COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

Mandataria

Mandanti

PROGETTAZIONE:

MANDATARIA

MANDANTI

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTI 2 e 3 - RADDOPPIO TERMOLI – RIPALTA

Opere d'arte maggiori - Ponti e Viadotti ferroviari

VI05 da km 9+666,20 a km 9+966,20

Relazione di calcolo pila CAP

L'Appaltatore	Λ	I progettisti (il Direttore della progettazione)					
Ing. Gianguido Babini	A.A.D'AGOSTINO COSTRUZIONI GENERALI S.r.l Il Direttore Tecnico (Ing. Giangulio Babini)	Ing. Massimo Facchini					
Data Dicembre 2022	firma	Data Dicembre 2022 firma					

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA / DISCIPLINA	PROGR	REV	SCALA
L I 0 B	0 2	E	ZZ	C L	V I 0 5 0 5	0 0 1	В	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data		
Α	Prima emissione	Marino	Dicembre 2022	Martignoni	Dicembre	Rinaldi	Dicembre			
^	T Tima emissione		Dicembre 2022		2022		2022			
В		Marino	30/05/23	Martignoni	31/05/23	Rinaldi	01/06/23	INGEGNERI DEL		
	Aggiornamento per RdV		30/05/23		01/00/20		01/00/20	M. Facchini		
								s-04/06/23		
								MILANO		
								n. Elab.		
File: LI0B.0.2.E.ZZ.CL.VI05.0.5.001.B.DOCX										

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	1

INDICE

1	PREI	MESSA	3
2	DES	CRIZIONE DELL'OPERA	4
	2.1	Descrizione delle pile in esame	
		•	
3	DOC	UMENTAZIONE DI RIFERIMENTO	8
	3.1	Normativa di riferimento	8
	3.2	Normativa tecnica nazionale	8
	3.3	Manuali ITF	
	3.4	Bibliografia e altri riferimenti	
4	CAR	ATTERISTICHE DEI MATERIALI	10
	4.1	Calcestruzzo	10
	4.2	Acciaio	11
	4.3	Durabilità	12
5	APPI	ROCCIO DI CALCOLO	16
	5.1	Caratteristiche delle opere	16
	5.2	Criteri generali di verifica	16
	5.3	Software di calcolo	24
	5.4	Validazione programmi di calcolo	26
6	CAR	ATTERIZZAZIONE GEOTECNICA	
	6.1	Categoria di sottosuolo	
	6.2	Capacità portante dei pali e stratigrafia di progetto	27
7. .	ANA	LISI DEI CARICHI	
	7.1	Azioni permanenti strutturali (G ₁)	28
	7.2	Azioni permanenti non strutturali (G ₂)	28
	7.3	Ritiro del calcestruzzo (ε ₂)	
	7.4	Azioni variabili verticali (Q)	
	7.5	Azioni Eccezionali (A)	40
	7.6	Azioni variabili orizzontali (Q)	45
	7.7	Azione del vento (Q ₆)	55
	7.8	Azione sismica (e)	60
	7.9	Variazioni termiche (Q ₇)	72
		Attrito (Q ₈)	
	7.11	Scarichi agli appoggi	73

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	2

8 CON	//BINAZIONI DI CARICO	76
8.1	Combinazioni di carico adottate	77
9 VER	IFICHE DEGLI ELEMENTI STRUTTURALI	79
9.1	Elementi in cemento armato	79
10.	MODELLO DI CALCOLO	85
10.1	Analisi statica	85
10.2	Analisi sismica	85
11.	ANALISI PILA H=7.50 M	87
11.1	Azioni impalcati	87
11.2	Sollecitazioni elevazione	95
11.3	Sollecitazioni in fondazione	102
11.4	Verifiche elevazione	115
11.5	Verifica plinto di fondazione	132
11.6	Verifiche pulvino	142
12.	VERIFICHE LOCALI	145
12.1	Baggioli	145
12.2	Deformabilita' pila	147
12.3	Ritegni	150
13.	RIEPILOGO INCIDENZE C.A.	153
14.	APPOGGI E GIUNTI	154
14.1	Appoggi	154
14.2	Escursione dei giunti	154

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	3

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al raddoppio ferroviario della Linea Bari - Pescara nella tratta Termoli - Ripalta, per uno sviluppo complessivo di 24.930,52 km.

L'opera oggetto delle analisi riportate nei paragrafi seguenti rientra fra quelle inserite nella categoria denominata "OPERE PRINCIPALI – PONTI E VIADOTTI".

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	4

2. DESCRIZIONE DELL'OPERA

La presente relazione ha per oggetto le analisi e le verifiche delle pile che sostengono le campate in c.a.p. da 25 m del viadotto ferroviario denominato VI05, previsto tra le progressive chilometriche. 9+666,20 a km 9+966,20.

Il viadotto, avente lunghezza complessiva pari a circa 300m è a doppio binario composto da 12 campate in semplice appoggio da 25 m costituite da quattro travi a cassoncino in c.a.p. preteso. La piattaforma ha una larghezza totale di 13.70 m ed ospita due binari posti ad interasse di 4.0 m.

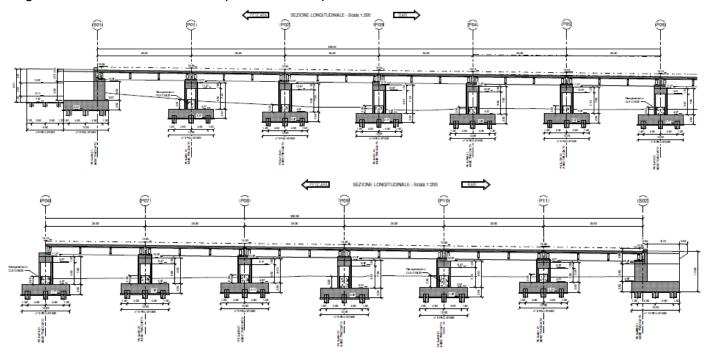


Figura 1 – Profilo longitudinale VI05

Gli impalcati in c.a.p di campata 25m sono costituiti da quattro travi in C.A.P. a cassoncino prefabbricate (precompressione a fili aderenti) solidarizzate da 4 traversi (2 sull'asse-appoggi e 2 in campata), prefabbricati insieme alle travi e da una soletta superiore in c.a. gettata in opera con una larghezza complessiva pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4 m, in maniera simmetrica rispetto alla mezzeria del viadotto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	5



Figura 2 – Sezione trasversale impalcato

Nel presente documento si analizzano alcune delle sottostrutture del viadotto in esame. Al fine di uniformarne il calcolo, le pile sono state suddivise in famiglie in funzione di caratteristiche quali la geometria delle pile stesse, le luci e le tipologie di impalcato e le condizioni geotecniche. Di seguito quindi si riporta un quadro riassuntivo delle analisi svolte per il viadotto in esame che vanno a coprire tutti i possibili scenari di progetto.

						ı	MPALC	ATI			SISMA		
WBS	PILE	Casi di calcolo	H _{calcolo}	R _{min}	Lato	L	Ann	Lato	L	Ann	Zona	Cat. Di Sottosuolo	
				[m]	sx	[m]	Арр.	dx	[m]	Арр.	Sismica		
	P01	1	7	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	
	P02 ÷ P04	2	7.5	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	
VI05	P05 ÷ P07	1	7	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	
VIUS	P08	3	6	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	
	P09 ÷ P10	1	7	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	
	P011	3	6	2200	C.a.p.	25	Fisso	C.a.p.	25	Mobile	S2	С	

Tabella 1 – Sintesi delle pile del viadotto VI05

Oggetto del presente documento sono quindi le analisi e le verifiche del caso di calcolo 2 , H=7.50, corrispondente alla pila con un'altezza maggiore P02 ÷ P04 tra gli impalcati in c.a.p di luce 25.00 m.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	6

2.1 DESCRIZIONE DELLE PILE IN ESAME

Le pile in esame sono caratterizzate da una sezione pseudorettangolare cava biconnessa con larghezza pari a $3.50\,\text{m}$ in direzione longitudinale e $10.40\,\text{m}$ in direzione trasversale; i setti esterni e il setto centrale hanno spessore pari a $0.50\,\text{m}$. Le fondazioni sono del tipo indiretto, con plinti su pali $\phi 1500\,\text{d}$ i dimensione $12.00\,\text{x}$ $12.00\,\text{e}$ spessore pari a $2.5\,\text{m}$. Gli interassi dei pali sono pari a $4.50\,\text{m}$ sia in direzione longitudinale che in direzione trasversale. Di seguito si riportano alcune immagini esplicative delle sottostrutture in esame. Per maggiori dettagli si rimanda agli elaborati grafici di progetto.

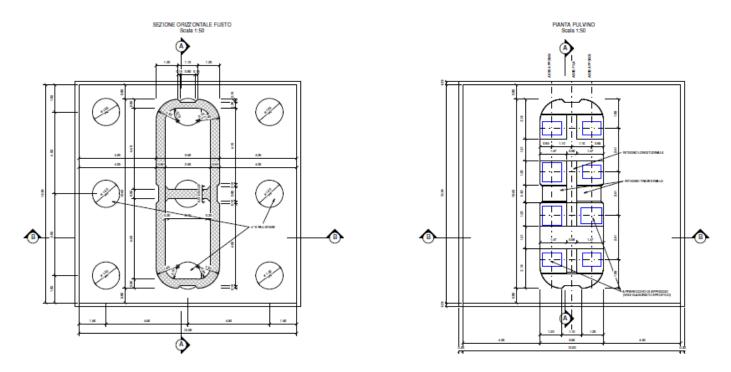
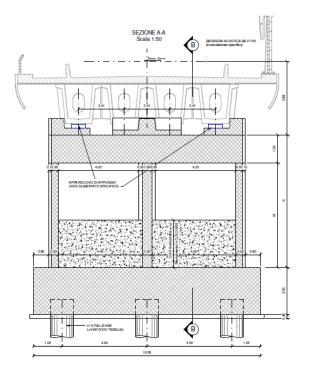



Figura 3 – Vista in pianta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	7

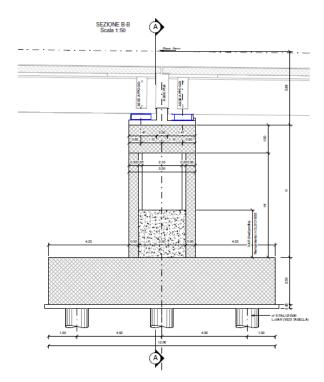


Figura 4 – Sezioni in direzione longitudinale e trasversale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	8

3. DOCUMENTAZIONE DI RIFERIMENTO

3.1 NORMATIVA DI RIFERIMENTO

3.1.1 Specifiche tecniche interoperabilità ferroviarie

[1] Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

3.1.2 Materiali

- [2] UNI 11104: 2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206";
- [3] UNI EN 206: 2014 "Calcestruzzo: Specificazione, prestazione, produzione e conformità";

3.1.3 Costruzioni in c.a. e acciaio

Eurocodice 1 - "Azioni sulle strutture"

- [4] UNI EN 1991-1-4:2010 "Parte 1-4: Azioni in generale Azioni del vento";
- [5] UNI EN 1991-1-5:2004 "Parte 1-5: Azioni in generale Azioni termiche";
- [6] UNI EN 1991-1-7:2014 "Parte 1-7: Azioni in generale Azioni eccezionali";
- [7] UNI EN 1991-2:2005 "Parte 2: Carichi da traffico sui ponti";

Eurocodice 2 - "Progettazione delle strutture in calcestruzzo"

- [8] UNI EN 1992-1-1:2015 "Parte 1-1: Regole generali e regole per gli edifici";
- [9] UNI EN 1992-2:2006 "Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi";

Eurocodice 3 - "Progettazione delle strutture in acciaio"

- [10] UNI EN 1993-1-1:2014 "Parte 1-1: Regole generali e regole per gli edifici";
- [11] UNI EN 1993-1-3:2007 "Parte 1-3: Regole generali Regole supplementari per l'impiego dei profilati e delle lamiere sottili piegati a freddo";

3.2 NORMATIVA TECNICA NAZIONALE

- [12] Legge 5 Novembre 1971 n°1086 "Norme per la disciplina delle opere in calcestruzzo cementizio, normale e precompresso ed a struttura metallica";
- [13] Legge 2 Febbraio 1974 n°64 "Provvedimenti per le costruzioni, con particolari prescrizioni per le zone sismiche";

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	9

- [14] D.M. 14/01/2008 "Norme tecniche per le costruzioni";
- [15] Circolare LL.PP. n°617 02/02/2009 "Istruzioni per l'applicazione dell'Aggiornamento delle norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008".

3.3 MANUALI ITF

- [16] RFI DTC SI PS MA IFS 001 E Manuale di progettazione delle opere Civili;
- [17] RFI DTC SI SP IFS 001 C Capitolato generale tecnico di Appalto delle opere civili;
- [18] RFI DINIC MA PO 00 001 B Manuale di progettazione Ponti
- [19] RFI DTC ICI PO SP INF 001 A Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari del 12/10/2009
- [20] RFI DINIC MA PO 00 001 C Prescrizioni tecniche per la progettazione esecutiva ponti Vol.1 e vol.2
- [21] RFI DTC INC PO SP IFS 003 A Specifica per la verifica a fatica dei ponti ferroviari
- [22] RFI DTC INC PO SP IFS 005 A Specifica per il calcolo, l'esecuzione e il collaudo e la posa in opera dei dispositivi di vincolo e dei coprigiunti negli impalcati ferroviari e cavalcavia.

3.4 BIBLIOGRAFIA E ALTRI RIFERIMENTI

- [23] Lancellotta R. [1991] " Geotecnica" Edizioni Zanichelli.
- [24] Migliacci F. Mola "Progetto agli stati limite delle strutture in c.a." Masson Italia Editori 1985
- [25] C. Cestelli Guidi "Geotecnica e tecnica delle fondazioni" Ulrico Hoepli Editore 1987
- [26] R. Lancellotta "Geotecnica" Edizioni Zanichelli 1987
- [27] Bowles J.E.: "Foundations Analysis and Design" 4th edition McGraw-Hill New York, 1988
- [28] Bustamante M., Gianeselli L. [1982] "Pile bearing capacity prediction by means of static penetrometer CPT" -. Pr. of the 2th European symposium on penetration testing, Amsterdam.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:
Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	10

4. CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

4.1.1 Calcestruzzo per magrone sottofondi

Classe minima	C12/15
Classe di esposizione ambientale	XC0

4.1.2 Calcestruzzo pali e plinti di fondazione

Classe minima	C25/30		
Classe di esposizione ambientale	XC2		
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 30	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	24.90	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	32.90	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{0.3}$	³ =31447	MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	2.56	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	1.79	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γ _C =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC} * f_{ck} / \gamma_{C} =$	14.11	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
Valore ultimo della deformazione a compressione	ε_{cu} = 3.5 ‰		
Stato limite di esercizio			
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	13.70	MPa
Tensione max di compressione – Comb. Quasi perm.	$\sigma_c = 0.40^* f_{ck} =$	9.96	MPa

4.1.3 Calcestruzzo parti in elevazione pile, spalle e solettoni

Classe minima	C32/40		
Classe di esposizione ambientale	XC4 - XS1		
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 40	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	41.20	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{\circ}$	0.3 = 3364	3 MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γ _C =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC}^* f_{ck} / \gamma_C =$	18.81	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:
Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	11

Valore ultimo della deformazione a compressione	ϵ_{cu} = 3.5 ‰
---	-------------------------

Stato limite di esercizio

Tensione max di compressione – Comb. Rara $\sigma_c = 0.55 * f_{ck} = 18.26$ MPa

Tensione max di compressione – Comb. Quasi perm. $\sigma_c = 0.40^* f_{ck} = 13.28$ MPa

4.1.4 Calcestruzzo per baggioli e ritegni

Classe minima	C32/40		
Classe di esposizione ambientale	XC4 – XS1		
Resistenza caratteristica a compressione cubica a 28 gg	R _{ck}	≥ 40	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	41.20	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{0.}$	$^3 = 3364$	3 MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γ _C =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC}^* f_{ck} / \gamma_C =$	18.81	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa
Valore ultimo della deformazione a compressione	$\epsilon_{cu} = 3.5 \%$		
Stato limite di esercizio			
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	18.26	MPa
Tensione max di compressione – Comb. Quasi perm.	$\sigma_c = 0.40^* f_{ck} =$	13.28	Мра

4.2 ACCIAIO

4.2.1 Acciaio d'armatura in barre per calcestruzzo armato

Tensione caratteristica di rottura a trazione Tensione caratteristica di snervamento a trazione Modulo elastico Stato limite ultimo	$\begin{aligned} f_{tk} &= \\ f_{yk} &= \\ E_s &= \end{aligned}$	≥ 540 MPa ≥ 450 MPa 200000 MPa
Coefficiente parziale di sicurezza	γ _S =	1.15
Resistenza di calcolo	$f_{yd} = f_{yk} / \gamma_S =$	391.30 MPa
Valore ultimo della deformazione a trazione	$\epsilon_{cu} = 10 \%$	
Stato limite di esercizio		
Tensione max di trazione	$\sigma_s = 0.75^* f_{yk} =$	337.50 MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	12

4.3 DURABILITÀ

4.3.1 Conglomerati cementizi

Le classi di esposizione e le conseguenti limitazioni sulla composizione del calcestruzzo sono state ricavate ai sensi della normativa UNI EN 206: 2016 e UNI 11104: 2016, delle istruzioni contenute nella C.M. n°7 per l'applicazione delle NTC 2008, a cui si rimanda per ulteriori dettagli.

A seconda dell'esposizione ambientale, per opere con $V_N = 50$ anni la circolare al punto §C4.1.6.1.3 impone il rispetto dei limiti di copriferro riportati nella tabella successiva.

Per classi di resistenza inferiori a C_{min} i valori sono da aumentare di Δc_{min} = +5 mm.

Per produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di Δc_{min} = -5 mm.

A tali valori di tabella vanno aggiunte le tolleranze di posa Δc_{dev} .

Nella norma UNI EN 1992-1-1 sono indicati al §4.4.1.3 i metodi per la valutazione rigorosa dei copriferri in base alla tipologia di armature e altre particolari specifiche di dettaglio previste in progetto.

Nelle tabelle seguenti si indicano i copriferri nominali c_{nom} e i parametri di mix design minimi richiesti dalle normative per ottenere le prestazioni di durabilità minime di progetto.

prospetto 5	Valori limit	e per la co	mposizione	e le propri	età del calo	estruzzo												
								(Classi di es	posizione								
UNI 11104:2016	Nessun rischio di Corrosione delle armature indotte dalla corrosione dell'armatura carbonatazione				Corrosione delle armature indotte da cloruri Acqua di mare Cloruri provenienti da altre fonti					Attacchi da cicli di gelo/disgelo				Ambiente aggressivo per attacco chimico				
	dell'armatura X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1 XF2 XF3 XF-		XF4	XA1	XA2	XA3	
Massimo rapporto a/c	-	0	,60	0,55	0,50	0,50	0,4	5	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
Minima classe di resistenza	C12/15	C2	5/30	C30/37	C32/40	C32/40	C35	/45	C30/37	C32/40	C35/45	C32/40	C25	5/30	C30/37	C30/37	C32/40	C35/45
Minimo contenuto in cemento (kg/m³)	-	3	00	320	340	340	36	0	320	340	360	320	3	40	360	320	340	360
Contenuto minimo in aria (%)												b)		4,0 a)				
Altri requisiti						al	l'utilizzo di ceme l'acqua di mare condo UNI 915	a					E' richiesto l'utilizzo di aggregati conformi alla UNI EN 12820 di adeguata resistenza al geloldogelo richieste soluti nel lamenta di conformati di UNI EN 12820 di adeguata resistenza al geloldogelo richiesto l'impego di cemerti resistenza acceputar aristimenza al UNI EN 200-2014 è richiesto l'impego di cemerti resistenti a solista. C)					
secondo UNI CENtrS 12390 -9, UNI CENtrR 15177 b) Dupper >20mm; per Dupper inferiori illimite minima Qualora si rilenga opportuno impiegare calcestruzzo	Quando il calcestruzzo non cordene aria inglobata, le sue prestazioni devoro esse re verificate rispelto ad un calcestruzzo aerato per il quale e provata la resistenza al geloldisgelo, da determinarsi ondo UNI CENIFI 1929 - 9, UNI CENIFI 19177 0 UNI 7087 per la resistava classe di esposizione. 11 vatore minima di aria englobata del 49 può finance il aera deliguato per calcestruzzi specificat con Upuper >20mm, per judgem risherio illimita minima andra opportunamente autentario di essempo 59 per quoli per tar 12 mm en 16 mm). pluper >20mm, per judgem risherio illimita minima andra opportunamente autentario di essempo 59 per quoli per tar 12 mm e 16 mm). siòri asi inlega opportuno impiegare calcestruzzo aerato anche in classe di esposizione XFI si adotano le specifiche di composizione prescribe per le classi XF2 e XF3. permetri resistinati a solida sono defini dalla UNI ENI 1917 - 1 e un base naziona dalla dalla UNI 591.6.1 a UNI 1916 ossistira al comenti risessimi al solida in vosti moderata, alta e altissima resistenza																	

Tabella 2 - Prospetto requisiti di mix-design (UNI 11104)

Tabella C4.1.IV - Copriferri minimi in mm

I II Delli C	Copyright Minimum III													
				arre da c.a.		rre da c.a.		vi da c.a.p.	cavi da c.a.p.					
			elem	enti a piastra	alti	ri elementi	elem	enti a piastra	altri elementi					
C _{min}	Co	ambiente	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>										
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35				
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45				
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50				

La classe di resistenza minima C_{min} indicata in tabella deve comunque intendersi riferita alla pertinente classe di esposizione di cui alla UNI EN 206:2016 richiamata nella Tabella 4.1.III delle NTC.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	13

Tab. 4.1.III – Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4 - Condizioni ambientali e classi di esposizione

	REQUISITI	DURABILITA' CALCESTR	uzzi (uni en 20	6, UNI 11	104, UNI EN 1992-1-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE						
Corrosione da carbonatazione	XC2	Ambiente prevalentemente	acquoso o saturo	d'acqua	, raramente secco.	
		Cls a contatto con acqua pe fondazioni.	er lungo tempo. (Cls di stru	utture di contenimento acqua. Cls di mo	lte
- Valori raccomandati per il mix-desig	gn (UNI EN 206: 2	016)			Mix design	di progetto:
		XC2				XC2
R	apporto max A/C	0,60				0,6
Classe di re	esistenza minima	C25/30				C25/30
Contenuto minimo di	cemento (kg/m³)	300				300
Contenuto m	ninimo di aria (%)	-				-
Aggregati resistenti al gelo/dis	sgelo (EN 12620)	-				-
Cemento re	sistente ai solfati	-				-
Cemento resistente	all'acqua di mare	-				-
Margine di scostamento Δc_{dev} (4.4			Formula 4.1 UNI	EN 1992	-1-1) $\Delta c_{\text{dev}} \; (\text{mm})$	10
· Copriferro minimo per messa in ope	era su superfici irre	egolari (4.4.1.3 (4) Annesso			, ,	
C			italiano UNI EN	1992-1-1)	c _{nom,min} (mm)	
- Copriierro minimo per aderenza (Pr	ospetto 4.2 UNI E	N 1992-1-1)	italiano UNI EN	1992-1-1)	,	26
- Copnierro minimo per aderenza (Pro Tipo di acciaio	•	N 1992-1-1)	italiano UNI EN	1992-1-1)	c _{nom,min} (mm) c _{min,b} (mm)	26
. , , , ,	o Ordinario	N 1992-1-1) diametro barra Ø (isolata)		•	c _{min,b} (mm)	26
Tipo di acciai	Ordinario 26	,	o equivalente Ør	•	c _{min,b} (mm)	26
Ø (mm	Ordinario 1) 26 1) 25	diametro barra Ø (isolata) dimensione max aggregat	o equivalente Ør	•	c _{min,b} (mm)	26
. Tipo di acciaio Ø (mm D _{upper} (mm - Copriferro minimo per durabilità (Tal	Ordinario 1) 26 1) 25	diametro barra Ø (isolata) dimensione max aggregat	o equivalente Ør	•	c _{min,b} (mm)	
Tipo di acciaio Ø (mm D _{upper} (mm - Copriferro minimo per durabilità (Tal Ambiente Vita nominale	o Ordinario 1) 26 1) 25 bella C4.1.IV NTC e Ordinario e 75	diametro barra Ø (isolata) dimensione max aggregat	o equivalente Ør	•	c _{min,b} (mm)	
Tipo di acciaio Ø (mm D _{upper} (mm - Copriferro minimo per durabilità (Tal Ambiento	o Ordinario 1) 26 1) 25 bella C4.1.IV NTC e Ordinario e 75	diametro barra Ø (isolata) dimensione max aggregat 2008)	o equivalente Ør to C C ₀	n (raggruf	$c_{\text{min,b}} (\text{mm})$ opate, vedi §8.9) $c_{\text{min,dur}} (\text{mm})$	
Tipo di acciaio Ø (mm D _{upper} (mm Copriferro minimo per durabilità (Tal Ambiente Vita nominale	o Ordinario 1) 26 1) 25 bella C4.1.IV NTC e Ordinario e 75 s NO	diametro barra Ø (isolata) dimensione max aggregat 2008) valori tabella +5 mm	i o equivalente Ør to C	n (raggrup C25/30	$c_{\text{min,b}} (\text{mm})$ opate, vedi §8.9) $c_{\text{min,dur}} (\text{mm})$	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	14

