Ψο	Ψ1	Ψ2
		(Fav / Sfav)				
AZIONI VERTICALI	Variabili	EQU 0.00 / 1.45	Singole	0.80	0.50	0.00
	da traffico	(A1) 0.00 / 1.45	gr.1	0.80	0.80	0.00
	ferroviario	(A2) 0.00 / 1.25	gr.2	-	-	-
			gr.3	0.80	0.80	0.00
			gr.4	1.00	1.00	0.00

Si considerano i sovraccarichi ferroviari in accordo al $\S5.2.2.3$ delle NTC2008, per mezzo di diversi modelli di carico rappresentativi delle tipologie di traffico ferroviario, normale o pesante. I valori dei suddetti carichi saranno poi moltiplicati per un coefficiente di adattamento α , variabile in ragione della tipologia dell'infrastruttura (ferrovie ordinarie, ferrovie leggere, metropolitane, ecc.).

Per i requisiti S.T.I. imposti sulla tratta ferroviaria in progetto, per le categorie di traffico passeggeri P2/P4 il coefficiente α = 1.0 e per le categorie merci F1 il coefficiente α = 1.0.

Nei dimensionamenti per le opere in oggetto, rimanendo a favore di sicurezza, si considerano i coefficienti imposti dalle NTC2008, superiori o uguali a quelli S.T.I., come descritto nei paragrafi successivi per i singoli modelli di carico.

Tabella 11
Fattore alfa (α) per la progettazione di strutture nuove

Tipo di traffico	Valore minimo del fattore alfa (α)		
P1, P2, P3, P4	1,0		
P5	0,91		
P6	0,83		
P1520	Punto in sospeso		
P1600	1,1		
F1, F2, F3	1,0		
F4	0,91		
F1520	Punto in sospeso		
F1600	1,1		

Figura 7 – Specifiche Tecniche di Interoperabilità (S.T.I.) - Requisiti carichi da traffico ferroviario

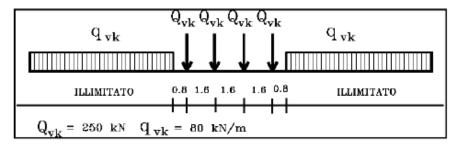
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	35

7.5.1.1 Modello di carico LM71

Il treno LM71 è schematizzato da n°4 assi da 250 kN su una lunghezza di 6.40 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una lunghezza illimitata.



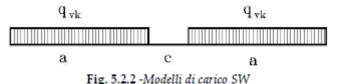

Fig. 5.2.1 - Modello di carico LM71

Figura 8 – Schema treno di carico LM71

Per questo modello è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s per tenere conto dello spostamento dei carichi. Per s=1435 mm risulta pari a s/18=80 mm. Per la progettazione di ferrovie ordinarie il valore del coefficiente di adattamento è α =1.1.

7.5.1.2 Modello di carico SW

Per tale modello di carico, sono considerate due distinte configurazioni, il modello di carico SW/0 schematizza gli effetti statici prodotti dal traffico ferroviario normale per travi continue (utilizzato solo per travi continue qualora più sfavorevole dell'LM71), il modello di carico SW/2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

rig. 5.2.2 Wokeli ki ca ko 5

Tab. 5.2.I - Caratteristiche Modelli di Carico SW

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]	
SW/0	133	15,0	5,3	
SW/2	150	25,0	7,0	

Figura 9 – Schema treno di carico SW

Il valore del coefficiente di adattamento da adottarsi nella progettazione delle ferrovie ordinarie è pari, rispettivamente, a α =1.1 per il modello di carico SW/0 ed a α =1.0 per il modello di carico SW/2.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	36

7.5.1.3 Effetti dinamici

Le azioni statiche dei modelli di carico devono essere incrementate per tenere conto della natura dinamica del transito dei convogli, gli effetti di amplificazione dinamica dovranno valutarsi:

- per le usuali tipologie di ponti e per velocità di percorrenza non superiore a 200 km/h, quando la frequenza propria della struttura ricade all'interno del fuso indicato nella figura seguente è sufficiente utilizzare i coefficienti dinamici Φ definiti in §5.2.2.2.3 D.M. 14/01/2008. Come riportato in § 2.5.1.4.2.5.2 del MdP, si adotta il coefficiente dinamico Φ₃=1.00 poiché si sta studiando il comportamento di una spalla;
- per le usuali tipologie di ponti, ove la velocità di percorrenza sia superiore a 200 km/h e quando la frequenza propria della struttura non ricade all'interno del fuso indicato nella figura seguente, e comunque per le tipologie non convenzionali (ponti strallati, ponti sospesi, ponti di grande luce, ponti metallici difformi dalle tipologie in uso in ambito ferroviario, ecc.) dovrà effettuarsi una analisi dinamica adottando convogli "reali" e parametri di controllo specifici dell'infrastruttura e del tipo di traffico ivi previsto, per ulteriori dettagli fare riferimento alle valutazioni contenute nella relazione di calcolo degli impalcati presenti sulla sottostruttura in oggetto.

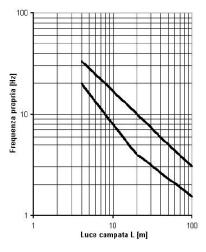


Fig. 5.2.7 - Limiti delle frequenze proprie no in Hz in funzione della luce della campata

Figura 10 – Limiti frequenze proprie per il calcolo del coefficiente dinamico Φ

7.5.1.4 Calcolo per campata L=40 m

Gli effetti sui singoli impalcati indotti dalle azioni da traffico, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Е	ZZ	CL	VI	03	04	001	В	37

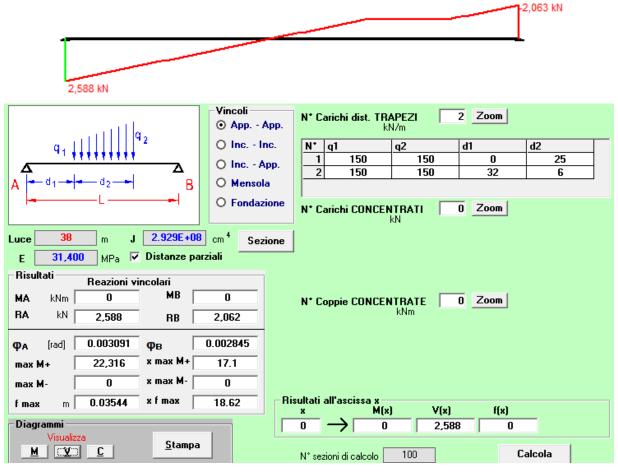
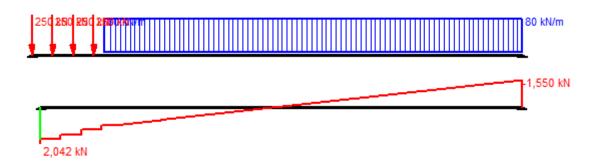



Figura 11 – Condizione di massimo taglio all'appoggio – Modello di carico SW/2

$$\begin{split} V_{\text{max}} &= 2588 \text{ kN} \\ q'_{\text{V}} &= V_{\text{max}} \: / \: (\text{L/2}) = 2588 \: / \: (38.00/2) = 136.2 \text{ kN} \\ Q_{1} &= \Phi_{3}^{*} \alpha^{*} q'_{\text{V}}^{*} \text{L/2} = 1.00^{*} 1.00^{*} 136.2^{*} 38.00/2 = 2587.8 \text{ kN} \end{split}$$

(Q1_SW/2 B1)
Carico equivalente tagliante
Azione verticale applicata con e=+2.00 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	38

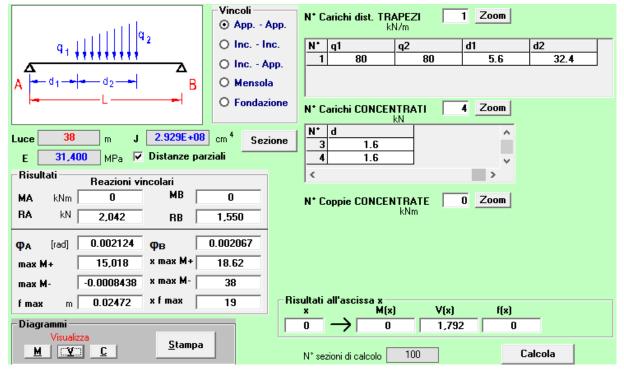


Figura 12 - Condizione di massimo taglio all'appoggio - Modello di carico LM71

$$\begin{split} V_{\text{max}} &= 2042 \text{ kN} \\ q'_{\text{V}} &= V_{\text{max}} \, / \, (\text{L/2}) = 2042 \, / \, (38.00/2) = 107.5 \text{ kN} \\ Q_{1} &= \Phi_{3} ^{*} \alpha^{*} q'_{\text{V}} ^{*} \text{L/2} = 1.092 ^{*} 1.10 ^{*} 107.5 ^{*} 38.00/2 = 2246.8 \text{ kN} \\ V_{\text{max}} &= 2042 \text{ kN} \end{split}$$

 $Q_1 = \Phi_3 \alpha^* q'_V L/2 = 1.092 1.10 107.5 38.00/2 = 2246.8 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 2042 / (38.00/2) = 107.5 \text{ kN}$

Azione verticale applicata con e=+2.08 m

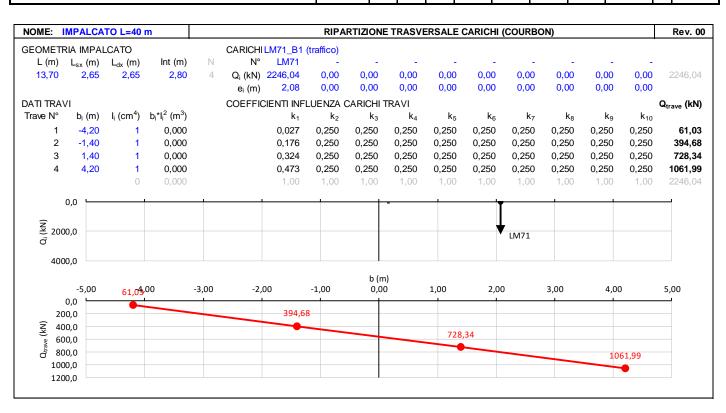
(Q1_LM71 B2)

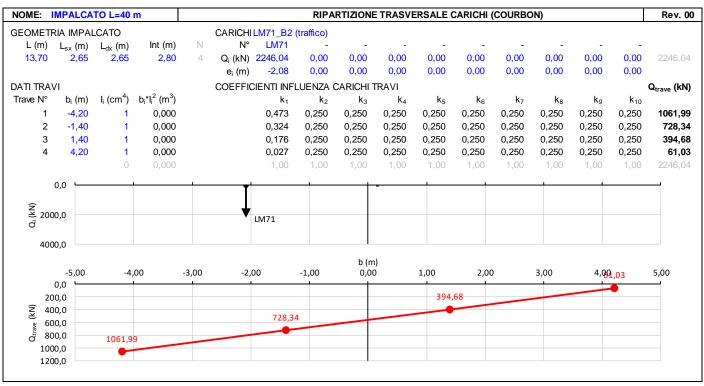
Carico equivalente tagliante

Azione verticale applicata con e=-2.08 m

Carico equivalente tagliante

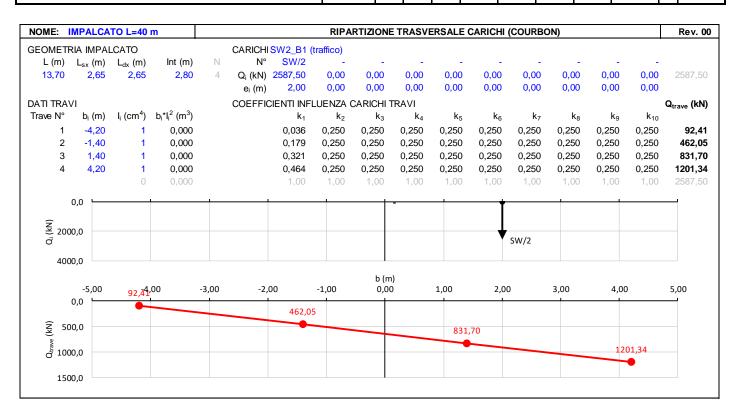
(Q1_LM71 B1)


Le precedenti azioni vengono rigidamente distribuite alla Courbon calcolando in prossimità degli appoggi trave le reazioni verticali di equilibrio.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	39



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	40

7.5.1.5 Decentramento dei carichi in tracciato curvilineo

Ai fini del calcolo delle sottostrutture, per un tracciato di lunghezza L=40 m, raggio massimo ipotetico di R=2200 m, si ha un decentramento del carico pari a circa e=R- $\sqrt{(R^2-L^2/4)}$ =0,091 m; pertanto, si ritiene tale effetto trascurabile in relazione alle dimensioni geometriche della sezione di appoggio.

7.5.1.6 Carichi sui marciapiedi

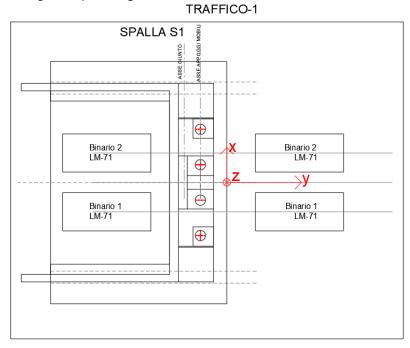
In accordo al punto 5.2.2.3.2, il carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e viene quindi utilizzato solo per le verifiche locali della soletta di impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	41

7.5.1.7 Numero di treni contemporanei

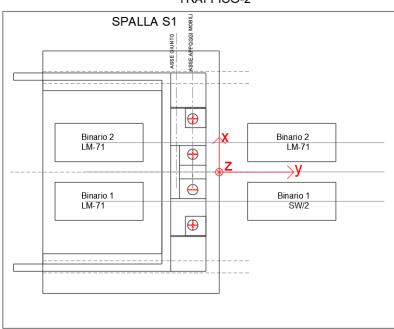

Nella progettazione andrà considerata l'eventuale contemporaneità di più treni, in genere sia per traffico normale (LM71) sia per traffico pesante (SW/2). Le azioni da traffico considerano una configurazione in campata, davanti alla spalla, in cui si massimizza il taglio all'appoggio.

Dietro la spalla si è considerato un sovraccarico da traffico generato dalla presenza del treno di carico LM71 su entrambi binari dietro la spalla, che si considera in contemporaneo alla presenza dei treni di carico in campata.

Le condizioni da traffico in campata valutate per le spalle sono descritte in seguito:

- Traffico-1: Due treni di carico in contemporaneo: LM71 sul binario 1 "+" LM71 sul binario 2.
- Traffico-2: Due treni di carico in contemporaneo: SW2 sul binario 1 "+" LM71 sul binario 2
- Traffico-3: Un treno di carico: SW2 sul binario 1.

Nella figura successiva vengono riportati gli schemi considerati:



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	42

TRAFFICO-2

TRAFFICO-3

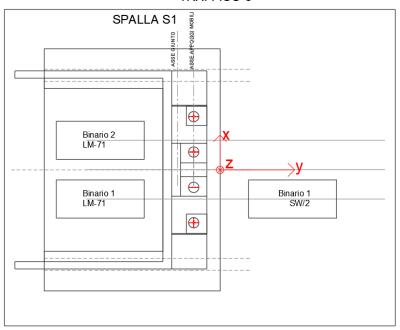


Figura 13 – Schemi di contemporaneità dei treni sui binari

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	43

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
23	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Figura 14 – Carichi mobili da considerare nel caso di strutture a più binari

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	44

7.6 AZIONI ECCEZIONALI (A)

7.6.1 Deragliamento al di sopra del ponte

In accordo col §2.5.1.5 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende il contenuto del §5.2.2.9.2 delle NTC08, oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere si dovrà tenere conto della possibilità alternativa che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto.

7.6.1.1 Impalcato in acciaio di luce L=40 m

7.6.1.1.1 Caso 1

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Tali carichi saranno posizionati longitudinalmente su una lunghezza di 6,40 m. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12. Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

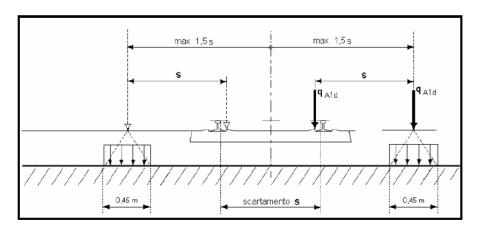


Figura 5.2.12 - Caso 1

Figura 15 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 1

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	45

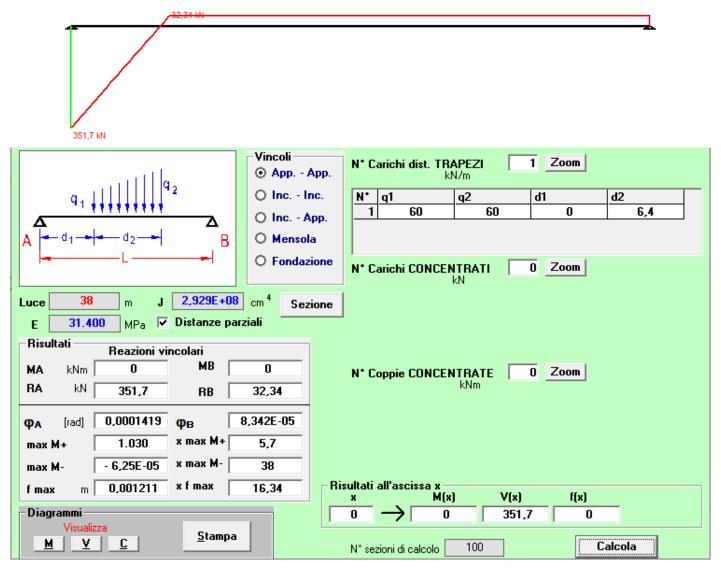


Figura 16 - Deragliamento al di sopra del ponte - Caso 1

 $V_{max} = 351.7 \text{ kN}$

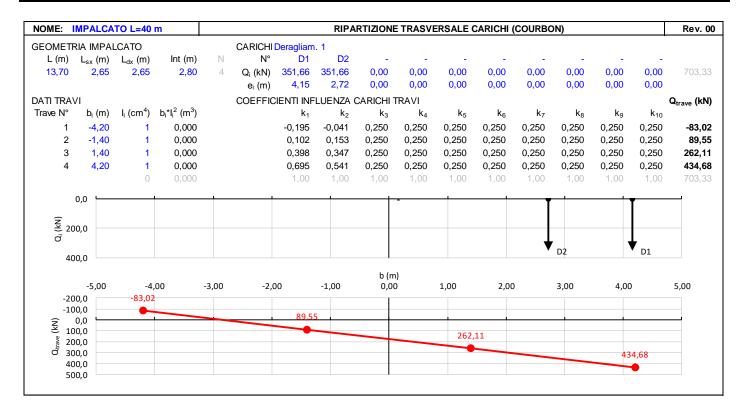
 $q'_V = V_{max} / (L/2) = 351.7 / (38.00/2) = 18.5 \text{ kN/m}$

 $Q_1 = q'_V L/2 = 18.5*38.00/2 = 351.50 \text{ kN}$

 $Q_1 = q' \vee L/2 = 18.5*38.00/2 = 351.50 \text{ kN}$

Carico equivalente tagliante

Azione verticale applicata e=+2.00+1.435*1.5=4.15 m


Azione verticale applicata e=+2.00+1.435*0.5=2.72 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	46

7.6.1.1.2 Caso 2

Si considera un unico carico lineare $q_{A2d} = 80$ kN/m x 1.4 esteso per 20,00 m e disposto con una eccentricità massima, lato esterno, di 1,50 s rispetto all'asse del binario (Fig. 5.2.13). Per questa condizione convenzionale di carico andrà verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta, ecc. Per impalcati metallici con armamento diretto, il caso 2 dovrà essere considerato solo per le verifiche globali.

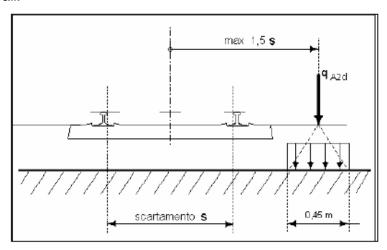


Figura 5.2.13 - Caso 2

Figura 17 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 2

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

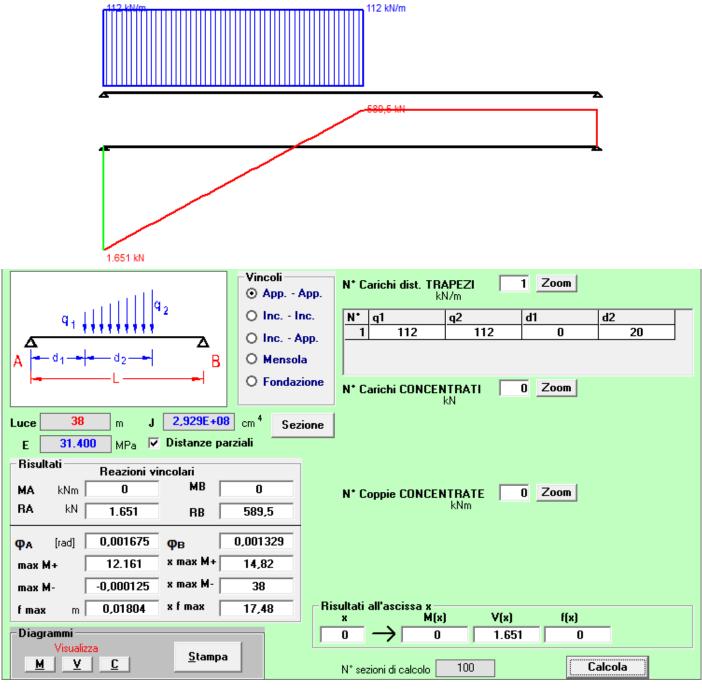
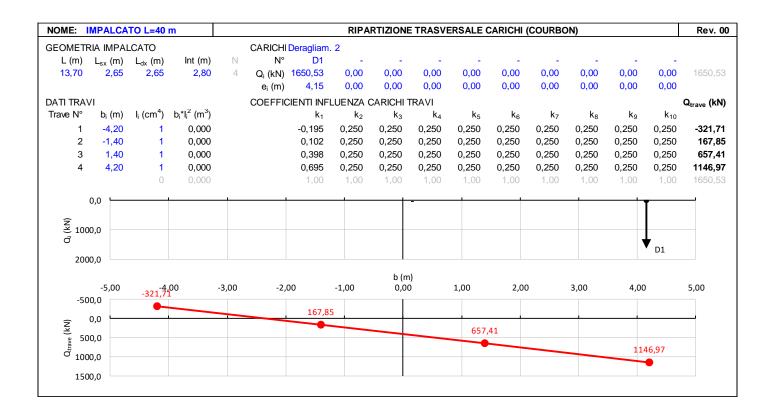


Figura 18 – Deragliamento al di sopra del ponte – Caso 2

$$\begin{split} V_{max} &= 1651 \text{ kN} \\ q'_{V} &= V_{max} \, / \, (L/2) = 1651 \, / \, (38.00/2) = 86.9 \text{ kN/m} \\ Q_{1} &= q'_{V} ^{*} L/2 = 86.9 ^{*} 38.00/2 = 1651.1 \text{ kN} \end{split}$$


Carico equivalente tagliante Azione verticale applicata e=+2.00+1.435*1.5=4.15 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	48

7.6.1.1.3 Effetti sulla sottostruttura

Dato che le condizioni di carico previste sono da considerarsi solo per le verifiche eccezionali SLU con coefficiente unitario, mediante analisi preliminari si è accertato che tali combinazioni di azioni sollecitano la sottostruttura all'interno del campo di esercizio delle combinazioni SLU; pertanto, per brevità di trattazione non sono state direttamente esplicitate nei calcoli di dimensionamento dei capitoli successivi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	VI 03 04			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	49

7.7 AZIONI VARIABILI ORIZZONTALI (Q)

7.7.1 Azioni da traffico ferroviario (Q₁)

Sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal transito ferroviario esterno. Come da normativa, si ipotizza come larghezza totale transitabile il tratto di profilo dove i carichi possono interagire con l'opera di sostegno, ovvero al di sopra della fondazione e all'interno del cuneo di spinta del terreno sulla parete.

Considerando caricati entrambi i binari, si valuta come carico accidentale associato una pressione uniforme media, come di seguito esposto:

 $q = \frac{1}{L_T \cdot L_L} \cdot \sum_1^n Q_i$ pressione uniforme media sull'area caricata $L_T^*L_L$

L_L = 6.40 m lunghezza longitudinale interessata dai carichi

(lunghezza fondazione di monte spalla, comprensiva del cuneo di spinta del

terreno)

L_T = 13.50 m larghezza trasversale transitabile (larghezza spalla)

Spalla S1

q = 1/(6.40*13.50)*(4*250)*2 = 23.15 kPa

Si ha pertanto una spinta a riposo distribuita sull'altezza libera fuori terra della spalla e di larghezza pari alle elevazioni spalle.

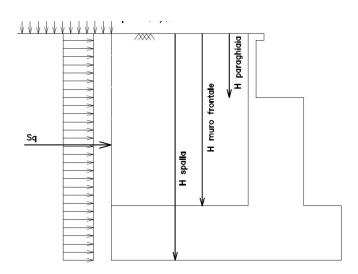


Figura 19: Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	50

7.7.1.1 Azione da traffico ferroviario sul muro paraghiaia

Al fine della valutazione degli effetti locali dei carichi verticali ferroviari sul muro paraghiaia è necessario operare una distribuzione degli stessi in direzione trasversale, eseguendo una diffusione del carico, a partire dalla larghezza della traversina ed ¼ attraverso la massicciata, per una lunghezza pari a:

b = (0.80-0.26)/4 * 2 + 2.40 = 2.67 m

laddove si sono considerate le seguenti caratteristiche geometriche:

	[m]
Altezza ballast	0.80
Altezza traversina	0.26
Larghezza traversina	2.40

Si considerano i carichi relativi al modello SW/2 visto che rappresentano una condizione più gravosa rispetto al modello di carico LM71, i cui vengono distribuiti secondo lo schema di Fig. 5.2.4 al §5.2.2.3.1.4 delle NTC2008.

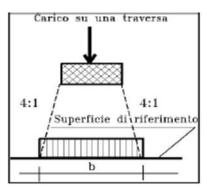


Fig. 5.2.4 - Distribuzione longitudinale dei carichi attraverso il ballast

In accordo con quanto riportato al par. 7.5.1 della presente relazione, si moltiplicano i valori dei carichi per il coefficiente di adattamento, ottenendo quindi:

TRENO SW/2 Q1 = 150 kN/m * 1.0 = 150.00 kN/m

Valore amplificato del carico longitudinale qvk

L'eccentricità non è da considerarsi per il caso di treno di carico SW/2, per il quale quindi si effettua la ripartizione semplicemente dividendo il valore q1 per la lunghezza b = 2.67 m, risultando dunque in una distribuzione di tensioni sul muro paraghiaia pari a:

 σ = 150.00 kN/m / 2.67 m = 56.18 kN/m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	51

7.7.2 Forza centrifuga (Q₄)

Nome	Tipo	γ α	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
CENTRIFUGA	Variabili da traffico ferroviario	0.00 / 1.45	0.80	0.50	0.00

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva.

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F..

Le forze centrifughe sono valutate in accordo al par. 2.5.1.4.3.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture: "RFI DTC SI PS MA IFS 001 E".

Il valore caratteristico della forza centrifuga si determinerà in accordo con la seguente espressione:

$$q_{tk} = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$

qtk valore caratteristico della forza centrifuga, espresso in kN/m

q_{vk} valore caratteristico dei carichi verticali ferroviari, espresso in kN/m

V velocità di progetto, espressa in km/h

f fattore di riduzione

R raggio di curvatura, espresso in m

Nel caso in esame essendo V=200 km/h vanno considerati i seguenti casi di calcolo:

	Massima velocità della		Azio	ne centri	fuga basata su:	traffico verticale
Valore di α	linea [Km/h]	v	α	f		associato
SW/2	≥ 100	100	1	1	1 x 1 x SW/2	
	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

In particolare, per il treno LM71 andrà considerata la condizione più sfavorevole tra le due indicate in tabella. Nel caso in esame il viadotto si sviluppa in rettifilo, pertanto la forza centrifuga è nulla.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

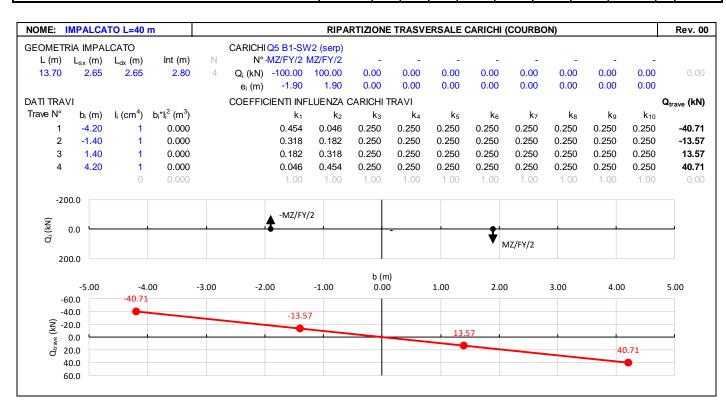
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	52

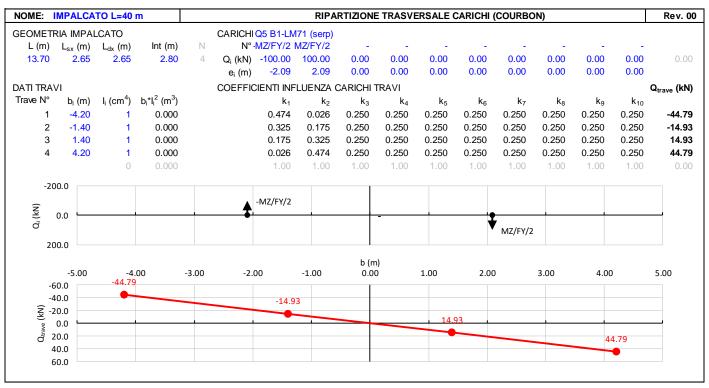
7.7.3 Azione laterale serpeggio (Q₅)

Nome	Tipo	γ Q	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
SERPEGGIO	Variabili da traffico ferroviario	0.0 / 1.45	0.80	0.50	0.00

L'azione laterale associata al serpeggio è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario, del valore di 100 kN. Tale valore deve essere moltiplicato per il coefficiente di adattamento α .

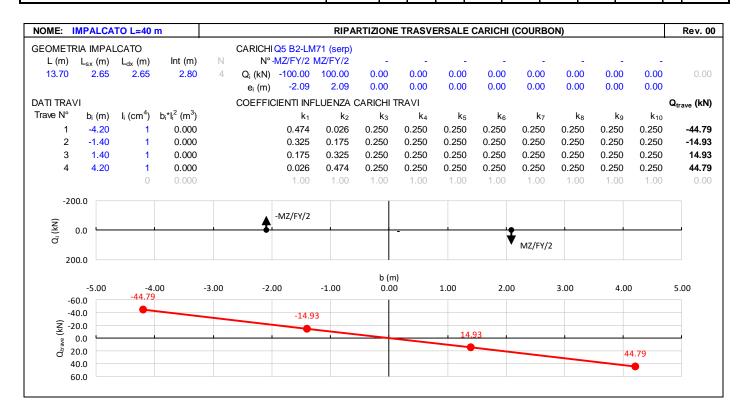
Gli effetti sui singoli impalcati indotti dall'azione di serpeggio, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti (modellate come azioni verticali di 100 kN eccentriche) in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.


NOME: IN	/IPALCAT	O L=40 m		CALCOL	O FORZA SERPEGGIO		Rev. 00
Q _{serp} (kN)	100.0	Azione caratte	eristica di serpeç	ggio	Distanza PF/appoggi (m)	3.80	
TRENO LM71	e SW/0		TRENO SW/2				
α (-)	1.10		α (-)	1.00			
Q _{sk} (kN)	110.0		Q _{sk} (kN)	100.0	Forza serpeggio caratt. trasv	<i>e</i> rsal	е
M _{tk} (kNm)	418.00		M _{tk} (kNm)	380.00	Momento torcente forza serp	eggic	caratt.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	53



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	54

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	55

7.7.4 Azioni di avviamento e frenatura (Q₃)

L'azione orizzontale associata all'avviamento e alla frenatura dei treni è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, parallelamente all'asse del binario.

	Nome	Tipo	γα	Ψο	Ψ1	Ψ2
			(Fav / Sfav)			
Ī	TRAFFICO LM71	Carichi da traffico	0.00 / 1.45	0.80	0.50	0.00
	TRAFFICO SW/2	ferroviario	0.00 / 1.45	0.80	0.50	0.00

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento α, sono:

Avviamento

Q_{3a,k} = 33 [kN/m] * L [m]≤ 1000 KN modelli di carico LM71, SW/0, SW/2

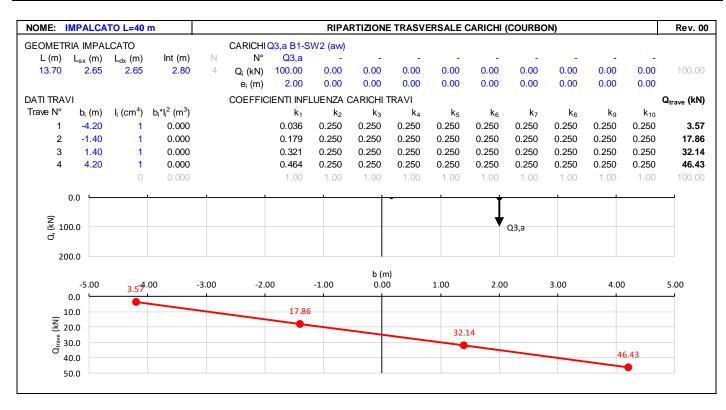
Frenatura

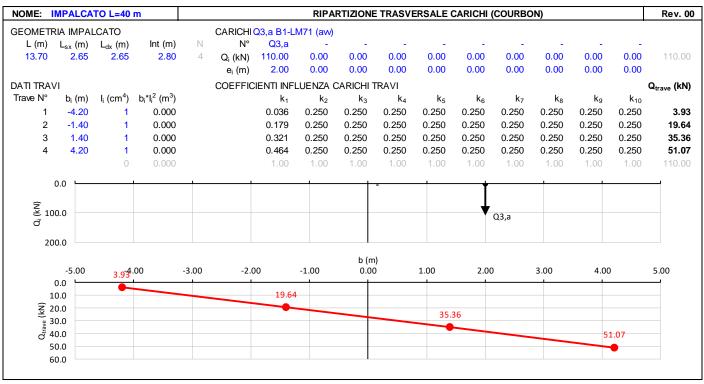
 $Q_{3f,k} = 35 [kN/m] * L [m]$ modelli di carico SW/2

 $Q_{3f,k} = 20 \text{ [kN/m]} * L \text{ [m]} \le 6000 \text{ KN}$ modelli di carico LM71, SW/0

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura; pertanto, per ogni binario (B1 o B2) si può avere:

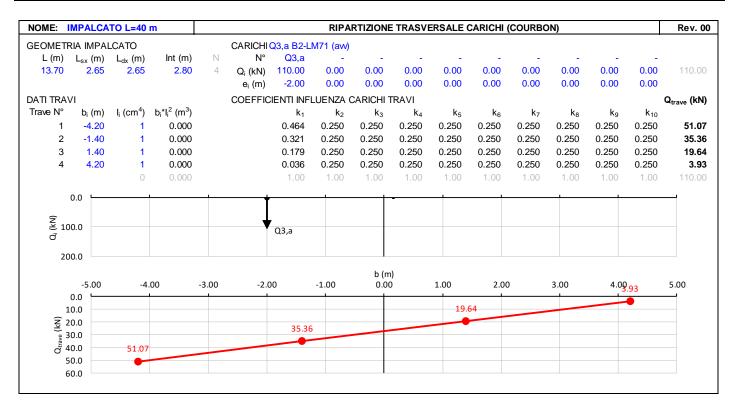
NOME: IN	/IPALCAT	O L=40 m	CALCO	LO FORZ	A AVVIAMENTO / FRENATURA	Rev. 00
L calcolo (m) L (m)	38.00 40.00	Lunghezza tra Lunghezza di l	11 00		Distanza PF/appoggi (m) 3.80	
TRENO LM71	e SW/0		TRENO SW/2			
α (-)	1.10		α (-)	1.00		
Q _{3,f} (kN)	880.0		Q _{3,f} (kN)	1400.0	Forza frenatura caratt. longitudina	le
V _{3,f} (kNm)	88.0		V _{3,f} (kNm)	140.0	Forza frenatura caratt. verticale	
Q _{3,a} (kN)	1100.0		Q _{3,a} (kN)	1000.0	Forza awiamento caratt. longitudi	nale
V _{3,a} (kNm)	110.0		V _{3,a} (kNm)	100.0	Forza avviamento caratt. verticale	

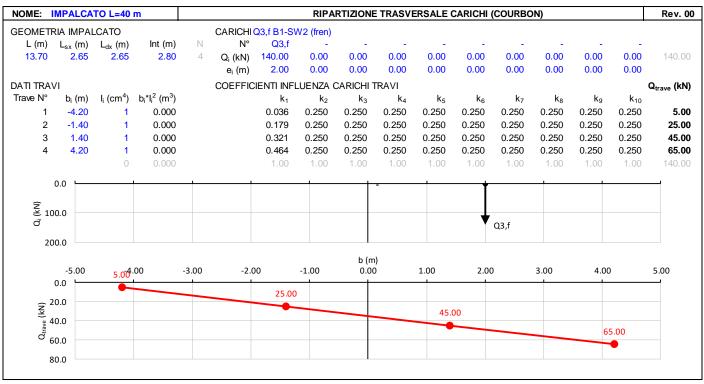

Gli effetti sui singoli impalcati indotti dall'azione di avviamento o frenatura, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

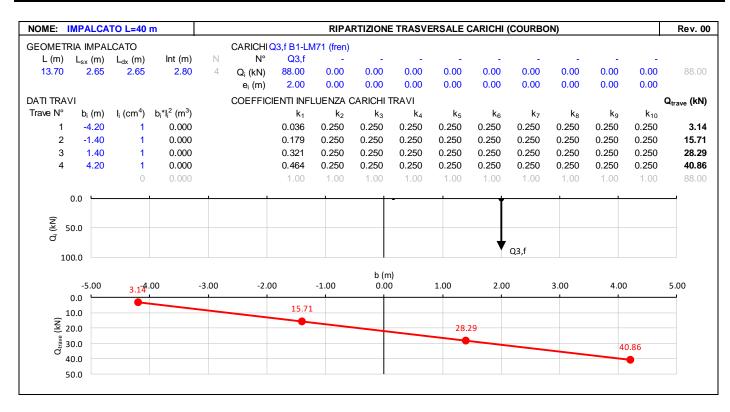
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	56

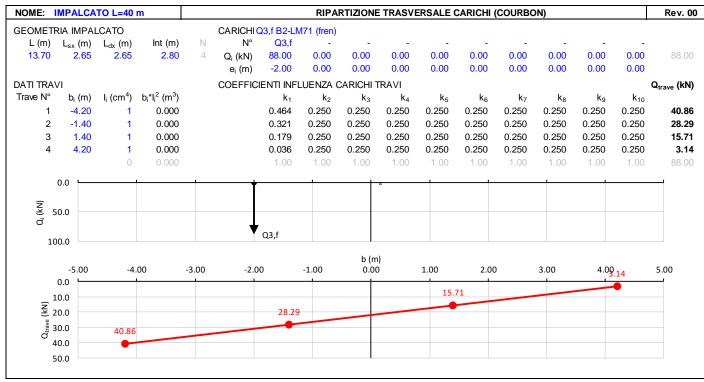




RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	57





RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	58

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

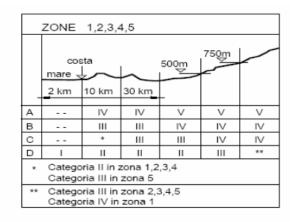
VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	59

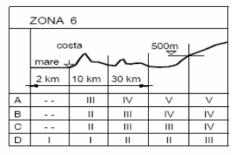
7.8 AZIONE DEL VENTO (Q6)

Nome	Tipo	γα	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
VENTO	Variabile	EQU 0.00 / 1.50	0.60	0.50	0.00
		(A1) 0.00 / 1.50			
		(A2) 0.00 / 1.30			

In accordo con le raccomandazioni CNR DT207 R1/2018, l'azione del vento può essere convenzionalmente assimilata ad un carico statico uniformemente distribuito sulle superfici. La componente ortogonale è calcolata secondo la seguente espressione:


q_b (z) pressione cinetica di riferimento

c_e (z) coefficiente di esposizione


c_{pm} coefficiente di forma (o aerodinamico) complessivo

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, dalla categoria di esposizione dove sorge la costruzione. Viene calcolato con le seguenti espressioni:

$$\begin{split} & C_{\text{e}}(z) = k_{\text{r}}^2 \cdot C_{\text{t}}(z) \cdot \ln(z/z_{\text{o}}) (7 + C_{\text{t}}(z) \cdot \ln(z/z_{\text{o}})) \\ & C_{\text{e}}(z) = C_{\text{e}}(z_{\text{min}}) \end{split} \qquad \qquad Z \geq Z_{\text{min}} \end{split}$$

	ZONA	9
		costa
	mare -	
Α		I
В		- 1
С		1
D	I	- 1

	ZONE	7,8								
costa										
mare										
1.5 km 0.5 km										
А			IV							
В			IV							
С			III							
D I II *										
* Categoria II in zona 8 Categoria III in zona 7										

Fig. 3.3.2 - Definizione delle categorie di esposizione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	60

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	≈ ₀ [m]	z _{min} [m]
I	0,17	0,01	2
П	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Tabella 11 - Criterio di assegnazione della categoria di esposizione per le diverse zone italiane

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa) c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

Tabella 12 - Classi di rugosità del terreno

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	61

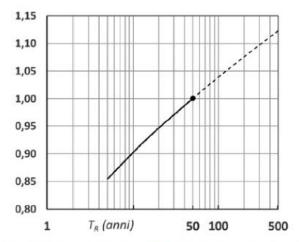
Fig. 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

Figura 20 - Zone caratterizzate da diversi valori della velocità di riferimento

Tab. 3.3.I -Valori dei parametri $v_{b,0}$, a_{o} , k_{s}

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k,
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Tabella 13 - Valori dei parametri vb,0, a0 e ka per le diverse zone italiane



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

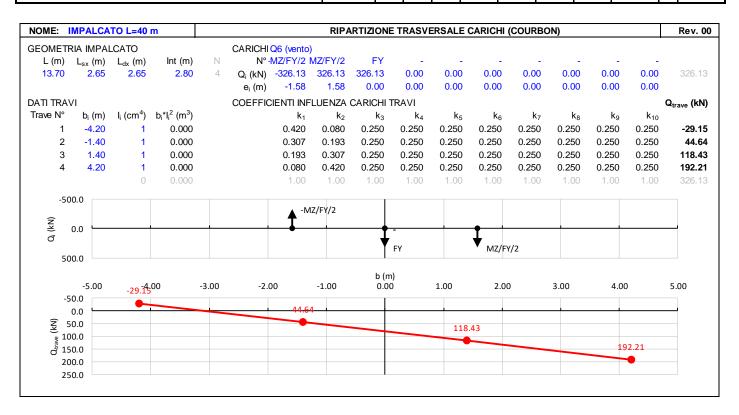
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	62

 $\textbf{Figura C3.3.1} - \textit{Valori del coefficiente } \alpha_{R} \textit{ in funzione del periodo di ritorno } T_{R'} \textit{ (asse in scala logaritmica),}$

Figura 21 - Diagramma del coefficiente di ritorno αr in funzione del periodo di ritorno TR

7.8.1 Azione del vento impalcato

Gli effetti sui singoli impalcati indotti dall'azione del vento vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.


NOME:	IMPALCAT	TO L=40m	CALCOLO AZION	IE VENT	TO IMPALCATO (CNR DT207/2	2008)	Rev. 00
PARAMETRI	VENTO DI	PROGETTO	DATI GEOM	ETRICI II	MPALCATO	AZIONI TOTALI IM	PALCATO
Zona	3	(Tab.3.I)	h _{tot} (m)	8.30	Altezza impalcato	L influenza (m)	20.00
v _{b,0} (m/s)	27.00	Velocità base liv. mare (Tab.3.I)	d (m)	13.70	Larghezza impalcato	F_x (kN)	409.5
Ca	1.00	Coeff. altitudine	d/h _{tot}	1.65	(§G.10.3)	F_y (kN)	326.1
v _b (m/s)	27.00	Velocità base riferimento vento	z (m)	20.00	Altezza dal suolo impalcato	M_z (kNm)	1033.0
T _R (anni)	75	Tempo ritorno vento	C _e	2.81	Coeff. esposizione		
Cr	1.037	Coeff. tempo ritorno	ρ (kg/m³)	1.25	Massa specifica aria		
v _r (m/s)	27.99	Velocità riferimento vento	q _p (Pa)	1376	Pressione cinetica picco		
ka	0.37	Fattore altituudine (Tab.3.I)	c_{fx}	1.79			
a _s (m s.l.m.)	20	Altitudine sito	c_{fy}	0.87			
a ₀ (m s.l.m.)	500	Altitudine base (Tab.3.I)	c_{mz}	0.20			
Categoria	2	(Tab. 3.II - 3.III)	f_x (kN/m)	20.48	(§G.10.3)		
k _r	0.19	Fattore terreno (Tab.3.II)	f_y (kN/m)		(§G.11.1)		
z _{min} (m)	4.00	Altezza minima (Tab.3.II)	m_z (kNm/m)	51.65	(§G.11.1)	$Y_{igwedge}$	
z ₀ (m)	0.05	Altezza rugosità (Tab.3.II)					
Ct	1.00	Coeff. topografico				$ ightharpoons f_Y$	
h _{tot}	Y	h _{tot}	d	h _{to}	d		$\overrightarrow{f_X}$ X
h _{tot}	1 1	h _{tot}	1 1 1 d	h _{tot}	d d	$f_{\chi}(z) = q_{p}(z)$ $f_{\gamma}(z) = q_{p}(z)$ $m_{Z}(z) = q_{p}(z)$:)·l·c _f y

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	63

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	64

7.9 AZIONE SISMICA (E)

Nome	Tipo	γ ε	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
SISMA	Sismiche	EQU 0.00 / 1.00	-	-	-
		(A1) 0.00 / 1.00			
		(A2) 0.00 / 1.00			

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. La pericolosità sismica del sito è definita in termini di:

ag accelerazione orizzontale massima del terreno

 F_0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale T_C^* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

L'accelerazione orizzontale massima attesa a_g è riferita in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R per ogni stato limite considerato.

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

7.9.1 Stati limite di progetto sismici

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria "Linea Pescara - Bari - Raddoppio Termoli - Lesina", che si sviluppa per circa 25Km, attraversando il territorio di diverse località, tra cui Termoli (CB), Campomarino (CB), Campomarino – Santa Monica (CB), Marina di Chieuti / Chieuti (FG), Serracapriola- Loc.SS16 (FG).

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	65

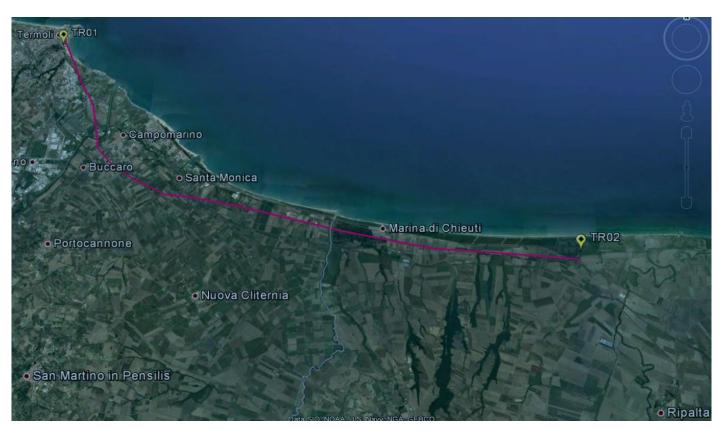


Figura 22- Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in quattro sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da nord verso sud; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Progr. Inizio	Progr. Fine	Località di Riferimento Azioni Sismiche	Zona sismica Locale
0	5.250,00	Campomarino(CB)	S1
5.250,00 10.000,00		Campomarino - Santa Monica (CB)	S2
10.000,00 18.650,00		Marina di Chieuti /Chieuti (FG)	S3
18.650,00	24.200,00	Serracapriola- Loc.SS16 (FG)	S4

Tabella 14 - Tabella di riepilogo località di riferimento per la valutazione delle azioni sismiche per il progetto delle opere

La vita nominale V_N delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	66

_

TIPO DI COSTRUZIONE (1)	Vita Nominale V _N [Anni] ⁽¹⁾
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14.01.2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75
ALTRE OPERE NUOVE A VELOCITÀ V ≥ 250 km/h	100
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (2)

⁽¹⁾ – La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse opere.

Per le opere definitive e tenendo conto delle indicazioni precedenti, si ha il periodo di riferimento della struttura $V_R = 112.5$ anni, si possono pertanto individuare i seguenti stati limite:

SLATO LIMITE	T _R [anni]	a _g [g]	F。 [-]	T _c * [s]
SLO	68	0,066	2,494	0,324
SLD	113	0,082	2,548	0,332
SLV	1068	0,195	2,532	0,375
SLC	2193	0,253	2,507	0,382

Tabella 15 - Parametri sismici per i vari stati limite di progetto

Con riferimento al §7 delle NTC 2008, le costruzioni caratterizzate nei confronti dello SLV, da $a_gS \le 0.075g$, possono essere progettate e verificate con la sola verifica nei confronti dello SLV. Con riferimento alle caratteristiche dell'opera, si sono analizzati i seguenti stati limite di progetto:

- Stato limite di danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature

Probabilità di superamento

 $P_{VR} = 63\%$

Tempo di ritorno

$$T_R = -V_R / \ln(1-P_{VR}) = -112.5 / \ln(1-0.63) = 113$$
 anni

 Stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva

^{(2) -} Da definirsi per il singolo progetto a cura di FERROVIE.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	67

invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali

Probabilità di superamento $P_{VR} = 10\%$

Tempo di ritorno $T_R = -V_R / \ln(1-P_{VR}) = -112.5 / \ln(1-0.10) = 1068$ anni

7.9.2 Spettri di risposta

Per il sito in esame, in base alle caratteristiche geotecniche di riferimento e dalla morfologia del terreno descritti nei capitoli precedenti, il sottosuolo può essere classificato come:

Categoria sottosuolo "C"

Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità

e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s

Categoria topografica

"T1"

Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°

Lo spettro di risposta elastico orizzontale S_e(T) del sisma è definito dalle espressioni seguenti:

$$0 \le T < T_B \qquad \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_{B} \leq T < T_{C} \hspace{1cm} S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o}$$

$$T_{c} \le T < T_{D}$$
 $S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T_{c}}{T}\right]$

$$\boldsymbol{T_{D}} \leq \boldsymbol{T} \hspace{1cm} \boldsymbol{S_{e}(T)} = \boldsymbol{a_{g}} \cdot \boldsymbol{S} \cdot \boldsymbol{\eta} \cdot \boldsymbol{F_{o}} \cdot \left[\frac{\boldsymbol{T_{D}} \cdot \boldsymbol{T_{C}}}{\boldsymbol{T^{2}}} \right]$$

T periodo di vibrazione orizzontale [s]

S_e(T) accelerazione spettrale orizzontale [m/s²]

 $S = S_S^*S_T$ coefficiente della categoria di sottosuolo e delle condizioni topografiche

S_S coefficiente di amplificazione stratigrafica (vedi tabella seguente)
S_T coefficiente di amplificazione topografica (vedi tabella seguente)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ fattore che altera lo spettro elastico per smorzamento viscosi diversi dal 5%

ξ coefficiente di smorzamento viscoso [%]

F₀ fattore che quantifica l'amplificazione spettrale massima

 $T_C = C_C * T_C*$ periodo corrispondente all'inizio del tratto a velocità costante dello spettro

C_c coefficiente definito nella tabella seguente

 $T_B = T_C/3$ periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante $T_D = 4*a_0/g + 1,6$ periodo corrispondente all'inizio del tratto a spostamento costante dello spettro

Categoria sottosuolo	Ss	C c
А	1.00	1.00
В	$1.0\!\leq\!1.40\!-\!0.40\!\cdot\! F_0\!\cdot\! a_g/g\!\leq\!1.20$	$1.10 \cdot (T_c^*)^{-0.20}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	68

С	$1.0 \le 1.70 - 0.6 \cdot F_0 \cdot a_g/g \le 1.50$	1.05·(T _c *) ^{-0.33}
D	$0.90 \le 2.40 - 1.50 \cdot F_0 \cdot a_g/g \le 1.80$	$1.25 \cdot (T_c^*)^{-0.50}$
E	$1.0\!\leq\!2.00\!-\!1.10\!\cdot\!F_0\cdot\!a_g/g\!\leq\!1.60$	1.15·(T _c *) ^{-0.40}

Tabella 16 - Coefficienti di amplificazione stratigrafica orizzontale

Categoria topografica	Ubicazione dell'opera o dell'intervento	St
T1	-	1.0
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo	1.2
T4	In corrispondenza della cresta del rilievo	1.4

Tabella 17 - Coefficienti di amplificazione topografica

Lo spettro di risposta elastico verticale S_{ve}(T) del sisma è definito dalle espressioni seguenti:

$$\begin{split} 0 &\leq T < T_B & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \cdot \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T_C}{T} \right] \\ T_D &\leq T & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T_D \cdot T_C}{T^2} \right] \\ T & \text{periodo di vibrazione verticale [s]} \\ S_{ve}(T) & \text{accelerazione spettrale verticale [m/s}^2 \end{split}$$

 $F_V = 1,35 \cdot F_0 \cdot \left(a_g/g\right)^{0.5}$ fattore che quantifica l'accelerazione spettrale massima

I parametri S_S, T_B, T_C e T_D per la definizione dello spettro verticale sono indipendenti dalla categoria di suolo e assumono i valori riportati nella tabella seguente.

Categoria sottosuolo	Ss	Тв	Tc	T D
A, B, C, D, E	1.0	0.05 s	0.15 s	1.0 s

Tabella 18 - Coefficienti di amplificazione stratigrafica verticale

Le capacità dissipative della struttura possono essere considerate nella fase di analisi attraverso una riduzione delle forze elastiche, che tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni. In tal caso, lo spettro di progetto $S_d(T)$ da utilizzare è lo spettro elastico ridotto sostituendo nelle formule corrispondenti η con 1/q, dove q è il fattore di struttura. Si assume comunque $S_d(T) \ge 0,2a_g$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	69

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

 $q = q_0 * K_R$

q₀ valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione

K_R fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione

Il valore di q utilizzato per la componente verticale dell'azione sismica allo SLV, a meno di adeguate analisi giustificative, è q = 1.50 per qualunque tipologia strutturale e di materiale, tranne che per i ponti per i quali è q = 1.00.

7.9.2.1 Pile e spalle da ponte

Le capacità dissipative delle singole sottostrutture sono variabili a seconda di che si tratti delle pile o delle spalle.

Nel caso di <u>comportamento strutturale non dissipativo</u>, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al Capitolo 4, senza nessun requisito aggiuntivo, a condizione che: per le strutture di calcestruzzo armato, nessuna sezione superi la curvatura convenzionale di prima plasticizzazione, come definita al § 7.4.4.1.2; per le strutture di calcestruzzo armato precompresso e per le strutture in carpenteria metallica, nessun materiale superi la deformazione di snervamento di progetto.

Nel caso di <u>comportamento strutturale dissipativo</u>, la struttura del ponte deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile nel quale la dissipazione sia limitata alle pile.

Ai soli fini del <u>progetto dei pali di fondazione</u>, con riferimento al §7.2.5, è possibile considerare una limitata capacità dissipativa, dividendo per 1.50 le sollecitazioni sismiche sui pali derivanti dall'analisi strutturale con comportamento non dissipativo. In questo caso, per una lunghezza pari a 10 diametri dalla sommità del palo, devono applicarsi i dettagli costruttivi di cui al §7.9.6.1 relativi alla CD"B".

Gli elementi ai quali non è mai richiesta capacità dissipativa devono mantenere un comportamento sostanzialmente elastico; essi sono: gli elementi progettati per avere un comportamento non dissipativo, le porzioni esterne alle zone dissipative delle pile, l'impalcato, gli apparecchi di appoggio, le strutture di fondazione, le spalle, le pile che non scambiano azioni orizzontali con l'impalcato.

Per le due componenti orizzontali dell'azione sismica, nel caso di comportamento strutturale non dissipativo $q_0 = 1.00$, mentre per comportamento strutturale dissipativo i valori di q_0 sono quelli di Tab. 7.3.II con le seguenti:

 $\lambda(\alpha) = 1.00$ $\alpha \ge 3.00$ $(\alpha/3)^{0.5}$ $3.00 > \alpha \ge 1.00$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	70

 $\alpha = L/H$

L distanza della sezione di cerniera plastica dalla sezione di momento nullo H dimensione della sezione nel piano di inflessione della cerniera plastica

Per gli elementi duttili di calcestruzzo armato si ha che per la scelta dei valori di q₀ si ha:

 $v_k < 0.30$ $q_0 = valori di Tab. 7.3.II$

 $\begin{array}{ll} 0.30 < v_k < 0.60 & q_0(v_k) = q_0(v_k = 0.3) - (v_k / 0.3 - 1)^* (q_0(v_k = 0.3) - 1) \\ v_k = N_{Ed} / (A_c^* f_{ck}) < 0.30 & \text{sollecitazione di compressione normalizzata} \end{array}$

N_{Ed} sforzo di progetto

A_c*f_{ck} resistenza a compressione semplice della sezione

In accordo al §7.9.2 delle NTC 2008, per le verifiche strutturali delle pile si considera classe di duttilità CD"B" e coefficiente di struttura $q_0 = 1.50$, per le spalle si considera coefficiente di struttura $q_0 = 1.50$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	71

Parametri indipendenti

. aramour man	, on a on a
STATO LIMITE	SLV
a _a	0,195 g
F _o	2,532
T _C *	0,375 s
Ss	1,404
Cc	1,451
S _T	1,000
q	1,000

Parametri dipendenti

S	1,404
η	1,000
T _B	0,181 s
Tc	0,544 s
T _D	2,380 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C}/3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_{\mu} / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

unu	aeno spettro	
	T [s]	Se [g]
	0,000	0,274
T _₽ ◀	0,181	0,693
T₀◀	0,544	0,693
	0,632	0,597
	0,719	0,524
	0,806	0,468
	0,894	0,422
	0,981	0,384
	1,069	0,353
	1,156	0,326
	1,243	0,303
	1,331	0,283
	1,418	0,266
	1,506	0,250
	1,593	0,237
	1,680	0,224
	1,768	0,213
	1,855	0,203
	1,943	0,194
	2,030	0,186
	2,117	0,178
	2,205	0,171
	2,292	0,164
T _e	2,380	0,158
	2,457	0,149
	2,534	0,140
	2,611	0,132
	2,688	0,124
	2,765	0,117
	2,843	0,111
	2,920	0,105
	2,997	0,100
	3,074	0,095
	3,151	0,090
	3,228	0,086
	3,306	0,082
	3,383	0,078
	3,460	0,075
	3,537	0,072
	3,614	0,069
	3,691	0,066
	3,769	0,063
	3,846	0,061
	3,923	0,058
	4,000	0,056

Tabella 19 - Opere definitive - Parametri dello spettro di risposta orizzontale allo SLV

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	72

Parametri e punti dello spettro di risposta verticale per lo stato limite\$LV

Parametri indipendenti

STATO LIMITE	SLV
a _{ov}	0,116 _. g
Ss	1,000
S _T	1,000
q	1,000
T _B	0,050 s
Tc	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	1,509
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_v = 1,35 \cdot F_o \cdot \left(\frac{a_v}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Pu

unti	dello spettro	di risposta
	T [s]	Se [g]
	0,000	0,116
T _e ←	0,050	0,294
Tℯ ⋖	0,150	0,294
	0,235	0,188
	0,320	0,138
	0,405	0,109
	0,490	0,090
	0,575	0,077
	0,660	0,067
	0,745	0,059
	0,830	0,053
	0,915	0,048
T⊯	1,000	0,044
	1,094	0,037
	1,188	0,031
	1,281	0,027
	1,375	0,023
	1,469	0,020
	1,563	0,018
	1,656	0,016
	1,750	0,014
	1,844	0,013
	1,938	0,012
	2,031	0,011
	2,125	0,010
	2,219	0,009
	2,313	0,008
	2,406	0,008
	2,500	0,007
	2,594	0,007
	2,688	0,006
	2,781	0,006
	2,875	0,005
	2,969	0,005
	3,063	0,005
	3,156	0,004
	3,250	0,004
	3,344	0,004
	3,438	0,004
	3,531	0,004
	3,625 3,719	0,003 0,003
	3,719 3,813	0,003
	3,906	
		0,003
	4,000	0,003

Tabella 20 - Opere definitive - Parametri dello spettro di risposta verticale allo SLV

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	73

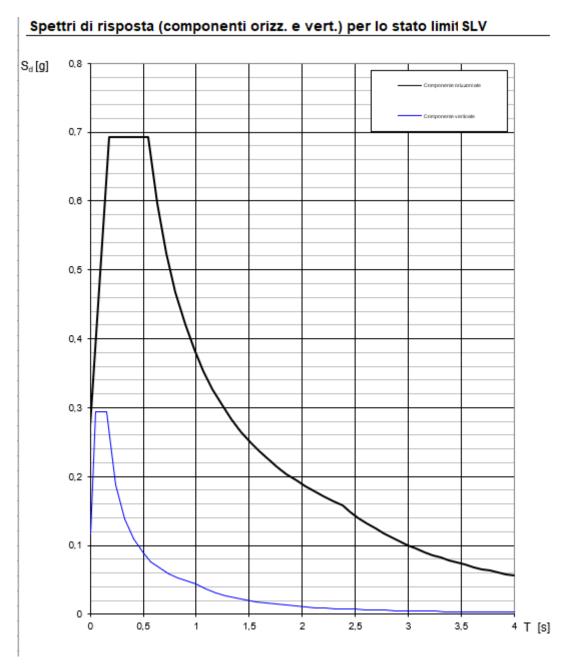


Figura 23 – Spettri di risposta elastici (componente orizzontale e verticale)

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e per la valutazione delle azioni sugli apparecchi di appoggio.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	74

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV S_d [g] 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 4 T [s]

Figura 24 - Spettri di risposta di progetto (componente orizzontale e verticale)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	75

7.9.3 Amplificazione sismica di progetto

7.9.3.1 Metodo pseudostatico per muri

Con riferimento al § 7.11.6.2 delle NTC 2008 si esegue l'analisi con il metodo pseudostatico, dove l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

La deformabilità della parete viene tenuta in conto mediante dei coefficienti riduttivi correlati al massimo spostamento u_s che l'opera di altezza complessiva H, può ammettere senza riduzioni di resistenza (u_{s,max}) e tale per cui sia verificata l'ipotesi di riduzione dell'azione sismica per duttilità strutturale (u_{s,min}).