NOME: ELEVAZIONI	REQUISITI	DURABILITA' CALCESTE	UZZI (UNI EN 2	06, UNI 11	1104, UNI EN 1992-1-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE						
Corrosione da carbonatazione	(C4	Ambiente ciclicamente sed	co e acquoso o	saturo d'a	acqua.	
		Cls in esterni con superfici	soggette ad alte	ernanze di	ambiente secco ed acquoso o saturo d'	acqua. Cls
		ciclicamente esposto all'ad	qua in condizior	ni che non	ricadono nella classe XC2.	
Corrosione da cloruri marini	(S1	Ambiente di aria che trasp	orta salsedine m	arina in as	ssenza di contatto con l'acqua di mare.	
		Cls di strutture in zone cos	tiere.			
· Valori raccomandati per il mix-design	(UNI EN 206: 2	016)			Mix design of	di progetto:
	•	XC4	XS.	1		XC4+XS1
Rap	porto max A/C	0,50	0,5	0		0,5
Classe di resi	stenza minima	C32/40	C32	2/40		C32/40
Contenuto minimo di ce	mento (kg/m³)	340	340)		340
Contenuto min	mo di aria (%)	-	-			-
Aggregati resistenti al gelo/disge	elo (EN 12620)	-	-			-
Cemento resis	tente ai solfati	-	-			-
Cemento resistente all	acqua di mare	-	SI			SI
Margine di scostamento Δc_{dev} (4.4.1.			(Formula 4.1 UN	I EN 1992	-1-1) Δc _{dev} (mm)	10
- Copriferro minimo per messa in opera		•	italiano I INI FN	1992-1-1)		
	•		ritaliario Orvi Erv	1002 1 1)		
Copriferro minimo per aderenza (Pros		N 1992-1-1)			c _{min,b} (mm)	26
Tipo di acciaio	Ordinario			_ <i>.</i>		
Ø (mm)	26	diametro barra Ø (isolata	, ·	on (raggru	ppate, vedi §8.9)	
D _{upper} (mm)	25	dimensione max aggrega	ito			
- Copriferro minimo per durabilità (Tabel	la C4.1.IV NTC	2008)			c _{min,dur} (mm)	40
Ambiente A	nggressivo					
Vita nominale		valori tabella +5 mm	С	C32/40	Classe di resistenza utilizzata	
Controllo qualità speciale cls		valori tabella	C_0	C40/50		
Elemento a piastra	NO		C_{min}	C30/37		
TC 2008 Condiz	ioni ambientali	Aggressive Gruppo	di esigenza B		Copriferro nominale c _{nom} (mm)	50
. C _CCC	.c ambiointaii	99. 230110 Stuppo	a. coigonza D		Copinions nonlineas offom (min)	50

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	15

NOME: BAGGIOLI E RITEGNI	REQUISITI	DURABILITA' CALCES	TRUZZI (UNI EN 2	06, UNI 11	1104, UNI EN 1992-1-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE						
Corrosione da carbonatazione	XC4	Ambiente ciclicamente s	ecco e acquoso o	saturo d'a	acqua.	
		Cls in esterni con superfi	ci soggette ad alte	ernanze di	ambiente secco ed acquoso o saturo d'	acqua. Cls
		ciclicamente esposto all'	acqua in condizior	ni che non	ricadono nella classe XC2.	
Corrosione da cloruri marini			•	arina in as	ssenza di contatto con l'acqua di mare.	
		Cls di strutture in zone c	ostiere.			
- Valori raccomandati per il mix-desi	gn (UNI EN 206: 2	016)			Mix design	di progetto:
		XC4	XS.	1		XC4+XS1
F	apporto max A/C	0,50	0,5	0		0,5
Classe di r	esistenza minima	C32/40	C32	2/40		C32/40
Contenuto minimo d	()	340	340)		340
	ninimo di aria (%)	-	-			-
Aggregati resistenti al gelo/di	,	-	-			-
	esistente ai solfati	-	-			-
Cemento resistente	all'acqua di mare	-	SI			SI
COPRIFERRO NOMINALE $c_{min} = max(c_{min,b}; c_{min,dur} + \Delta c_{o})$		$c_{\text{,add}}$; 10 mm) $c_{\text{min}} + \Delta c_{\text{dev}}$	(Formula 4.2 UN (Formula 4.1 UN		•	
- Margine di scostamento Δc _{dev} (4.4			()		Δc _{dev} (mm)	10
- Copriferro minimo per messa in op-	era su superfici irre	egolari (4.4.1.3 (4) Annes	so italiano UNI EN	1992-1-1)	c _{nom,min} (mm)	
- Copriferro minimo per aderenza (Pi	rospetto 4.2 UNI E	N 1992-1-1)			c _{min.b} (mm)	26
Tipo di acciai	o Ordinario				,.,,	
Ø (mn		diametro barra Ø (isola	ita) o equivalente 🤉	ðn (raggru	ppate, vedi §8.9)	
D _{upper} (mn	n) 25	dimensione max aggre	gato			
- Copriferro minimo per durabilità (Ta	bella C4.1.IV NTC	2008)			c _{min.dur} (mm)	30
Ambient	e Aggressivo	•			, ,	
Vita nominal	e 75	valori tabella +5 mm	С	C32/40	Classe di resistenza utilizzata	
Controllo qualità speciale cl	s SI	valori tabella -5 mm	C_0	C40/50		
Elemento a piasti	a SI		C_{min}	C30/37		
JTC 2008 Con	dizioni ambientali		oo di esigenza B		Copriferro nominale c _{nom} (mm)	40

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	ш	ZZ	CL	VI	05	05	001	В	16

5. APPROCCIO DI CALCOLO

5.1 CARATTERISTICHE DELLE OPERE

Le opere oggetto della presente relazione sono state progettate e calcolate secondo i metodi della scienza delle costruzioni, adottando per le verifiche il criterio degli stati limite (S.L.).

I criteri generali di sicurezza, le azioni di calcolo e le caratteristiche dei materiali sono stati assunti in conformità con il D.M. 14.01.2008 – "Norme tecniche per le costruzioni" e relativa circolare esplicativa (Circolare 02.02.2009 n. 617/C.S.LL.PP.).

Con riferimento alle NTC, per le opere in oggetto si considerano i seguenti parametri di calcolo:

Vita nominale $V_N = 75$ anni

(§ 2.4.1 "Costruzioni con livelli di prestazioni ordinari")

Classe d'uso III

(§ 2.4.2, "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.

Dighe rilevanti per le conseguenze di un loro eventuale collasso.")

Coefficiente d'uso $C_U = 1.5$

Periodo di riferimento $V_R = V_N \cdot C_U = 112.5$ anni

5.2 CRITERI GENERALI DI VERIFICA

In accordo con quanto definito nel §2.3 delle NTC 2008, devono essere svolte le verifiche di sicurezza e delle prestazioni attese per Stati Limite Ultimi (SLU) e Stati Limite d'Esercizio (SLE) secondo opportune combinazioni di carico delle azioni.

5.2.1 Combinazioni di carico

Come riportato al §2.5.3 delle NTC 2008, si considerano le seguenti combinazioni delle azioni:

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \sum_{j=3}^n \Psi_{0j} \cdot Q_{kj}$

 $G_1+G_2+P+Q_{k1}+\Psi_{02}\cdot Q_{k2}+\sum_{j=3}^n \Psi_{0j}\cdot Q_{kj}$

 $G_1+G_2+P+\Psi_{11}\cdot Q_{k1}+\sum_{j=2}^n \Psi_{2j}\cdot Q_{kj}$

 $G_1+G_2+P+\sum_{i=1}^{n}\Psi_{2i}\cdot Q_{ki}$

 $E+G_1+G_2+P+\sum_{j=1}^{n}\Psi_{2j}\cdot Q_{kj}$

 $G_1 + G_2 + P + A_d + \sum_{j=1}^n \Psi_{2j} \cdot Q_{kj}$

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali

P precompressione e pretensione Q_{ki} masse dei carichi accidentali

E azione sismica A_d azione eccezionale Combinazione fondamentale SLU

Combinazione caratteristica rara SLE

Combinazione frequente SLE

Combinazione quasi permanente SLE

Combinazione sismica SLE e SLU

Combinazione eccezionale SLU

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	17

 $\psi_0,\,\psi_1,\,\psi_2$

coefficienti di contemporaneità delle azioni (Tab.. 2.5.I oppure Tab.. 5.1.VI per i ponti stradali e Tab.. 5.2.VII per i ponti ferroviari)

5.2.2 Stati limite ultimi

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione:

 $R_d \ge E_d$ (Eq. 2.2.1)

E_d = E(F_d; X_d; a_d) valore di progetto della domanda, funzione dei valori di progetto delle azioni (F_d)

e dei valori nominali delle grandezze geometriche della struttura interessate (a_d)

R_d = R(F_d; X_d; a_d) capacità di progetto in termini di resistenza, duttilità e/o spostamento della

struttura, funzione delle caratteristiche meccaniche dei materiali che la compongono (X_d) e dei valori nominali delle grandezze geometriche interessate

 (a_d)

 $F_d = \gamma_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ proprietà del materiale di progetto a_d parametri geometrici di progetto

γ_M coefficiente parziale di sicurezza del materiale

Nelle verifiche agli stati limite ultimi si distinguono:

stato limite di equilibrio come corpo rigido: EQU

stato limite di resistenza della struttura compresi gli elementi di fondazione: STR

stato limite di resistenza del terreno: GEO

5.2.3 Strutture non geotecniche

Fatte salve le prescrizioni specifiche e con riferimento alle tabelle seguenti, per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, i valori dei coefficienti parziali γ_F da assumersi per la determinazione degli effetti delle azioni per le verifiche di equilibrio (SLU EQU) sono quelle della colonna EQU mentre per le verifiche strutturali (SLU STR) sono quelle della colonna A1.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	18

Tab. 5.2.IV -Valutazione dei carichi da traffico

140. 5.2.1V - Valutazione nel carichi na traffico											
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali						
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti					
Gruppo 1 (2)	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale					
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale					
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale					
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione					

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Tabella 5 – Schema dei gruppi di combinazioni per azioni di traffico per ponti ferroviari (NTC 2008)

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	ente		EQU ⁽¹⁾	A1	A2	
Azioni permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γG2	0,00 1,50	0,00 1,50	0,00	
Ballast ⁽³⁾	favorevoli sfavorevoli	YΒ	0,90 1,50	1,00 1,50	1,00 1,30	
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	
Azioni variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	
Precompressione	favorevole sfavorevo- le	γP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00 1,00	
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00	

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽i) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{© 1,30} per instabilità in strutture con precompressione esterna

^{(6) 1,20} per effetti locali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	19

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		ψο	ψ1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$T_{\mathbf{k}}$	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tabella 7 - Coefficienti di contemporaneità delle azioni nelle verifiche SLU (NTC 2018) - Ponti ferroviari

⁽²⁾Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	20

5.2.4 Strutture geotecniche

Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche strutturali (SLU STR) e geotecniche (SLU GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi.

Approccio 1

Le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali per le azioni (γ_F), la resistenza dei materiali (γ_M) e eventualmente la resistenza globale del sistema (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti della colonna A1 per una *Combinazione 1* e i coefficienti della colonna A2 per una *Combinazione 2*.

In tutti i casi, sia nei confronti del dimensionamento strutturale che per quello geotecnico si deve utilizzare la combinazione più gravosa fra le due precedenti.

Approccio 2

Le verifiche si conducono con un'unica combinazione dei gruppi di coefficienti parziali per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e eventualmente per la resistenza globale (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti γ₅ riportati nella colonna A1.

Per ogni stato limite per perdita di equilibrio (SLU EQU), come definito al §2.6.1, impiegando come fattori parziali per le azioni i valori γ_F riportati nella colonna EQU della tabella 6.2.I, deve essere rispettata la condizione:

 $E_{inst,d} \leq E_{stb,d}$

E_{inst,d} valore di progetto dell'azione instabilizzante E_{stb,d} valore di progetto dell'azione stabilizzante

Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (SLU STR) o del terreno (SLU GEO), come definiti al §2.6.1, impiegando diverse combinazioni di gruppi di coefficienti parziali per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3), deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F^*F_k; X_k/\gamma_M; a_d)$ valore di progetto dell'azione

 $E_d = \gamma_E * E(F_k ; X_k/\gamma_M ; a_d)$ valore di progetto dell'effetto dell'azione

 $R_d = 1/\gamma_R * R(\gamma_F * F_k ; X_k/\gamma_M; a_d)$ valore di progetto della resistenza del sistema geotecnico

 $F_d = y_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ parametri geotecnici di progetto a_d parametri geometrici di progetto

γ_E coefficiente parziale di sicurezza sugli effetti delle azioni

γ_M coefficiente parziale di sicurezza del materiale

γ_R coefficiente parziale di sicurezza globale sulle resistenze

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	21

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	Υgı	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	8,0	8,0
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti yoi

Tabella 8 - Coefficienti parziali per le azioni nelle verifiche SLU (NTC 2008) - Strutture geotecniche

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente $parziale\gamma_M$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γ_c	1,0	1,25
Resistenza non drenata	c _{uk}	γ_{ca}	1,0	1,4
Peso dell'unità di volume	γ_{γ}	γ_{γ}	1,0	1,0

Tabella 9 - Coefficienti parziali per le resistenze nelle verifiche SLU (NTC 2008) - Strutture geotecniche

5.2.5 Stati limite di esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 del [14], la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $C_d \ge E_d$ (Eq. 2.2.2)

 $E_d = E(F_d; X_d; a_d)$ valore di progetto dell'effetto delle azioni

 $C_d = C(F_d; X_d; a_d)$ valore limite di progetto associato a ciascun aspetto di funzionalità esaminato

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

Il prescritto valore limite dell'effetto delle azioni deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

5.2.6 Stati limite ultimi e di esercizio sismici

Con riferimento al §3.2.1 delle NTC 2008, nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	ιοπο	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ш	ZZ	CL	VI	05	05	001	В	22

Gli Stati limite di esercizio (SLE) comprendono:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo
 gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione,
 non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli
 elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni
 tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza
 e di rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi immediatamente utilizzabile
 pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e
 crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si
 associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva
 invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti
 del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi
 rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali;
 la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di
 sicurezza nei confronti del collasso per azioni orizzontali.

Con riferimento al §3.2.1 delle NTC 2008, per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto. Le verifiche degli *elementi strutturali primari (ST)* si eseguono, come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU):

- nel caso di <u>comportamento strutturale non dissipativo</u>, in termini di *rigidezza (RIG)* e di *resistenza (RES)*,
 senza applicare le regole specifiche dei dettagli costruttivi e della progettazione in capacità;
- nel caso di comportamento strutturale dissipativo, in termini di rigidezza (RIG), di resistenza (RES) e di duttilità (DUT) (quando richiesto), applicando le regole specifiche dei dettagli costruttivi e della progettazione in capacità.

Le verifiche degli elementi strutturali secondari si effettuano solo in termini di duttilità, mentre le verifiche degli elementi non strutturali (NS) e degli impianti (IM) si effettuano in termini di funzionamento (FUN) e stabilità (STA), come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU).

Per le verifiche dettagliate di ogni parte strutturale si rimanda al capitolo §7 delle NTC 2018.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	23

Tab. 7.3.III - Stati limite di elementi strutturali primari, elementi non strutturali e impianti

		CUI CUII			CU III e IV			
STATI LIMITE		ST	ST	NS	IM	ST	NS	IM ^(*)
CIT	SLO					RIG		FUN
SLE	SLD	RIG	RIG			RES		
CIII	SLV	RES	RES	STA	STA	RES	STA	STA
SLU	SLC		DUT(**)			DUT ^(**)		

^(*) Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

Tabella 10 – Schema delle verifiche da attuare per gli elementi strutturali primari in base alla tipologia, allo stato

^(**) Nei casi esplicitamente indicati dalle presenti norme.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	24

5.3 SOFTWARE DI CALCOLO

Sono stati utilizzati i programmi di calcolo elencati nel seguito. La scrivente ha esaminato preliminarmente la documentazione a corredo dei software per valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. Tale documentazione, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati. Il sottoscritto, inoltre, ha verificato l'affidabilità dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.3.1 Analisi strutturale generica

Titolo:

Caratteristiche: Programma di calcolo strutturale agli elementi finiti che esegue il calcolo di strutture

spaziali composte da elementi mono e/o bidimensionali anche con non linearità di

materiale o con effetti dinamici

Autore: G + D Computing Pty Limited - Sidney NSW 2000 Australia

Distribuzione: HSH srl - Padova Italia

Versione: 2.4.6

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	25

5.3.2 Verifiche sezioni strutturali

Titolo:

Caratteristiche: Programma per la verifica di sezioni generiche Autore: Aztec Informatica – Casole Bruzio, Cosenza

Distribuzione: Aztec Informatica S.r.l.

Versione: 10.05a

Titolo:

Sezione generica in C.A. e C.A.P. VERIFICHE A PRESSO-FLESSIONE Stato Limite Ultimo Metodo n

Progetto a flessione e taglio di sezione rettangolare

Proqetto pilastri in zona sismica

Il modulo Progetto Sezione Rettangolare è stato sviluppato nella tesi di laurea dell'Ing. Davide Pari (2001)

Il modulo Sismica è stato parzialmente sviluppato nella tesi di laurea degli Ingg. Alberto Antonini e Giovanni Tanghetti (2006)

by Prof. Piero Gelfi

VERSIONE 7.8 (novembre 2021)

Aggiornamnento sviluppato da Ing. Paolo Bertacchini con il supporto dell'Ordine degli Ingegneri della Provincia di Brescia. Supervisione Prof. Giovanni Metelli.

free distribution

vietata la vendita

Caratteristiche: Programma per la verifica di sezioni generiche

Autore: Prof. Piero Gelfi Distribuzione: Distribuzione libera

Versione: 7.8

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ш	ZZ	CL	VI	05	05	001	В	26

5.4 VALIDAZIONE PROGRAMMI DI CALCOLO

5.4.1 Analisi e verifiche svolte con l'ausilio di codici di calcolo

Ai sensi del §10.2 delle NTC 2008 si dichiara quanto segue.

5.4.2 Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di più codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. Per quanto riguarda i criteri di modellazione e le caratteristiche dei programmi utilizzati si rimanda ai relativi paragrafi.

5.4.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza dei codici di calcolo sono garantite attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.4.4 Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

5.4.5 Informazioni generali sull'elaborazione

I software prevedono una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

5.4.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	27

6. CARATTERIZZAZIONE GEOTECNICA

6.1 CATEGORIA DI SOTTOSUOLO

Dalle indagini sismiche (M25, S34V, M26) è possibile determinare la categoria di sottosuolo di riferimento per la definizione dell'azione sismica; per l'opera in esame si assume una categoria di sottosuolo C.

6.2 CAPACITÀ PORTANTE DEI PALI E STRATIGRAFIA DI PROGETTO

Vedi relazioni di calcolo di verifica pali.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	28

7. ANALISI DEI CARICHI

7.1 AZIONI PERMANENTI STRUTTURALI (G1)

Nome	γ G	Ψ0	Ψ1	Ψ2
	(Fav / Sfav)			
PP (cat. G ₁)	1.00 / 1.30	-	-	
PP (ponti stradali)	1.00 / 1.35	-	-	

Per gli elementi in c.a. si considera un peso specifico $\gamma_c = 25 \text{ kN/m}^3$, per gli elementi in acciaio $\gamma_s = 78.5 \text{ kN/m}^3$.

Le azioni permanenti strutturali comprendono il peso proprio delle travi e il peso proprio della soletta.

Per il peso proprio delle travi di lunghezza 24.30 m, si considera un valore pari a 35 kN/m.

Per il peso proprio della soletta, si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 25 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
PP travi	35	35	35	35
PP soletta	52	4	4	52

Reazioni totali appoggio	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G ₁)	1075	475	475	1075

7.2 AZIONI PERMANENTI NON STRUTTURALI (G₂)

Nome	γ G	Ψ0	Ψ1	Ψ2
	(Fav / Sfav)			
PP (ponti ferroviari)	1.00 / 1.50	-	-	-

Per le valutazioni sul calcolo degli scarichi agli appoggi delle singole campate si fa riferimento all'analisi dei carichi impalcato, che sono ricavate del modello locale usato per l'analisi della soletta, riportate sulla relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m.

Si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 25 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:	
Relazione di calcolo pila CAP	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	29

7.2.1 Ballast (G_{2,1})

Nome	R₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Ballast	26	40	40	26

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R₄ [kN]
PP (cat. G _{2,1})	325	500	500	325

7.2.2 Velette (G_{2,2})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Velette	18	-11	-11	18

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	225	-138	-138	225

7.2.3 Arredi (G_{2,3})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Arredi	34	-18	-18	34

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	425	-225	-225	425

7.2.4 Barriere antirumore (G_{2,4})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Barriere	46	-26	-26	46

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	575	-325	-325	575

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	30

7.3 RITIRO DEL CALCESTRUZZO (E2)

Nome	Tipo	γ ε2	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
RITIRO (ponti ferroviari)	Ritiro, viscosità,	EQU 0.00 / 1.20	-	-	-
	cedimenti imposti	(A1) 0.00 / 1.20			
		(A2) 0.00 / 1.00			

Dato che il ritiro dipende dal tempo di maturazione del calcestruzzo, dalla resistenza e dalle condizioni ambientali, gli effetti possono evidenziarsi sia in fase di costruzione sulla sezione mista composta da due materiali di diverso modulo elastico (ritiro primario) sia a lungo termine sulla statica globale dell'impalcato (ritiro secondario).

Nel primo caso l'accorciamento primario della soletta determina l'insorgenza di tensioni di scorrimento all'interfaccia soletta-trave e uno stato di pressoflessione della sezione mista.

Nel secondo caso l'accorciamento secondario della soletta determina l'insorgenza di reazioni iperstatiche sulla statica globale dell'impalcato.

Nel caso in cui l'impalcato presenti uno schema isostatico, il ritiro secondario viene interamente assorbito dalle sezioni resistenti longitudinali con l'insorgenza di sole deformazioni cinematiche e nessuna tensione aggiuntiva, pertanto tale azione non viene trattata direttamente per il calcolo delle sottostrutture in oggetto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OC OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	31

7.4 AZIONI VARIABILI VERTICALI (Q)

7.4.1 Azioni da traffico ferroviario (Q₁)

Nome	Tipo	γα		Ψο	Ψ1	Ψ2
		(Fav / Sfav)				
AZIONI VERTICALI	Variabili	EQU 0.00 / 1.45	Singole	0.80	0.50	0.00
	da traffico	(A1) 0.00 / 1.45	gr.1	0.80	0.80	0.00
	ferroviario	(A2) 0.00 / 1.25	gr.2	-	-	-
			gr.3	0.80	0.80	0.00
			gr.4	1.00	1.00	0.00

Si considerano i sovraccarichi ferroviari in accordo al $\S5.2.2.3$ delle NTC2008, per mezzo di diversi modelli di carico rappresentativi delle tipologie di traffico ferroviario, normale o pesante. I valori dei suddetti carichi saranno poi moltiplicati per un coefficiente di adattamento α , variabile in ragione della tipologia dell'infrastruttura (ferrovie ordinarie, ferrovie leggere, metropolitane, ecc.).

Per i requisiti S.T.I. imposti sulla tratta ferroviaria in progetto, per le categorie di traffico passeggeri P2/P4 il coefficiente α = 1.0 e per le categorie merci F1 il coefficiente α = 1.0.

Nei dimensionamenti per le opere in oggetto, rimanendo a favore di sicurezza, si considerano i coefficienti imposti dalle NTC2008, superiori o uguali a quelli S.T.I., come descritto nei paragrafi successivi per i singoli modelli di carico.

Tabella 11
Fattore alfa (α) per la progettazione di strutture nuove

Tipo di traffico	Valore minimo del fattore alfa (α)				
P1, P2, P3, P4	1,0				
P5	0,91				
P6	0,83				
P1520	Punto in sospeso				
P1600	1,1				
F1, F2, F3	1,0				
F4	0,91				
F1520	Punto in sospeso				
F1600	1,1				
	•				

Figura 5 – Specifiche Tecniche di Interoperabilità (S.T.I.) - Requisiti carichi da traffico ferroviario

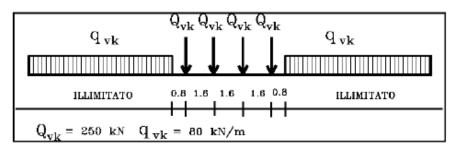
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	32

7.4.1.1 Modello di carico LM71

Il treno LM71 è schematizzato da n°4 assi da 250 kN su una lunghezza di 6.40 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una lunghezza illimitata.



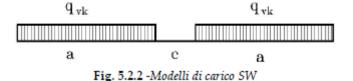

Fig. 5.2.1 - Modello di carico LM71

Figura 6 – Schema treno di carico LM71

Per questo modello è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s per tenere conto dello spostamento dei carichi. Per s=1435 mm risulta pari a s/18=80 mm. Per la progettazione di ferrovie ordinarie il valore del coefficiente di adattamento è α =1.1.

7.4.1.2 Modello di carico SW

Per tale modello di carico, sono considerate due distinte configurazioni, il modello di carico SW/0 schematizza gli effetti statici prodotti dal traffico ferroviario normale per travi continue (utilizzato solo per travi continue qualora più sfavorevole dell'LM71), il modello di carico SW/2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

Tab. 5.2.I - Caratteristiche Modelli di Carico SW

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

Figura 7 – Schema treno di carico SW

Il valore del coefficiente di adattamento da adottarsi nella progettazione delle ferrovie ordinarie è pari, rispettivamente, a α =1.1 per il modello di carico SW/0 ed a α =1.0 per il modello di carico SW/2.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	33

7.4.1.3 Effetti dinamici

Le azioni statiche dei modelli di carico devono essere incrementate per tenere conto della natura dinamica del transito dei convogli, gli effetti di amplificazione dinamica dovranno valutarsi:

 per le usuali tipologie di ponti e per velocità di percorrenza non superiore a 200 km/h, quando la frequenza propria della struttura ricade all'interno del fuso indicato nella figura seguente è sufficiente utilizzare i coefficienti dinamici Φ definiti in §5.2.2.2.3 D.M. 14/01/2008. Come riportato in § 2.5.1.4.2.5.2 del MdP, si adotta il coefficiente dinamico Φ₃=1.00 poiché si sta studiando il comportamento di una pila con le seguenti caratteristiche:

I=22.60 m⁴ Inerzia longitudinale elevazione pila

A=12.97 m² Area sezione elevazione pila

H=7.50 m Altezza massima pile

 $\lambda=H^*v(A/I)=5.7 \le 30$ Snellezza pila

- per le usuali tipologie di ponti, ove la velocità di percorrenza sia superiore a 200 km/h e quando la frequenza propria della struttura non ricade all'interno del fuso indicato nella figura seguente, e comunque per le tipologie non convenzionali (ponti strallati, ponti sospesi, ponti di grande luce, ponti metallici difformi dalle tipologie in uso in ambito ferroviario, ecc.) dovrà effettuarsi una analisi dinamica adottando convogli "reali" e parametri di controllo specifici dell'infrastruttura e del tipo di traffico ivi previsto, per ulteriori dettagli fare riferimento alle valutazioni contenute nella relazione di calcolo degli impalcati presenti sulla sottostruttura in oggetto.

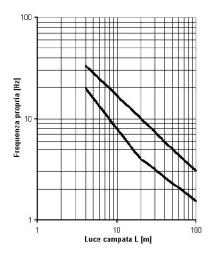


Fig. 5.2.7 - Limiti delle frequenze proprie no in Hz in funzione della luce della campata

Figura 8 – Limiti frequenze proprie per il calcolo del coefficiente dinamico Φ

7.4.1.4 Calcolo per campata L=25 m

Gli effetti sui singoli impalcati indotti dalle azioni da traffico, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	34

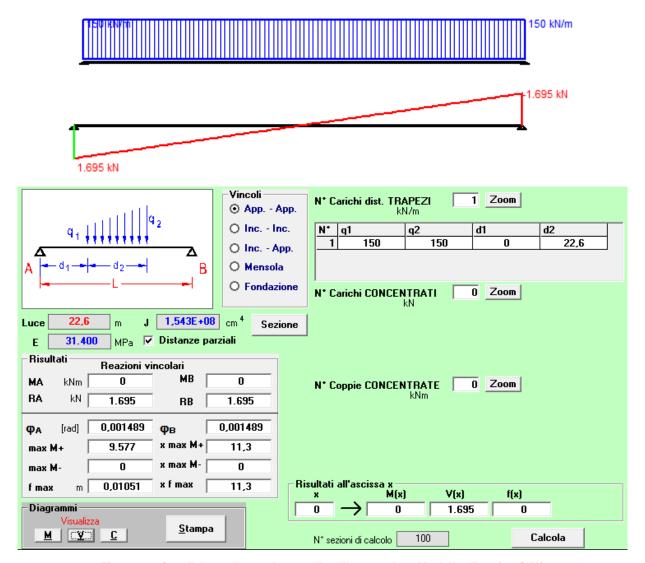
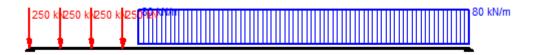



Figura 9 – Condizione di massimo taglio all'appoggio – Modello di carico SW/2

$$\begin{split} V_{max} &= 1695 \text{ kN} \\ q'_V &= V_{max} \ / \ (L/2) = 1695 \ / \ (22.60/2) = 150.0 \text{ kN} \\ Q_1 &= \Phi_3 ^* \alpha^* q'_V ^* L/2 = 1.00 ^* 1.00 ^* 150.0 ^* 22.60/2 = 1695.0 \text{ kN} \end{split}$$

(Q1_SW/2 B1)
Carico equivalente tagliante
Azione verticale applicata con e=+2.00 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	35

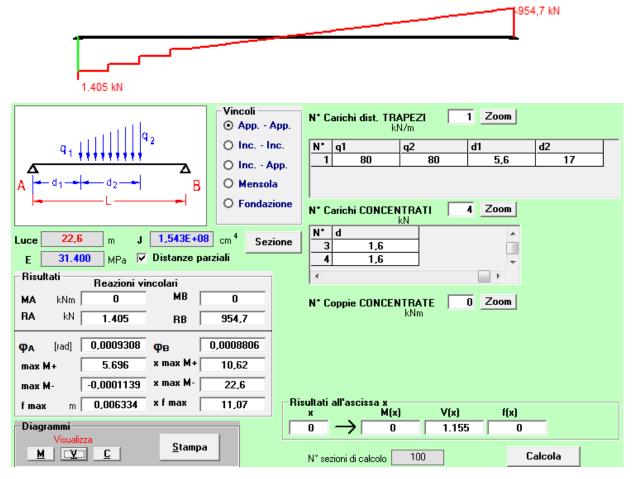


Figura 10 - Condizione di massimo taglio all'appoggio - Modello di carico LM71

 $V_{max} = 1405 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 1405 / (22.60/2) = 124.3 \text{ kN}$

 $Q_1 = \Phi_3^* \alpha^* q'_V^* L/2 = 1.00^* 1.10^* 124.3^* 22.60/2 = 1545.1 \text{ kN}$

 $V_{max} = 1405 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 1405 / (22.60/2) = 124.3 \text{ kN}$

 $Q_1 = \Phi_3^* \alpha^* q'_V^* L/2 = 1.00^* 1.10^* 124.3^* 22.60/2 = 1545.1 \text{ kN}$

(Q1_LM71 B1)

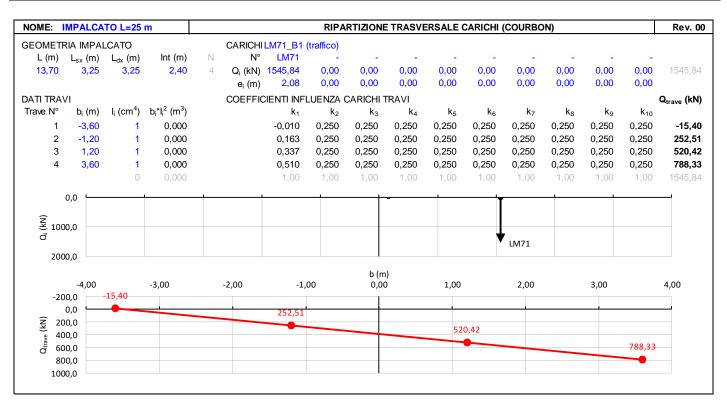
Carico equivalente tagliante

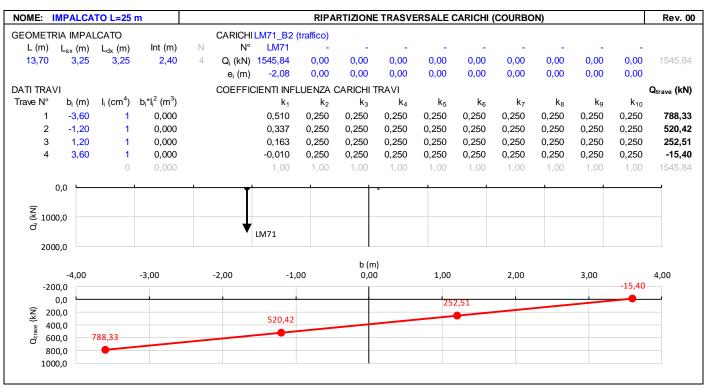
Azione verticale applicata con e=+2.08 m

(Q1_LM71 B2)

Carico equivalente tagliante

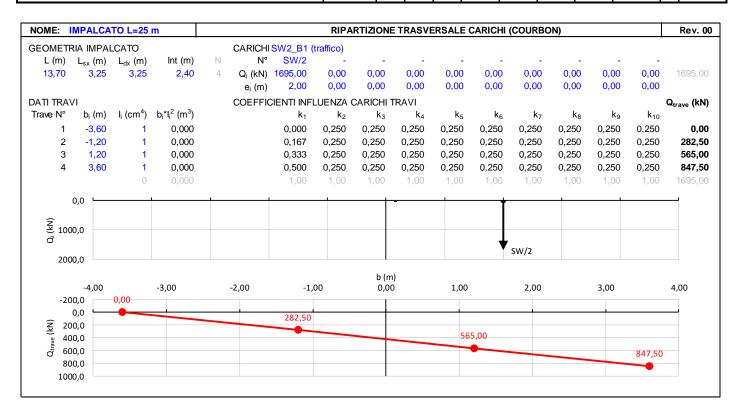
Azione verticale applicata con e=-2.08 m


Le precedenti azioni vengono rigidamente distribuite alla Courbon calcolando in prossimità degli appoggi trave le reazioni verticali di equilibrio.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	Ω2		TIPO DOC	na 7 discip		PROGR	REV	
				VI 05 05				



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	37

7.4.1.5 Decentramento dei carichi in tracciato curvilineo

Ai fini del calcolo delle sottostrutture, per un tracciato di lunghezza L=25 m, raggio massimo ipotetico di R=2200 m, si ha un decentramento del carico pari a circa e= $R-\sqrt{(R^2-L^2/4)}=0.035$ m, pertanto si ritiene tale effetto trascurabile in relazione alle dimensioni geometriche della sezione di appoggio.

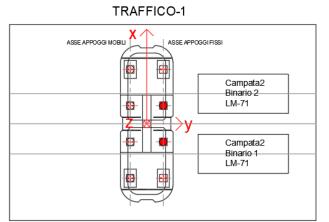
7.4.1.6 Carichi sui marciapiedi

In accordo al punto 5.2.2.3.2, il carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e viene quindi utilizzato solo per le verifiche locali della soletta di impalcato.

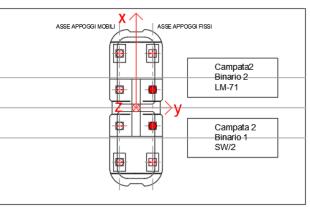
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

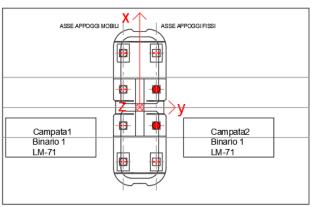
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
LI0B	02	Ш	ZZ	CL	VI	05	05	001	В	38


7.4.1.7 Numero di treni contemporanei

Nella progettazione andrà considerata l'eventuale contemporaneità di più treni, in genere sia per traffico normale (LM71) sia per traffico pesante (SW/2). Le azioni da traffico considerano una configurazione in campata in cui si massimizza il taglio all'appoggio.


Le condizioni da traffico in campata valutate per le pile sono descritte in seguito:

- Traffico-1: Due treni di carico in contemporaneo sulla Campata 2 (lato appoggi fissi): LM71 sul binario
 1 "+" LM71 sul binario
- Traffico-2: Due treni di carico in contemporaneo sulla Campata 2 (lato appoggi fissi): SW2 sul binario 1 "+" LM71 sul binario 2.
- Traffico-3:
 - Un treno di carico sulla Campata 1: LM71 sul binario 1.
 - Un treno di carico sulla Campata 2: LM71 sul binario 1.
- Traffico-4:
 - o Un treno di carico sulla Campata 1: SW2 sul binario 1.
 - Un treno di carico sulla Campata 2: SW2 sul binario 1.


Nella figura successiva vengono riportati gli schemi considerati:

TRAFFICO-2

TRAFFICO-3

TRAFFICO-4

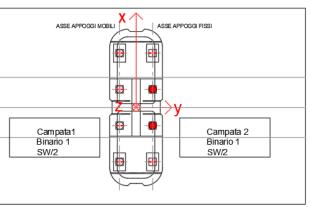


Figura 11 – Schemi di contemporaneità dei treni sui binari

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	39

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
23	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Figura 12 – Carichi mobili da considerare nel caso di strutture a più binari

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	40

7.5 AZIONI ECCEZIONALI (A)

7.5.1 Deragliamento al di sopra del ponte

In accordo col §2.5.1.5 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende il contenuto del §5.2.2.9.2 delle NTC08, oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità alternativa che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto.

7.5.1.1 Caso 1

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Tali carichi saranno posizionati longitudinalmente su una lunghezza di 6,40 m. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12. Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

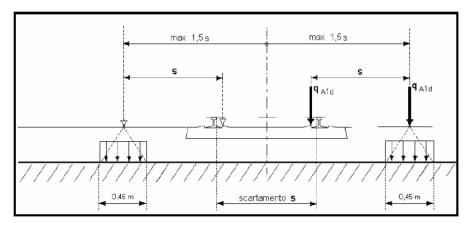
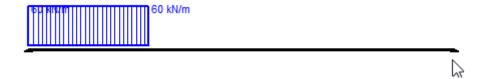



Figura 5.2.12 - Caso 1

Figura 13 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 1

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	41

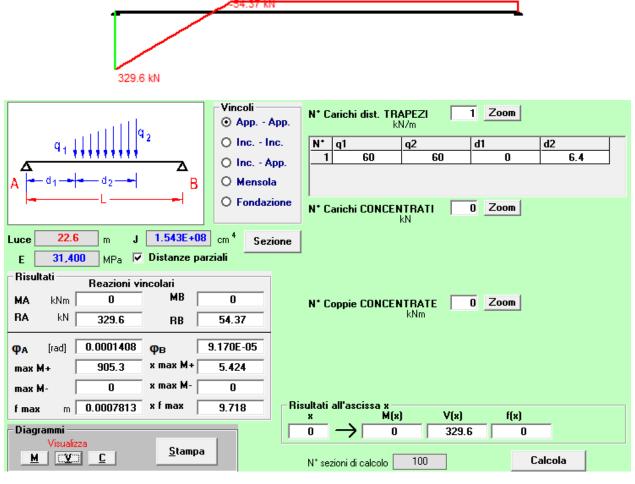


Figura 14 – Deragliamento al di sopra del ponte – Caso 1

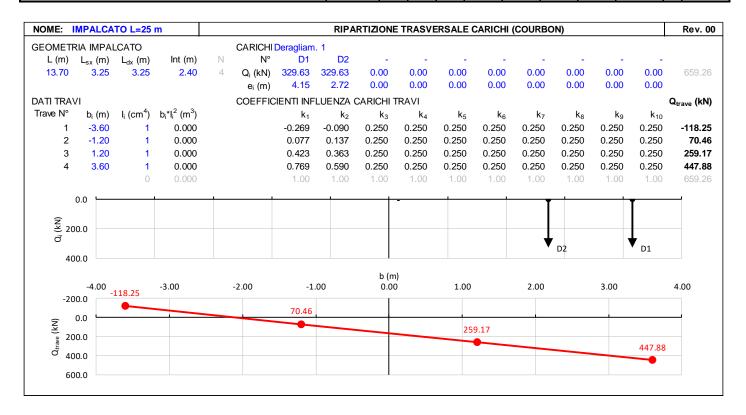
 $V_{max} = 329.6 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 330 / (22.60/2) = 29.2 \text{ kN/m}$

 $Q_1 = q'_V L/2 = 29.2 22.60/2 = 329.60 kN$

 $Q_1 = q'_V L/2 = 29.2 22.60/2 = 329.60 kN$

Carico equivalente tagliante


Azione verticale applicata e=+2.00+1.435*1.5=4.15 m Azione verticale applicata e=+2.00+1.435*0.5=2.72 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	42

7.5.1.2 Caso 2

Si considera un unico carico lineare $q_{A2d} = 80 \text{ kN/m} \times 1.4$ esteso per 20,00 m e disposto con una eccentricità massima, lato esterno, di 1,50 s rispetto all'asse del binario (Fig. 5.2.13). Per questa condizione convenzionale di carico andrà verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta, ecc. Per impalcati metallici con armamento diretto, il caso 2 dovrà essere considerato solo per le verifiche globali.

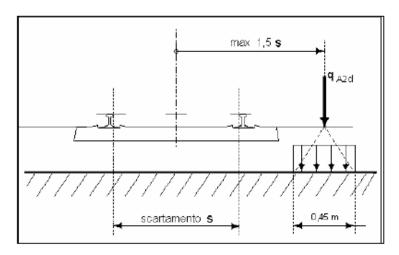


Figura 5.2.13 - Caso 2

Figura 15 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 2

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

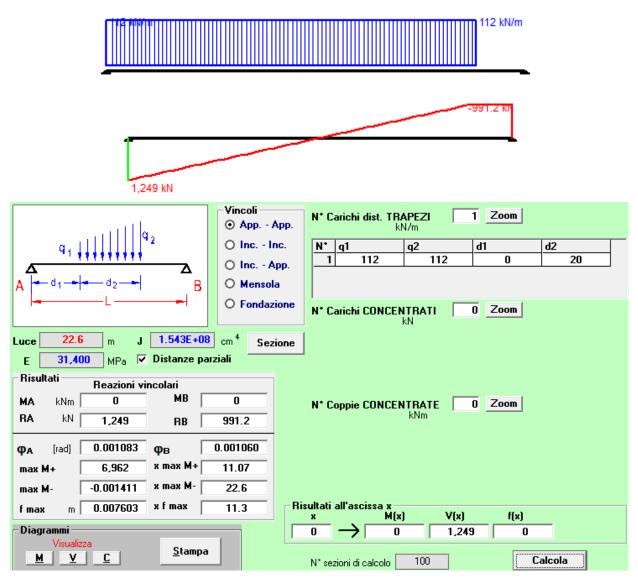
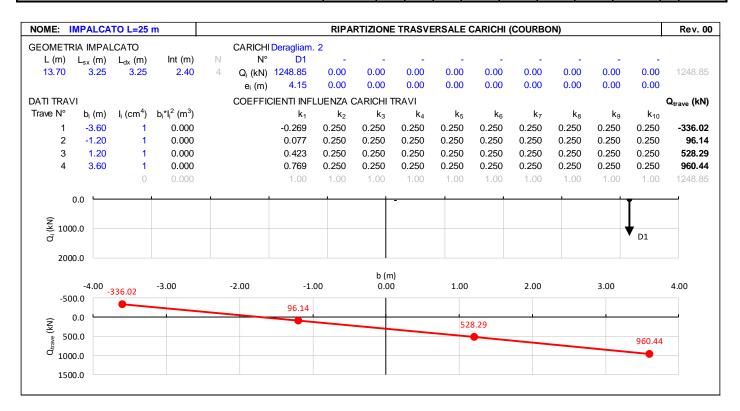


Figura 16 - Deragliamento al di sopra del ponte - Caso 1

 $V_{max} = 1248.8 \text{ kN}$ $q'_{V} = V_{max} / (L/2) = 1248.8 / (22.60/2) = 110.5 \text{ kN/m}$ Carico equivalente tagliante $Q_{1} = q'_{V} L/2 = 1105.5 22.60/2 = 1248.8 \text{ kN}$ Azione verticale applicata e=+2.00+1.435 1.5=4.15 m



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	44

7.5.1.3 Effetti sulla sottostruttura

Dato che le condizioni di carico previste sono da considerarsi solo per le verifiche eccezionali SLU con coefficiente unitario, mediante analisi preliminari si è accertato che tali combinazioni di azioni sollecitano la sottostruttura all'interno del campo di esercizio delle combinazioni SLU, pertanto per brevità di trattazione non sono state direttamente esplicitate nei calcoli di dimensionamento dei capitoli successivi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
	LI0B	02	Е	ΖZ	CL	VI	05	05	001	В	45

7.6 AZIONI VARIABILI ORIZZONTALI (Q)

7.6.1 Forza centrifuga (Q₄)

Nome	Tipo	Υ Q (Fav / Sfav)	Ψο	Ψ1	Ψ2
CENTRIFUGA	Variabili da traffico ferroviario	0.00 / 1.45	0.80	0.50	0.00

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva.

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F.

Le forze centrifughe sono valutate in accordo al par. 2.5.1.4.3.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture: "RFI DTC SI PS MA IFS 001 E".

Il valore caratteristico della forza centrifuga si determinerà in accordo con la seguente espressione:

$$q_{tk} = \frac{V^2}{127 \cdot R} (f \cdot q_{vk})$$

qtk valore caratteristico della forza centrifuga, espresso in kN/m

q_{vk} valore caratteristico dei carichi verticali ferroviari, espresso in kN/m

V velocità di progetto, espressa in km/h

f fattore di riduzione

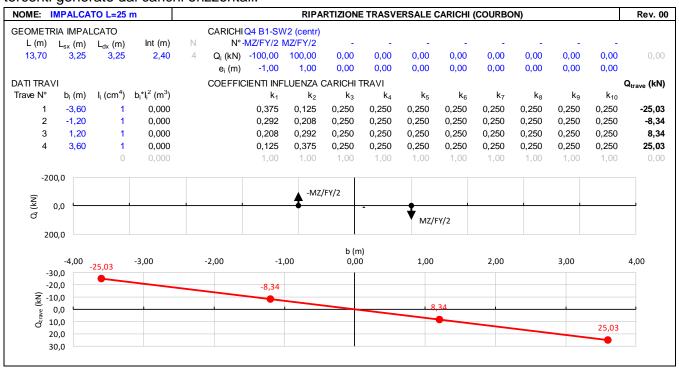
R raggio di curvatura, espresso in m

Nel caso in esame essendo V=200 km/h vanno considerati i seguenti casi di calcolo:

	Massima velocità della		Azio	ne centri	fuga basata su:	traffico verticale
Valore di α	linea [Km/h]	V	α	f		associato
SW/2	≥ 100	100	1	1	1 x 1 x SW/2	
	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤120	V	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

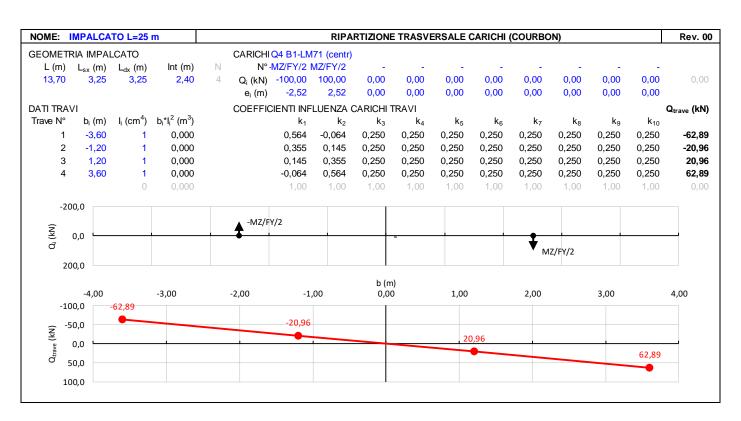

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

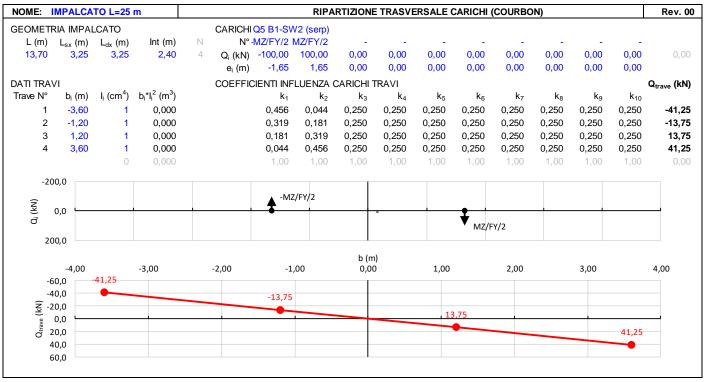
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	46

In particolare, per il treno LM71 andrà considerata la condizione più sfavorevole tra le due indicate in tabella.

NOME:	MPALCAT	O L=25 m		CALCOLO	FORZA CENTRIFUGA	Rev. 00
DATI DEL PRO	OGETTO					
V (km/h)	200	Velocità di p	rogetto		Distanza PF/appoggi (m) 3,30)
`R (m)	2200	Raggio di cu	-		11 33 ()	
L_f (m)	12,50		li binario carico			
TRENO LM71	e SW/0		TRENO SW/2			
Q_{vk} (kN)	1405,0		Q_{vk} (kN)	1695,0	Carichi verticali ferroviari caratteris	stico
	Caso 1	Caso 2		Caso 1		
V (km/h)	200	120	V (km/h)	100	Velocità di progetto	
α (-)	1,00	1,10	α (-)	1,00	Coefficiente di adattamento	
f (-)	0,758	1,000	f (-)	1,00	Fattore di reduzione	
q_{tk} (kN/m)	152,45	79,65				
Q _{4,c} (kN)	152,4		Q _{4,c} (kN)	60,7	Forza centrifuga caratt. trasversa	le
M _{4.c} (kNm)	503,1		M _{4,c} (kNm)	200,2	Momento torcente forza centrifug	a caratt.

Gli effetti sui singoli impalcati indotti dall'azione centrifuga, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti (modellate come azioni verticali di 100 kN eccentriche) in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.





RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	47

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

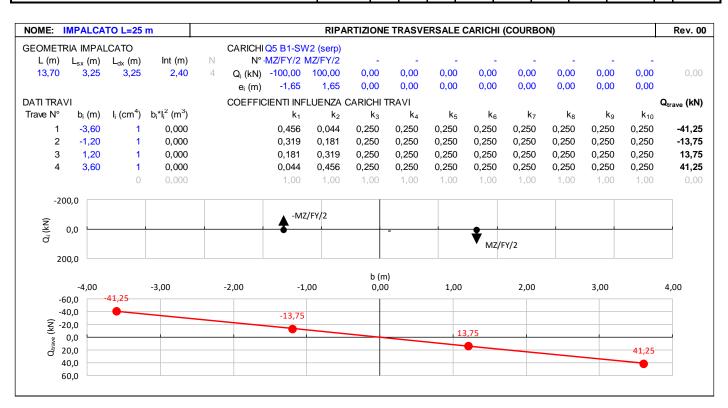
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	48

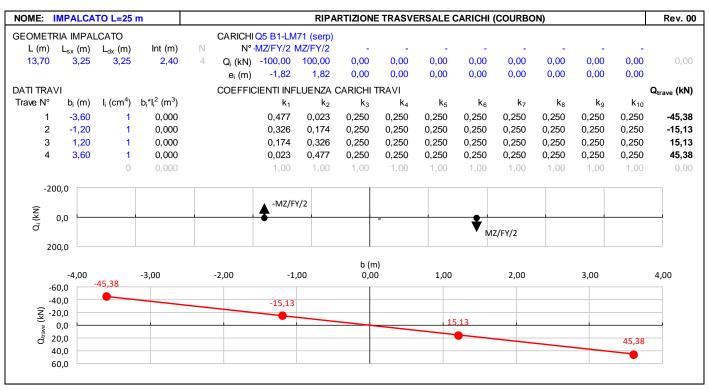
7.6.2 Azione laterale serpeggio (Q₅)

Nome	Tipo	γ Q	Ψο	Ψ1	Ψ2
SERPEGGIO	Variabili da traffico ferroviario	(Fav / Sfav) 0.0 / 1.45	0.80	0.50	0.00

L'azione laterale associata al serpeggio è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario, del valore di 100 kN. Tale valore deve essere moltiplicato per il coefficiente di adattamento α .

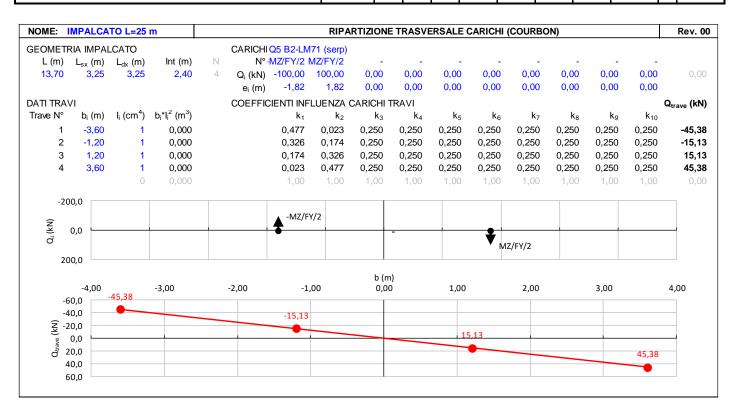
Gli effetti sui singoli impalcati indotti dall'azione di serpeggio, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti (modellate come azioni verticali di 100 kN eccentriche) in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.