 $k_v = \beta_m^* S_S^* S_T^* a_g/g$ coefficiente sismico orizzontale

 $k_v = \pm 0.5^* k_h$ coefficiente sismico verticale (di solito non considerato nelle paratie)

S_S = 1.404 coefficiente di amplificazione stratigrafica orizzontale

 $S_T = 1.00$ coefficiente di amplificazione topografica

accelerazione massima attesa al sito per lo Stato Limite considerato

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità

 $\beta_m = 1.00$ (per muri non liberi di seguire spostamenti relativi rispetto al terreno, vedi

§7.11.6.2.1 delle NTC2008)

Si aggiunge che, secondo le NTC2018, i valori del coefficiente β_m possono eventualmente essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il diagramma di Figura 7.11.3 di cui al successivo §7.11.6.3.2 (coefficiente delle spinte β_m vs spostamenti orizzontali massimi u_s).

Secondo il §3.10.3.1 del MdP del Corpo Stradale si ha infatti che:

"Nelle analisi di muri su pali eseguite con il metodo pseudostatico, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, potranno essere assunti come definito al paragrafo 7.11.6.2.1 delle NTC 2018 adottando coefficiente β_m unitario."

7.9.3.2 Azioni inerziali masse

Le azioni inerziali E_h e E_v associate alle masse degli elementi strutturali dei carichi permanenti strutturali e non strutturali sono determinati incrementando le masse schematizzate nel modello di calcolo secondo gli spettri di progetto secondo le seguenti relazioni:

$$\begin{split} E_h &= G \cdot S_e(T) & \text{azione inerziale orizzontale} \\ E_v &= G \cdot S_{ve}(T) & \text{azione inerziale verticale} \end{split}$$

Con riferimento a §3.2.4 delle NTC 2008, si considera in fase sismica il contributo delle azioni accidentali come previsto per i ponti ferroviari, pari al 20% del sovraccarico nominale:

$$G=G_1+G_2+\sum \psi_{2j}\cdot Q_{kj}$$

G massa totale efficace

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali (permanenti, terreno)

Q_{kj} masse dei carichi accidentali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	76

$$\Psi_{2i} = 0.2$$
 se ponti ferroviari (§5.2.2.8) o ponti stradali alto traffico (§5.1.3.12)

Le azioni inerziali orizzontali E_x e verticali E_y delle masse efficaci sono determinate incrementando i pesi propri G con accelerazioni verticali e orizzontali definite dai coefficienti di amplificazione dinamica k_h e k_v :

$$\begin{split} E_x &= G \cdot k_h & \text{azione inerziale orizzontale} \\ E_y &= G \cdot k_v & \text{azione inerziale verticale} \\ G &= G_1 + G_2 + \Psi_{2j} {}^*Q & \text{masse efficaci sismiche} \end{split}$$

7.9.4 Sovraspinte dinamiche del terreno

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

7.9.4.1 Azioni inerziali masse

Le sovraspinte ΔS_{ah,E} sono calcolate in spinta attiva secondo il metodo di Mononome-Okabe:

$$\Delta S_{ahE} = S_{ahE} - S_{ah}$$

$$S_{ah} = \frac{1}{2} \cdot \gamma^* \cdot H^{*2} \cdot K_a$$

spinta attiva statica sulla parete

$$S_{ahE} = \frac{1}{2} \cdot \gamma * (1 \pm k_v) \cdot H^{*2} \cdot K_{aE}$$

spinta attiva sismica sulla parete

$$K_{aE} = \frac{ser^2(\psi + \phi - \theta)}{cos\theta \cdot ser^2\psi \cdot sen(\psi - \theta - \delta) \left[1 + \sqrt{\frac{sen(\phi + \delta) \cdot sen(\phi - \beta - \theta)}{sen(\psi - \theta - \delta) \cdot sen(\psi + \beta)}}\right]^2} \quad coeff. \ spinta \ att. \ sismica \ (M-O)$$

K_a coefficiente di spinta attiva statico

 $H^* = H + \Delta H$ altezza della parete di spinta dal fondo scavo

 $\Delta H = 0$ incremento dell'altezza della parete di spinta dal fondo scavo

 $\begin{array}{ll} \gamma^*(z) & \text{peso specifico del terreno} \\ \phi & \text{angolo attrito del terreno} \\ \delta & \text{attrito tra terreno e parete} \end{array}$

 $\psi = 90^{\circ}$ angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale

k_h coefficiente di amplificazione orizzontale k_v coefficiente di amplificazione verticale

 $\Theta = \arctan(k_h / (1 \pm k_v)) \qquad \text{terreni sopra falda} \qquad \gamma^* = \gamma_{sat}$ $\Theta = \arctan(k_h / (1 \pm k_v))^* (\gamma_{sat} / (\gamma_{sat}, \gamma_w)) \quad \text{terreni sotto falda} \qquad \gamma^* = \gamma^*$

Restando a favore della sicurezza, la risultante $\Delta S_{ah,E}$ viene applicata su tutta l'altezza H* come una pressione orizzontale distribuita $\Delta \sigma_{h,E}$ pari a:

$$\Delta \sigma_{h,E} = \Delta S_{ahs} / H^*$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	77

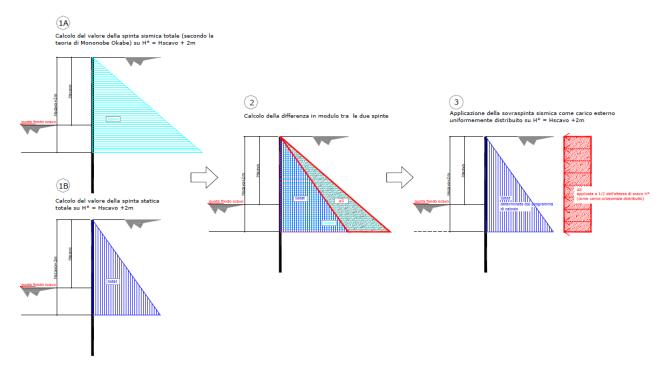


Figura 25 - Schema di calcolo sovraspinte dinamiche terreno

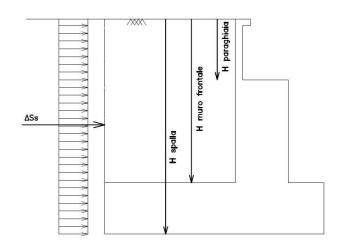


Figura 26: Schema per il calcolo degli effetti della sovraspinta sismica

7.9.4.2 Spinta attiva in Excel®

Si adotta la formulazione del metodo di Mononome-Okabe prima descritto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	78

7.10 VARIAZIONI TERMICHE (Q7)

Essendo le campate isostatiche, tale azione non rientra direttamente nel calcolo delle sottostrutture, ma viene inclusa indirettamente nelle valutazioni sulle azioni agli appoggi (escursioni ed attriti meccanici).

La variazione termica è definita secondo quanto riportato nel § 2.5.1.4.4.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture" che riprende il § 5.2.2.5.2 delle NTC08.

La variazione termica uniforme volumetrica da considerare per l'impalcato risulta ±15°, ai fini della valutazione delle escursioni dei giunti e degli appoggi mobili viene incrementata del 50% per una variazione totale di calcolo di ±22.5 °C.

7.11 **ATTRITO (Q8)**

Nome	Tipo	γе	ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
ATTRITO PERM	Permanenti non strutturali	1.00 / 1.50	-	-	-
ATTRITO VAR	Variabili traffico ferroviario	EQU 0.00 / 1.45 (A1) 0.00 / 1.45 (A2) 0.00 / 1.25	0.80	0.50	0.00

Gli effetti dell'attrito sono valutati associando, in corrispondenza degli appoggi scorrevoli, alle reazioni verticali dovute a carichi permanenti (V_G) e quelle dovute a carichi accidentali (V_Q) le seguenti forze orizzontali in direzione longitudinale, dove il coefficiente di attrito f=3%.

Q8
$$F_{a, G} = f^*(\Sigma V_{G,i})$$

Q8
$$F_{a,Q} = f^*(\Sigma V_{Q,i})$$

Per le forze orizzontali associate ubicate ai singoli appoggi, vedi tabella scarichi impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	79

7.12 SCARICHI AGLI APPOGGI

Dalle valutazioni sui carichi derivanti dagli impalcati in appoggio, effettuate mediante metodi semplificati e riportate nei capitoli precedenti per le varie tipologie di azione, si sono considerati i valori nominali degli scarichi riepilogati nella tabella seguente.

Tali scarichi sono stati confrontati rispetto alle calcolazioni di dettaglio effettuate mediante analisi FEM sui singoli impalcati, alle cui relazioni di calcolo si rimanda per ulteriori verifiche di confronto.

IMPALCATO ACCIAIO L=40n					La	to Appogg	i Scorrevol	<u> </u>				
	Арі	ooggio 5 (N	1)	App	oggio 6 (U	L)	Арі	oggio 7 (N	1)	App	ooggio 8 (N	1)
	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)
	0,00	-4,20	-0,60	0,00	-1,40	-0,60	0,00	1,40	-0,60	0,00	4,20	-0,60
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.
Permanenti	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
G1 (peso proprio)	0	0	1075	0	0	475	0	0	475	0	0	1075
Ballast												
G2,1 (ballast)	0	0	325	0	0	500	0	0	500	0	0	325
Perm. non strutturali												
G2,2 (velette)	0	0	225	0	0	-138	0	0	-138	0	0	225
G2,3 (arredi)	0	0	425	0	0	-225	0	0	-225	0	0	425
G2,4 (barriere)	0	0	575	0	0	-325	0	0	-325	0	0	575
Q8 Fa,G (attrito)	79	0	0	9	0	0	9	0	0	79	0	0
Accidentali da traffico												
Q1 LM71_B1 (traffico)	0	0	61	0	0	395	0	0	728	0	0	1062
Q1 LM71_B2 (traffico)	0	0	1062	0	0	728	0	0	395	0	0	61
Q1 SW2_B1 (traffico)	0	0	92	0	0	462	0	0	832	0	0	1201
Q3,a B1-SW2 (avv)	0	0	0	0	0	20	0	0	40	0	0	60
Q3,a B1-LM71 (avv)	0	0	0	0	0	22	0	0	44	0	0	66
Q3,a B2-LM71 (avv)	0	0	66	0	0	44	0	0	22	0	0	0
Q3,f B1-SW2 (fren)	0	0	0	0	0	21	0	0	42	0	0	63
Q3,f B1-LM71 (fren)	0	0	0	0	0	13	0	0	27	0	0	40
Q3,f B2-LM71 (fren)	0	0	40	0	0	27	0	0	13	0	0	0
Q4 B1-SW2 (centr)	0	0	0	0	0	0	0	0	0	0	0	0
Q4 B1-LM71 (centr)	0	0	0	0	0	0	0	0	0	0	0	0
Q4 B2-LM71 (centr)	0	0	0	0	0	0	0	0	0	0	0	0
Q5 B1-SW2 (serp)	0	0	-41	0	100	-14	0	0	14	0	0	41
Q5 B1-LM71 (serp)	0	0	-45	0	110	-15	0	0	15	0	0	45
Q5 B2-LM71 (serp)	0	0	-45	0	110	-15	0	0	15	0	0	45
Q8 Fa,Q (attrito)	24	0	0	16	0	0	17	0	0	25	0	0
Effetti ambientali												
Q6 (vento)	0	0	-29	0	234	25	0	0	78	0	0	132

Tabella 21 – Scarichi caratteristici agli appoggi della spalla mobile

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	80

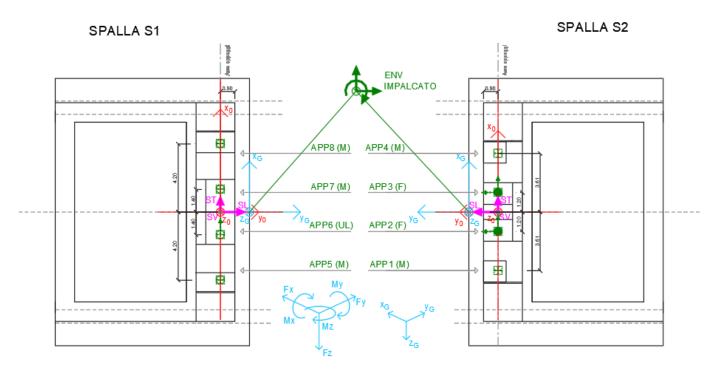


Figura 27- - Schema dei vincoli a terra impalcato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	81

8. COMBINAZIONI DI CARICO

Le singole azioni elementari vengono combinate utilizzando i coefficienti parziali di sicurezza γ_i e i coefficienti di combinazione ψ_i di seguito riportati:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili Precompressione	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni ψο ψ_1 Ψ_2 Azioni singole Carico sul rilevato a tergo delle 0,80 0,50 0,0 spalle da traffico Azioni aerodinamiche generate 0,80 0,50 0,0 dal transito dei convogli 0,80(2) 0,80(1) 0,0 gr_1 0,80(2) 0,80(1) Gruppi di gr_2 0,80(2) 0,80(1) carico 0,0 gr₃ 1,00(1) 1,00 0,0 gr_4 Azioni del vento 0,60 0,50 0,0 F_{Wk} Azioni da in fase di esecuzione 0.80 0,0 0,0 SLU e SLE 0,0 0,0 0,0 neve 0,50 0,60 0,60 Azioni termiche T_k

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

 $^{^{(2)}}$ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	82

8.1.1 Gruppi di carico considerati

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati in Tab. 5.2.IV. Il carico verticale, nel caso di ponti con più binari, è quello che si ottiene con i treni specificati nella Tab. 5.2.III di NTC 08.

Nella valutazione degli effetti di interazione, alle azioni conseguenti all'applicazione dei carichi da traffico ferroviario si adotteranno gli stessi coefficienti parziali dei carichi che li generano.

Tab. 5.2.IV -Valutazione dei carichi da traffico

Tubi bizit i	-vulutualone ne					
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali	
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo 2 (2)	- 1,0		0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Tabella 23 – Schema dei gruppi di combinazioni per azioni di traffico – Ponti ferroviari

I valori fra parentesi indicati nella Tab. 5.2.IV vanno assunti quando l'azione risulta favorevole nei riguardi della verifica che si sta svolgendo.

Il gruppo 4 è da considerarsi esclusivamente per le verifiche a fessurazione. I valori indicati fra parentesi si assumono pari a: (0,6) per impalcati con 2 binari caricati e (0,4) per impalcati con tre o più binari caricati.

Per la valutazione delle azioni verticali da traffico ferroviario, è stato considerato il gruppo 1, definendo i seguenti:

Caso 1) LM71 sul binario 1, assunto con una eccentricità alla destra dell'asse del binario;

Caso 2) LM71 sul binario 1, assunto con eccentricità a sinistra dell'asse del binario;

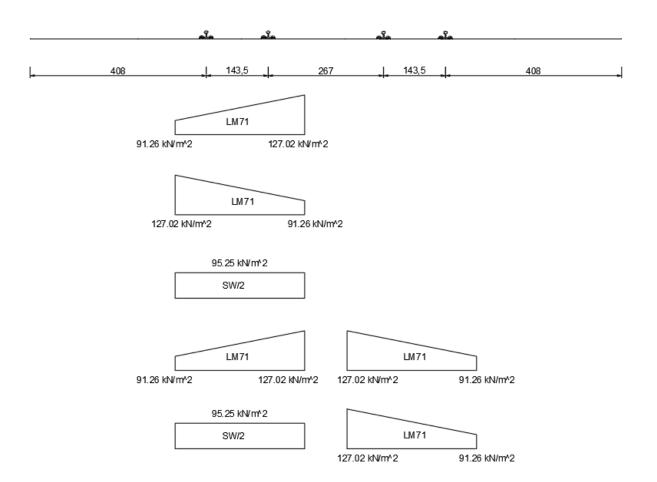
Caso 3) SW/2 sul binario 1;

Caso 4) LM71 con eccentricità a destra dell'asse del binario "+" LM71 con eccentricità a sinistra dell'asse, rispettivamente sul binario 1 e 2;

Caso 5) SW/2 sul binario 1 "+" LM71 con eccentricità a sinistra dell'asse del binario.

Data la simmetria della struttura, è stata considerato sufficiente l'adozione delle suddette configurazioni di carico, la cui distribuzione viene illustrata nella figura seguente.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali


I valori campiti in grigio rappresentano l'azione dominante.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	83

8.2 COMBINAZIONI DI CARICO ADOTTATE

Per la determinazione degli effetti delle azioni da traffico si fa riferimento ai gruppi di carico da 1 a 4 secondo la tabella riportata di seguito:

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont:	ali	
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	84

Nel caso in esame, le azioni agenti sull'impalcato sono state combinate secondo i gruppi 1 e 3 che comportano le maggiori sollecitazioni per le strutture in elevazione e in fondazione.

Nella figura successiva vengono esplicitate le tipologie di combinazioni utilizzate:

Tipo Comb

- 1 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+0,73*Qk3a,i+0,73*Qk3f,i+1,45*Qk4,i+1,45*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 2 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 3 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+0,73*Qk3a,i+0,73*Qk3f,i+1,45*Qk4,i+1,45*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 4 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 5 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,50*Qk6+1,00*Qk2g
- 6 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk2g+0,73*Qk2q
- 7 1,00°Gk1+1,00°Gk2b+1,00°Gk2v+0,8°Qk3a,i+0.8°Qk3f,i+1,00°Qk4+1,00°Qk5+0,6°Qk6+1,00°Qk1+1,00Qk2g+1,00°Qk2q
- 8 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk3a,i+1,00*Qk3f,i+0,8*Qk4+0,8*Qk5+0,6*Qk6+1,00*Qk1+1,00Qk2g+1,00*Qk2q
- 9 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk6+1,00*Qk2g
- 10 1,00°Gk1+1,00°Gk2b+1,00°Gk2v
- 11 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk2g

Figura 28 - Tipologie di combinazioni di carico

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	85

	-											1										1			
	Nomeenv:	TipoComb:	NumComb:	Comb:	GK1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-Perm. non str. vari	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q attrito-Q8 Fa,Q (attrito)
SL	_		1	SLU1	1,35	1,50	1,35	0,73			0,73			1,45			1,45			0,90	1,45		0,00	1,35	1,45
SL		1 2	2	SLU2	1,35	1,50		1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	0,90		0,00	0,00	1,35	1,45
SL		1	3	SLU3		1,50	-	0,00	0,73	0,00	0,00	0,73	0,00	0,73	1,45	0,00	0,00	1,45	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SL		2	4	SLU4		1,50	,	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SL		1	5	SLU5	'	1,50	,	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,90	0,00	0,00	1,45	1,35	1,45
SL		2	6	SLU6	l '	1,50	,	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,90	0,00	0,00	1,45	1,35	1,45
SL		3	7	SLU7	1,00	1,00		0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,90	1,45	0,00	0,00	1,35	1,45
SL	U	4	8	SLU8	1,00	1,00	1,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	0,90			0,00	1,35	1,45
SL	.U	3	9	SLU9	1,00	1,00	1,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SL	U	4	10	SLU10	1,00	1,00	1,00	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SL	U	3	11	SLU11	1,00	1,00	1,00	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,90	0,00	0,00	1,45	1,35	1,45
SL	.U	4	12	SLU12	1,00	1,00	1,00	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,90	0,00	0,00	1,45	1,35	1,45
SL	.U	5	13	SLU13	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50	0,00	0,00	0,00	1,00	0,00
SL		5	14		l ′			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50	0,00	0,00	0,00	-1,00	0,00
SL		5	15		l ′			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50	0,00	0,00	0,00	1,00	0,00
SL		5	16			1,00		0,00	,	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50	0,00	0,00	0,00	-1,00	0,00
SL		6	17	SLU17	1,00		1,00	0,00	,	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,73
SL	_	6	18				1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	-0,73
SLE R		8	19 20	RA1 RA2	1,00 1,00		,	0,80 1,00	,	0,00	0,80	0,00	0,00	1,00	,	0,00	1,00	0,00	0,00	0,60 0,60			0,00	1,00 1,00	1,00 1,00
SLE R		7	21	RA3	, ·	-	-	0,00	0,80		1,00	0,80		0,80 0,00	0,00 1,00	0,00	0,80	0,00 1,00	,	0,60		0,00 1,00	0,00	1,00	1,00
SLE R		8	22	RA4	1,00		-	0,00	1,00		0,00	1,00		0,00	0,80	0,00	0,00	0,80	,	0,60	,	1,00	0,00	1,00	1,00
SLE R		7	23	RA5	'		,	0,00	0,00	0,80		0,00	0,80	0,00	0,00	1,00	,	0,00		0,60	0,00	0,00	1,00	1,00	0,50
SLE R		8	24	RA6			,	0.00	0,00	1,00		0,00	1,00	0,00	0,00	0,80		0,00	0,80	0,60	0,00	0.00	1,00	1,00	0,50
SLE R		7	25	RA7	1,00		,	0,80	,	0,00			0,00	1,00	<i>'</i>	0,00		0,00	0,00	0,60		0,00	0,00	-1,00	-1,00
SLE R		8	26	RA8	1,00	,	,	,	,	0,00						,			,	,	-		0,00	-1,00	
SLE R		7	27					-	-	0,00				-					-					-1,00	
SLE R	Α	8	28	RA10	1,00	1,00	1,00	0,00	1,00	0,00	0,00	1,00	0,00	0,00	0,80	0,00	0,00	0,80	0,00	0,60	0,00	1,00	0,00	-1,00	-1,00
SLE R	A	7	29																		0,00	0,00	1,00	-1,00	-0,50
SLE R		8	30																	0,60	0,00	0,00		-1,00	
SLE R		9	31	RA13																	0,00			-1,00	
SLE R		9	32	RA14																-1,00				-1,00	
SLE R		9	33										0,00				0,00			0,00			0,00		1,00
SLE O		10	34							0,00												0,00	0,00	0,00	0,00
SLE O		11	35							0,00														-1,00	
SLE O	Į٢	11	36	QP3	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	86

Nelle figure successive vengono esplicitate le combinazioni utilizzate per l'analisi trasversale spalla:

																		SLI	J																
																		2 Barr																	
	SLU1	SLU2	SLI	U3 S			SLU6 S	SLU7 S	LU8 S	SLU9	SLU10 S	LU11 S	LU12 S	SLU13 S	SLU14 :	SLU15 S	LU16 S		SLU18 S	LU19 S	SLU20 S	SLU21 S	SLU22	SLU23 S	LU24 S		SLU26	SLU27	SLU28 S	LU29 SI	.U30 \$	SLU31 S			SLU34
PP soletta	1.35	1.3	35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PP muri laterali	1.35			1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PPNS cordolo	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massicciata	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS Mz su mur pb da ballast	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massetto PPNS velette	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS velette PPNS pb+cavidotti	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS parapetto	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS 2 Barriere antirumore	1.50			1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS 1 Barriera antirumore	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71 1	1.45			0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71 2	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71_3	0.00			0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC_SW/2	0.00	0.0	00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC affollamento_1	0.00	0.0	00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50
ACC affollamento_2	0.00	0.0	00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50
ECC deragliamento c1	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c1_1	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c2	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c2_2	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC Mz aerodin	1.20			1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20
ACC Mz aerodin_2	0.00			0.00	1.20	1.20	0.00	0.00	0.00	1.50	1.50	1.50	0.00	0.00	0.00	1.20	1.20	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taglio_aerodin_1	1.20			1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20
Taglio_aerodin_2	0.00			0.00	1.20	1.20	0.00	0.00	0.00 1.50	1.50	1.50	1.50	1.50	0.00 1.50	0.00	1.20	1.20	1.20	0.00	0.00 1.50	0.00 1.50	1.50	1.50	0.00 1.50	0.00 1.50	0.00 1.50	1.50	1.50	0.00 1.50	0.00 1.50	1.50	0.00 1.50	0.00	0.00 1.50	0.00 1.50
Spinta terreno Temp unif	0.72			0.72	0.72	1.50	1.50 0.72	0.72	0.72	0.72	1.50 0.72	1.50 0.72	0.72	0.72	1.50 0.72	1.50 0.72	0.72	1.50 0.72	1.50 -0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	1.50 -0.72	-0.72	-0.72
Delta T2	1.20			1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20
T unif. ritiro	1.20			1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
SV Soletta	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV Muri laterali	0.00																																		0.00
SV Cordolo	0.00																																		0.00
SV Massicciata	0.00														0.00	0.00													0.00						0.00
SV Mz su mur pb da ballast	0.00														0.00	0.00													0.00						0.00
SV Massetto	0.00		00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV Velette	0.00		00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV PB + Cavidotti	0.00		00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV Parapetto	0.00		00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV 2 Barriere antirumore	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV 1 Barriera antirumore	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Soletta	0.00			0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Muri laterali	0.00			0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00			0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Cordolo	0.00			0.00	0.00							0.00	0.00	0.00										0.00	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00
ST Massicciata ST Mz su mur pb da ballast	0.00											0.00													0.00				0.00						0.00
ST Mz su mur po da ballast ST Massetto	0.00																																		0.00
ST Velette	0.00																																		0.00
ST PB + Cavidotti	0.00																																		0.00
ST PB + Cawdotti ST Parapetto	0.00																																		0.00
ST 2 Barriere antirumore	0.00																																		0.00
ST 1 Barriera antirumore	0.00																																		0.00
ST Spinta terreno	0.00																																		0.00
e. ep.ma tomono	0.00	- 0.1		V-WW	V-VV	V.VU	V.VU	V.VV	V.VV	V.VU	V-VV	V.VV	V.VV	V.VV	V-VV	V-VV	V.VV	V.VV	V-VV	V. VV	V-VV	V.VU	V.VV	V-VV	V. VV	V-VV	V.VV	V.VV	V-VV	V.VV	V-VV	V.VV	V. VV	V-VV	V-VV

																	SLI	J																
																	1 Barri																	
																										2000								SLU6
soletta	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1
muri laterali	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1
4S cordolo	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
IS massicciata	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
S Mz su mur pb da ballast	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
S massetto S velette	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
S veiette S pb+cavidotti	1.50 1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
S parapetto	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
S 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
S 1 Barriera antirumore				1.50		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50		1.50			1.50	
LM71 1	1.50 1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1
LM71_1 LM71_2	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
LM71_2 LM71_3	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SW/2	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
_5vv/2 affollamento_1	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	- 1
affollamento_2	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1
deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
deragliamento c2_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mz aerodin	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1
Mz aerodin 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
o_aerodin_1	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1
_aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
a terreno	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1
unif	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.
T2	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.
. ritiro	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	- 1
oletta	0.00																																	
luri laterali	0.00	0.00												0.00	0.00													0.00						
Cordolo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
assicciata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Iz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
lassetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
elette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
B + Cavidotti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
'arapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
oletta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
uri laterali	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
rdolo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
assicciata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
z su mur pb da ballast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
assetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
elette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
B + Cavidotti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
arapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(
Barriera antirumore	0.00	0.00				0.00		0.00						0.00	0.00													0.00		0.00	0.00	0.00	0.00	
pinta terreno	0.00	0.00		0.00		0.00			0.00	0.00	0.00			0.00	0.00		0.00						0.00	0.00				0.00						

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	87

								SI	_V									ECC	
				2 Barri								1 Barr						Barriere	
								SLV8								SLV16			ECC3
PP soletta	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PP muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS cordolo	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS massicciata	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS 2 Barriere antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.0
PPNS 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.0
ACC LM71_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC LM71_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC LM71_3	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.0
ACC SW/2	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.0
ACC affoliamento 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
ACC affollamento 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
ECC deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1.00	0.00	
ECC deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
ECC deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.0
ECC deragliamento c2 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC Mz aerodin	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC Mz aerodin 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.0
Taglio aerodin 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
Taglio_aerodin_2		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Spinta terreno	1.00								1.00									0.50	0.5
Temp unif	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50		
Delta T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
T unif. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
SV Soletta	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Muri laterali	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Cordolo	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Massicciata	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Mz su mur pb da ballast	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Massetto	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Velette	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV PB + Cavidotti	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Parapetto	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV 2 Barriere antirumore	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
SV 1 Barriera antirumore	0.00				0.00	0.00		0.00	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
ST Soletta	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00	0.00	
ST Muri laterali	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00	0.00	
ST Cordolo	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00	0.00	
ST Massicciata	0.30	-0.30	0.30	-0.30	1.00	1.00	-1 00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Mz su mur pb da ballast	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Massetto	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Velette	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST PB + Cavidotti	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Parapetto	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST 2 Barriere antirumore	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	0.00	0.00	0.30	0.00	0.00	0.00	0.00	0.00		
						0.00	0.00		0.30	-0.30	0.30	-0.30	1.00				0.00		
ST 1 Barriera antirumore	0.00	-0.00	0.00	-0.00	1.00	1.00	-1.00	-1.00	0.30	-0.30 -0.30	0.30	-0.30 -0.30	1.00	1.00	-1.00 -1.00	-1.00 -1.00	0.00		

																	SLE	RA																
																	2 Barr	ere																_
	RA1 F	A2 R	RA3 I	RA4 F	RA5 R	RA6 F	RA7 F	A8 F	RA9 F	A10 R	A11 R	A12 R	RA13 I	RA14 I	RA15 R	RA16 F	RA17 F	RA18 F	RA19	RA20 F	RA21 F	RA22 F	RA23 F	A24 F	RA25 R	A26 F	RA27 I	RA28 F	A29 F	RA30 F	RA31 F	RA32	RA33	RA34
P soletta	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
P muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS cordolo	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS massicciata	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
NS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS 2 Barriere antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PNS 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CC LM71_1	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CC LM71_2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
C LM71_3	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
C_SW/2	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	1.00	0.00	0.0
C affollamento_1 C affollamento 2	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.80	0.00	0.00	0.80	0.00	1.00	1.00	0.00	1.00	1.0
	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.0
C deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
C deragliamento c1_1 C deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
C deragliamento c2 C deragliamento c2 2			0.00	0.00					0.00	0.00	0.00	0.00	0.00									0.00	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.0
C Mz aerodin	0.00	0.00	0.80	0.80	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.00	0.80	0.80	0.00	0.8
C Mz aerodin 2	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.80	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.8
glio_aerodin_1	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.8
glio_aerodin_2	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.80	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.8
inta terreno	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
mp unif	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.6
Ita T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.0
nif. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Soletta	0.00	0.00												0.00	0.00													0.00						
/ Muri laterali	0.00	0.00												0.00	0.00													0.00						
/ Cordolo	0.00	0.00												0.00	0.00													0.00						
/ Massicciata	0.00	0.00												0.00	0.00													0.00						
Mz su mur pb da ballast	0.00	0.00												0.00	0.00													0.00						
Massetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Velette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
PB + Cavidotti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Parapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Soletta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Muri laterali	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Cordolo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Massicciata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Mz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Massetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Velette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
PB + Cavidotti	0.00	0.00	0.00										0.00	0.00	0.00										0.00	0.00		0.00						
Parapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Spinta terreno	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				0.00	0.00	0.00	0.00								

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	88

																	SLE F	RA																		SLE	QP	
																	1 Barri																		2 Barr		1 Bar	
																																		A68 (QP4
P soletta P muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
P mun raterali PNS cordolo	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PNS cordolo PNS massicciata		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00			1.00	1.00	1.00	1.00			
PNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
NS 1 Barriera antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
LM71 1	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
C LM71 2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
LM71_3	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
_SW/2	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
C affoliamento_1	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00		
C affoliamento_2	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00		
C deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
C deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
deragliamento c2_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Mz aerodin	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
Mz aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
io_aerodin_1	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00		
io_aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
nta terreno	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
np unif	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	0.50	-0.50	0.50	
a T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	0.50	-0.50	0.50	
if. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Soletta	0.00	0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00					0.00		0.00			0.00		0.00		0.00	0.00			
Muri laterali Cordolo	0.00			0.00				0.00				0.00								0.00												0.00		0.00	0.00			
Jordolo Massicciata	0.00																																	0.00				
	0.00																																	0.00				
Mz su mur pb da ballast Massetto	0.00																																	0.00				
Velette	0.00																																	0.00				
PB + Cavidotti	0.00																																	0.00				
Parapetto	0.00																																	0.00				
2 Barriere antirumore	0.00																																	0.00				
1 Barriera antirumore	0.00																																	0.00				
Soletta	0.00																																	0.00				
furi laterali	0.00																																	0.00				
ordolo	0.00																																	0.00				
lassicciata	0.00																																	0.00				
tz su mur pb da ballast	0.00																																	0.00				
lassetto	0.00																																	0.00				
elette	0.00																																	0.00				
B + Cavidotti	0.00																																	0.00				
arapetto	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
Barriere antirumore	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
Spinta terreno	0.00	0.00	0.00																															0.00				

																	SLE F	A																		SLE	QP	
																	1 Barri																		2 Barri		1 Barr	
																																	A67 RA	.68 Q				QP4
PP soletta PP muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS cordolo							1.00																											1.00				1.0
PPNS cordolo PPNS massicciata	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PINS massicciata PINS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
PNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
PNS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
PNS pb+FFPP	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	- 1
PNS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
PNS 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1
PNS 1 Barriera antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
ACC LM71_1	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
ACC LM71_1 ACC LM71_2	0.00	1.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ACC LM71_3	0.00	0.00	0.00	1.00	1.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ACC_SW/2	0.00	0.00	1.00	0.00	1.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
ACC_SW/2 ACC affoliamento_1	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00		1.00	0.00	0.00	0.00		0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00		0.00	
ACC affoliamento_2	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00		0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00		0.00	
CC deragliamento c1	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
ECC deragliamento c1_1	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
ECC deragliamento c2	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
CC deragliamento c2_2	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ACC Mz aerodin	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80		0.80	0.00			
ACC Mz aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
aglio_aerodin_1	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00		0.00	
Taglio_aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
Temp unif	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	0.50	-0.50	0.50	-0
Delta T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1 00	0.50	-0.50	0.50	-0
T unif. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
V Soletta	0.00																																	0.00				
V Muri laterali	0.00																																	0.00				
SV Cordolo	0.00																																	0.00				
SV Massicciata	0.00																																	0.00				
SV Mz su mur pb da ballast	0.00																																	0.00				
SV Massetto	0.00																																	0.00				
SV Velette	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
SV PB + FFPP	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
SV Parapetto	0.00																																	0.00				
SV 2 Barriere antirumore	0.00																																	0.00				
SV 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
ST Soletta	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			
ST Muri laterali	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
T Cordolo	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST Massicciata	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST Mz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST Massetto	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
T Velette	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
T PB + FFPP	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST Parapetto	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	
ST 1 Barriera antirumore	0.00																																	0.00				

Figura 29 - Combinazioni di carico (solettone superiore, muri laterali e fondazione)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	89

Nelle figure successive vengono esplicitate le combinazioni utilizzate per l'analisi della struttura scatolare:

																	SLI															_		_
																	2 Barri																	
	SLU1 S	LU2 S	LU3 S	SLU4 S	SLU5 S	LU6 S	SLU7 S	SLU8 S	SLU9 S	SLU10 S	LU11 S	LU12 S	LU13 S	SLU14 S	SLU15 S	LU16 S	SLU17 S	LU18 S	LU19 S	SLU20 S	LU21 S	SLU22 S	LU23 S	LU24 S	SLU25 S	LU26 S	SLU27 S	SLU28 S	LU29 S	LU30 S	LU31 S	LU32 S	SLU33 S	SLU34
PP soletta	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PP muri laterali	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PPNS cordolo	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massicciata	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS Mz su mur pb da ballast	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massetto	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS velette	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS pb+cavidotti	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS parapetto	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS 2 Barriere antirumore PPNS 1 Barriera antirumore	1.50	0.00	1.50	0.00	0.00	0.00	1.50	1.50	1.50	0.00	1.50	0.00	0.00	1.50	1.50	0.00	1.50	1.50	1.50	0.00	1.50	1.50	1.50	1.50	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.50
ACC LM71 1	0.00 1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71_1 ACC LM71_2	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71_2 ACC LM71_3	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC_SW/2	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC affoliamento 1	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50
ACC affoliamento 2	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50
ECC deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c2_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC Mz aerodin	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20
ACC Mz aerodin_2	0.00	0.00	0.00	1.20	1.20	0.00	0.00	0.00	1.50	1.50	1.50	0.00	0.00	0.00	1.20	1.20	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taglio_aerodin_1	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20
Taglio_aerodin_2	0.00	0.00	0.00	1.20	1.20	0.00	0.00	0.00	1.50	1.50	1.50	0.00	0.00	0.00	1.20	1.20	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spinta terreno	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Temp unif	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72
Delta T2	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20
T unif. ritiro	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
SV Soletta	0.00	0.00	0.00	0.00	0.00					0.00		0.00	0.00	0.00	0.00								0.00			0.00	0.00	0.00			0.00	0.00	0.00	0.00
SV Muri laterali SV Cordolo	0.00	0.00			0.00	0.00				0.00	0.00			0.00									0.00	0.00								0.00	0.00	0.00
SV Cordolo SV Massicciata	0.00	0.00			0.00	0.00				0.00				0.00									0.00	0.00				0.00				0.00	0.00	0.00
SV Mz su mur pb da ballast	0.00																																	0.00
SV Massetto	0.00																																	0.00
SV Velette	0.00																																	0.00
SV PB + Cavidotti	0.00																																	0.00
SV Parapetto	0.00																																	0.00
SV 2 Barriere antirumore	0.00																																	0.00
SV 1 Barriera antirumore	0.00																																	0.00
ST Soletta	0.00																																	0.00
ST Muri laterali	0.00	0.00												0.00	0.00													0.00						0.00
ST Cordolo	0.00	0.00												0.00	0.00													0.00						0.00
ST Massicciata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Mz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Massetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Velette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST PB + Cavidotti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Parapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Spinta terreno	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

																	SL	ı																
																	1 Barı																	-
	SLU35 S	SLU36 S	SLU37	SLU38	SLU39 S	SLU40 S	SLU41 :	SLU42 S	SLU43 S	SLU44 S	LU45 S	LU46 :	SLU47	SLU48	SLU49 S	LU50	SLU51 :	LU52 S	LU53 3	SLU54 S	SLU55 S	SLU56	SLU57 S	LU58 S	SLU59 S	SLU60 S	LU61	SLU62 S	LU63 S	LU64	SLU65 S	LU66	SLU67 S	SLU68
PP soletta	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PP muri laterali	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
PPNS cordolo	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massicciata	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS Mz su mur pb da ballast	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS massetto	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS velette	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS pb+cavidotti	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS parapetto	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
PPNS 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PPNS 1 Barriera antirumore	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
ACC LM71_1	1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71_2	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC LM71_3	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC_SW/2	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.45	0.00	1.45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ACC affollamento_1	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00	0.00	1.20	0.00	1.20	1.20	0.00	1.20	1.50	0.00	1.50	1.50	0.00	1.50
ACC affollamento_2	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.20	1.20	0.00	1.20	1.20	0.00	1.50	1.50	0.00	1.50	1.50
ECC deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ECC deragliamento c2	0.00	0.00								0.00																0.00							0.00	0.00
ECC deragliamento c2_2 ACC Mz aerodin	0.00	1.20	1.20	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	1.20	0.00	0.00	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	1.20	1.20	0.00	0.00	1.20	
	1.20		0.00	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	0.00	1.20	1.20	0.00	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	0.00	0.00	1.50	0.00	0.00	1.20	1.20	0.00	1.20
ACC Mz aerodin_2	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.50	1.50	1.50	1.50	1.50	1.50	1.20	1.20	1.20	1.20	1.20	1.20
Taglio_aerodin_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Taglio_aerodin_2 Spinta terreno	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
Temp unif	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72	-0.72
Delta T2	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20	-1.20
T unif. ritiro	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
SV Soletta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV Muri laterali	0.00																																	0.00
SV Cordolo	0.00																																	0.00
SV Massicciata	0.00																																	0.00
SV Mz su mur pb da ballast	0.00																																	0.00
SV Massetto	0.00																																	0.00
SV Velette	0.00																																	0.00
SV PB + Cavidotti	0.00	0.00												0.00	0.00													0.00						0.00
SV Parapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SV 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Soletta	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Muri laterali	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Cordolo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Massicciata	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Mz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Massetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Velette	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST PB + Cavidotti	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST Parapetto	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ST 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
ST Spinta terreno	0.00	0.00								0.00	0.00			0.00	0.00								0.00	0.00				0.00						0.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	90

								SI	LV									ECC	
				2 Barri	ere							1 Barr	iere				2	Barriere	,
	SLV1 :	SLV2 S	SLV3 S			SLV6 S	LV7 S	SLV8	SLV9 S	LV10 S	SLV11 S	SLV12 S	SLV13	SLV14	SLV15	SLV16	ECC1	ECC2	ECC3
PP soletta	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PP muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS cordolo	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS massicciata	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS 2 Barriere antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1.00	1.00	1.0
PPNS 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	
ACC LM71 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ACC LM71 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	
ACC LM71 3	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.0
ACC SW/2	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.0
ACC affoliamento 1	0.20	0.20	0.20	0.00	0.20	0.20	0.20	0.00	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.00	0.00	0.0
ACC affoliamento 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.0
ECC deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		1.00	0.00	0.0
ECC deragliamento c1 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ECC deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.0
ECC deragliamento c2_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC Mz aerodin	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC Mz aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Taglio_aerodin_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Taglio_aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
Spinta terreno	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Temp unif	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.5
Delta T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
T unif. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
SV Soletta	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Muri laterali	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Cordolo	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Massicciata	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Mz su mur pb da ballast	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Massetto	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Velette	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV PB + Cavidotti	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV Parapetto	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00	0.00	
SV 2 Barriere antirumore	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00		0.00	0.00	0.00				0.00	0.00	
SV 1 Barriera antirumore	0.00							0.00	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	0.00		
ST Soletta	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Muri laterali	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Cordolo	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Massicciata	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Mz su mur pb da ballast	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Massetto	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Velette	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
STPB + Cavidotti	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		
ST Parapetto																			
ST 2 Barriere antirumore	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ST 1 Barriera antirumore	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00	0.00	
ST Spinta terreno	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.30	-0.30	0.30	-0.30	1.00	1.00	-1.00	-1.00	0.00		

																	SLEI	RA.																
																	2 Barri																	
																																		RA34
P soletta	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
P muri laterali PNS cordolo	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PNS massicciata PNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PNS wiz su mur po da ballast PNS massetto	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS velette NS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
NS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
NS 2 Barriere antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
NS 1 Barriera antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
CC LM71 1	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C LM71_2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
C LM71_2 C LM71_3	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C SW/2	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C affollamento_1	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1
C affoliamento 2	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	
C deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
C deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
C deragliamento c2 2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.
C Mz aerodin	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	
C Mz aerodin 2	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.80	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.
glio_aerodin_1	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.
glio_aerodin_2	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	0.80	0.00	0.00	0.00	0.80	0.80	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.80	0.80	
inta terreno	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
mp unif	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.
ta T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1
nif. ritiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Soletta	0.00																																	
Muri laterali	0.00																																	
Cordolo	0.00																																	
Massicciata	0.00																																	
Mz su mur ob da ballast	0.00																																	
Massetto	0.00																																	
Velette	0.00																																	
PB + Cavidotti	0.00																																	
Parapetto	0.00																																	
2 Barriere antirumore	0.00																																	
1 Barriera antirumore	0.00																																	
Soletta	0.00																																	
Muri laterali	0.00																																	
Cordolo	0.00																																	
Massicciata	0.00																																	
Mz su mur pb da ballast	0.00																																	
Massetto	0.00																																	
Velette	0.00																																	
PB + Cavidotti	0.00																																	
Parapetto	0.00																																	
2 Barriere antirumore	0.00																																	
1 Barriera antirumore	0.00																																	
Spinta terreno	0.00																																	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	91

																	SLEI	RA																		SLE	QP	
																	1 Barri																		2 Barr		1 Bar	
																																		88AS				QP4
PP soletta	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PP muri laterali	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PPNS cordolo	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PPNS massicciata PPNS Mz su mur pb da ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS MZ su mur po da bailast PPNS massetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PPNS velette	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS pb+cavidotti	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PPNS parapetto	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
PPNS 2 Barriere antirumore	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.0
PPNS 1 Barriera antirumore	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.0
ACC LM71 1	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ACC LM71 2	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ACC LM71_3	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC_SW/2	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ACC affoliamento_1	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.80	0.00	0.80	0.80	0.00	0.80	1.00	0.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.0
ACC affollamento_2	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.80	0.80	0.00	0.80	0.80	0.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00	0.0
ECC deragliamento c1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ECC deragliamento c1_1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ECC deragliamento c2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
ECC deragliamento c2_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ACC Mz aerodin	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
ACC Mz aerodin_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Taglio_aerodin_1 Taglio_aerodin_2	0.80	0.80	0.80	0.80	0.80	1.00	1.00	1.00	1.00	0.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.00	0.00	1.00	1.00	1.00	1.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.00	
raglio_aerodin_2 Spinta terreno	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Temp unif	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	-0.60	0.50	-0.50	0.50	
Delta T2	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	0.50	-0.50	0.50	
T unif. rítiro	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SV Soletta	0.00																																	0.00				
SV Muri laterali	0.00																																	0.00				
SV Cordolo	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			0.0
SV Massicciata	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			0.0
SV Mz su mur pb da ballast	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.0
SV Massetto	0.00	0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00		0.00	0.00			0.0
SV Velette	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00		0.00		0.00			0.00		0.00		0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			0.0
SV PB + Cavidotti	0.00			0.00				0.00	0.00			0.00		0.00			0.00	0.00		0.00		0.00		0.00	0.00			0.00	0.00	0.00		0.00	0.00	0.00	0.00			
SV Parapetto	0.00	0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00			0.00		0.00		0.00	0.00			
SV 2 Barriere antirumore	0.00																															0.00		0.00	0.00			
SV 1 Barriera antirumore	0.00																															0.00		0.00	0.00			
ST Soletta ST Muri laterali	0.00		0.00		0.00		0.00	0.00				0.00	0.00		0.00		0.00		0.00	0.00				0.00	0.00			0.00		0.00		0.00	0.00	0.00	0.00			
ST Cordolo	0.00																																	0.00				
ST Massicciata	0.00																																	0.00				
ST Mz su mur ob da ballast	0.00																																	0.00				
ST Massetto	0.00																																	0.00				
ST Velette	0.00																																	0.00				
ST PB + Cavidotti	0.00																																	0.00				
ST Parapetto	0.00																																	0.00				
ST 2 Barriere antirumore	0.00																																	0.00				
ST 1 Barriera antirumore	0.00																																	0.00				
ST Spinta terreno	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00			0.00

Figura 30 - Combinazioni di carico (Struttura scatolare)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	92

Nelle figure successive vengono esplicitate le combinazioni utilizzate per l'analisi dei muri posteriori:

		S	LU			SI	LV		SLE	E RA	SLE	QP
	SLU1	SLU2	SLU3	SLU4	SLV1	SLV2	SLV3	SLV4	RA1	RA2	QP1	QP2
1: PP Muro Posteriore	1,35	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2: Carico orizzontale Ballast	1,50	1,50	1,50	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
3: Sovraccarico long	0,00	1,45	1,45	1,45	0,00	0,00	0,00	0,00	1,00	1,00	1,00	0,00
4: SV Muro Posteriore	0,00	0,00	0,00	0,00	1,00	-1,00	0,30	-0,30	0,00	0,00	0,00	0,00
5: ST Muro Posteriore	0,00	0,00	0,00	0,00	0,30	0,30	1,00	1,00	0,00	0,00	0,00	0,00
6: ST Carico orizzontale Ballast	0,00	0,00	0,00	0,00	0,30	0,30	1,00	1,00	0,00	0,00	0,00	0,00

Figura 31 - Combinazioni di carico (Muro posteriore dietro alla spalla)

				SLU					s	LV			S	LE RA			SLE Q	Р
	SLU1	SLU2	SLU3	SLU4	SLU5	SLU6	SLU7	SLV1	SLV2	SLV3	SLV4	RA1	RA2	RA3	RA4	QP	1 QF	2
1: PP Muro Posteriore	1,35	1,35	1,00	1,00	1,35	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00) 1	,00 1,0	00	1,00	1,00
2: Carico orizzontale Ballast	1,50	1,50	1,50	0,00	1,50	1,50	0,00	0,00	0,00	0,00	0,00	1,00	0,00) 1	,00 0,0	0	0,00	0,00
3: Sovraccarico long	0,00	0,00	1,45	1,45	1,45	1,45	1,45	0,00	0,00	0,00	0,00	1,00	1,00) 1	,00 1,0	00	1,00	0,00
4: Spinta terreno	1,50	0,00	0,00	0,00	1,50	1,50	1,50	1,00	1,00	1,00	1,00	1,00	1,00	0	,00 0,0	0	0,00	0,00
5: SV Muro Posteriore	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	-1,00	0,30	-0,30	0,00	0,00	0	,00 0,0	0	0,00	0,00
6: ST Muro Posteriore	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,30	1,00	1,00	0,00	0,00	0	,00 0,0	0	0,00	0,00
7: ST Carico orizzontale Ballast	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,30	1,00	1,00	0,00	0,00	0	,00 0,0	0	0,00	0,00
8: ST Spinta terreno	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,30	1,00	1,00	0,00	0,00	0	,00 0,0	0	0,00	0,00

Figura 32 - Combinazioni di carico (Muro posteriore dietro alla struttura scatolare)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	93

9. VERIFICHE DEGLI ELEMENTI STRUTTURALI

9.1 ELEMENTI IN CEMENTO ARMATO

9.1.1 Stati Limite Ultimi strutturali (SLU STR)

Come riportato al §2.3 delle NTC 2008, per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione $R_d = R(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto della resistenza del sistema geotecnico

 $\gamma_F \cdot F_k$ Azioni di progetto

 X_k/γ_M Proprietà del materiale di progetto

a_d Geometria di progetto

γ_M Coefficiente parziale di sicurezza del materiale

9.1.1.1 Verifica a presso/tenso flessione

Come previsto al §4.1.2.1.2.4 delle [12] con riferimento alla generica sezione, la verifica di resistenza allo SLU si esegue controllando che:

 $M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$

 $\begin{array}{ll} M_{Rd} & \text{Valore di calcolo del momento resistente corrispondente a N_{Ed}} \\ N_{Ed} & \text{Valore di calcolo della componente assiale (sforzo normale)} \\ M_{Ed} & \text{Valore di calcolo della componente flettente dell'azione} \end{array}$

9.1.1.2 Verifica a taglio

Secondo quanto previsto §4.1.2.1.3 delle [12], indicato con V_{Ed} il valore di calcolo dello sforzo di taglio agente allo SLU, si verifica in generale che risulti:

 $V_{Ed} < V_{Rd}$

Elementi senza armature resistenti a taglio

 $V_{Rd,c} = \max \left\{ \left(0.18 \cdot k \cdot \frac{\sqrt[3]{100 \cdot \rho_l \cdot f_{ck}}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$ Resistenza di calcolo a taglio

 $k = 1 + \sqrt{\frac{200}{d}} \le 2$

 $v_{min} = 0.035 \cdot \sqrt{k^3} \cdot \sqrt{f_{ck}}$

 $\rho_{l} = \frac{A_{sl}}{b_{w} \cdot d} \le 0.02$ Rapporto percentuale armatura in zona tesa Asl

 $\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 \cdot f_{cd}$ Tensione media di compressione nella sezione

d Altezza utile della sezione (mm)

b_w Larghezza minima della sezione (mm)

Elementi provvisti di armature resistenti a taglio

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	94

 $V_{Rd} = min(V_{Rd,s}; V_{Rd,max})$

 $V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$

 $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \frac{(\cot \alpha + \cot \theta)}{1 + \cot^2 \theta}$

θ

 $\cot \theta \le 2.5$

α

 A_{sw}

 $\dot{f_{cd}} = 0.5 \cdot f_{cd}$

 α_{c}

Resistenza di calcolo a taglio

Resistenza a taglio-trazione

Resistenza a taglio-compressione

Inclinazione puntoni di cls rispetto asse elemento (1 ≤

Inclinazione dell'armatura trasversale rispetto asse elemento

Area dell'armatura trasversale

Interasse tra due armature trasversali consecutive

Resistenza a compressione ridotta del calcestruzzo d'anima

Coefficienti maggiorativi pari a:

1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 \cdot f_{cd}$

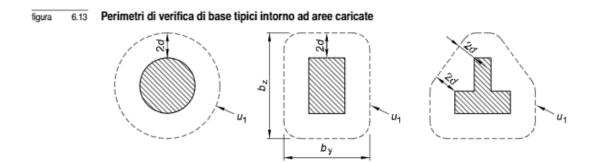
1.25 per $0.25 \cdot f_{cd} \le \sigma_{cp} < 0.50 \cdot f_{cd}$

 $2.5 \cdot (1 - \sigma_{cp} / f_{cd}) \qquad \text{per } 0.50 \cdot f_{cd} \le \sigma_{cp} < f_{cd}$

9.1.1.3 Verifica a punzonamento

In corrispondenza del collegamento tra setti, pilastri o pali di fondazione ed elementi piani (plinti, solette) si hanno sollecitazioni concentrate, con meccanismo resistente a taglio in condizioni di rottura SLU dipendente dalla geometria locale tra i due elementi e le loro condizioni al contorno.

Le verifiche a taglio-punzonamento vengono eseguite in accordo con le UNI EN 1992-1-1: 2005, dove il taglio sollecitante unitario v_{Ed} si assume distribuito sul perimetro u_i del cono di rottura:


$$v_{Ed} = \beta \frac{V_{Ed}}{u_i \cdot d}$$

β coeff. posizioni reciproche tra aree di carico (pilastro interno 1.15, spigolo 1.50, bordo 1.40)

V_{Ed} azione sollecitante di progetto u_i perimetro della sezione di verifica

 $d = \frac{d_y - d_z}{2}$ altezza utile della sezione

d_y, d_z altezze utili delle armature disposte nelle due direzioni principali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	95

figura 6.15 Perimetro di verifica di base per aree caricate in prossimità di bordi o di angoli

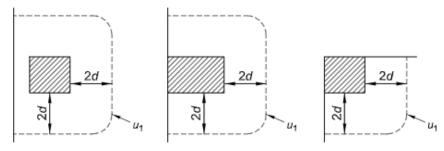


Figura 33 - Schemi aree di carico per diverse geometrie

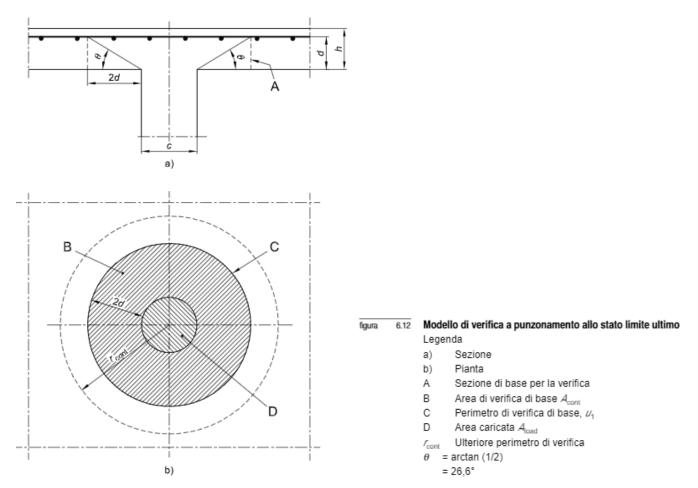


Figura 34 – Modello di verifica a punzonamento SLU

Per un elemento a piastra e lungo le sezioni di verifica considerate, si definiscono le seguenti resistenze di progetto a taglio-punzonamento:

 $\begin{aligned} v_{Rd,c} &= max \left(C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck} \right)^{1/3} + k_1 \cdot \sigma_{cp}; \ v_{min} + k_1 \cdot \sigma_{cp} \right) \end{aligned} \quad \text{per piastra senza armature a punzonamento} \\ v_{Rd,cs} &= 0.75 \cdot v_{Rd,c} + 1.5 \cdot \left(\frac{d}{s_r} \right) \cdot A_{sw} \cdot f_{ywd,ef} \cdot \frac{1}{u_1 \cdot d} \cdot \text{sen } \alpha \end{aligned} \quad \text{per piastra con armature a punzonamento}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

valore massimo assoluto

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	96

 $\begin{aligned} v_{Rd,max} &= 0.5 \cdot v \cdot f_{cd} \\ C_{Rd,c} &= \frac{0.18}{\gamma_c} \\ k &= min\left(1 + \sqrt{\frac{200}{d}}; 2\right) \\ \rho_1 &= min\left(\sqrt{\rho_{1y} \cdot \rho_{1z}}; 0.02\right) \end{aligned}$

percentuale di armatura longitudinale nelle due direzioni principali

 $\sigma_{\rm cp} = \frac{\sigma_{\rm cy} + \sigma_{\rm cz}}{2}$

 $\sigma_{c,y} = \frac{N_{Ed,y}}{A_{cy}}, \ \sigma_{c,z} = \frac{N_{Ed,z}}{A_{cz}}$ tensioni normali nelle due direzioni principali

 $N_{\text{Ed},y},\,N_{\text{Ed},z}$ azioni normali nelle due direzioni principali

A_{cy}, A_{cy} aree delle due direzioni principali

 v_{min} =0.035· $\sqrt{k^3 \cdot f_{ck}}$

 $k_1 = 0.1$ (annesso italiano all'Eurocodice)

s_r passo radiale perimetri di armatura a taglio-punzonamento

 A_{sw} area armatura a taglio-punzonamento all'interno del perimetro di verifica $f_{ywd,ef} = min(f_{ywd}; 250+0.25 \cdot d)$ resistenza di progetto efficace dell'armatura a taglio-punzonamento

resistenza di progetto efficace dell'armatura a taglio-punzonamento angolo compreso tra l'armatura a taglio e il piano della piastra

a

La verifica da effettuare lungo il perimetro del pilastro u₀, descritto dall'area caricata A_{load}, è la seguente:

 $V_{Ed} \le V_{Rd,max}$

 u_0 = sviluppo del perimetro pilastro pilastro interno = $c_2 + 3d \le c_2 + 2*c_1$ pilastro di bordo = $3d \le c_1 + c_2$ pilastro d'angolo

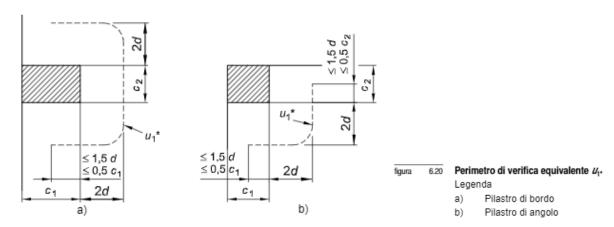


Figura 35 – Geometria dei perimetri pilastri per elementi d'angolo e di bordo

Le verifiche da effettuare lungo il perimetro di base u₁ sono le seguenti:

 $v_{Ed} \le v_{Rd,c}$ piastra senza armature a taglio-punzonamento $v_{Ed} \le v_{Rd,cs}$ piastra con armature a taglio-punzonamento

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	97

9.1.2 Stati Limite Ultimi di esercizio (SLE STR, SLD)

9.1.2.1 Limiti tensionali in esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 delle NTC 2008, la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $E_d \le C_d$

 $E_d = E(\gamma_F \cdot F_k; X_k / \gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione

 $C_d = C(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore nominale o funzione di certe proprietà dei materiali legate agli effetti

progettuali delle azioni considerate

Le verifiche si risolvono nel controllare che i valori di tensione nei materiali siano inferiori ai valori limite delle tensioni riportati al paragrafo 2.5.1.8.3.2.1 del MdP ITF:

Combinazione quasi permanente $\sigma_c < 0.40 \cdot f_{ck}$

Acciaio teso Combinazione rara $\sigma_s < 0.75 \cdot f_{vk}$

9.1.2.2 Verifiche agli Stati Limite di Fessurazione

Viene eseguita la verifica allo stato limite di apertura delle fessure con riferimento al §4.1.2.2.4 delle NTC 2008. Prima di procedere alle verifiche a fessurazione è necessario definire delle apposite combinazioni di carico ed effettuare una valutazione relativa al grado di protezione delle armature metalliche contro la corrosione (in termini di condizioni ambientali e sensibilità delle armature stesse alla corrosione). Si distinguono i seguenti casi:

Combinazioni di azioni Rara (RA)

Quasi Permanente (QP)

Condizioni ambientali Ordinarie (Gruppo A)

Aggressive (Gruppo B)

Molto aggressive (Gruppo C)

Sensibilità delle armature alla corrosione Sensibili (acciai da precompresso)

Poco sensibili (acciai ordinari)

Stato limite Apertura fessure (AF)

Formazione fessure (FF) Decompressione (D)

Apertura delle fessure $w_1 = 0.20 \text{ mm}$

 $w_2 = 0.30 \text{ mm}$ $w_3 = 0.40 \text{ mm}$

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	98

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di		Arma	tura	
Gruppi di Ssigenze	ambientali	azioni	Sensibile	•	Poco sensibile	
Gr Esi			Stato limite	$\mathbf{w}_{\mathbf{k}}$	Stato limite	w_k
A	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$
A	Ordinarie	quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
В	Accessions	frequente	apertura fessure	≤w ₁	apertura fessure	$\leq w_2$
Б	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

Tabella 26 - Stati limite di fessurazione secondo NTC 2008

Il calcolo, condotto con riferimento alla procedura analitica prevista al §C4.1.2.2.4 del [15], prevede i seguenti passaggi:

- Valutazione della distanza media tra le fessure (Δ_{sm});
- Valutazione della deformazione media delle barre d'armatura (ε_{sm});
- Valutazione dell'ampiezza delle fessure (valore medio w_m e valore di calcolo w_k).