NOME: II	/IPALCAT	O L=25 m		CALCOL	O FORZA SERPEGGIO		Rev. 00
Q _{sk} (kN)	100.0	Azione caratte	eristica di serpeç	gio	Distanza PF/appoggi (m)	3.30	
TRENO LM71	e SW/0		TRENO SW/2				
α (-)	1.10		α (-)	1.00			
Q _s (kN)	110.0		Q _s (kN)	100.0	Forza serpeggio caratt. tras	versal	е
M _{tk} (kNm)	363.00		M _{tk} (kNm)	330.00	Momento torcente forza serp	peggio	caratt.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	49



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	50

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA VI 05 05		LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	51

7.6.3 Azioni di avviamento e frenatura (Q₃)

L'azione orizzontale associata all'avviamento e alla frenatura dei treni è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, parallelamente all'asse del binario.

	Nome	Tipo	γα	Ψ0	Ψ1	Ψ2
			(Fav / Sfav)			
ĺ	TRAFFICO LM71	Carichi da traffico	0.00 / 1.45	0.80	0.50	0.00
	TRAFFICO SW/2	ferroviario	0.00 / 1.45	0.80	0.50	0.00

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento α, sono:

Avviamento

Q_{3a,k} = 33 [kN/m] * L [m]≤ 1000 KN modelli di carico LM71, SW/0, SW/2

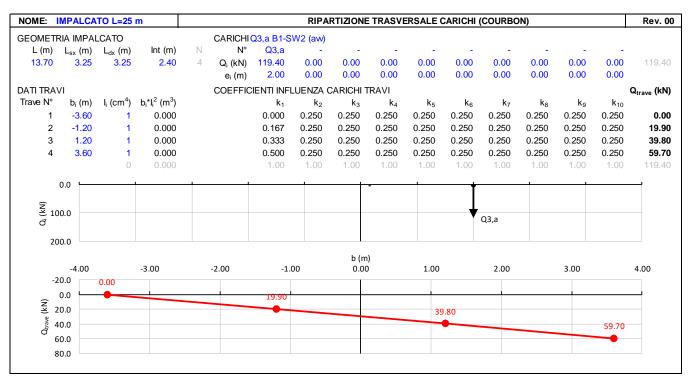
Frenatura

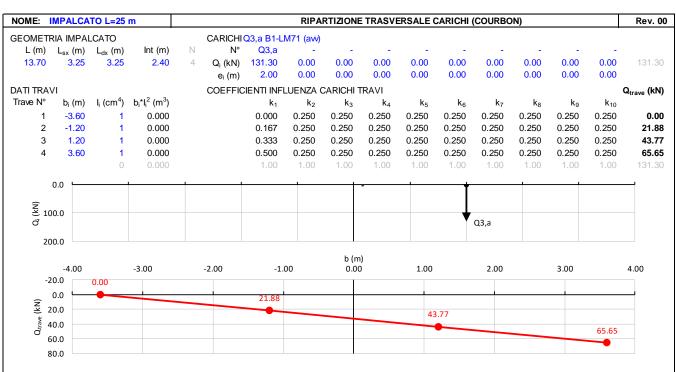
 $Q_{3f,k} = 35 [kN/m] * L [m]$ modelli di carico SW/2

 $Q_{3f,k} = 20 \text{ [kN/m]} * L \text{ [m]} \le 6000 \text{ KN}$ modelli di carico LM71, SW/0

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura; pertanto, per ogni binario (B1 o B2) si può avere:

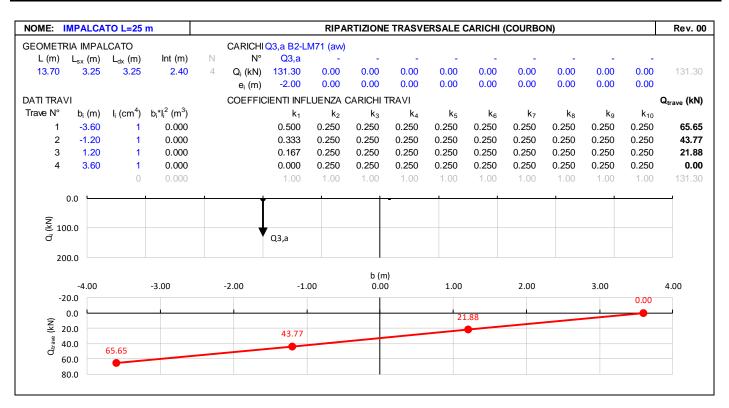
PALCAT	O L=25 m	CALCOL	O FORZ	A AVVIAMENTO / FRENATURA	Rev. 00
22.80 25.00	J	11 00		Distanza PF/appoggi (m) 3.30	
SW/0		TRENO SW/2			
1.10		α (-)	1.00		
550.0		Q _{3,f} (kN)	875.0	Forza frenatura caratt. longitudina	le
79.6		V _{3,f} (kNm)	126.6	Forza frenatura caratt. verticale	
907.5		Q _{3,a} (kN)	825.0	Forza awiamento caratt. longitudi	nale
131.3		V _{3,a} (kNm)	119.4	Forza awiamento caratt. verticale	
	22.80 25.00 SW/0 1.10 550.0 79.6	25.00 Lunghezza di t SW/0 1.10 550.0 79.6	22.80 Lunghezza tra appoggi 25.00 Lunghezza di binario carico SW/0 TRENO SW/2 1.10 α (-) 550.0 Q _{3,f} (kN) 79.6 Q _{3,a} (kN)	22.80 Lunghezza tra appoggi 25.00 Lunghezza di binario carico SW/0 TRENO SW/2 1.10 α (-) 1.00 550.0 Q _{3,f} (kN) 875.0 79.6 V _{3,f} (kNm) 126.6 907.5 Q _{3,a} (kN) 825.0	22.80 Lunghezza tra appoggi Distanza PF/appoggi (m) 3.30 25.00 Lunghezza di binario carico SW/0 TRENO SW/2 1.10 α (-) 1.00 550.0 Q _{3,f} (kN) 875.0 Forza frenatura caratt. longitudina 79.6 V _{3,f} (kNm) 126.6 Forza frenatura caratt. verticale 907.5 Q _{3,a} (kN) 825.0 Forza awiamento caratt. longitudi

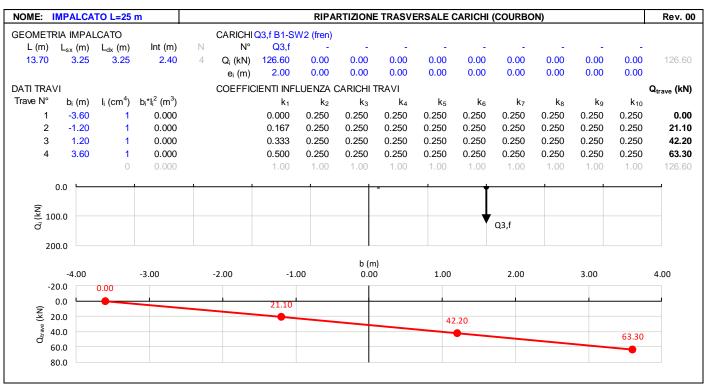

Gli effetti sui singoli impalcati indotti dall'azione di avviamento o frenatura, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

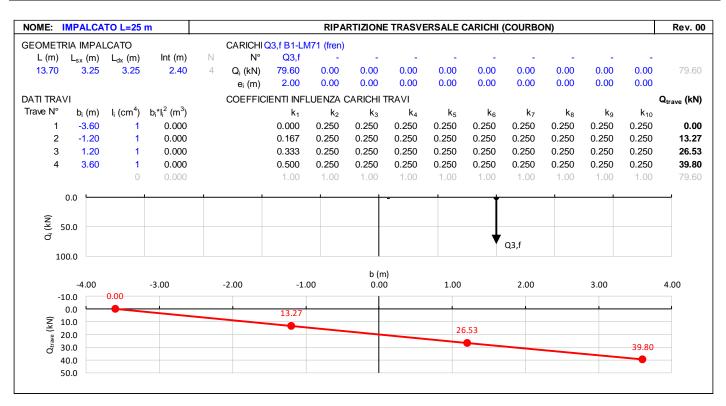
		LОТТО		TIPO DOC		VI 05 05		PROGR	REV	
ı	LIUB	UZ	ZZ	CL	VI	US	US	001	В	52

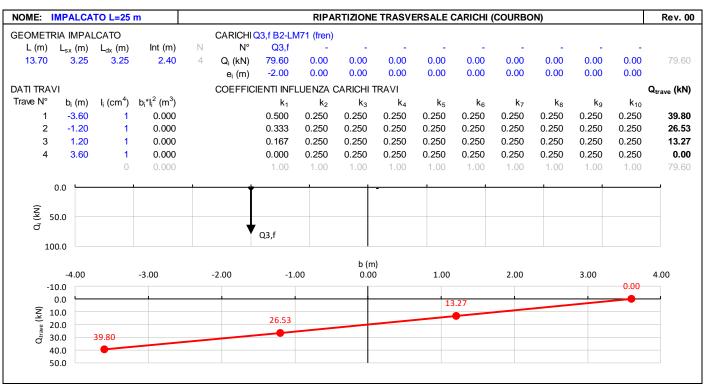




RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	53





RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	02		тіро дос	VI 05 05		PROGR	REV	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

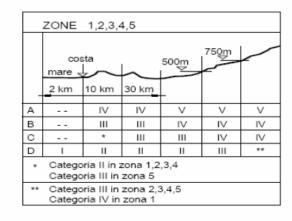
VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	55

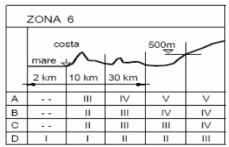
7.7 AZIONE DEL VENTO (Q6)

Nome	Tipo	γα	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
VENTO	Variabile	EQU 0.00 / 1.50	0.60	0.50	0.00
		(A1) 0.00 / 1.50			
		(A2) 0.00 / 1.30			

In accordo con le raccomandazioni CNR DT207 R1/2018, l'azione del vento può essere convenzionalmente assimilata ad un carico statico uniformemente distribuito sulle superfici. La componente ortogonale è calcolata secondo la seguente espressione:


q_b (z) pressione cinetica di riferimento

c_e (z) coefficiente di esposizione


c_{pm} coefficiente di forma (o aerodinamico) complessivo

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, dalla categoria di esposizione dove sorge la costruzione. Viene calcolato con le seguenti espressioni:

$$\begin{aligned} c_{e}(z) &= k_{r}^{2} \cdot c_{t}(z) \cdot \ln(z/z_{0}) (7 + c_{t}(z) \cdot \ln(z/z_{0})) & Z \geq Z_{min} \\ c_{e}(z) &= c_{e}(Z_{min}) & Z < Z_{min} \end{aligned}$$

	ZONA	9
	mare -	costa
Α		1
В		_
С		
D	I	I

	ZONE	7,8								
		cos	eta /							
	mare									
-	1.5 km	0.5 km	_							
А			IV							
В			IV							
С			Ξ							
D	I	II	*							
	* Categoria II in zona 8 Categoria III in zona 7									

Fig. 3.3.2 - Definizione delle categorie di esposizione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	56

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	≈ ₀ [m]	≈ _{min} [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Tabella 11 - Criterio di assegnazione della categoria di esposizione per le diverse zone italiane

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa) c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

Tabella 12 - Classi di rugosità del terreno

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	57

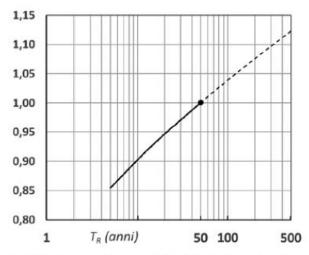
Fig. 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

Figura 17 - Zone caratterizzate da diversi valori della velocità di riferimento

Tab. 3.3.I -Valori dei parametri v_{b.0}, a₀, k_s

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k,
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Tabella 13 - Valori dei parametri vb,0, a0 e ka per le diverse zone italiane



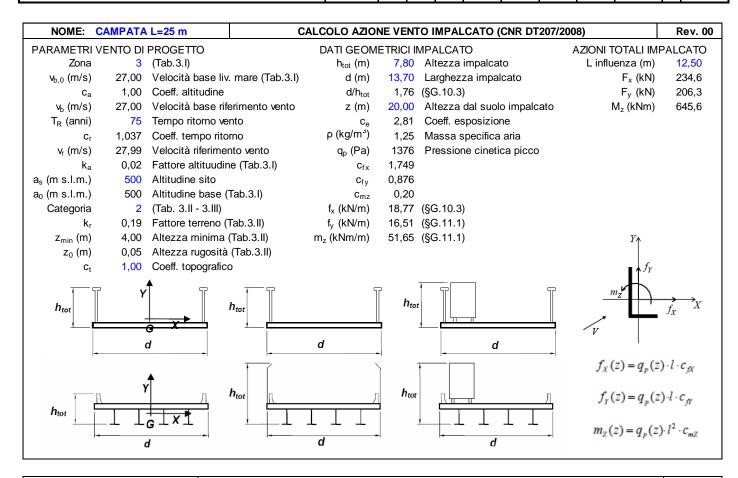
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

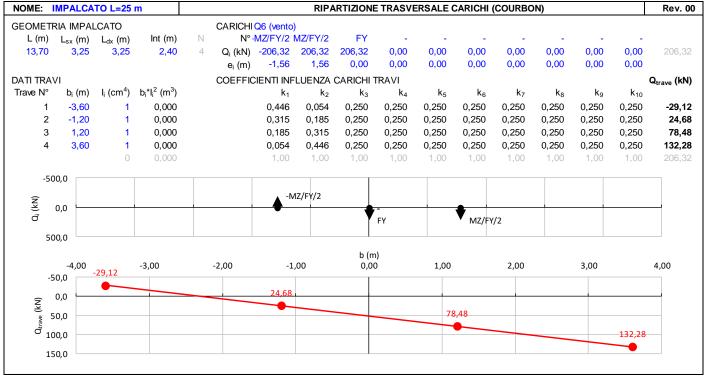
VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	58

 $\textbf{Figura C3.3.1} - \textit{Valori del coefficiente } \alpha_{R} \textit{ in funzione del periodo di ritorno } T_{R'} \textit{ (asse in scala logaritmica),}$

Figura 18 - Diagramma del coefficiente di ritorno ar in funzione del periodo di ritorno TR


Gli effetti sui singoli impalcati indotti dall'azione del vento vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	59

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	60

7.8 AZIONE SISMICA (E)

Nome	e Tipo	γе	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
SISMA	A Sismiche	EQU 0.00 / 1.00	-	-	-
		(A1) 0.00 / 1.00			
		(A2) 0.00 / 1.00			

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. La pericolosità sismica del sito è definita in termini di:

ag accelerazione orizzontale massima del terreno

 F_0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale T_C^* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

L'accelerazione orizzontale massima attesa a_g è riferita in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R per ogni stato limite considerato.

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

7.8.1 Stati limite di progetto sismici

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria "Linea Pescara - Bari - Raddoppio Termoli - Lesina", che si sviluppa per circa 25Km, attraversando il territorio di diverse località, tra cui Termoli (CB), Campomarino (CB), Campomarino – Santa Monica (CB), Marina di Chieuti / Chieuti (FG), Serracapriola- Loc.SS16 (FG).

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	61

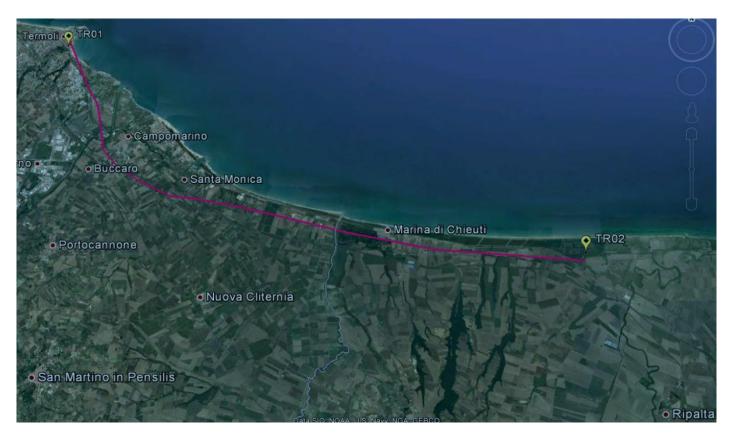


Figura 19- Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in quattro sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da nord verso sud; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Progr. Inizio	Progr. Fine	Località di Riferimento Azioni Sismiche	Zona sismica Locale
0	5.250,00	Campomarino(CB)	S1
5.250,00	10.000,00	Campomarino - Santa Monica (CB)	S2
10.000,00	18.650,00	Marina di Chieuti /Chieuti (FG)	S3
18.650,00	24.200,00	Serracapriola- Loc.SS16 (FG)	S4

Tabella 14 - Tabella di riepilogo località di riferimento per la valutazione delle azioni sismiche per il progetto delle opere

La vita nominale V_N delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	62

_

TIPO DI COSTRUZIONE (1)	Vita Nominale V _N [Anni] ⁽¹⁾
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14.01.2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75
ALTRE OPERE NUOVE A VELOCITÀ V ≥ 250 km/h	100
OPERE DI GRANDI DIMENSIONI: PON'TI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (2)

⁽¹⁾ – La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse opere.

Per le opere definitive e tenendo conto delle indicazioni precedenti, si ha il periodo di riferimento della struttura $V_R = 112.5$ anni, si possono pertanto individuare i seguenti stati limite:

SLATO	T _R	a _g	F。	Tc
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0,066	2,494	0,324
SLD	113	0,082	2,548	0,332
SLV	1068	0,195	2,532	0,375
SLC	2193	0,253	2,507	0,382

Tabella 15 - Parametri sismici per i vari stati limite di progetto

Con riferimento al §7 delle NTC 2008, le costruzioni caratterizzate nei confronti dello SLV, da $a_gS \le 0.075g$, possono essere progettate e verificate con la sola verifica nei confronti dello SLV.

Con riferimento alle caratteristiche dell'opera, si sono analizzati i seguenti stati limite di progetto:

Stato limite di danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature

Probabilità di superamento

 $P_{VR} = 63\%$

Tempo di ritorno

 $T_R = -V_R / \ln(1-P_{VR}) = -112.5 / \ln(1-0.63) = 113$ anni

 Stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva

^{(2) -} Da definirsi per il singolo progetto a cura di FERROVIE.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ΖZ	CL	VI	05	05	001	В	63

invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali

 $P_{VR} = 10\%$ Probabilità di superamento

 $T_R = -V_R / In(1-P_{VR}) = -112.5 / In(1-0.10) = 1068$ anni Tempo di ritorno

7.8.2 Spettri di risposta

Per il sito in esame, in base alle caratteristiche geotecniche di riferimento e dalla morfologia del terreno descritti nei capitoli precedenti, il sottosuolo può essere classificato come:

Categoria sottosuolo

Rocce tenere e depositi di terreni a gran grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocita equivalente compresi tra

360 m/s e 800 m/s

Categoria topografica "T1"

Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°

Lo spettro di risposta elastico orizzontale S_e(T) del sisma è definito dalle espressioni seguenti:

$$0 \le T < T_B$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{\text{B}} \leq T < T_{\text{C}}$$

$$S_e(T) = a_q \cdot S \cdot \eta \cdot F_o$$

$$T_C \leq T < T_D$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T_c}{T} \right]$$

$$T_D \leq T$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T_D \cdot T_C}{T^2} \right]$$

Т

periodo di vibrazione orizzontale [s]

 $S_e(T)$

accelerazione spettrale orizzontale [m/s²]

 $S = S_S^*S_T$

coefficiente della categoria di sottosuolo e delle condizioni topografiche

 S_{S}

coefficiente di amplificazione stratigrafica (vedi tabella seguente)

 S_T

coefficiente di amplificazione topografica (vedi tabella seguente)

 $\eta = \sqrt{10}/(5+\xi) \ge 0.55$ fattore che altera lo spettro elastico per smorzamento viscosi diversi dal 5%

ξ

coefficiente di smorzamento viscoso [%]

fattore che quantifica l'amplificazione spettrale massima

 $T_C = C_C * T_C *$

periodo corrispondente all'inizio del tratto a velocità costante dello spettro

 C_{c}

F₀

coefficiente definito nella tabella seguente

 $T_B = T_C/3$ $T_D = 4*a_0/q + 1.6$ periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante periodo corrispondente all'inizio del tratto a spostamento costante dello spettro

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	64

Categoria sottosuolo	Ss	Cc
A	1.00	1.00
В	$1.0 \le 1.40 - 0.40 \cdot F_0 \cdot a_g/g \le 1.20$	1.10·(T _c *) ^{-0.20}
С	$1.0 \le 1.70 - 0.6 \cdot F_0 \cdot a_g/g \le 1.50$	1.05·(T _c *) ^{-0.33}
D	$0.90 \le 2.40 - 1.50 \cdot F_0 \cdot a_g/g \le 1.80$	1.25·(T _c *) ^{-0.50}
E	$1.0\!\leq\!2.00\!-\!1.10\!\cdot\! F_0\cdot\! a_g/g\!\leq\!1.60$	1.15·(T _c *) ^{-0.40}

Tabella 16 - Coefficienti di amplificazione stratigrafica orizzontale

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
T1	-	1.0
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo	1.2
T4	In corrispondenza della cresta del rilievo	1.4

Tabella 17 - Coefficienti di amplificazione topografica

Lo spettro di risposta elastico verticale S_{ve}(T) del sisma è definito dalle espressioni seguenti:

$$0 \le T < T_{B}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{v}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v}$$

$$T_{C} \le T < T_{D}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T_{C}}{T} \right]$$

$$T_{D} \le T$$

$$S_{ve}(T) = a_{e} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T_{D} \cdot T_{C}}{T} \right]$$

$$T_D \le T$$
 $S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T_D \cdot T_C}{T^2} \right]$

Т periodo di vibrazione verticale [s] accelerazione spettrale verticale [m/s2]

 $F_V = 1,35 \cdot F_0 \cdot \left(a_q/g\right)^{0.5}$ fattore che quantifica l'accelerazione spettrale massima

I parametri S_S, T_B, T_C e T_D per la definizione dello spettro verticale sono indipendenti dalla categoria di suolo e assumono i valori riportati nella tabella seguente.

Categoria sottosuolo	Ss	Тв	Tc	T D
A, B, C, D, E	1.0	0.05 s	0.15 s	1.0 s

Tabella 18 - Coefficienti di amplificazione stratigrafica verticale

Le capacità dissipative della struttura possono essere considerate nella fase di analisi attraverso una riduzione delle forze elastiche, che tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	65

In tal caso, lo <u>spettro di progetto</u> $S_d(T)$ da utilizzare è lo spettro elastico ridotto sostituendo nelle formule corrispondenti η con 1/q, dove q è il fattore di struttura. Si assume comunque $S_d(T) \ge 0,2a_g$.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

- $q = q_0^* K_R$ q_0 valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento
- K_R fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione

strutturale raggiunge la plasticizzazione a flessione

Il valore di q utilizzato per la componente verticale dell'azione sismica allo SLV, a meno di adeguate analisi giustificative, è q = 1.50 per qualunque tipologia strutturale e di materiale, tranne che per i ponti per i quali è q = 1.00.

7.8.2.1 Pile e spalle da ponte

Le capacità dissipative delle singole sottostrutture sono variabili a seconda di che si tratti delle pile o delle spalle.

Nel caso di <u>comportamento strutturale non dissipativo</u>, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al Capitolo 4, senza nessun requisito aggiuntivo, a condizione che: per le strutture di calcestruzzo armato, nessuna sezione superi la curvatura convenzionale di prima plasticizzazione, come definita al § 7.4.4.1.2; per le strutture di calcestruzzo armato precompresso e per le strutture in carpenteria metallica, nessun materiale superi la deformazione di snervamento di progetto.

Nel caso di <u>comportamento strutturale dissipativo</u>, la struttura del ponte deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile nel quale la dissipazione sia limitata alle pile.

Ai soli fini del <u>progetto dei pali di fondazione</u>, con riferimento al §7.2.5, è possibile considerare una limitata capacità dissipativa, dividendo per 1.50 le sollecitazioni sismiche sui pali derivanti dall'analisi strutturale con comportamento non dissipativo. In questo caso, per una lunghezza pari a 10 diametri dalla sommità del palo, devono applicarsi i dettagli costruttivi di cui al §7.9.6.1 relativi alla CD"B".