Come riportato al paragrafo 2.5.1.8.3.2.4 del MdP ITF, la verifica allo stato limite di apertura delle fessure viene calcolata con la combinazione caratteristica (rara) nei riguardi dello stato limite di esercizio. I limiti per l'apertura convenzionale delle fessure vengono valutati secondo le condizioni ambientali della struttura.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura. Si distinguono i seguenti casi:

Elemento strutturale	Classi di esposizione	Gruppo di esigenza	Condizioni ambientali	Combinaz. di azioni	Stato limite	Wk
Elevazioni	XC4 – XS1	В	Aggressive	RA	AF	$\leq w_1 = 0.20 \text{ mm}$
Fondazioni	XC2	Α	Ordinarie	RA	AF	\leq w ₂ = 0.30 mm

Tabella 27 – Riepilogo stati limite di fessurazione di verifica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	99

10. MODELLI DI CALCOLO

Per il dimensionamento delle strutture di spalla sono stati adottati i seguenti diversi modelli di calcolo:

- modello generale della spalla, implementato in un foglio di calcolo Excel, specifico per ricavare le sollecitazioni globali sulle fondazioni partendo dagli scarichi appoggi dell'impalcato; sono considerati i pesi propri degli elementi strutturali, del terreno di riempimento della spalla, le spinte del terreno di rilevato e, in condizioni sismiche, le masse, secondo le ipotesi illustrate nell'analisi dei carichi; il solettone di fondazione viene considerato come una piastra rigida su pali;
 - a. modello locale del muro frontale, implementato in un foglio di calcolo Excel, considerando uno schema strutturale di mensola incastrata alla base;
 - b. modello locale del paraghiaia, implementato in un foglio di calcolo Excel, considerando uno schema strutturale di mensola incastrata alla base;
 - c. modello locale in direzione longitudinale della fondazione, implementato in un foglio di calcolo Excel, dove vengono calcolate le sollecitazioni del plinto in direzione longitudinale a partire dagli scarichi sui pali, desunti dalla relazione geotecnica;
- modello trasversale della spalla, implementato come un telaio piano e discretizzato con un modello agli elementi finiti, dove vengono valutate le sollecitazioni in direzione trasversale del solettone, dei muri laterali e del plinto in direzione trasversale;
- 3) modello locale del muro posteriore di chiusura della struttura scatolare della spalla, implementato come un telaio piano e discretizzato con un modello agli elementi finiti;
- 4) modello trasversale dei muri scatolari esterni, implementato come un telaio piano e discretizzato con un modello agli elementi finiti dove vengono valutate le sollecitazioni in direzione trasversale del solettone, dei muri laterali, del muro centrale e del plinto in direzione trasversale;
- 5) modello locale del muro posteriore di chiusura dei muri scatolari esterni, implementato come un telaio piano e discretizzato con un modello agli elementi finiti;

Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

Parametri Geotecnici												
γ φ' c'												
[kN/m³]	[°]	[kPa]										
20 38 0												

Tabella 28 – Parametri geotecnici terreno di riempimento

Tutte le azioni e le combinazioni di carico considerate per le verifiche strutturali e geotecniche sono state sviluppate nell'ipotesi A1-M1.

10.1.1 Condizioni statiche

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	100

Si deve notare che essendo presente una fondazione su pali si ipotizza che la spalla sia impedita di traslare rispetto al terreno; pertanto, la spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta in quiete k₀.

Per considerare la presenza di un sovraccarico da traffico gravante sulla spalla e tergo di essa, si considera un carico uniformemente distribuito di lunghezza indefinita con valore equivalente pari ad entrambi i binari caricati con dei modelli di carico LM71, non amplificato per il coefficiente dinamico.

10.1.2 Condizioni sismiche

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica viene calcolata con la teoria di Mononome-Okabe con β_m = 1.00, in quanto si considera la spalla debolmente deformabile in condizione sismica.

In fase sismica si considerano inoltre le azioni orizzontali e verticali dovute all'inerzia delle parti in calcestruzzo e del rinterro compreso tra i muri andatori.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	101

11. ANALISI GENERALE SPALLA MOBILE S1

11.1 AZIONE IMPALCATI

Mediante l'ausilio di un foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) derivanti dagli scarichi degli impalcati in appoggio, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione spalla, secondo lo schema di riferimento, a quota estradosso muro frontale, e i rispettivi assi x, y, z come riportato nella figura seguente.

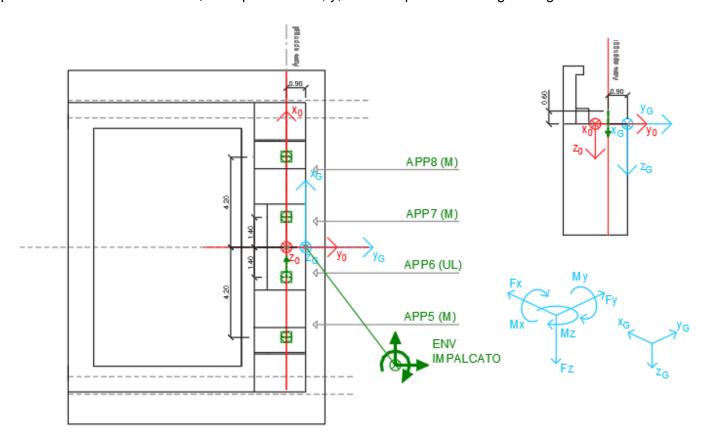


Figura 36 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	102

NOME: SPALLA 1		CALCOLO AZIONI DA IMPALCATO													
ATO APPOGGI SCORREV				,											
APPOGGIO 5 (M)		F _{yO} (kN)		x _O (m)	y _O (m)		M _{xo} (kNm)	,		F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm) M		
G1 (peso proprio) G2,1 (ballast)	0	0	1075 325	-4,20 -4,20	0,00 0,00	-0,60 -0,60	0	4516 1365	0	0	0	1075 325	-968 -293	4516 1365	C
G2,1 (velette)	0	0	225	-4,20 -4,20	0,00	-0,60	0	945	0	0	0	225	-293 -203	945	0
G2,3 (arredi)	0	0	425	-4,20	0,00	-0,60	0	1785	0	0	Ö	425	-383	1785	Ċ
G2,4 (barriere)	0	0	575	-4,20	0,00	-0,60	0	2415	0	0	0	575	-518	2415	C
Q3,a B1-SW2 (aw)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q3,a B1-LM71 (aw)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q3,a B2-LM71 (aw)	0	0	66	-4,20	0,00	-0,60	0	276	0	0	0	66	-59	276	C
Q3,f B1-SW2 (fren)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q3,f B1-LM71 (fren)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q3,f B2-LM71 (fren)	0	0	40	-4,20	0,00	-0,60	0	167	0	0	0	40	-36	167	C
Q4 B1-SW2 (centr)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q4 B1-LM71 (centr)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q4 B2-LM71 (centr)	0	0	0	-4,20	0,00	-0,60	0	0	0	0	0	0	0	0	(
Q5 B1-SW2 (serp)	0	0	-41	-4,20	0,00	-0,60	0	-173	0	0	0	-41	37	-173	C
Q5 B1-LM71 (serp)	0	0	-45	-4,20	0,00	-0,60	0	-191	0	0	0	-45	41	-191	C
Q5 B2-LM71 (serp)	0	0	-45	-4,20	0,00	-0,60	0	-191	0	0	0	-45	41	-191	(
Q6 (vento)	0	0	-29	-4,20	0,00	-0,60	0	-123	0	0	0	-29	26	-123	C
Q1 LM71_B1 (traffico)	0	0	61	-4,20	0,00	-0,60	0	256	0	0	0	61	-55	256	C
Q1 LM71_B2 (traffico)	0	0	1062	-4,20	0,00	-0,60	0	4460	0	0	0	1062	-956	4460	(
Q1 SW2_B1 (traffico)	0	0 79	92 0	-4,20 -4.20	0,00 0,00	-0,60 -0.60	0 47	388 0	0 -331	0	0 79	92 0	-83 47	388 0	-331
Q8 Fa,G (attrito) Q8 Fa,Q (attrito)	0	79 24	0	-4,20 -4,20	0,00	-0,60 -0,60	47 14	0	-331 -99	0	79 24	0	47 14	0	-331 -99
APPOGGIO 6 (UL)		F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)		M _{xo} (kNm)			F _{xG} (m)	F _{vG} (m)		M _{xG} (kNm) M	-	
G1 (peso proprio)	0	0	475	-1,40	0,00	-0,60	0	665	0	0	0	475	-428	665	25 (
G2,1 (ballast)	0	0	500	-1,40	0,00	-0,60	0	700	0	0	0	500	-450	700	C
G2,2 (velette)	0	0	-138	-1,40	0,00	-0,60	0	-193	0	0	0	-138	124	-193	C
G2,3 (arredi)	0	0	-225	-1,40	0,00	-0,60	0	-315	0	0	0	-225	203	-315	C
G2,4 (barriere)	0	0	-325	-1,40	0,00	-0,60	0	-455	0	0	0	-325	293	-455	C
Q3,a B1-SW2 (aw)	0	0	20	-1,40	0,00	-0,60	0	28	0	0	0	20	-18	28	C
Q3,a B1-LM71 (aw)	0	0	22	-1,40	0,00	-0,60	0	31	0	0	0	22	-20	31	C
Q3,a B2-LM71 (aw)	0	0	44	-1,40	0,00	-0,60	0	61	0	0	0	44	-39	61	C
Q3,f B1-SW2 (fren)	0	0	21	-1,40	0,00	-0,60	0	30	0	0	0	21	-19	30	0
Q3,f B1-LM71 (fren)	0	0	13	-1,40	0,00	-0,60	0	19	0	0	0	13	-12	19	0
Q3,f B2-LM71 (fren)	0	0	27	-1,40	0,00	-0,60	0	37	0	0	0	27	-24	37	0
Q4 B1-SW2 (centr)	0	0	0	-1,40	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B1-LM71 (centr)	0	0	0	-1,40	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B2-LM71 (centr)	0	0	0	-1,40	0,00	-0,60	0	0	0	0	0	0	0	0	C
Q5 B1-SW2 (serp)	100	0	-14	-1,40	0,00	-0,60	0	-79	0	100	0	-14	12	-79	90
Q5 B1-LM71 (serp)	110	0	-15	-1,40	0,00	-0,60	0	-87	0	110	0	-15	14	-87	99
Q5 B2-LM71 (serp)	110	0	-15	-1,40	0,00	-0,60	0	-87	0	110	0	-15	14	-87	99
Q6 (vento)	234	0	25	-1,40	0,00	-0,60	0	-106	0	234	0	25	-22	-106	211
Q1 LM71 B1 (traffico)	0	0	395	-1,40	0,00	-0,60	0	553	0	0	0	395	-355	553	C
Q1 LM71 B2 (traffico)	0	0	728	-1,40	0,00	-0,60	0	1020	0	0	0	728	-656	1020	0
Q1 SW2_B1 (traffico)	0	0	462	-1,40	0,00	-0,60	0	647	0	0	0	462	-416	647	0
Q8 Fa,G (attrito)	0	9	0	-1,40	0,00	-0,60	5	0	-12	0	9	0	5	0	-12
Q8 Fa,Q (attrito)	0	16	0	-1,40	0,00	-0,60	9	0	-22	0	16	0	9	0	-22
APPOGGIO 7 (M)			F _{zO} (kN)	x _O (m)	y _O (m)		M _{xo} (kNm)			F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm) M		
G1 (peso proprio)	0	0	475	1,40	0,00	-0,60	0	-665	0	0	0	475	-428	-665	0
G2,1 (ballast)	0	0	500	1,40	0,00	-0,60	0	-700	0	0	0	500	-450	-700	0
G2,2 (velette)	0	0	-138	1,40	0,00	-0,60	0	193	0	0	0	-138	124	193	C
G2,3 (arredi)	0	0	-225	1,40	0,00	-0,60	0	315	0	0	0	-225	203	315	C
G2,4 (barriere)	0	0	-325	1,40	0,00	-0,60	0	455	0	0	0	-325	293	455	(
Q3,a B1-SW2 (aw)	0	0	40	1,40	0,00	-0,60	0	-56	0	0	0	40	-36	-56	(
Q3,a B1-LM71 (aw)	0	0	44	1,40	0,00	-0,60	0	-61	0	0	0	44	-39	-61	(
Q3,a B2-LM71 (aw)	0	0	22	1,40	0,00	-0,60	0	-31	0	0	0	22	-20	-31	(
Q3,f B1-SW2 (fren)	0	0	42	1,40	0,00	-0,60	0	-59	0	0	0	42	-38	-59	(
Q3,f B1-LM71 (fren)	0	0	27	1,40	0,00	-0,60	0	-37	0	0	0	27	-24	-37	
Q3,f B2-LM71 (fren)	0	0	13	1,40	0,00	-0,60	0	-19	0	0	0	13	-12	-19	(
Q4 B1-SW2 (centr)	0	0	0	1,40	0,00	-0,60	0	0	0	0	0	0	0	0	(
Q4 B1-LM71 (centr)	0	0	0	1,40	0,00	-0,60	0	0	0	0	0	0	0	0	
Q4 B2-LM71 (centr)	0	0	0	1,40	0,00	-0,60	0	0	0	0	0	0	0	0	
Q5 B1-SW2 (serp)	0	0	14	1,40	0,00	-0,60	0	-19	0	0	0	14	-12	-19	(
Q5 B1-LM71 (serp)	0	0	15	1,40	0,00	-0,60	0	-21	0	0	0	15	-14	-21	
Q5 B2-LM71 (serp)	0	0	15	1,40	0,00	-0,60	0	-21	0	0	0	15	-14	-21	
Q6 (vento)	0	0	78	1,40	0,00	-0,60	0	-110	0	0	0	78	-71	-110	
	0	0	728	1,40	0,00	-0,60	0	-1020	0	0	0	728	-656	-1020	(
Q1 LM71_B1 (traffico)															
Q1 LM71_B1 (traffico) Q1 LM71_B2 (traffico)	0	0	395	1,40	0,00	-0,60	0	-553	0	0	0	395	-355	-553	(
	0 0	0	395 832	1,40 1,40	0,00 0,00	-0,60 -0,60	0	-553 -1164	0	0	0 0	395 832	-355 -749	-553 -1164	
Q1 LM71_B2 (traffico)															0 0 12

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	103

APPOGGIO 8 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M _y	o (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) N	I _{xG} (kNm) N	l _{yG} (kNm) I	νί _{zG} (kNm)
G1 (peso proprio)	0	0	1075	4,20	0,00	-0,60	0	-4516	0	0	0	1075	-968	-4516	0
G2,1 (ballast)	0	0	325	4,20	0,00	-0,60	0	-1365	0	0	0	325	-293	-1365	0
G2,2 (velette)	0	0	225	4,20	0,00	-0,60	0	-945	0	0	0	225	-203	-945	0
G2,3 (arredi)	0	0	425	4,20	0,00	-0,60	0	-1785	0	0	0	425	-383	-1785	0
G2,4 (barriere)	0	0	575	4,20	0,00	-0,60	0	-2415	0	0	0	575	-518	-2415	0
Q3,a B1-SW2 (aw)	0	0	60	4,20	0,00	-0,60	0	-251	0	0	0	60	-54	-251	0
Q3,a B1-LM71 (aw)	0	0	66	4,20	0,00	-0,60	0	-276	0	0	0	66	-59	-276	0
Q3,a B2-LM71 (aw)	0	0	0	4,20	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q3,f B1-SW2 (fren)	0	0	63	4,20	0,00	-0,60	0	-266	0	0	0	63	-57	-266	0
Q3,f B1-LM71 (fren)	0	0	40	4,20	0,00	-0,60	0	-167	0	0	0	40	-36	-167	0
Q3,f B2-LM71 (fren)	0	0	0	4,20	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B1-SW2 (centr)	0	0	0	4,20	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B1-LM71 (centr)	0	0	0	4,20	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B2-LM71 (centr)	0	0	0	4,20	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q5 B1-SW2 (serp)	0	0	41	4,20	0,00	-0,60	0	-173	0	0	0	41	-37	-173	0
Q5 B1-LM71 (serp)	0	0	45	4,20	0,00	-0,60	0	-191	0	0	0	45	-41	-191	0
Q5 B2-LM71 (serp)	0	0	45	4,20	0,00	-0,60	0	-191	0	0	0	45	-41	-191	0
Q6 (vento)	0	0	132	4,20	0,00	-0,60	0	-556	0	0	0	132	-119	-556	0
Q1 LM71_B1 (traffico)	0	0	1062	4,20	0,00	-0,60	0	-4460	0	0	0	1062	-956	-4460	0
Q1 LM71_B2 (traffico)	0	0	61	4,20	0,00	-0,60	0	-256	0	0	0	61	-55	-256	0
Q1 SW2_B1 (traffico)	0	0	1201	4,20	0,00	-0,60	0	-5046	0	0	0	1201	-1081	-5046	0
Q8 Fa,G (attrito)	0	79	0	4,20	0,00	-0,60	47	0	331	0	79	0	47	0	331
Q8 Fa,Q (attrito)	0	25	0	4,20	0,00	-0,60	15	0	107	0	25	0	15	0	107

Tabella 29 - Riepilogo azioni elementari derivanti dagli scarichi degli impalcati

-	Deceriaione	V_{trasv}	\ <i>I</i> .	NI .	NA.	M_{trasv}	M _{torc}
Tipo azione	Descrizione azione		V _{long}	N _{vert}	M _{long}		
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	3101	-2791	0	0
Gk2b Ballast	G2,1 (ballast)	0	0	1650	-1485	0	0
Gk2v	G2,2 (arredi vari)	0	0	1075	-968	0	0
Qk3a	Traffico 1	0	0	131	-118	-306	0
Avviamento	Traffico 2	0	0	119	-107	-279	0
	Traffico 3	0	0	119	-107	-279	0
Qk3f	Traffico 1	0	0	80	-72	186	0
Frenatura	Traffico 2	0	0	80	-72	186	0
	Traffico 3	0	0	127	-114	-295	0
Qk4	Traffico 1	0	0	0	0	0	0
Centrifuga	Traffico 2	0	0	0	0	0	0
	Traffico 3	0	0	0	0	0	0
Qk5	Traffico 1	220	0	0	0	-979	198
Serpeggio	Traffico 2	210	0	0	0	-935	189
	Traffico 3	100	0	0	0	-445	90
Qk6 vento	Q6 (vento)	234	0	206	-186	-894	211
Qk1	Traffico 1	0	0	4492	-4043	0	0
Treno	Traffico 2	0	0	4834	-4350	-504	0
	Traffico 3	0	0	2588	-2329	-5175	0
Qk2g attrito	Q8 Fa,G (attrito)	0	175	0	105	0	0
Qk2q attrito	Q8 Fa,Q (attrito)	0	82	0	49	0	9

Tabella 30 - Risultanti azioni elementari al centro dell'elevazione G (quota estradosso muro frontale)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	104

NomeFox	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-Perm. non str. vari	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q attrito-Q8 Fa,Q (attrito)
SLU	_	1	SLU1	1,35	1,50		0,73	0,00	0,00	0,73	0,00	0,00			0,00	1,45	0,00	0,00	0,90			0,00	1,35	1,45
SLU	J 2	2	SLU2	1,35			1,45		0,00		0,00	0,00			0,00	0,73	0,00		0,90			0,00	1,35	1,45
SLU	J 1	3	SLU3	1,35	1,50	1,35	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU	J 2	4	SLU4	1,35	1,50	1,35	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU		5	SLU5	1 ′ 1			0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,90	0,00	0,00	1,45	1,35	1,45
SLI	J 2	6	SLU6	1,35			0,00		1,45		0,00	1,45	0,00	,	0,73		0,00	0,73	0,90	0,00	0,00	1,45	1,35	1,45
SLU			SLU7		1,00	-	-		0,00			0,00			0,00	,	0,00	0,00	0,90			0,00	1,35	1,45
SLU		_	SLU8		1,00					•		0,00	· ·		0,00	0,73			0,90			0,00	1,35	1,45
SLU			SLU9	'	1,00	,			0,00	0,00	0,73		· ·		0,00		1,45		0,90		1,45	0,00	1,35	1,45
SLU		10		′	1,00	,			0,00	0,00	1,45		· ·	,	0,00	0,00	0,73		0,90		1,45	0,00	1,35	1,45
SLU		11	SLU11		1,00				0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	,	0,90		0,00	1,45	1,35	1,45
SLI SLI		12 13	SLU12 SLU13	′	1,00 1,00	,		0,00	1,45 0,00	0,00	0,00	1,45 0,00	0,00	0,00	0,73	0,00	0,00	0,73	0,90 1,50	-	0,00	1,45 0,00	1,35 1,00	1,45 0,00
SLU		14		· '	1,00	,		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	-1,00	0,00
SLU		15			1,00			0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	1,00	0,00
SLI		16								0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	-1,00	0,00
SLI			SLU17		1,00		0,00		0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,73
SLU	J 6	18					0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	-0,73
SLE RA	٦ 7	19	RA1	1,00	1,00	1,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	8 4	20	RA2	1,00	1,00	1,00	1,00	0,00	0,00	1,00	0,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	A 7	21	RA3	1,00	1,00	1,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,60	0,00	1,00	0,00	1,00	1,00
SLE RA			RA4		1,00		0,00		0,00	0,00	1,00		0,00		0,00	0,00	0,80		0,60		1,00	0,00	1,00	1,00
SLE RA		23	RA5		1,00	-	0,00		0,80		0,00	0,80		0,00	1,00		0,00	-	0,60	0,00	0,00	1,00		0,50
SLE RA			RA6	'	1,00		,		1,00		0,00	1,00		0,00	0,80		0,00		0,60		0,00	1,00		0,50
SLE RA		_	RA7	1,00					0,00							1,00				1,00			-1,00	
SLE RA				1,00	-																		-1,00 -1,00	
SLE RA																							-1,00	
SLE RA		29	RA11																	0,00	,	,	-1,00	
SLE RA		30												0,00						0,00			-1,00	
SLE RA		31		1,00								0,00			0,00		0,00			0,00		-	-1,00	
SLE RA		32		1,00		,	,	,	,	,	-			0,00			0,00			0,00			-1,00	
SLE RA	9	33	RA15	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00
SLE Q	P 10	34	QP1	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE Q		35		1,00	-														0,00	0,00	0,00	0,00	-1,00	0,00
SLE Q	P 11	36	QP3	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	105

INVILUPPO:	SLU	N_{vert}	V_{trasv}	M_{long}	V_{long}	M_{trasv}	M _{torc}
Tipologia	Nome	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU4	15595	363	-2347	354	-13823	340
N _{vert} Min	SLU15	5517	-351	1341	175	-4860	-316
V _{trasv} Max	SLU7	12678	530	-2312	354	-11198	490
V _{trasv} Min	SLU16	5517	-351	1341	-175	-5070	-316
M _{long} Max	SLU15	5517	-351	1341	175	-4860	-316
M _{long} Min	SLU6	12407	283	-9463	354	-10954	268
V _{long} Max	SLU11	9942	356	-9370	354	-8735	334
V _{long} Min	SLU18	5826	0	0	-234	-5384	-7
M _{trasv} Max	SLU15	5517	-351	1341	175	-4860	-316
M _{trasv} Min	SLU4	15595	363	-2347	354	-13823	340
M _{torc} Max	SLU7	12678	530	-2312	354	-11198	490
M _{torc} Min	SLU16	5517	-351	1341	-175	-5070	-316

Tabella 32 – ENV SLU - Azioni totali inviluppo

INVILUPPO:	SLE RA	N _{vert}	V_{trasv}	M _{long}	V _{long}	M_{trasv}	M _{torc}
Tipologia	Nome	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA4	10982	308	-1881	256	-9730	287
N _{vert} Min	RA14	5620	-234	894	-175	-5163	-211
V _{trasv} Max	RA1	10611	360	-1612	256	-9396	334
V _{trasv} Min	RA14	5620	-234	894	-175	-5163	-211
M _{long} Max	RA14	5620	-234	894	-175	-5163	-211
M _{long} Min	RA12	8783	220	-6641	-216	-8034	194
V _{long} Max	RA15	5826	0	0	256	-5090	9
V _{long} Min	RA10	10982	308	-1881	-256	-10038	268
M _{trasv} Max	RA15	5826	0	0	256	-5090	9
M _{trasv} Min	RA10	10982	308	-1881	-256	-10038	268
M _{torc} Max	RA1	10611	360	-1612	256	-9396	334
M _{torc} Min	RA14	5620	-234	894	-175	-5163	-211
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M_{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	QP3	5826	0	0	175	-5139	0
N _{vert} Min	QP2	5826	0	0	-175	-5348	0
V _{trasv} Max	QP3	5826	0	0	175	-5139	0
V _{trasv} Min	QP2	5826	0	0	-175	-5348	0
M _{long} Max	QP3	5826	0	0	175	-5139	0
M _{long} Min	QP2	5826	0	0	-175	-5348	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	106

V _{lor}	ng Max	QP3	5826	0	0	175	-5139	0
VIo	_{ng} Min	QP2	5826	0	0	-175	-5348	0
M _{tras}	sv Max	QP3	5826	0	0	175	-5139	0
M _{tra}	asv Min	QP2	5826	0	0	-175	-5348	0
M _{to}	rc Max	QP3	5826	0	0	175	-5139	0
Mto	orc Min	QP2	5826	0	0	-175	-5348	0

Tabella 33 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	107

11.2 SOLLECITAZIONI ELEVAZIONE

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}), non strutturali (G_{k2}) e accidentali (G_{ki}) applicate all'elevazione spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi, combinandole opportunamente con gli inviluppi di azioni totali ricavate a testa elevazione.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione pila a quota estradosso fondazione, e i rispettivi assi x, y, z come riportato nella figura seguente.

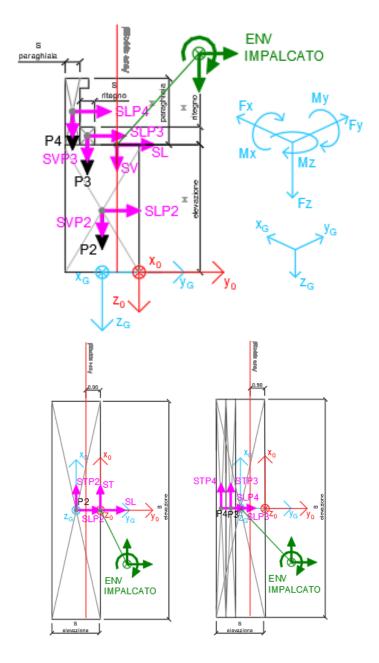


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	108

11.2.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOME:	ELEVAZIO	NE SPALLA	1					CALCOL	O SPETTRO	SISMIC	O DI PROG	ETTO				
PGA orizzontale	a _g (g)	0,195				Co	eff. sismico	orizz. k _h	0,2738			Coeff. sp	ointa attiva	sismica k _{aE}	0,3834	
Coeff. stratigrafic	o S _S	1,404				C	oeff. sismico	vert. k _v	0,1369							
NOME:	ELEVAZIO	NE SPALLA	1					CALCOL	O AZIONI S	SMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) M	_{xo} (kNm) N	yo (kNm) M	o (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm
Sisma long	SLP2	0	1109	0	0,00	-1,50	-2,00	2218	0	0						
	SLP3	0	51	0	0,00	-2,10	-4,46	227	0	0						
	SLP4	0	172	0	0,00	-2,70	-5,55	954	0	0						
		0	1332	0				3399	0	0	0	1332	0	3399	0	(
Sisma trasv	STP2	1109	0	0	0,00	-1,50	-2,00	0	-2218	1663						
	STP3	51	0	0	0,00	-2,10	-4,46	0	-227	107						
	STP4	172	0	0	0,00	-2,70	-5,55	0	-954	464						
		1332	0	0				0	-3399	2234	1332	0	0	0	-3399	237
Sisma vert	SVP2	0	0	554	0,00	-1,50	-2,00	-832	0	0						
	SVP3	0	0	26	0,00	-2,10	-4,46	-54	0	0						
	SVP4	0	0	86	0,00	-2,70	-5,55	-232	0	0						
		0	0	666				-1117	0	0	0	0	666	-118	0	(
Sisma ballast	SGBH	0	0	0	0,00	-3,00	-3,55	0	0	0						
long		0	0	0				0	0	0	0	0	0	0	0	(
Sisma terreno	STHL	0	0	0	0,00	-3,00	-3,55	0	0	0						
long		0	0	0				0	0	0	0	0	0	0	0	(
Sisma impalcato	SL	0	0	0	0,00	0,00	-4,00	0	0	0						
long		_ 0	0	0				0	0	0	0	0	0	0	0	(
Sisma impalcato	ST	2918	0	0	0,00	0,00	-4,00	0	-11673	0						
trasv		2918	0	0				0	-11673	0	2918	0	0	0	-11673	-4378
Sisma impalcato	SV	0	0	1459	0,00	0,00	-4,00	0	0	0						
vert		0	0	1459				0	0	0	0	0	1459	2189	0	(

Tabella 34 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	109

NOME:	ELEVAZION	SPALLA	1					PARA	METRI DI C	ALCOLO	ELEVAZIO	NE	-			
H paraghiaia (m)	3,10			H eleva	zione (m)	4,00		P	eso terreno	(kN/m ³)	20,00		Cario	o variab. Q L	M71 (kPa)	23,1
S paraghiaia (m)	0,60			S eleva	zione (m)	3,00		Angolo	di attrito te	rreno (°)	38,00			χ_{G}	elevazione	0,00
H ritegno (m)	0,92			B eleva	zione (m)	13,50		Coeff. sp	inta attiva si	tatica ka	0,2379			Y_{G}	elevazione	-1,50
S ritegno (m)	0,60		Carico pe	erm. Gb ball	ast (kPa)	9,72		Coeff. spir	nta riposo si	tatica k ₀	0,3843			Z _G	elevazione	0,00
NOME:	ELEVAZIONI	SPALLA	1					CAI	COLO AZIO	ONI CORE	O SPALLA					
NOME.	LLLTALION	F _{xO} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	70 (m) M		vo (kNm) M		F _{xG} (m)	F _{vG} (m)	F (m)	M _{xG} (kNm)	M (kNm)	M-a (kNm)
Peso proprio	P2	0	0	4050	0,00	-1,50	-2,00	-6075	0	0	i xG (iii)	1 yG (111)	1 ZG (111)	IVIXG (KIVIII)	IVIYG (KIVIII)	IVIZG (KIVIII)
r eso piopilo	P3	0	0	186	0,00	-2,10	-2,00 -4,46	-391	0	0						
	P4	0	0	628	0,00	-2,10 -2,70	-5,55	-1695	0	0						
	F#	0	0	4864	0,00	-2,70	-5,55	-8161	0	0	0	0	4864	-865	0	
		·							-	-	U	U	4004	-003	U	
Ballast	GBH	0	0	0	0,00	-3,00	-3,55	0	0	0						
		0	. 0	0				0	0	0	0	0	0	0	0	C
Spinta terreno	THL	0	0	0	0,00	-3,00	-2,37	0	0	0						
		0	0	0				0	0	0	0	0	0	0	0	C
Sovraccarico	Q1	0	0	0	0,00	-3,00	-3,55	0	0	0						
long		0	0	0	-,	-,	-,,	0	0	0	0	0	0	0	0	C
NOME:	ELEVAZIONI	CDALLA	4					CAI	COLO AZI	ONI DA II	MPALCATO					
NOWE:	ELEVAZIONI	ESPALLA	1					CAI	COLO AZIO	JNI DA II	WPALCATO					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)			_{yo} (kNm) M		F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm)		
ENV	Nvert Max	363	354	15595	0,00	0,00	-4,00	-13823	-2347	340	363	354	15595	10987	-3799	-204
SLU	Nvert Min	-351	175	5517	0,00	0,00	-4,00	-4860	1341	-316	-351	175	5517	4114	2746	211
	Vtrasv Max	530	354	12678	0,00	0,00	-4,00	-11198	-2312	490	530	354	12678	9237	-4431	-304
	Vtrasv Min	-351	-175	5517	0,00	0,00	-4,00	-5070	1341	-316	-351	-175	5517	2506	2746	211
	Mlong Max	-351	175	5517	0,00	0,00	-4,00	-4860	1341	-316	-351	175	5517	4114	2746	211
	Mlong Min	363	354	15595	0,00	0,00	-4,00	-13823	-2347	340	363	354	15595	10987	-3799	-204
	Vlong Max	356	354	9942	0,00	0,00	-4,00	-8735	-9370	334	356	354	9942	7595	-10792	-200
	Vlong Min	0	-234	5826	0,00	0,00	-4,00	-5384	0	-7	0	-234	5826	2419	0	-7
	Mtrasv Max	-351	175	5517	0,00	0,00	-4,00	-4860	1341	-316	-351	175	5517	4114	2746	211
	Mtrasv Min	283	354	12407	0,00	0,00	-4,00	-10954	-9463	268	283	354	12407	9074	-10596	-156
	Mtorc Max	530	354	12678	0,00	0,00	-4,00	-11198	-2312	490	530	354	12678	9237	-4431	-304
	Mtorc Min	-351	-175	5517	0,00	0,00	-4,00	-5070	1341	-316	-351	-175	5517	2506	2746	211
		F_{xO} (kN)	F _{vO} (kN)	F_{zO} (kN)	x _O (m)	y _O (m)	z _O (m) M	I _{xo} (kNm) M	_{vo} (kNm) M	zo (kNm)	F_{xG} (m)	F_{vG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	308	256	10982	0,00	0,00	-4,00	-9730	-1881	287	308	256	10982	7769	-3115	-176
SLE RA	Nvert Min	-234	-175	5620	0,00	0,00	-4,00	-5163	894	-211	-234	-175	5620	2568	1830	140
	Vtrasv Max	360	256	10611	0,00	0,00	-4,00	-9396	-1612	334	360	256	10611	7546	-3054	-207
	Vtrasv Min	-234	-175	5620	0,00	0,00	-4,00	-5163	894	-211	-234	-175	5620	2568	1830	140
	Mtrasv Max	-234	-175	5620	0,00	0,00	-4,00	-5163	894	-211	-234	-175	5620	2568	1830	140
	Mtrasv Min	220	-216	8783	0,00	0,00	-4,00	-8034	-6641	194	220	-216	8783	4278	-7523	-137
	Vlong Max	0	256	5826	0,00	0,00	-4,00	-5090	0	9	0	256	5826	4675	0	9
	Vlong Min	308	-256	10982	0,00	0,00	-4,00	-10038	-1881	268	308	-256	10982	5410	-3115	-194
	Mlong Max	0	256	5826	0,00	0,00	-4,00	-5090	0	9	0	256	5826	4675	0	ę
	Mlong Min	308	-256	10982	0,00	0,00	-4,00	-10038	-1881	268	308	-256	10982	5410	-3115	-194
	Mtorc Max	360	256	10611	0,00	0,00	-4,00	-9396	-1612	334	360	256	10611	7546	-3054	-207
	Mtorc Min	-234	-175	5620	0,00	0,00	-4,00	-5163	894	-211	-234	-175	5620	2568	1830	140
		F _{xO} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) M	1 _{xo} (kNm) M	yo (kNm) M	, (kNm)	F _{xG} (m)	F _{vG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{vG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	0	175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	2g ()
SLE QP	Nvert Min	0	-175	5826	0,00	0,00	-4,00	-5348	0	0	0	-175	5826	2692	0	
	Vtrasv Max	0	175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	
	Vtrasv Min	0	-175	5826	0,00	0,00	-4,00	-5348	0	0	0	-175	5826	2692	0	
	Mtrasv Max	0	175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	
	Mtrasv Min	0	-175	5826	0,00	0,00	-4,00	-5348	0	0	0	-175	5826	2692	0	
	Vlong Max	0	175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	
	Vlong Min	0	-175	5826	0,00	0,00	-4,00	-5348	0	0	0	-175	5826	2692	0	
	Mlong Max	0	175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	
	Mlong Min	0	-175	5826	0,00	0,00	-4,00	-5348	0	0	0	-175	5826	2692	0	
			175	5826	0,00	0,00	-4,00	-5139	0	0	0	175	5826	4300	0	
	Mtorc Max	0														

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	110

Tipo azione	Descrizione	V_{trasv}	Vlong	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	4864	-865	0	0
Gk2b Ballast	G2,1 (ballast)	0	0	0	0	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	0	0	0	0	0
SLU	Nvert Max	363	354	15595	10987	-3799	-204
Impalcato	Nvert Min	-351	175	5517	4114	2746	211
	Vtrasv Max	530	354	12678	9237	-4431	-304
	Vtrasv Min	-351	-175	5517	2506	2746	211
	Mtrasv Max	-351	175	5517	4114	2746	211
	Mtrasv Min	363	354	15595	10987	-3799	-204
	Vlong Max	356	354	9942	7595	-10792	-200
	Vlong Min	0	-234	5826	2419	0	-7
	Mlong Max	-351	175	5517	4114	2746	211
	Mlong Min	283	354	12407	9074	-10596	-156
	Mtorc Max	530	354	12678	9237	-4431	-304
	Mtorc Min	-351	-175	5517	2506	2746	211
SLE RA	Nvert Max	308	256	10982	7769	-3115	-176
Impalcato	Nvert Min	-234	-175	5620	2568	1830	140
	Vtrasv Max	360	256	10611	7546	-3054	-207
	Vtrasv Min	-234	-175	5620	2568	1830	140
	Mtrasv Max	-234	-175	5620	2568	1830	140
	Mtrasv Min	220	-216	8783	4278	-7523	-137
	Vlong Max	0	256	5826	4675	0	9
	Vlong Min	308	-256	10982	5410	-3115	-194
	Mlong Max	0	256	5826	4675	0	9
	Mlong Min	308	-256	10982	5410	-3115	-194
	Mtorc Max	360	256	10611	7546	-3054	-207
	Mtorc Min	-234	-175	5620	2568	1830	140
SLE QP	Nvert Max	0	175	5826	4300	0	0
Impalcato	Nvert Min	0	-175	5826	2692	0	0
	Vtrasv Max	0	175	5826	4300	0	0
	Vtrasv Min	0	-175	5826	2692	0	0
	Mtrasv Max	0	175	5826	4300	0	0
	Mtrasv Min	0	-175	5826	2692	0	0
	Vlong Max	0	175	5826	4300	0	0
	Vlong Min	0	-175	5826	2692	0	0
	Mlong Max	0	175	5826	4300	0	0
	Mlong Min	0	-175	5826	2692	0	0
	Mtorc Max	0	175	5826	4300	0	0
	Mtorc Min	0	-175	5826	2692	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	111

Qk1	Q (acc. Traffico)	0	0	0	0	0	0
E	Sisma long	0	1332	0	3399	0	0
Sisma	Sisma trasv	4250	0	0	0	-15072	-4141
	Sisma vert	0	0	2125	2070	0	0

Tabella 36 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso fondazione)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	112

Nome Env:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	SLU-Nvert Max	O II Neort Mis	SLO-IWeit IMin	SLU-Vtras v Max	SLU-Vtrasv Min	SLU-Mtrasv Max	SI LI-Mtrasy Min	SI IIMood Max	Sam Broth-O-10	SLU-Viong Min	SLU-Mlong Max	SLU-Mlong Min	SLU-Mtorc Max	SLU-Mtorc Min	SLE RA-Nvert Max	SLE RA-Nvert Min	SI F RA-Virasy Max		SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	SLE RA-Mtrasv Min	SLE RA-Vlong Max	SLE RA-Vlong Min	SLE RA-Mlong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SLE QP-Nvert Max	SLE QP-Nvert Min	SLE QP-Vtrasv Max	SLE QP-Vtrasv Min	SLE QP-Mrasv Max	SLE QP-Mtrasv Min	SLE QP-Vlong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	Qk1-Q (acc. Traffico)	E-Sisma long	E-Sisma trasv	E-Sisma vert
SLU	1	1	SLU1 SLU2	1,35 1,35	1,50 1,50			0,0	00 0,	,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	1			1,35	1,50		0,00	0,0			0,00	0,00	0,0),00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00		0,00	0,00	0,00
SLU	1			1,35	1,50	1,50	0,00	0,0	00 0,	.00	1,00	0,00	0,0	0,0	0,0	00 0	,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	1		SLU5 SLU6	1,35 1,35	1,50 1.50	1,50 1,50	0.00	0.0	00 0, 00 0.	000,	0,00	1,00 0.00	1,0	0 0,0 0 0.0	0 0,0	00 0, 00 0	,00 (0,00	0.00		0,00	0.0	0.0	0 0,	00 0 00 0	.00	0,00	0.00	0,00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	1,45	0,00	0,00	0,00
SLU	1	7	SLU7	1,35	1,50	1,50	0,00	0,0			0,00	0,00	0,0	0 1,0			,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	1		SLU8 SLU9	1,35 1,35	1,50 1,50		0,00	0,0			0,00	0,00	0,0					0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	1,45	0,00	0,00	0,00
SLU	1	10	SLU10	1,35		1,50	0,00	0,0			0,00	0,00	0,0	0,0	0,	-		,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	1	ı				1,50	0,00	0,0		,00	0,00	0,00	0,0	0 0,0	-,			0,00	1,00	0,00	0,00	0,0	0,0	0 0,	- 1	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	1 2	ı		1,35 1,00		1,50 1,00	1,00	-,-			0,00	0,00	0,0		-,		,	0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	1,45	0,00	0,00	0,00
SLU	2	14	SLU14	1,00	1,00	1,00	0,00	1,0			0,00	0,00	0,0	0,0	0,0		,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	2			1,00 1,00		1,00	0,00	0,0	1 '		0,00 1,00	0,00	0,0	0,0	0,0	00	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	2			1,00		1,00	0,00	0,0	,0		0,00	1,00	0,0	0 0,0	-,		,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	2			1,00		1,00	0,00	0,0	,,	- 1	0,00	0,00	1,0		0,	00	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	2	19 20		1,00		1,00 1,00	0.00	0,0		- 1	0,00	0,00	0,0	0 1,0		- 1 '	,00 (0,00	0.00		0.00	0.0	0.0	0 0,		,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	1,45	0,00	0,00	0,00
SLU	2	21	SLU21	1,00	1,00	1,00	0,00	0,0	00 0,	,00	0,00	0,00	0,0	0 0,0	0,0	00 1		0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU SLU	2			1,00 1,00		1,00	0,00	-,-			0,00	0,00	0,0	-,-	,			,00	0,00 1,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	1,45	0,00		0,00
SLU	2			1,00			0,00	0,0	00 0,	,00 (0,00	0,00	0,0	0 0,0	0,0	00 0	,00 (0,00	0,00	1,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLV	3	25		1,00		1,00	0,00	0,0	00 0,	,00	0,00	0,00	0,0	0 0,0	0,1	00 0	,00),00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	-,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,30	0,30
SLV SLV	3	l		1,00		1,00	0,00	0,0	00 0,	000,	0,00	0,00	0,0	0,0			,00 (0,00	0,00		0,00	0,0	0,0	0 0,	00 0	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 0,30		-0,30 0,30
SLV	3	28	SLV4	1,00			0,00				0,00	0,00	0,0		,			0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	-,	0,30	1,00	-0,30
SLV SLV	3			1,00			0,00	0,0	00 0,	00,	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30		
SLE RA	4	31				1,00	0.00	0.0	00 0.	.00	0.00	0.00	0.0	0 0,0	0 0,1	00 0	.00 (0.00	0.00	0.00	1,00	0.0	0.0	0 0,	00 0	.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	1,00	-1,00 0.00
SLE RA	4	32	RA2	1,00	1,00	1,00	0,00	0,0	,0	,00,	0,00	0,00	0,0	0,0	0,	00	,00	0,00	0,00	0,00	0,00	1,0		0,			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
SLE RA SLE RA	4	33 34		1,00 1,00			0,00	0,0	00 0,	00,	0,00	0,00	0,0	0,0	0,0		,00	0,00	0,00	0,00	0,00	0,0	1,0		- 1	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
SLE RA	4	35		1,00			0,00	0,0	00 0,	,00	0,00	0,00	0,0	0 0,0	0,0		,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
SLE RA	4	36	RA6	1,00			0,00	0,0		,00	0,00	0,00	0,0	0 0,0	-,		,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,			1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	1,00	0,00	0,00	0,00
SLE RA SLE RA	4	37 38		1,00 1,00			0,00	0,0	,0	00,00	0,00	0,00	0,0	0 0,0	0,	00	,00 (0,00	0,00		0,00	0,0	0,0	0 0,		,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	1,00	0,00	0,00	0,00
SLE RA	4	39	RA9	1,00	1,00	1,00	0,00	0,0	,,	,00	0,00	0,00	0,0	0,0	0,	00	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
SLE RA	4	40 41		1,00		1,00 1,00	0,00	0,0		00,00	0,00	0,00	0,0	0 0,0				0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	1,00	1,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	1,00	0,00	0,00	0,00
SLE RA	4	41		1,00			0,00	0,0	00 0,	,00	0,00	0,00	0,0	0,0	0 0,1	00 0	,00 (),00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
SLE QP	5	43	QP1	1,00	1,00	1,00	0,00	0,0	00 0,	,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE QP SLE QP	5			1,00 1,00		1,00 1,00	0,00	0,0	,,	00,00	0,00	0,00	0,0	0,0	0,		,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00 0.00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE QP	5	46	QP4	1,00	1,00	1,00	0,00	0,0			0,00	0,00	0,0	0 0,0	-,		,00 (0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	0,00	0,00
SLE QP	5			1,00	1,00		0,00	0,0	,0	00,	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE QP SLE QP	5			1,00 1,00			0,00	0,0		,00	0,00	0,00	0.0	0,0	0 0,0	00 O	,00 (0,00	0,00		0,00	0.0	0,0	0 0.	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	1,00	1,00	0,00	0.00	0,00	0.00	0.00	0.00	0,00	0,00	0,00
SLE QP	5	50	QP8	1,00	1,00	1,00	0,00	0,0		,00	0,00	0,00	0,0	0,0				0,00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00			0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00		0,00	0,00	0,00	0,00	0,00
SLE QP SLE QP	5					1,00	0,00				0,00	0,00	0,0	0 0,0	-,			0,00	0,00	0,00	0,00	0,0	0,0	0,		,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		-,	0,00	-,	0,00	0,00	0,00
SLE QP	5			1,00 1,00		1,00	0,00	0,0			0,00	0,00	0,0		,			0,00	0,00	0,00	0,00	0,0		-,			0,00	0,00	0,00	0,00	0,00	0,00			-,	-,	0,00	0,00	0,00	0,00	0,00	0,00	1,00 0,00		0,00		0,00	0,00	0,00
SLE QP	5	54		1,00			n nn	0.0	20 0	00	0.00	0.00	0.0	0 0 0	0	20 0	00		0.00		.,	1			000		0.00	0.00	0.00	0.00	0.00	0.00	1000	0.00		0.00	1000	1000	1000	1000	0.00	0.00	0.00	ء ما	1.00		0.00	0.00	0.00

Tabella 37 - Combinazioni di carico adottate

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESS	A LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIOE	02	Ε	ZZ	CL	VI	03	04	001	В	113

INVILUPPO:	SLU	N _{vert}	V_{trasv}	M_{trasv}	V_{long}	M _{long}	M_{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU6	22162	363	-3799	354	9819	-204
N _{vert} Min	SLU24	10381	-351	2746	-175	1641	211
V _{trasv} Max	SLU15	17542	530	-4431	354	8372	-304
V _{trasv} Min	SLU4	12083	-351	2746	-175	1338	211
M _{trasv} Max	SLU14	10381	-351	2746	175	3249	211
M _{trasv} Min	SLU7	16508	356	-10792	354	6427	-200
V _{long} Max	SLU23	17542	530	-4431	354	8372	-304
V _{long} Min	SLU8	12392	0	0	-234	1251	-7
M _{long} Max	SLU13	20459	363	-3799	354	10122	-204
M _{long} Min	SLU8	12392	0	0	-234	1251	-7
M _{torc} Max	SLU14	10381	-351	2746	175	3249	211
M _{torc} Min	SLU15	17542	530	-4431	354	8372	-304
INVILUPPO:	SLV	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLV5	12815	4250	-15072	574	6525	-4141
N _{vert} Min	SLV6	8565	4250	-15072	574	2384	-4141
V _{trasv} Max	SLV5	12815	4250	-15072	574	6525	-4141
V _{trasv} Min	SLV2	10053	1275	-4522	1506	6212	-1242
M _{trasv} Max	SLV1	11328	1275	-4522	1506	7455	-1242
M _{trasv} Min	SLV6	8565	4250	-15072	574	2384	-4141
V _{long} Max	SLV1	11328	1275	-4522	1506	7455	-1242
I	SLV6	8565	4250	-15072	574	2384	-4141
V _{long} Min					4500		4040
V _{long} Min M _{long} Max	SLV1	11328	1275	-4522	1506	7455	-1242
_		11328 8565	1275 4250	-4522 -15072	1506 574	7455 2384	-1242 -4141
M _{long} Max	SLV1						

Tabella 38 – ENV SLU, SLV - Azioni totali inviluppo

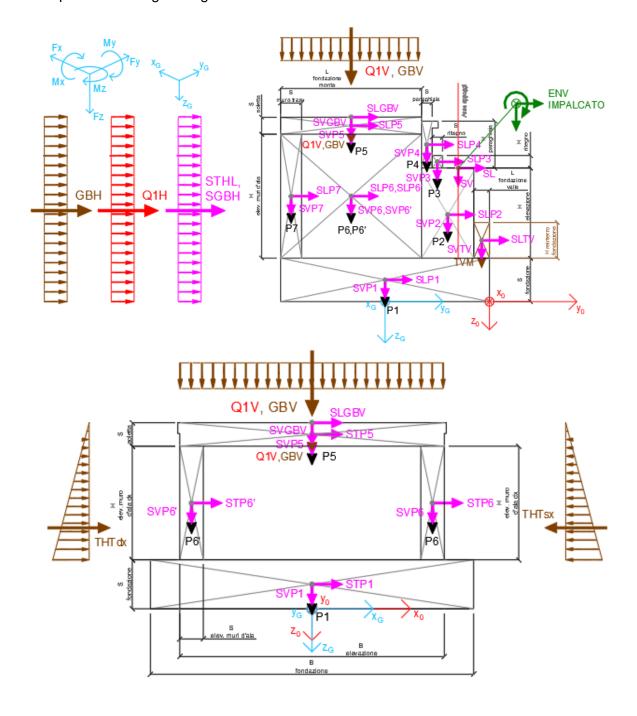
HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	114

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M _{trasv}	V_{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	15846	308	-3115	256	6904	-176
N _{vert} Min	RA12	10484	-234	1830	-175	1703	140
V _{trasv} Max	RA3	15475	360	-3054	256	6681	-207
V _{trasv} Min	RA12	10484	-234	1830	-175	1703	140
M _{trasv} Max	RA12	10484	-234	1830	-175	1703	140
M _{trasv} Min	RA6	13647	220	-7523	-216	3413	-137
V _{long} Max	RA11	15475	360	-3054	256	6681	-207
V _{long} Min	RA8	15846	308	-3115	-256	4545	-194
M _{long} Max	RA1	15846	308	-3115	256	6904	-176
M _{long} Min	RA12	10484	-234	1830	-175	1703	140
M _{torc} Max	RA12	10484	-234	1830	-175	1703	140
M _{torc} Min	RA3	15475	360	-3054	256	6681	-207
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
T		_	_		_		
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)	Mx (kNm)	Mz (kNm)
				•	•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb.	Comb. QP1	(kN)	(kN)	(kNm)	(kN)	(kNm) 3435	(kNm)
N _{vert} Max	QP1 QP12	(kN) 10690 10690	(kN) 0 0	(kNm) 0 0	(kN) 175 -175	(kNm) 3435 1827	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max	QP1 QP12 QP1	(kN) 10690 10690 10690	(kN) 0 0	(kNm) 0 0	(kN) 175 -175 175	(kNm) 3435 1827 3435	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	QP1 QP12 QP1 QP1	(kN) 10690 10690 10690	(kN) 0 0 0	(kNm) 0 0 0	(kN) 175 -175 175 -175	(kNm) 3435 1827 3435 1827	(kNm) 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	QP1 QP12 QP1 QP1 QP12	(kN) 10690 10690 10690 10690 10690	(kN) 0 0 0 0	(kNm) 0 0 0 0 0 0	(kN) 175 -175 175 -175 175	3435 1827 3435 1827 3435 3435	(kNm) 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	QP1 QP12 QP1 QP12 QP1 QP12	(kN) 10690 10690 10690 10690 10690	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0	(kN) 175 -175 175 -175 175 -175	3435 1827 3435 1827 3435 1827	(kNm) 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	QP1 QP12 QP1 QP12 QP1 QP1 QP12	(kN) 10690 10690 10690 10690 10690 10690	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0	(kN) 175 -175 175 -175 175 175 -175	(kNm) 3435 1827 3435 1827 3435 1827 3435	(kNm) 0 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	(kN) 10690 10690 10690 10690 10690 10690 10690	(kN) 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0	(kN) 175 -175 175 -175 175 -175 -175	(kNm) 3435 1827 3435 1827 3435 1827 3435 1827	(kNm) 0 0 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12 QP1	(kN) 10690 10690 10690 10690 10690 10690 10690 10690	(kN) 0 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0	(kN) 175 -175 175 -175 175 -175 175 175 175	(kNm) 3435 1827 3435 1827 3435 1827 3435 1827 3435	(kNm) 0 0 0 0 0 0 0 0 0 0 0

Tabella 39 - ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	115

11.3 SOLLECITAZIONI IN FONDAZIONE

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}), non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate all'elevazione spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi, combinandole opportunamente con gli inviluppi di azioni totali ricavate a testa elevazione.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G posto al centro palificata a quota testa pali., e i rispettivi assi x, y, z come riportato nella figura seguente.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	116

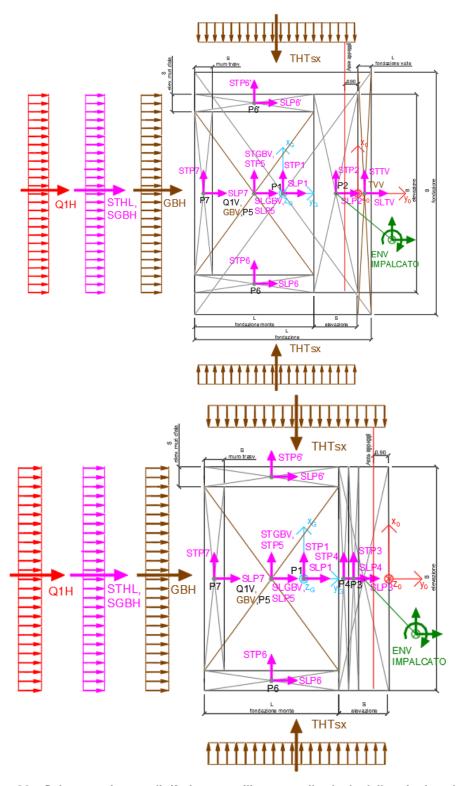


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	117

11.3.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOME	: FONDAZIO	ONE SPALLA	. 1					CALCO	LO SPETTR	RO SISMICO	D DI PROGI	ETTO				
PGA orizzontal	e a _g (g)	0.195		•		Co	eff. sismico	orizz. k _h	0.2738			Coeff. sp	inta attiva sis	smica k _{aE}	0.3834	
Coeff. stratigrafi	co SS	1.404				C	oeff. sismic	o vert. k _v	0.1369							
NOME	: FONDAZIO	ONE SPALLA	.1					CALCOL	O AZIONI	SISMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	y _O (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) N	1 _{xo} (kNm) 1	Л _{уо} (kNm) I	M _{zo} (kNm)	F _{xG} (m)	F_{yG} (m)	F _{zG} (m) N	l _{xG} (kNm)	M_{yG} (kNm)	M _{zG} (kNm)
Sisma long	SLP1	0	3388	0	0.00	-6.00	-1.25	4235	0	0						
	SLP2	0	1109	0	0.00	-2.40	-4.50	4990	0	0						
	SLP3	0	51	0	0.00	-3.00	-6.96	355	0	0						
	SLP4	0	172	0	0.00	-3.60	-8.05	1384	0	0						
	SLP5	0	898	0	0.00	-7.95	-9.00	8083	0	0						
	SLP6	0	393	0	6.15	-7.95	-5.45	2139	0	2414						
	SLP6'	0	393	0	-6.15	-7.95	-5.45	2139	0	-2414						
	SLP7	0	538	0	0.00	-11.40	-5.45	2932	0	0		2011		00050		
		0	6941	0				26256	0	0	0	6941	0	26256	0	C
Sisma trasv	STP1	3388	0	0	0.00	-6.00	-1.25	0	-4235	20328						
	STP2	1109	0	0	0.00	-2.40	-4.50	0	-4990	2661						
	STP3	51	0	0	0.00	-3.00	-6.96	0	-355	153						
	STP4	172	0	0	0.00	-3.60	-8.05	0	-1384	619						
	STP5	898	0	0	0.00	-7.95	-9.00	0	-8083	7140						
	STP6	393	0	0	6.15	-7.95	-5.45	0	-2139	3121						
	STP6'	393	0	0	-6.15	-7.95	-5.45	0	-2139	3121						
	STP7	538	0	0	0.00	-11.40	-5.45	0	-2932	6132						
		6941	0	0				0	-26256	43274	6941	0	0	0	-26256	1630
Sisma vert	SVP1	0	0	1694	0.00	-6.00	-1.25	-10164	0	0						
	SVP2	0	0	554	0.00	-2.40	-4.50	-1331	0	0						
	SVP3	0	0	26	0.00	-3.00	-6.96	-77	0	0						
	SVP4	0	0	86	0.00	-3.60	-8.05	-309	0	0						
	SVP5	0	0	449	0.00	-7.95	-9.00	-3570	0	0						
	SVP6	0	0	196	6.15	-7.95	-5.45	-1560	-1207	0						
	SVP6'	0	0	196	-6.15	-7.95	-5.45	-1560	1207	0						
	SVP7	0	0	269	0.00	-11.40	-5.45	-3066	0	0						
		0	0	3470			·	-21637	0	0	0	0	3470	-815	0	C
Sisma ballast	SLGBV	0	291	0	0.00	-7.95	-9.60	2793	0	0						
long	SGBH	0	249	0	0.00	-12.00	-4.80	1197	0	0						
		0	540	0				3990	0	0	0	540	0	3990	0	C
Sisma ballast	STGBV	291	0	0	0.00	-7.95	-9.60	0	-2793	2313						
trasv		291	0	0				0	-2793	2313	291	0	0	0	-2793	567
Sisma ballast	SVGBV	0	0	145	0.00	-7.95	-9.60	-1157	0	0						
vert		0	0	145				-1157	0	0	0	0	145	-284	0	C
Sisma terreno	SLVV	0	81	0	0.00	0.45	-3.00	244	0	0						
		0	0			-0.45		244		0						
long	STHL	0	81	0	0.00	-12.00	-3.20	244	0	0	0	81	0	244	0	C
											U	01	U	244	U	·
Sisma terreno	STTV	81	0	0	0.00	-0.45	-3.00	0	-244	37						
trasv		81	0	0				0	-244	37	81	0	0	0	-244	-451
Sisma terreno	SVTV	0	0	41	0.00	-0.45	-3.00	-18	0	0						
vert		0	0	41				-18	0	0	0	0	41	226	0	C
Sisma impalcat	o SL	0	0	0	0.00	-0.90	-8.40	0	Ō	0						
long		0	0	0	3.00	3.00	3.40	0	0	0	0	0	0	0	0	C
		r r			0.05	0.05			-		3	3	ŭ	J	Ū	
Sisma impalcat	0 51	2918	0	0	0.00	-0.90	-8.40	0	-24514	2627	0040				0.454.1	4400
trasv		2918	0	0				0	-24514	2627	2918	0	0	0	-24514	-14884
Sisma impalcat	o SV	0	0	1459	0.00	-0.90	-8.40	-1313	0	0						
vert		0	0	1459				-1313	0	0	0	0	1459	7442	0	C