Gli elementi ai quali non è mai richiesta capacità dissipativa devono mantenere un comportamento sostanzialmente elastico; essi sono: gli elementi progettati per avere un comportamento non dissipativo, le porzioni esterne alle zone dissipative delle pile, l'impalcato, gli apparecchi di appoggio, le strutture di fondazione, le spalle, le pile che non scambiano azioni orizzontali con l'impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	66

Per le due componenti orizzontali dell'azione sismica, nel caso di comportamento strutturale non dissipativo $q_0 = 1.00$, mentre per comportamento strutturale dissipativo i valori di q_0 sono quelli di Tab. 7.3.II con le seguenti:

 $\lambda(\alpha) = 1.00$ $\alpha \ge 3.00$

 $(\alpha/3)^{0.5}$ 3.00 > $\alpha \ge 1.00$

 $\alpha = L/H$

L distanza della sezione di cerniera plastica dalla sezione di momento nullo dimensione della sezione nel piano di inflessione della cerniera plastica

Per gli elementi duttili di calcestruzzo armato si ha che per la scelta dei valori di q₀ si ha:

 $v_k < 0.30$ $q_0 = valori di Tab. 7.3.II$

 $0.30 < v_k < 0.60$ $q_0(v_k) = q_0(v_k=0.3) - (v_k /0.3-1)^*(q_0(v_k=0.3)-1)$ $v_k = N_{Ed}/(A_c^*f_{ck}) < 0.30$ sollecitazione di compressione normalizzata

N_{Ed} sforzo di progetto

A_c*f_{ck} resistenza a compressione semplice della sezione

In accordo al §7.9.2 delle NTC 2008, per le verifiche strutturali delle pile si considera classe di duttilità CD"B" e coefficiente di struttura $q_0 = 1.50$, per le spalle si considera coefficiente di struttura $q_0 = 1.50$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	67

Parametri indipendenti

STATO LIMITE	SLV
a _a	0,195 g
F _o	2,532
T _C *	0,375 s
Ss	1,404
Cc	1,451
S _T	1,000
q	1,000

Parametri dipendenti

S	1,404
η	1,000
T _B	0,181 s
T _C	0,544 s
T _D	2,380 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4,0 \cdot a_p / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T[s] Se [g] 0,000 0,274 T→ 0,181 0,693 T→ 0,544 0,693 0,632 0,597 0,719 0,524 0,806 0,468 0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
T ₈					
Ta→ 0,544 0,693 0,632 0,597 0,719 0,524 0,806 0,468 0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
0,632 0,597 0,719 0,524 0,806 0,468 0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
0,719 0,524 0,806 0,468 0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
0,806 0,468 0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
0,894 0,422 0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
0,981 0,384 1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,069 0,353 1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,156 0,326 1,243 0,303 1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,164					
1,331 0,283 1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,418 0,266 1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,506 0,250 1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,593 0,237 1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,680 0,224 1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,768 0,213 1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
1,855 0,203 1,943 0,194 2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
2,030 0,186 2,117 0,178 2,205 0,171 2,292 0,164					
2,205 0,171 2,292 0,164					
2,292 0,164					
-					
T <mark>⊶ 2,380 0,158</mark>	0,158				
2,457 0,149					
2,534 0,140					
2,611 0,132					
2,688 0,124					
2,765 0,117					
2,843 0,111					
2,920 0,105					
2,997 0,100					
3,074 0,095					
3,151 0,090					
3,228 0,086					
3,306 0,082					
3,383 0,078					
3,460 0,075					
3,537 0,072					
3,614 0,069					
3,691 0,066					
3,769 0,063					
3,846 0,061					
3,923 0,058					
4,000 0,056	$\overline{}$				

Tabella 19 - Opere definitive - Parametri dello spettro di risposta orizzontale allo SLV

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	68

Parametri e punti dello spettro di risposta verticale per lo stato limite\$LV

Parametri indipendenti

STATO LIMITE	SLV
a _{ov}	0,116 _. g
Ss	1,000
S _T	1,000
q	1,000
T _B	0,050 s
Tc	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	1,509
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_v = 1,35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B & S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

ınti	dello spettro	di risposta
	T [s]	Se [g]
	0,000	0,116
T _e ◀	0,050	0,294
T₀♣	0,150	0,294
	0,235	0,188
	0,320	0,138
	0,405	0,109
	0,490	0,090
	0,575	0,077
	0,660	0,067
	0,745	0,059
	0,830	0,053
	0,915	0,048
T⊯	1,000	0,044
	1,094	0,037
	1,188	0,031
	1,281	0,027
	1,375	0,023
	1,469	0,020
	1,563	0,018
	1,656	0,016
	1,750	0,014
	1,844	0,013
	1,938	0,012
	2,031	0,011
	2,125	0,010
	2,219	0,009
	2,313	0,008
	2,406	0,008
	2,500	0,007
	2,594	0,007
	2,688	0,006
	2,781	0,006
	2,875	0,005
	2,969	0,005
	3,063	0,005
	3,156	0,004
	3,250	0,004
	3,344	0,004
	3,438	0,004
	3,531	0,004
	3,625	0,003
	3,719	0,003
	3,813	0,003
	3,906	0,003
	4,000	0,003

Tabella 20 - Opere definitive - Parametri dello spettro di risposta verticale allo SLV

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	69

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV 0,8 $S_d[g]$ 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 1,5 0,5 2,5 4 T [s]

Figura 20 – Spettri di risposta elastici (componente orizzontale e verticale)

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e per la valutazione delle azioni sugli apparecchi di appoggio.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	70

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV S_d [g] 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05

Figura 21 - Spettri di risposta di progetto (componente orizzontale e verticale)

2,5

4 T [s]

1,5

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	71

7.8.3 Amplificazione sismica di progetto

7.8.3.1 Metodo dinamico per strutture generiche

Le azioni inerziali E_h e E_v associate alle masse degli elementi strutturali dei carichi permanenti strutturali e non strutturali sono determinati incrementando le masse schematizzate nel modello di calcolo secondo gli spettri di progetto secondo le seguenti relazioni:

 $E_h = G \cdot S_e(T)$ azione inerziale orizzontale $E_v = G \cdot S_{ve}(T)$ azione inerziale verticale

Si è tenuto conto della variabilità del moto sismico orizzontale considerando le due direzioni principali di oscillazione, in accordo con il §7.3.5 delle NTC, secondo le seguenti relazioni:

$$\begin{aligned} E_1 &= E_x + 0.30 \cdot E_y + 0.30 \cdot E_z \\ E_2 &= 0.30 \cdot E_x + E_y + 0.30 \cdot E_z \\ E_3 &= 0.30 \cdot E_x + 0.30 \cdot E_y + E_z \end{aligned}$$

7.8.3.2 Azioni inerziali masse

Con riferimento a §3.2.4 delle NTC 2008, si considera in fase sismica il contributo delle azioni accidentali come previsto per i ponti ferroviari, pari al 20% del sovraccarico nominale:

$$G=G_1+G_2+\sum\!\psi_{2j}\cdot Q_{kj}$$

G massa totale efficace

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali (permanenti, terreno)

Q_{kj} masse dei carichi accidentali

 $\Psi_{2i} = 0.2$ se ponti ferroviari (§5.2.2.8) o ponti stradali alto traffico (§5.1.3.12)

Le azioni inerziali orizzontali E_x e verticali E_y delle masse efficaci sono determinate incrementando i pesi propri G con accelerazioni verticali e orizzontali definite dai coefficienti di amplificazione dinamica k_h e k_v :

$$\begin{split} E_x &= G \cdot k_h & \text{azione inerziale orizzontale} \\ E_y &= G \cdot k_v & \text{azione inerziale verticale} \\ G &= G_1 + G_2 + \Psi_{2j}{}^*Q & \text{masse efficaci sismiche} \end{split}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	72

7.9 VARIAZIONI TERMICHE (Q7)

Essendo le campate isostatiche, tale azione non rientra direttamente nel calcolo delle sottostrutture, ma viene inclusa indirettamente nelle valutazioni sulle azioni agli appoggi (escursioni ed attriti meccanici).

La variazione termica è definita secondo quanto riportato nel § 2.5.1.4.4.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture" che riprende il § 5.2.2.5.2 delle NTC08.

La variazione termica uniforme volumetrica da considerare per l'impalcato risulta ±15°, ai fini della valutazione delle escursioni dei giunti e degli appoggi mobili viene incrementata del 50% per una variazione totale di calcolo di ±22.5 °C.

7.10 **ATTRITO (Q8)**

Nome	Tipo	γ E	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
ATTRITO PERM	Permanenti non strutturali	1.00 / 1.50	-	-	-
ATTRITO VAR	Variabili traffico ferroviario	EQU 0.00 / 1.45 (A1) 0.00 / 1.45 (A2) 0.00 / 1.25	0.80	0.50	0.00

Gli effetti dell'attrito sono valutati associando, in corrispondenza degli appoggi scorrevoli, alle reazioni verticali dovute a carichi permanenti (V_G) e quelle dovute a carichi accidentali (V_Q) le seguenti forze orizzontali in direzione longitudinale, dove il coefficiente di attrito f = 3%.

Q8 $F_{a, G} = f^*max(V_G)$ per appoggio i-esimo

Q8 $F_{a,Q} = f^*max(V_Q)$ per appoggio i-esimo

Per le forze orizzontali associate ubicate ai singoli appoggi, vedi tabella scarichi impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

LIOB			TIPO DOC		RA 7 DISCIP		PROGR	REV	FOGLIO 73
	W.	_		v	UJ	1/-/	,,,	ш	73

7.11 SCARICHI AGLI APPOGGI

Dalle valutazioni sui carichi derivanti dagli impalcati in appoggio, effettuate mediante metodi semplificati e riportate nei capitoli precedenti per le varie tipologie di azione, si sono considerati i valori nominali degli scarichi riepilogati nella tabella seguente.

Tali scarichi sono stati confrontati rispetto alle calcolazioni di dettaglio effettuate mediante analisi FEM sui singoli impalcati, alle cui relazioni di calcolo si rimanda per ulteriori verifiche di confronto.

IMPALCATO CAP L=25m					La	ito App	oggi Fiss	i				
	App	oggio 1 (M)	Арр	oggio 2	(F)	Арр	oggio 3	(F)	Арр	oggio 4 (M)
·	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)
	1,10	-3,62	-0,60	1,10	-1,21	-0,60	1,10	1,21	-0,60	1,10	3,62	-0,60
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.
Permanenti	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
G1 (peso proprio)	0	0	1075	0	0	475	0	0	475	0	0	1075
Ballast												
G2,1 (ballast)	0	0	325	0	0	500	0	0	500	0	0	325
Perm. non strutturali												
G2,2 (velette)	0	0	225	0	0	-138	0	0	-138	0	0	225
G2,3 (arredi)	0	0	425	0	0	-225	0	0	-225	0	0	425
G2,4 (barriere)	0	0	575	0	0	-325	0	0	-325	0	0	575
Q8 Fa,G (attrito)	79	0	0	9	0	0	9	0	0	79	0	0
Accidentali da traffico												
Q1 LM71_B1 (traffico)	0	0	-15	0	0	253	0	0	520	0	0	788
Q1 LM71_B2 (traffico)	0	0	788	0	0	520	0	0	253	0	0	-15
Q1 SW2_B1 (traffico)	0	0	0	0	0	283	0	0	565	0	0	848
Q3,a B1-SW2 (avv)	0	0	0	-275	0	-20	1100	0	-40	0	0	-60
Q3,a B1-LM71 (avv)	0	0	0	-303	0	-22	1210	0	-44	0	0	-66
Q3,a B2-LM71 (avv)	0	0	-66	1210	0	-44	-303	0	-22	0	0	0
Q3,f B1-SW2 (fren)	0	0	0	-292	0	-21	1167	0	-42	0	0	-63
Q3,f B1-LM71 (fren)	0	0	0	-183	0	-13	733	0	-27	0	0	-40
Q3,f B2-LM71 (fren)	0	0	-40	733	0	-27	-183	0	-13	0	0	0
Q4 B1-SW2 (centr)	0	0	-25	0	30	-8	0	30	8	0	0	25
Q4 B1-LM71 (centr)	0	0	-63	0	76	-21	0	76	21	0	0	63
Q4 B2-LM71 (centr)	0	0	-63	0	76	-21	0	76	21	0	0	63
Q5 B1-SW2 (serp)	0	0	-41	0	50	-14	0	50	14	0	0	41
Q5 B1-LM71 (serp)	0	0	-45	0	55	-15	0	55	15	0	0	45
Q5 B2-LM71 (serp)	0	0	-45	0	55	-15	0	55	15	0	0	45
Q8 Fa,Q (attrito)	24	0	0	16	0	0	17	0	0	25	0	0
Effetti ambientali												
Q6 (vento)	0	0	-29	0	117	25	0	117	78	0	0	132

Tabella 21 – Scarichi caratteristici appoggi fissi – Campata L=25 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LI0B										
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO

IMPALCATO CAP L=25m					Lato	Appogg	gi Scorre	voli				
	App	oggio 5 (M)	Арро	oggio 6 (UL)	Арр	oggio 7 (M)	Арр	oggio 8 (M)
	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)
	-1,10	-3,62	-0,60	-1,10	-1,21	-0,60	-1,10	1,21	-0,60	-1,10	3,62	-0,60
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.
Permanenti	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
G1 (peso proprio)	0	0	1075	0	0	475	0	0	475	0	0	1075
Ballast												
G2,1 (ballast)	0	0	325	0	0	500	0	0	500	0	0	325
Perm. non strutturali												
G2,2 (velette)	0	0	225	0	0	-138	0	0	-138	0	0	225
G2,3 (arredi)	0	0	425	0	0	-225	0	0	-225	0	0	425
G2,4 (barriere)	0	0	575	0	0	-325	0	0	-325	0	0	575
Q8 Fa,G (attrito)	79	0	0	9	0	0	9	0	0	79	0	0
Accidentali da traffico												
Q1 LM71_B1 (traffico)	0	0	-15	0	0	253	0	0	520	0	0	788
Q1 LM71_B2 (traffico)	0	0	788	0	0	520	0	0	253	0	0	-15
Q1 SW2_B1 (traffico)	0	0	0	0	0	283	0	0	565	0	0	848
Q3,a B1-SW2 (avv)	0	0	0	0	0	20	0	0	40	0	0	60
Q3,a B1-LM71 (avv)	0	0	0	0	0	22	0	0	44	0	0	66
Q3,a B2-LM71 (avv)	0	0	66	0	0	44	0	0	22	0	0	0
Q3,f B1-SW2 (fren)	0	0	0	0	0	21	0	0	42	0	0	63
Q3,f B1-LM71 (fren)	0	0	0	0	0	13	0	0	27	0	0	40
Q3,f B2-LM71 (fren)	0	0	40	0	0	27	0	0	13	0	0	0
Q4 B1-SW2 (centr)	0	0	-25	0	61	-8	0	0	8	0	0	25
Q4 B1-LM71 (centr)	0	0	-63	0	152	-21	0	0	21	0	0	63
Q4 B2-LM71 (centr)	0	0	-63	0	152	-21	0	0	21	0	0	63
Q5 B1-SW2 (serp)	0	0	-41	0	100	-14	0	0	14	0	0	41
Q5 B1-LM71 (serp)	0	0	-45	0	110	-15	0	0	15	0	0	45
Q5 B2-LM71 (serp)	0	0	-45	0	110	-15	0	0	15	0	0	45
Q8 Fa,Q (attrito)	24	0	0	16	0	0	17	0	0	25	0	0
Effetti ambientali												
Q6 (vento)	0	0	-29	0	234	25	0	0	78	0	0	132

Tabella 22 – Scarichi caratteristici appoggi mobili – Campata L=25 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	ιοπο	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	75

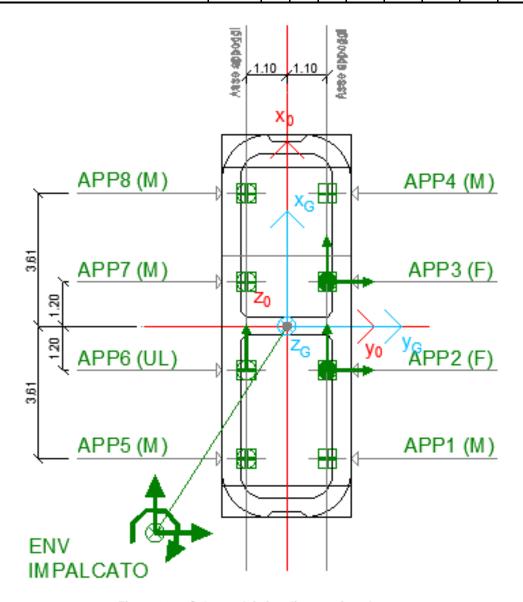


Figura 22- - Schema dei vincoli a terra impalcato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	76

8. COMBINAZIONI DI CARICO

Le singole azioni elementari vengono combinate utilizzando i coefficienti parziali di sicurezza γ_i e i coefficienti di combinazione ψ_i di seguito riportati:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

r v				
Azioni		Ψ_0	ψ_1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	$T_{\mathbf{k}}$	0,60	0,60	0,50

 $^{^{(1)}}$ 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

 $^{^{(2)}}$ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	77

8.1 COMBINAZIONI DI CARICO ADOTTATE

Per la determinazione degli effetti delle azioni da traffico si fa riferimento ai gruppi di carico da 1 a 4 secondo la tabella riportata di seguito:

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont:	ali	
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

Nel caso in esame, le azioni agenti sull'impalcato sono state combinate secondo i gruppi 1 e 3 che comportano le maggiori sollecitazioni per le strutture in elevazione e in fondazione.

Nella figura successiva vengono esplicitate le tipologie di combinazioni utilizzate:

Tipo Comb

- 1 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+0,73*Qk3a,i+0,73*Qk3f,i+1,45*Qk4,i+1,45*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 2 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 3 1,00°Gk1+1,00°Gk2b+1,00°Gk2v+0,73°Qk3a,i+0,73°Qk3f,i+1,45°Qk4,i+1,45°Qk5,i+0,9°Qk6+1,45°Qk1,i+1,35°Qk2g+1,45°Qk2q
- 4 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 5 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,50*Qk6+1,00*Qk2g
- 6 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+1,50*Qk6+1,35*Qk2g
- 7 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+0,9*Qk6+1,35*Qk2g
- 8 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+0,9*Qk6+1,00*Qk2g
- 9 1,00°Gk1+1,00°Gk2b+1,00°Gk2v+0,8°Qk3a,i+0.8°Qk3f,i+1,00°Qk5+0,6°Qk6+1,00°Qk1+1,00Qk2q+1,00°Qk2q
- 10 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk3a,i+1,00*Qk3f,i+0,8*Qk4+0,8*Qk5+0,6*Qk6+1,00*Qk1+1,00Qk2g+1,00*Qk2q
- 11 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk6+1,00*Qk2g
- 12 1,00°Gk1+1,00°Gk2b+1,00°Gk2v
- 13 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk2q

Figura 23 - Tipologie di combinazioni di carico

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	78

NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-G2,2 (arredi vari)	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3a-Traffico 4	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk3f-Traffico 4	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk4-Traffico 4	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk5-Traffico 4	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk1-Traffico 4	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q-Traffico 1	Qk2q-Traffico 2	Qk2q-Traffico 3	Qk2q-Traffico 4
SLU	1	1	SLU1	1,35	1,50	1,35	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	1,45	0,00	0,00	0,00
SLU	2	2	SLU2	1,35	1,50		1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	1,45	0,00	0,00	0,00
SLU SLU	1	3 4	SLU3 SLU4	1,35 1,35	1,50 1,50		0,00	0,73 1,45	0,00	0,00	0,00	0,73 1,45	0,00	0,00	0,00	1,45 0,73	0,00	0,00	0,00	1,45 0,73	0,00	0,00	0,90 0,90		1,45 1,45	0,00	0,00	1,35 1,35	0,00	1,45 1,45	0,00	0,00
SLU	1	5	SLU5	1,35			0,00	0,00	0,73		0,00	0,00	0,73	0,00	0,00	0,73	1,45	0,00	0,00	0,73	1,45	0,00	0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	0,00
SLU	2	6	SLU6	1,35		1,35	0,00	0,00	1,45		0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73		0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	
SLU	1	7	SLU7	1,35			0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,90		0,00	0,00	1,45	1,35	0,00	0,00	0,00	1,45
SLU	2	8	SLU8	1,35	1,50	1,35	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,90	0,00	0,00	0,00	1,45	1,35	0,00	0,00	0,00	1,45
SLU	3	9	SLU9	1,00	1,00		0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	1,45	0,00	0,00	0,00
SLU	4		SLU10	1,00				0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	1,45	0,00	0,00	0,00
SLU	3	11	SLU11 SLU12	1,00	1,00		0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,90		1,45	0,00	0,00	1,35	0,00	1,45	0,00	0,00
SLU SLU	4 2	13	SLU13	1,00 1,00	1,00 1,00		0,00	1,45	0,00	0,00	0,00	1,45 0,00	0,00 0,73	0,00	0,00	0,73 0,00	0,00 1,45	0,00	0,00	0,73	0,00 1,45	0,00	0,90 0,90		1,45 0,00	0,00 1,45	0,00	1,35 1,35	0,00	1,45	0,00 1,45	0,00
SLU	4		SLU14	1,00			0,00	0.00	1,45		0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73		0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	0,00
SLU	3		SLU15	1,00			0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,90		0,00	0,00	1,45	1,35	0,00	0,00	0,00	1,45
SLU	4	16	SLU16	1,00	1,00		0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,90	0,00	0,00	0,00	1,45	1,35	0,00	0,00	0,00	1,45
SLU	5	17	SLU17	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	5		SLU18	1,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	5		SLU19		1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU SLU	5		SLU20 SLU21	1,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50 1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	6		SLU22	1,35 1,35		1,35 1,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	0,00	1,35 1,35	0,00	0,00	0,00	0,00
SLU	6	23	SLU23	1,35		1,35	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	6		SLU24			1,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	7	25	SLU25	1,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	8	26	SLU26	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	7		SLU27	1,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	8		SLU28		1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU SLU	,		SLU29 SLU30	1,00 1,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90 0,90		0,00	0,00	0,00	1,35 1,00	0,00	0,00	0,00	0,00
SLU	7		SLU30		-	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	8	32	SLU32	1,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLE RA	9	33	RA1	1,00	1,00		0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,60		0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
SLE RA	10	34	RA2	1,00	1,00		1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,60	1,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
SLE RA	9	35	RA3	1,00	1,00		0,00	0,80		0,00	0,00	0,80	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00		1,00	0,00	0,00	1,00			0,00	0,00
SLE RA	10	36	RA4	1,00				1,00	-		0,00	1,00	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00		1,00	0,00	0,00	1,00	1,00		0,00	0,00
SLE RA	9 10		RA5 RA6			1,00																	0,00	0,00								
SLE RA	10 9	39	RA7	1 00	1,00	1,00	0,00	0,00	0.00	0,00	0.00	0.00	0.00	0.80	0,00	0,00	0,00	1.00	0,00	0,00	0,00	1.00	0,00	0,00								
SLE RA	10		RA8	1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00								
SLE RA	11	41	RA9	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLE RA	11	42	RA10	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00		
SLE RA	11	43	RA11			1,00																0,00		0,00				1,00				
SLE RA	11	44	RA12			1,00								0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,00		0,00	0,00	0,00	1,00		0,00	0,00	0,00
SLE QP	12	45	QP1			1,00												0,00			0,00		0,00		0,00	0,00		0,00	0,00	0,00	0,00	0,00
SLE QP SLE QP	13 13	46 47	QP2 QP3			1,00				0,00					0,00	0,00		0,00		0,00	0,00	0,00	0,00	0,00		0,00	0,00					

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	79

9. VERIFICHE DEGLI ELEMENTI STRUTTURALI

9.1 ELEMENTI IN CEMENTO ARMATO

9.1.1 Stati Limite Ultimi strutturali (SLU STR)

Come riportato al §2.3 delle NTC 2008, per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione $R_d = R(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto della resistenza del sistema geotecnico

 $\gamma_F \cdot F_k$ Azioni di progetto

 X_k/γ_M Proprietà del materiale di progetto

a_d Geometria di progetto

 γ_{M} Coefficiente parziale di sicurezza del materiale

9.1.1.0 Verifica a presso/tenso flessione

Come previsto al §4.1.2.1.2.4 delle [12] con riferimento alla generica sezione, la verifica di resistenza allo SLU si esegue controllando che:

 $M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$

 $\begin{array}{ll} M_{Rd} & \text{Valore di calcolo del momento resistente corrispondente a N_{Ed}} \\ N_{Ed} & \text{Valore di calcolo della componente assiale (sforzo normale)} \\ M_{Ed} & \text{Valore di calcolo della componente flettente dell'azione} \end{array}$

9.1.1.1 Verifica a taglio

Secondo quanto previsto §4.1.2.1.3 delle [12], indicato con V_{Ed} il valore di calcolo dello sforzo di taglio agente allo SLU, si verifica in generale che risulti:

 $V_{Ed} < V_{Rd}$

Elementi senza armature resistenti a taglio

$$V_{Rd,c} = \max \left\{ \left(0.18 \cdot k \cdot \frac{\sqrt[3]{100 \cdot \rho_{l} \cdot f_{ck}}}{\gamma_{c}} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d \right\} \qquad \text{Resistenza di calcolo a taglio}$$

$$k = 1 + \sqrt{\frac{200}{d}} \le 2$$

$$v_{min} = 0.035 \cdot \sqrt{k^3} \cdot \sqrt{f_{ck}}$$

$$\rho_{\rm l} = {A_{\rm sl} \over b_{\rm w} \cdot d} \le 0.02$$
 Rapporto percentuale armatura in zona tesa Asl

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 \cdot f_{cd}$$
 Tensione media di compressione nella sezione

d Altezza utile della sezione (mm)

b_w Larghezza minima della sezione (mm)

Elementi provvisti di armature resistenti a taglio

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ΖZ	CL	VI	05	05	001	В	80

 $V_{Rd} = min(V_{Rd.s}; V_{Rd.max})$

 $V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$

Resistenza a taglio-trazione

 $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \frac{(\cot \alpha + \cot \theta)}{1 + \cot^2 \theta}$

Resistenza a taglio-compressione

Resistenza di calcolo a taglio

α

θ

Inclinazione puntoni di cls rispetto asse elemento $(1 \le \cot \theta \le 2.5)$ Inclinazione dell'armatura trasversale rispetto asse elemento

 A_{sw}

 $f'_{cd} = 0.5 \cdot f_{cd}$

Area dell'armatura trasversale

Interasse tra due armature trasversali consecutive

Resistenza a compressione ridotta del calcestruzzo d'anima

Coefficienti maggiorativi pari a:

1

per membrature non compresse

per $0 \le \sigma_{cp} < 0.25 \cdot f_{cd}$

per $0.25 \cdot f_{cd} \le \sigma_{cp} < 0.50 \cdot f_{cd}$

 $\begin{aligned} &1+\sigma_{cp}/f_{cd}\\ &1.25\\ &2.5\cdot\left(1-\sigma_{cp}/f_{cd}\right) \end{aligned}$

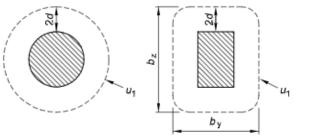
per $0.50 \cdot f_{cd} \le \sigma_{cp} < f_{cd}$

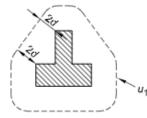
9.1.1.2 Verifica a punzonamento

In corrispondenza del collegamento tra setti, pilastri o pali di fondazione ed elementi piani (plinti, solette) si hanno sollecitazioni concentrate, con meccanismo resistente a taglio in condizioni di rottura SLU dipendente dalla geometria locale tra i due elementi e le loro condizioni al contorno.

Le verifiche a taglio-punzonamento vengono eseguite in accordo con le UNI EN 1992-1-1: 2005, dove il taglio sollecitante unitario v_{Ed} si assume distribuito sul perimetro u_i del cono di rottura:


$$v_{Ed} = \beta \frac{V_{Ed}}{u_i \cdot d}$$


β coeff. posizioni reciproche tra aree di carico (pilastro interno 1.15, spigolo 1.50, bordo 1.40)


 V_{Ed} azione sollecitante di progetto perimetro della sezione di verifica

altezza utile della sezione

 d_y , d_z altezze utili delle armature disposte nelle due direzioni principali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	81

figura 6.15 Perimetro di verifica di base per aree caricate in prossimità di bordi o di angoli

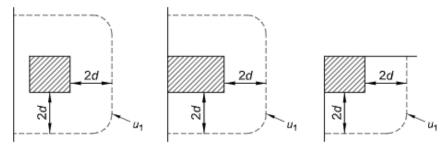


Figura 24 - Schemi aree di carico per diverse geometrie

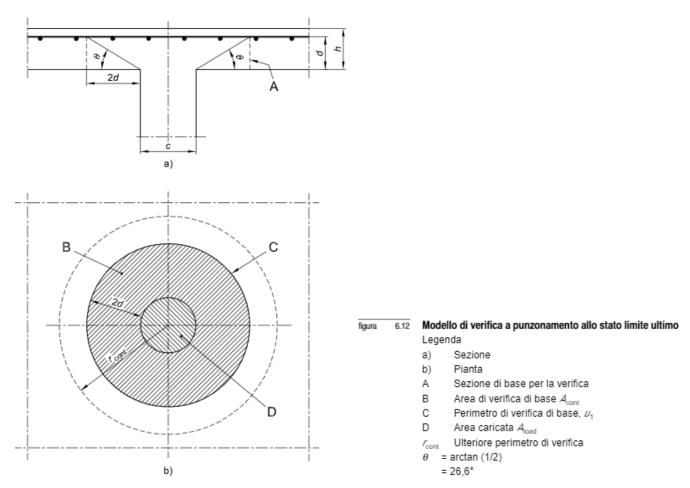


Figura 25 – Modello di verifica a punzonamento SLU

Per un elemento a piastra e lungo le sezioni di verifica considerate, si definiscono le seguenti resistenze di progetto a taglio-punzonamento:

 $v_{Rd,c} = max \Big(C_{Rd,c} \cdot k \cdot \big(100 \cdot \rho_1 \cdot f_{ck} \big)^{1/3} + k_1 \cdot \sigma_{cp}; \ v_{min} + k_1 \cdot \sigma_{cp} \Big) \quad \text{per piastra senza armature a punzonamento}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	82

 $v_{Rd,cs} = 0.75 \cdot v_{Rd,c} + 1.5 \cdot \left(\frac{d}{s_r}\right) \cdot A_{sw} \cdot f_{ywd,ef} \cdot \frac{1}{u_1 \cdot d} \cdot sen \alpha$

 $v_{Rd,max} = 0.5 \cdot v \cdot f_{cd}$

$$C_{Rd,c} = \frac{0.18}{\gamma_c}$$

$$k = \min\left(1 + \sqrt{\frac{200}{d}}; 2\right)$$

$$\rho_1 = \min\left(\sqrt{\rho_{1y} \cdot \rho_{1z}}; 0.02\right)$$

$$\rho_{1y}, \ \rho_{1z}$$

$$\sigma_{cp} = \frac{\sigma_{cy} + \sigma_{cz}}{2}$$

$$\sigma_{c,y} = \frac{N_{Ed,y}}{A_{cy}}, \ \sigma_{c,z} = \frac{N_{Ed,z}}{A_{cz}}$$

 $N_{Ed,y}$, $N_{Ed,z}$

$$A_{cy}$$
, A_{cy}

 $v_{min}=0.035 \cdot \sqrt{k^3 \cdot f_{ck}}$

 $k_1 = 0.1$

 S_{r}

 A_{sw}

 $f_{ywd,ef} = min(f_{ywd}; 250+0.25 \cdot d)$

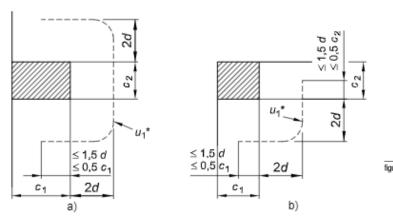
per piastra con armature a punzonamento valore massimo assoluto

percentuale di armatura longitudinale nelle due direzioni principali

tensioni normali nelle due direzioni principali

azioni normali nelle due direzioni principali

aree delle due direzioni principali


(annesso italiano all'Eurocodice)

passo radiale perimetri di armatura a taglio-punzonamento area armatura a taglio-punzonamento all'interno del perimetro di verifica resistenza di progetto efficace dell'armatura a taglio-punzonamento angolo compreso tra l'armatura a taglio e il piano della piastra

La verifica da effettuare lungo il perimetro del pilastro u₀, descritto dall'area caricata A_{load}, è la seguente:

 $V_{Ed} \le V_{Rd,max}$

= sviluppo del perimetro pilastro U_0 pilastro interno $= c_2 + 3d \le c_2 + 2*c_1$ pilastro di bordo $= 3d \le c_1 + c_2$ pilastro d'angolo

Perimetro di verifica equivalente U1+ Legenda

Pilastro di bordo

Pilastro di angolo

Figura 26 – Geometria dei perimetri pilastri per elementi d'angolo e di bordo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	83

Le verifiche da effettuare lungo il perimetro di base u₁ sono le seguenti:

 $v_{Ed} \le v_{Rd,c}$ piastra senza armature a taglio-punzonamento $v_{Ed} \le v_{Rd,cs}$ piastra con armature a taglio-punzonamento

9.1.2 Stati Limite Ultimi di esercizio (SLE STR, SLD)

9.1.2.1 Limiti tensionali in esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 delle NTC 2008, la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $E_d \leq C_d$

 $E_d = E(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione

 $C_d = C(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore nominale o funzione di certe proprietà dei materiali legate agli effetti

progettuali delle azioni considerate

Le verifiche si risolvono nel controllare che i valori di tensione nei materiali siano inferiori ai valori limite delle tensioni riportati al paragrafo 2.5.1.8.3.2.1 del MdP ITF:

Calcestruzzo compresso Combinazione rara $\sigma_c < 0.55 \cdot f_{ck}$

Combinazione quasi permanente $\sigma_c < 0.40 \cdot f_{ck}$

Acciaio teso Combinazione rara $\sigma_s < 0.75 \cdot f_{vk}$

9.1.2.2 Verifiche agli Stati Limite di Fessurazione

Viene eseguita la verifica allo stato limite di apertura delle fessure con riferimento al §4.1.2.2.4 delle NTC 2008. Prima di procedere alle verifiche a fessurazione è necessario definire delle apposite combinazioni di carico ed effettuare una valutazione relativa al grado di protezione delle armature metalliche contro la corrosione (in termini di condizioni ambientali e sensibilità delle armature stesse alla corrosione). Si distinguono i seguenti casi:

Combinazioni di azioni Rara (RA)

Quasi Permanente (QP)

Condizioni ambientali Ordinarie (Gruppo A)

Aggressive (Gruppo B)

Molto aggressive (Gruppo C)

Sensibilità delle armature alla corrosione Sensibili (acciai da precompresso)

Poco sensibili (acciai ordinari)

Stato limite Apertura fessure (AF)

Formazione fessure (FF) Decompressione (D)

•

Apertura delle fessure

 $w_1 = 0.20 \text{ mm}$ $w_2 = 0.30 \text{ mm}$

 $w_3 = 0.40 \text{ mm}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

				TIPO DOC		RA 7 DISCIP			REV	
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	84

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 24 - Condizioni ambientali e classi di esposizione secondo NTC 2008

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di		Arma	tura	
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gr Esi			Stato limite	$\mathbf{w}_{\mathbf{k}}$	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Δ.	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$
Α	Ordinarie	quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
В	Accessions	frequente	apertura fessure	≤w ₁	apertura fessure	$\leq w_2$
Б	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
C	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

Tabella 25 - Stati limite di fessurazione secondo NTC 2008

Il calcolo, condotto con riferimento alla procedura analitica prevista al §C4.1.2.2.4 del [15], prevede i seguenti passaggi:

- Valutazione della distanza media tra le fessure (Δ_{sm});
- Valutazione della deformazione media delle barre d'armatura (ε_{sm});
- Valutazione dell'ampiezza delle fessure (valore medio w_m e valore di calcolo w_k).

Come riportato al paragrafo 2.5.1.8.3.2.4 del MdP ITF, la verifica allo stato limite di apertura delle fessure viene calcolata con la combinazione caratteristica (rara) nei riguardi dello stato limite di esercizio. I limiti per l'apertura convenzionale delle fessure vengono valutati secondo le condizioni ambientali della struttura.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura. Si distinguono i seguenti casi:

Elemento strutturale	Classi di esposizione	Gruppo di esigenza	Condizioni ambientali	Combinaz. di azioni	Stato limite	W _k
Elevazioni	XC4-XS1	В	Aggressive	RA	AF	\leq w ₁ = 0.20 mm
Fondazioni	XC2	А	Ordinarie	RA	AF	\leq w ₂ = 0.30 mm

Tabella 26 – Riepilogo stati limite di fessurazione di verifica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	85

10. MODELLO DI CALCOLO

10.1 ANALISI STATICA

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio.

Le sollecitazioni a base pila sono quindi state ricavate adottando uno schema a mensola. Le azioni derivanti dall'impalcato sono state applicate in corrispondenza dell'estremo superiore della mensola per le singole condizioni di carico e successivamente combinate in funzione delle combinazioni prescritte dalla normativa attraverso un apposito foglio di calcolo.

10.2 ANALISI SISMICA

In accordo con la normativa, per ponti a travate semplicemente appoggiate è possibile applicare l'analisi statica lineare per entrambe le direzioni longitudinale e trasversale quando la massa efficace di ciascuna pila non risulta superiore ad 1/5 della massa dell'impalcato da essa portata, in accordo con quanto prescritto al §7.9.4.1 delle NTC2008 e delle successive NTC2018.

Lo schema statico adottato permette di analizzare la pila da un punto di vista sismico schematizzandola come un oscillatore semplice con incastro alla base ad estradosso plinto.



Figura 27 - Modello ad oscillatore semplice

Secondo NTC2008, la determinazione della forza statica equivalente sismica avviene considerando una massa efficace in testa pila pari ad 1/2 della massa fusto pila più la massa del pulvino. Per tutte le pile con impalcato in c.a.p. da 25 m, di altezza inferiore ai 10.50 m, si è constatato che tale condizione risulta automaticamente verificata.

Secondo NTC2018, la determinazione della forza statica equivalente sismica avviene considerando una massa efficace in testa pila pari ad 1/3 della massa fusto pila più la massa del pulvino. Per le altre pile di altezza maggiore si è ulteriormente constatato che è sempre possibile ricondursi all'analisi statica lineare come di seguito esplicitato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	86

VERIFICA CONDIZIONI APPLICABILITA' ANALISI LINEARE (NTC2008-NTC2018)

 W_{imp} (kN) 11652 Peso impalcati W_{fusto} (kN) 1946 Peso fusto pila 1/5 W_{imp} (kN) 2330 1/5 Peso impalcati (NTC2008-NTC2018) $W_{pulvino}$ (kN) 1483 Peso pulvino+ritegni

 $W_{eff,pila}$ (kN) 2455 Peso efficace pila (NTC2008)

 $W_{eff,pila} < 1/5 W_{imp}$ OK VERIFICATO (NTC2018) $W_{eff,pila}$ (kN) 2131 Peso efficace pila (NTC2018)

Il periodo fondamentale T_1 in corrispondenza del quale valutare la risposta spettrale in accelerazione S_d (T_1) è dato in entrambi i casi dall'espressione:

$$T_1 = 2\pi \sqrt{m/k}$$

dove m è la massa efficace di impalcato e pila e k è la rigidezza laterale della pila.

Per tener conto dell'influenza della fessurazione sulla rigidezza, in accordo con il §7.2.6 del D.M. 14/01/2008, si è considerato sia il caso di sezione fessurata con un abbattimento del modulo elastico pari al 50% rispetto al valore iniziale E=E_{cm}, sia il caso di sezione non fessurata con E=E_{cm}.

La valutazione degli effetti dell'azione sismica viene effettuata considerando lo spettro di progetto, ossia riducendo lo spettro elastico mediante un fattore di struttura pari a q in modo da tener conto in modo semplificato della capacità dissipativa anelastica della struttura.

Ai fini della scelta delle azioni da utilizzare per il dimensionamento delle opere di fondazione, adottando il criterio di gerarchia delle resistenze (GR), vedi quanto descritto nel capitolo precedente di analisi dei carichi per la quantificazione dell'azione sismica E, le sollecitazioni derivanti dall'analisi sismica con gli spettri elastici (q=1.00) verranno utilizzati solo nel caso in cui le sollecitazioni delle elevazioni, amplificate secondo i coefficienti di sovraresistenza, γ_{Rd} , risultino superiori alle prime.

Nel paragrafo dedicato alla verifica delle pile sono riportati tutti i calcoli effettuati per studiare il comportamento strutturale in condizioni sismiche, con riferimento allo spettro elastico (q=1.00) o di progetto (q>1.00) e sezione elastica $E=E_{cm}$ o fessurata $E=0.50^*E_{cm}$.

In accordo con il D.M. 14/01/2008 §3.2.4, per la valutazione delle masse sismiche nel caso di ponti, oltre alla massa efficace dell'impalcato e della pila, è stato considerata anche un'aliquota pari al 20% del carico dovuto al transito dei mezzi ferroviari nelle combinazioni di carico associata alla direzione di analisi in esame.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	ιοπο	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	87

11. ANALISI PILA H=7.50 M

11.1 AZIONI IMPALCATI

Mediante l'ausilio di un foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) derivanti dagli scarichi degli impalcati in appoggio, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione pila a quota estradosso pulvino, e i rispettivi assi x, y, z come riportato nella figura seguente.

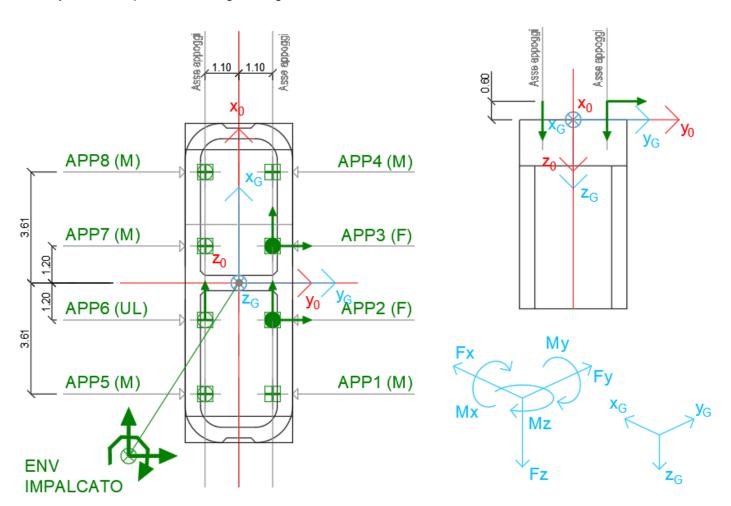


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	88

NOME: PILA CAP H	=7.5m						CAL	COLO AZ	ZIONI DA IN	// IPALCATO)				
ATO APPOGGI FISSI (IMF	PALCATO (CAP L=25n	n)												
PPOGGIO 1 (M)	F _{xO} (kN)		F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M _y	. (kNm) I	M _{-n} (kNm)	F _{xG} (m)	F _{vG} (m)	F-c (m)	M _{xG} (kNm) M	luc (kNm)	M-c (kNi
G1 (peso proprio)	0	0	1075	-3,62	1,10	-0,60	1183	3887	0	0	0	1075	1183	3887	26 (
G2,1 (ballast)	0	0	325	-3,62	1,10	-0,60	358	1175	0	0	0	325	358	1175	
G2,2 (velette)	0	0	225	-3,62	1,10	-0,60	248	813	0	0	0	225	248	813	
G2,3 (arredi)	0	0	425	-3,62	1,10	-0,60	468	1536	0	0	0	425	468	1536	
G2,4 (barriere)	0	0	575	-3,62	1,10	-0,60	633	2079	0	0	0	575	633	2079	
Q3,a B1-SW2 (aw)	0	0	0	-3,62	1,10	-0,60	0	0	0	0	0	0	0	0	
Q3,a B1-LM71 (aw)	0	0	0	-3,62	1,10	-0,60	0	0	0	0	0	0	0	0	
Q3,a B2-LM71 (aw)	0	0	-66	-3,62	1,10	-0,60	-72	-237	0	0	0	-66	-72	-237	
Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren)	0	0	0	-3,62 -3,62	1,10 1,10	-0,60 -0,60	0 0	0	0	0	0	0	0 0	0	
Q3,f B2-LM71 (fren)	0	0	-40	-3,62	1,10	-0,60	-44	-144	0	0	0	-40	-44	-144	
Q4 B1-SW2 (centr)	0	0	-25	-3,62	1,10	-0,60	-28	-144	0	0	0	-25	-28	-90	
Q4 B1-LM71 (centr)	0	0	-63	-3,62	1,10	-0,60	-69	-227	0	0	0	-63	-69	-227	
Q4 B2-LM71 (centr)	0	0	-63	-3,62	1,10	-0,60	-69	-227	0	0	0	-63	-69	-227	
Q5 B1-SW2 (serp)	0	0	-41	-3,62	1,10	-0,60	-45	-149	0	0	0	-41	-45	-149	
Q5 B1-LM71 (serp)	0	0	-45	-3,62	1,10	-0,60	-50	-164	0	0	0	-45	-50	-164	
Q5 B2-LM71 (serp)	0	0	-45	-3,62	1,10	-0,60	-50	-164	0	0	0	-45	-50	-164	
Q6 (vento)	0	0	-29	-3,62	1,10	-0,60	-32	-106	0	0	0	-29	-32	-106	
Q1 LM71_B1 (traffico)	0	0	-15	-3,62	1,10	-0,60	-17	-56	0	0	0	-15	-17	-56	
Q1 LM71_B2 (traffico)	0	0	788	-3,62	1,10	-0,60	867	2850	0	0	0	788	867	2850	
Q1 SW2_B1 (traffico)	0	0	0	-3,62	1,10	-0,60	0	0	0	0	0	0	0	0	
Q8 Fa,G (attrito)	0	79	0	-3,62	1,10	-0,60	47	0	-285	0	79	0	47	0	-2
Q8 Fa,Q (attrito)	0	24	0	-3,62	1,10	-0,60	14	0	-85	0	24	0	14	0	
PPOGGIO 2 (F)		F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)		M _{xo} (kNm) M _y			F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm) M		M _{zG} (kN
G1 (peso proprio)	0	0	475	-1,21 1,21	1,10	-0,60	523	573	0	0	0	475	523	573 603	
G2,1 (ballast) G2,2 (velette)	0	0	500 -138	-1,21 -1,21	1,10 1,10	-0,60 -0,60	550 -151	603 -166	0	0	0	500 -138	550 -151	-166	
G2,3 (arredi)	0	0	-136	-1,21 -1,21	1,10	-0,60	-131	-271	0	0	0	-136	-131	-271	
G2,4 (barriere)	0	0	-325	-1,21	1,10	-0,60	-358	-392	0	0	0	-325	-358	-392	
Q3,a B1-SW2 (aw)	0	-275	-20	-1,21	1,10	-0,60	-187	-24	331	0	-275	-20	-187	-24	
Q3,a B1-LM71 (aw)	0	-303	-22	-1,21	1,10	-0,60	-206	-26	365	0	-303	-22	-206	-26	
Q3,a B2-LM71 (aw)	0	1210	-44	-1,21	1,10	-0,60	678	-53	-1458	0	1210	-44	678	-53	-1
Q3,f B1-SW2 (fren)	0	-292	-21	-1,21	1,10	-0,60	-198	-25	351	0	-292	-21	-198	-25	
Q3,f B1-LM71 (fren)	0	-183	-13	-1,21	1,10	-0,60	-125	-16	221	0	-183	-13	-125	-16	
Q3,f B2-LM71 (fren)	0	733	-27	-1,21	1,10	-0,60	411	-32	-884	0	733	-27	411	-32	-
Q4 B1-SW2 (centr)	30	0	-8	-1,21	1,10	-0,60	-9	-28	-33	30	0	-8	-9	-28	
Q4 B1-LM71 (centr)	76	0	-21	-1,21	1,10	-0,60	-23	-71	-84	76	0	-21	-23	-71	
Q4 B2-LM71 (centr)	76	0	-21	-1,21	1,10	-0,60	-23	-71	-84	76	0	-21	-23	-71	
Q5 B1-SW2 (serp)	50	0	-14	-1,21	1,10	-0,60	-15	-47	-55	50	0	-14	-15	-47	
Q5 B1-LM71 (serp)	55 55	0	-15 -15	-1,21 -1,21	1,10 1,10	-0,60	-17 -17	-51 -51	-61 -61	55 55	0	-15 -15	-17 -17	-51 -51	
Q5 B2-LM71 (serp) Q6 (vento)	117	0	25	-1,21 -1,21	1,10	-0,60 -0,60	27	-31 -40	-129	117	0	-15 25	27	-31 -40	-
Q1 LM71_B1 (traffico)	0	0	253	-1,21	1,10	-0,60	278	304	0	0	0	253	278	304	
Q1 LM71 B2 (traffico)	0	0	520	-1,21	1,10	-0,60	572	627	0	0	0	520	572	627	
Q1 SW2_B1 (traffico)	0	0	283	-1,21	1,10	-0,60	311	340	0	0	0	283	311	340	
Q8 Fa,G (attrito)	0	9	0	-1,21	1,10	-0,60	5	0	-10	0	9	0	5	0	
Q8 Fa,Q (attrito)	0	16	0	-1,21	1,10	-0,60	9	0	-19	0	16	0	9	0	
PPOGGIO 3 (F)	F _{xO} (kN)	F _{yO} (kN)	F_{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M _y	o (kNm) 1	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F_{zG} (m)	M _{xG} (kNm) M	l _{yG} (kNm)	M _{zG} (kN
G1 (peso proprio)	0	0	475	1,21	1,10	-0,60	523	-573	0	0	0	475	523	-573	
G2,1 (ballast)	0	0	500	1,21	1,10	-0,60	550	-603	0	0	0	500	550	-603	
G2,2 (velette)	0	0	-138	1,21	1,10	-0,60	-151	166	0	0	0	-138	-151	166	
G2,3 (arredi)	0	0	-225	1,21	1,10	-0,60	-248	271	0	0	0	-225	-248	271	
G2,4 (barriere)	0	1100	-325	1,21	1,10	-0,60	-358	392	1226	0	1100	-325	-358	392	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw)	0	1100 1210	-40 -44	1,21 1,21	1,10 1,10	-0,60 -0,60	616 678	48 53	1326 1458	0	1100 1210	-40 -44	616 678	48 53	1
Q3,a B2-LM71 (aw)	0	-303	- 44 -22	1,21 1,21	1,10	-0,60	-206	26	-365	0	-303	-44 -22	-206	26	
Q3,f B1-SW2 (fren)	0	1167	-42	1,21	1,10	-0,60	654	51	1406	0	1167	-22 -42	654	51	1
Q3,f B1-LM71 (fren)	0	733	-27	1,21	1,10	-0,60	411	32	884	0	733	-27	411	32	
Q3,f B2-LM71 (fren)	0	-183	-13	1,21	1,10	-0,60	-125	16	-221	0	-183	-13	-125	16	-
Q4 B1-SW2 (centr)	30	0	8	1,21	1,10	-0,60	9	-28	-33	30	0	8	9	-28	
Q4 B1-LM71 (centr)	76	0	21	1,21	1,10	-0,60	23	-71	-84	76	0	21	23	-71	
Q4 B2-LM71 (centr)	76	0	21	1,21	1,10	-0,60	23	-71	-84	76	0	21	23	-71	
Q5 B1-SW2 (serp)	50	0	14	1,21	1,10	-0,60	15	-47	-55	50	0	14	15	-47	
Q5 B1-LM71 (serp)	55	0	15	1,21	1,10	-0,60	17	-51	-61	55	0	15	17	-51	
Q5 B2-LM71 (serp)	55	0	15	1,21	1,10	-0,60	17	-51	-61	55	0	15	17	-51	
Q6 (vento)	117	0	78	1,21	1,10	-0,60	86	-165	-129	117	0	78	86	-165	-
	0	0	520	1,21	1,10	-0,60	572	-627	0	0	0	520	572	-627	
Q1 LM71_B1 (traffico)															
Q1 LM71_B2 (traffico)	0	0	253	1,21	1,10	-0,60	278	-304	0	0	0	253	278	-304	
		0 0 9	253 565 0	1,21 1,21 1,21	1,10 1,10 1,10	-0,60 -0,60 -0,60	278 622 5	-304 -681 0	0 0 10	0 0 0	0 0 9	253 565 0	278 622 5	-304 -681 0	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

				TIPO DOC		RA 7 DISCIP		PROGR	REV	
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	89