Tabella 40 - Riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	118

	E: FONDAZION	IE SPALL	A 1					PAR	AMETRI DI	CALCOLO	FONDAZIOI	NE				
H paraghiaia (n	n) 3.10		B eleva	zione (m)	13.50		erro fondaz		1.00			oletta (m)	1.20	Carico va	riabile (kPa)	23.15
S paraghiaia (n	•		S fonda	zione (m)	2.50	5	S elev. mur	i d'ala (m)	1.20			trasv (m)	1.20	Carico b	oallast (kPa)	9.72
H ritegno (n	•		ndazione r		8.10		ev. muro d'a		5.90		Peso terrer		20.00			
S ritegno (n	•	L	fondazione		0.90		ev. muro d'a		5.90		spinta attiva		0.2379		fondazione	0.00
H elevazione (n S elevazione (n				zione (m) zione (m)	12.00 16.50		rro muro d'a	٠,,	0.00	Coeff. s	pinta riposo	statica k ₀	0.3843		fondazione	-6.00
				zione (m)	16.50	птетпе	rro muro d'a							Z _G	fondazione	0.00
NOM	E: FONDAZION	IE SPALL	.A 1					C.	ALCOLO A	ZIONI CORP	O SPALLA					
		F_{xO} (kN)	F_{yO} (kN)	F_{zO} (kN)	x _O (m)	y _O (m)	z ₀ (m) N	Л _{хо} (kNm)	M _{yo} (kNm)	M_{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F_{zG} (m)	M _{xG} (kNm)	M_{yG} (kNm)	M _{zG} (kNm)
Peso proprio	P1	0	0	12375	0.00	-6.00	-1.25	-74250	0	0						
	P2	0	0	4050	0.00	-2.40	-4.50	-9720	0	0						
	P3 P4	0	0	186	0.00	-3.00	-6.96	-559	0	0						
	P4 P5	0	0 0	628 3281	0.00	-3.60 -7.95	-8.05 -9.00	-2260 -26080	0	0						
	P6	0	0	1434	6.15	-7.95	-5.45	-11398	-8817	0						
	P6'	0	0	1434	-6.15	-7.95	-5.45	-11398	8817	0						
	P7	0	0	1965	0.00	-11.40	-5.45	-22398	0	0						
		0	0	25352				-158062	0	0	0	0	25352	-5952	0	C
Ballast	GBV	0	0	1063	0.00	-7.95	-9.60	-8449	0	0						
	GBH	0	484	0	0.00	-12.00	-4.80	2324	0	0						
		0	484	1063				-6125	0	0	0	484	1063	251	0	(
Spinta terreno	THL	0	0	0	0.00	-12.00	-3.20	0	0	0						
	THTsx THTdx	0	0	0	6.75	-6.45 -6.45	-0.83	0	0	0						
	TVV	0	0	297	-6.75 0.00	-6.45 -0.45	-0.83 -3.00	-134	0	0						
	100	0	0	297	5.00	0.40	5.00	-134	0	0	0	0	297	1648	0	C
Courcess-i	Q1H	0	1153	0	0.00	-12.00	-4.80	5534	0	0	0	U	231	10-10	U	
Sovraccarico long																
i i i	Q1V	0	1153	2531 2531	0.00	-7.95	-9.60	-20123 -14589	0	0	0	1153	2531	599	0	C
NOM	E: FONDAZION								ALCOLO A	ZIONI DA IN						
THO MI	L. I ONDALIOI			E (kN)	v (m)	, (m)	- (m) A					F (m)	F (m)	M (kNm)	M (kNm)	M (kNm)
ENV	Nvert Max	363	F _{yO} (kN) 354	F _{zO} (kN) 15595	x _O (m)	y _O (m) -0.90	-8.40	-13823	M _{yo} (kNm) -2347	340	F _{xG} (m) 363	F _{yG} (m) 354	15595	68690	M _{yG} (kNm) -5396	-1511
SLU	Nvert Min	-351	175	5517	0.00	-0.90	-8.40	-4860	1341	-316	-351	175	5517	24743	4291	1475
020	Vtrasv Max	530	354	12678	0.00	-0.90	-8.40	-11198	-2312	490	530	354	12678	56437	-6761	-2211
	Vtrasv Min	-351	-175	5517	0.00	-0.90	-8.40	-5070	1341	-316	-351	-175	5517	21597	4291	1475
	Mlong Max	-351	175	5517	0.00	-0.90	-8.40	-4860	1341	-316	-351	175	5517	24743	4291	1475
	Mlong Min	363	354	15595	0.00	-0.90	-8.40	-13823	-2347	340	363	354	15595	68690	-5396	-1511
	Vlong Max	356	354	9942	0.00	-0.90	-8.40	-8735	-9370	334	356	354	9942	44945	-12358	-1480
	Vlong Min Mtrasv Max	-351	-234 175	5826 5517	0.00	-0.90 -0.90	-8.40 -8.40	-5384 -4860	1244	-7 -316	-351	-234 175	5826 5517	22363 24743	4291	-7 1475
	Mtrasv Min	283	354	12407	0.00	-0.90	-8.40	-10954	-9463	268	283	354	12407	55298	-11842	-1176
	Mtorc Max	530	354	12678	0.00	-0.90	-8.40	-11198	-2312	490	530	354	12678	56437	-6761	-2211
	Mtorc Min	-351	-175	5517	0.00	-0.90	-8.40	-5070	1341	-316	-351	-175	5517	21597	4291	1475
		F _{xO} (kN)	Fyo (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z₀ (m) N	Λ _{vo} (kNm)	M _{vo} (kNm)	M ₂₀ (kNm)	F _{xG} (m)	F _{vG} (m)	F ()			
ENV	Nvert Max	308	256	10982	0.00	-0.90	-8.40						F-∞ (m)	M_{VG} (kNm)	Myc (kNm)	M _{rc} (kNm)
SLE RA	Nvert Min						-0.40	-9730	-1881	287	308	256	F _{zG} (m)	M _{xG} (kNm) 48433	M _{y G} (kNm) -4472	M _{zG} (kNm) -1286
		-234	-175	5620	0.00	-0.90	-8.40	-9730 -5163	-1881 894							
	Vtrasv Max	360	-175 256	5620 10611	0.00	-0.90 -0.90	-8.40 -8.40	-5163 -9396	894 -1612	287 -211 334	308 -234 360	256 -175 256	10982 5620 10611	48433 22030 46872	-4472 2860 -4640	-1286 983 -1505
	Vtrasv Max Vtrasv Min		-175	5620		-0.90	-8.40	-5163	894	287 -211	308 -234	256 -175	10982 5620	48433 22030	-4472 2860	-1286 983 -1505 983
	Vtrasv Min Mtrasv Max	360 -234 -234	-175 256 -175 -175	5620 10611 5620 5620	0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163	894 -1612 894 894	287 -211 334 -211 -211	308 -234 360 -234 -234	256 -175 256 -175 -175	10982 5620 10611 5620 5620	48433 22030 46872 22030 22030	-4472 2860 -4640 2860 2860	-1286 983 -1505 983
	Vtrasv Min Mtrasv Max Mtrasv Min	360 -234 -234 220	-175 256 -175 -175 -216	5620 10611 5620 5620 8783	0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034	894 -1612 894 894 -6641	287 -211 334 -211 -211 194	308 -234 360 -234 -234 220	256 -175 256 -175 -175 -216	10982 5620 10611 5620 5620 8783	48433 22030 46872 22030 22030 34949	-4472 2860 -4640 2860 2860 -8493	-1286 983 -1505 983
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max	360 -234 -234 220 0	-175 256 -175 -175 -216 256	5620 10611 5620 5620 8783 5826	0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090	894 -1612 894 894 -6641	287 -211 334 -211 -211 194 9	308 -234 360 -234 -234 220 0	256 -175 256 -175 -175 -216 256	10982 5620 10611 5620 5620 8783 5826	48433 22030 46872 22030 22030 34949 26777	-4472 2860 -4640 2860 2860 2860 -8493	-1286 983 -1505 983 983 -931
	Vtrasv Min Mtrasv Max Mtrasv Min	360 -234 -234 220	-175 256 -175 -175 -216	5620 10611 5620 5620 8783	0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034	894 -1612 894 894 -6641	287 -211 334 -211 -211 194	308 -234 360 -234 -234 220	256 -175 256 -175 -175 -216	10982 5620 10611 5620 5620 8783	48433 22030 46872 22030 22030 34949	-4472 2860 -4640 2860 2860 -8493	-1286 983 -1505 983
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	360 -234 -234 220 0 308	-175 256 -175 -175 -216 256 -256	5620 10611 5620 5620 8783 5826 10982	0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090 -10038	894 -1612 894 894 -6641 0 -1881	287 -211 334 -211 -211 194 9 268	308 -234 360 -234 -234 220 0 308	256 -175 256 -175 -175 -175 -216 256 -256	10982 5620 10611 5620 5620 8783 5826 10982	48433 22030 46872 22030 22030 22030 34949 26777 43818	-4472 2860 -4640 2860 2860 -8493 0	-1286 983 -1505 983 983 -931 9
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	360 -234 -234 220 0 308 0	-175 256 -175 -175 -216 256 -256 256	5620 10611 5620 5620 8783 5826 10982 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090 -10038 -5090	894 -1612 894 894 -6641 0 -1881	287 -211 334 -211 -211 194 9 268	308 -234 360 -234 -234 220 0 308	256 -175 256 -175 -175 -175 -216 256 -256 256	10982 5620 10611 5620 5620 8783 5826 10982 5826	48433 22030 46872 22030 22030 34949 26777 43818 26777	-4472 2860 -4640 2860 2860 -8493 0 -4472	-1286 983 -1505 983 983 -931
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min	360 -234 -234 220 0 308 0	-175 256 -175 -175 -216 256 -256 256 -256	5620 10611 5620 5620 8783 5826 10982 5826 10982	0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090 -10038 -5090 -10038	894 -1612 894 894 -6641 0 -1881	287 -211 334 -211 -211 194 9 268	308 -234 360 -234 -234 220 0 308 0	256 -175 256 -175 -175 -216 256 -256 256 -256	10982 5620 10611 5620 5620 8783 5826 10982 5826	48433 22030 46872 22030 22030 34949 26777 43818 26777 43818	-4472 2860 -4640 2860 2860 -8493 0 -4472	-1286 983 -1505 983 983 -931 9 -1305
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min Mtorc Max	360 -234 -234 220 0 308 0 308 360 -234	-175 256 -175 -175 -216 256 -256 256 -256 256	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090 -10038 -5090 -10038 -9396 -5163	894 -1612 894 894 -6641 0 -1881 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211	308 -234 360 -234 -234 -234 -20 0 308 0 308 360	256 -175 256 -175 -175 -175 -216 256 -256 -256 -256 256 -256	10982 5620 10611 5620 8783 5826 10982 5826 10982 10611 5620	48433 22030 46872 22030 22030 34949 26777 43818 26777 43818 46872 22030	-4472 2860 -4640 2860 2860 -8493 0 -4472 0 -4472	-1286 983 -1505 983 983 -931 9 -1305 9 -1305 983
ENV	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min Mtorc Max Mtorc Min	360 -234 -234 -220 0 308 0 308 360 -234 F _{xO} (kN)	-175 256 -175 -175 -216 256 -256 -256 -256 256 -175 Fyo (kN)	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{zO} (kN)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 y _O (m)	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5163 -5090 -10038 -5090 -10038 -9396 -5163 M _{xo} (kNm) -5139	894 -1612 894 894 -6641 0 -1881 0 -1881 -1612 894 Myo (kNm)	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0	308 -234 360 -234 -234 220 0 308 0 308 308 360 -234 F _{xG} (m) 0	256 -175 256 -175 -175 -216 256 -256 256 -256 256 -175 F _{yG} (m)	10982 5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{x0} (m)	48433 22030 46872 22030 22030 34949 26777 43818 46872 22030 M _{MG} (kNm) 26042	-4472 2860 -4640 2860 2860 -8493 0 -4472 0 -4472 -4640 2860 M _{yG} (kNm)	-1286 983 -1505 983 -983 -931 -1305 -1305 -1505 983 M _{2G} (kNm)
ENV SLE QP	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtore Max Mtore Min Nvert Max Nvert Min	360 -234 -234 220 0 308 0 308 360 -234 F _{xO} (kN) 0 0	-175 256 -175 -175 -216 256 -256 -256 -256 256 -175 Fyo (kN) 175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{z0} (kN) 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 y _O (m) -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5163 -5090 -10038 -5090 -10038 -9396 -5163 M _{xo} (kNm) -5139 -5348	894 -1612 894 894 -6641 0 -1881 0 -1881 -1612 894 Myo (kNm) 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0	308 -234 360 -234 -234 220 0 308 0 308 -234 F _{KG} (m) 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{x5} (m) 5826 5826	48433 22030 46872 22030 34949 26777 43818 26777 43818 46872 22030 M _{xG} (kNm) 26042 22896	-4472 2860 -4640 2860 2860 -8493 0 -4472 0 -4472 4640 2860 M _{yG} (kNm) 0	-1286 983 -1505 983 -1505 983 -931 -1305 -1305 -1305 -1505 983 M _{2G} (kNm ₁
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Max Mtorc Min Nvert Max Nvert Min Vtrasv Max	360 -234 -234 -230 0 308 0 308 360 -234 F _{xO} (kN) 0 0	-175 256 -175 -175 -216 256 -256 -256 -256 -175 Fyo (kN) 175 -175	5620 10611 5620 8783 5826 10982 10611 5620 F ₂₀ (kN) 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 x _O (m) 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5090 -10038 -5090 -10038 -9396 -5163 M _{xo} (kNm) -5139 -5348 -5139	894 -1612 894 894 -6641 0 -1881 -0 -1881 -1612 894 Myo (kNm) 0	287 -211 334 -211 -211 194 9 268 9 268 34 -211 M ₂₀ (kNm) 0 0	308 -234 360 -234 -234 -234 220 0 308 0 308 360 -234 -534 -636 -636 -636 -636 -636 -636 -636 -6	256 -175 -256 -175 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{3G} (m) 5826 5826	48433 22030 46872 22030 32030 34949 26777 43818 26777 43818 46872 22030 M _{KG} (kNm) 26042 22896	-4472 2860 -4640 2860 2860 -4472 0 -4472 -4472 -4640 2860 M _{yG} (kNm) 0 0	-1286 983 -1506 983 983 983 983 -1306 5 -1306 -1306 -1506 -1
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtore Max Mtore Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min	360 -234 -234 220 0 308 0 308 360 -234 F _{xO} (kN) 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{2O} (kN) 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5163 -8034 -5090 -10038 -5090 -10038 -9396 -5163	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0	308 -234 360 -234 -234 -230 0 308 0 308 -234 F _{XG} (m) 0 0 0	256 -175 256 -175 -175 -216 256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{xG} (m) 5826 5826 5826	48433 22030 46872 22030 22030 34949 26777 43818 26777 43818 46872 22030 M _{XG} (kNm) 26042 22896 26042 22896	-4472 2860 -4640 2860 2860 -4472 0 -4472 4640 2860 M _{y.G.} (kNm) 0 0 0	-1286 983 -1500 983 983 -1500 983 -1300 -1300 -1300 -1500 -1
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	360 -234 -234 -230 0 308 0 308 360 -234 F _{xO} (kN) 0 0 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{zo} (kN) 5826 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5034 -5090 -10038 -5090 -10038 -5163 A _{xo} (kNm) -5139 -5348 -5139 -5348 -5139	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0	308 -234 -234 -234 -220 0 308 0 308 0 308 -234 F _{x∈} (m) 0 0 0 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{x5} (m) 5826 5826 5826 5826	48433 22030 46872 22030 22030 22030 34949 26777 43818 26777 2030 M _{xG} (kNm) 26042 22896 26042	-4472 2860 -4640 2860 2860 -4472 0 -4472 -4640 2860 M _{y-G} (kNm) 0 0 0	-1286 983 -1500 983 983 -1500 983 -1300 -1300 -1300 -1500 -1
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	360 -234 -220 0 308 0 308 -234 F _{XO} (kN) 0 0 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{x0} (kN) 5826 5826 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5090 -10038 -5090 -10038 -5163 -5139 -5348 -5139 -5348 -5139 -5348	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0 0	308 -234 -234 -234 -220 0 308 0 308 308 -234 F _{XG} (m) 0 0 0 0	256 -175 256 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{xG} (m) 5826 5826 5826 5826 5826	48433 22030 46872 22030 22030 22030 34949 26777 43818 46872 22030 M _{xG} (kNm) 26042 22896 26042 22896	-4472 2860 -4640 2860 2860 0 -4472 0 -4472 -4640 2860 M _{y.G.} (kNm) 0 0 0 0	-1286 983 -1506 983 983 983 -1306 -1306 -1306 -1506 983 M ₂₆ (kNm
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	360 -234 -234 -230 0 308 0 308 360 -234 F _{xO} (kN) 0 0 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{zo} (kN) 5826 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -5034 -5090 -10038 -5090 -10038 -5163 A _{xo} (kNm) -5139 -5348 -5139 -5348 -5139	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0	308 -234 -234 -234 -220 0 308 0 308 0 308 -234 F _{x∈} (m) 0 0 0 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10611 5620 F _{x5} (m) 5826 5826 5826 5826	48433 22030 46872 22030 22030 22030 34949 26777 43818 26777 2030 M _{xG} (kNm) 26042 22896 26042	-4472 2860 -4640 2860 2860 -4472 0 -4472 -4640 2860 M _{y-G} (kNm) 0 0 0	-1286 983 -1506 983 -1506 983 -931 -1306 -1306 -1306 983 -1306 -15
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vtrong Max	360 -234 -234 -220 0 308 0 308 360 -234 -260 0 0 0 0 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	5620 10611 5620 8783 5826 10982 10611 5620 F ₂₀ (kN) 5826 5826 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40 -8.40	-5163 -9396 -5163 -5163 -8034 -5090 -10038 -5090 -10038 -5163 -5139 -5348 -5139 -5348 -5139 -5348 -5139	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0 0	308 -234 360 -234 -234 -234 -220 0 308 0 308 -234 -234 -234 -234 -234 -30 0 0 0 0 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	10982 5620 10611 5620 8783 5826 10982 5826 10982 10611 5620 F _{2G} (m) 5826 5826 5826 5826 5826 5826	48433 22030 46872 22030 34949 26777 43818 26777 43818 26772 22030 M _{KG} (kNm) 26042 22896 26042 22896 26042 22896 26042	-4472 2860 -4640 2860 2860 -8493 0 -4472 0 -4472 4640 2860 M _{y/G} (kNm) 0 0 0 0	-1286 983 -1505 983 -1505 983 -931 \$ 1305 \$ 1305 -1505 983 M _{XG} (kNm) C C C C C C C C
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Min Vtrasv Min Mtrasv Max Vtrasv Min Vtrasv Max Vtrasv Min Vtong Max Vlong Min	360 -234 -234 -220 0 308 0 308 360 -234 F _{xO} (kN) 0 0 0 0 0 0 0	-175 256 -175 -175 -216 256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 5826 5826 5826 5826 5826 5826 5826 58	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90	-8.40 -8.40	-5163 -9396 -5163 -5163 -5163 -5090 -10038 -5090 -10038 -5163 -5163 -5163 -5163 -5348 -5139 -5348 -5139 -5348 -5139 -5348	894 -1612 894 894 -6641 0 -1881 0 -1881 -1612 894 Myo (KNm) 0 0 0 0 0 0 0	287 -211 334 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0 0 0	308 -234 360 -234 -234 -220 0 308 0 308 -0 308 -234 -234 -234 -234 -234 -200 0 0 0 0 0 0 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 5826 10982 10611 5620 F _{x3} (m) 5826 5826 5826 5826 5826 5826 5826 5826	48433 22030 46872 22030 34949 26777 43818 26777 22030 M _{KG} (KNm) 26042 22896 26042 22896 26042 22896 26042 22896	-4472 2860 -4640 2860 2860 -4472 0 -4472 0 -4472 -4640 2860 M _{yG} (kNm) 0 0 0 0 0	-1286 983 -1505 983 983 -931 983 -931 983 -931 093 -931 000 000 000 000 000 000 000 000 000 0
	Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mtorc Min Mtorc Max Mtorc Min Vtrasv Max Vtrasv Min Vtrasv Max Vtrasv Min Mtrasv Max Vtrasv Min Mtrasv Min Vlong Max Vlong Min Mlong Max Vlong Min Mlong Max	360 -234 -234 20 308 0 308 360 -234 F _{xO} (kN) 0 0 0 0 0 0	-175 -256 -175 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	5620 10611 5620 5620 8783 5826 10982 5826 10982 5620 F _{x0} (kN) 5826 5826 5826 5826 5826 5826 5826 5826	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-0.90 -0.90	-8.40 -8.40	-5163 -9396 -5163 -5163 -5163 -5163 -5090 -10038 -5090 -10038 -5163 -5163 -5163 -5348 -5139 -5348 -5139 -5348 -5139 -5348 -5139	894 -1612 894 894 -6641 0 -1881 -1612 894 Myo (kNm) 0 0 0 0 0 0 0 0 0 0 0	287 -211 334 -211 -211 194 9 268 9 268 334 -211 M ₂₀ (kNm) 0 0 0 0 0 0 0 0	308 -234 360 -234 -234 -234 220 0 308 0 308 -0 308 -234 -234 -234 -234 -234 -234 -234 -360 0 0 0 0 0 0 0 0 0	256 -175 -256 -175 -216 -256 -256 -256 -256 -256 -256 -175 -175 -175 -175 -175 -175 -175 -175	10982 5620 10611 5620 5620 8783 5826 10982 10981 5620 F _{xG} (m) 5826 5826 5826 5826 5826 5826 5826 5826	48433 22030 46872 22030 22030 22030 34949 26777 43818 26777 43818 46872 22030 M _{xG} (kNm) 26042 22896 26042 22896 26042 22896 26042 22896	-4472 2860 -4640 2860 2860 -4472 0 -4472 -4472 -4640 2860 0 0 0 0 0 0 0	-1286 983 -1505 983 983 -931 983 -931 983 -931 093 -931 000 000 000 000 000 000 000 000 000 0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	119

Tipo azione	Descrizione	V _{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	25352	-5952	0	0
Gk2b Ballast	G2,1 (ballast)	0	484	1063	251	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	0	297	1648	0	0
SLU	Nvert Max	363	354	15595	68690	-5396	-1511
Impalcato	Nvert Min	-351	175	5517	24743	4291	1475
	Vtrasv Max	530	354	12678	56437	-6761	-2211
	Vtrasv Min	-351	-175	5517	21597	4291	1475
	Mtrasv Max	-351	175	5517	24743	4291	1475
	Mtrasv Min	363	354	15595	68690	-5396	-1511
	Vlong Max	356	354	9942	44945	-12358	-1480
	Vlong Min	0	-234	5826	22363	0	-7
	Mlong Max	-351	175	5517	24743	4291	1475
	Mlong Min	283	354	12407	55298	-11842	-1176
	Mtorc Max	530	354	12678	56437	-6761	-2211
	Mtorc Min	-351	-175	5517	21597	4291	1475
SLE RA	Nvert Max	308	256	10982	48433	-4472	-1286
Impalcato	Nvert Min	-234	-175	5620	22030	2860	983
	Vtrasv Max	360	256	10611	46872	-4640	-1505
	Vtrasv Min	-234	-175	5620	22030	2860	983
	Mtrasv Max	-234	-175	5620	22030	2860	983
	Mtrasv Min	220	-216	8783	34949	-8493	-931
	Vlong Max	0	256	5826	26777	0	9
	Vlong Min	308	-256	10982	43818	-4472	-1305
	Mlong Max	0	256	5826	26777	0	9
	Mlong Min	308	-256	10982	43818	-4472	-1305
	Mtorc Max	360	256	10611	46872	-4640	-1505
	Mtorc Min	-234	-175	5620	22030	2860	983
SLE QP	Nvert Max	0	175	5826	26042	0	0
Impalcato	Nvert Min	0	-175	5826	22896	0	0
	Vtrasv Max	0	175	5826	26042	0	0
	Vtrasv Min	0	-175	5826	22896	0	0
	Mtrasv Max	0	175	5826	26042	0	0
	Mtrasv Min	0	-175	5826	22896	0	0
	Vlong Max	0	175	5826	26042	0	0
	Vlong Min	0	-175	5826	22896	0	0
	Mlong Max	0	175	5826	26042	0	0
	Mlong Min	0	-175	5826	22896	0	0
	Mtorc Max	0	175	5826	26042	0	0
	Mtorc Min	0	-175	5826	22896	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	120

Qk1	Q (acc. Traffico)	0	1153	2531	599	0	0
E	Sisma long	0	7562	0	30490	0	0
Sisma	Sisma trasv	10231	0	0	0	-53808	-13138
	Sisma vert	0	0	5116	6569	0	0

Tabella 42 – Risultanti azioni elementari al centro della palificata G (quota testa palo)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	121

Nome Env:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	SLU-Nvert Max	SLU-Nvert Min	SLU-Vtras v Max	SLU-Vtrasv Min	SLU-Mtrasv Max	SLU-Mtrasv Min	SLU-Viong Max	SLU-Vlong Min	SLU-Mlong Max	SLU-Mlong Min	SLU-Mtorc Max	SLU-Mtorc Min	SLE RA-Nvert Max	SLE RA-Nvert Min	SLE RA-Vtrasv Max	SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	SLE RA-Mtrasv Min	SLE RA-Vlong Max	SLE RA-Vlong Min	SLE RA-Mong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SLE QP-Nvert Max	SLE QP-Nvert Min	SLE QP-Vtrasv Max	SLE QP-Vtrasv Min	SLE QP-Mtrasv Max	SLE QP-Mtrasv Min	SLE QP-Vlong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	Qk1-Q (acc. Traffico)	E-Sisma long	E-Sisma trasv	E-Sisma vert
SLU	1	1	SLU1	1,35	1,50	1,50	1,00	0,00	0,00	0,0	0,0	0,0		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	1	2	SLU2	1,35	1,50	1,50	0,00	1,00		0,0	-,-	0,0			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	1	3	SLU3 SLU4		1,50 1,50	1,50 1,50	0,00	0,00	1,00	1,0	-	0,0		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45 1,45	0,00	0,00	0,00
SLU	1	5	SLU4 SLU5	1,35	1,50	1,50	0.00	0.00	0.00	0.0	1,0	-,-		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	1,45	0.00	0.00	0,00
SLU	1	6	SLU6	1,35	1,50	1,50	0,00	0,00	0,00	0,0				0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	1	7	SLU7	1,35	1,50	1,50	0,00	0,00	0,00	0,0	0,0	0,0	2,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	1	8	SLU8		1,50	1,50	0,00	0,00	0,00	0,0	0,0	0,0	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	0,00
SLU	1	9 10	SLU9 SLU10	1,35 1,35		1,50 1,50	0.00	0.00	0.00	0,0	0,0	0.0	0 0.00	0,00	1,00	1,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,45 1,45	0,00	0,00	0,00
SLU			SLU11	1,35		1,50	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU			SLU12	1,35	1,50	1,50	0,00	0,00	0,00	0,0		0,0		0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU			SLU13			1,00	1,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU			SLU14 SLU15	1,00	1,00	1,00 1,00	0,00	1,00	1,00	0,01	0,0	0,0	0 0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45 1.45	0,00	0,00	0,00
SLU			SLU16	1,00		1,00	0,00	0,00	0,00	1,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLU	2	17	SLU17	1,00	1,00	1,00	0,00	0,00	0,00	0,0	1,0			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	-,	0,00	0,00
SLU			SLU18			1,00	0,00	0,00	0,00	0,0	0,0	1,0		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	-,	0,00	0,00
SLU SLU			SLU19 SLU20			1,00	0.00	0.00	0,00	0,01	0,0	0,0	2,00	1,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45 1,45	0,00	0,00	0,00
SLU					1,00		0,00	0,00	0,00	0,0	0,0	0,0		0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	
SLU	2	22	SLU22	1,00	1,00	1,00	0,00	0,00	0,00	0,0	0,0	-,-		0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	0,00
SLU			SLU23				0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	0,00	0,00	0,00
SLV		24 25	SLU24 SLV1	1,00	-	1,00 1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	1,00	0,00	0,00
SLV		26	SLV2	1,00	1,00	1,00	0.00	0.00	0.00	0.0	0.0	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0,30	-0,30
SLV	3	27	SLV3	1,00	1,00	1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	1,00	0,30
SLV		28	SLV4				0,00	0,00	0,00	0,0		-,-		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	0,00	0,00	0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,00	-0,30
SLV SLV		29 30	SLV5 SLV6	1,00		1,00 1,00	0,00	0,00	0,00	0,01	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,30 0,30	1,00
LE RA		31	RA1		1,00		0.00	0.00	0.00	0.0	0.0	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	0.00	0.00
LE RA	4	32	RA2	1,00		1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
LE RA		33	RA3			1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	-,	0,00	0,00
LE RA		34 35	RA4 RA5			1,00 1.00	0,00	0,00	0,00	0,01	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00 1.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
LE RA		36		1,00		1,00	0.00	0.00	0.00	0.0	0.0	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0.00	0.00	
LE RA		37	RA7	1,00		1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
LE RA		38	RA8			1,00	0,00	0,00	0,00	0,0		-,-		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	-,	0,00	0,00
LE RA		39 40	RA9 RA10			1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 1,00		0,00	0,00
LE RA		41	RA11				0.00	0.00	0.00	0.0		0.0		0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00		1,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	1,00	0.00	0.00	0,00
LE RA		42	RA12	1,00	1,00	1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
LE QP		43	QP1			1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP LE QP		44 45	QP2 QP3	1,00 1,00	1,00 1,00	1,00 1,00	0,00	0,00	0,00	0,01	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP		46		1,00		1,00	0,00	0,00	0.00	0.0	0,0	0,0	0 0.00	0.00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00		1,00	0.00	0.00	0,00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0.00	0,00
LE QP	5	47	QP5	1,00	1,00	1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP		48	QP6			1,00	0,00	0,00	0,00	0,0				0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP		49 50	QP7	1,00		1,00	0,00	0,00	0,00	0,01	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP LE QP		50 51	QP8 QP9	1,00		1,00 1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP		52	QP10		1,00		0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			1,00	0,00	0,00	0,00	0,00	0,00	0,00
LE QP	5	53	QP11	1,00	1,00	1,00	0,00	0,00	0,00					0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00		0,00		1,00	0,00	0,00		0,00	0,00
LE QP	5	54	QP12	1,00	1,00	1,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	0,00	0,00	0.00	

Tabella 43 – Combinazioni di carico adottate

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	122

INVILUPPO:	SLU	N _{vert}	V _{trasv}	M _{long}	V _{long}	M _{trasv}	M _{torc}
Tipologia	Nome	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU6	55530	363	-5396	2752	64371	-1511
N _{vert} Min	SLU24	35898	-351	4291	1981	18412	1475
V _{trasv} Max	SLU15	43060	530	-6761	2510	53252	-2211
V _{trasv} Min	SLU16	35898	-351	4291	1981	18412	1475
M _{long} Max	SLU13	35898	-351	4291	2331	21558	1475
M _{long} Min	SLU4	40324	356	-12358	2510	41760	-1480
V _{long} Max	SLU11	52613	530	-6761	2752	52118	-2211
V _{long} Min	SLU20	36208	0	0	1922	19179	-7
M _{trasv} Max	SLU14	45977	363	-5396	2510	65505	-1511
M _{trasv} Min	SLU19	45451	-351	4291	2223	17279	1475
M _{torc} Max	SLU14	35898	-351	4291	2331	21558	1475
M _{torc} Min	SLU15	43060	530	-6761	2510	53252	-2211
INVILUPPO:	SLV	N _{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
T: !!		_	_		-		
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Nome Comb.	(kN)	Fx (kN)	(kNm)	(kN)	MX (kNm)	Mz (kNm)
				•	•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb. N _{vert} Max	Comb. SLV5	(kN)	(kN)	(kNm)	(kN) 2928	(kNm) 37706	(kNm)
Comb. N _{vert} Max N _{vert} Min	SLV5 SLV6	(kN) 37653 27422	(kN) 3069 3069	(kNm) -16142 -16142	(kN) 2928 2928	(kNm) 37706 24568	(kNm) -3941 -3941
N _{vert} Max N _{vert} Min V _{trasv} Max	SLV5 SLV6 SLV3	(kN) 37653 27422 34072	(kN) 3069 3069 10231	(kNm) -16142 -16142 -53808	(kN) 2928 2928 2928	(kNm) 37706 24568 33107	(kNm) -3941 -3941 -13138
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	SLV5 SLV6 SLV3 SLV6	(kN) 37653 27422 34072 27422	(kN) 3069 3069 10231 3069	(kNm) -16142 -16142 -53808 -16142	(kN) 2928 2928 2928 2928	(kNm) 37706 24568 33107 24568	(kNm) -3941 -3941 -13138 -3941
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	SLV5 SLV6 SLV3 SLV6 SLV1	(kN) 37653 27422 34072 27422 34072	(kN) 3069 3069 10231 3069 3069	(kNm) -16142 -16142 -53808 -16142 -16142	(kN) 2928 2928 2928 2928 2928 8221	(kNm) 37706 24568 33107 24568 54451	(kNm) -3941 -3941 -13138 -3941 -3941
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV1	(kN) 37653 27422 34072 27422 34072 31003	(kN) 3069 3069 10231 3069 3069 10231	(kNm) -16142 -16142 -53808 -16142 -16142 -53808	(kN) 2928 2928 2928 2928 2928 8221 2928	(kNm) 37706 24568 33107 24568 54451 29166	(kNm) -3941 -3941 -13138 -3941 -3941 -13138
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max	SLV5 SLV6 SLV3 SLV6 SLV1 SLV1 SLV6	(kN) 37653 27422 34072 27422 34072 31003 34072	(kN) 3069 3069 10231 3069 3069 10231 3069	(kNm) -16142 -16142 -53808 -16142 -53808 -16142 -16142	(kN) 2928 2928 2928 2928 2928 8221 2928 8221	(kNm) 37706 24568 33107 24568 54451 29166 54451	(kNm) -3941 -3941 -13138 -3941 -13138 -3941
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV6 SLV1 SLV6	(kN) 37653 27422 34072 27422 34072 31003 34072 27422	(kN) 3069 3069 10231 3069 10231 3069 3069 3069	(kNm) -16142 -16142 -53808 -16142 -53808 -16142 -16142 -16142	(kN) 2928 2928 2928 2928 8221 2928 8221 2928	(kNm) 37706 24568 33107 24568 54451 29166 54451 24568	(kNm) -3941 -3941 -13138 -3941 -13138 -3941 -3941 -3941
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	SLV5 SLV6 SLV7 SLV6 SLV1 SLV6 SLV1 SLV6 SLV1	(kN) 37653 27422 34072 27422 34072 31003 34072 27422 34072	(kN) 3069 3069 10231 3069 3069 10231 3069 3069 3069	(kNm) -16142 -16142 -53808 -16142 -53808 -16142 -16142 -16142 -16142	(kN) 2928 2928 2928 2928 8221 2928 8221 2928 8221	(kNm) 37706 24568 33107 24568 54451 29166 54451 24568 54451	(kNm) -3941 -3941 -13138 -3941 -13138 -3941 -3941 -3941 -3941

Tabella 44 – ENV SLU, SLV - Azioni totali inviluppo

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	123

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M _{long}	V _{long}	M _{trasv}	M _{torc}
Tipologia	Nome	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	40225	308	-4472	1894	44979	-1286
N _{vert} Min	RA12	34862	-234	2860	1462	18576	983
V _{trasv} Max	RA3	39853	360	-4640	1894	43418	-1505
V _{trasv} Min	RA12	34862	-234	2860	1462	18576	983
M _{trasv} Max	RA1	34862	-234	2860	1462	18576	983
M _{trasv} Min	RA12	38026	220	-8493	1421	31495	-931
V _{long} Max	RA11	39853	360	-4640	1894	43418	-1505
V _{long} Min	RA8	40225	308	-4472	1381	40364	-1305
M _{long} Max	RA12	40225	308	-4472	1894	44979	-1286
M _{long} Min	RA6	34862	-234	2860	1462	18576	983
M _{torc} Max	RA12	34862	-234	2860	1462	18576	983
M _{torc} Min	RA3	39853	360	-4640	1894	43418	-1505
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
				,	-		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb. N _{vert} Max	Comb. QP1	(kN) 32537	(kN)	•	(kN)	(kNm) 21990	(kNm) 0
			• • •	(kNm)	. ,		, ,
N _{vert} Max	QP1	32537	0	(kNm)	659	21990	0
N _{vert} Max N _{vert} Min	QP1 QP12	32537 32537	0	(kNm) 0 0	659 309	21990 18844	0
N _{vert} Max N _{vert} Min V _{trasv} Max	QP1 QP12 QP1	32537 32537 32537	0 0	(kNm) 0 0	659 309 659	21990 18844 21990	0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	QP1 QP12 QP1 QP12	32537 32537 32537 32537	0 0 0	(kNm) 0 0 0	659 309 659 309	21990 18844 21990 18844	0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	QP1 QP12 QP1 QP12 QP1	32537 32537 32537 32537 32537	0 0 0 0	(kNm) 0 0 0 0 0 0	659 309 659 309 659	21990 18844 21990 18844 21990	0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	QP1 QP12 QP1 QP12 QP1 QP12	32537 32537 32537 32537 32537 32537	0 0 0 0 0	(kNm) 0 0 0 0 0 0 0	659 309 659 309 659 309	21990 18844 21990 18844 21990 18844	0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1	32537 32537 32537 32537 32537 32537 32537	0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0	659 309 659 309 659 309 659	21990 18844 21990 18844 21990 18844 21990	0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max V _{long} Min	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	32537 32537 32537 32537 32537 32537 32537 32537	0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0	659 309 659 309 659 309 659 309	21990 18844 21990 18844 21990 18844 21990 18844	0 0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max V _{long} Min M _{long} Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	32537 32537 32537 32537 32537 32537 32537 32537 32537	0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0 0	659 309 659 309 659 309 659 309	21990 18844 21990 18844 21990 18844 21990 18844 21990	0 0 0 0 0 0

Tabella 45 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	124

11.4 SOLLECITAZIONI MURO PARAGHIAIA

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate al muro paraghiaia della spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro del muro paraghiaia a quota estradosso elevazione, e i rispettivi assi x, y, z come riportato nella figura seguente.

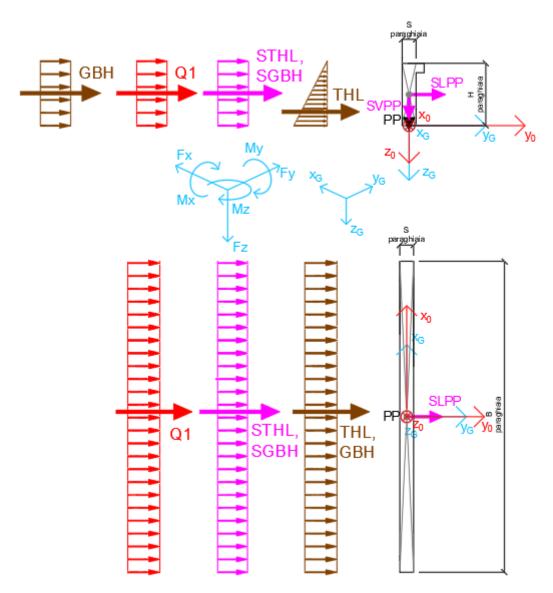


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	125

11.4.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOMI	E: MURO PA	RAGHIAIA						CALCO	LO SPETT	RO SISMIC	DI PROGE	TTO				
PGA orizzontale	e a _g (g)	0.195				Co	oeff. sismi	co orizz. k _h	0.2738			Coeff. s	pinta attiva	sismica kaE	0.3834	
Coeff. stratigrafi	ico S _S	1.404				(Coeff. sism	ico vert. k _v	0.1369							
NOMI	E: MURO PA	RAGHIAIA						CALCO	LO AZIONI	SISMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
Sisma long	SLPP	0	200	0	0.00	0.00	-1.80	359	0	0						
		0	200	0			,	359	0	0	0	200	0	359	0	C
Sisma vert	SVPP	0	0	100	0.00	0.00	-1.80	0	0	0						
		0	. 0	100			,	0	0	0	0	0	100	0	0	C
Sisma ballast	SGBH	0	94	0	0.00	-0.30	-1.80	168	0	0						
long		0	94	0			,	168	0	0	0	94	0	168	0	C
Sisma terreno	STHL	0	0	0	0.00	-0.30	-1.80	0	0	0						
long		0	0	0				0	0	0	0	0	0	0	0	C

Tabella 46 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

NOME	: MURO P	ARAGHIAIA						PARAM	METRI DI CA	ALCOLO MU	RO PARAG	HIAIA				
H paraghiaia (m) 3	.60	Carico pe	erm. Gb ball	ast (kPa)	9.72		An	golo di attrito	terreno (°)	38.00			XC	elevazione	0.00
S paraghiaia (m) 0	.60	Carico	variab. Q LN	171 (kPa)	56.18		Coeff.	spinta attiva	a statica ka	0.2379			YC	elevazione	0.00
B paraghiaia (m) 13	.50	F	Peso terreno	(kN/m3)	20.00		Coeff.	spinta riposo	statica k0	0.3843			ZC	elevazione	0.00
NOME	: MURO P	ARAGHIAIA						-	ALCOLO A	ZIONI CORP	O SPALLA					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	yo (m)	z ₀ (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
Peso proprio	PP	0	0	729	0.00	0.00	-1.80	0	0	0						
		0	. 0	729				0	0	0	0	0	729	0	0	0
Ballast	GBH	0	182	0	0.00	-0.30	-1.80	327	0	0						
		0	182	0				327	0	0	0	182	0	327	0	0
Spinta terreno	THL	0	0	0	0.00	-0.30	-1.20	0	0	0						
	,	0	0	0				0	0	0	0	0	0	0	0	0
Sovraccarico	Q1	0	1049	0	0.00	-0.30	-1.80	1889	0	0						
long		0	1049	0				1889	0	0	0	1049	0	1889	0	0

Tabella 47 – Riepilogo azioni elementari statiche

Tipo azione	Descrizione	V _{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	729	0	0	0
Gk2b Ballast	G2,1 (ballast)	0	182	0	327	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	0	0	0	0	0
Qk1	Q (acc. Traffico)	0	1049	0	1889	0	0
E	Sisma long	0	293	0	528	0	0
Sisma	Sisma vert	0	0	100	0	0	0
	-Sisma vert	0	0	-100	0	0	0

Tabella 48 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso fondazione)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	126

NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	Qk1-Q (acc. Traffico)	E-Sisma long	E-Sisma vert	ESisma vert
SLU	1	1	SLU1	1.35	1.50	1.50	0.00	0.00	0.00	0.00
SLU	2	2	SLU2	1.35	1.50	1.50	1.45	0.00	0.00	0.00
SLU	3	3	SLU3	1.00	1.50	1.50	0.00	0.00	0.00	0.00
SLU	4	4	SLU4	1.00	1.50	1.50	1.45	0.00	0.00	0.00
SLU	5	5	SLU5	1.00	0.00	0.00	1.45	0.00	0.00	0.00
SLV	6	6	SLV1	1.00	1.00	1.00	0.00	1.00	0.30	0.00
SLV	6	7	SLV2	1.00	1.00	1.00	0.00	1.00	0.00	0.30
SLV	6	8	SLV3	1.00	1.00	1.00	0.00	0.30	1.00	0.00
SLV	6	9	SLV4	1.00	1.00	1.00	0.00	0.30	0.00	1.00
SLE RA	7	10	RA1	1.00	1.00	1.00	1.00	0.00	0.00	0.00
SLE RA	8	11	RA2	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE QP	8	12	QP1	1.00	1.00	1.00	0.00	0.00	0.00	0.00
SLE QP	9	13	QP2	1.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabella 49 - Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	127

INVILUPPO:	SLU	N_{vert}	V_{long}	M _{long}
Tipologia	Nome	Fz	Fy	Mx
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	SLU2	984	1794	3229
N _{vert} Min	SLU5	729	1522	2739
V _{long} Max	SLU2	984	1794	3229
V _{long} Min	SLU3	729	272	490
M _{long} Max	SLU2	984	1794	3229
M _{long} Min	SLU3	729	272	490
INVILUPPO:	SLV	N_{vert}	V_{long}	M_{long}
Tipologia	Nome	Fz	Fy	Мx
Comb.	Comb.	(kN)	(kN)	(kNm)
		(kN) 829	(kN) 269	(kNm) 485
Comb.	Comb.		· · · · ·	
Comb.	Comb. SLV3	829	269	485
N _{vert} Max	Comb. SLV3 SLV4	829 629	269 269	485 485
N _{vert} Max N _{vert} Min V _{long} Max	SLV3 SLV4 SLV1	829 629 759	269 269 475	485 485 854

Tabella 50 – ENV SLU, SLV - Azioni totali inviluppo

INVILUPPO:	SLE RA	N_{vert}	V_{long}	M _{long}
Tipologia	Nome	Fz	Fy	Мx
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	RA1	729	1231	2216
N _{vert} Min	RA2	729	182	327
V _{long} Max	RA1	729	1231	2216
V _{long} Min	RA2	729	182	327
M _{long} Max	RA1	729	1231	2216
M _{long} Min	RA2	729	182	327
	- 3			
INVILUPPO:	SLE QP	N_{vert}	V_{long}	M_{long}
INVILUPPO: Tipologia	SLE QP Nome	N _{vert}	V _{long}	M _{long}
Tipologia	Nome	Fz	Fy	Mx
Tipologia Comb.	Nome Comb.	Fz (kN)	Fy (kN)	Mx (kNm)
Tipologia Comb.	Nome Comb.	Fz (kN) 729	Fy (kN) 182	Mx (kNm) 327
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. QP1 QP2	Fz (kN) 729 729	Fy (kN) 182	Mx (kNm) 327 0
Tipologia Comb. N _{vert} Max N _{vert} Min V _{long} Max	Nome Comb. QP1 QP2 QP1	Fz (kN) 729 729	Fy (kN) 182 0 182	Mx (kNm) 327 0 327

Tabella 51 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	128

11.5 Verifiche Muro Frontale

Nel seguente paragrafo vengono riportate le sollecitazioni a quota estradosso plinto di fondazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.5.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 22/20 e nel lato compresso di Φ 18/20 come rappresentato nella figura seguente per un totale di 156 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

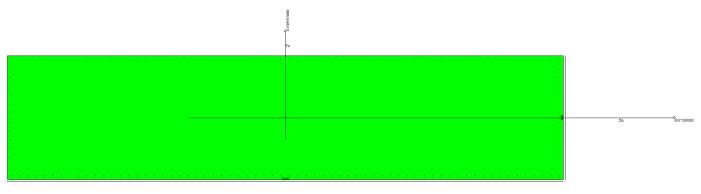


Figura 37 – Sezione trasversale spalla 1 e relativa armatura

Dati

Nome sezione: SEZIONE SPALLA S1

Tipo sezione Rettangolare Base 1350,0 [cm] Altezza 300,0 [cm]

Caratteristiche geometriche

405000,00 [cmq] Area sezione 61509375000,0 Inerzia in direzione X [cm^4] Inerzia in direzione Y 3037500000,0 [cm^4] Inerzia in direzione XY [cm^4] $X_G = 675,00$ Ascissa baricentro sezione [cm] Ordinata baricentro sezione $Y_G = 150,00$ [cm]

Elenco ferri

Simbologia adottata

Posizione riferita all'origine N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]

 $\begin{array}{ll} \text{d} & \text{Diametro ferro espresso in [mm]} \\ \omega & \text{Area del ferro espresso in [cmq]} \end{array}$

N°	X	Y	d	ω
1	1341,10	291,10	18	2,54
2	1320,60	291,10	18	2,54

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	129

3	1300,11	291,10	18		2,54	
4	1279,61	291,10	18		2,54	
5	1259,12	291,10	18		2,54	
6	1238,62	291,10	18		2,54	
7	1218,13	291,10	18		2,54	
8	1197,63	291,10	18		2,54	
9	1177,14	291,10	18		2,54	
10	1156,64	291,10	18		2,54	
11	1136,15	291,10	18		2,54	
12	1115,65	291,10	18		2,54	
13	1095,16	291,10	18		2,54	
14	1074,66	291,10	18		2,54	
15			18			
	1054,16	291,10			2,54	
16	1033,67	291,10	18		2,54	
17	1013,17	291,10	18		2,54	
18	992,68	291,10	18		2,54	
19	972,18	291,10	18		2,54	
20	951,69	291,10	18		2,54	
21	931,19	291,10	18		2,54	
22	910,70	291,10	18		2,54	
23	890,20	291,10	18		2,54	
24	869,71	291,10	18		2,54	
25	849,21	291,10	18		2,54	
26	828,72	291,10	18		2,54	
27	808,22	291,10	18		2,54	
28	787,72	291,10	18		2,54	
29	767,23	291,10	18		2,54	
30	746,73	291,10	18		2,54	
31	726,24	291,10	18		2,54	
32	705,74	291,10	18		2,54	
33	685,25	291,10	18		2,54	
34	664,75	291,10	18		2,54	
35	644,26	291,10	18		2,54	
36	623,76	291,10	18		2,54	
37	603,27	291,10	18		2,54	
38	582,77	291,10	18		2,54	
39	562,28	291,10	18		2,54	
40	541,78	291,10	18		2,54	
41	521,28	291,10	18		2,54	
42	500,79	291,10	18		2,54	
43	480,29	291,10	18		2,54	
44	459,80	291,10	18		2,54	
45	439,30	291,10	18		2,54	
46	418,81	291,10	18		2,54	
47	398,31	291,10	18		2,54	
48	377,82	291,10	18		2,54	
49	357,32	291,10	18		2,54	
50	336,83	291,10	18		2,54	
51	316,33	291,10	18		2,54	
52	295,84	291,10	18		2,54	
53	275,34	291,10	18		2,54	
54	254,84	291,10	18		2,54	
55	234,35	291,10	18		2,54	
56	213,85	291,10	18		2,54	
57	193,36	291,10	18		2,54	
58	172,86	291,10	18		2,54	
59	152,37	291,10	18		2,54	
60	131,87	291,10	18		2,54	
61	111,38	291,10	18		2,54	
62	90,88	291,10	18		2,54	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	130

63	70,39	291,10	18		2,54	
64	49,89	291,10	18		2,54	
			18			
65	29,40	291,10			2,54	
66	8,90	291,10	18		2,54	
67	9,10	9,10	22		3,80	
68	29,59	9,10	22		3,80	
69	50,08	9,10	22		3,80	
70	70,57	9,10	22		3,80	
71	91,06	9,10	22		3,80	
72	111,55	9,10	22		3,80	
73	132,04	9,10	22		3,80	
74	152,52	9,10	22		3,80	
75	173,01	9,10	22		3,80	
76	193,50	9,10	22		3,80	
77	213,99	9,10	22		3,80	
78	234,48	9,10	22		3,80	
79	254,97	9,10	22		3,80	
80	275,46	9,10	22		3,80	
81	295,95	9,10	22		3,80	
82	316,44	9,10	22		3,80	
83	336,93	9,10	22		3,80	
84	357,42	9,10	22		3,80	
85	377,91	9,10	22		3,80	
86	398,40	9,10	22		3,80	
87	418,88	9,10	22		3,80	
88	439,37	9,10	22		3,80	
89	459,86	9,10	22		3,80	
90	480,35	9,10	22		3,80	
91	500,84	9,10	22		3,80	
92			22			
	521,33	9,10			3,80	
93	541,82	9,10	22		3,80	
94	562,31	9,10	22		3,80	
95	582,80	9,10	22		3,80	
96	603,29	9,10	22		3,80	
97	623,78	9,10	22		3,80	
98	644,27	9,10	22		3,80	
99	664,76	9,10	22		3,80	
100	685,24	9,10	22		3,80	
101	705,73	9,10	22		3,80	
102	726,22	9,10	22		3,80	
103	746,71	9,10	22		3,80	
104	767,20	9,10	22		3,80	
105	787,69	9,10	22		3,80	
106	808,18	9,10	22		3,80	
107	828,67	9,10	22		3,80	
108	849,16	9,10	22		3,80	
109	869,65	9,10	22		3,80	
110	890,14	9,10	22		3,80	
111	910,63	9,10	22		3,80	
112	931,12	9,10	22		3,80	
113	951,60	9,10	22		3,80	
114	972,09	9,10	22		3,80	
115	992,58	9,10	22		3,80	
116	1013,07	9,10	22		3,80	
117	1033,56	9,10	22		3,80	
118	1054,05	9,10	22		3,80	
119	1074,54	9,10	22		3,80	
120	1095,03	9,10	22		3,80	
121	1115,52	9,10	22		3,80	
122	1136,01	9,10	22		3,80	
144	1 100,01	5,10	22		3,00	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	131

<u> </u>			-	
123	1156,50	9,10	22	3,80
124	1176,99	9,10	22	3,80
125	1197,48	9,10	22	3,80
126	1217,96	9,10	22	3,80
127	1238,45	9,10	22	3,80
128	1258,94	9,10	22	3,80
129	1279,43	9,10	22	3,80
130	1299,92	9,10	22	3,80
131	1320,41	9,10	22	3,80
132	1340,90	9,10	22	3,80
133	8,90	269,39	18	2,54
134	8,90	247,68	18	2,54
135	8,90	225,98	18	2,54
136	8,90	204,27	18	2,54
137	8,90	182,56	18	2,54
138	8,90	160,85	18	2,54
139	8,90	139,15	18	2,54
140	8,90	117,44	18	2,54
141	8,90	95,73	18	2,54
142	8,90	74,02	18	2,54
143	8,90	52,32	18	2,54
144	8,90	30,61	18	2,54
145	1341,10	30,61	18	2,54
146	1341,10	52,32	18	2,54
147	1341,10	74,02	18	2,54
148	1341,10	95,73	18	2,54
149	1341,10	117,44	18	2,54
150	1341,10	139,15	18	2,54
151	1341,10	160,85	18	2,54
152	1341,10	182,56	18	2,54
153	1341,10	204,27	18	2,54
154	1341,10	225,98	18	2,54
155	1341,10	247,68	18	2,54
156	1341,10	269,39	18	2,54

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,924 [MPa]
Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcent espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ VD & & \text{verifica di dominio} \end{array}$

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	132

N°	N	M_Y	M _X	M _t	T _Y	T_X	VD	VT
1	22161,8700	9819,2900	-3799,1500	0,0000	0,0000	0,0000	SI	NO
2	10380,6800	1640,9100	2745,5300	0,0000	0,0000	0,0000	SI	NO
3	10380,6800	3248,8800	2745,5300	0,0000	0,0000	0,0000	SI	NO
4	16508,3200	6427,1600	-10792,4700	0,0000	0,0000	0,0000	SI	NO
5	20459,4500	10122,0700	-3799,1500	0,0000	0,0000	0,0000	SI	NO
6	12392,4700	1251,4900	0,0000	0,0000	0,0000	0,0000	SI	NO
7	12815,0700	-15072,4300	6524,5500	0,0000	0,0000	0,0000	SI	NO
8	8565,0300	-15072,4300	2383,8400	0,0000	0,0000	0,0000	SI	NO
9	11327,5600	-4521,7300	7454,5700	0,0000	0,0000	0,0000	SI	NO
10	8565,0300	-15072,4300	2383,8400	0,0000	0,0000	0,0000	SI	NO
11	11327,5600	-4521,7300	7454,5700	0,0000	0,0000	0,0000	SI	NO
12	8565,0300	-15072,4300	2383,8400	0,0000	0,0000	0,0000	SI	NO
13	15846,3400	-3114,6000	6903,8100	0,0000	0,0000	0,0000	NO	SLER
14	10483,8000	1830,3500	1702,7800	0,0000	0,0000	0,0000	NO	SLER
15	10483,8000	1830,3500	1702,7800	0,0000	0,0000	0,0000	NO	SLER
16	13647,3000	-7523,2100	3413,1200	0,0000	0,0000	0,0000	NO	SLER
17	15846,3400	-3114,6000	6903,8100	0,0000	0,0000	0,0000	NO	SLER
18	10483,8000	1830,3500	1702,7800	0,0000	0,0000	0,0000	NO	SLER
19	10690,0500	0,000	3434,5100	0,0000	0,0000	0,0000	NO	SLEQP
20	10690,0500	0,0000	1826,5300	0,0000	0,0000	0,0000	NO	SLEQP
21	10690,0500	0,0000	3434,5100	0,0000	0,0000	0,0000	NO	SLEQP
22	10690,0500	0,0000	1826,5300	0,0000	0,0000	0,0000	NO	SLEQP
23	10690,0500	0,0000	3434,5100	0,0000	0,0000	0,0000	NO	SLEQP
24	10690,0500	0,0000	1826,5300	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
13	622,15	6,51	(1350,00; 626,19)	(-4136,63; 0,00)
14	610,37	-2,62	(-12003,72; 300,00)	(1350,00; -311,01)
15	610,37	-2,62	(-12003,72; 300,00)	(1350,00; -311,01)
16	304,76	1,36	(1350,00; 304,84)	(-11480,06; 0,00)
17	622,15	6,51	(1350,00; 626,19)	(-4136,63; 0,00)
18	610,37	-2,62	(-12003,72; 300,00)	(1350,00; -311,01)
19	5283,70	-75,32	(-4112,01; 300,00)	(1350,00; -20548,77)
20	8680,17	-63,77	(-8326,24; 300,00)	(1350,00; -19342,49)
21	5283,70	-75,32	(-4112,01; 300,00)	(1350,00; -20548,77)
22	8680,17	-63,77	(-8326,24; 300,00)	(1350,00; -19342,49)
23	5283,70	-75,32	(-4112,01; 300,00)	(1350,00; -20548,77)
24	8680,17	-63,77	(-8326,24; 300,00)	(1350,00; -19342,49)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{t-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	133

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
13	0,602	0,000	0,000	8,891	2,627
14	0,362	0,000	0,000	5,342	2,297
15	0,362	0,000	0,000	5,342	2,297
16	0,723	0,000	0,000	10,515	-0,645
17	0,602	0,000	0,000	8,891	2,627
18	0,362	0,000	0,000	5,342	2,297
19	0,298	0,000	0,000	4,466	3,314
20	0,281	0,000	0,000	4,211	3,570
21	0,298	0,000	0,000	4,466	3,314
22	0,281	0,000	0,000	4,211	3,570
23	0,298	0,000	0,000	4,466	3,314
24	0,281	0,000	0,000	4,211	3,570

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N_{u} & & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & & \text{Momento ultimo in direzione } X, \text{ espresso in [kNm]} \end{array}$

 M_{Xu} Momento ultimo in direzione X, espresso in [kNm] M_{Yu} Momento ultimo in direzione Y, espresso in [kNm]

FS Fattore di sicurezza

Combinazione nº 1

N_u	M_{Xu}	\mathbf{M}_{Yu}	FS
534757,5852	<u>-91672,0602</u>	236935,7734	24,13
755312,9490	<u>-129481,2753</u>	9819,2900	34,08
537954,4835	-3799,1500	238352,2275	24,27
769628,5867	-3799,1500	9819,2900	34,73
22161,8700	-254358,3693	9819,2900	66,95
22161,8700	-23926,1107	<u>61839,4691</u>	6,30
22161,8700	-3799,1500	61914,7760	6,31

Combinazione n° 2

Nu	₩ _{Xu}	Wi _{Yu}	FS
674677,6567	<u>178441,8503</u>	106648,6313	64,99
743242,4132	<u>196576,1725</u>	1640,9100	71,60
681174,6310	2745,5300	<u>107675,6305</u>	65,62
776110,2728	2745,5300	1640,9100	74,76
10380,6800	183582,5590	1640,9100	66,87
10380,6800	75568,2324	<u>45164,5650</u>	27,52
10380,6800	2745,5300	45857,6569	27,95

Combinazione n° 3

N _u	M_{Xu}	\mathbf{M}_{Yu}	FS
594775,0538	157308,8423	<u>186148,9591</u>	57,30
743075,6645	<u>196532,0701</u>	3248,8800	71,58
601039,8350	2745,5300	<u>188109,6710</u>	57,90
774865,9151	2745,5300	3248,8800	74,65
10380,6800	183687,5867	3248,8800	66,90
10380,6800	<u>38594,9563</u>	45670,7382	14,06
10380,6800	2745,5300	<u>45857,6569</u>	14,11

Combinazione nº 4

FS	\mathbf{M}_{Yu}	M_{Xu}	$N_{\rm u}$
32,75	<u>210502,3108</u>	-353474,9212	<u>540680,4106</u>
41,76	6427,1600	-450696,2929	689391,6431

Combinazione nº 10

 N_{u}

LINEA PESCARA – BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	134

FS

Troid Eliono di Galooio			
563637,6421 772276,1465 16508,3200 16508,3200 16508,3200	-10792,4700 -10792,4700 <u>-220800,3798</u> <u>-89543,4448</u> -10792,4700	219440,2161 6427,1600 6427,1600 53325,1467 54240,4422	34,14 46,78 20,46 8,30 8,44
Combinazione nº 5			
N _u 509939,2326 753256,5552 513393,2246 769382,9428 20459,4500 20459,4500 20459,4500	Mxu -94691,4817 -139873,4884 -3799,1500 -3799,1500 -244163,5059 -22351,6632 -3799,1500	M _{Yu} 252286,3815 10122,0700 253995,2030 10122,0700 10122,0700 59551,5049 59618,1772	FS 24,92 36,82 25,09 37,61 64,27 5,88 5,89
Combinazione nº 6			
N _u 714732,6339 776421,6152 12392,4700	M _{Xu} 0,0000 0,0000 0,0000	M _{Yu} <u>72179,3754</u> 1251,4900 <u>48631,4670</u>	FS 57,67 62,65 38,86
Combinazione n° 7			
N _u 207996,0080 708543,3035 212911,6929 772621,9253 12815,0700 12815,0700	M _{xu} 105897,2252 360741,3936 6524,5500 6524,5500 194311,9451 17381,5010 6524,5500	Myu -244634,2682 -15072,4300 -250415,8454 -15072,4300 -15072,4300 -40153,1841 -40187,9596	FS 16,23 55,29 16,61 60,29 29,78 2,66 2,67
Combinazione nº 8			
N _u 53957,5277 740701,9283 54049,6978 772659,3148 8565,0300 8565,0300 8565,0300	M _{xu} 15017,5905 206153,9638 2383,8400 2383,8400 168111,9903 5420,9983 2383,8400	M _{Yu} -94952,5056 -15072,4300 -95114,7032 -15072,4300 -15072,4300 -34275,6296 -34279,4884	6,30 86,48 6,31 90,21 70,52 2,27 2,27
Combinazione nº 9			
N _u 541232,2706 689854,5425 564761,6417 779521,6565 11327,5600 11327,5600 11327,5600	M _{xu} 356180,3113 453987,3527 7454,5700 7454,5700 188511,7172 62126,9209 7454,5700	M _{Yu} -216048,8397 -4521,7300 -225441,2829 -4521,7300 -4521,7300 -37684,4221 -38122,0130	FS 47,78 60,90 49,86 68,82 25,29 8,33 8,43

 \boldsymbol{M}_{Xu}

 \boldsymbol{M}_{Yu}

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	135

53957,5277	<u>15017,5905</u>	<u>-94952,5056</u>	6,30
740701,9283	206153,9638	-15072,4300	86,48
54049,6978	2383,8400	<u>-95114,7032</u>	6,31
772659,3148	2383,8400	-15072,4300	90,21
8565,0300	<u>168111,9903</u>	-15072,4300	70,52
8565,0300	5420,9983	<u>-34275,6296</u>	2,27
8565,0300	2383,8400	-34279,4884	2,27

Combinazione nº 11

N_u	M_{Xu}	M_{Yu}	FS
541232,2706	<u>356180,3113</u>	<u>-216048,8397</u>	47,78
689854,5425	453987,3527	-4521,7300	60,90
564761,6417	7454,5700	-225441,2829	49,86
779521,6565	7454,5700	-4521,7300	68,82
11327,5600	188511,7172	-4521,7300	25,29
11327,5600	62126,9209	-37684,4221	8,33
11327,5600	7454,5700	-38122,0130	8,43

Combinazione nº 12

<u> </u>			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>53957,5277</u>	<u>15017,5905</u>	<u>-94952,5056</u>	6,30
740701,9283	206153,9638	-15072,4300	86,48
54049,6978	2383,8400	<u>-95114,7032</u>	6,31
772659,3148	2383,8400	-15072,4300	90,21
8565,0300	168111,9903	-15072,4300	70,52
8565,0300	5420,9983	<u>-34275,6296</u>	2,27
8565,0300	2383,8400	<u>-34279,4884</u>	2,27

Risultati fessurazione

Simbologia adottata

M_X Momento di prima fessurazione in direzione X, espresso in [kNm]
 M_Y Momento di prima fessurazione in direzione Y, espresso in [kNm]
 σ_I Tensione nell'acciaio, espressa in [MPa]

 $\begin{array}{lll} \sigma_{I} & & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{c} & & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & & \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & & \text{Deformazione media acciaio teso, espressa in [e]} \\ S_{rm} & & \text{Distanza media tra le fessure, espresso in [mm]} \\ \end{array}$

Ampiezza delle fessure, espressa in [mm]

N°	Mx	M_Y	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
13	80143,5256	-36156,1261	-397,246	-27,353	92879,41	0,0000	0	0,0000
14	39709,3617	42684,3340	-428,159	-29,572	65370,77	0,0000	0	0,0000
15	39709,3617	42684,3340	-428,159	-29,572	65370,77	0,0000	0	0,0000
16	21865,3000	-48195,5641	-601,359	-41,515	70866,78	0,0000	0	0,0000
17	80143,5256	-36156,1261	-397,246	-27,353	92879,41	0,0000	0	0,0000
18	39709,3617	42684,3340	-428,159	-29,572	65370,77	0,0000	0	0,0000
19	227922,6699	0,0000	-824,584	-55,453	163362,45	0,0000	0	0,0000
20	227928,1124	0,0000	-824,611	-55,455	163362,46	0,0000	0	0,0000
21	227922,6699	0,0000	-824,584	-55,453	163362,45	0,0000	0	0,0000
22	227928,1124	0,0000	-824,611	-55,455	163362,46	0,0000	0	0,0000
23	227922,6699	0,0000	-824,584	-55,453	163362,45	0,0000	0	0,0000
24	227928,1124	0,0000	-824,611	-55,455	163362,46	0,0000	0	0,0000

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	136

 Mx
 Momento in direzione X espresso in [kNm]

 My
 Momento in direzione Y espresso in [kNm]

 Nu
 Sforzo normale ultimo espresso in [kN]

 Mx,u
 Momento ultimo in direzione X espresso in [kNm]

My,u Momento ultimo in direzione Y espresso in [kNm]

FS Fattore di sicurezza Comb. Combinazione critica

Sezione nº 1 - SEZIONE SPALLA S1

N	Mx	My	N	Mx,u	My,u	FS	Comb.
8565,03	2383,84	-15072,43	53957,53	15017,59	-94952,51	6.300	8
22161,87	-3799,15	9819,29	755312,95	-129481,28	9819,29	34.082	1
8565,03	2383,84	-15072,43	54049,70	2383,84	-95114,70	6.311	8
22161,87	-3799,15	9819,29	769628,59	-3799,15	9819,29	34.728	1
16508,32	-10792,47	6427,16	16508,32	-220800,38	6427,16	20.459	4
8565,03	2383,84	-15072,43	8565,03	5421,00	-34275,63	2.274	8
8565.03	2383.84	-15072.43	8565.03	2383.84	-34279.49	2.274	8

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 1 - SEZIONE SPALLA S1

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,298	14,940	0,220	3,099	3,314	4,466	450,000	19
SLER	0,723	18,260	-0,065	3,099	-0,645	10,515	337,500	16

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]

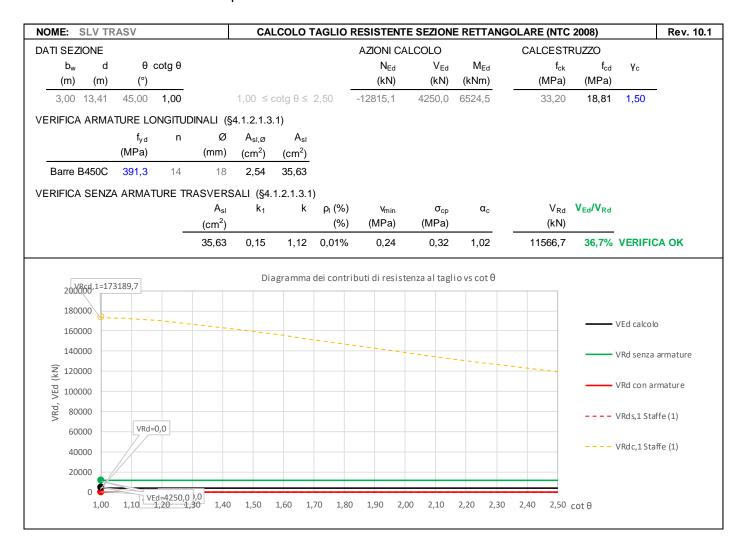
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione n° 1 - SEZIONE SPALLA S1

TC	Sf	SC	Aeff	Esp	sr	w	wi	Comb.
SLEQP	-824,584	-55,453	16020,638	0,0000	0,000	0,000	0,200	19
SLER	-397,246	-27,353	9108,504	0,0000	0,000	0,000	0,200	13

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

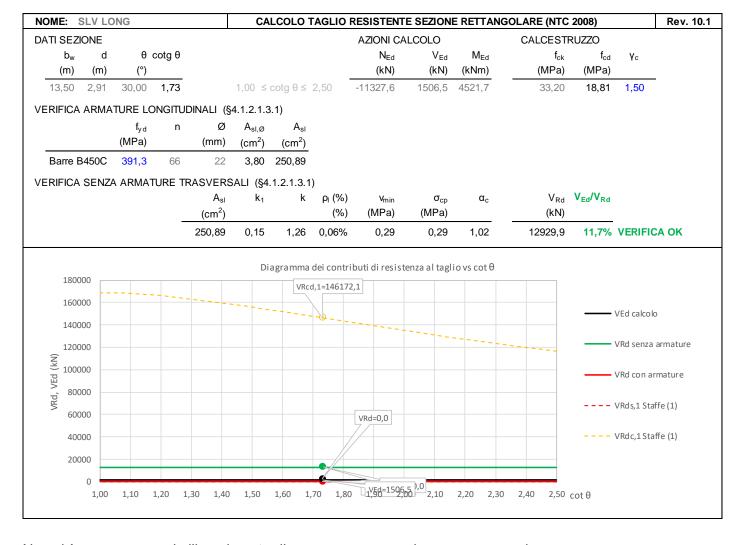
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	137

11.5.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato elevazione (estradosso plinto) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	138

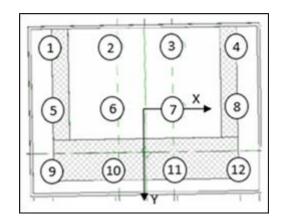
Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

SLU

3667

3794

LINEA PESCARA - BARI


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	139

11.6 VERIFICHE PLINTO FONDAZIONE

Nel presente paragrafo sono stati eseguite le verifiche strutturali del plinto di fondazione, considerando le reazioni in testa palo riportate nella specifica relazione di dimensionamento geotecnico delle palificate, di cui di seguito si riportano gli schemi generali e le azioni calcolate per i vari stati limite.

Δzi	ioni					Rinart	izione deali	sforzi norn	nali sui pali d	lella nalifica	ta .				
	mbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Palo n.9	Palo n.10	Palo n.11	Palo n.12	Hmax, singolo palo	Mmax, singolo palo
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	[kNm]					
Nvert Max	SLU6	3265	3143	3020	2897	5404	5282	5159	5036	7543	7421	7298	7175	247	742
Nvert Min	SLU24	2739	2718	2845	2971	3171	3298	3425	3552	3751	3878	4005	4132	167	500
Vtrasv Max	SLU15	2207	2341	2192	2044	4254	4106	3957	3809	6019	5870	5722	5574	231	692
Vtrasv Min	SLU16	2739	2718	2845	2971	3171	3298	3425	3552	3751	3878	4005	4132	167	500
Mtrasv Max	SLU13	2567	2557	2684	2810	3171	3298	3425	3552	3913	4039	4166	4293	207	622
Mtrasv Min	SLU4	2307	2484	2248	2013	4135	3900	3665	3430	5552	5317	5081	4846	227	682
Vlong Max	SLU11	3151	3290	3141	2993	5107	4959	4811	4662	6776	6628	6480	6331	250	751
Vlong Min	SLU20	2754	2794	2794	2794	3402	3402	3402	3402	4011	4011	4011	4011	151	453
Mlong Max	SLU14	2073	2194	2071	1948	4551	4428	4306	4183	6786	6663	6540	6418	228	683
Mlong Min	SLU19	3683	3667	3794	3920	4025	4151	4278	4405	4509	4636	4763	4889	186	557
Mtorc Max	SLU14	2567	2557	2684	2810	3171	3298	3425	3552	3913	4039	4166	4293	207	622
Mtorc Min	SLU15	2207	2341	2192	2044	4254	4106	3957	3809	6019	5870	5722	5574	231	692
Nvert Max	SLV5	2197	2441	2095	1748	4100	3754	3407	3060	5413	5066	4720	4373	393	1178
Nvert Min	SLV6	1664	1908	1561	1215	3132	2786	2439	2092	4010	3663	3317	2970	393	1178
Vtrasv Max	SLV3	2011	2659	1504	348	4975	3819	2664	1508	6135	4980	3824	2669	1004	3011
Vtrasv Min	SLV6	1664	1908	1561	1215	3132	2786	2439	2092	4010	3663	3317	2970	393	1178
Mtrasv Max	SLV1	1136	1506	1159	812	3762	3415	3068	2722	5671	5324	4977	4631	792	2375
Mtrasv Min	SLV6	1851	2499	1344	188	4684	3529	2373	1218	5714	4559	3403	2248	1004	3011
Vlong Max	SLV1	1136	1506	1159	812	3762	3415	3068	2722	5671	5324	4977	4631	792	2375
Vlong Min	SLV6	1664	1908	1561	1215	3132	2786	2439	2092	4010	3663	3317	2970	393	1178
Mlong Max	SLV1	1136	1506	1159	812	3762	3415	3068	2722	5671	5324	4977	4631	792	2375
Mlong Min	SLV4	1664	1908	1561	1215	3132	2786	2439	2092	4010	3663	3317	2970	393	1178
Mtorc Max	SLV5	2197	2441	2095	1748	4100	3754	3407	3060	5413	5066	4720	4373	393	1178
Mtorc Min	SLV4	1851	2499	1344	188	4684	3529	2373	1218	5714	4559	3403	2248	1004	3011

5282

3819

5159

3407

1004

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	140

Azi	oni					R	ipartizione	degli sforzi	normali sui	pali della pa	lificata				
Con	nbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Palo n.9	Palo n.10	Palo n.11	Palo n.12	Hmax, singolo palo	Mmax, singolo palo
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	[kNm]					
Nvert Max	RA1	2434	2337	2240	2143	3925	3828	3731	3634	5416	5319	5222	5125	172	515
Nvert Min	RA12	2562	2646	2731	2815	3153	3238	3322	3407	3745	3829	3914	3998	120	361
Vtrasv Max	RA3	2453	2352	2251	2150	3897	3796	3695	3594	5341	5240	5139	5038	172	517
Vtrasv Min	RA12	2562	2646	2731	2815	3153	3238	3322	3407	3745	3829	3914	3998	120	361
Mtrasv Max	RA1	2562	2646	2731	2815	3153	3238	3322	3407	3745	3829	3914	3998	120	361
Mtrasv Min	RA12	2828	2668	2509	2349	3818	3659	3499	3340	4809	4649	4490	4330	113	340
Vlong Max	RA11	2453	2352	2251	2150	3897	3796	3695	3594	5341	5240	5139	5038	172	517
Vlong Min	RA8	2674	2577	2480	2383	3925	3828	3731	3634	5175	5078	4981	4884	110	331
Mong Max	RA12	2434	2337	2240	2143	3925	3828	3731	3634	5416	5319	5222	5125	172	515
Mong Min	RA6	2562	2646	2731	2815	3153	3238	3322	3407	3745	3829	3914	3998	120	361
Mtorc Max	RA12	2562	2646	2731	2815	3153	3238	3322	3407	3745	3829	3914	3998	120	361
Mtorc Min	RA3	2453	2352	2251	2150	3897	3796	3695	3594	5341	5240	5139	5038	172	517
Nvert Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Nvert Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
Vtrasv Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Vtrasv Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
Mtrasv Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Mtrasv Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
Vlong Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Vlong Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
Mong Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Mong Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
Mtorc Max	QP1	2322	2322	2322	2322	3096	3096	3096	3096	3870	3870	3870	3870	62	185
Mtorc Min	QP12	2483	2483	2483	2483	3096	3096	3096	3096	3709	3709	3709	3709	19	57
	SLE RA		2668	2731			3828	3731					-	172	
	SLE QP		2483	2483			3096	3096						62	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	141

11.6.1 Verifiche a flessione (SLU, SLV, SLE)

Per valutare lo stato di sollecitazione del plinto di fondazione, si considera uno schema di trave a mensola incastrata con luce libera L che va dal filo esterno dell'elevazione spalla fino al bordo libero della fondazione, applicato alla coppia dei pali più sollecitati all'interno della fondazione, con larghezza di collaborazione B determinata dall'interasse tra i pali. La mensola è sollecitata da due azioni verticali N_{Ed1} , N_{Ed2} e da una massima orizzontale H_{Ed} applicate ad una distanza x_1 , x_2 dall'incastro, e stabilizzate dall'azione distribuita del peso proprio strutturale PP e del peso del terreno PT di rinterro del plinto (valutati a favore di sicurezza con coefficiente 1.35 e 1.50).

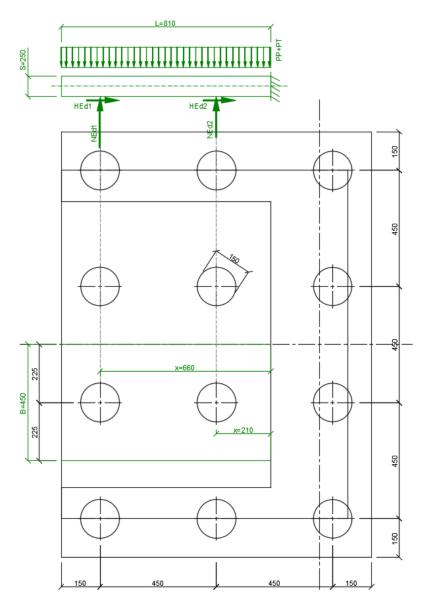
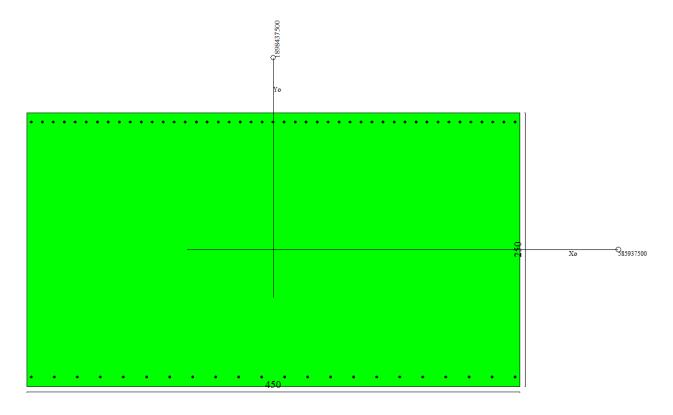


Figura 38 – Schema delle verifiche a flessione del plinto per il palo più caricato



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	142

NOME: F	PALO 2-6,	3-7	CAI	COLO MOI	MENTI PLIN	ITO
HT (m)	B (m)	S (m)	PP (kN/m)	PT (kN/m)	L (m)	
8,30	4,50	2,50	281,3	747,0	8,10	
	x (m)		SLU	SLV	SLE RA	SLE QP
Palo 2	6,60	N _{Ed1} (kN)	3667	2659	2668	2483
Palo 6	2,10	N _{Ed2} (kN)	5282	3819	3828	3096
	H _{Ed1}	=H _{Ed2} (kN)	250	1004	172	62
		M _{Ed} (kNm)	-13607	-6907	-7869	-10765
	x (m)		SLU	SLV	SLE RA	SLE QP
Palo 3	6,60 N _{Ed1} (kN)		3794	2095	2731	2483
Palo 7	2,10	N_{Ed2} (kN)	5159	3407	3731	3096
	$H_{Ed1}=H_{Ed2}$ (kN)		250	1004	172	62
	M _{Ed} (kNm)		-13027	-11495	-7657	-10765

Dati

Nome sezione: SPALLA S1

Tipo sezione Rettangolare Base 450,0 [cm] Altezza 250,0 [cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	143

Caratteristiche geometriche

Area sezione Inerzia in direzione X Inerzia in direzione Y Inerzia in direzione XY Ascissa baricentro sezione

Ordinata baricentro sezione

1898437500,0 [cm^4] 585937500,0 [cm^4] 0,0 [cm^4] X_G = 225,00 [cm]

 $X_G = 225,00$ [cm] $Y_G = 125,00$ [cm]

112500,00 [cmq]

Elenco ferri

Simbologia adottata

Posizione riferita all'origine N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]
ω Area del ferro espresso in [cmq]

N°	X	Y	d	ω
1	4,30	8,60	26	5,31
2	25,32	8,60	26	5,31
3	46,34	8,60	26	5,31
4	67,36	8,60	26	5,31
5	88,38	8,60	26	5,31
6	109,40	8,60	26	5,31
7	130,41	8,60	26	5,31
8	151,43	8,60	26	5,31
9	172,45	8,60	26	5,31
10	193,47	8,60	26	5,31
11	214,49	8,60	26	5,31
12	235,51	8,60	26	5,31
13	256,53	8,60	26	5,31
14	277,55	8,60	26	5,31
15	298,57	8,60	26	5,31
16	319,59	8,60	26	5,31
17	340,60	8,60	26	5,31
18	361,62	8,60	26	5,31
19	382,64	8,60	26	5,31
20	403,66	8,60	26	5,31
21	424,68	8,60	26	5,31
22	445,70	8,60	26	5,31
23	445,70	241,40	26	5,31
24	435,67	241,40	26	5,31
25	425,64	241,40	26	5,31
26	415,60	241,40	26	5,31
27	405,57	241,40	26	5,31
28	395,54	241,40	26	5,31
29	385,51	241,40	26	5,31
30	375,48	241,40	26	5,31
31	365,45	241,40	26	5,31
32	355,41	241,40	26	5,31
33	345,38	241,40	26	5,31
34	335,35	241,40	26	5,31
35	325,32	241,40	26	5,31
36	315,29	241,40	26	5,31
37	305,25	241,40	26	5,31
38	295,22	241,40	26	5,31
39	285,19	241,40	26	5,31
40	275,16	241,40	26	5,31

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	144

41	265,13	241,40	26	5,31
42	255,10	241,40	26	5,31
43	245,06	241,40	26	5,31
44	235,03	241,40	26	5,31
45	225,00	241,40	26	5,31
46	214,97	241,40	26	5,31
47	204,94	241,40	26	5,31
48	194,90	241,40	26	5,31
49	184,87	241,40	26	5,31
50	174,84	241,40	26	5,31
51	164,81	241,40	26	5,31
52	154,78	241,40	26	5,31
53	144,75	241,40	26	5,31
54	134,71	241,40	26	5,31
55	124,68	241,40	26	5,31
56	114,65	241,40	26	5,31
57	104,62	241,40	26	5,31
58	94,59	241,40	26	5,31
59	84,55	241,40	26	5,31
60	74,52	241,40	26	5,31
61	64,49	241,40	26	5,31
62	54,46	241,40	26	5,31
63	44,43	241,40	26	5,31
64	34,40	241,40	26	5,31
65	24,36	241,40	26	5,31
66	14,33	241,40	26	5,31
67	4,30	241,40	26	5,31

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 30,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,000 [MPa]
Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ VD & & \text{verifica di dominio} \end{array}$

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M _X	Mt	T_Y	T_x	VD	VT
1	0,0000	-13606,7500	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	-13026,8500	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	-6907,4400	0,0000	0,0000	0,0000	0,0000	SI	NO
4	0,0000	-11495,0400	0,0000	0,0000	0,0000	0,0000	SI	NO
5	0,0000	-7869,1400	0,0000	0,0000	0,0000	0,0000	NO	SLER

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	145

6	0,0000	-7657,0400	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	0,0000	-10764,8400	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	0,0000	-10764,8400	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

 α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
5	51,80	0,00	(450,00; 51,80)	(0,00; 51,80)
6	51,80	0,00	(450,00; 51,80)	(0,00; 51,80)
7	51,80	0,00	(450,00; 51,80)	(0,00; 51,80)
8	51,80	0,00	(450,00; 51,80)	(0,00; 51,80)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{c\text{-min}}$	$ au_{ extsf{c}}$	$\sigma_{f\text{-max}}$	$\sigma_{\text{f-min}}$
5	2,665	0,000	0,000	33,341	-146,321
6	2,593	0,000	0,000	32,442	-142,377
7	3,646	0,000	0,000	45,610	-200,164
8	3,646	0,000	0.000	45,610	-200,164

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{ll} N^{\circ} & \quad \text{numero d'ordine della combinazione} \\ N_{u} & \quad \text{Sforzo normale ultimo, espresso in [kN]} \end{array}$

 $\begin{array}{ll} M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione nº 1

	N_u	M_{Xu}	$\mathbf{M}_{\mathbf{Yu}}$	FS
	0,0000	0,0000	<u>-21741,9102</u>	1,60
Combinazione n° 2				
	$N_{\rm u}$	M _{Xu}	M_{Yu}	FS
	0,0000	0,0000	<u>-21741,9102</u>	1,67
Combinazione n° 3				
	N_u	\mathbf{M}_{Xu}	M_{Yu}	FS
	0,0000	0,0000	<u>-21741,9102</u>	3,15

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	146

Combinazione nº 4

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

M_X Momento di prima fessurazione in direzione X, espresso in [kNm]
M_Y Momento di prima fessurazione in direzione Y, espresso in [kNm]

My Momento di prima fessurazione in direzione Y, espresso in [kNm]

 $\begin{array}{lll} \sigma_{l} & & & & & & & & & \\ Tensione \ nell'acciaio, \ espressa \ in \ [MPa] \\ \sigma_{c} & & & & & & & \\ Tensione \ nel \ calcestruzzo, \ espressa \ in \ [MPa] \\ A_{eff} & & & & & & \\ Area \ efficace \ a \ trazione, \ espressa \ in \ [cmq] \\ \varepsilon & & & & & & \\ Deformazione \ media \ acciaio \ teso, \ espresso \ in \ [mm] \\ \end{array}$

Ampiezza delle fessure, espressa in [mm]

N° S_{rm} M_{X} M_{Y} \mathbf{A}_{eff} σ_c σ_{f} 5 0,0000 -9653,0198 -179,491 -12,509 12645,00 0,0000 0,0000 6 0,0000 -9653,0198 -179,491 -12,509 12645,00 0,0000 0 0,0000 0,0000 0,0581 0,2231 7 -9653,0198 -179,491 -12,509 12645,00 226 8 0,0000 -9653,0198 -179,491 -12,509 12645,00 0,0581 226 0,2231

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 2 - SPALLA S1

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	3,646	9,960	-13,950	2,558	-200,164	45,610	450,000	7
SLER	2.665	13.695	-10.197	2.558	-146.321	33.341	337.500	5

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione n° 2 - SPALLA S1

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-179,491	-12,509	1240,071	0,0581	225,845	0,223	0,300	7
SLER	-179,491	-12,509	1240,071	0,0000	0,000	0,000	0,300	5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	147

11.6.2 Verifiche a taglio-punzonamento (SLU, SLV)

La verifica a taglio-punzonamento viene condotta, in accordo con i paragrafi descrittivi iniziali, rispetto al palo di bordo più caricato (quello interno è più carico ma il cono di rottura è più grande) con la massima reazione verticale di V_{Ed} = 5282 kN, vedi schemi di calcolo seguenti.

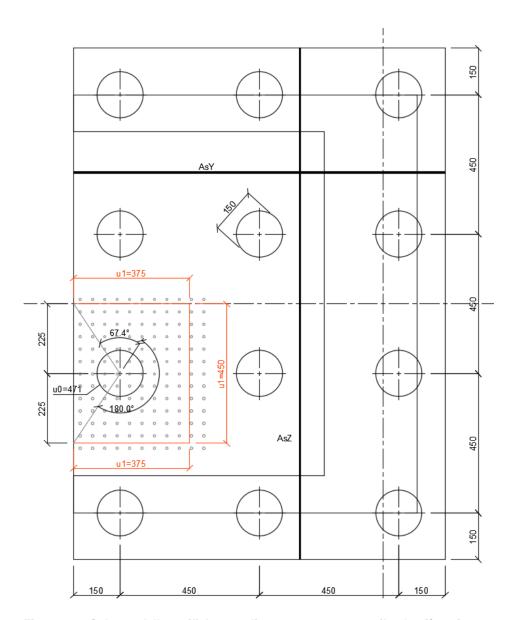


Figura 39 – Schema delle verifiche a taglio-punzonamento per il palo più caricato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	148

NOME: \$	SPALLA	S1			C	CALCOLO	TAGLIO	-PUNZON	IAMENTO	- UNI EI	NV 1992	-1-1: 2005		Rev. 1
OATI SEZIONE E	ARMA	TURE					,	AZIONE C	CALCOLO		CALCE	STRUZZO		
	d (m)	A_c (m^2)	A_s (cm ²)	ρ _ι (%)	N _{Ed} (kN)	σ _{cp} (MPa)		V _{ed} (kN)	β		f _{ck} (MPa)	f _{cd} (MPa)	Yc	
direzione Y direzione Z	2,41 2,39	2,41 2,39	53,07 53,07	0,22% 0,22%	0,0	0,00 0,00	_	5282,0	1,40	-	24,90	14,11	1,50	
					,	VERIFICA	AREA C	ARICATA	(§6.4.5)					
Verifiche a taglio perimetro u1 pos	•		•			c (m)	u ₀ (m)	V		v _{Ed} (MPa)	v _{Rd,max} ' (MPa)	V _{Ed} /V _{Rd,max}		
					_	1,50	4,71	0,54	_	0,65	3,81	17,2%	VERIFICA	OK
'ERIFICA SENZ	A ARMA	_	TRASVE	RSALI (§	6.4.4)									
Angolo s di veri	settore fica (°)	a (m)	k ₁	k	d (m)	ρ _ι (%)	v _{min} (MPa)	σ _{cp} (MPa)		v _{Ed} (MPa)	v _{Rd,c} (MPa)	V _{Ed} /V _{Rd,c}		
	247	2,03	0,10	1,29	2,40	0,22%	0,26	0,00		0,26	0,65	39,8%	VERIFICA	OK
	> 0,3 d	erifica ent		ede armatura non è richiesi		ra a taglio		F (*) Staffe		oilastro a B (u _{out} co I da bordo tale barre s	0,85d on v _{Ed} < v o pilastro su una fila	√Rd,c) <u>L</u> di passo radi	u ₁ (m) 12,00 Jout,ef (m) 4,77 ale s, estesa a laile s,=1,5d es	

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

| RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA | LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	149

11.7 VERIFICHE MURO PARAGHIAIA

Nel seguente paragrafo vengono riportate le sollecitazioni a quota estradosso elevazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.7.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 16/10 e nel lato compresso di Φ 14/20 come rappresentato nella figura seguente per un totale di 15 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

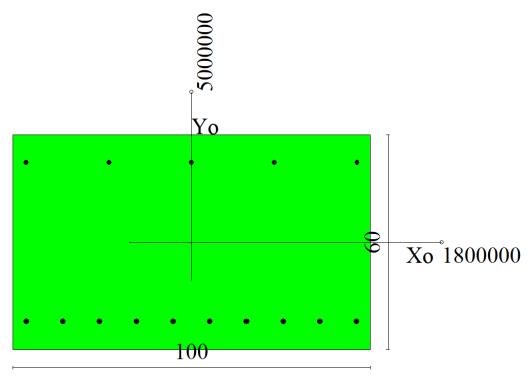


Figura 40 – Sezione trasversale muro paraghiaia e relativa armatura

Dati

Nome sezione: SEZIONE MURO PARAGHIAIA SP1

Tipo sezione Rettangolare
Base 100,0 [cm]
Altezza 60,0 [cm]

Caratteristiche geometriche

Area sezione 6000,00 [cmq] Inerzia in direzione X 5000000,0 [cm^4] Inerzia in direzione Y 1800000,0 [cm^4] Inerzia in direzione XY 0,0 [cm^4] Ascissa baricentro sezione $X_G = 50,00$ [cm] Ordinata baricentro sezione $Y_G = 30,00$ [cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	150

Elenco ferri

ω

Simbologia adottata

Posizione riferita all'origine

numero d'ordine

Ascissa posizione ferro espresso in [cm] Ordinata posizione ferro espresso in [cm] d Diametro ferro espresso in [mm] Area del ferro espresso in [cmq]

N° X d ω 1 3,80 7,40 16 2,01 2,01 2 14,07 7,40 16 3 24,33 7,40 16 2,01 4 7,40 16 2,01 34,60 5 44,87 7,40 16 2,01 2,01 6 55,13 7.40 16 7 65,40 7.40 16 2.01 8 2,01 75,67 7,40 16 9 85,93 7,40 16 2,01 10 96,20 7,40 16 2,01 52,90 11 96,30 14 1,54 12 73,15 52,90 14 1,54 13 50,00 52,90 14 1,54 14 26,85 52,90 14 1,54 15 52,90 1,54

Materiale impiegato: Calcestruzzo armato

3,70

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa] Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

14

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

450,000 [MPa] Tensione ammissibile acciaio Tensione snervamento acciaio 450,000 [MPa] Modulo elastico E 210000,000 [MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

Ν° numero d'ordine della combinazione sforzo normale espresso in[kN] М momento lungo Y espresso in [kNm] $\,M_X\,$ momento lungo X espresso in [kNm] M_t momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] T_Y taglio lungo X espresso in [kN]

verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M_{X}	$M_{\rm t}$	T _Y	T _X	VD	VT
1	72,9000	239,1900	0,0000	0,0000	0,0000	132,8800	SI	NO
2	54,0000	202,8800	0,0000	0,0000	0,0000	112,7100	SI	NO
3	72,9000	239,1900	0,0000	0,0000	0,0000	132,8800	SI	NO
4	54,0000	36,3100	0,0000	0,0000	0,0000	20,1700	SI	NO
5	61.3900	35.9300	0.0000	0.0000	0.0000	19.9600	SI	NO

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	151

•	40.0400	25 0200	0.0000	0.0000	0.0000	40.0000	CI	NO
6	46,6100	35,9300	0,0000	0,0000	0,0000	19,9600	SI	NO
7	56,2200	63,2800	0,0000	0,0000	0,0000	35,1600	SI	NO
8	46,6100	35,9300	0,0000	0,0000	0,0000	19,9600	SI	NO
9	54,0000	164,1200	0,0000	0,0000	0,0000	91,1800	NO	SLER
10	54,0000	24,2000	0,0000	0,0000	0,0000	13,4500	NO	SLER
11	54,0000	164,1200	0,0000	0,0000	0,0000	91,1800	NO	SLER
12	54,0000	24,2000	0,0000	0,0000	0,0000	13,4500	NO	SLER
13	54,0000	24,2000	0,0000	0,0000	0,0000	13,4500	NO	SLEQP
14	54,0000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
15	54,0000	24,2000	0,0000	0,0000	0,0000	13,4500	NO	SLEQP
16	54,0000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
9	15,55	0,00	(0,00; 44,45)	(100,00; 44,45)
10	22,60	0,00	(0,00; 37,40)	(100,00; 37,40)
11	15,55	0,00	(0,00; 44,45)	(100,00; 44,45)
12	22,60	0,00	(0,00; 37,40)	(100,00; 37,40)
13	22,60	0,00	(0,00; 37,40)	(100,00; 37,40)
14	512,87	0,00	(0,00; -452,87)	(100,00; -452,87)
15	22,60	0,00	(0,00; 37,40)	(100,00; 37,40)
16	512,87	0,00	(0,00; -452,87)	(100,00; -452,87)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$

 au_c Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
9	4,439	0,000	0,000	36,183	-158,651
10	0,668	0,000	0,000	6,868	-13,293
11	4,439	0,000	0,000	36,183	-158,651
12	0,668	0,000	0,000	6,868	-13,293
13	0,668	0,000	0,000	6,868	-13,293
14	0,089	0,000	0,000	1,324	1,205
15	0,668	0,000	0,000	6,868	-13,293
16	0,089	0,000	0,000	1,324	1,205

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	152

Combinazione n° 1			
N _u	M _{Xu}	M _{Yu} 425,7882	FS
129,7712	0,000		1,78
<u>10827,0264</u> 72,9000	0,000	239,1900	148,52
72,9000	0,0000	<u>411,5913</u>	1,72
Combinazione n° 2			
N _u	M _{Xu}	\mathbf{M}_{Yu}	FS
112,1638	0,000	<u>421,4037</u>	2,08
10997,5415	0,000	202,8800	203,66
54,0000	0,000	<u>406,8511</u>	2,01
Combinazione n° 3			
$N_{\rm u}$	M _{Xu}	M_{Yu}	FS
<u>129,7712</u>	0,000	<u>425,7882</u>	1,78
<u>10827,0264</u>	0,000	239,1900	148,52
72,9000	0,0000	<u>411,5913</u>	1,72
Combinazione n° 4			
N _u	M _{Xu}	\mathbf{M}_{Yu}	FS
903,5932	0,0000	607,5827	16,73
<u>355,0352</u> 11757,0089	0,0000	36,3100	217,72
54,000	0,0000	<u>406,8511</u>	11,20
3 1,0000	0,0000	<u></u>	,_0
Combinazione n° 5			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>1117,3341</u>	0,000	<u>653,9471</u>	18,20
<u>11758,6873</u>	0,000	35,9300	191,54
61,3900	0,0000	<u>408,7059</u>	11,38
Combinazione n° 6			
N _u	M _{Xu}	$\mathbf{M}_{\mathbf{Yu}}$	FS
741,0055	0,000	571,2150	15,90
<u>11758,6890</u>	0,000	35,9300	252,28
46,6100	0,0000	404,9947	11,27
10,0100	0,0000	101,0017	,
Combinazione nº 7			
N_{u}	M_{χ_u}	M_{Yu}	FS
<u>446,8311</u>	0,0000	<u>502,9433</u>	7,95
<u>11636,9803</u>	0,0000	63,2800	206,99
56,2200	0,0000	407,4085	6,44
Combinazione n° 8			
N _u	M _{Xu}	\mathbf{M}_{Yu}	FS
741,0055	0,0000	571,2150	15,90
11758,6890	0,0000	35,9300	252,28
46,6100	0,0000	404,9947	11,27

Risultati fessurazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	153

M_X Momento di prima fessurazione in direzione X, espresso in [kNm]
M_Y Momento di prima fessurazione in direzione Y, espresso in [kNm]

My Momento di prima fessurazione in direzione Y, espresso in [kNm

 $\begin{array}{ll} \sigma_{I} & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{c} & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & \text{Deformazione media acciaio teso, espressa in [cmq]} \\ \end{array}$

S_{rm} Distanza media tra le fessure, espresso in [mm] w Ampiezza delle fessure, espressa in [mm]

N°	Mx	M_Y	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
9	0,0000	155,5293	-149,677	-11,974	1940,00	0,0419	212	0,1512
10	0,0000	155,5228	-149,670	-11,974	1940,00	0,0000	0	0,0000
11	0,0000	155,5293	-149,677	-11,974	1940,00	0,0419	212	0,1512
12	0,0000	155,5228	-149,670	-11,974	1940,00	0,0000	0	0,0000
13	0,0000	155,5228	-149,670	-11,974	1940,00	0,0000	0	0,0000
14	0,0000	0,0000	1,205	0,079	0,00	0,0000	0	0,0000
15	0,0000	155,5228	-149,670	-11,974	1940,00	0,0000	0	0,0000
16	0,0000	0,0000	1,205	0,079	0,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sct, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione nº 1 - SEZIONE MURO PARAGHIAIA SP1

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,668	14,940	-1,105	3,099	-13,293	6,868	450,000	13
SLER	4,439	18,260	-12,689	3,099	-158,651	36,183	337,500	9

Inviluppo verifiche fessurazione

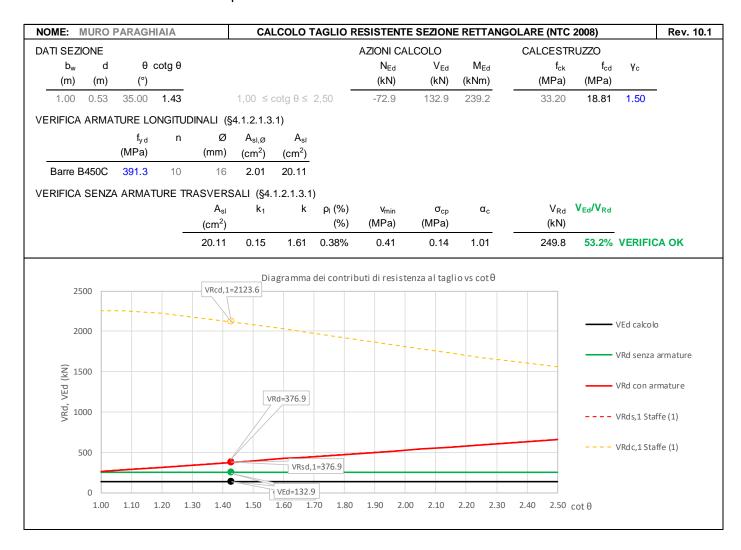
Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]
Comb. Combinazione critica

Sezione nº 1 - SEZIONE MURO PARAGHIAIA SP1

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-149,670	-11,974	190,252	0,0000	0,000	0,000	0,200	13
SLER	-149,677	-11,974	190,252	0.0419	212,123	0,151	0,200	9


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMN	MESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI	0B	02	E	ZZ	CL	VI	03	04	001	В	154

11.7.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato muro paraghiaia (estradosso elevazione) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	155

12. ANALISI CARICHI MODELLO TRASVERSALE SPALLA

12.1 AZIONI PERMANENTI STRUTTURALI (G1) E NON STRUTTURALI (G2)

Si riporta a seguire l'analisi dei carichi agenti sul solettone superiore in termini di pesi propri strutturali e non strutturali e carichi accidentali.

Si considera uno spessore constante sia per il solettone che per i muri laterali pari a 1.20m

 $g_{1,s} = (1,20 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 30,00 \text{ kN/m}$ Peso solettone $g_{1,ml}$ = (1,20 m * 1.00 m) * 25 kN/m³ = 30,00 kN/m Peso muro laterale $g_{2,c} = (0.21 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 5,25 \text{ kN/m}$ Cordolo $g_{2,m} = (0.05 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 1,25 \text{ kN/m}$ Massetto $g_{2,b} = (0.80 \text{ m} * 1.00 \text{ m}) * 20 \text{ kN/m}^3 = 16,00 \text{ kN/m}$ **Ballast** $g_{2,v} = (0.26 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 6,50 \text{ kN/m}$ Velette $g_{2,pb+ffpp} = (0.50 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 12,50 \text{ kN/m}$ Muretti paraballast + FFPP $q_{2,par} = 1.50 \text{ kN/m}$ Parapetto $g_{2,barr} = (5.00 \text{ m} * 1.00 \text{ m}) * 4 \text{ kN/m}^2 = 20,00 \text{ kN/m}$ Barriera antirumore

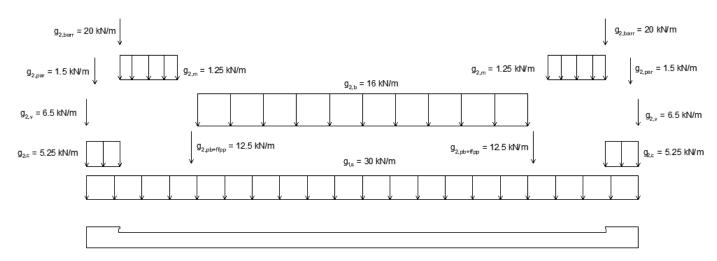


Figura 41 – Schema carichi permanenti.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	156

12.2 AZIONI VARIABILI VERTICALI DA TRAFFICO FERROVIARIO

Le azioni verticali dovute al passaggio dei convogli sull'impalcato sono da definirsi secondo quanto riportato al par $\S7.5.1$ della presente relazione. Tuttavia, nell'ambito dell'analisi trasversale dei carichi, il valore del coefficiente dinamico ϕ_3 da adottarsi nell'amplificazione dei carichi da treno differirà da quello precedentemente calcolato, dovendo in questo caso considerarsi una lunghezza L_{ϕ} definita in Tab. 2.5.1.4.2.5.3-1 per il caso 4.1 (solette superiori di impalcati a sezione scatolare nella direzione trasversale alle travi principali), i.e. 3 volte la luce. Si noti che, per questo caso, si assume che la luce del solettone sia pari alla distanza tra i muri laterali, pari cioè a L= 12.3 m. Fermo restando queste considerazioni, si ottiene: $L_{\phi} = 36.9$ m

$$\phi_3 = 1.10 (\le 2.00)$$

$$\phi_3 = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73 = 1.10$$

12.2.1 Ripartizione trasversale dei carichi

Al fine della valutazione degli effetti locali dei carichi verticali ferroviari sul solettone è necessario operare una distribuzione degli stessi in direzione trasversale, eseguendo una diffusione del carico, a partire dalla larghezza della traversina, ¼ attraverso la massicciata ed 1/1 fino al piano medio di soletta, per una lunghezza pari a:

$$b = (0.80-0.26)/4 * 2 + (1.20/2) * 2 + 2.40 = 3.87 m$$

laddove si sono considerate le seguenti caratteristiche geometriche:

	[m]
Altezza ballast	0.80
Altezza traversina	0.26
Larghezza traversina	2.40
Altezza soletta	1.20

I carichi relativi al modello LM71 vengono distribuiti secondo lo schema di Fig. 5.2.5 al §5.2.2.3.1.4 delle NTC2008, dal momento che è stata considerata per essi una eccentricità rispetto all'asse del binario pari ad e = s/18 = 0.08 m.

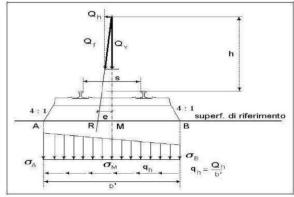


Fig. 5.2.5 Distribuzione trasversale in rettifilo delle azioni per mezzo delle traverse e del ballast. In figura, Ω_b rappresenta la forza centrifuga definita al successivo §5.2.2.3.1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	157

Prima di procedere alla ripartizione trasversale dei carichi ferroviari verticali, si è proceduto ad una distribuzione del carico assiale Qvk in direzione longitudinale, suddividendo tale valore per una lunghezza di influenza assunta pari ad 1.6 m, risultando pertanto in un carico uniformemente distribuito in direzione longitudinale pari a 156.25 kN/m per il treno di carico LM71.

In accordo con quanto riportato al par. §7.5.1 della presente relazione, si moltiplicano i valori dei carichi per il coefficiente di adattamento e per quello di incremento dinamico, ottenendo quindi:

TRENO LM71

q1 = 156.25 kN/m * 1.10 * 1.1 = 188.67 kN/m Valo

Valore amplificato della ripartizione longitudinale

del carico Qvk

q2 = 80 kN/m * 1.10 * 1.1 = 96.60 kN/m

Valore amplificato del carico longitudinale qvk

TRENO SW/2

q3 = 150 kN/m * 1.10 * 1.0 = 164.65 kN/m

Valore amplificato del carico longitudinale qvk

Ripartendo in direzione trasversale i carichi così ottenuti si ottengono per il treno di carico LM71, fermo restando il dover considerare l'eccentricità e = 0.08 m rispetto all'asse del binario e la distribuzione trapezoidale delle tensioni indicati nella Fig. 5.2.5 della NTC08, i seguenti valori:

CARICO q1

 $\sigma_A = 54.78 \text{ kN/m}^2$

 $\sigma_B = 42.73 \text{ kN/m}^2$

CARICO q2

 $\sigma_A = 28.05 \text{ kN/m}^2$

 $\sigma_B = 21.88 \text{ kN/m}^2$

L'eccentricità non è da considerarsi, invece, per il caso di treno di carico SW/2, per il quale quindi si effettua la ripartizione semplicemente dividendo il valore q3 per la lunghezza b = 3.87 m, risultando dunque in una distribuzione di tensioni sulla soletta pari a:

 σ = 164.64 kN/m / 3.87 m = 42.55 kN/m

Al fine delle verifiche da eseguirsi sulla soletta, non viene considerata l'azione del treno scarico, dal momento che la situazione più gravosa è determinata in concomitanza all'applicazione del treno LM71.

Di seguito si riportano le azioni associate al treno di carico LM71 inserite nel modello FEM, per ulteriori dettagli rispetto ai gruppi di carico considerati si rimanda al paragrafo §8.1.1 della presente relazione:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	158

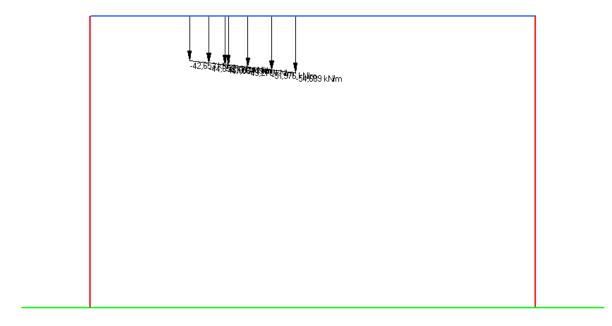


Figura 42 - Azione associate al caso 1 del treno di carico LM71.



Figura 43 - Azione associate al caso 2 del treno di carico LM71.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	159

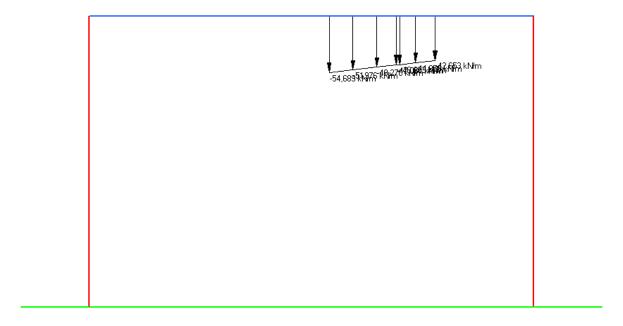


Figura 44 - Azione associate al caso 4 del treno di carico LM71.

12.3 CARICHI SUI MARCIAPIEDI

In accordo con quanto definito al §2.5.1.4.1.6 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende le prescrizioni dettate da NTC08 al §5.2.2.3.2, si assume che i marciapiedi non aperti al pubblico siano utilizzati solo dal personale autorizzato. Pertanto, per essi si assume un carico accidentale uniformemente ripartito del valore di 10 kN/m². Questo carico non deve essere considerato contemporaneo al traffico dei convogli ferroviari e deve essere applicato sopra ai marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli.

Per questo tipo di carico non deve applicarsi l'incremento dinamico. Di seguito si riportano le azioni associate al carico sui marciapiedi inserite nel modello FEM:

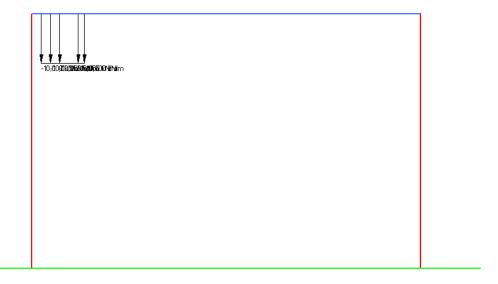


Figura 45 - Azione associate al carico sui marciapiedi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	160

12.4 CARICO ECCEZIONALE DOVUTO AL DERAGLIAMENTO

In accordo col §2.5.1.5 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende il contenuto del §5.2.2.9.2 delle NTC08, oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere si dovrà tenere conto della possibilità alternativa che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto:

Caso 1: si considerano due carichi verticali lineari q_{A1d}= 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Tali carichi saranno posizionati longitudinalmente su una lunghezza di 6,40 m. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12. Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

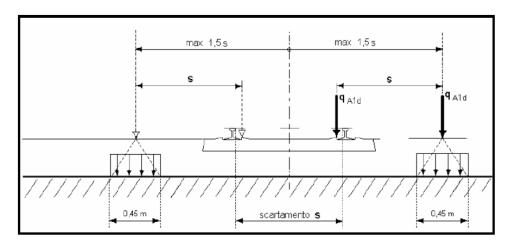


Figura 5.2.12 - Caso 1

Caso 2: si considera un unico carico lineare $q_{A2d} = 80 \text{kN/m} * 1.4$ esteso per 20,00 m e disposto con una eccentricità massima, lato esterno, di 1,50 s rispetto all'asse del binario (Fig. 5.2.13). Per questa condizione convenzionale di carico andrà verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta, ecc. Per impalcati metallici con armamento diretto, il caso 2 dovrà essere considerato solo per le verifiche globali.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	161

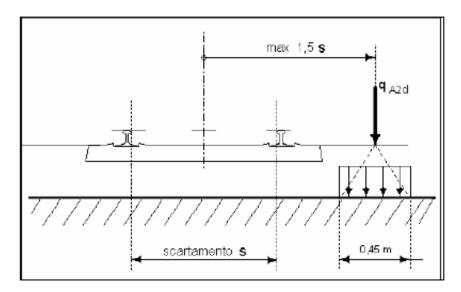


Figura 5.2.13 - Caso 2

Per la considerazione degli effetti locali sulla soletta, il carico per ognuno dei due casi è stato ripartito su una lunghezza di 0.45 m, ottenendo in questo modo:

CASO 1

 $\sigma_1 = 60 \text{ kN/m} / 0.45 \text{ m} = 133.33 \text{ kN/m}^2$

CASO 2

 $\sigma_1 = 80 \text{ kN/m} * 1.4 / 0.45 \text{ m} = 248.89 \text{ kN/m}^2$

Di seguito si riportano le azioni associate inserite nel modello FEM:

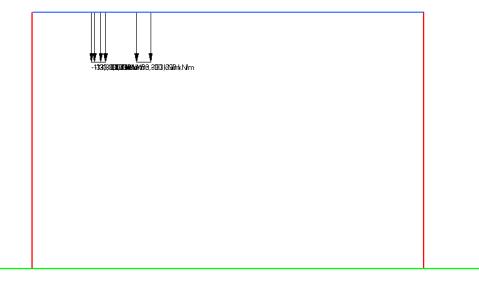


Figura 46 - Azione associata al caso eccezionale 1 dovuto al deragliamento.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	162

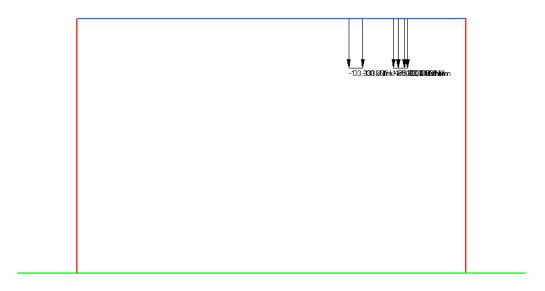


Figura 47 - Azione associata al caso eccezionale 2 dovuto al deragliamento.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	163

12.5 CARICO DA VENTO SULLA BARRIERA ANTIRUMORE

Per la valutazione dei carichi da vento sulle barriere antirumore e degli effetti che questo tipo di sollecitazione ha sulla soletta, si è ritenuto di modellare tale azione sulla base delle metodologie valide per i muri e i parapetti piani, coerentemente con quanto indicato al $\S 3.3$ delle NTC2008 e alle indicazioni del $\S G.5$ delle CNR-DT 207/2008. Si è assunto grado di schermatura ϕ =1 ed assenza di schermatura, come riportato nella seguente tabella.

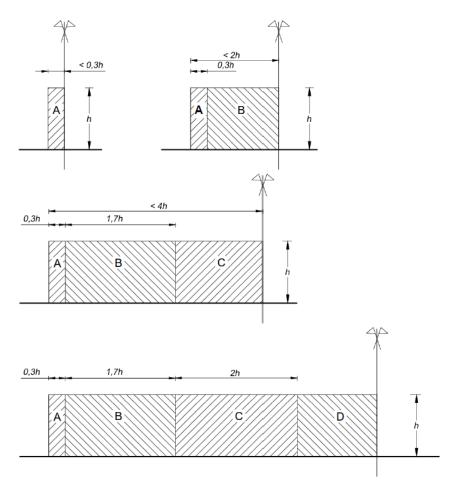
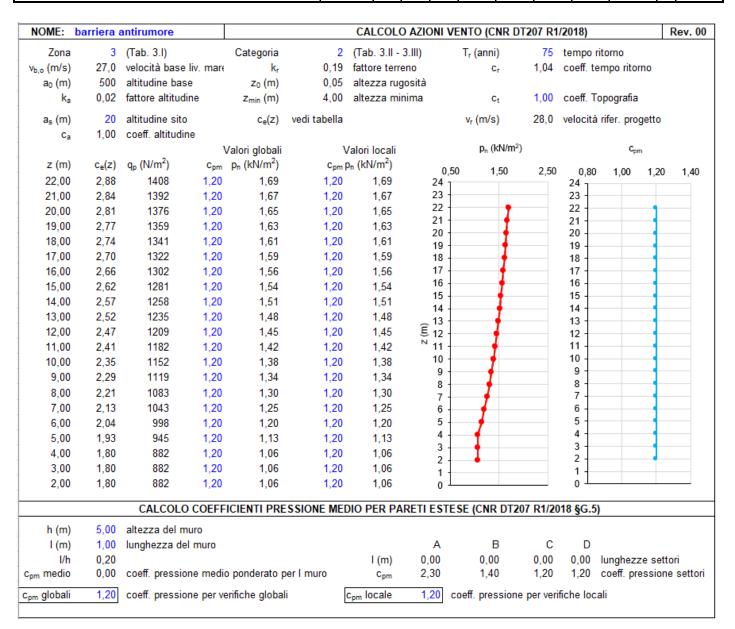


Figura G.21 – Suddivisione di muri e parapetti in aree di uguale pressione complessiva.

Tabella G.X - Coefficienti di pressione complessiva per muri e parapetti.

φ	Chiusura laterale	l/h	A	В	С	D
		<3	2,3	1,4	1,2	
1,0	no	5	2,9	1,8	1,4	1,2
1,0		>10	3,4	2,1	1,7	1,2
	si	tutti	2,1	1,8	1,4	
0,8	si/no	tutti		1	,2	

Figura 48 – Aree e coefficienti di pressione complessive media sull'elemento secondo CNR DT207 R1/2018



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	164

Assumendo mediamente $h_1 = 17$ m quota estradosso impalcato e $h_2 = 5$ m l'altezza della barriera antirumore, l'altezza rispetto al suolo del punto considerato, ovvero l'estremo superiore della barriera, è pari a z = 22 m. In corrispondenza ad essa si ottiene un valore di pressione cinetica di picco del vento:

 $q_p = 1.41 \text{ kN/m}^2$

e pressione complessiva risultante:

 $p_n = 1.41 \text{ kN/m}^2 * 1.2 = 1.69 \text{ kN/m}^2.$

Di seguito si riportano le azioni associate inserite nel modello FEM:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	165

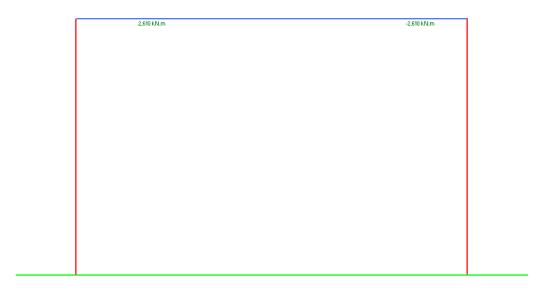
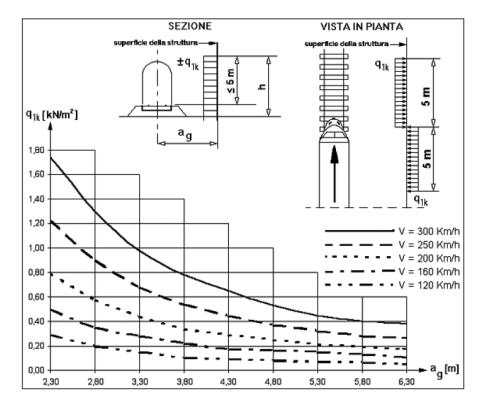


Figura 49 – Azione associata al momento dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

12.6 AZIONE AERODINAMICA DA TRAFFICO FERROVIARIO

In accordo con le prescrizioni del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riporta integralmente il contenuto del §5.2.2.6 delle NTC08, si tiene conto degli effetti, specificatamente onde di pressione e depressione, che il passaggio dei convogli ferroviari determinano sulle superfici poste in prossimità della linea ferroviaria, trattandosi nel caso in esame di barriere antirumore.

Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa ed alla coda del treno nei casi in cui, in ragione della velocità della linea, non si instaurino amplificazioni dinamiche significative per il comportamento degli elementi strutturali investiti dalle azioni aerodinamiche. Esse dovranno essere utilizzate per il progetto delle barriere e delle relative strutture di sostegno (cordoli, solette, fondazioni, ecc.). I carichi equivalenti sono considerati valori caratteristici delle azioni.


I valori caratteristici dell'azione ± q1k relativi a superfici verticali parallele al binario sono forniti in Fig. 5.2.8 del §5.2.2.7.1 delle NTC08 in funzione della distanza a_q dall'asse del binario più vicino.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	166

Figura 5.2.8 - Valori caratteristici delle azioni q_{1k} per superfici verticali parallele al binario

Nel caso in esame si ha, per V = 200 km/h:

 $a_q = 4.3 \text{ m}$

 $q_{1k} = 0.30 \text{ kN/m}^2$

Secondo quanto riportato in §5.2.3.3.2 delle NTC08, in ogni caso le azioni aerodinamiche devono essere cumulate all'azione del vento. L'azione risultante dovrà essere maggiore di un valore minimo, funzione della velocità della linea e comunque maggiore di 1,5 kN/m2 sia nella verifica agli SLE (combinazione caratteristica) sia nella verifica agli SLU.

Si verifica dunque che:

 $p_{tot} = p_n + q_{1k} = 1.69 \text{ kN/m}^2 + 0.30 \text{ kN/m}^2 = 1.99 \text{ kN/m}^2 > 1.5 \text{ kN/m}^2$ pertanto la prescrizione risulta essere soddisfatta.

Ai fini della verifica, si considera l'azione combinata del vento e dell'azione aerodinamica da traffico. Si calcola dunque una azione tagliante agente alla base della barriera antirumore pari a:

 $F = p_{tot} * 5m = 1.99 \text{ kN/m}^{2*} 5 \text{ m} = 9.95 \text{ kN/m}$

e un momento agente in corrispondenza della sezione di mezzeria della soletta pari a:

 $M_z = F * [5m + (0.52 m - 0.25 m/2)]/2 = 26.84 kNm$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	167

Di seguito si riportano le azioni associate inserite nel modello FEM:

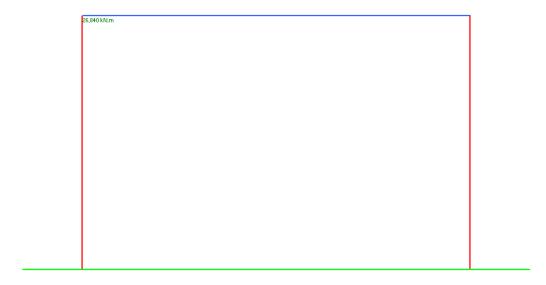


Figura 50 - Azione associata al momento dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

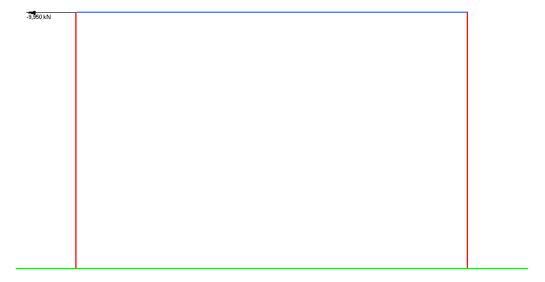


Figura 51 - Azione associata al taglio dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

12.7 VARIAZIONI TERMICHE (Q7)

La variazione termica è definita secondo quanto riportato nel § 2.5.1.4.4.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture" che riprende il § 5.2.2.5.2 delle NTC08.