APPOGGIO 4 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M	_{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) I	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
G1 (peso proprio)	0	0	1075	3,62	1,10	-0,60	1183	-3887	0	0	0	1075	1183	-3887	0
G2,1 (ballast)	0	0	325	3,62	1,10	-0,60	358	-1175	0	0	0	325	358	-1175	0
G2,2 (velette)	0	0	225	3,62	1,10	-0,60	248	-813	0	0	0	225	248	-813	0
G2,3 (arredi)	0	0	425	3,62	1,10	-0,60	468	-1536	0	0	0	425	468	-1536	0
G2,4 (barriere)	0	0	575	3,62	1,10	-0,60	633	-2079	0	0	0	575	633	-2079	0
Q3,a B1-SW2 (aw)	0	0	-60	3,62	1,10	-0,60	-66	216	0	0	0	-60	-66	216	0
Q3,a B1-LM71 (aw)	0	0	-66	3,62	1,10	-0,60	-72	237	0	0	0	-66	-72	237	0
Q3,a B2-LM71 (aw)	0	0	0	3,62	1,10	-0,60	0	0	0	0	0	0	0	0	0
Q3,f B1-SW2 (fren)	0	0	-63	3,62	1,10	-0,60	-70	229	0	0	0	-63	-70	229	0
	0	0	-40	-	1,10	-0,60	-44	144	0	0	0	-40	-44	144	0
Q3,f B1-LM71 (fren)				3,62						-	0				- 1
Q3,f B2-LM71 (fren)	0	0	0	3,62	1,10	-0,60	0	0	0	0		0	0	0	0
Q4 B1-SW2 (centr)	0	0	25	3,62	1,10	-0,60	28	-90	0	0	0	25	28	-90	0
Q4 B1-LM71 (centr)	0	0	63	3,62	1,10	-0,60	69	-227	0	0	0	63	69	-227	0
Q4 B2-LM71 (centr)	0	0	63	3,62	1,10	-0,60	69	-227	0	0	0	63	69	-227	0
Q5 B1-SW2 (serp)	0	0	41	3,62	1,10	-0,60	45	-149	0	0	0	41	45	-149	0
Q5 B1-LM71 (serp)	0	0	45	3,62	1,10	-0,60	50	-164	0	0	0	45	50	-164	0
Q5 B2-LM71 (serp)	0	0	45	3,62	1,10	-0,60	50	-164	0	0	0	45	50	-164	0
Q6 (vento)	0	0	132	3,62	1,10	-0,60	146	-478	0	0	0	132	146	-478	0
Q1 LM71_B1 (traffico)	0	0	788	3,62	1,10	-0,60	867	-2850	0	0	0	788	867	-2850	0
Q1 LM71_B2 (traffico)	0	0	-15	3,62	1,10	-0,60	-17	56	0	0	0	-15	-17	56	0
Q1 SW2_B1 (traffico)	0	0	848	3,62	1,10	-0,60	932	-3064	0	0	0	848	932	-3064	0
Q8 Fa,G (attrito)	0	79	0	3,62	1,10	-0,60	47	0	285	0	79	0	47	0	285
Q8 Fa,Q (attrito)	0	25	0	3,62	1,10	-0,60	15	0	92	0	25	0	15	0	92
				3,02	1,10	-0,00	13	- 0	32				10		32
LATO APPOGGI SCORRE\	/OLI (IMPA	ILCATO CA	AP L=25m)												
APPOGGIO 5 (M)	F _{vo} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M	(kNm)	M ₇₀ (kNm)	F _{xG} (m)	F _{vG} (m)	F _{7G} (m) I	M _{vG} (kNm)	M _{vG} (kNm)	M _{zG} (kNm)
G1 (peso proprio)	0	0	1075	-3,62	-1,10	-0,60	-1183	3887	0	0	0	1075	-1183	3887	0
G2,1 (ballast)	0	0	325	-3,62	-1,10	-0,60	-358	1175	0	0	0	325	-358	1175	0
G2,2 (velette)	0	0	225	-3,62	-1,10	-0,60	-248	813	0	0	0	225	-248	813	0
G2,3 (arredi)	0	0	425	-3,62	-1,10	-0,60	-468	1536	0	0	0	425	-468	1536	0
G2,4 (barriere)	0	0	575	-3,62	-1,10	-0,60	-633	2079	0	0	0	575	-633	2079	0
Q3,a B1-SW2 (aw)	0	0	0	-3,62	-1,10	-0,60	0	0	0	0	0	0	0	0	0
Q3,a B1-SW2 (aw)	0	0	0	-3,62	-1,10	-0,60	0	0	0	0	0	0	0	0	0
Q3,a B2-LM71 (aw)	0	0	66	-3,62	-1,10	-0,60	-72	237	0	0	0	66	-72	237	0
Q3,f B1-SW2 (fren)	0	0	0	-3,62	-1,10	-0,60	-72	237	0	0	0	0	-72	0	0
Q3,f B1-LM71 (fren)	0	0	0	-3,62	-1,10	-0,60	0	0	0	0	0	0	0	0	0
Q3,f B2-LM71 (fren)	0	0	40	-3,62 -3,62	-1,10 -1,10	-0,60	-44	144	0	0	0	40	-44	144	0
Q4 B1-SW2 (centr)	0	0	-25	-3,62	-1,10	-0,60	28	-90	0	0	0	-25	28	-90	0
Q4 B1-LM71 (centr)	0	0	-63	-3,62	-1,10	-0,60	69	-227	0	0	0	-63	69	-227	0
Q4 B2-LM71 (centr)	0	0	-63	-3,62	-1,10	-0,60	69	-227 -227	0	0	0	-63	69	-227	0
Q5 B1-SW2 (serp)	0	0	-03 -41	-3,62	-1,10	-0,60	45	-22 <i>1</i> -149	0	0	0	-03 -41	45	-149	0
	0	0	-45	-3,62	-1,10	-0,60	50	-164	0	0	0	-45	50	-164	0
Q5 B1-LM71 (serp) Q5 B2-LM71 (serp)	0	0	-45 -45	-3,62	-1,10	-0,60	50	-164	0	0	0	-45 -45	50	-164	0
Q6 (vento)	0	0	-29	-3,62	-1,10	-0,60	32	-104	0	0	0	-43	32	-104	0
Q1 LM71 B1 (traffico)	0	0	-15	-3,62	-1,10	-0,60	17	-56	0	0	0	-15	17	-56	0
Q1 LM71_B1 (traffico)	0	0	788	-3,62	-1,10	-0,60	-867	2850	0	0	0	788	-867	2850	0
Q1 SW2_B1 (traffico)	0	0	0	-3,62	-1,10	-0,60	0	2030	0	0	0	0	0	2030	0
Q8 Fa,G (attrito)	0	79	0	-3,62	-1,10	-0,60	47	0	-285	0	79	0	47	0	-285
Q8 Fa,Q (attrito)	0	24	0	-3,62	-1,10	-0,60	14	0	-265 -85	0	24	0	14	0	-85
														-	
APPOGGIO 6 (UL)		F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y ₀ (m)		M _{xo} (kNm) M			F _{xG} (m)	F _{yG} (m)			M _{yG} (kNm)	M _{zG} (kNm)
G1 (peso proprio)	0	0	475	-1,21	-1,10	-0,60	-523	573	0	0	0	475	-523	573	0
G2,1 (ballast)	0	0	500	-1,21	-1,10	-0,60	-550	603	0	0	0	500	-550	603	0
G2,2 (velette)	0	0	-138	-1,21	-1,10	-0,60	151	-166	0	0	0	-138	151	-166	0
G2,3 (arredi)	0	0	-225	-1,21	-1,10	-0,60	248	-271	0	0	0	-225	248	-271	0
G2,4 (barriere)	0	0	-325	-1,21	-1,10	-0,60	358	-392	0	0	0	-325	358	-392	0
Q3,a B1-SW2 (aw)	0	0	20	-1,21	-1,10	-0,60	-22	24	0	0	0	20	-22	24	0
Q3,a B1-LM71 (aw)	0	0	22	-1,21	-1,10	-0,60	-24	26	0	0	0	22	-24	26	0
Q3,a B2-LM71 (aw)	0	0	44	-1,21	-1,10	-0,60	-48	53	0	0	0	44	-48	53	0
Q3,f B1-SW2 (fren)	0	0	21	-1,21	-1,10	-0,60	-23	25	0	0	0	21	-23	25	0
Q3,f B1-LM71 (fren)	0	0	13	-1,21	-1,10	-0,60	-15	16	0	0	0	13	-15	16	0
Q3,f B2-LM71 (fren)	0	0	27	-1,21	-1,10	-0,60	-29	32	0	0	0	27	-29	32	0
Q4 B1-SW2 (centr)	61	0	-8	-1,21	-1,10	-0,60	9	-46	67	61	0	-8	9	-46	67
Q4 B1-LM71 (centr)	152	0	-21	-1,21	-1,10	-0,60	23	-117	168	152	0	-21	23	-117	168
Q4 B2-LM71 (centr)	152	0	-21	-1,21	-1,10	-0,60	23	-117	168	152	0	-21	23	-117	168
Q5 B1-SW2 (serp)	100	0	-14	-1,21	-1,10	-0,60	15	-77	110	100	0	-14	15	-77	110
Q5 B1-LM71 (serp)	110	0	-15	-1,21	-1,10	-0,60	17	-84	121	110	0	-15	17	-84	121
Q5 B2-LM71 (serp)	110	0	-15	-1,21	-1,10	-0,60	17	-84	121	110	0	-15	17	-84	121
Q6 (vento)	234	0	25	-1,21	-1,10	-0,60	-27	-111	258	234	0	25	-27	-111	258
Q1 LM71_B1 (traffico)	0	0	253	-1,21	-1,10	-0,60	-278	304	0	0	0	253	-278	304	0
Q1 LM71_B2 (traffico)	0	0	520	-1,21	-1,10	-0,60	-572	627	0	0	0	520	-572	627	0
Q1 SW2_B1 (traffico)	0	0	283	-1,21	-1,10	-0,60	-311	340	0	0	0	283	-311	340	0
OR En C (attrita)	0	9	0	-1,21	-1,10	-0,60	5	0	-10	0	9	0	5	0	-10
Q8 Fa,G (attrito)												_	_		
Q8 Fa,Q (attrito)	0	16	0	-1,21	-1,10	-0,60	9	0	-19	0	16	0	9	0	-19

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

				TIPO DOC		RA 7 DISCIP		PROGR	REV	
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	90

APPOGGIO 7 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z ₀ (m)	M _{xo} (kNm) M _y	o (kNm) M	_{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) N	1 _{xG} (kNm) N	Л _{у G} (kNm)	M _{zG} (kNm)
G1 (peso proprio)	0	0	475	1,21	-1,10	-0,60	-523	-573	0	0	0	475	-523	-573	0
G2,1 (ballast)	0	0	500	1,21	-1,10	-0,60	-550	-603	0	0	0	500	-550	-603	0
G2,2 (velette)	0	0	-138	1,21	-1,10	-0,60	151	166	0	0	0	-138	151	166	0
G2,3 (arredi)	0	0	-225	1,21	-1,10	-0,60	248	271	0	0	0	-225	248	271	0
G2,4 (barriere)	0	0	-325	1,21	-1,10	-0,60	358	392	0	0	0	-325	358	392	0
Q3,a B1-SW2 (aw)	0	0	40	1,21	-1,10	-0,60	-44	-48	0	0	0	40	-44	-48	0
Q3,a B1-LM71 (aw)	0	0	44	1,21	-1,10	-0,60	-48	-53	0	0	0	44	-48	-53	0
Q3,a B2-LM71 (aw)	0	0	22	1,21	-1,10	-0,60	-24	-26	0	0	0	22	-24	-26	0
Q3,f B1-SW2 (fren)	0	0	42	1,21	-1,10	-0,60	-46	-51	0	0	0	42	-46	-51	0
Q3,f B1-LM71 (fren)	0	0	27	1,21	-1,10	-0,60	-29	-32	0	0	0	27	-29	-32	0
Q3,f B2-LM71 (fren)	0	0	13	1,21	-1,10	-0,60	-15	-16	0	0	0	13	-15	-16	0
Q4 B1-SW2 (centr)	0	0	8	1,21	-1,10	-0,60	-9	-10	0	0	0	8	-9	-10	C
Q4 B1-LM71 (centr)	0	0	21	1,21	-1,10	-0,60	-23	-25	0	0	0	21	-23	-25	C
Q4 B2-LM71 (centr)	0	0	21	1,21	-1,10	-0,60	-23	-25	0	0	0	21	-23	-25	C
Q5 B1-SW2 (serp)	0	0	14	1,21	-1,10	-0,60	-15	-17	0	0	0	14	-15	-17	C
Q5 B1-LM71 (serp)	0	0	15	1,21	-1,10	-0,60	-17	-18	0	0	0	15	-17	-18	C
Q5 B2-LM71 (serp)	0	0	15	1,21	-1,10	-0,60	-17	-18	0	0	0	15	-17	-18	0
Q6 (vento)	0	0	78	1,21	-1,10	-0,60	-86	-95	0	0	0	78	-86	-95	0
Q1 LM71 B1 (traffico)	0	0	520	1,21	-1,10	-0,60	-572	-627	0	0	0	520	-572	-627	0
Q1 LM71 B2 (traffico)	0	0	253	1,21	-1,10	-0,60	-278	-304	0	0	0	253	-278	-304	C
Q1 SW2_B1 (traffico)	0	0	565	1,21	-1,10	-0,60	-622	-681	0	0	0	565	-622	-681	C
Q8 Fa,G (attrito)	0	9	0	1,21	-1,10	-0,60	5	0	10	0	9	0	5	0	10
Q8 Fa,Q (attrito)	0	17	0	1,21	-1,10	-0,60	10	0	20	0	17	0	10	0	20
APPOGGIO 8 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M _y	o (kNm) M	l _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) N	1 _{xG} (kNm) M	Л _{уG} (kNm)	M _{zG} (kNm)
G1 (peso proprio)	0	0	1075	3,62	-1,10	-0,60	-1183	-3887	0	0	0	1075	-1183	-3887	0
G2,1 (ballast)	0	0	325	3,62	-1,10	-0,60	-358	-1175	0	0	0	325	-358	-1175	C
G2,2 (velette)	0	0	225	3,62	-1,10	-0,60	-248	-813	0	0	0	225	-248	-813	(
G2,3 (arredi)											U			0.0	
	0	0	425	3,62	-1,10	-0,60	-468	-1536	0	0	0	425	-468	-1536	(
G2,4 (barriere)	0	0	425 575	3,62 3,62	-1,10 -1,10	-0,60 -0,60	-468 -633		0 0	0 0	0	425 575	-468 -633		C
G2,4 (barriere) Q3,a B1-SW2 (aw)								-1536			0			-1536	(
, , ,	0	0	575	3,62	-1,10	-0,60	-633	-1536 -2079	0	0	0	575	-633	-1536 -2079	(
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw)	0 0 0	0 0 0	575 60 66 0	3,62 3,62 3,62 3,62	-1,10 -1,10	-0,60 -0,60 -0,60 -0,60	-633 -66 -72 0	-1536 -2079 -216 -237	0 0 0 0	0 0 0 0	0 0 0 0	575 60 66 0	-633 -66 -72 0	-1536 -2079 -216 -237 0	0 0 0
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw)	0 0	0 0	575 60 66 0 63	3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72	-1536 -2079 -216 -237 0 -229	0 0 0 0	0 0 0 0	0 0 0 0 0	575 60 66 0 63	-633 -66 -72	-1536 -2079 -216 -237	(((
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren)	0 0 0	0 0 0	575 60 66 0 63 40	3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0 -229 -144	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	575 60 66 0 63 40	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0	((((
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren)	0 0 0 0	0 0 0 0	575 60 66 0 63	3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70	-1536 -2079 -216 -237 0 -229	0 0 0 0 0	0 0 0 0	0 0 0 0 0	575 60 66 0 63 40	-633 -66 -72 0 -70	-1536 -2079 -216 -237 0 -229 -144	((((
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren)	0 0 0 0 0	0 0 0 0 0	575 60 66 0 63 40	3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0 -229 -144	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	575 60 66 0 63 40	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0 -229 -144	((((
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q3,f B2-LM71 (fren)	0 0 0 0 0	0 0 0 0 0	575 60 66 0 63 40	3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0 -229 -144	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	575 60 66 0 63 40	-633 -66 -72 0 -70 -44	-1536 -2079 -216 -237 0 -229 -144	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q3,f B2-LM71 (fren) Q4 B1-SW2 (centr)	0 0 0 0 0 0	0 0 0 0 0 0	575 60 66 0 63 40 0 25	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0	-1536 -2079 -216 -237 0 -229 -144 0 -90	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	575 60 66 0 63 40 0 25	-633 -66 -72 0 -70 -44 0 -28	-1536 -2079 -216 -237 0 -229 -144 0 -90	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q3,f B2-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr)	0 0 0 0 0 0 0	0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63	-633 -66 -72 0 -70 -44 0 -28	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q4,f B2-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr)	0 0 0 0 0 0 0	0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63	-633 -66 -72 0 -70 -44 0 -28 -69	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-SW2 (fren) Q3,f B2-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr) Q5 B1-SW2 (serp)	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 43	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 43	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q4, B1-LM71 (fren) Q4, B1-LM71 (centr) Q4, B2-LM71 (centr) Q4, B2-LM71 (centr) Q5, B1-SW2 (serp) Q5, B1-LM71 (serp)	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63 41 45	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 41 45	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr) Q5 B1-SW2 (serp) Q5 B1-LM71 (serp) Q5 B2-LM71 (serp)	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63 41 45	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -164	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 41 45 45	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-SW2 (fren) Q4,f B2-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr) Q5 B1-SW2 (serp) Q5 B1-LM71 (serp) Q6 (vento)	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63 41 45 45	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -146	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -164 -478	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63 41 45 45	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -50 -146	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -164 -478	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-SW2 (fren) Q4,f B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr) Q5 B1-SW2 (serp) Q5 B1-LM71 (serp) Q5 B2-LM71 (serp) Q6 (vento) Q1 LM71_B1 (traffico)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 63 41 45 45 132 788	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -50 -146 -867	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -478 -2850	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 41 45 45 132 788	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -50 -146 -867	-1536 -2079 -216 -237 0 0 -229 -144 0 -90 -227 -227 -149 -164 -164 -478 -2850	
Q3,a B1-SW2 (aw) Q3,a B1-LM71 (aw) Q3,a B2-LM71 (aw) Q3,f B1-SW2 (fren) Q3,f B1-SW2 (fren) Q4,f B1-LM71 (fren) Q4 B1-SW2 (centr) Q4 B1-LM71 (centr) Q4 B2-LM71 (centr) Q5 B1-SW2 (serp) Q5 B1-LM71 (serp) Q6 B2-LM71 (serp) Q6 (vento) Q1 LM71_B1 (traffico) Q1 LM71_B2 (traffico)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 41 45 45 45 45 132 788 -15	3,62 3,62 3,62 3,62 3,62 3,62 3,62 3,62	-1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10 -1,10	-0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60 -0,60	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -146 -867	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -164 -478 -2850 56	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	575 60 66 0 63 40 0 25 63 41 45 45 45 45 132 788 -15	-633 -66 -72 0 -70 -44 0 -28 -69 -69 -45 -50 -50 -146 -867 17	-1536 -2079 -216 -237 0 -229 -144 0 -90 -227 -227 -149 -164 -164 -478 -2850 56	((((

Tabella 27 – Riepilogo azioni elementari derivanti dagli scarichi degli impalcati

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Tipo azione	Descrizione	V _{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione				Mx	Му	Mz
		Fx [kN]	Fy [kN]	Fz [kN]	[kNm]	[kNm]	[kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	6202	0	0	0
Gk2b Ballast	G2,1 (ballast)	0	0	3300	0	0	0
Gk2v	G2,2 (arredi vari)	0	0	2150	0	0	0
Qk3a	Traffico 1	0	908	-131	400	264	1823
Avviamento	Traffico 2	0	825	-119	364	240	1657
	Traffico 3	0	908	0	256	0	1823
	Traffico 4	0	825	0	232	0	1657
Qk3f	Traffico 1	0	550	-80	242	-160	-1105
Frenatura	Traffico 2	0	550	-80	242	-160	-1105
	Traffico 3	0	550	0	155	0	1105
	Traffico 4	0	875	0	246	0	1757
Qk4	Traffico 1	305	0	0	0	-1193	-335
Centrifuga	Traffico 2	213	0	0	0	-834	-234
	Traffico 3	305	0	0	0	-1193	0
	Traffico 4	121	0	0	0	-475	0
Qk5	Traffico 1	220	0	0	0	-861	-242
Serpeggio	Traffico 2	210	0	0	0	-822	-231
	Traffico 3	220	0	0	0	-861	0
	Traffico 4	200	0	0	0	-783	0
Qk6 vento	Q6 (vento)	468	0	413	0	-1578	0
Qk1	Traffico 1	0	0	3092	3401	0	0
Treno	Traffico 2	0	0	3241	3565	-176	0
	Traffico 3	0	0	3092	0	-6457	0
	Traffico 4	0	0	3390	0	-6808	0
Qk2g attrito	Q8 Fa,G (attrito)	0	175	0	105	0	0
Qk2q	Traffico 1	0	82	0	49	0	8
Atttrito	Traffico 2	0	82	0	49	0	8
	Traffico 3	0	79	0	47	0	-209
	Traffico 4	0	79	0	47	0	-209

Tabella 28 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso pulvino)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	92

						,																									,	
NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-G2,2 (arredi vari)	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3a-Traffico 4	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk3f-Traffico 4	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk4-Traffico 4	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk5-Traffico 4	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk1-Traffico 4	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q-Traffico 1	Qk2q-Traffico 2	Qk2q-Traffico 3	Qk2q-Traffico 4
SLU	1	1	SLU1	1,35	1,50		0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	1,45	0,00	0,00	0,00
SLU	2	2	SLU2	1,35	l		1,45	0,00	0,00		1,45	0,00	0,00	0,00	0,73		0,00	0,00	0,73		0,00	0,00	0,90		0,00	0,00	0,00	1,35			0,00	0,00
SLU SLU	1 2	3 4	SLU3 SLU4	1,35 1,35	I	1,35 1,35	0,00	0,73 1,45		0,00	0,00	0,73 1,45	0,00	0,00	0,00	1,45 0,73	0,00	0,00	0,00	1,45 0,73	0,00	0,00	0,90 0,90		1,45 1,45	0,00	0,00	1,35 1,35	0,00	1,45 1,45		0,00
SLU	1	5	SLU5	1,35			0,00		0,73		0,00	0,00	0,73	0,00	0,00	0,73	1,45	0,00	0,00	0,73	1,45	0,00	0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	0,00
SLU	2	6	SLU6	1,35	l		0,00	0,00	1,45		0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	
SLU	1	7	SLU7	1,35		1,35	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,90		0,00	0,00	1,45		0,00	0,00	0,00	1,45
SLU	2	8	SLU8	1,35	l		0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,90	0,00	0,00	0,00	1,45	1,35	0,00	0,00	0,00	1,45
SLU	3	9	SLU9	1,00		1,00		0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45		0,00	0,00	1,45		0,00	0,00	0,90		0,00	0,00	0,00	1,35			0,00	0,00
SLU	4	10	SLU10	1,00		1,00		0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73		0,00	0,00		1,45	0,00	0,00	0,00	1,35			0,00	0,00
SLU	3	11	SLU11			1,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,90		1,45	0,00	0,00	1,35	0,00	1,45		0,00
SLU SLU	3	12	SLU12 SLU13	1,00 1,00			0,00	1,45 0,00	0,00	0,00	0,00	1,45 0,00	0,00	0,00	0,00	0,73 0,00	0,00 1,45	0,00	0,00	0,73 0,00	0,00 1,45	0,00	0,90 0,90		1,45 0,00	0,00 1,45	0,00	1,35 1,35	0,00	1,45 0,00	0,00 1,45	0,00
SLU	4	14		1,00	l		0,00	0,00	1,45		0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,90		0,00	1,45	0,00	1,35	0,00	0,00	1,45	0,00
SLU	3		SLU15			1,00	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,00	0,00		1,45	0,00	0,00	0,00	1,45	0,90		0,00	0,00	1,45		0,00	0,00	0,00	1,45
SLU	4	16		1,00	I		0,00	0,00	0,00	1,45	0,00	0,00	0,00	1,45	0,00	0,00	0,00	0,73	0,00	0,00	0,00	0,73	0,90		0,00	0,00	1,45		0,00	0,00	0,00	1,45
SLU	5	17	SLU17	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	5		SLU18	1,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	5	19	SLU19	1,00		1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	5		SLU20	1,00	l	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU SLU	6	21	SLU21 SLU22	1,35 1,35	l		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50 1,50		0,00	0,00	0,00	1,35 1,35	0,00	0,00	0,00	0,00
SLU	6		SLU23	1,35			0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	6		SLU24			1,35	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,50		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	7		SLU25		l	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	8	26	SLU26	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	7			1,00	I	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU	8	28	SLU28	1,00			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLU	/		SLU29		1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90		0,00	0,00	0,00	1,35	0,00	0,00	0,00	0,00
SLU SLU	7		SLU30 SLU31	1,00		1,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90 -0,90		0,00	0,00	0,00	1,00 1,35	0,00	0,00	0,00	0,00
SLU	8	32	SLU32	1,00	l		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-0,90		0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
SLE RA	9	33	RA1	1,00			0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,60		0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
SLE RA	10		RA2	1,00	1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,60	1,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00
SLE RA	9	35	RA3	1,00			0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	1,00		0,00	0,00	0,00
SLE RA	10		RA4			1,00		1,00				1,00			0,00	0,80		0,00			0,00	0,00	0,00		1,00	0,00	0,00		1,00		0,00	0,00
SLE RA	10		RA5 RA6	1,00	1,00	1,00 1,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00								
SLE RA	10 9			1,00	1,00	1,00	0,00	0,00	0.00	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0,80	1.00	0,00	0,00	0,80	1 00	0,00	0,00								
SLE RA	10			1,00	1,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,80	0,00	0,00	0,00	0,80	0,00	0,00								
SLE RA	11		RA9	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00						0,00		
SLE RA	11	42	RA10	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00			0,00		
SLE RA	11					1,00															0,00			0,00								
SLE RA	11		RA12			1,00		0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00		0,00	0,00	0,00	1,00		0,00	0,00	0,00
SLE QP	12		QP1			1,00						0,00			0,00	0,00					0,00	0,00	0,00			0,00						
SLE QP	13		QP2			1,00										0,00				0,00	0,00			0,00	0,00	0,00				0,00		
SLE QP	13	47	QP3	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIAD	02	_	77	CI	VI	05	05	001	Ь	93
COMMESSA	LOTTO	TAGE	LIVIE	TIPO DOC	OFE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO

INVILUPPO:	SLU	N _{vert}	V _{trasv}	M _{trasv}	V _{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU8	21512	654	-12204	2815	904	4648
N _{vert} Min	SLU20	11033	-702	2367	175	105	0
V _{trasv} Max	SLU9	16353	1182	-4324	1411	5610	-305
V _{trasv} Min	SLU23	15606	-702	2367	236	142	0
M _{trasv} Max	SLU19	11033	-702	2367	175	105	0
M _{trasv} Min	SLU5	21079	1182	-13761	1407	508	1820
V _{long} Max	SLU8	21512	654	-12204	2815	904	4648
V _{long} Min	SLU32	11281	-421	1420	175	105	0
M _{long} Max	SLU4	21007	728	-2760	2348	6261	475
M _{long} Min	SLU19	11033	-702	2367	175	105	0
M _{torc} Max	SLU8	21512	654	-12204	2815	904	4648
M _{torc} Min	SLU9	16353	1182	-4324	1411	5610	-305

Tabella 30 - ENV SLU - Azioni totali inviluppo

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M _{trasv}	V _{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA8	15042	257	-7814	1956	633	3422
N _{vert} Min	RA12	11240	-468	1578	175	105	0
V _{trasv} Max	RA1	14822	806	-2918	1422	4069	5
V _{trasv} Min	RA12	11240	-468	1578	175	105	0
M _{trasv} Max	RA12	11240	-468	1578	175	105	0
M _{trasv} Min	RA5	14744	525	-8511	1422	482	2350
V _{long} Max	RA8	15042	257	-7814	1956	633	3422
V _{long} Min	RA12	11240	-468	1578	175	105	0
M _{long} Max	RA4	14694	338	-1421	1631	4325	188
M _{long} Min	RA12	11240	-468	1578	175	105	0
M _{torc} Max	RA8	15042	257	-7814	1956	633	3422
M _{torc} Min	RA3	14734	423	-1768	1356	4204	-16
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M_{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	QP3	11652	0	0	175	105	0
N _{vert} Min	QP1	11652	0	0	0	0	0
V _{trasv} Max	QP3	11652	0	0	175	105	0
V _{trasv} Min	QP1	11652	0	0	0	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:
Relazione di calcolo pila CAP

С	OMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
L	_I0B	02	E	ZZ	CL	VI	05	05	001	В	94

M _{trasv} Max	QP3	11652	0	0	175	105	0
M _{trasv} Min	QP1	11652	0	0	0	0	0
V _{long} Max	QP3	11652	0	0	175	105	0
V _{long} Min	QP1	11652	0	0	0	0	0
M _{long} Max	QP3	11652	0	0	175	105	0
M _{long} Min	QP1	11652	0	0	0	0	0
M _{torc} Max	QP3	11652	0	0	175	105	0
M _{torc} Min	QP1	11652	0	0	0	0	0

Tabella 31 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	95

11.2 SOLLECITAZIONI ELEVAZIONE

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}), non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate all'elevazione del fusto pila, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi, combinandole opportunamente con gli inviluppi di azioni totali ricavate a testa pulvino.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione pila a quota estradosso fondazione, e i rispettivi assi x, y, z come riportato nella figura seguente.