La variazione termica uniforme volumetrica da considerare per l'impalcato risulta ±15°, ai fini della valutazione delle escursioni dei giunti e degli appoggi mobili viene incrementata del 50% per una variazione totale di calcolo di ±22.5 °C.

Di seguito si riportano le azioni inserite nel modello FEM:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	168

Figura 52 -Variazione temperatura uniforme.

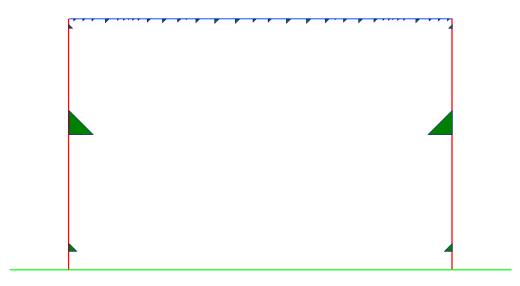


Figura 53 - Gradiente termico.

12.8 DISTORSIONI E DEFORMAZIONI IMPRESSE (P) (E)

12.8.1 Ritiro del calcestruzzo (ε₂)

Nome	Tipo	γ ε2	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
RITIRO (ponti ferroviari)	Ritiro, viscosità, cedimenti imposti	EQU 0.00 / 1.20 (A1) 0.00 / 1.20 (A2) 0.00 / 1.00	-	-	-

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	169

Dato che il ritiro dipende dal tempo di maturazione del calcestruzzo, dalla sua resistenza e dalle condizioni ambientali, gli effetti possono evidenziarsi sia in fase di costruzione sulla sezione mista composta da due materiali di diverso modulo elastico (ritiro primario) sia a lungo termine sulla statica globale della struttura (ritiro secondario).

Tab. 11.2.Va – Valori di ε_{c0}

		Deform	azione da ritiro	per essiccamento	(in ‰)	
f _{ck}			Umidità Re	lativa (in %)		
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

Tabella 52 - Valori del parametro ε_{c0} (‰)

Tab. 11.2.Vb - Valori di k,

h ₀ (mm)	$\mathbf{k_h}$
100	1,00
200	0,85
300	0,75
≥ 500	0,70

Tabella 53 - Valori del parametro kh

Nel caso in oggetto, dato che le sezioni strutturali sono interamente gettate in opera nella stessa fase, si tengono conto nel calcolo degli effetti secondari causati dalle differenze di ritiro tra la fondazione e la soletta, quando alla fine della costruzione si realizza la chiusura della sezione scatolare con il getto della soletta stessa.

Nell'ipotesi a favore di sicurezza di una tempistica di costruzione velocizzata, si analizza nel tempo l'andamento delle deformazioni da ritiro per i due elementi e si considera in progetto il valore a tempo infinito. Questa deformazione, inserita nel modello numerico della sezione scatolare come distorsione di temperatura equivalente, permette il calcolo della reazione iperstatica venuta a formarsi nel tempo.

 $\Delta T = \Delta \epsilon_{cs} / \alpha = 18.44^{\circ} C$

 $\Delta \epsilon_{cs} = 0.00184\%$ ritiro differenziale di progetto $\alpha = 0.00001 \, ^{\circ}\text{C}^{-1}$ coefficiente di dilatazione termica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	170

NOI	ME: F	RITIRO ORIZZON	TALE						CALCOL	O RITIRO	DIFFERE	NZIALE 1	TRA ELE	MENTI	IN C.A. (EN 1992-1	-1: 2005)					Rev
			FONDA	AZIONE								SOLETI		_								RITIRO
			f _{cm}	(MPa)	32.90		A _c (m ²)	2.50		t _s (gg)	28		f _{cm}	(MPa)			A _c (m ²)	1.20		t _s (gg)	28	DIFFEREN
				s'	0.25		u _r (m)	1.00 5000		k _h	0.700 1.2152			s'	0.25 4		u _r (m)	2.00 1200		k _h	0.700 1.2152	
				α_{ds1} α_{ds2}	0.12		h₀ (mm) RH (%)	60		β _{RH}	1.2132			α_{ds1} α_{ds2}	0.12		h ₀ (mm) RH (%)	60	t	β _{RH} getto (gg)	1.2152 55	
					istenza						Ritiro	-			istenza		,				Ritiro	Ritiro diff.
t i	t (gg)		β _{CC} (t)	$f_{\text{cm}}(t)$	f _{ck} (t) (MPa)	ϵ_{cd0}	$\beta_{\text{ds}}(t)$	$\epsilon_{\text{cd}}(t)$	$\beta_{\text{as}}(t)$	$\epsilon_{\text{ca}}(t)$	$\epsilon_{\text{cs}}(t)$	t (gg)	$\beta_{\text{CC}}(t)$	f _{cm} (t) (MPa)	f _{ck} (t) (MPa)	ϵ_{cd0}	$\beta_{ds}(t)$	$\epsilon_{\text{cd}}(t)$	$\beta_{\text{as}}(t)$	$\epsilon_{\text{ca}}(t)$	$\epsilon_{\text{cs}}(t)$	$\Delta\epsilon_{cs}(t-t_s)$
0.0	3 (Getto fondazione	0.598	(MPa) 19.68	11.68	0.054%	0.00000	0.0000%	0.29278	0.0001%	0.0001%	l		(IVIFA)	(IVIF a)						0.0000%	0.0000%
0.0	5		0.711	23.38	15.38	0.051%			0.36059	0.0005%											0.0000%	0.0000%
0.0	10		0.845	27.80	19.80	0.049%		0.0000%	0.46871	0.0011%											0.0000%	0.0000%
0.0	15 20		0.913 0.955	30.02 31.43	22.02 23.43	0.048%	0.00000	0.0000%	0.53911 0.59116	0.0016%	0.0016% 0.0020%										0.0000%	0.0000%
0.1	25		0.935	32.42	24.42	0.047%		0.0000%		0.0020%											0.0000%	0.0000%
0.1	28		1.000	32.90	24.90	0.046%		0.0000%		0.0024%	0.0024%										0.0000%	0.0000%
0.1	30 (Getto muri	1.000	32.90	24.90	0.046%	0.00014	0.0000%	0.66561	0.0025%	0.0025%										0.0000%	0.0000%
0.1	35		1.000	32.90	24.90	0.046%			0.69371	0.0026%											0.0000%	0.0000%
0.1	40		1.000	32.90	24.90	0.046%		0.0000%	0.71774	0.0027%	0.0027%										0.0000%	0.0000%
0.1 0.1	45 50		1.000	32.90 32.90	24.90 24.90	0.046% 0.046%	0.00120 0.00155	0.0000%	0.73858 0.75688	0.0028% 0.0028%	0.0028%										0.0000% 0.0000%	0.0000%
0.2		Setto soletta	1.000	32.90	24.90	0.046%		0.0001%	0.77310	0.0029%	0.0029%	3	0.598	24.65	16.65	0.051%	0.00000	0.0000%	0.29278	0.0005%		0.0005%
0.2	60		1.000	32.90	24.90	0.046%		0.0001%		0.0029%		8	0.804	33.14	25.14	0.046%			0.43203	0.0016%	0.0016%	0.0016%
).2	65		1.000	32.90	24.90	0.046%	0.00261		0.80060	0.0030%		13	0.890	36.65	28.65	0.044%		0.0000%	0.51379	0.0024%	0.0024%	0.0023%
0.2	70		1.000	32.90	24.90	0.046%			0.81238	0.0030%	0.0031%	18	0.940	38.73	30.73	0.043%	0.00000	0.0000%	0.57196	0.0030%	0.0030%	0.0028%
).2).2	75 80		1.000	32.90 32.90	24.90 24.90	0.046% 0.046%	0.00331	0.0001% 0.0001%	0.82308 0.83285	0.0031% 0.0031%	0.0032%	23 28	0.974 1.000	40.15 41.20	32.15 33.20	0.042% 0.042%		0.0000% 0.0000%	0.61679 0.65295	0.0034% 0.0038%	0.0034% 0.0038%	0.0032% 0.0035%
0.2	85		1.000	32.90	24.90	0.046%		0.0001%	0.83283	0.0031%	0.0032%	33	1.000	41.20	33.20	0.042%		0.0000%	0.68302	0.0038%	0.0038%	0.0035%
0.2	90		1.000	32.90	24.90	0.046%		0.0001%		0.0032%		38	1.000	41.20	33.20	0.042%		0.0002%	0.70855	0.0041%		0.0039%
0.3	95		1.000	32.90	24.90	0.046%	0.00472		0.85763	0.0032%	0.0033%	43	1.000	41.20	33.20	0.042%		0.0003%	0.73058	0.0042%	0.0045%	0.0041%
0.3	100		1.000	32.90	24.90	0.046%			0.86466	0.0032%	0.0034%	48	1.000	41.20	33.20	0.042%	0.01189	0.0003%	0.74984	0.0043%	0.0047%	0.0043%
).5	200		1.000	32.90	24.90	0.046%	0.01202		0.94089	0.0035%	0.0039%	148	1.000	41.20	33.20	0.042%		0.0020%	0.91224			0.0063%
.8	300 365		1.000	32.90 32.90	24.90 24.90	0.046%		0.0006%	0.96870 0.97809	0.0036% 0.0036%	0.0042%	248 313	1.000	41.20 41.20	33.20 33.20	0.042%	0.11685 0.14632	0.0034%	0.95713 0.97094	0.0056%	0.0090%	0.0077% 0.0084%
.0 .1	400		1.000	32.90	24.90	0.046% 0.046%		0.0007% 0.0008%		0.0036%		348	1.000	41.20	33.20	0.042% 0.042%		0.0043% 0.0047%	0.97603	0.0056% 0.0057%		0.0084%
1.4	500		1.000	32.90	24.90	0.046%		0.0010%	0.98858	0.0037%	0.0047%	448	1.000	41.20	33.20	0.042%	0.20165	0.0059%	0.98549	0.0057%	0.0116%	0.0098%
1.6	600		1.000	32.90	24.90	0.046%			0.99255	0.0037%	0.0049%	548	1.000	41.20	33.20	0.042%		0.0069%	0.99074	0.0057%	0.0127%	0.0107%
1.9	700		1.000	32.90	24.90	0.046%		0.0015%	0.99497	0.0037%	0.0052%	648	1.000	41.20	33.20	0.042%		0.0079%	0.99385	0.0058%	0.0137%	0.0114%
2.2 2.5	800 900		1.000	32.90 32.90	24.90 24.90	0.046%			0.99651	0.0037%	0.0054%	748 848	1.000	41.20 41.20	33.20	0.042%		0.0088%	0.99579	0.0058%	0.0146%	0.0121%
	1000		1.000	32.90	24.90	0.046% 0.046%		0.0019% 0.0021%		0.0037% 0.0037%		948	1.000	41.20	33.20 33.20	0.042% 0.042%		0.0096% 0.0104%	0.99704 0.99788	0.0058% 0.0058%	0.0154% 0.0162%	0.0128% 0.0133%
	2000		1.000	32.90	24.90	0.046%		0.0039%	0.99987	0.0037%	0.0077%	1948	1.000	41.20	33.20	0.042%	0.53590	0.0156%	0.99985	0.0058%	0.0214%	0.0167%
B.2	3000		1.000	32.90	24.90	0.046%			0.99998	0.0037%		2948	1.000	41.20	33.20	0.042%	0.63717	0.0185%	0.99998	0.0058%	0.0243%	0.0180%
	3650		1.000	32.90	24.90	0.046%			0.99999	0.0037%	0.0103%	3598	1.000	41.20	33.20	0.042%		0.0199%	0.99999	0.0058%	0.0257%	0.0183%
	4380		1.000	32.90	24.90	0.046%			1.00000	0.0037%		4328	1.000	41.20	33.20	0.042%		0.0210%	1.00000	0.0058%	0.0268%	0.0184%
	5110 5840		1.000	32.90 32.90	24.90 24.90	0.046% 0.046%		0.0085% 0.0094%	1.00000	0.0037% 0.0037%		5058 5788	1.000	41.20 41.20	33.20 33.20	0.042% 0.042%		0.0219% 0.0226%	1.00000	0.0058% 0.0058%		0.0184% 0.0182%
	6570		1.000	32.90	24.90	0.046%		0.0094%	1.00000	0.0037%		6518	1.000	41.20	33.20	0.042%		0.0232%	1.00000	0.0058%	0.0284%	0.0182%
	7300		1.000	32.90	24.90	0.046%	0.33959	0.0109%	1.00000	0.0037%	0.0146%	7248	1.000	41.20	33.20	0.042%	0.81281	0.0237%	1.00000	0.0058%	0.0295%	0.0178%
5.0	9125		1.000	32.90	24.90	0.046%		0.0126%	1.00000	0.0037%	0.0163%	9073	1.000	41.20	33.20	0.042%	0.84471	0.0246%	1.00000	0.0058%	0.0304%	0.0170%
		/ita utile ordinaria	1.000	32.90	24.90	0.046%		0.0181%	1.00000	0.0037%	0.0218%	18198	1.000	41.20	33.20	0.042%		0.0267%	1.00000	0.0058%	0.0325%	0.0136%
5.0 2 0.0 3	27375		1.000	32.90 32.90	24.90 24.90	0.046% 0.046%		0.0212% 0.0232%	1.00000	0.0037% 0.0037%	0.0249% 0.0269%	27323 36448	1.000	41.20 41.20	33.20 33.20	0.042% 0.042%		0.0274% 0.0278%	1.00000	0.0058% 0.0058%	0.0332% 0.0336%	0.0113%
		empo infinito	1.000	32.90	24.90	0.046%				0.0037%	0.0269%	72948	1.000	41.20	33.20	0.042%	0.93634	0.0278%	1.00000	0.0058%	0.0336%	0.0097%
						0.01070		0.020370		0.003770	0.030770					0.0 1270		0.020370		0.005070	0.00 1070	
	04%																					
	04%																					
	03%								D::													
	03%								Ritir	o max; 0.0	7184%				— Curv	a RITIRO F	ONDAZIO	NE				
£ 0.1	02%									- 6				_		a RITIRO S						
e ^{0.0}	02% 02% 01%		_											Ľ	Curv	a RITIRO [DIFFEREN	ZIALE				
		Get	to solet	tta																		
	01%							_														
0.0	00%																					
-0.	01%		o fonda:	zione																		
	0		1,000		2.0	000	:3 (000	4,0	11 (6.1	5 (000		6,000		7,000		8,000		9,000		10,000

Di seguito, si riportano le azioni inserite nel modello FEM:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	171

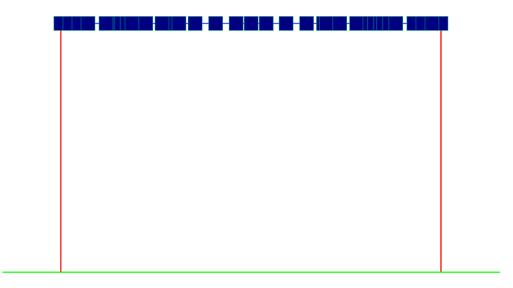


Figura 54 -Temperatura uniforme associata alla azione di ritiro.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	172

13. ANALISI TRASVERSALE SPALLA

Di seguito si riportano le analisi e le verifiche della struttura scatolare dietro alla spalla denominata S01. La struttura scatolare in c.a. è costituita da una camera di dimensioni interne 7.90m (larghezza) x 6,40m (altezza) aventi uno spessore strutturale per la parte in elevazione (traverso e piedritti) pari a 1.20m, e per la parte in fondazione pari a 2.50m.

13.1 DESCRIZIONE DEL MODELLO FEM

Per la determinazione delle sollecitazioni che interessano la struttura è stato realizzato un modello agli elementi finiti. La struttura è stata trattata come un portale costituenti dal solettone superiore e i muri laterali, vincolata alla base con il plinto di fondazione, il cui è stato modellato come una trave continua su più appoggi, per tutti gli elementi si considera una larghezza di 1m.

Si riporta di seguito una descrizione del modello FEM comprensivo di tutti gli elementi strutturali costituenti la struttura scatolare.

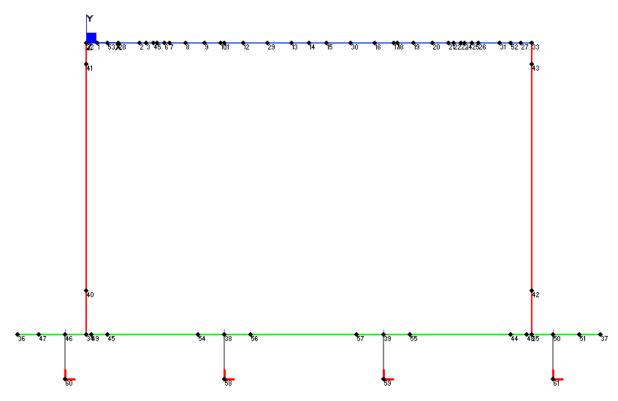


Figura 55 - Modello agli EF per la struttura scatolare - Numerazione nodi

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	173

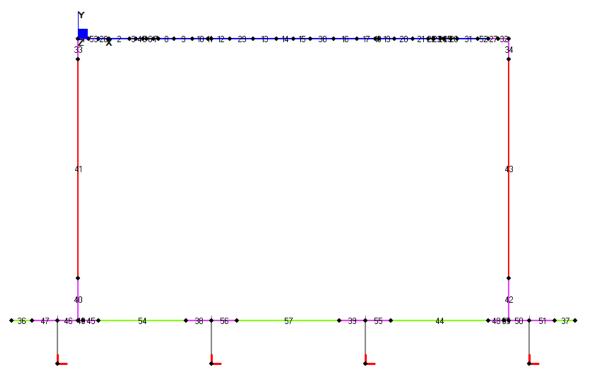


Figura 56 - Modello agli EF per la struttura scatolare - Numerazione elementi e indicazione zone nodali (viole)

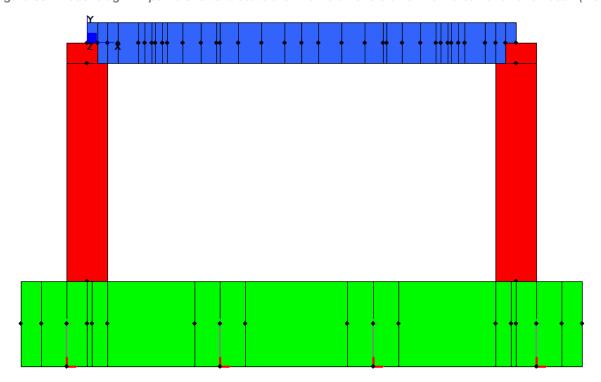


Figura 57 - Modello FEM

Nel modello sono state implementate le seguenti condizioni di vincolo:

- bracci rigidi tra l'estradosso (asse) del plinto di fondazione e intradosso (grigi);
- appoggi in corrispondenza dei pali di fondazione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	174

13.1.1 Risultati del modello FEM

Nel seguito si riportano i valori delle sollecitazioni sulla struttura associate agli inviluppi SLU, SLV, SLE rara e SLE quasi permanente.

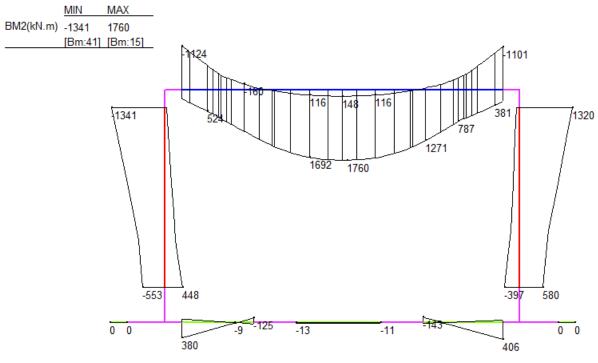


Figura 58 - ENV SLU - Momento flettente (kNm)

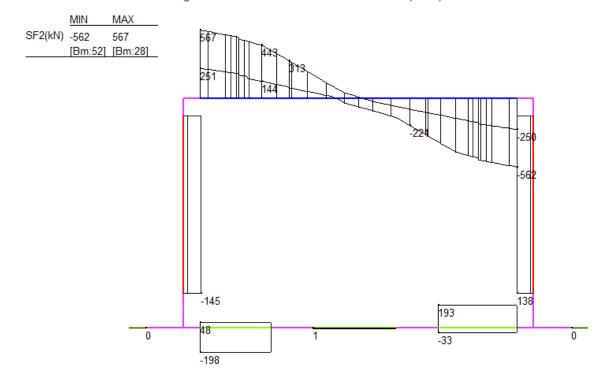


Figura 59 - ENV SLU - Taglio (kN)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	175

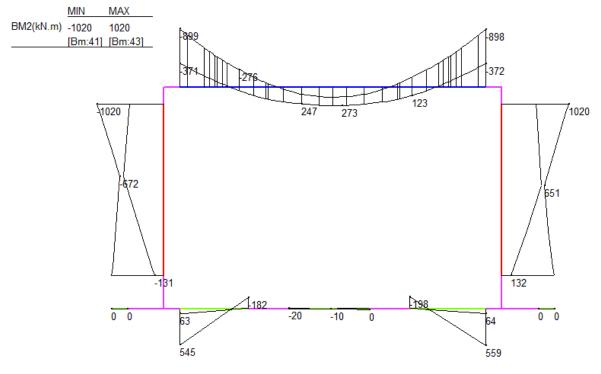


Figura 60 - ENV SLV - Momento flettente (kNm)

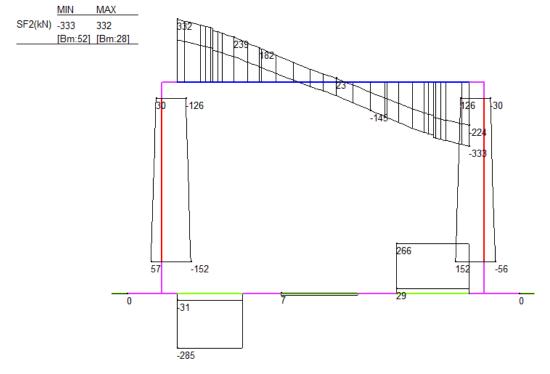


Figura 61 - ENV SLV - Taglio (kN)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	176

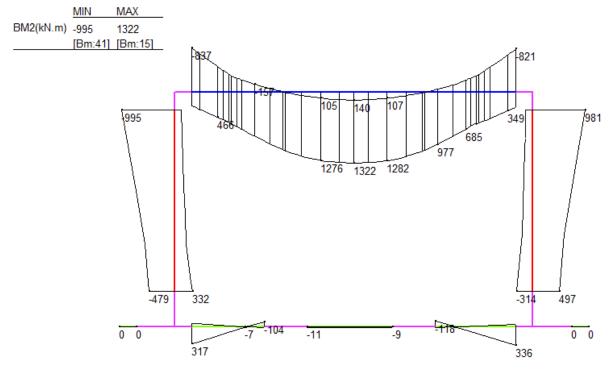


Figura 62 - ENV SLE RA - Momento flettente (kNm)

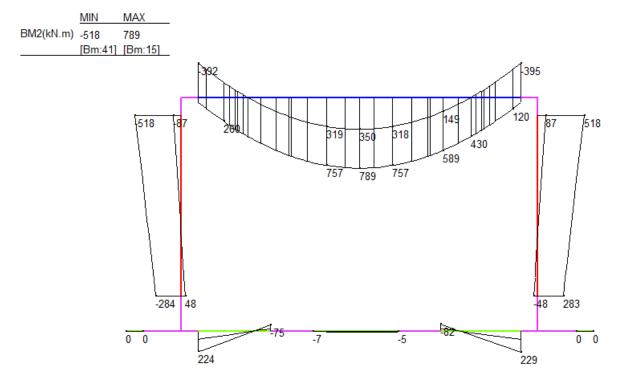


Figura 63 - ENV SLE QP - Momento flettente (kNm)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	177

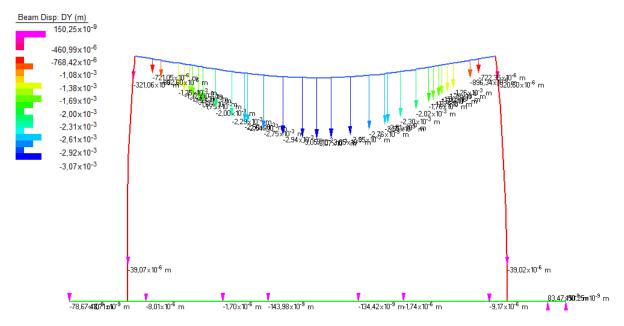


Figura 64 - ENV SLE RA - Spostamento verticale (m)

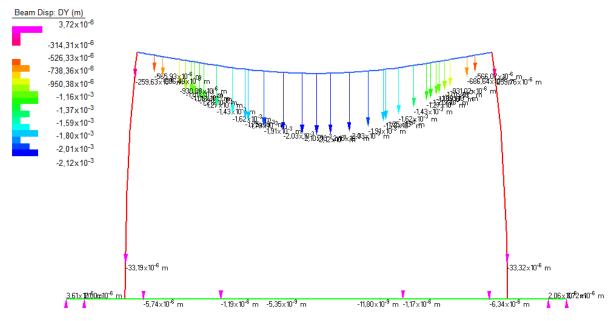


Figura 65 - ENV SLE QP - Spostamento verticale (m)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	178

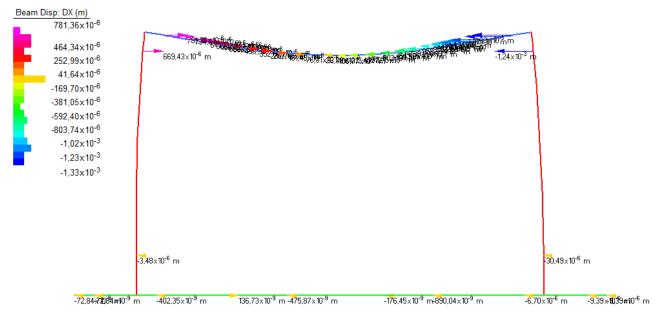


Figura 66 - ENV SLE RA - Spostamento orizzontale (m)

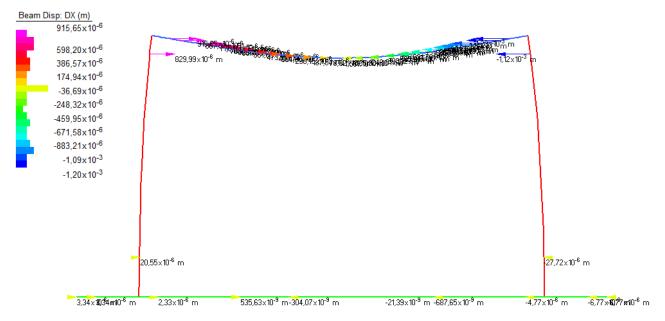
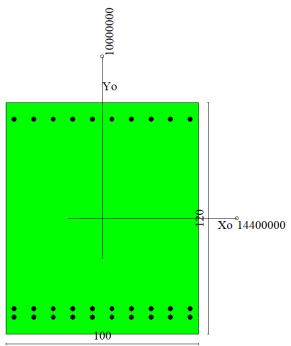


Figura 67 - ENV SLE QP - Spostamento orizzontale (m)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	179


13.2 VERIFICHE STRUTTURALI

13.2.1 Solettone superiore

Nel seguente paragrafo vengono riportate le sollecitazioni del solettone superiore per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

13.2.1.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso composta da 2 strati di Φ 26/10 e nel lato compresso di Φ 26/10 come rappresentato nella figura seguente per un totale di 30 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

Dati

Nome sezione: Solettone

 Tipo sezione
 Rettangolare

 Base
 100,0 [cm]

 Altezza
 120,0 [cm]

Caratteristiche geometriche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	180

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

ω Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	95,70	111,40	26	5,31
2	85,54	111,40	26	5,31
3	75,39	111,40	26	5,31
4	65,23	111,40	26	5,31
5	55,08	111,40	26	5,31
6	44,92	111,40	26	5,31
7	34,77	111,40	26	5,31
8	24,61	111,40	26	5,31
9	14,46	111,40	26	5,31
10	4,30	111,40	26	5,31
11	4,30	8,60	26	5,31
12	14,46	8,60	26	5,31
13	24,61	8,60	26	5,31
14	34,77	8,60	26	5,31
15	44,92	8,60	26	5,31
16	55,08	8,60	26	5,31
17	65,23	8,60	26	5,31
18	75,39	8,60	26	5,31
19	85,54	8,60	26	5,31
20	95,70	8,60	26	5,31
21	4,30	13,10	26	5,31
22	14,46	13,10	26	5,31
23	24,61	13,10	26	5,31
24	34,77	13,10	26	5,31
25	44,92	13,10	26	5,31
26	55,08	13,10	26	5,31
27	65,23	13,10	26	5,31
28	75,39	13,10	26	5,31
29	85,54	13,10	26	5,31
30	95,70	13,10	26	5,31

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,000 [MPa]
Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

N° numero d'ordine della combinazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	181

Ν sforzo normale espresso in[kN] momento lungo Y espresso in [kNm] Мү Mx momento lungo X espresso in [kNm] M_t T_Y T_X VD momento torcente espresso in [kNm]

taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN]

verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M _X	Mt	T _Y	T _X	VD	VT
1	0,0000	1760,1400	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	-1123,8700	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	273,0500	0,0000	0,0000	0,0000	0,0000	SI	NO
4	0,0000	-899,0800	0,0000	0,0000	0,0000	0,0000	SI	NO
5	0,0000	1322,2400	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	0,0000	-836,6900	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	0,0000	788,6400	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	0.0000	-391.8100	0.0000	0.0000	0.0000	0.0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

Ν° numero d'ordine della combinazione Хc posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Xc	α	(xi; yi)	(xf; yf)
5	40,80	0,00	(0,00; 79,20)	(100,00; 79,20)
6	27,98	0,00	(100,00; 27,98)	(0,00; 27,98)
7	40,80	0,00	(0,00; 79,20)	(100,00; 79,20)
8	27,98	0,00	(100,00; 27,98)	(0,00; 27,98)

Risultati tensionali

Simbologia adottata

numero d'ordine della combinazione

Tensione massima nel calcestruzzo espresso in [MPa] σ_{c-max} Tensione minima nel calcestruzzo espresso in [MPa] $\sigma_{\text{c-min}}$ Tensione massima nel ferro espresso in [MPa] Of-max Tensione minima nel ferro espresso in [MPa] $\sigma_{\text{f-min}}$

Tensione tangenziale nel calcestruzzo espresso in [MPa] τ_{c}

N°	$\sigma_{\text{c-max}}$	σ_{c-min}	$ au_{ extsf{c}}$	σ_{f-max}	$\sigma_{\text{f-min}}$
5	5,119	0,000	0,000	60,597	-132,869
6	3,470	0,000	0,000	36,048	-155,156
7	3,053	0,000	0,000	36,142	-79,249
8	1,625	0,000	0,000	16,881	-72,657

Sollecitazioni ultime

Simbologia adottata

Ν° numero d'ordine della combinazione Nυ Sforzo normale ultimo, espresso in [kN] Momento ultimo in direzione X, espresso in [kNm] M_{Xu} Momento ultimo in direzione Y, espresso in [kNm] $M_{Yu} \\$

Fattore di sicurezza

Combinazione nº 1

N_u	M_{xu}	M_{Yu}	FS
0,0000	0,0000	<u>4198,8713</u>	2,39

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	182

Combinazione nº 2

Combinazione nº 3

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 4198,8713
 15,38

Combinazione nº 4

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 -2183,2582
 2,43

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \qquad & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \qquad & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{lll} & \text{Moniterior of primare assurations in ImPal} \\ & \sigma_{\text{c}} & \text{Tensione nell'acciaio, espressa in [MPa]} \\ & \sigma_{\text{c}} & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ & \text{Area efficace a trazione, espressa in [cmq]} \\ & \epsilon & \text{Deformazione media acciaio teso, espressa in [emm]} \\ & \text{W} & \text{Ampiezza delle fessure, espresso in [mm]} \\ \end{array}$

N°	M _X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
5	0,0000	772,9756	-77,675	-5,809	3035,00	0,0525	206	0,1835
6	0,0000	-708,8672	-131,452	-9,667	2810,00	0,0474	213	0,1713
7	0,0000	772,9756	-77,675	-5,809	3035,00	0,0196	206	0,0686
8	0,0000	-708,8672	-131,452	-9,667	2810,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 1 - Solettone

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	3,053	13,280	-5,927	3,099	-79,249	36,142	450,000	7
SLER	3,470	18,260	-11,410	3,099	-155,156	36,048	337,500	6

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

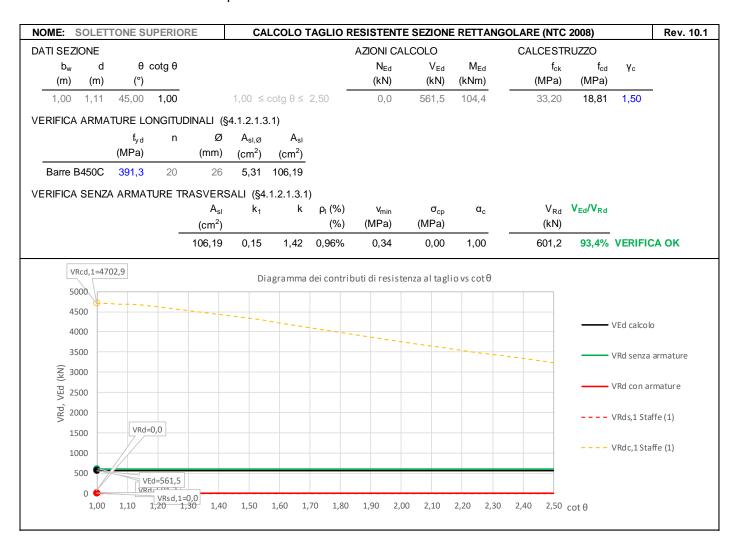
sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione nº 1 - Solettone

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-77,675	-5,809	297,637	0,0196	205,757	0,069	0,200	7
SLER	-77,675	-5,809	297,637	0,0525	205,757	0,183	0,200	5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	183

13.2.1.2 Verifica a taglio SLU, SLV

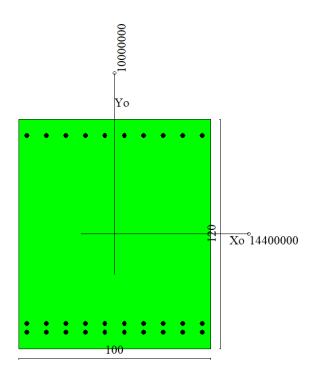
Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	184

13.2.2 Muri laterali

Nel seguente paragrafo vengono riportate le sollecitazioni per il muro laterale per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

13.2.2.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 26/10 e nel lato compresso di Φ 22/10 come rappresentato nella figura seguente per un totale di 30 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

Dati

Nome sezione: Muro laterale

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 120,0 [cm]

Caratteristiche geometriche

Area sezione	12000,00 [cmq]	
Inerzia in direzione X	1000000,0	[cm^4]
Inerzia in direzione Y	14400000,0	[cm^4]
Inerzia in direzione XY	0,0 [cm^4]	
Ascissa baricentro sezione	$X_G = 50,00 \text{ [cm]}$	
Ordinata baricentro sezione	$Y_G = 60,00$ [cm]	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	185

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

Ν° numero d'ordine

Ascissa posizione ferro espresso in [cm] X Y Ordinata posizione ferro espresso in [cm] d Diametro ferro espresso in [mm]

Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	95,80	111,60	26	5,31
2	85,62	111,60	26	5,31
3	75,44	111,60	26	5,31
4	65,27	111,60	26	5,31
5	55,09	111,60	26	5,31
6	44,91	111,60	26	5,31
7	34,73	111,60	26	5,31
8	24,56	111,60	26	5,31
9	14,38	111,60	26	5,31
10	4,20	111,60	26	5,31
11	4,30	8,50	22	3,80
12	14,46	8,50	22	3,80
13	24,61	8,50	22	3,80
14	34,77	8,50	22	3,80
15	44,92	8,50	22	3,80
16	55,08	8,50	22	3,80
17	65,23	8,50	22	3,80
18	75,39	8,50	22	3,80
19	85,54	8,50	22	3,80
20	95,70	8,50	22	3,80

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

40,000 Resistenza caratteristica calcestruzzo [MPa] 15,00 Coeff. omogeneizzazione acciaio/calcestruzzo Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] Tensione snervamento acciaio 450,000 [MPa] 210000,000 Modulo elastico E [MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

numero d'ordine della combinazione Ν° Ν sforzo normale espresso in[kN] M_{Y} momento lungo Y espresso in [kNm] momento lungo X espresso in [kNm] M_{X} M_t momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN] verifica di dominio

 $\begin{array}{c} T_X \\ VD \end{array}$

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M _X	Mt	T _Y	T_X	VD	VT
1	929,2300	447,6200	0,0000	0,0000	0,0000	0,0000	SI	NO
2	670.0300	-1341.1600	0.0000	0.0000	0.0000	0.0000	SI	NO

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530:
Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	186

3	625,7300	-131,0600	0,000	0,0000	0,0000	0,0000	SI	NO
4	407,4500	-1020,3800	0,0000	0,0000	0,0000	0,0000	SI	NO
5	664,1700	332,1400	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	472,1700	-995,1800	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	515,1200	48,0300	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	323,1200	-517,9100	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Xc	α	(xi; yi)	(xf; yf)
5	66,43	0,00	(0,00; 53,57)	(100,00; 53,57)
6	38,94	0,00	(100,00; 38,94)	(0,00; 38,94)
7	218,75	0,00	(0,00; -98,75)	(100,00; -98,75)
8	41,44	0,00	(100,00; 41,44)	(0,00; 41,44)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

N°	$\sigma_{\text{c-max}}$	σ_{c-min}	$ au_{ extsf{c}}$	σ_{f-max}	$\sigma_{\text{f-min}}$
5	1,829	0,000	0,000	23,971	-18,614
6	5,205	0,000	0,000	61,040	-145,680
7	0,528	0,000	0,000	7,618	3,884
8	2,746	0,000	0,000	32,739	-69,736

Sollecitazioni ultime

Simbologia adottata

N° numero d'ordine della combinazione Nu Sforzo normale ultimo, espresso in [kN]

 $\begin{array}{ll} M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione n° 1

FS	M_{Yu}	M _{Xu}	$N_{\rm u}$
11,41	<u>5107,4865</u>	0,0000	10602,8098
27,84	447,6200	0,0000	25868,4279
4,60	<u>2061,1198</u>	0,0000	929,2300

Combinazione n° 2

FS	\mathbf{M}_{Yu}	M_{Xu}	$N_{\rm u}$
2,18	<u>-2918,6928</u>	0,0000	<u>1458,1495</u>
33,83	-1341,1600	0,0000	22667,9910
1,89	<u>-2531,6061</u>	0,0000	670,0300

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	187

Combinazione nº 3

$N_{\rm u}$	M_{Xu}	$\mathbf{M}_{\mathbf{Yu}}$	FS
17032,3086	0,0000	<u>-3567,4402</u>	27,22
25283,2797	0,0000	-131,0600	40,41
625,7300	0,0000	<u>-2509,4303</u>	19,15

Combinazione nº 4

FS	\mathbf{M}_{Yu}	M_{Xu}	$N_{\rm u}$
2,69	<u>-2742,1092</u>	0,0000	1094,9571
57,40	-1020,3800	0,0000	23387,8733
2,35	-2399,5580	0,0000	407,4500

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \qquad & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \qquad & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{lll} \text{Monitarito di plimitaries soluzione in direzione 17, es} \\ \sigma_{\text{f}} & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{\text{c}} & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & \text{Deformazione media acciaio teso, espressa in [emm]} \\ \text{S}_{\text{fm}} & \text{Distanza media tra le fessure, espresso in [mm]} \\ \text{W} & \text{Ampiezza delle fessure, espressa in [mm]} \\ \end{array}$

N°	M _X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
5	0,0000	801,2229	-126,903	-9,447	2500,00	0,0000	0	0,0000
6	0,0000	-771,0701	-104,513	-7,799	2790,00	0,0515	209	0,1828
7	0,0000	766,9040	-134,850	-10,001	2500,00	0,0000	0	0,0000
8	0,0000	-738,3758	-110,262	-8,194	2790,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 2 - Muro laterale

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,746	13,280	-5,206	3,099	-69,736	32,739	450,000	8
SLER	5,205	18,260	-10,835	3,099	-145,680	61,040	337,500	6

Inviluppo verifiche fessurazione

Simbologia adottata

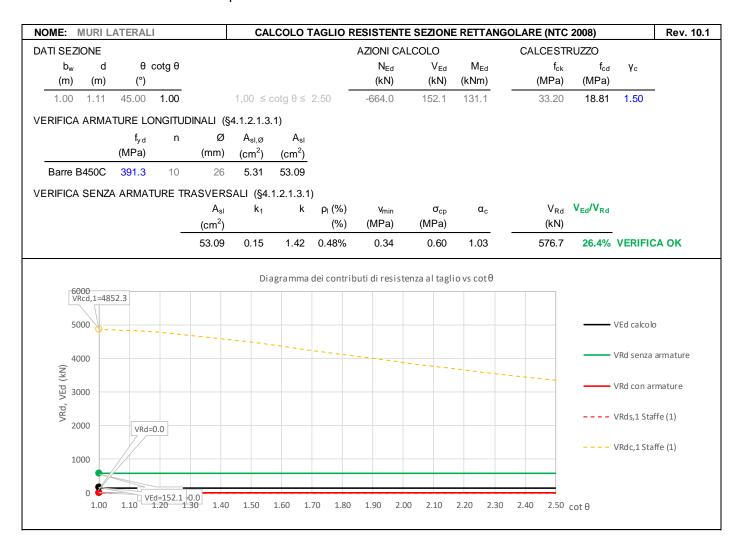
TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]
Comb. Combinazione critica

Sezione nº 2 - Muro laterale

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-134,850	-10,001	245,170	0,0000	0,000	0,000	0,200	7
SLER	-104,513	-7,799	273,610	0,0515	208,670	0,183	0,200	6

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	188

13.2.2.2 Verifica a taglio SLU, SLV

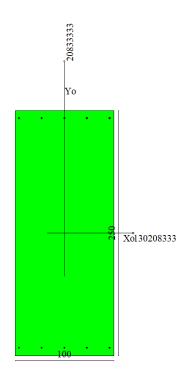
Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	189

13.2.3 Plinto fondazione

Nel seguente paragrafo vengono riportate le sollecitazioni per il plinto di fondazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

13.2.3.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ20/20 e nel lato compresso di Φ20/20 come rappresentato nella figura seguente per un totale di 10 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

Dati

Nome sezione:

Fondazione

Tipo sezione Base

Rettangolare

Altezza

100,0 [cm] 250,0 [cm]

Caratteristiche geometriche

Area sezione Inerzia in direzione X Inerzia in direzione Y Inerzia in direzione XY Ascissa baricentro sezione Ordinata baricentro sezione 25000,00 [cmq] 20833333,3 130208333,3

[cm^4] 0,0

 $X_G = 50,00 \text{ [cm]}$

 $Y_G = 125,00$ [cm]

[cm^4]

[cm^4]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	190

Simbologia adottata

Posizione riferita all'origine

numero d'ordine

X Y Ascissa posizione ferro espresso in [cm] Ordinata posizione ferro espresso in [cm] Diametro ferro espresso in [mm]

d Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	4,00	8,00	20	3,14
2	27,00	8,00	20	3,14
3	50,00	8,00	20	3,14
4	73,00	8,00	20	3,14
5	96,00	8,00	20	3,14
6	96,00	242,00	20	3,14
7	73,00	242,00	20	3,14
8	50,00	242,00	20	3,14
9	27,00	242,00	20	3,14
10	4,00	242,00	20	3,14

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa] Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00 Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] Tensione snervamento acciaio 450,000 [MPa] Modulo elastico E 210000,000 [MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

numero d'ordine della combinazione sforzo normale espresso in[kN] $M_{Y} \\$ momento lungo Y espresso in [kNm] $\begin{array}{l} M_X \\ M_t \\ T_Y \\ T_X \end{array}$ momento lungo X espresso in [kNm] momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN]

VD verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M_{X}	Mt	T_Y	T_X	VD	VT
1	0,0000	405,8200	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	-142,8900	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	558,9400	0,0000	0,0000	0,0000	0,0000	SI	NO
4	0,0000	-198,5000	0,0000	0,0000	0,0000	0,0000	SI	NO
5	0,0000	336,3700	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	0,0000	-118,0600	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	0,0000	228,6900	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	0,0000	-82,0800	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	191

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

numero d'ordine della combinazione Хc posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Xc	α	(xi; yi)	(xf; yf)
5	29,93	0,00	(0,00; 220,07)	(100,00; 220,07)
6	29,93	0,00	(100,00; 29,93)	(0,00; 29,93)
7	29,93	0,00	(0,00; 220,07)	(100,00; 220,07)
8	29,93	0,00	(100,00; 29,93)	(0,00; 29,93)

Risultati tensionali

Simbologia adottata

numero d'ordine della combinazione

Tensione massima nel calcestruzzo espresso in [MPa] σ_{c-max} Tensione minima nel calcestruzzo espresso in [MPa] σ_{c-min} Tensione massima nel ferro espresso in [MPa] Of-max Tensione minima nel ferro espresso in [MPa] $\sigma_{f\text{-min}}$

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
5	0,868	0,000	0,000	9,537	-92,211
6	0,305	0,000	0,000	3,347	-32,365
7	0,590	0,000	0,000	6,484	-62,692
8	0,212	0,000	0,000	2,327	-22,501

Sollecitazioni ultime

Simbologia adottata

Ν° numero d'ordine della combinazione Sforzo normale ultimo, espresso in [kN] N_u $M_{Xu} \\$ Momento ultimo in direzione X, espresso in [kNm] Momento ultimo in direzione Y, espresso in [kNm] M_{Yu}

0.0000

OUTIDITIAZIONE II	Combinazione	n°	1
-------------------	--------------	----	---

Combinazione nº 1	N _u 0,0000	M xu 0,0000	M _{Yu} 1459,5850	FS 3,60
Combinazione n° 2	N _u 0,0000	M _{Xu} 0,0000	M _{Yu} -1459,5850	FS 10,21
Combinazione nº 3	N _u 0,0000	M _{Xu} 0,0000	M_{Yu} 1459,5850	FS 2,61
Combinazione n° 4	\mathbf{N}_{u}	M _{Xu}	$\mathbf{M}_{\mathbf{Yu}}$	FS

0.0000

-1459,5850

7,35

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	192

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \qquad & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \qquad & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{ll} \sigma_{l} & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{c} & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & \text{Deformazione media acciaio teso, espressa in [°]} \end{array}$

S_{rm} Distanza media tra le fessure, espresso in [mm] w Ampiezza delle fessure, espressa in [mm]

N°	M_X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
5	0,0000	2394,0718	-656,304	-45,404	2300,00	0,0000	0	0,0000
6	0,0000	-2394,0718	-656,304	-45,404	2300,00	0,0000	0	0,0000
7	0,0000	2394,0718	-656,304	-45,404	2300,00	0,0000	0	0,0000
8	0,0000	-2394,0718	-656,304	-45,404	2300,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione nº 4 - Fondazione

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,590	13,280	-4,337	3,099	-62,692	6,484	450,000	7
SLFR	0.868	18.260	-6.379	3.099	-92.211	9.537	337.500	5

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione sf tensione nell'acciaio espresso in [MPa]

sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione n° 4 - Fondazione

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-656,304	-45,404	225,557	0,0000	0,000	0,000	0,200	7
SLER	-656,304	-45,404	225,557	0,0000	0,000	0,000	0,200	5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	193

14. ANALISI MURO POSTERIORE SPALLA

Di seguito si riportano le analisi e le verifiche del muro posteriore a chiusura dello scatolare dietro alla spalla denominata S01.

Il muro in c.a. presenta un'altezza pari a 6.40m e uno spessore pari a 1.20m. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

14.1 ANALISI CARICHI MURO POSTERIORE SPALLA

14.1.1 Azioni permanenti strutturali (G₁)

Si riporta a seguire l'analisi dei carichi agenti sul muro posteriore a chiusura della struttura scatolare dietro alla spalla in termini di pesi propri strutturali. Si considera uno spessore pari a 1.20m

 $g_1 = (1,20 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 30,00 \text{ kN/m}$

Peso muro posteriore

14.1.2 Azioni permanenti non strutturali (G₂)

14.1.2.1 Ballast $(G_{2.1})$

Si applicano le pressioni verticali derivanti dal peso del cassonetto di ballast a tergo della spalla, di larghezza circa 9.00 m, spessore 0.80 m e peso specifico 20 kN/m 3 . Si considera una spinta a riposo con un coefficiente k_0 pari a 0.03843.

Si valuta come carico permanente associato una pressione uniforme mediata sulla larghezza del muro di 12.50 m, come di seguito esposto:

 $G_2 = (0.80*20*8.2)/(12.50) = 10.50 \text{ kPa}$

 $G_{2h} = 10.50*0.3843 = 4.03 \text{ kN/m}$

Si ha pertanto una spinta a riposo distribuita sull'altezza del muro. Di seguito si riportano le azioni associate inserite nel modello FEM:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	194

Figura 68. Azione associate alla presenza del cassonetto di ballast dietro alla spalla.

14.1.3 Azioni variabili orizzontali (Q)

14.1.3.1 Azioni da traffico ferroviario (Q₁)

Sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal transito ferroviario esterno. Come da normativa, si ipotizza come larghezza totale transitabile il tratto di profilo dove i carichi possono interagire con l'opera di sostegno, ovvero al di sopra della fondazione e all'interno del cuneo di spinta del terreno sulla parete.

Considerando caricati entrambi i binari, si valuta come carico accidentale associato una pressione uniforme media, come di seguito esposto:

 $q = \frac{1}{L_T \cdot L_L} \cdot \sum_{1}^{n} Q_i$ pressione uniforme media sull'area caricata $L_T^* L_L$

L_L = 6.40 m lunghezza longitudinale interessata dai carichi

(lunghezza fondazione di monte spalla, comprensiva del cuneo di spinta del

terreno)

L_T = 12.50 m larghezza trasversale transitabile (larghezza muro posteriore)

Spalla S2

$$q = 1/(6.40*12.50)*(4*250)*2 = 25.00 \text{ kPa}$$

L'azione da traffico ferroviaria applicata all'elemento si valuta come di seguito esposto:

 $Sq = q \cdot k_0 \cdot L_T$ pressione uniforme media sull'area caricata $L_T^*L_L$

 $k_0 = 1-sen(38^\circ)*1^{0.5}.=0.03843$ coefficiente di spinta a riposo

Sq= 25.00*0.3843= 9.61 kN/m

Si ha pertanto una spinta a riposo distribuita sull'altezza del muro.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	195

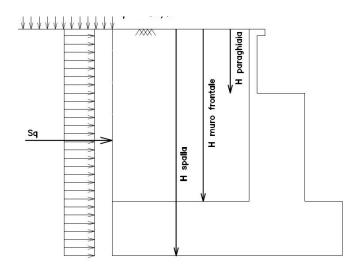


Figura 69: Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

Nel seguito si riporta il valore dell'azione sul muro posteriore:

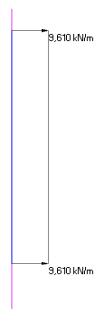


Figura 70. Azioni associate al sovraccarico longitudinale da traffico.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
	LI0B	02	Е	ZZ	CL	VI	03	04	001	В	196

14.2 DESCRIZIONE DEL MODELLO FEM

Per la determinazione delle sollecitazioni che interessano la struttura è stato realizzato un modello agli elementi finiti. Il muro è stato trattato come una trave a semplice appoggio. L'analisi è stato fato considerando 1m di larghezza. Si riporta di seguito una descrizione del modello FEM.

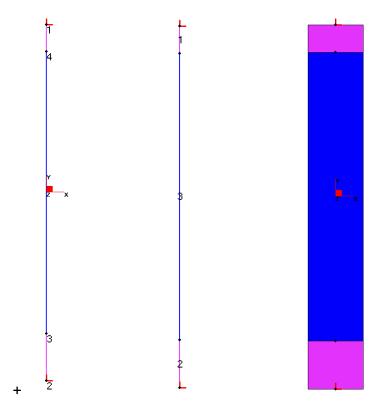


Figura 71 - Modello agli EF per il muro posteriore- Numerazione nodi - Numerazione elementi e indicazione zone nodali (viole)

Nel modello sono state implementate le seguenti condizioni di vincolo:

• appoggi in corrispondenza all'asse del solettone superiore e all'asse plinto di fondazione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	197

14.2.1 Risultati del modello FEM

Nel seguito si riportano i valori delle sollecitazioni sulla struttura associate agli inviluppi SLU, SLV, SLE rara e SLE quasi permanente.

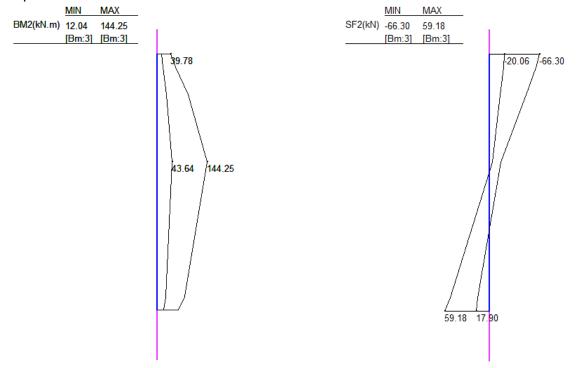


Figura 72 - ENV SLU - Momento flettente (kNm) - Taglio (kN)

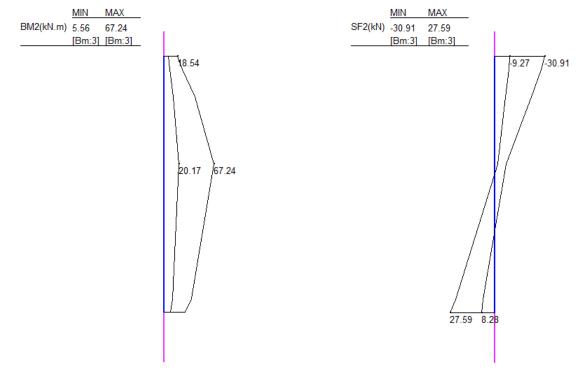


Figura 73 - ENV SLV - Momento flettente (kNm) - Taglio (kN)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	198

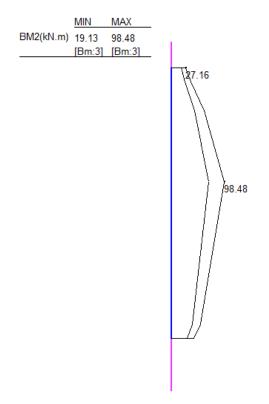


Figura 74 - ENV SLE RA - Momento flettente (kNm)

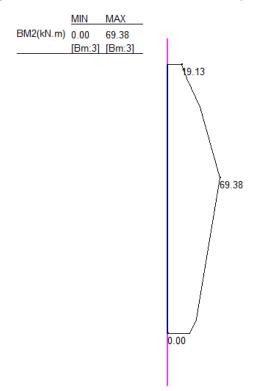
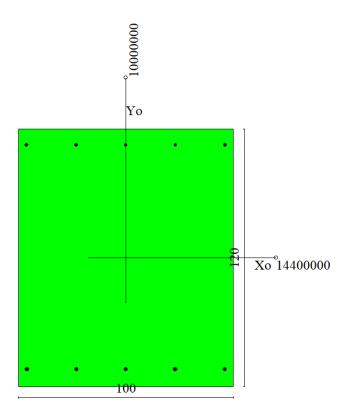


Figura 75 - ENV SLE QP - Momento flettente (kNm)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	199

14.3 VERIFICHE STRUTTURALI

Nel seguente paragrafo vengono riportate le sollecitazioni del muro posteriore per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

14.3.1.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 20/20 e nel lato compresso di Φ 16/20 come rappresentato nella figura seguente per un totale di 10 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

Dati

Nome sezione: Muro posteriore

 Tipo sezione
 Rettangolare

 Base
 100,0 [cm]

 Altezza
 120,0 [cm]

Caratteristiche geometriche

Area sezione
Inerzia in direzione X
Inerzia in direzione Y
Inerzia in direzione XY
Ascissa baricentro sezione
Ordinata baricentro sezione

12000,00 [cmq] 10000000,0 14400000,0

[cm^4]

[cm^4] [cm^4]

 $X_G = 50,00$ [cm] $Y_G = 60,00$ [cm]

0,0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	200

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]

 $\begin{array}{ll} \text{d} & \text{Diametro ferro espresso in [mm]} \\ \omega & \text{Area del ferro espresso in [cmq]} \end{array}$

N°	X	Υ	d	ω
1	4,00	8,00	20	3,14
2	27,00	8,00	20	3,14
3	50,00	8,00	20	3,14
4	73,00	8,00	20	3,14
5	96,00	8,00	20	3,14
6	96,20	112,60	16	2,01
7	73,10	112,60	16	2,01
8	50,00	112,60	16	2,01
9	26,90	112,60	16	2,01
10	3,80	112,60	16	2,01

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & & \\ & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ \end{array}$

VD verifica di dominio

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M _X	Mt	T_Y	Tx	VD	VT
1	0,0000	154,7000	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	72,1200	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	105,6100	0,0000	0,0000	0,0000	0,0000	NO	SLER
4	0,0000	71,4100	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	201

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Xc	α	(xi; yi)	(xf; yf)
3	19,91	0,00	(0,00; 100,09)	(100,00; 100,09)
4	19,91	0,00	(0,00; 100,09)	(100,00; 100,09)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

τ_c Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	σ_{c-max}	σ_{c-min}	$ au_{\mathbf{c}}$	σ_{f-max}	$\sigma_{\text{f-min}}$
3	0,920	0,000	0,000	8,671	-63,851
4	0,622	0,000	0,000	5,863	-43,174

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N_{u} & & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione n° 1

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 668,7910
 4,32

Combinazione n° 2

 $m{N}_u$ $m{M}_{Xu}$ $m{M}_{Yu}$ FS 0,0000 0,0000 $\underline{668,7910}$ 9,27

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{lll} \sigma_{l} & & Tensione \ nell'acciaio, \ espressa \ in \ [MPa] \\ \sigma_{c} & & Tensione \ nel \ calcestruzzo, \ espressa \ in \ [MPa] \\ A_{eff} & & Area \ efficace \ a \ trazione, \ espressa \ in \ [cmq] \\ \epsilon & & Deformazione \ media \ acciaio \ teso, \ espressa \ in \ [°] \\ S_{rm} & & Distanza \ media \ ta \ le \ fessure, \ espressa \ in \ [mm] \\ w & & Ampiezza \ delle \ fessure, \ espressa \ in \ [mm] \\ \end{array}$

N°	M _X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S_{rm}	w
3	0,0000	567,2797	-342,971	-24,851	2300,00	0,0000	0	0,0000
4	0,0000	567,2797	-342,971	-24,851	2300,00	0,0000	0	0,0000

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	202

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione nº 3 - Muro posteriore

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,622	13,280	-3,128	3,099	-43,174	5,863	450,000	4
SLER	0,920	18,260	-4,626	3,099	-63,851	8,671	337,500	3

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

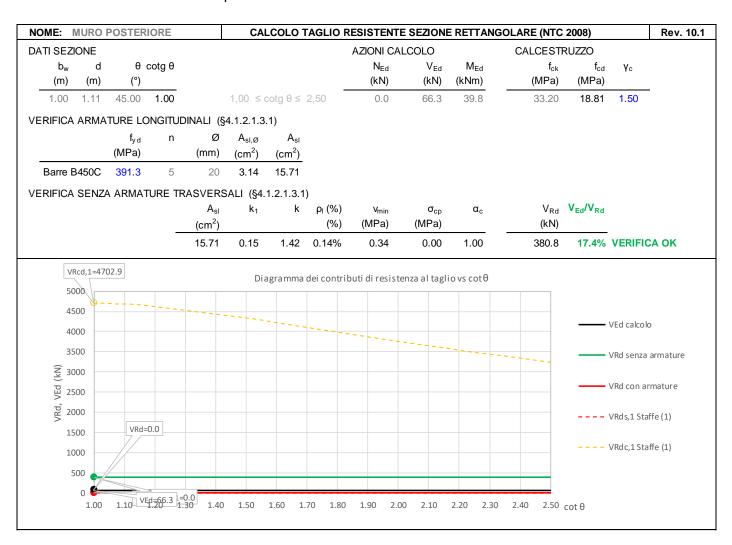
sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione nº 3 - Muro posteriore

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-342,971	-24,851	225,557	0,0000	0,000	0,000	0,200	4
SLER	-342,971	-24,851	225,557	0,0000	0,000	0,000	0,200	3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	203

14.3.1.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	204

15. ANALISI CARICHI MURI SCATOLARI ESTERNI

15.1 AZIONI PERMANENTI STRUTTURALI (G1) E NON STRUTTURALI (G2)

Si riporta a seguire l'analisi dei carichi agenti sul solettone superiore in termini di pesi propri strutturali e non strutturali e carichi accidentali.

Si considera uno spessore constante sia per il solettone che per i muri laterali pari a 0.90m

 $g_{1,s} = (0.90 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 22.50 \text{ kN/m}$ Peso solettone $g_{1,ml}$ = (0,90 m * 1.00 m) * 25 kN/m³ = 22,50 kN/m Peso muro laterale $g_{2,c} = (0.21 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 5,25 \text{ kN/m}$ Cordolo $g_{2,m} = (0.05 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 1,25 \text{ kN/m}$ Massetto $g_{2,b} = (0.80 \text{ m} * 1.00 \text{ m}) * 20 \text{ kN/m}^3 = 16,00 \text{ kN/m}$ **Ballast** $g_{2,v} = (0.26 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 6,50 \text{ kN/m}$ Velette $g_{2,pb+ffpp} = (0.50 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 12,50 \text{ kN/m}$ Muretti paraballast + FFPP $q_{2,par} = 1.50 \text{ kN/m}$ Parapetto $g_{2,barr} = (5.00 \text{ m} * 1.00 \text{ m}) * 4 \text{ kN/m}^2 = 20,00 \text{ kN/m}$ Barriera antirumore

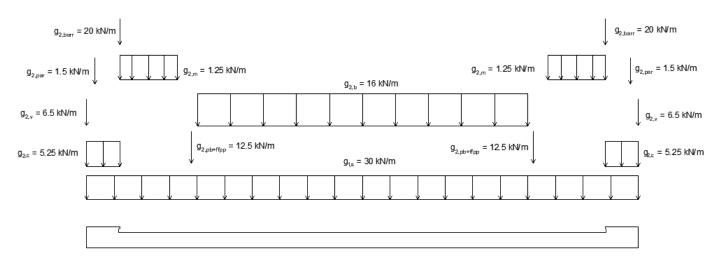


Figura 76 - Schema carichi permanenti.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	205

15.2 SPINTA DEL TERRENO (G₃)

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

Nome	Tipo	γ G1	ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
TERRENO, FALDA	Permanente	EQU 0.90 / 1.10 (A1) 1.00 / 1.30 (A2) 1.00 / 1.00	-	-	-

Le condizioni di spinta sono assunte in base agli spostamenti delle pareti, ovvero del grado di mobilitazione necessario per innescare il regime di spinta, vedi a riguardo le indicazioni contenute nell'EC7.

Table C.1 — Ratios v_s/h

Kind	of	v₂/h	v₂/h						
wall	movement	loose soil	dense soil						
		%	%						
a)	V _a	0,4 to 0,5	0,1 to 0,2						
b)	V _a =	0,2	0,05 to 0,1						
c)	v _a	0,8 to 1,0	0,2 to 0,5						
d)	V ₂	0,4 to 0,5	0,1 to 0,2						
where: v _s is the wall motion to mobilise active earth pressure h is the height of the wall									

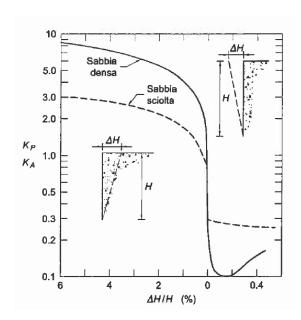


Figura 77 - Spostamenti relativi muro-terreno necessari per il raggiungimento di un regime di spinta attiva secondo EC7 Annex C e Lancillotta (1999)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	206

15.2.1 Spinta a riposo

La spinta statica totale sulla parete S_{0h} si calcola secondo le seguenti relazioni:

$$S_{0h} = \int_0^H \sigma_h(z) dz$$

spinta a riposo statica totale sul muro

$$\sigma_h(z) = \sigma_v(z)^* k_0$$

pressione orizzontale di spinta del terreno

Per piano campagna orizzontale si fa riferimento alla seguente correlazione (Jaky, 1944 e Schmidt, 1966): $k_o = 1-sen(\phi')^*OCR^{\alpha}$

OCR = 1

grado di sovraconsolidazione

 $\alpha = 0.5$

Per pendio inclinato (β) si può considerare che la spinta a riposo sia parallela al p.c. e che il coefficiente k_o valga:

 $k_o = (1-sen(\phi')*OCR^{\alpha})*(1+sen \beta)$

 $\beta = 0$

angolo inclinazione tra profilo e piano orizzontale

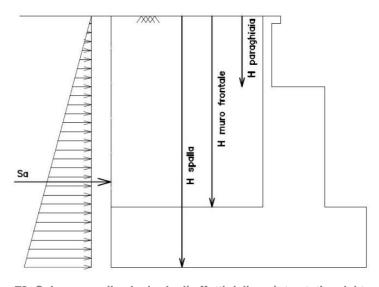


Figura 78: Schema per il calcolo degli effetti della spinta statica del terreno

Nel caso in esame si considera un'altezza del terreno pari a metà della altezza dei muri. Si ha pertanto una spinta a riposo distribuita sui muri esterni. Di seguito si riporta il valore dell'azione sulla struttura:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	207

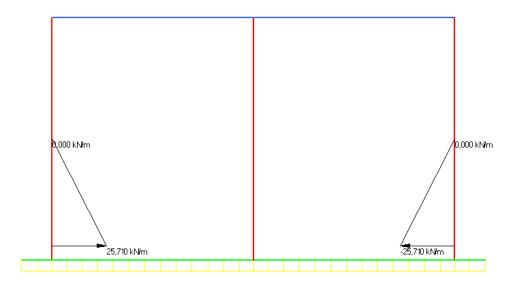


Figura 79. Azioni associate alla spinta del terreno.

15.2.2 Spinta attiva

Il coefficiente di spinta attiva (K_a) viene valutato ricorrendo alla correlazione generale di Mueller-Breslau basata sulla teoria di Coulomb e riferita a superfici di rottura piane. In questo caso l'approssimazione (rispetto a quanto si sarebbe ottenuto considerando superfici di rottura di geometria complessa) risulta molto contenuta e a favore di sicurezza.

La spinta attiva statica totale sulla parete S_{ah} si calcola secondo le seguenti relazioni:

$$S_{ah} = \int_0^H \sigma_h(z) dz$$

spinta attiva statica totale sul muro

$$K_{a} = \frac{sen^{2}(\psi + \phi)}{sen^{2}\psi \cdot sen^{2}(\psi - \delta) \left[1 + \sqrt{\frac{sen^{2}(\psi + \delta) \cdot sen^{2}(\phi - \beta)}{sen^{2}(\psi - \delta) \cdot sen^{2}(\psi + \beta)}}\right]^{2}}$$

coefficiente di spinta attiva

 $\sigma_h(z) = \sigma_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$ $\sigma_v(z)$ H ϕ $\delta = 0$ $\psi = 90^{\circ}$ β c

pressione orizzontale di spinta del terreno pressione verticale del terreno altezza della parete di spinta angolo attrito del terreno attrito tra terreno e parete angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale coesione del terreno

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni, viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma' = \gamma_{sat} - \gamma_{w}$$

γ_{sat} γ_w peso di volume saturo del terreno (dipendente dall'indice dei pori)

peso di volume dell'acqua

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	208

 $S_{ah} = \int_0^H \sigma'_h(z) dz + E_{ws} + E_{wd}$

spinta attiva statica totale efficace sul muro

 $\sigma'_h(z) = \sigma'_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$

pressione orizzontale di spinta efficace del terreno

 $\sigma'_{v}(z)$

pressione verticale efficace del terreno

 $\begin{array}{c} E_{ws} \\ E_{wd} \end{array}$

spinta idrostatica spinta idrodinamica

15.2.3 Pressioni idrostatiche

La distribuzione di forze delle spinte idrostatiche E_{ws} sulla parete sono descritte dalle seguenti relazioni:

 $E_{ws}(z) = \gamma_{w} \cdot z$

spinta idrostatica

Z

affondamento rispetto al pelo libero dell'acqua

γ_w peso di volume dell'acqua

Cautelativamente la falda è stata posta in corrispondenza del piano di posa delle fondazioni. Pertanto, il regime di spinta non è influenzato dalla presenza della falda.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	209

15.3 AZIONI VARIABILI VERTICALI DA TRAFFICO FERROVIARIO

Le azioni verticali dovute al passaggio dei convogli sull'impalcato sono da definirsi secondo quanto riportato al par $\S7.5.1$ della presente relazione. Tuttavia, nell'ambito dell'analisi trasversale dei carichi, il valore del coefficiente dinamico ϕ_3 da adottarsi nell'amplificazione dei carichi da treno differirà da quello precedentemente calcolato, dovendo in questo caso considerarsi una lunghezza L_{ϕ} definita in Tab. 2.5.1.4.2.5.3-1 per il caso 4.1 (solette superiori di impalcati a sezione scatolare nella direzione trasversale alle travi principali), i.e. 3 volte la luce. Si noti che, per questo caso, si assume che la luce del solettone sia pari all'interassi tra i piedritti, pari cioè a L= 5.85 m. Fermo restando queste considerazioni, si ottiene:

$$L_{\phi} = 17.55 \text{ m}$$

 $\phi_3 = 1.27 (\leq 2.00)$

$$\phi_3 = \frac{2.16}{\sqrt{L_{\phi}} - 0.2} + 0.73 = 1.27$$

15.3.1 Ripartizione trasversale dei carichi

Al fine della valutazione degli effetti locali dei carichi verticali ferroviari sul solettone è necessario operare una distribuzione degli stessi in direzione trasversale, eseguendo una diffusione del carico, a partire dalla larghezza della traversina, ¼ attraverso la massicciata ed 1/1 fino al piano medio di soletta, per una lunghezza pari a:

$$b = (0.80-0.26)/4 * 2 + (1.20/2) * 2 + 2.40 = 3.87 m$$

laddove si sono considerate le seguenti caratteristiche geometriche:

	[m]
Altezza ballast	0.80
Altezza traversina	0.26
Larghezza traversina	2.40
Altezza soletta	1.20

I carichi relativi al modello LM71 vengono distribuiti secondo lo schema di Fig. 5.2.5 al $\S 5.2.2.3.1.4$ delle NTC2008, dal momento che è stata considerata per essi una eccentricità rispetto all'asse del binario pari ad e = s/18 = 0.08 m.

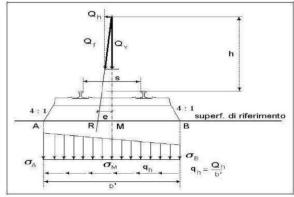


Fig. 5.2.5 Distribuzione trasversale in rettifilo delle azioni per mezzo delle traverse e del ballast. In figura, Ω_b rappresenta la forza centrifuga definita al successivo §5.2.2.3.1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	210

Prima di procedere alla ripartizione trasversale dei carichi ferroviari verticali, si è proceduto ad una distribuzione del carico assiale Qvk in direzione longitudinale, suddividendo tale valore per una lunghezza di influenza assunta pari ad 1.6 m, risultando pertanto in un carico uniformemente distribuito in direzione longitudinale pari a 156.25 kN/m per il treno di carico LM71.

In accordo con quanto riportato al par. §7.5.1 della presente relazione, si moltiplicano i valori dei carichi per il coefficiente di adattamento e per quello di incremento dinamico, ottenendo quindi:

TRENO LM71

q1 = 156.25 kN/m * 1.27 * 1.1 = 218.53 kN/m

Valore amplificato della ripartizione longitudinale

del carico Qvk

q2 = 80 kN/m * 1.27 * 1.1 = 111.89 kN/m

Valore amplificato del carico longitudinale qvk

TRENO SW/2

q3 = 150 kN/m * 1.27 * 1.0 = 190.72 kN/m

Valore amplificato del carico longitudinale qvk

Ripartendo in direzione trasversale i carichi così ottenuti si ottengono per il treno di carico LM71, fermo restando il dover considerare l'eccentricità e = 0.08 m rispetto all'asse del binario e la distribuzione trapezoidale delle tensioni indicati nella Fig. 5.2.5 della NTC08, i seguenti valori:

CARICO q1

 $\sigma_A = 69.41 \text{ kN/m}^2$

 $\sigma_{\rm B} = 53.01 \; kN/m^2$

CARICO q2

 $\sigma_A = 35.54 \text{ kN/m}^2$

 $\sigma_B = 27.14 \text{ kN/m}^2$

L'eccentricità non è da considerarsi, invece, per il caso di treno di carico SW/2, per il quale quindi si effettua la ripartizione semplicemente dividendo il valore q3 per la lunghezza b = 3.87 m, risultando dunque in una distribuzione di tensioni sulla soletta pari a:

 σ = 190.72 kN/m / 3.87 m = 53.42 kN/m

Al fine delle verifiche da eseguirsi sulla soletta, non viene considerata l'azione del treno scarico, dal momento che la situazione più gravosa è determinata in concomitanza all'applicazione del treno LM71.

Di seguito si riportano le azioni associate al treno di carico LM71 inserite nel modello FEM, per ulteriori dettagli rispetto ai gruppi di carico considerati si rimanda al paragrafo §8.1.1 della presente relazione:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

(COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	211



Figura 80 - Azione associate al caso 1 del treno di carico LM71.

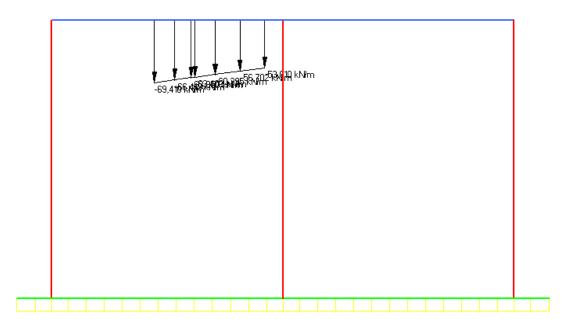


Figura 81 - Azione associate al caso 2 del treno di carico LM71.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	212

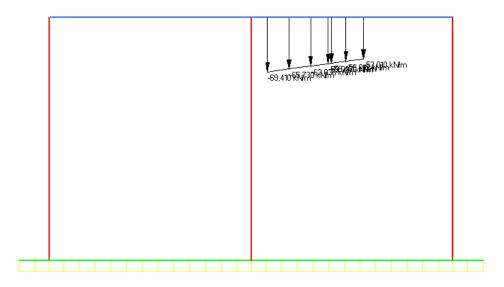


Figura 82 - Azione associate al caso 4 del treno di carico LM71.

15.4 CARICHI SUI MARCIAPIEDI

In accordo con quanto definito al §2.5.1.4.1.6 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende le prescrizioni dettate da NTC08 al §5.2.2.3.2, si assume che i marciapiedi non aperti al pubblico siano utilizzati solo dal personale autorizzato. Pertanto, per essi si assume un carico accidentale uniformemente ripartito del valore di 10 kN/m². Questo carico non deve essere considerato contemporaneo al traffico dei convogli ferroviari e deve essere applicato sopra ai marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli.

Per questo tipo di carico non deve applicarsi l'incremento dinamico. Di seguito si riportano le azioni associate al carico sui marciapiedi inserite nel modello FEM:

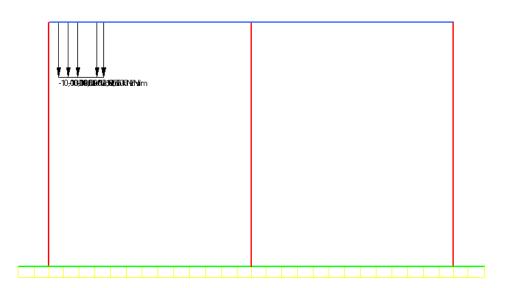


Figura 83 - Azione associate al carico sui marciapiedi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	213

15.5 CARICO ECCEZIONALE DOVUTO AL DERAGLIAMENTO

Le azioni di carico eccezionale sono state considerate in maniera analoga a quanto è stato riportato nel paragrafo §12.4 della presente relazione, a cui si rimanda per ulteriori dettagli. Si è considerata la azione del carico eccezionale agenti su entrambi binari. Di seguito si riportano le azioni associate inserite nel modello FEM:

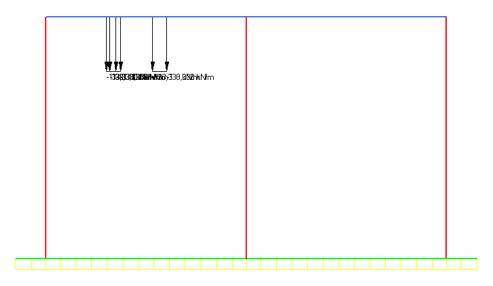


Figura 84 - Azione associata al caso eccezionale 1 dovuto al deragliamento.

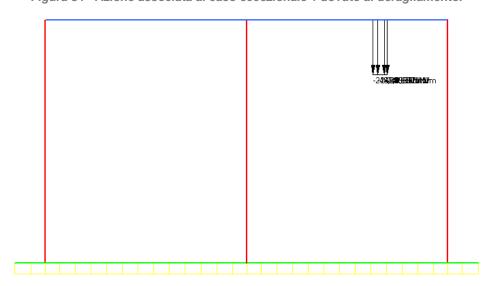


Figura 85 - Azione associata al caso eccezionale 2 dovuto al deragliamento.

15.6 CARICO DA VENTO SULLA BARRIERA ANTIRUMORE

La azione di carico da vento sulla barriera antirumore è stata considerata in maniera analoga a quanto è stato riportato nel paragrafo §12.5 della presente relazione, a cui si rimanda per ulteriori dettagli. Di seguito si riportano le azioni associate inserite nel modello FEM:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	214

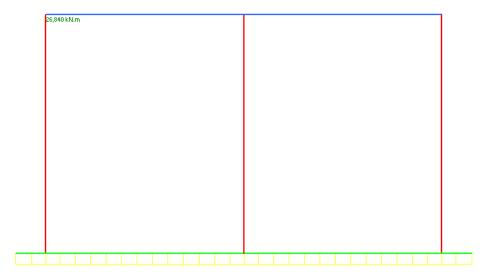


Figura 86 - Azione associata al momento dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

15.7 AZIONE AERODINAMICA DA TRAFFICO FERROVIARIO

Le azioni di carico eccezionale sono state considerate in maniera analoga a quanto è stato riportato nel paragrafo §12.6 della presente relazione, a cui si rimanda per ulteriori dettagli. Di seguito, si riportano le azioni inserite nel modello FEM:

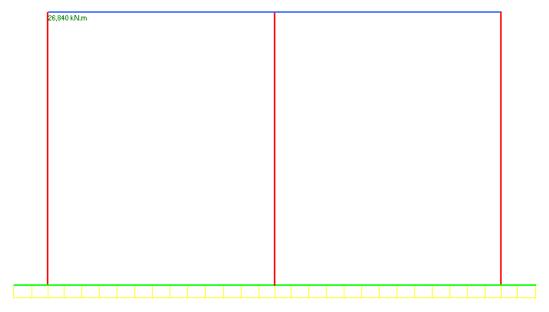


Figura 87 - Azione associata al momento dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	215

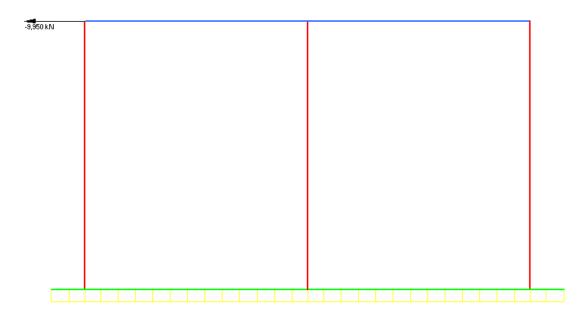


Figura 88 - Azione associata al taglio dovuto al carico da vento e l'azione idrodinamica sul muro laterale sinistro.

Le stesse condizioni di carico sono state applicate sul muro laterale destro.

15.8 VARIAZIONI TERMICHE (Q7)

La variazione termica è definita secondo quanto riportato nel § 2.5.1.4.4.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture" che riprende il § 5.2.2.5.2 delle NTC08.

La variazione termica uniforme volumetrica da considerare per l'impalcato risulta ±15°, ai fini della valutazione delle escursioni dei giunti e degli appoggi mobili viene incrementata del 50% per una variazione totale di calcolo di ±22.5 °C.

Di seguito si riportano le azioni inserite nel modello FEM:

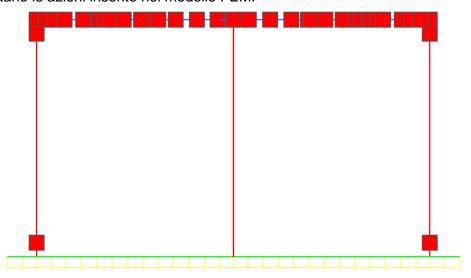


Figura 89 - Variazione temperatura uniforme.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	216

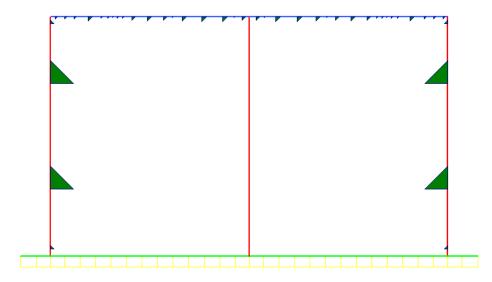


Figura 90 - Gradiente termico.

15.9 DISTORSIONI E DEFORMAZIONI IMPRESSE (P) (E)

15.9.1 Ritiro del calcestruzzo (ε₂)

Nome	Tipo	Υ ε2 (Fav / Sfav)	Ψο	Ψ1	Ψ2
RITIRO (ponti ferroviari)	Ritiro, viscosità, cedimenti imposti	EQU 0.00 / 1.20 (A1) 0.00 / 1.20 (A2) 0.00 / 1.00	-	-	-

Dato che il ritiro dipende dal tempo di maturazione del calcestruzzo, dalla sua resistenza e dalle condizioni ambientali, gli effetti possono evidenziarsi sia in fase di costruzione sulla sezione mista composta da due materiali di diverso modulo elastico (ritiro primario) sia a lungo termine sulla statica globale della struttura (ritiro secondario).

Tab. 11.2.Va – Valori di ε_{c0}

		Deform	azione da ritiro	per essiccamento	(in ‰)	
f _{ck}			Umidità Re	lativa (in %)		
	20	40	60	80	90	100
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

Tabella 54 - Valori del parametro ε_{c0} (‰)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	217

Tab. 11.2.Vb – Valori di k_k

h ₀ (mm)	k _h
100	1,00
200	0,85
300	0,75
≥ 500	0,70

Tabella 55 - Valori del parametro kh

Nel caso in oggetto, dato che le sezioni strutturali sono interamente gettate in opera nella stessa fase, si tengono conto nel calcolo degli effetti secondari causati dalle differenze di ritiro tra la fondazione e la soletta, quando alla fine della costruzione si realizza la chiusura della sezione scatolare con il getto della soletta stessa.

Nell'ipotesi a favore di sicurezza di una tempistica di costruzione velocizzata, si analizza nel tempo l'andamento delle deformazioni da ritiro per i due elementi e si considera in progetto il valore a tempo infinito. Questa deformazione, inserita nel modello numerico della sezione scatolare come distorsione di temperatura equivalente, permette il calcolo della reazione iperstatica venuta a formarsi nel tempo.

 $\Delta T = \Delta \epsilon_{cs} / \alpha = 11.25^{\circ} C$

 $\Delta \epsilon_{cs} = 0.00112\%$ ritiro differenziale di progetto

 $\alpha = 0.00001 \, ^{\circ}\text{C}^{-1}$ coefficiente di dilatazione termica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	218

NO	ME: F	RITIRO ORIZZON	ITALE						CALCOL	O RITIRO	DIFFERE	NZIALE 1	TRA ELE	MENTI	IN C.A.	(EN 1992-1	-1: 2005)					Rev
			FOND/	AZIONE								SOLETT	Ά									RITIRO
			f _{cm}	(MPa)	32.90		$A_c (m^2)$	0.90		t _s (gg)	28		f _{cm}	(MPa)			A_c (m^2)	0.90		t _s (gg)	28	DIFFEREN
				s	0.25		u _r (m)	1.00		k _h	0.700			s	0.25		u _r (m)	2.00		k _h	0.700	
				α _{ds1}	4 0.12		h₀ (mm) RH (%)	1800 60		β _{RH}	1.2152			α _{ds1}	4 0.12		h₀ (mm) RH (%)	900 60		β _{RH}	1.2152 55	
				α _{ds2}			KH (70)				5			α _{ds2}			KH (%)	00		getto (gg)		5
+	t (gg)		D (+)		istenza		0 (+)	c (t)	Q (+)	s (t)	Ritiro	t (aa)	Q (+)		istenza	-	0 (+)	c (t)	Q (+)	c (t)	Ritiro	
nni)	t (gg)		β _{CC} (t)	f _{cm} (t) (MPa)	f _{ck} (t) (MPa)	ε _{cd0}	β _{ds} (t)	ε _{cd} (t)	$\beta_{as}(t)$	$\epsilon_{ca}(t)$	ε _{cs} (t)	t (gg)	β _{CC} (t)	f _{cm} (t) (MPa)	f _{ck} (t) (MPa)	ε _{cd0}	β _{ds} (t)	$\epsilon_{cd}(t)$	β _{as} (t)	ε _{ca} (t)	ε _{cs} (t)	Δε _{cs} (t-t _s)
0.0	3 (Getto fondazione	0.598	19.68	11.68	0.054%	0.00000	0.0000%	0.29278	0.0001%	0.0001%			(IVII a)	(IVII a)						0.0000%	0.0000%
0.0	5	Jotto Iondaziono	0.711	23.38	15.38	0.051%		0.0000%	0.36059	0.0005%											0.0000%	0.0000%
0.0	10		0.845	27.80	19.80	0.049%	0.00000		0.46871	0.0011%											0.0000%	0.0000%
0.0	15		0.913	30.02	22.02	0.048%	0.00000	0.0000%	0.53911	0.0016%	0.0016%										0.0000%	0.0000%
0.1	20		0.955	31.43	23.43	0.047%		0.0000%		0.0020%											0.0000%	0.0000%
0.1	25 28		0.986	32.42 32.90	24.42 24.90	0.046%	0.00000	0.0000%		0.0023%											0.0000%	0.0000%
0.1		Getto muri	1.000	32.90	24.90	0.046%	0.00065		0.66561	0.0024%	0.0024%										0.0000%	0.0000%
0.1	35		1.000	32.90	24.90	0.046%		0.0001%		0.0026%											0.0000%	0.0000%
0.1	40		1.000	32.90	24.90	0.046%	0.00391	0.0001%	0.71774	0.0027%	0.0028%										0.0000%	0.0000%
0.1	45		1.000	32.90	24.90	0.046%	0.00553		0.73858	0.0028%											0.0000%	0.0000%
0.1	50		1.000	32.90	24.90	0.046%	0.00715		0.75688	0.0028%											0.0000%	0.0000%
0.2 0.2	55 C	Getto soletta	1.000	32.90 32.90	24.90 24.90	0.046% 0.046%	0.00876 0.01037	0.0003%	0.77310 0.78758	0.0029% 0.0029%	0.0032%	3 8	0.598 0.804	24.65 33.14	16.65 25.14	0.051% 0.046%		0.0000% 0.0000%	0.29278 0.43203	0.0005% 0.0016%	0.0005% 0.0016%	0.0005% 0.0015%
0.2	65		1.000	32.90	24.90	0.046%	0.01037		0.80060	0.0029%		13	0.890	36.65	28.65	0.046%		0.0000%	0.43203	0.0016%	0.0016%	0.0013%
0.2	70		1.000	32.90	24.90	0.046%		0.0004%	0.81238	0.0030%	0.0035%	18	0.940	38.73	30.73	0.043%	0.00000	0.0000%	0.57196	0.0030%	0.0030%	0.0027%
0.2	75		1.000	32.90	24.90	0.046%	0.01515	0.0005%	0.82308	0.0031%	0.0036%	23	0.974	40.15	32.15	0.042%	0.00000	0.0000%	0.61679	0.0034%	0.0034%	0.0030%
0.2	80		1.000	32.90	24.90	0.046%	0.01674		0.83285	0.0031%		28	1.000	41.20	33.20	0.042%		0.0000%	0.65295	0.0038%	0.0038%	0.0033%
0.2	85		1.000	32.90	24.90	0.046%		0.0006%	0.84180	0.0031%		33	1.000	41.20	33.20	0.042%		0.0001%	0.68302	0.0040%	0.0041%	0.0035%
0.2 0.3	90 95		1.000	32.90 32.90	24.90 24.90	0.046%	0.01989 0.02146	0.0006%	0.85004 0.85763	0.0032%	0.0038%	38 43	1.000	41.20 41.20	33.20 33.20	0.042%		0.0003%	0.70855 0.73058	0.0041% 0.0042%	0.0044%	0.0037% 0.0039%
0.3	100		1.000	32.90	24.90	0.046%		0.0007%	0.86466	0.0032%	0.0039%	48	1.000	41.20	33.20	0.042%		0.0004%	0.74984	0.0042%	0.0046%	0.0033%
).5	200		1.000	32.90	24.90	0.046%	0.05331			0.0035%		148	1.000	41.20	33.20	0.042%		0.0029%	0.91224			0.0061%
).8	300		1.000	32.90	24.90	0.046%		0.0026%	0.96870	0.0036%	0.0062%	248	1.000	41.20	33.20	0.042%	0.16923	0.0049%	0.95713	0.0056%	0.0105%	0.0074%
1.0	365		1.000	32.90	24.90	0.046%		0.0032%	0.97809	0.0036%		313	1.000	41.20	33.20	0.042%	0.20879	0.0061%	0.97094	0.0056%		0.0080%
1.1	400		1.000	32.90	24.90	0.046%	0.10856	~~~~		0.0037%	~~~~~~~~~	348	1.000	41.20	33.20	0.042%		0.0067%	0.97603			0.0083%
1.4	500 600		1.000	32.90 32.90	24.90 24.90	0.046%		0.0043%	0.98858	0.0037%	0.0080%	448 548	1.000	41.20 41.20	33.20 33.20	0.042%	0.28000	0.0081%	0.98549	0.0057%	0.0139%	0.0090% 0.0096%
1.6 1.9	700		1.000	32.90	24.90	0.046% 0.046%	0.15772 0.18032		0.99255 0.99497	0.0037% 0.0037%		648	1.000	41.20	33.20	0.042% 0.042%	0.32500	0.0095% 0.0106%	0.99074 0.99385	0.0057% 0.0058%	0.0152% 0.0164%	0.0096%
2.2	800		1.000	32.90	24.90	0.046%	0.20174		0.99651	0.0037%		748	1.000	41.20	33.20	0.042%		0.0100%	0.99579	0.0058%	0.0174%	0.0104%
2.5	900		1.000	32.90	24.90	0.046%	0.22207	0.0071%	0.99752	0.0037%	0.0109%	848	1.000	41.20	33.20	0.042%	0.43158	0.0126%	0.99704	0.0058%	0.0183%	0.0106%
	1000		1.000	32.90	24.90	0.046%	0.24139			0.0037%		948	1.000	41.20	33.20	0.042%		0.0134%	0.99788	0.0058%	0.0192%	0.0109%
	2000		1.000	32.90	24.90	0.046%		0.0126%	0.99987	0.0037%		1948	1.000	41.20	33.20	0.042%	0.64000	0.0186%	0.99985	0.0058%	0.0244%	0.0112%
	3000 3650		1.000	32.90 32.90	24.90 24.90	0.046%		0.0159%	0.99998	0.0037%		2948 3598	1.000	41.20 41.20	33.20	0.042%	0.73000	0.0212%	0.99998	0.0058%	0.0270%	0.0106% 0.0101%
~~~~	4380		1.000	32.90	24.90	0.046%	0.54248 0.58758	0.0174%	0.99999	0.0037%	~~~~~	4328	1.000	41.20	33.20	0.042%	0.79926	0.0223%	0.99999 1.00000	0.0058%	0.0281% 0.0291%	0.0096%
	5110		1.000	32.90	24.90	0.046%		0.0201%	1.00000	0.0037%		5058	1.000	41.20	33.20	0.042%		0.0233%	1.00000	0.0058%		0.0091%
6.0	5840		1.000	32.90	24.90	0.046%		0.0211%		0.0037%		5788	1.000	41.20	33.20	0.042%		0.0245%	1.00000	0.0058%		0.0087%
8.0	6570		1.000	32.90	24.90	0.046%	0.68169	0.0219%	1.00000	0.0037%	0.0256%	6518	1.000	41.20	33.20	0.042%		0.0250%	1.00000	0.0058%	0.0308%	0.0083%
	7300		1.000	32.90	24.90	0.046%		0.0226%	1.00000	0.0037%	0.0264%	7248	1.000	41.20	33.20	0.042%	0.86988	0.0253%	1.00000	0.0058%	0.0311%	0.0079%
	9125	(ten sette endinesis	1.000	32.90 32.90	24.90	0.046%		0.0241%	1.00000	0.0037%		9073 18198	1.000	41.20	33.20 33.20	0.042%	0.89333	0.0260%	1.00000	0.0058%	0.0318%	0.0072%
	27375	/ita utile ordinaria	1.000	32.90	24.90	0.046%		0.0275%	1.00000	0.0037%		27323	1.000	41.20	33.20	0.042%	0.94390	0.0275%	1.00000	0.0058%	0.0333%	0.0052%
	36500		1.000	32.90	24.90	0.046%		0.0297%	1.00000			36448	1.000	41.20	33.20	0.042%		0.0283%	1.00000	0.0058%	0.0341%	1
0.0 7	73000	Tempo infinito	1.000	32.90	24.90	0.046%	0.95982			0.0037%	0.0346%	72948	1.000	41.20	33.20	0.042%	0.98541	0.0287%	1.00000	0.0058%	0.0345%	0.0031%
0.	04%																					
0	04%																					
0.	03%																					
0.	03%																					
^	ا روور														Curv	a RITIRO F	ONDAZIO	NE				
€0.	02%			Rit	iro max.	0.0112%								-	Curv	a RITIRO S	SOLETTA					
စ္ 0.	02%			rat											— Curv	a RITIRO [	DIFFEREN	ZIALE				
Ę,	010/					<b></b>																
-0.	U1%	Get	to solet	tta																		
0.	01%																					
0	00%																					
U.	UU:/6																					
-0.	.01%		o fonda:	zione													_		_			
	0		1,000			000		000		000		000		6,000		7,000		8,000		9,000		10,000

Di seguito, si riportano le azioni inserite nel modello FEM:



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	219

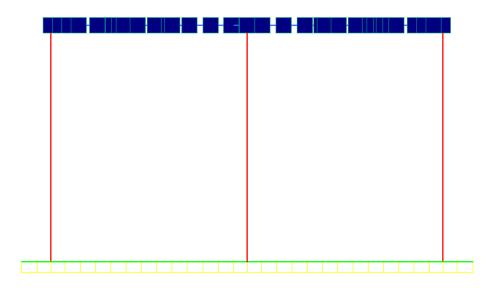



Figura 91 -Temperatura uniforme associata alla azione di ritiro.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	220

### 16. ANALISI MURI SCATOLARI ESTERNI

Di seguito si riportano le analisi e le verifiche della struttura scatolare posta a monte della spalla denominata S01.

La struttura scatolare in c.a. è costituita da due camere di dimensioni interne 5.40m (larghezza) x 6,80m (altezza) aventi uno spessore strutturale per la parte in fondazione e per la parte in elevazione (traverso e piedritti) pari a 0,90m. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

## 16.1 DESCRIZIONE DEL MODELLO FEM

Per la determinazione delle sollecitazioni che interessano la struttura è stato realizzato un modello agli elementi finiti. La struttura è stata trattata come un portale costituenti dal solettone superiore e i muri laterali, vincolata alla base con il plinto di fondazione, il cui è stato modellato come una trave continua, per tutti gli elementi si considera una larghezza di 1m.

Si riporta di seguito una descrizione del modello FEM comprensivo di tutti gli elementi strutturali costituenti la struttura scatolare.

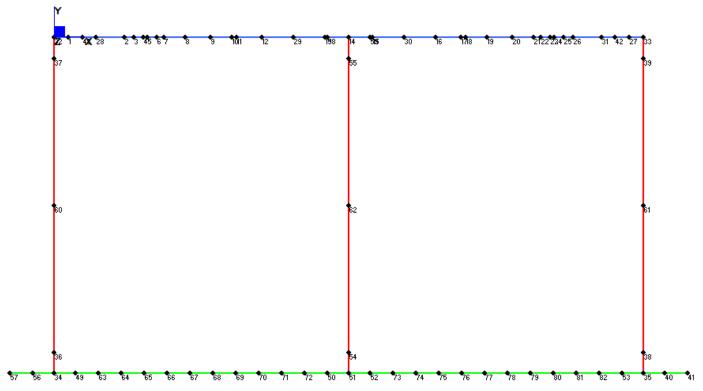



Figura 92 - Modello agli EF per la struttura scatolare - Numerazione nodi



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	221

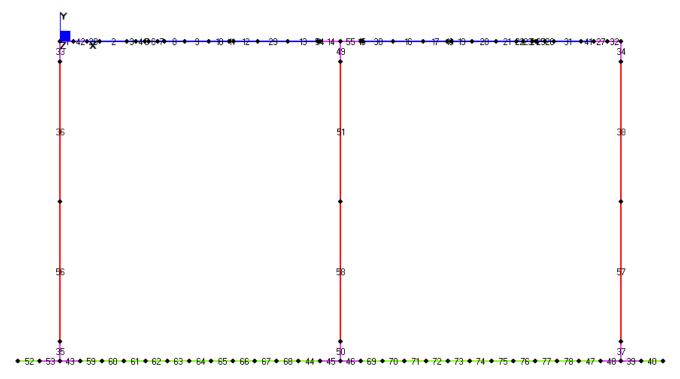



Figura 93 - Modello agli EF per la struttura scatolare - Numerazione elementi e indicazione zone nodali (viole)

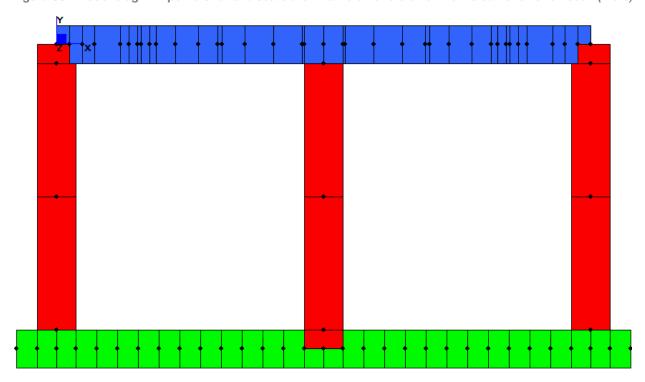



Figura 94 - Modello FEM

La fondazione viene schematizzata con una trave discretizzata ogni 50 cm, considerata come un suolo elastico non reagenti a trazione, adottando il modello di Winkler. La constante di Winkler è stata assegnata agli elementi posti all'asse fondazione





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	222

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento, pertanto, si ottiene:

 $k_w = E / [(1-v^2) * B * c_t]$ 

E' = 100000 kN/m² modulo elastico medio del terreno sottostante

v =0.25 coefficiente di Poisson del terreno B = 14.5 m lato minore della fondazione

L = 10.0 m lato maggiore della fondazione

c_t = 0.65 coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei

coefficienti proposti dal Bowles (1960):

 $c_t$  = 0.853 + 0.534 ln (L / B) rettangolare con L / B≤10  $c_t$  = 2 + 0.0089 (L / B) rettangolare con L / B>10

 $k_w = 11238 \text{ kN/m}^3$ 

Si è assunta una constante di Winkler pari a k_w=11200 kPa/m.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	223

## 16.1.1 Risultati del modello FEM

Nel seguito si riportano i valori delle sollecitazioni sulla struttura associate agli inviluppi SLU, SLV, SLE rara e SLE quasi permanente.

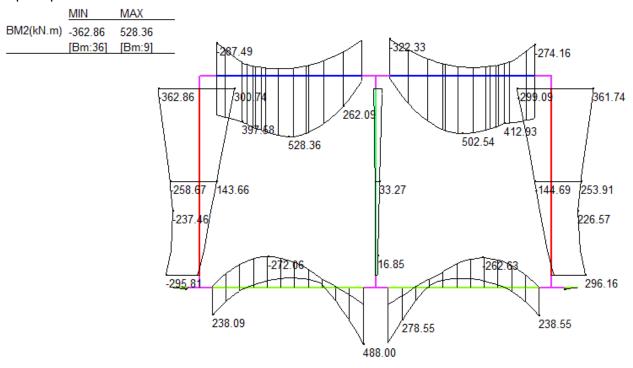



Figura 95 - ENV SLU - Momento flettente (kNm)

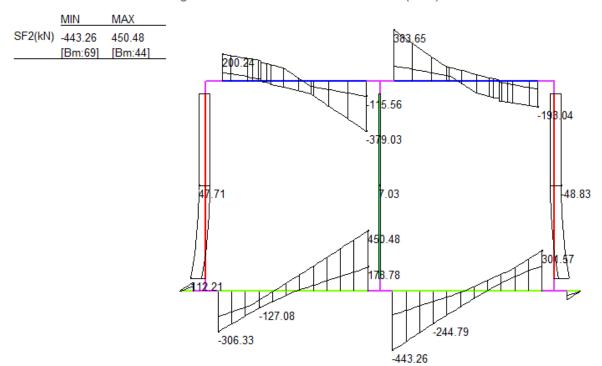



Figura 96 - ENV SLU - Taglio (kN)





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	224

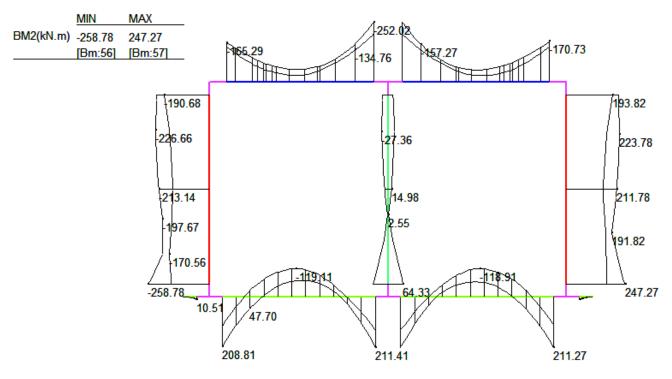



Figura 97 - ENV SLV - Momento flettente (kNm)

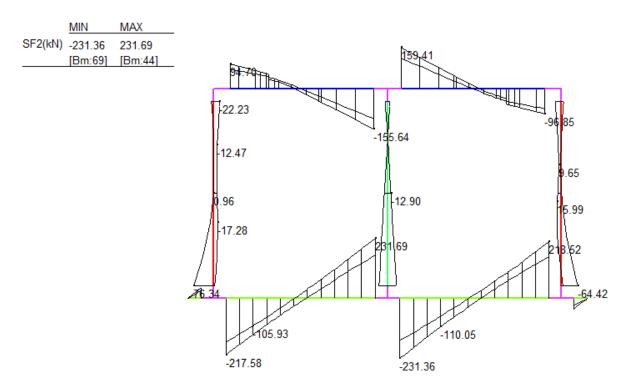



Figura 98 - ENV SLV - Taglio (kN)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	225

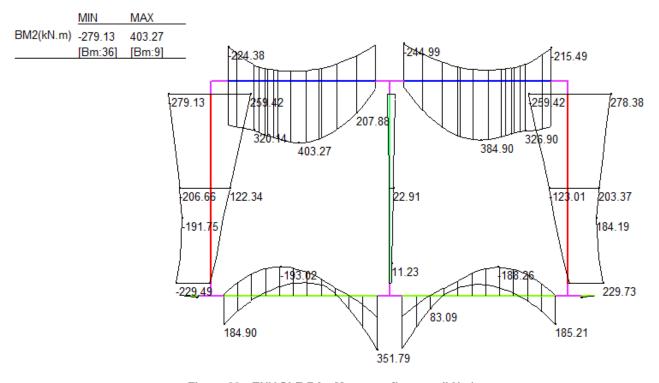



Figura 99 - ENV SLE RA - Momento flettente (kNm)

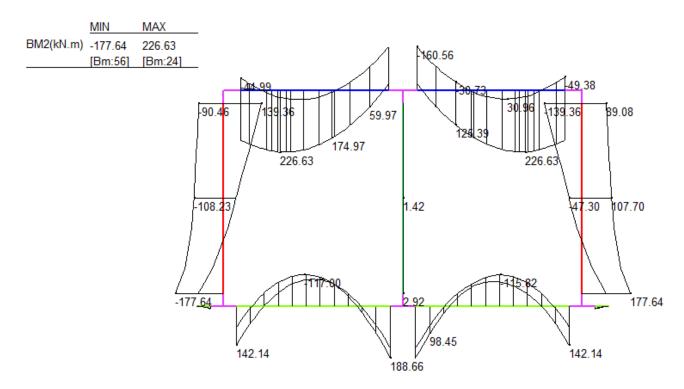



Figura 100 - ENV SLE QP - Momento flettente (kNm)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	226

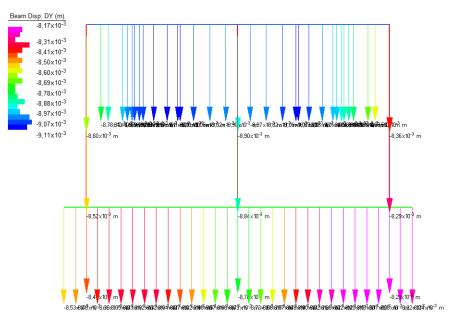



Figura 101 - ENV SLE RA - Spostamento verticale (m)

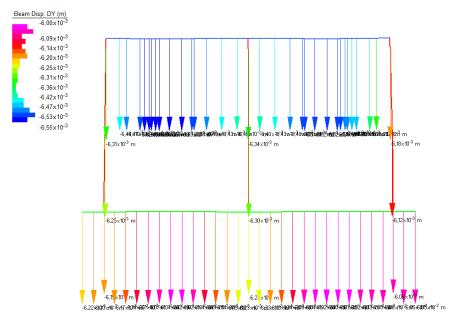



Figura 102 - ENV SLE QP - Spostamento verticale (m)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	227

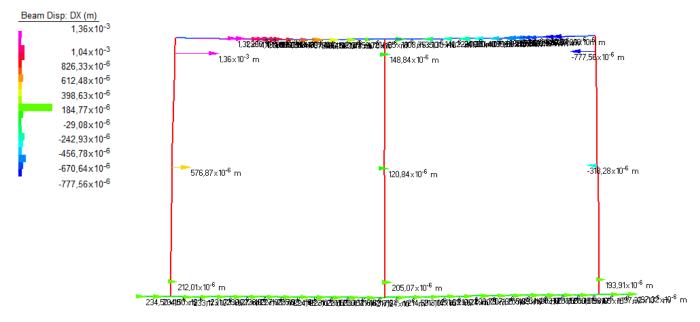



Figura 103 - ENV SLE RA - Spostamento orizzontale (m)

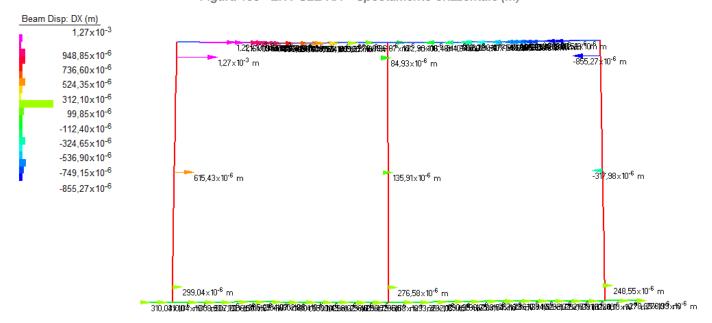


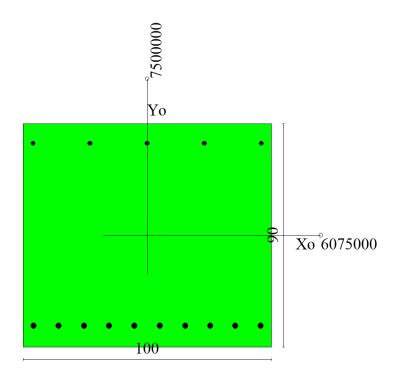

Figura 104 - ENV SLE QP - Spostamento orizzontale (m)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	228


### 16.2 VERIFICHE STRUTTURALI

## 16.2.1 Solettone superiore

Nel seguente paragrafo vengono riportate le sollecitazioni del solettone superiore per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

## 16.2.1.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di  $\Phi$ 24/10 e nel lato compresso di  $\Phi$ 20/20 come rappresentato nella figura seguente per un totale di 15 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.



### Dati

Nome sezione: Solettone

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 90,0 [cm]

### Caratteristiche geometriche





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	229

#### Elenco ferri

#### Simbologia adottata

Posizione riferita all'origine

Ν° numero d'ordine

Ascissa posizione ferro espresso in [cm] X Y Ordinata posizione ferro espresso in [cm] d Diametro ferro espresso in [mm]

Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	4,20	8,60	24	4,52
2	14,38	8,60	24	4,52
3	24,56	8,60	24	4,52
4	34,73	8,60	24	4,52
5	44,91	8,60	24	4,52
6	55,09	8,60	24	4,52
7	65,27	8,60	24	4,52
8	75,44	8,60	24	4,52
9	85,62	8,60	24	4,52
10	95,80	8,60	24	4,52
11	96,00	82,00	20	3,14
12	73,00	82,00	20	3,14
13	50,00	82,00	20	3,14
14	27,00	82,00	20	3,14
15	4,00	82,00	20	3,14

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa] Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 1,00

Coeff. omogeneizzazione calcestruzzo teso/compresso

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] Tensione snervamento acciaio 450,000 [MPa] Modulo elastico E 210000,000 [MPa]

Fattore di incrudimento acciaio 1,00

### Combinazioni

### Simbologia adottata

numero d'ordine della combinazione Ν sforzo normale espresso in[kN] momento lungo Y espresso in [kNm]  $M_Y$ momento lungo X espresso in [kNm]  $\mathsf{M}_\mathsf{X}$  $M_{t}$ momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] Tx taglio lungo X espresso in [kN]

VD VT verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	$M_{ m Y}$	M _X	Mt	T _Y	$T_X$	VD	VT
1	0,0000	528,3600	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	-322,3300	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	-27,1800	0,0000	0,0000	0,0000	0,0000	SI	NO
4	0,0000	-252,0200	0,0000	0,0000	0,0000	0,0000	SI	NO
5	0,0000	403,2700	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	0,0000	-244,9900	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	0,0000	226,6300	0,0000	0,0000	0,0000	0,000	NO	SLEQP





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	230

8 0,0000 -160,5600 0,0000 0,0000 0,0000 0,0000 NO SLEQP

### Risultati analisi

#### Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
5	25,87	0,00	(0,00; 64,13)	(100,00; 64,13)
6	15,08	0,00	(100,00; 15,08)	(0,00; 15,08)
7	25,87	0,00	(0,00; 64,13)	(100,00; 64,13)
8	15,08	0,00	(100,00; 15,08)	(0,00; 15,08)

#### Risultati tensionali

#### Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$ 

 $au_c$  Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{c-max}$	$\sigma_{c-min}$	$ au_{ extsf{c}}$	$\sigma_{f-max}$	$\sigma_{\text{f-min}}$
5	3,801	0,000	0,000	39,387	-122,371
6	3,084	0,000	0,000	19,878	-205,280
7	2,136	0,000	0,000	22,135	-68,770
8	2,021	0,000	0,000	13,027	-134,535

## Sollecitazioni ultime

### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N_{u} & & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{\chi_{u}} & & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{\gamma_{u}} & & \text{Momento ultimo in direzione Y, espresso in [kNm]} \\ FS & & \text{Fattore di sicurezza} \end{array}$ 

## Combinazione nº 1

Combinazione n' 1	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> _{Yu} <u>1349,6867</u>	<b>FS</b> 2,55
Combinazione nº 2	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> _{Yu} -490,3199	<b>FS</b> 1,52
Combinazione nº 3	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> Yu -490,3198	<b>FS</b> 18,04
Combinazione nº 4	<b>N</b> _u 0,0000	<b>M</b> xu 0,0000	<b>M</b> _{Yu} -490,3198	<b>FS</b> 1,95





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

0,0000

0,0000

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	231

#### Risultati fessurazione

#### Simbologia adottata

w

8

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \qquad & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \qquad & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$ 

-341,5843

-286,218

σ_f Tensione nell'acciaio, espressa in [MPa]

Ampiezza delle fessure, espressa in [mm]

 $\sigma_{c}$  Tensione neil accialo, espressa in [IMPa]  $\sigma_{c}$  Tensione nel calcestruzzo, espressa in [MPa] A_{eff} Area efficace a trazione, espressa in [cmq]  $\epsilon$  Deformazione media acciaio teso, espressa in [9] Distanza media tra le fessure, espresso in [mm]

N°  $M_{X}$  $M_{Y}$  $\sigma_{\text{f}}$  $\sigma_{c}$  $\mathbf{A}_{\text{eff}}$  $S_{rm}$ 0,0000 366,9675 217 5 -111,356 -8,573 2660,00 0,0341 0,1257 0,0000 0,0000 -21,362 6 -341,5843 -286,218 2300,00 0,0000 0 0,0000 -8,573 0,0000 7 366,9675 -111,356 2660,00 0,0000 0

2300,00

-21,362

#### Inviluppo verifiche tensionali

0,0000

#### Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sct tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

#### Sezione n° 1 - Solettone

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,021	13,280	-10,041	3,099	-134,535	13,027	450,000	8
SLER	3,084	18,260	-15,321	3,099	-205,280	19,878	337,500	6

### Inviluppo verifiche fessurazione

#### Simbologia adottata

TC Tipo combinazione sf tensione nell'acciaio espresso in [MPa]

sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

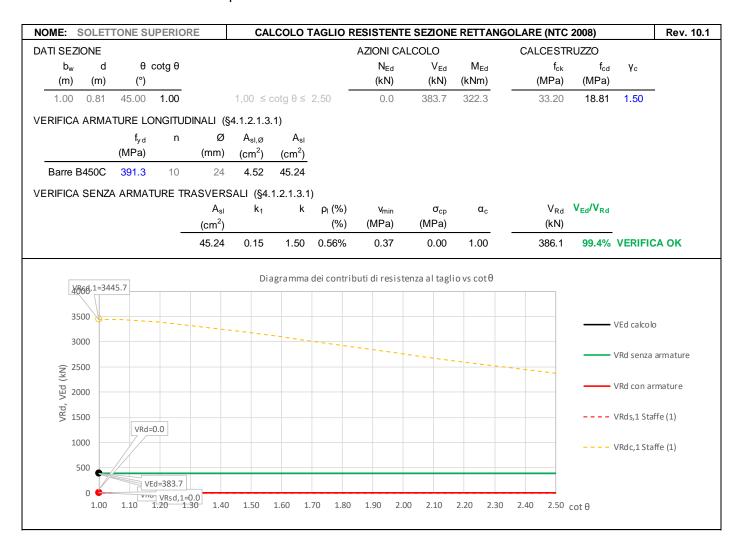
Comb. Combinazione critica

### Sezione n° 1 - Solettone

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-111,356	-8,573	260,861	0,0000	0,000	0,000	0,200	7
SLER	-111,356	-8,573	260,861	0,0341	216,514	0,126	0,200	5



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	232

## 16.2.1.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

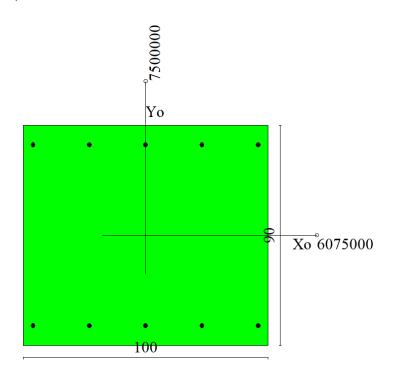


Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	233

### 16.2.2 Muri laterali

Nel seguente paragrafo vengono riportate le sollecitazioni per il muro laterale per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

### 16.2.2.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di  $\Phi$ 20/20 e nel lato compresso di  $\Phi$ 20/20 come rappresentato nella figura seguente per un totale di 10 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.



#### Dati

Nome sezione: Muro laterale

Tipo sezione Rettangolare
Base 100,0 [cm]
Altezza 90,0 [cm]

#### Caratteristiche geometriche





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	234

#### Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

Diametro ferro espresso in [mm]
 Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	4,00	8,00	20	3,14
2	27,00	8,00	20	3,14
3	50,00	8,00	20	3,14
4	73,00	8,00	20	3,14
5	96,00	8,00	20	3,14
6	96,00	82,00	20	3,14
7	73,00	82,00	20	3,14
8	50,00	82,00	20	3,14
9	27,00	82,00	20	3,14
10	4,00	82,00	20	3,14

Materiale impiegato: Calcestruzzo armato

#### Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

### Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,000 [MPa]

Fattore di incrudimento acciaio 1,00

#### Combinazioni

#### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in }[kNm] \\ M_{X} & & \text{momento lungo X espresso in }[kNm] \\ M_{t} & & \text{momento torcente espresso in }[kNm] \\ T_{Y} & & \text{taglio lungo Y espresso in }[kN] \\ VD & & \text{verifica di dominio} \end{array}$ 

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	$M_{ m Y}$	$M_{X}$	$M_{\rm t}$	T _Y	$T_{X}$	VD	VT
1	284,4400	300,7400	0,0000	0,0000	0,0000	0,0000	SI	NO
2	284,4400	-362,8600	0,0000	0,0000	0,0000	0,0000	SI	NO
3	161,4800	-170,5600	0,0000	0,0000	0,0000	0,0000	SI	NO
4	332,6000	-258,7800	0,0000	0,0000	0,0000	0,0000	SI	NO
5	200,3400	259,4200	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	200,3400	-279,1300	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	127,3000	139,3600	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	277,8200	-177,6400	0,0000	0,0000	0,0000	0,0000	NO	SLEQP





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	235

### Risultati analisi

#### Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
5	21,35	0,00	(0,00; 68,65)	(100,00; 68,65)
6	20,95	0,00	(100,00; 20,95)	(0,00; 20,95)
7	22,43	0,00	(0,00; 67,57)	(100,00; 67,57)
8	28,40	0,00	(100,00; 28,40)	(0,00; 28,40)

#### Risultati tensionali

### Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{t-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{t-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$ 

IN	Oc-max	Oc-min	τc	Of-max	Of-min
5	3,672	0,000	0,000	34,438	-156,431
6	3,953	0,000	0,000	36,654	-172,746
7	1,967	0,000	0,000	18,982	-78,376
8	2,428	0,000	0,000	26,157	-68,737

## Sollecitazioni ultime

### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N_{u} & & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & & \text{Momento ultimo in direzione Y, espresso in [kNm]} \\ FS & & \text{Fattore di sicurezza} \end{array}$ 

#### Combinazione nº 1

Nu	M _{Xu}	M _{Yu}	FS
731,5297	0,0000	<u>773,4504</u>	2,57
17329,2390	0,0000	300,7400	60,92
284,4400	0,0000	600,5037	2,00

## Combinazione n° 2

FS	M _{Yu}	₩ _{Xu}	$N_{\rm u}$
1,94	<u>-704,7879</u>	0,0000	<u>552,4717</u>
60,28	-362,8600	0,0000	<u>17146,6048</u>
1,65	-600,5037	0,0000	284,4400

### Combinazione nº 3

FS	$M_{Yu}$	$M_{Xu}$	$N_u$
4,54	<del>-773,8947</del>	0,0000	732,6953
109,62	-170,5600	0,0000	17702,0454
3,24	<u>-552,0832</u>	0,0000	161,4800





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	236

#### Combinazione n° 4

FS	$M_{Yu}$	M _{Xu}	$N_{\rm u}$
3,72	<u>-962,6617</u>	0,0000	1237,2722
52,47	-258,7800	0,0000	17450,9887
2,39	<u>-619,3707</u>	0,0000	332,6000

#### Risultati fessurazione

#### Simbologia adottata

numero d'ordine della combinazione

Momento di prima fessurazione in direzione X, espresso in [kNm]

 $M_Y$ Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa]  $\sigma_{\text{f}}$ Tensione nel calcestruzzo, espressa in [MPa]  $\sigma_{\text{c}}$ A_{eff} Area efficace a trazione, espressa in [cmq] Deformazione media acciaio teso, espressa in [°] Distanza media tra le fessure, espresso in [mm] Ampiezza delle fessure, espressa in [mm]

N°	M _X	$M_{Y}$	$\sigma_{\!\scriptscriptstyle f}$	$\sigma_{c}$	$A_{eff}$	3	$S_{rm}$	w
5	0,0000	358,6025	-238,723	-17,963	2300,00	0,0000	0	0,0000
6	0,0000	-358,6166	-238,735	-17,964	2300,00	0,0000	0	0,0000
7	0,0000	347,0935	-251,006	-18,845	2300,00	0,0000	0	0,0000
8	0.0000	-370.8235	-226.092	-17.056	2300.00	0.0000	0	0.0000

### Inviluppo verifiche tensionali

#### Simbologia adottata

TC Tipo combinazione

tensione di compressione nel cls espresso in [MPa] scc tensione di compressione limite nel cls espresso in [MPa] scl tensione di trazione nel cls espresso in [MPa] sct tensione di trazione limite nel cls espresso in [MPa] sctl sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

#### Sezione nº 2 - Muro laterale

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,428	13,280	-5,266	3,099	-68,737	26,157	450,000	8
SLER	3,953	18,260	-13,026	3,099	-172,746	36,654	337,500	6

#### Inviluppo verifiche fessurazione

#### Simbologia adottata

тс Tipo combinazione

tensione nell'acciaio espresso in [MPa] sc tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Deformazione espressa in [%] Eps spaziatura tra le fessure espressa in [mm] sr ampiezza fessure e fessura limite espresse in [mm]

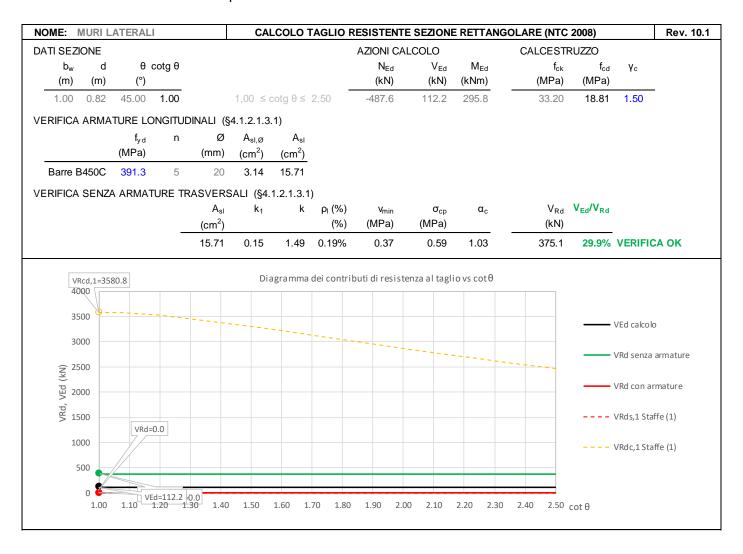
Combinazione critica

#### Sezione n° 2 - Muro laterale

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-251,006	-18,845	225,557	0,0000	0,000	0,000	0,200	7
SLER	-238,723	-17,963	225,557	0,0000	0,000	0,000	0,200	5



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	237

## 16.2.2.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

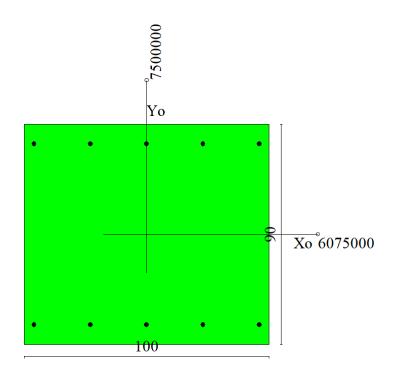


Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	238

### 16.2.3 Muro centrale

Nel seguente paragrafo vengono riportate le sollecitazioni per il muro centrale per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

### 16.2.3.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di  $\Phi$ 20/20 e nel lato compresso di  $\Phi$ 20/20 come rappresentato nella figura seguente per un totale di 10 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.



#### Dati

Nome sezione: Muro centrale

Tipo sezione Rettangolare
Base 100,0 [cm]
Altezza 90,0 [cm]

#### Caratteristiche geometriche





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	239

#### Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

 $\begin{array}{ll} \text{d} & \text{Diametro ferro espresso in [mm]} \\ \omega & \text{Area del ferro espresso in [cmq]} \end{array}$ 

N°	X	Υ	d	ω
1	96,00	82,00	20	3,14
2	73,00	82,00	20	3,14
3	50,00	82,00	20	3,14
4	27,00	82,00	20	3,14
5	4,00	82,00	20	3,14
6	4,00	8,00	20	3,14
7	27,00	8,00	20	3,14
8	50,00	8,00	20	3,14
9	73,00	8,00	20	3,14
10	96,00	8,00	20	3,14

Materiale impiegato: Calcestruzzo armato

#### Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo	40,000	[MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo	15,00	
Coeff. omogeneizzazione calcestruzzo teso/compresso	1,00	
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO		

#### Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

#### Combinazioni

#### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ VD & & \text{verifica di dominio} \end{array}$ 

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	$M_{Y}$	$M_{X}$	$M_t$	$T_Y$	$T_X$	VD	VT
1	813,1900	54,6500	0,0000	0,0000	0,0000	0,0000	SI	NO
2	813,1900	-20,3900	0,0000	0,0000	0,0000	0,0000	SI	NO
3	528,4200	64,3300	0,0000	0,0000	0,0000	0,0000	SI	NO
4	528,4200	-62,9300	0,0000	0,0000	0,0000	0,0000	SI	NO
5	575,0800	37,9800	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	575,0800	-13,7700	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	470,1200	2,9200	0,0000	0,0000	0,0000	0,0000	NO	SLEQP





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	240

### Risultati analisi

#### Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
5	152,43	0,00	(0,00; -62,43)	(100,00; -62,43)
6	341,32	0,00	(100,00; 341,32)	(0,00; 341,32)
7	1187,34	0,00	(0,00; -1097,34)	(100,00; -1097,34)

#### Risultati tensionali

#### Simbologia adottata

N° numero d'ordine della combinazione

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{f\text{-max}}$	$\sigma_{\text{f-min}}$
5	0,862	0,000	0,000	12,244	5,971
6	0,699	0,000	0,000	10,245	7,971
7	0.516	0.000	0.000	7 687	7 204

### Sollecitazioni ultime

### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N_{u} & & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{\chi_{u}} & & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{\gamma_{u}} & & \text{Momento ultimo in direzione Y, espresso in [kNm]} \\ FS & & \text{Fattore di sicurezza} \end{array}$ 

### Combinazione nº 1

$N_{\rm u}$	$M_{\chi_u}$	$M_{ m Yu}$	FS
<u>15111,5243</u>	0,0000	<u>1015,5619</u>	18,58
<u>18019,1648</u>	0,0000	54,6500	22,16
813,1900	0,0000	<u>804,4859</u>	14,72

#### Combinazione nº 2

N _u	$M_{xu}$	$M_{Yu}$	FS
<u>16960,5546</u>	0,0000	<u>-425,2705</u>	20,86
<u>18109,6069</u>	0,0000	-20,3900	22,27
813,1900	0,0000	<u>-804,4859</u>	39,45

#### Combinazione nº 3

$N_{\rm u}$	$\mathbf{M}_{Xu}$	$\mathbf{M}_{Yu}$	FS
13082,1337	0,0000	<u>1592,6227</u>	24,76
17993,3372	0,0000	64,3300	34,05
528,4200	0,0000	<u>695,5026</u>	10,81





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	241

$N_u$	$M_{Xu}$	$M_{Yu}$	FS
<u>13177,3231</u>	0,0000	<u>-1569,2989</u>	24,94
17997,0821	0,0000	-62,9300	34,06
528,4200	0,000	<u>-695,5026</u>	11,05

#### Risultati fessurazione

#### Simbologia adottata

Ν° numero d'ordine della combinazione

Mx Momento di prima fessurazione in direzione X, espresso in [kNm]

 $M_{Y} \\$ Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa] σf Tensione nel calcestruzzo, espressa in [MPa]  $\sigma_c$  $A_{\text{eff}}$ Area efficace a trazione, espressa in [cmq] Deformazione media acciaio teso, espressa in [°] Distanza media tra le fessure, espresso in [mm] Ampiezza delle fessure, espressa in [mm]

N°	$M_{x}$	$M_{Y}$	$\sigma_{f}$	$\sigma_{c}$	$A_{eff}$	ε	S _{rm}	w
5	0,0000	417,6910	-181,741	-13,862	2300,00	0,0000	0	0,0000
6	0,0000	-417,7043	-181,752	-13,863	2300,00	0,0000	0	0,0000
7	0.0000	401,1350	-196,604	-14,933	2300,00	0.0000	0	0,0000

#### Inviluppo verifiche tensionali

### Simbologia adottata

TC Tipo combinazione

tensione di compressione nel cls espresso in [MPa] scc tensione di compressione limite nel cls espresso in [MPa] scl tensione di trazione nel cls espresso in [MPa] sctl tensione di trazione limite nel cls espresso in [MPa] tensione minima e massima nell'armatura espressa in [MPa] sfc, sft

tensione limite nell'armatura espressa in [MPa] sf Comb. Combinazione critica

### Sezione nº 3 - Muro centrale

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,516	13,280	0,477	3,099	7,204	7,687	450,000	7
SLER	0.862	18.260	0.353	3.099	5.971	12.244	337.500	5

## Inviluppo verifiche fessurazione

### Simbologia adottata

TC Tipo combinazione

tensione nell'acciaio espresso in [MPa] sf SC tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Deformazione espressa in [%] Eps spaziatura tra le fessure espressa in [mm]

ampiezza fessure e fessura limite espresse in [mm]

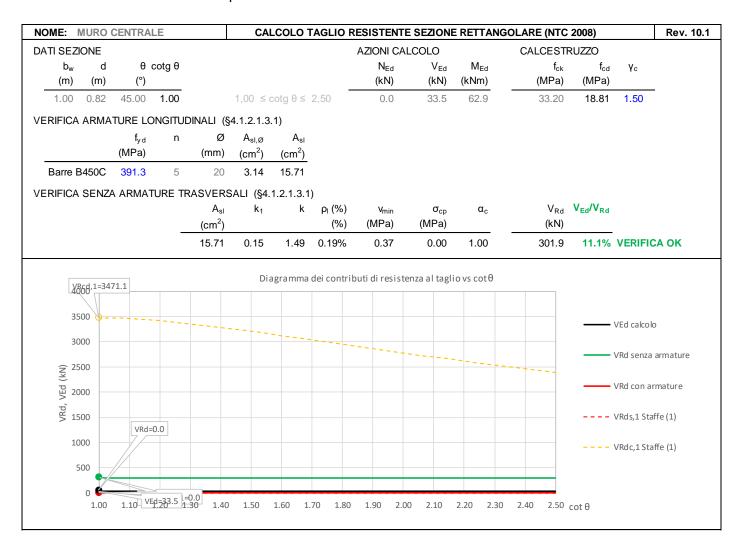
Comb. Combinazione critica

#### Sezione n° 3 - Muro centrale

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-196,604	-14,933	225,557	0,0000	0,000	0,000	0,200	7
SLER	-181,741	-13,862	225,557	0,0000	0,000	0,000	0,200	5



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	242

## 16.2.3.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

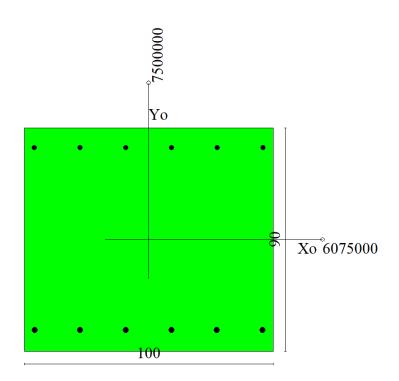


Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	243

### 16.2.4 Plinto fondazione

Nel seguente paragrafo vengono riportate le sollecitazioni per il plinto di fondazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

## 16.2.4.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di  $\Phi$ 24/15 e nel lato compresso di  $\Phi$ 20/15 come rappresentato nella figura seguente per un totale di 12 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.



#### Dati

Nome sezione: Fondazione

 Tipo sezione
 Rettangolare

 Base
 100,0 [cm]

 Altezza
 90,0 [cm]

### Caratteristiche geometriche

Area sezione 9000,00 [cmq] Inerzia in direzione X 7500000,0 [cm^4] Inerzia in direzione Y 6075000,0 [cm^4] Inerzia in direzione XY 0,0 [cm^4] Ascissa baricentro sezione  $X_G = 50,00$  [cm] Ordinata baricentro sezione  $Y_G = 45,00$  [cm]





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	244

#### Elenco ferri

#### Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]

d Diametro ferro espresso in [mm]

Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	4,20	8,60	24	4,52
2	22,52	8,60	24	4,52
3	40,84	8,60	24	4,52
4	59,16	8,60	24	4,52
5	77,48	8,60	24	4,52
6	95,80	8,60	24	4,52
7	96,00	82,00	20	3,14
8	77,60	82,00	20	3,14
9	59,20	82,00	20	3,14
10	40,80	82,00	20	3,14
11	22,40	82,00	20	3,14
12	4,00	82,00	20	3,14

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

#### Combinazioni

### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in[kN]} \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{I} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ \end{array}$ 

VD verifica di dominio

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	$M_{Y}$	$M_X$	Mt	$T_Y$	$T_X$	VD	VT
1	0,0000	488,0000	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	-272,0600	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	211,4100	0,0000	0,0000	0,0000	0,0000	SI	NO
4	0,0000	-119,1100	0,0000	0,0000	0,0000	0,0000	SI	NO
5	0,0000	351,7900	0,0000	0,0000	0,0000	0,0000	NO	SLER
6	0,0000	-191,0200	0,0000	0,0000	0,0000	0,0000	NO	SLER
7	0,0000	188,6600	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
8	0.0000	-117.0000	0.0000	0.0000	0.0000	0.0000	NO	SLEQP





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	245

## Risultati analisi

#### Caratteristiche asse neutro

Simbologia adottata

numero d'ordine della combinazione posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хс	α	(xi; yi)	(xf; yf)
5	20,59	0,00	(0,00; 69,41)	(100,00; 69,41)
6	17,21	0,00	(100,00; 17,21)	(0,00; 17,21)
7	20,59	0,00	(0,00; 69,41)	(100,00; 69,41)
8	17,21	0,00	(100,00; 17,21)	(0,00; 17,21)

#### Risultati tensionali

#### Simbologia adottata

Ν° numero d'ordine della combinazione

Tensione massima nel calcestruzzo espresso in [MPa] σ_{c-max} σ_{c-min} Tensione minima nel calcestruzzo espresso in [MPa] Tensione massima nel ferro espresso in [MPa] σ_{f-max} Tensione minima nel ferro espresso in [MPa] Of-min

Tensione tangenziale nel calcestruzzo espresso in [MPa]  $\tau_{c}$ 

IN	Oc-max	Oc-min	τc	Of-max	Of-min
5	3,934	0,000	0,000	36,081	-174,263
6	2,370	0,000	0,000	17,791	-133,843
7	2,110	0,000	0,000	19,350	-93,455
8	1,452	0,000	0,000	10,897	-81,979

## Sollecitazioni ultime

## Simbologia adottata

numero d'ordine della combinazione Sforzo normale ultimo, espresso in [kN]  $M_{Xu} \\$ Momento ultimo in direzione X, espresso in [kNm]  $\begin{array}{c} M_{Yu} \\ FS \end{array}$ Momento ultimo in direzione Y, espresso in [kNm] Fattore di sicurezza

#### Combinazione nº 1

	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> Yu 823,1500	<b>FS</b> 1,69
Combinazione n° 2	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> _{Yu} <u>-583,1459</u>	<b>FS</b> 2,14
Combinazione n° 3	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> _{Yu} <u>823,1500</u>	<b>FS</b> 3,89
Combinazione n° 4	<b>N</b> _u 0,0000	<b>M</b> _{Xu} 0,0000	<b>M</b> _{Yu} -583,1460	<b>FS</b> 4,90





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COM	MESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI	0B	02	Ε	ZZ	CL	VI	03	04	001	В	246

#### Risultati fessurazione

#### Simbologia adottata

Ν° numero d'ordine della combinazione

 $M_X$ Momento di prima fessurazione in direzione X, espresso in [kNm]  $M_{Y}$ Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa] σf Tensione nel calcestruzzo, espressa in [MPa]  $\sigma_{\text{c}}$ Area efficace a trazione, espressa in [cmq]

Aeff Deformazione media acciaio teso, espressa in [°] Distanza media tra le fessure, espresso in [mm]  $S_{rm}$ Ampiezza delle fessure, espressa in [mm]

N°	$M_{X}$	$M_Y$	$\sigma_{f}$	$\sigma_{c}$	$A_{eff}$	3	S _{rm}	w
5	0,0000	344,0572	-170,432	-12,969	2660,00	0,0433	268	0,1973
6	0,0000	-337,2468	-236,301	-17,699	2300,00	0,0000	0	0,0000
7	0,0000	344,0572	-170,432	-12,969	2660,00	0,0000	0	0,0000
8	0,0000	-337,2468	-236,301	-17,699	2300,00	0,0000	0	0,0000

### Inviluppo verifiche tensionali

### Simbologia adottata

TC Tipo combinazione

tensione di compressione nel cls espresso in [MPa] SCC scl tensione di compressione limite nel cls espresso in [MPa] tensione di trazione nel cls espresso in [MPa] sct sctl tensione di trazione limite nel cls espresso in [MPa] sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

### Sezione n° 5 - Fondazione

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,110	13,280	-7,111	3,099	-93,455	19,350	450,000	7
SLER	3,934	18,260	-13,261	3,099	-174,263	36,081	337,500	5

## Inviluppo verifiche fessurazione

## Simbologia adottata

TC Tipo combinazione sf tensione nell'acciaio espresso in [MPa]

sc tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmg] Eps Deformazione espressa in [%] spaziatura tra le fessure espressa in [mm] sr ampiezza fessure e fessura limite espresse in [mm]

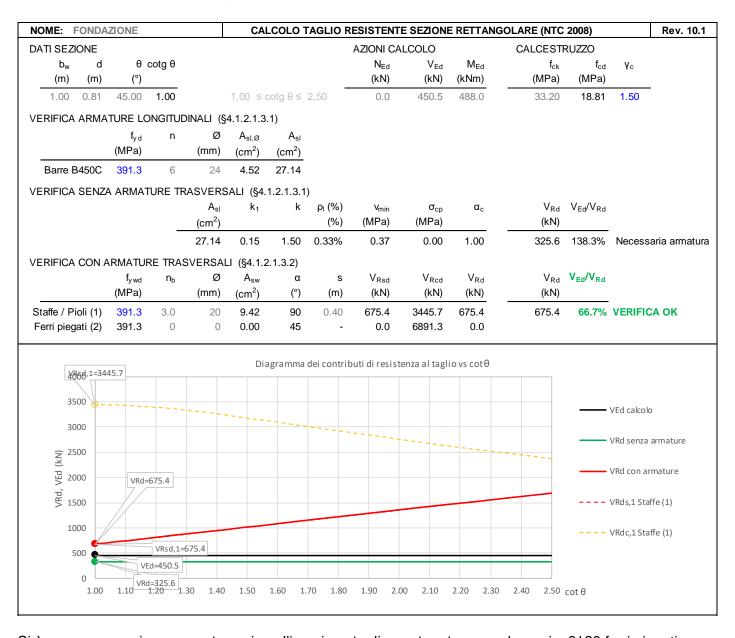
Combinazione critica

#### Sezione n° 5 - Fondazione

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-170,432	-12,969	260,861	0,0000	0,000	0,000	0,200	7
SLER	-170,432	-12,969	260,861	0,0433	268,104	0,197	0,200	5



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	247

## 16.2.4.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.



Si è reso necessario per questa sezione l'inserimento di armatura trasversale, pari a 3φ20 ferri piegati.





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	248

### 17. ANALISI MURO POSTERIORE MURI SCATOLARI ESTERNI

Di seguito si riportano le analisi e le verifiche del muro posteriore a chiusura della struttura scatolare posta a monte della spalla denominata S01.

Il muro in c.a. presenta un'altezza pari a 6.80m e uno spessore pari a 0.90m. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento.

### 17.1 ANALISI CARICHI MURO POSTERIORE MURI SCATOLARI ESTERNI

# 17.1.1 Azioni permanenti strutturali (G₁)

Si riporta a seguire l'analisi dei carichi agenti sul muro posteriore a chiusura della struttura scatolare posta a monte della spalla in termini di pesi propri strutturali. Si considera uno spessore pari a 0.90m

 $g_1 = (0.90 \text{ m} * 1.00 \text{ m}) * 25 \text{ kN/m}^3 = 22.50 \text{ kN/m}$ 

Peso muro posteriore

## 17.1.2 Azioni permanenti non strutturali (G₂)

17.1.2.1 Ballast (G_{2.1})

Si applicano le pressioni verticali derivanti dal peso del cassonetto di ballast a tergo della spalla, di larghezza circa 9.00 m, spessore 0.80 m e peso specifico  $20 \text{ kN/m}^3$ . Si considera una spinta a riposo con un coefficiente  $k_0$  pari a 0.03843.

Si valuta come carico permanente associato una pressione uniforme mediata sulla larghezza del muro di 12.50 m, come di seguito esposto:

 $G_2 = (0.80*20*8.2)/(12.80) = 10.25 \text{ kPa}$ 

 $G_{2h} = 10.25*0.3843 = 3.94 \text{ kN/m}$ 

Si ha pertanto una spinta a riposo distribuita sull'altezza del muro. Di seguito si riportano le azioni associate inserite nel modello FEM:



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	249

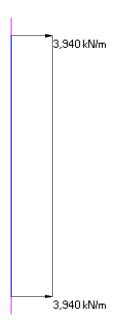



Figura 105. Azione associate alla presenza del cassonetto di ballast dietro alla spalla.

# 17.2 SPINTA DEL TERRENO (G₃)

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

Nome	Tipo	<b>Y</b> G1	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
TERRENO, FALDA	Permanente	EQU 0.90 / 1.10 (A1) 1.00 / 1.30 (A2) 1.00 / 1.00	-	-	-

Le condizioni di spinta sono assunte in base agli spostamenti delle pareti, ovvero del grado di mobilitazione necessario per innescare il regime di spinta, vedi a riguardo le indicazioni contenute nell'EC7.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	250

Table C.1 — Ratios v₂/h

Kind	l of	v₀/h	v₂/h							
wall	movement	loose soil	dense soil							
		%	%							
a)	V _a	0,4 to 0,5	0,1 to 0,2							
b)	V _a	0,2	0,05 to 0,1							
c)	v _a	0,8 to 1,0	0,2 to 0,5							
d)	Ya C	0,4 to 0,5	0,1 to 0,2							
where V _a										

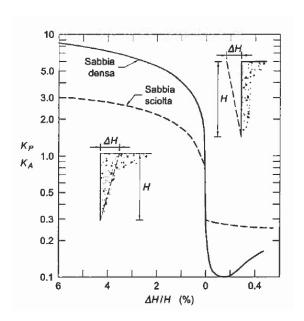



Figura 106 - Spostamenti relativi muro-terreno necessari per il raggiungimento di un regime di spinta attiva secondo EC7 Annex C e Lancillotta (1999)





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	251

## 17.2.1 Spinta a riposo

La spinta statica totale sulla parete S_{0h} si calcola secondo le seguenti relazioni:

$$S_{0h} = \int_0^H \sigma_h(z) dz$$

spinta a riposo statica totale sul muro

$$\sigma_h(z) = \sigma_v(z)^* k_0$$

pressione orizzontale di spinta del terreno

Per piano campagna orizzontale si fa riferimento alla seguente correlazione (Jaky, 1944 e Schmidt, 1966):  $k_o = 1-sen(\phi')^*OCR^{\alpha}$ 

OCR = 1

grado di sovraconsolidazione

 $\alpha = 0.5$ 

Per pendio inclinato ( $\beta$ ) si può considerare che la spinta a riposo sia parallela al p.c. e che il coefficiente  $k_o$  valga:

 $k_o = (1-sen(\phi')*OCR^{\alpha})*(1+sen \beta)$ 

 $\beta = 0$ 

angolo inclinazione tra profilo e piano orizzontale

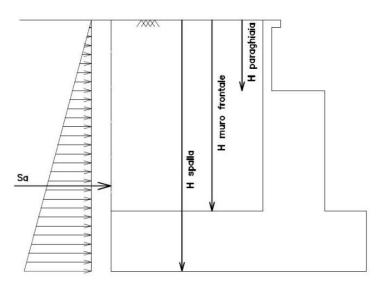



Figura 107: Schema per il calcolo degli effetti della spinta statica del terreno

Nel caso in esame si considera un'altezza del terreno pari all'altezza del muro posteriore più lo spessore del solettone superiore. Si ha pertanto una spinta a riposo distribuita sui muri esterni. Nel seguito si riporta il valore dell'azione sul muro posteriore:





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	252

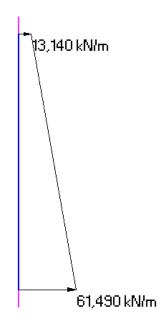



Figura 108. Azione associate alla spinta del terreno.

# 17.2.2 Spinta attiva

Il coefficiente di spinta attiva (K_a) viene valutato ricorrendo alla correlazione generale di Mueller-Breslau basata sulla teoria di Coulomb e riferita a superfici di rottura piane. In questo caso l'approssimazione (rispetto a quanto si sarebbe ottenuto considerando superfici di rottura di geometria complessa) risulta molto contenuta e a favore di sicurezza.

La spinta attiva statica totale sulla parete S_{ah} si calcola secondo le seguenti relazioni:

$$S_{ah} = \int_{0}^{H} \sigma_{h}(z) dz$$

spinta attiva statica totale sul muro

$$K_{a} = \frac{ser^{2}(\psi + \phi)}{ser^{2}\psi \cdot ser(\psi - \delta)\left[1 + \sqrt{\frac{ser(\phi + \delta) \cdot ser(\phi - \beta)}{ser(\psi - \delta) \cdot ser(\psi + \beta)}}\right]^{2}}$$

coefficiente di spinta attiva

 $\sigma_h(z) = \sigma_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$   $\sigma_v(z)$  H  $\phi$   $\delta = 0$   $\psi = 90^{\circ}$   $\beta$  c

pressione orizzontale di spinta del terreno pressione verticale del terreno altezza della parete di spinta angolo attrito del terreno attrito tra terreno e parete angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale coesione del terreno

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni, viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma' = \gamma_{sat} - \gamma_{w}$$





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	253

y_{sat} peso di volume saturo del terreno (dipendente dall'indice dei pori)

γ_w peso di volume dell'acqua

 $S_{ah} = \int_0^H \sigma'_h(z) dz + E_{ws} + E_{wd}$  spinta attiva statica totale efficace sul muro

 $\sigma'_h(z) = \sigma'_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$  pressione orizzontale di spinta efficace del terreno

 $\sigma'_{\nu}(z)$  pressione verticale efficace del terreno

 $E_{ws}$  spinta idrostatica  $E_{wd}$  spinta idrodinamica

## 17.2.3 Pressioni idrostatiche

La distribuzione di forze delle spinte idrostatiche E_{ws} sulla parete sono descritte dalle seguenti relazioni:

 $E_{ws}(z) = \gamma_{w} \cdot z$  spinta idrostatica

z affondamento rispetto al pelo libero dell'acqua

γ_w peso di volume dell'acqua

Cautelativamente la falda è stata posta in corrispondenza del piano di posa delle fondazioni. Pertanto, il regime di spinta non è influenzato dalla presenza della falda.

# 17.2.4 Azioni variabili orizzontali (Q)

## 17.2.4.1 Azioni da traffico ferroviario (Q₁)

Sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal transito ferroviario esterno. Come da normativa, si ipotizza come larghezza totale transitabile il tratto di profilo dove i carichi possono interagire con l'opera di sostegno, ovvero al di sopra della fondazione e all'interno del cuneo di spinta del terreno sulla parete.

Considerando caricati entrambi i binari, si valuta come carico accidentale associato una pressione uniforme media, come di seguito esposto:

 $q = \frac{1}{L_T \cdot L_I} \cdot \sum_{1}^{n} Q_i$  pressione uniforme media sull'area caricata  $L_T^* L_L$ 

L_L = 6.40 m lunghezza longitudinale interessata dai carichi

(lunghezza fondazione di monte spalla, comprensiva del cuneo di spinta del

terreno)

L_T = 12.50 m larghezza trasversale transitabile (larghezza muro posteriore)

Spalla S2

q = 1/(6.40*12.80)*(4*250)*2 = 24.41 kPa

L'azione da traffico ferroviaria applicata all'elemento si valuta come di seguito esposto:

 $Sq = q \cdot k_0 \cdot L_T$  $k_0 = 1-sen(38^\circ)*1^{0.5}.=0.03843$  pressione uniforme media sull'area caricata  $L_{\text{\scriptsize T}}{}^{\star}L_{\text{\scriptsize L}}$ 

coefficiente di spinta a riposo

Sq= 24.41*0.3843= 9.38 kN/m

Si ha pertanto una spinta a riposo distribuita sull'altezza del muro.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	254

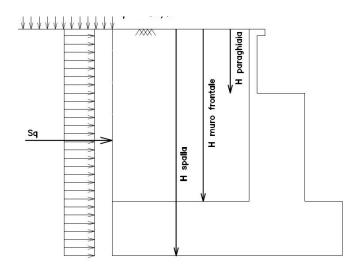



Figura 109: Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

Nel seguito si riporta il valore dell'azione sul muro posteriore:

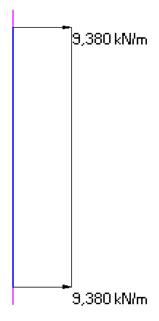



Figura 110. Azioni associate al sovraccarico longitudinale da traffico.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	255

#### 17.3 DESCRIZIONE DEL MODELLO FEM

Per la determinazione delle sollecitazioni che interessano la struttura è stato realizzato un modello agli elementi finiti. Il muro è stato trattato come una trave a semplice appoggio. L'analisi è stato fato considerando 1m di larghezza. Si riporta di seguito una descrizione del modello FEM.

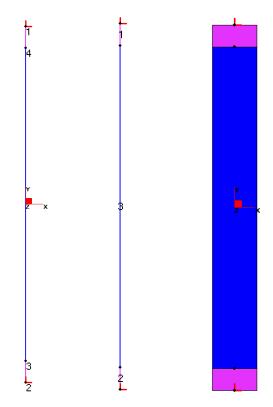



Figura 111 - Modello agli EF per il muro posteriore- Numerazione nodi - Numerazione elementi e indicazione zone nodali (viole)

Nel modello sono state implementate le seguenti condizioni di vincolo:

• appoggi in corrispondenza all'asse del solettone superiore e all'asse plinto di fondazione.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	256

#### 17.3.1 Risultati del modello FEM

Nel seguito si riportano i valori delle sollecitazioni sulla struttura associate agli inviluppi SLU, SLV, SLE rara e SLE quasi permanente.

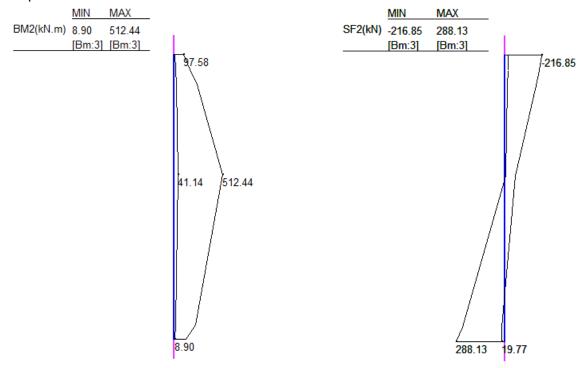



Figura 112 - ENV SLU - Momento flettente (kNm) - Taglio (kN)

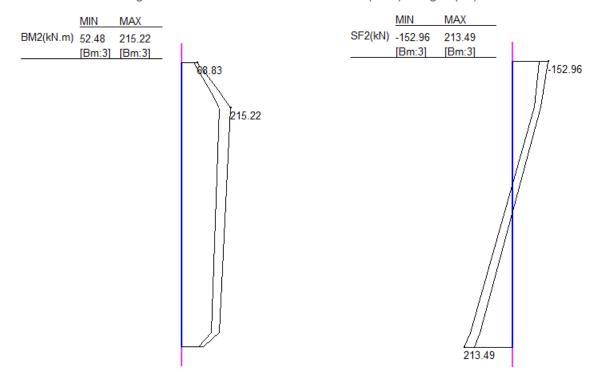



Figura 113 - ENV SLV - Momento flettente (kNm) - Taglio (kN)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	257

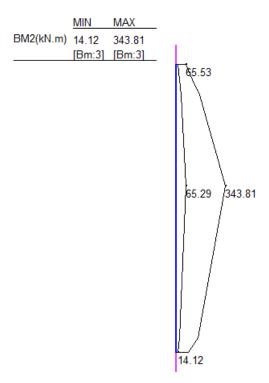



Figura 114 - ENV SLE RA - Momento flettente (kNm)

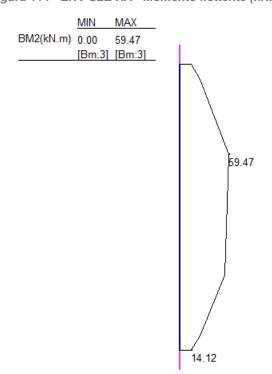
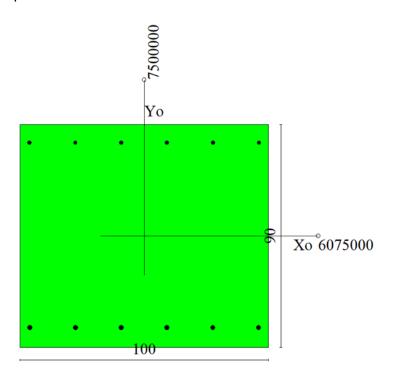



Figura 115 - ENV SLE QP - Momento flettente (kNm)



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	258

#### 17.4 VERIFICHE STRUTTURALI

Nel seguente paragrafo vengono riportate le sollecitazioni del muro posteriore per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

## 17.4.1.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di  $\Phi$ 20/15 e nel lato compresso di  $\Phi$ 16/15 come rappresentato nella figura seguente per un totale di 12 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.



#### Dati

Nome sezione: Muro posteriore

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 90,0 [cm]

#### Caratteristiche geometriche

Area sezione	9000,00	[cmq]
Inerzia in direzione X	7500000,0	[cm^4]
Inerzia in direzione Y	6075000,0	[cm^4]
Inerzia in direzione XY	0,0	[cm^4]
Ascissa baricentro sezione	$X_G = 50,00$	[cm]
Ordinata baricentro sezione	$Y_G = 45.00$	[cm]





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	259

#### Elenco ferri

#### Simbologia adottata

Posizione riferita all'origine

Ν° numero d'ordine

Ascissa posizione ferro espresso in [cm] X Y Ordinata posizione ferro espresso in [cm]

d Diametro ferro espresso in [mm]

Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	4,00	8,00	20	3,14
2	22,40	8,00	20	3,14
3	40,80	8,00	20	3,14
4	59,20	8,00	20	3,14
5	77,60	8,00	20	3,14
6	96,00	8,00	20	3,14
7	96,20	82,60	16	2,01
8	77,72	82,60	16	2,01
9	59,24	82,60	16	2,01
10	40,76	82,60	16	2,01
11	22,28	82,60	16	2,01
12	3,80	82,60	16	2,01

Materiale impiegato: Calcestruzzo armato

#### Caratteristiche calcestruzzo

our attoriono ourocon azzo		
Resistenza caratteristica calcestruzzo	40,000	[MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo	15,00	
Coeff. omogeneizzazione calcestruzzo teso/compresso	1,00	

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

## Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] 450,000 [MPa] Tensione snervamento acciaio 210000,000 [MPa] Modulo elastico E

Fattore di incrudimento acciaio 1,00

#### Combinazioni

## Simbologia adottata

numero d'ordine della combinazione N° sforzo normale espresso in[kN] momento lungo Y espresso in [kNm]  $M_{\mathsf{X}}$ momento lungo X espresso in [kNm] M_t T_Y T_X VD momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN]

verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	$M_{Y}$	Mx	Mt	$T_Y$	$T_X$	VD	VT
1	0,0000	406,0400	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	337,3900	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	272,6200	0,0000	0,0000	0,0000	0,0000	NO	SLER
4	0,0000	57,7600	0,0000	0,0000	0,0000	0,0000	NO	SLEQP





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	260

## Risultati analisi

#### Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Xc	α	(xi; yi)	(xf; yf)
3	17,99	0,00	(0,00; 72,01)	(100,00; 72,01)
4	17,99	0,00	(0,00; 72,01)	(100,00; 72,01)

#### Risultati tensionali

#### Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$ 

τ_c Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{c-max}$	$\sigma_{c-min}$	$ au_{c}$	$\sigma_{f-max}$	$\sigma_{\text{f-min}}$
3	3,572	0,000	0,000	31,544	-190,666
4	0,757	0,000	0,000	6,683	-40,396

#### Sollecitazioni ultime

#### Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$ 

FS Fattore di sicurezza

#### Combinazione nº 1

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 582,0208
 1,43

## Combinazione n° 2

#### Risultati fessurazione

#### Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$ 

 $\begin{array}{lll} \sigma_{f} & & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{c} & & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & & \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & & \text{Deformazione media acciaio teso, espressa in [engleta]} \\ S_{mm} & & \text{Distanza media tra le fessure, espresso in [mm]} \\ w & & \text{Ampiezza delle fessure, espressa in [mm]} \\ \end{array}$ 

N°	M _X	$M_{Y}$	$\sigma_{f}$	$\sigma_{c}$	$A_{eff}$	3	S _{rm}	w
3	0,0000	329,6738	-230,569	-17,292	2300,00	0,0000	0	0,0000
4	0,0000	329,6738	-230,569	-17,292	2300,00	0,0000	0	0,0000





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	261

#### Inviluppo verifiche tensionali

#### Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

#### Sezione nº 4 - Muro posteriore

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,757	13,280	-3,030	3,099	-40,396	6,683	450,000	4
SLER	3,572	18,260	-14,300	3,099	-190,666	31,544	337,500	3

#### Inviluppo verifiche fessurazione

## Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]

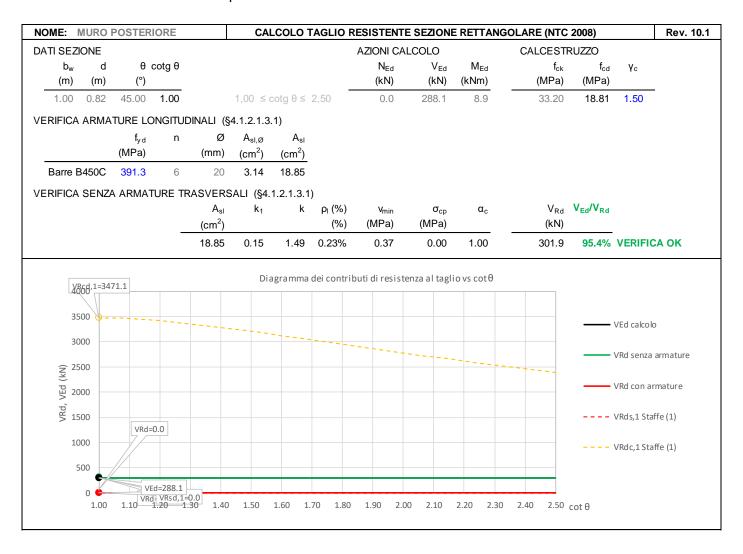
Comb. Combinazione critica

#### Sezione nº 4 - Muro posteriore

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-230,569	-17,292	225,557	0,0000	0,000	0,000	0,200	4
SLER	-230,569	-17,292	225,557	0.0000	0,000	0.000	0,200	3



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	262

## 17.4.1.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni associate alle combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.



Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

l'asse x per condizioni diverse d/a (40)

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	263

#### 18. VERIFICHE LOCALI

## 18.1 BAGGIOLI

Si procede alla verifica del baggiolo tipologico di dimensioni 150x180x30 cm, armato in verticale con 1Ø20/10 distribuiti sui lati perimetrali, armato in orizzontale con 1Ø12/10 staffe cerchianti esterne (n°2 braccia per direzione) e 8Ø12/10 ganci interni (n°8 braccia per direzione).

Al fine di mantenere un abbondante margine di sicurezza, i carichi di progetto verticale  $N_{Ed}$  ed orizzontale  $V_{Ed}$  sono stati ipotizzati come i massimi concomitanti previsti su tutti gli appoggi (F)-(UT)-(UL)-(M), vedi tabelle specifiche, inoltre l'impronta degli appoggi stessi è stata assunta cautelativamente assunta di 80x80 cm.

Le verifiche sono state svolte secondo le indicazioni del CEB-FIP Model Code 90 e secondo quanto riportato in letteratura riguardo gli studi di diffusione delle tensioni di compressione e trazione su un volume generico di calcestruzzo (Leonhardt, 1973).

Per le azioni dell'appoggio si considera una eccentricità addizionale di 5 cm, quindi una centratura non ottimale delle azioni sul volume di calcestruzzo del baggiolo con conseguente riduzione dell'area efficace di contatto.

Si sono considerate le armature di cerchiatura come collaboranti per il 0% ai fini dell'aumento della resistenza a compressione del calcestruzzo in zona compressa (Region I), mentre per le tensioni di trazione interna si sono considerate solo le armature trasversali interne (Region II).

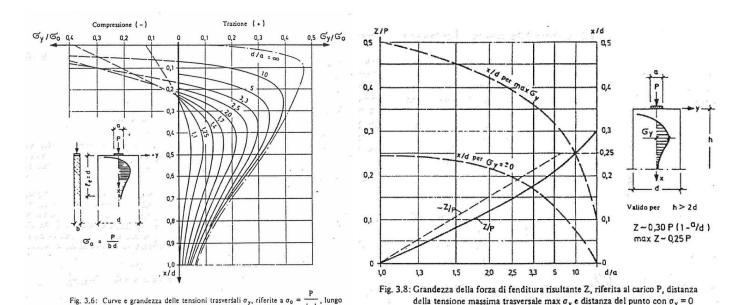



Figura 116 – Grafici da F. Leonhardt, 1973 "Casi speciali di dimensionamento delle strutture in c.a. e c.a.p."

dal bordo caricato in lastre con h > 2d (40)





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	03	04	001	В	264

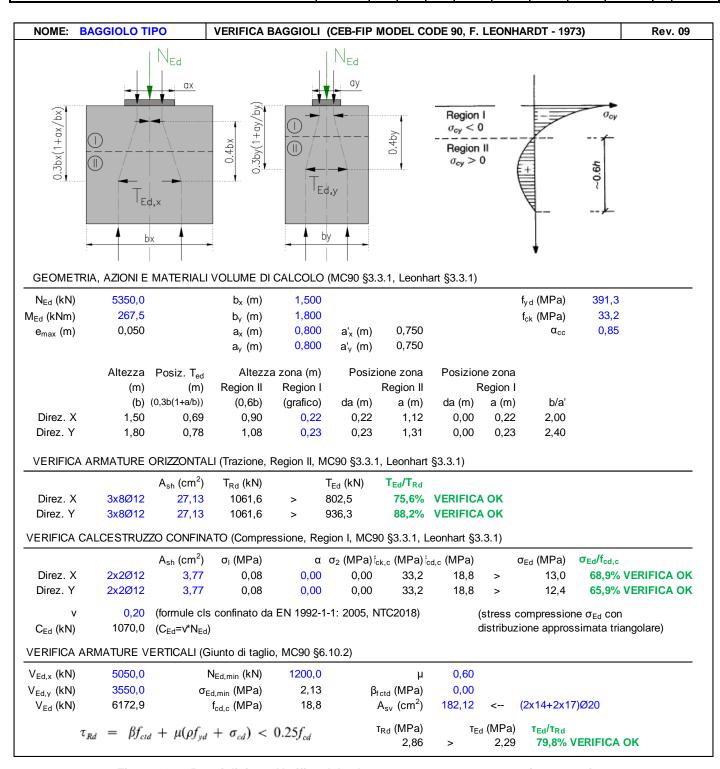



Figura 117 – Baggioli tipo – Verifica del calcestruzzo armato a compressione e trazione



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	265

#### 18.2 DEFORMABILITA' SPALLA

## 18.2.1 Verifiche sicurezza del binario

Per la sicurezza del binario occorre garantire quanto riportato al §2.5.1.4.5.2-3 del MdP.

"Al fine di garantire la sicurezza del binario rispetto a fenomeni di instabilità per compressione e rottura per trazione della rotaia, nonché rispetto ad eccessivi scorrimenti nel ballast, causa di un suo rapido deterioramento, occorre che vengano rispettati i seguenti limiti sull'incremento delle tensioni nel binario e sugli spostamenti relativi tra binario ed estradosso dell'impalcato o del rilevato. L'incremento massimo consentito di tensione nella rotaia causato dall'interazione binario-struttura prodotta dalle azioni indicate in 2.5.1.4.5.1 sarà assunto pari a:

 $\Delta \sigma c$ , max = 60 N/mm2 (per la compressione)

 $\Delta \sigma t$ , max = 70 N/mm2 (per la trazione)

Lo spostamento massimo consentito tra estradosso dell'impalcato o del rilevato e la faccia inferiore della traversa dovuto alle sole forze di avviamento e/o di frenatura sarà assunto pari a 5 mm. La verifica di sicurezza del binario, in termini di tensioni e spostamenti, andrà condotta considerando la combinazione caratteristica (rara) del metodo S.L.E., adottando per le azioni di cui al precedente punto 2.5.1.4.5.1 coefficienti voi=1,0 fermi restando i su esposti limiti di incremento di tensione nella rotaia."

"Gli effetti dell'interazione binario-struttura in termini di azioni longitudinali trasmesse alla sottostruttura (reazioni vincolari negli appoggi fissi), tensioni supplementari nel binario e scorrimenti relativi binario-impalcato, saranno valutati mediante una serie di analisi di simulazione del comportamento del ponte soggetto alle azioni termiche ed ai carichi orizzontali e verticali dei convogli in transito, portando in conto la resistenza ai movimenti longitudinali del binario e la rigidezza della struttura, attraverso un modello di calcolo del tipo riportato in Fig. 2.5.1.4.5.3-1. In alternativa, è possibile effettuare una valutazione semplificata delle reazioni vincolari con il metodo riportato nell'Allegato 3, oppure con il metodo di cui all'Allegato 4 qualora siano rispettate le condizioni ivi elencate. In tal caso il rispetto dei limiti sulle altre grandezze di interesse (tensioni nelle rotaie e spostamenti relativi binario-impalcato) può ritenersi adeguatamente soddisfatto senza specifiche verifiche."

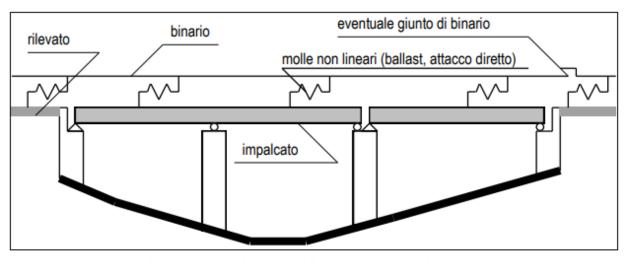



Fig. 2.5.1.4.5.3-1 - Schema di modello strutturale per valutare l'interazione.

Figura 118 – Interazione binario- struttura - Schema generale di calcolo

"ALLEGATO 4 – VALUTAZIONE SEMPLIFICATA DELLE REAZIONI DOVUTE AGLI EFFETTI DI INTERAZIONE, METODO PER SINGOLA LUCE APPOGGIATA

Per una sovrastruttura realizzata con un singolo impalcato (in semplice appoggio) non è necessario il controllo delle tensioni nella rotaia se:

• La sottostruttura ha rigidezza K sufficiente a limitare lo spostamento dell'impalcato in direzione longitudinale dovuto all'avviamento e alla frenatura  $\delta_B$ , ad un massimo di 5 mm in presenza delle forze longitudinali dovute all'avviamento e alla frenatura definite in



- 2.5.1.4.3.3; per la determinazione degli spostamenti si raccomanda di prendere in conto la configurazione e le proprietà della struttura date in 2.5.1.4.5.3;
- Per le azioni da traffico verticale lo spostamento longitudinale dell'estradosso dell'impalcato all'estremità dovuto alla deformazione dell'impalcato  $\delta H$ , non supera i 5mm;
- La lunghezza di espansione L⊤ è minore di 40 m."

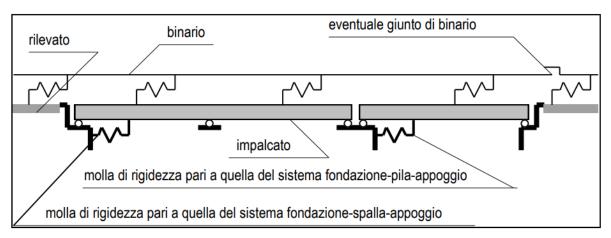



Fig. 2.5.1.4.5.3-3 - Schema di modello strutturale semplificato per valutare l'interazione.

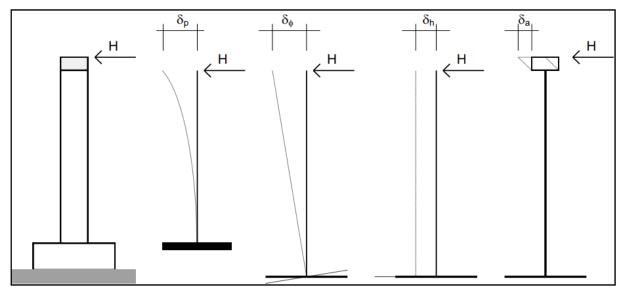



Fig. 2.5.1.4.5.3-4 - Individuazione dei contributi alla deformabilità complessiva del sistema fondazione-pila-appoggio

Figura 119 – Interazione binario- struttura - Schema semplificato di calcolo

Nel caso in oggetto, considerando la massima altezza pila prevista e le valutazioni effettuate nel dimensionamento delle sottofondazioni, alla cui documentazione di calcolo si rimanda per ulteriori dettagli, per la verifica di sicurezza si ha quanto segue.





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	03	04	001	В	267

NOME:	IMPALCAT	O L=40 m	CALCO	LO FORZ	A AVVIAMI	ENTO / FRENATI	JRA	Rev. 00	
L calcolo (m) L (m)	38.00 40.00	Lunghezza tra app Lunghezza di binai	-		Distanza F	PF/appoggi (m)	3.80		
TRENO LM7	1 e SW/0	TRE	NO SW/2						
α (-)	1.10		α (-)	1.00					
Q _{3,f} (kN)	880.0		Q _{3,f} (kN)	1400.0	Forza fre	natura caratt. lonç	gitudina	le	
Q _{3,a} (kN)	1100.0		Q _{3,a} (kN)	1000.0	Forza aw	iamento caratt. Id	ongitudi	nale	
VERIFICHE S	SICUREZZA	BINARIO (§2.5.1.4.	5.3 MdP)						
$Q_{3,f}$ (kN)	1400.0	Massima azione f	renatura pe	r LM71 o S	SW/0 o SW	//2			
Q _{3,a} (kN) 1100.0 Massima azione awiamento per LM71 o SW/0 o SW/2									
H (kN)	2500.0	Massima azione a	pplicata all	l'appoggio					
I _L (m ⁴ )	30.38	Inerzia longitudina	le elevazior	ne					
E (MPa)	33346	Modulo elastico el	evazione						
H _{elev} (m)	4.00	Altezza elevazione	e						
K (kN/m)	47478973	$K=(3*E*I_L)/H_{elev}^3$							
$\delta_{p}$ (mm)	0.1	Spostamento defo	rmabilità el	lastica elev	vazione	(da calc	olo fond	azioni)	
$\delta_{\varphi}$ (mm)	0.0	Spostamento defo	rmabilità ro	tazione fo	ndazione	φ (rad) C	.00001		
$\delta_h$ (mm)	1.0	Spostamento defo	rmabilità tr	aslazionefo	ondazione	s _h (mm)	1.0		
δ _a (mm)	1.0	Spostamento defo	rmabilità a	ppoggi		、 ,			
Σδ _i (mm)	2.1	Spostamento tota	le	<	5.0 mm	OK VERIFICAT	О		

## 18.2.2 Effetti del secondo ordine

Con riferimento alle valutazioni degli spostamenti orizzontali di testa spalla effettuati nella condizione di esercizio SLE RA (verifica di sicurezza del binario) e nella condizione sismica SLV (verifiche escursione giunti), visti i valori trascurabili in relazione alle dimensioni e alla snellezza della sottostruttura, si conferma che gli effetti del secondo ordine dei carichi applicati verticali sono irrilevanti ai fini dei calcoli di dimensionamento.





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	268

#### 18.3 RITEGNI

Si verificano i ritegni trasversali e longitudinali alle massime azioni sismiche SLV secondo il modello teorico locale a tirante – puntone, come previsto in ENV 1992 e CEB-FIP Model Code 90.

Nei paragrafi seguenti viene indicata la geometria, lo schema di calcolo, le armature previste e le massime azioni orizzontali N_{Ed} considerate nei vari casi, nell'ipotesi a favore di sicurezza di un'amplificazione delle forze sismiche trasmesse di 1.10 e di spessori strutturali delle superfici di contatto cautelativamente ridotte.

# 18.3.1 Campata L=40 m

## 18.3.1.1 Ritegni trasversali

Dato che si tratta degli stessi elementi di ritegno, fare riferimento a quanto riportato nella relazione di calcolo delle pile.

## 18.3.1.2 Ritegni longitudinali

Si considera l'azione  $N_{Ed}=1.10*5050=5550$  kN, un'armatura al corrente teso verticale di  $1x1\varnothing26/10$  e un'armatura distribuita interna di staffe/ganci  $1\varnothing14/10/10$  ad assorbire le trazioni orizzontali all'interno del ritegno. A favore di sicurezza, si considera un effetto di confinamento delle armature trasversali nullo.

NOME: R	RITEGNI L	ONG. L=40m	VERIFICHE LOCALI METODO STRUT-TIE (ENV 1992, CEB-FIP MC90)								
GEOMETRIA		·			MATERIALI	<u> </u>	AZIONI				
D ₁ (m) D ₃ (m) a (m) d (m)  VERIFICA AF	0.35 0.40 0.73 0.75 RMATURA	B (m) θ (rad)	2.00 <b>0.453</b>	(26.0°)	f _{yd} (MPa) f _{ck} (MPa) α _{cc} ✓	391.3 33.20 0.85 0.87	N _{Ed} (kN) V _{Ed} (kN)	5555.0			
- Tiranti tesi $T=T_3 \text{ (kN)}$ $A_s \text{ (mm}^2\text{)}$ $\sigma_s \text{ (MPa)}$	3474.5 10613 327.37	(1x1Ø26/10)	σ _{Ed} /f _{yd} 83.7%	VERIFICA OK	VEd (	- 75	d				
$T_w=T_2$ (kN) $A_{sw}$ (mm ² ) $\sigma_{sw}$ (MPa)	5555.0 22464 247.29	(1Ø14/10/10)	σ _{Ed} /f _{yd} 63.2%	VERIFICA OK	N _{Ed}	17/2					
VERIFICA CA					<u>a</u>	12	72	"			
- Armatura c	di confinan	nento (NTC2018 §	4.1.2.1.2.1)	)	_'	1 2	- "n"				
$A_{sh}$ (mm ² ) $\sigma_{l}$ (MPa) $\sigma$ $\sigma$ (MPa)	0.00 1.00 0.00		f _{ck,c} (MPa) f _{cd,c} (MPa) _{I,max} (MPa)	33.2 18.8 16.31	<u>*</u>	¥13 €	2244				
- Puntoni co	mpressi					i	4	· · · · · · · · · · · · · · · · · · ·			
$C_1$ (kN) $B_1$ (m) $\sigma_{c1}$ (MPa)	6177.9 0.31 9.82	σ	_{FEd} /σ _{Rd,max} 60.2%	VERIFICA OK		<b>T</b>	C 8				
$C=C_2$ (kN) $B_2$ (m) $\sigma_{c2}$ (MPa)	6177.9 0.91 3.38	σ	σ _{Ed} /σ _{Rd,max} 20.7%	VERIFICA OK							



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	269

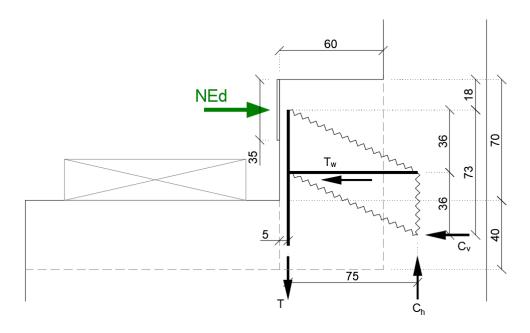



Figura 120 – Schema delle verifiche locali del ritegno longitudinale





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	270

# 19. RIEPILOGO INCIDENZE C.A.

Dalle verifiche effettuate sugli elementi in c.a. costituenti la sottostruttura in oggetto, si riassumono di seguito i principali valori di incidenza di armature previsti rispetto ai volumi totali di calcestruzzo.

Sottostruttura	Plinto (kg/m²)	Elevazione (kg/m²)		Muri (kg/m²)	Paraghiaia (kg/m²)	Baggioli (kg/m²)	Ritegni (kg/m²)
SPALLA SP1	100	80	140	120	100	400	450
SCATOLARE	120	-	100	120	-	-	-





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	03	04	001	В	271

#### **20. APPOGGI E GIUNTI**

#### 20.1 Appoggi

Gli apparecchi d'appoggio sono dimensionati per le massime azioni statiche orizzontali, trasversali e verticali in condizione statica SLU e sismica SLV, con riferimento all'analisi elastica con q=1.00.

Le massime azioni sismiche assorbite dai vincoli dell'impalcato in acciaio L=40 m sono state valutate considerando lo spettro elastico longitudinale o trasversale del primo periodo di vibrazione della pila più sollecitata in condizione sismica, nel caso del viadotto in esame quella di altezza massima H=5.00 m. Tale assunzione risulta a favore di sicurezza anche per le spalle.

Massa efficace longitudinale (kg) 1842895 (Intera campata) Massa efficace trasversale (kg) 973374 (Mezza campata) (Mezza campata) Massa efficace verticale (kg) 973374 Forza sismica longitudinale (kN) 9644 Forza sismica trasversale (kN) 3574 Forza sismica verticale (kN) 1671 Spettro elastico longitudinale Se(T) (g) 0,5335 (vedi calcolo pila transizione) Spettro elastico trasversale Se(T) (g) 0,3743 Spettro elastico verticale Sve(T) (g) 0,1750

APPOGGI	Ар	poggio (F)		Арр	oggio (U	L)	Арр	oggio (M	)
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.
SLU PERM									
Max (kN)	±Ο	±0	+2350	±0	±Ο	+2300	±0	±0	+3600
Min (kN)	±0	±0	+2350	±0	±0	+2300	±0	±0	+3600
SLU									
Max (kN)	±350	±200	+5000	±0	±250	+5150	±0	±0	+5350
Min (kN)	-±1250	-±100	+1600	±0	-±150	+1550	±0	±Ο	+1900
SLV									
Max (kN)	±5050	±1800	+2150	±0	±3550	+2150	±0	±0	+3050
Min (kN)	-±4550	-±1800	+1250	±0	-±3550	+1200	±0	±0	+1750
TOTALE (kN)	±5050	±1800	±5000	±0	±3550	±5150	±0	±0	±5350
Spost. Max (mm)	-	-	-	±110	-	-	±110	±5	-

#### 20.2 ESCURSIONE DEI GIUNTI

In accordo con il p.to 2.5.2.1.5.1 del RFI DTC SICS PS MA IFS 001 A, per ponti e viadotti costituiti da una serie di <u>travi semplicemente appoggiate di uguale luce</u>, l'entità dell'escursione totale dei giunti e degli apparecchi di appoggio mobili può essere valutata come segue:

$$E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2D_t + 4d_{Ed} \cdot k_2 + 2d_{eg})$$

E₁ spostamento dovuto alla variazione termica uniforme

E₂ spostamento dovuto alla risposta della struttura all'azione sismica





# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	272

E₃ spostamento dovuto all'azione sismica fra le fondazioni non collegate

k₁ coefficiente di non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo

k₂ coefficiente legato alla probabilità di moto in controfase di due pile adiacenti

 $d_E = \pm \mu_d \cdot d_{Ee}$  spostamento relativo totale tra le parti, pari allo spostamento de prodotto dall'azione

sismica di progetto, calcolato come indicato nel paragrafo 7.3.3.3 delle NTC 2008

d_{Ee} spostamento corrispondente al periodo di vibrazione della pila ricavato dallo spettro

elastico in termini di spostamento e  $\mu_D = q$  per  $T_1 \ge T_C$  oppure  $\mu_D = 1 + (q-1) \cdot T_C / T_1$  per  $T_1$ 

<  $T_C$  e con la limitazione  $\mu_D$  ≤ 5q-4 (q è il fattore di struttura).

deg spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare

secondo il paragrafo 3.2.3.3 delle NTC 2008. Il valore di spostamento assoluto

orizzontale massimo del suolo di un punto può calcolarsi come  $d_g = 0.025 \cdot a_g \cdot S \cdot T_C T_D$ 

a_g, S, T_C, T_D parametri sismici definiti ai capitoli precedenti

Nel caso in esame si suppone in via cautelativa che tale spostamento assoluto coincida con lo spostamento relativo tra due punti, ossia si sta valutando lo spostamento relativo della fondazione in esame rispetto ad un punto fermo.

NOME: S	PALLA S1			CALC	OLO (	SIUNTI IMPALO	ATO (MdP ITI	F Opere ci	vili 2019)		Rev. 00
SPOSTAM	IENTO (§2.5.	2.1.5.1)									
1) Termico	uniforme		2) Sismico	strutturale		3) Sismico fo	ondazioni non d	ollegate			
E ₁ (mm)	18,0	+	E ₂ (mm)	69,4	+	E ₃ (mm)	174,8	=	E _L (mm)	118,0	
E _T (mm)	±9,0		d _{Ed} (mm)	±31,5		d _{eg} (mm)	±87,4		$\mathbf{k}_1$	0,45	
			$k_2$	0,55		a _g SLV (g)	0,195		1		
L (mm)	40000		$\mu_{d}$	1,00		S	1,404		Zona sismica	ag<0.25g	
α (1/°Cm)	1,00E-05		q	1,00		T _B (s)	0,181		E ₀ (mm)	165	
ΔT (°C)	±22,5		$T_1$ (s)	0,000		$T_{C}$ (s)	0,547		1		
						$T_D$ (s)	2,380		E _L (mm) >	E ₀ (mm)	
	Sposta	mento sis	smico a livello	o giunti:		$F_0$	2,532		>	$E_1$ (mm)	
			$d_{Ee}$ (mm)	31,5 (da calcoli)					>	E ₂ (mm)	
									>	$E_3$ (mm)	
CORSA AF	PPOGGI MO	BILI (§2.5	5.2.1.5.2)	± (E _L /2 +	Min(E	L/8; 15 mm))	±102 mm		1		
ESCURSIO	ONI GIUNTI (	§2.5.2.1.5	5.3)	± (E _L /2 +	10 m	m)	±97 mm		1		
			ок	Escurs	ione g	iunti progetto	±110 mm	+	– E _L (mm)	174,8	
AMPIEZZA	VARCHI (§2	2.5.2.1.5.	4)	V ≥ (E _L /2	+ 20	mm)	±107 mm	,			
	ОК					lcati progetto	±150 mm				
<u> </u>			<b>!-</b>					•			



# RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI03 da km 7+133,530 a km 7+223,530: Relazione di calcolo Spalla S1

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	03	04	001	В	273

# **21.ALLEGATI DI CALCOLO**