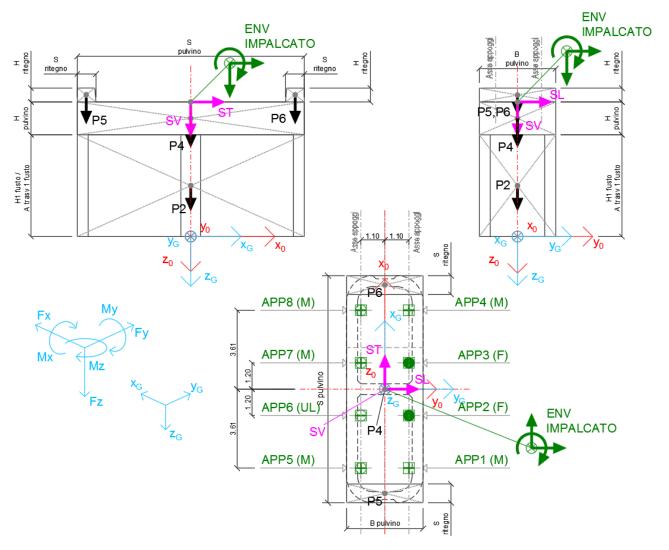


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	96

11.2.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti. Il calcolo dei periodi fondamentali di vibrazione, in condizione fessurata e non fessurata come descritto all'inizio del capitolo, dei coefficienti di sovraresistenza γ_{Rd} e i fattori di struttura q, utili a valutare gli spettri di risposta di progetto S_d in direzione longitudinale, trasversale e verticale, sono riportati nel seguito.

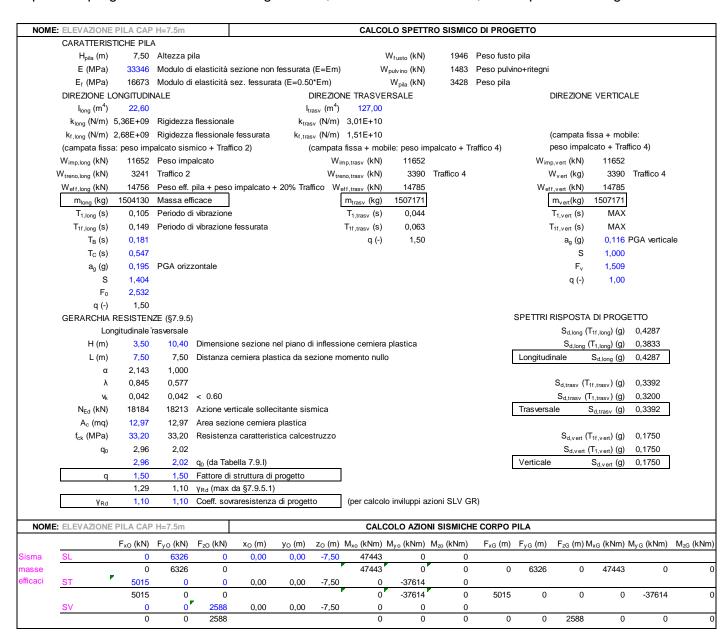


Tabella 32 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

				TIPO DOC		RA 7 DISCIP		PROGR	REV	
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	97

NOME	: ELEVAZIONE	PILA CAP	H=7.5m					PAR	rametri d	I CALCOLO	ELEVAZIO	NE				
	H1 fusto (m)	6,00	A	rea trasv 2	fusto (m²)	12,97		В	pulvino (m)	3,50	H piano ap	poggi (m)	0,00	X _G (elevazione	0,00
	H2 fusto (m)	0.00		Нр	ulvino (m)	1,50		Н	ritegno (m)	0,84	B piano ap	poggi (m)	0,00	Y _G	elevazione	0,00
Area tras	sv 1 fusto (m²)	12,97		S p	ulvino (m)	10,40		S	ritegno (m)	0,80				Z _G	elevazione	0,00
NOME	ELEVAZIONE	PILA CAP	H=7.5m						CALCOLO	AZIONI CO	RPO PILA					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y ₀ (m)	z _O (m)	M _{xo} (kNm)				F _{yG} (m)	F _{zG} (m) N	I _{xG} (kNm) N	И _{у G} (kNm)	M _{zG} (kNm)
Peso	P2	0	0	1946	0,00	0,00	-3,00	0	0	0						
proprio	P3	0	0	0	0,00	0,00	-6,00	0	0	0						
	P4	0	0	1365	0,00	0,00	-6,75	0	0	0						
	P5	0	0	59	4,80	0,00	-7,92	0	-282	0						
	P6	0	0	59	-4,80	0,00	-7,92	0	282	0						
	P7	0	0	0	0,00	0,00	-7,50	0	0	0						
		0	0	3428				0	0	0	0	0	3428	0	0	(
NOME	: ELEVAZIONE	PILA CAP	H=7.5m					С	ALCOLO A	ZIONI DA I	MPALCATO)				
		F _{v0} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{v.o.} (kNm)	M ₂₀ (kNm)	F _{vG} (m)	F _{vG} (m)	F _{7G} (m) N	l _{ve} (kNm) N	√l _{ve} (kNm)	M _{zG} (kNm
ENV	Nvert Max	654	2815	21512	0,00	0,00	-7,50	904	-12204	4648	654	2815	21512	22015	-17112	4648
SLU	Nvert Min	-702	175	11033	0,00	0,00	-7,50	105	2367	0	-702	175	11033	1416	7634	(
	Vtrasv Max	1182	1411	16353	0,00	0,00	-7,50	5610	-4324	-305	1182	1411	16353	16192	-13191	-305
	Vtrasv Min	-702	236	15606	0,00	0,00	-7,50	142	2367	0	-702	236	15606	1911	7634	C
	Mtrasv Max	-702	175	11033	0,00	0,00	-7,50	105	2367	0	-702	175	11033	1416	7634	(
	Mtrasv Min	1182	1407	21079	0,00	0,00	-7,50	508	-13761	1820	1182	1407	21079	11056	-22629	1820
	Vlong Max	654	2815	21512	0,00	0,00	-7,50	904	-12204	4648	654	2815	21512	22015	-17112	4648
	Vlong Min	-421	175	11281	0,00	0,00	-7,50	105	1420	0	-421	175	11281	1416	4581	(
	Mlong Max	728	2348	21007	0,00	0,00	-7,50	6261	-2760	475	728	2348	21007	23871	-8221	475
	Mlong Min	-702	175	11033	0,00	0,00	-7,50	105	2367	0	-702	175	11033	1416	7634	C
	Mtorc Max	654	2815	21512	0,00	0,00	-7,50	904	-12204	4648	654	2815	21512	22015	-17112	4648
	Mtorc Min	1182	1411	16353	0,00	0,00	-7,50	5610	-4324	-305	1182	1411	16353	16192	-13191	-305
		Fa (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	zo (m)	M _{xo} (kNm)	M (kNm)	M (kNm)	Fc (m)	F _{vG} (m)	F-c (m) N	I _{xG} (kNm) N	رابر (kNm)	M _{zG} (kNm)
ENV	Nvert Max	257	1956	15042	0,00	0,00	-7,50	633	-7814	3422	257	1956	15042	15306	-9743	3422
SLE RA	Nvert Min	-468	175	11240	0,00	0,00	-7,50	105	1578	0	-468	175	11240	1416	5090	3422
OLL TO	Vtrasv Max	806	1422	14822	0,00	0,00	-7,50	4069	-2918	5	806	1422	14822	14737	-8961	
	Vtrasv Min	-468	175	11240	0,00	0,00	-7,50	105	1578	0	-468	175	11240	1416	5090	(
	Mtrasv Max	-468	175	11240	0,00	0,00	-7,50	105	1578	0	-468	175	11240	1416	5090	(
	Mtrasv Min	525	1422	14744	0,00	0,00	-7,50	482	-8511	2350	525	1422	14744	11150	-12447	2350
	Vlong Max	257	1956	15042	0,00	0,00	-7,50	633	-7814	3422	257	1956	15042	15306	-9743	3422
	Vlong Min	-468	175	11240	0,00	0,00	-7,50	105	1578	0	-468	175	11240	1416	5090	(
	Mlong Max	338	1631	14694	0,00	0,00	-7,50	4325	-1421	188	338	1631	14694	16561	-3959	188
	Mlong Min	-468	175	11240	0,00	0,00	-7,50	105	1578	0	-468	175	11240	1416	5090	(
	Mtorc Max	257	1956	15042	0,00	0,00	-7,50	633	-7814	3422	257	1956	15042	15306	-9743	3422
	Mtorc Min	423	1356	14734	0,00	0,00	-7,50	4204	-1768	-16	423	1356	14734	14377	-4941	-16
		F _{xO} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	zo (m)	M _{xo} (kNm)	M (kNm)	M (kNm)	Fc (m)	F _{vG} (m)	F _{-c} (m) N	I _{xG} (kNm) N	الرم (kNm)	M _{zG} (kNm)
ENV	Nvert Max	0	175	11652	0,00	0,00	-7,50	105	0	0	0	175	11652	1416	0	26 ()
SLE QP	Nvert Min	0	0	11652	0,00	0,00	-7,50	0	0	0	0	0	11652	0	0	
011 d.	Vtrasv Max	0	175	11652	0,00	0,00	-7,50	105	0	0	0	175	11652	1416	0	
	Vtrasv Min	0	0	11652	0,00	0,00	-7,50	0	0	0			11652	0	0	(
	Mtrasv Max	0	175	11652	0,00	0,00	-7,50	105	0	0	0	175	11652	1416	0	
	Mtrasv Min	0	0	11652	0,00	0,00	-7,50	0	0	0			11652	0	0	
	Vlong Max	0	175	11652	0,00	0,00	-7,50	105	0	0	0		11652	1416	0	
	Vlong Min	0	0	11652	0,00	0,00	-7,50	0	0	0	0	0	11652	0	0	(
	Mlong Max	0	175	11652	0,00	0,00	-7,50	105	0	0		175	11652	1416	0	<u> </u>
	Mlong Min	0	0	11652	0,00	0,00	-7,50	0	0	0	0	0	11652	0	0	(
	Mtorc Max	0	175	11652	0,00	0,00	-7,50	105	0	0		175	11652	1416	0	
	Mtorc Min	0	0	11652	0,00	0,00	-7,50	0	0	0	0	0	11652	0	0	

Tabella 33 – Riepilogo azioni elementari statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOB 02 E ZZ CL VI 05 05 001 B 98

Tipo azione	Descrizione	V _{trasv}	V _{long}	N _{vert}	Miong	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	3428	0	0	0
SLU	Nvert Max	654	2815	21512	22015	-17112	4648
Impalcato	Nvert Min	-702	175	11033	1416	7634	0
	Vtrasv Max	1182	1411	16353	16192	-13191	-305
	Vtrasv Min	-702	236	15606	1911	7634	0
	Mtrasv Max	-702	175	11033	1416	7634	0
	Mtrasv Min	1182	1407	21079	11056	-22629	1820
	Vlong Max	654	2815	21512	22015	-17112	4648
	Vlong Min	-421	175	11281	1416	4581	0
	Mlong Max	728	2348	21007	23871	-8221	475
	Mlong Min	-702	175	11033	1416	7634	0
	Mtorc Max	654	2815	21512	22015	-17112	4648
	Mtorc Min	1182	1411	16353	16192	-13191	-305
SLE RA	Nvert Max	257	1956	15042	15306	-9743	3422
Impalcato	Nvert Min	-468	175	11240	1416	5090	0
	Vtrasv Max	806	1422	14822	14737	-8961	5
	Vtrasv Min	-468	175	11240	1416	5090	0
	Mtrasv Max	-468	175	11240	1416	5090	0
	Mtrasv Min	525	1422	14744	11150	-12447	2350
	Vlong Max	257	1956	15042	15306	-9743	3422
	Vlong Min	-468	175	11240	1416	5090	0
	Mlong Max	338	1631	14694	16561	-3959	188
	Mlong Min	-468	175	11240	1416	5090	0
	Mtorc Max	257	1956	15042	15306	-9743	3422
	Mtorc Min	423	1356	14734	14377	-4941	-16
SLE QP	Nvert Max	0	175	11652	1416	0	0
Impalcato	Nvert Min	0	0	11652	0	0	0
	Vtrasv Max	0	175	11652	1416	0	0
	Vtrasv Min	0	0	11652	0	0	0
	Mtrasv Max	0	175	11652	1416	0	0
	Mtrasv Min	0	0	11652	0	0	0
	Vlong Max	0	175	11652	1416	0	0
	Vlong Min	0	0	11652	0	0	0
	Mlong Max	0	175	11652	1416	0	0
	Mlong Min	0	0	11652	0	0	0
	Mtorc Max	0	175	11652	1416	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

1 10P 02 E 77 CL 1	VI 05 05	001 0	99			
LIOB 02 E ZZ CL	VI 05 05	05 004 B 00				

	Mtorc Min	0	0	11652	0	0	0
E	Sisma long	0	6326	0	47443	0	0
Sisma	Sisma trasv	5015	0	0	0	-37614	0
	Sisma vert	0	0	2588	0	0	0

Tabella 34 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso fondazione)

				·						T	Т				l .	Т	Т	Τ		T																								
Nom eEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	SLU-Nvert Max	SLU-Nvert Min	SLU-Vtrasv Max	SLU-Vtrasv Min	OH HMHOOD MODE	DEC-Willas V Iviax	SLU-Mtrasv Min	SLU-Viong Max	SLU-Vlong Min	SLU-Mlong Max	SLU-Mlong Min	National May	SEU-Mtore Min	SLE RA-Nvert Max	SLE RA-Nvert Min	SLE RA-Vtrasv Max	SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	SLE RA-Mtrasv Min	SLE RA-Vlong Max	SLE RA-Vlong Min	SLE RA-Mlong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SLE QP-Nvert Max	SLE QP-Nvert Min	SLE QP-Vtrasv Max	SLE QP-Vtrasv Min	SLE QP-Mtrasv Max	SLE QP-Mtrasv Min	SLE QP-Vlong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	E-Sisma long	E-Sisma trasv	i di
SLU	1	1	SLU1	1,35	1,00	0,00	0,00	0,00	0,0	0 0,	,00	0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU SLU	1	3	SLU2 SLU3	1,35 1,35	0,00	1,00	0,00 1,00	0,00				0,00	0,00	0,00	0,0	0,0			0,01	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	1	4	SLU4	1,35	0,00	0,00	0,00	1,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0		0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU SLU		5	SLU5 SLU6	1,35 1,35	0,00	0,00	0,00	0,00	1 /		,00 (0,00	0,00	0,00	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU		7	SLU7	1,35	0,00	0,00	0,00	0,00	0,0	00 0,	,00	1,00	0,00	0,00	0,0	0,0	0 0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU SLU	1	8	SLU8 SLU9	1,35 1,35	0,00	0,00	0,00	0,00			,00	0,00	1,00	0,00 1,0 0	0,0	0,0	0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	1	10	SLU10		0,00	0,00	0,00	0,00				0,00	0,00	0,00	1,0	,-	-,-,-	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU SLU	1	11 12	SLU11 SLU12	1,35	0,00	0,00	0,00	0,00				0,00	0,00	0,00	0,0	1,0 0 0.0			0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	2	13			1,00	0,00	0,00	0,00			,00 (0,00	0,00	0,00	0,0	0,0	, ,	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	2	14			0,00	1,00		0,00	-,-		,00	0,00	0,00	0,00	0,0	0,0	0 0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU SLU	2	15 16	SLU15 SLU16	1,00 1,00	0,00	0,00	1,00 0,00	0,00 1,00			,00 (0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	2	17		1,00	0,00	0,00	0,00	0,00			,00	0,00	0,00	0,00	0,0	0,0	0,0,	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU		18 19		1,00 1,00	0,00	0,00	0,00	0,00				0,00 1,00	0,00	0,00	0,0	0,0	-,-	0,00	0.0	0,00	0,0	0,00	0.00	0.00	0,00	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLU	2	20	SLU20	1,00	0,00	0,00	0,00	0,00			,00	0,00	1,00	0,00	0,0	0,0		0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
SLU	2	21 22			0,00	0,00	0,00	0,00				0,00	0,00	1,00	1,0	0,0		0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
SLU	2	23	SLU23	1,00	0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	1,0			0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
SLV	2	24 25	SLU24 SLV1	1,00	0,00	0,00	0,00	0.00	0,0	00 0,	00,	0,00	0,00	0,00	0,0	0,0	0 1,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,0
SLV	3	26	SLV2	1,00	0,00	0,00	0,00	0,00	0,0	00 0,	,	0,00	0,00	0,00	0,0	0,0	,-		0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,30	-0,
SLV		27 28	SLV3 SLV4		0,00	0,00	0,00	0,00				0,00 0,00	0,00	0,00	0,0	0,0	,-	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	1,00 1,00	
SLV		29	SLV5	1,00	0,00	0,00	0,00	0,00	-/-		,	0,00	0,00	0,00	0,0	0,0	-,-,-		0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30		1,
SLV LE RA	3	30 31	SLV6 RA1		0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,30	- 1, (
LE RA	4	32	RA2		0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0			1,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
LE RA LE RA		33 34	RA3		0,00	0,00	0,00	0,00			,00 (0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	1,00	1,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
LE RA		35	RA5	1,00	0,00	0,00	0,00	0,00	1 '			0,00	0,00	0,00	0,0	0,0		0,0	0,0	0,00	0,0		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
LE RA LE RA		36 37	RA6 RA7	1,00 1,00	0,00	0,00	0,00	0,00	-,-		,00	0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	0,00	0,0	0,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
E RA		38	RA8		0,00	0,00	0,00	0,00	-/-	/	,	0,00	0,00	0,00	0,0	0,0	,-	0,00	0,0	0,00	0,0	0,00	0,00	0,00	1,00	-,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E RA E RA		39 40	RA9 RA10	1,00 1,00	0,00	0,00	0,00	0,00				0,00	0,00	0,00	0,0	0,0			0,0	0,00	0,0	0,00	0,00	0,00	0,00	1,00	0,00 1,0 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
LE RA		41	RA10		0,00	0,00	0,00	0,00				0,00	0,00	0,00	0,0	0,0			0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E RA	4	42		-	0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E QP E QP	5	43 44	QP1 QP2	1,00 1,00	0,00	0,00	0,00	0,00	0,0	00 0, 00 0,	,00 (0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
E QP	5	45	QP3	1,00	0,00	0,00	0,00	0,00	0,0	00 0,		0,00	0,00	0,00	0,0	0,0	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E QP E QP		46 47	QP4 QP5	1,00 1,00	0,00	0,00	0,00	0,00		- 1 '		0,00	0,00	0,00	0,0	0,0	0 0,0	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 0.00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0
E QP	5	48	QP6	1,00	0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E QP E QP	5	49 50	QP7 QP8	1,00 1,00	0,00	0,00	0,00	0,00		- 1 '	,	0,00	0,00	0,00	0,0	0,0	-,-,-	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00 0.00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,
E QP	5	51	QP9	1,00	0,00	0,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,0	0,0	0 0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,
E QP E QP	5	52 53	QP10 QP11		0,00	0,00	0,00	0,00	-,-	/	,	0,00 0,00	0,00	0,00	0,0	0,0	,-	0,00	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,
.E QP	5	54	QP11		0.00	0.00	0.00	0.00	0,0	0,00	.00	0.00	0.00	0,00	0,0	0,0	0,0	0,0	0,0	0,00	0,0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	1.00	0.00	0.00	0,0

Tabella 35 – Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	СОПО		TIPO DOC		RA 7 DISCIP		PROGR	REV		
LIVD	UZ		CL	VI	US	US	UUI	001 B		

INVILUPPO:	SLU	N _{vert}	V _{trasv}	M _{trasv}	V _{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU7	26140	654	-17112	2815	22015	4648
N _{vert} Min	SLU22	14461	-702	7634	175	1416	0
V _{trasv} Max	SLU24	19781	1182	-13191	1411	16192	-305
V _{trasv} Min	SLU2	15661	-702	7634	175	1416	0
M _{trasv} Max	SLU4	20234	-702	7634	236	1911	0
M _{trasv} Min	SLU6	25707	1182	-22629	1407	11056	1820
V _{long} Max	SLU7	26140	654	-17112	2815	22015	4648
V _{long} Min	SLU22	14461	-702	7634	175	1416	0
M _{long} Max	SLU9	25635	728	-8221	2348	23871	475
M _{long} Min	SLU22	14461	-702	7634	175	1416	0
M _{torc} Max	SLU7	26140	654	-17112	2815	22015	4648
M _{torc} Min	SLU24	19781	1182	-13191	1411	16192	-305
INVILUPPO:	SLV	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M_{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)	Mx (kNm)	Mz (kNm)
				•	-		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb.	Comb. SLV5	(kN)	(kN) 1505	(kNm)	(kN) 2072	(kNm) 15648	(kNm)
N _{vert} Max	SLV5 SLV6	(kN) 17668 12492	(kN) 1505 1505	(kNm) -11284 -11284	(kN) 2072 2072	(kNm) 15648 15648	(kNm) 0 0
Nvert Max Nvert Min Vtrasv Max	SLV5 SLV6 SLV3	(kN) 17668 12492 15857	(kN) 1505 1505 5015	(kNm) -11284 -11284 -37614	(kN) 2072 2072 2072	(kNm) 15648 15648 15648	(kNm) 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	SLV5 SLV6 SLV3 SLV6	(kN) 17668 12492 15857 12492	(kN) 1505 1505 5015 1505	(kNm) -11284 -11284 -37614 -11284	(kN) 2072 2072 2072 2072	(kNm) 15648 15648 15648	(kNm) 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	SLV5 SLV6 SLV3 SLV6 SLV1	(kN) 17668 12492 15857 12492 15857	(kN) 1505 1505 5015 1505 1505	(kNm) -11284 -11284 -37614 -11284 -11284	(kN) 2072 2072 2072 2072 2072 6500	(kNm) 15648 15648 15648 15648 48858	(kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV3	(kN) 17668 12492 15857 12492 15857	(kN) 1505 1505 5015 1505 1505 5015	(kNm) -11284 -11284 -37614 -11284 -37614	(kN) 2072 2072 2072 2072 2072 6500 2072	(kNm) 15648 15648 15648 48858 15648	(kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	SLV5 SLV6 SLV3 SLV6 SLV1 SLV3	(kN) 17668 12492 15857 12492 15857 15857	(kN) 1505 1505 5015 1505 1505 5015	(kNm) -11284 -11284 -37614 -11284 -37614 -11284	(kN) 2072 2072 2072 2072 6500 2072	(kNm) 15648 15648 15648 15648 48858 15648	(kNm) 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV3 SLV1 SLV5	(kN) 17668 12492 15857 12492 15857 15857 15857	(kN) 1505 1505 5015 1505 1505 5015 1505	(kNm) -11284 -11284 -37614 -11284 -37614 -11284 -11284	(kN) 2072 2072 2072 2072 6500 2072 6500 2072	(kNm) 15648 15648 15648 48858 15648 48858 15648	(kNm) 0 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	SLV5 SLV6 SLV6 SLV1 SLV3 SLV1 SLV3 SLV1 SLV5	(kN) 17668 12492 15857 12492 15857 15857 15857 17668	(kN) 1505 1505 5015 1505 5015 1505 1505 150	(kNm) -11284 -11284 -37614 -11284 -37614 -11284 -11284 -11284	(kN) 2072 2072 2072 2072 6500 2072 6500 2072 6500	(kNm) 15648 15648 15648 48858 15648 48858 15648 48858	(kNm) 0 0 0 0 0 0 0 0 0 0 0

Tabella 36 – ENV SLU, SLV - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOB	СОПО		TIPO DOC		RA 7 DISCIP		PROGR	REV	
I IUB	11/	//		VI	เมว	un	1717 1	П	101

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M_{trasv}	V_{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	18470	257	-9743	1956	15306	3422
N _{vert} Min	RA10	14668	-468	5090	175	1416	0
V _{trasv} Max	RA3	18251	806	-8961	1422	14737	5
V _{trasv} Min	RA2	14668	-468	5090	175	1416	0
M _{trasv} Max	RA2	14668	-468	5090	175	1416	0
M _{trasv} Min	RA6	18172	525	-12447	1422	11150	2350
V _{long} Max	RA1	18470	257	-9743	1956	15306	3422
V _{long} Min	RA2	14668	-468	5090	175	1416	0
M _{long} Max	RA9	18122	338	-3959	1631	16561	188
M _{long} Min	RA2	14668	-468	5090	175	1416	0
M _{torc} Max	RA1	18470	257	-9743	1956	15306	3422
M _{torc} Min	RA12	18162	423	-4941	1356	14377	-16
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M_{torc}
Tipologia	Nome	Fz	F .,	N.A	E.,		
	Nome	1 2	Fx	My	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
				•	-		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb.	Comb. QP1	(kN)	(kN)	(kNm)	(kN) 175	(kNm)	(kNm)
N _{vert} Max	QP1 QP12	(kN) 15080 15080	(kN) 0 0	(kNm) 0 0	(kN) 175	(kNm) 1416 0	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max	QP1 QP12 QP1	(kN) 15080 15080 15080	(kN) 0 0	(kNm) 0 0	(kN) 175 0 175	(kNm) 1416 0 1416	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	QP1 QP12 QP1 QP12	(kN) 15080 15080 15080 15080	(kN) 0 0 0	(kNm) 0 0 0	(kN) 175 0 175 0	(kNm) 1416 0 1416 0	(kNm) 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	QP1 QP12 QP1 QP1 QP12	(kN) 15080 15080 15080 15080	(kN) 0 0 0 0	(kNm) 0 0 0 0 0 0	(kN) 175 0 175 0 175	(kNm) 1416 0 1416 0 1416	(kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	QP1 QP12 QP1 QP12 QP1 QP1 QP12	(kN) 15080 15080 15080 15080 15080 15080	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0	(kN) 175 0 175 0 175 0	(kNm) 1416 0 1416 0 1416 0	(kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max	QP1 QP12 QP1 QP12 QP1 QP1 QP12	(kN) 15080 15080 15080 15080 15080 15080 15080	(kN) 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0	(kN) 175 0 175 0 175 0 175 175	(kNm) 1416 0 1416 0 1416 0 1416	(kNm) 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	(kN) 15080 15080 15080 15080 15080 15080 15080 15080	(kN) 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0	(kN) 175 0 175 0 175 0 175 0	(kNm) 1416 0 1416 0 1416 0 1416 0	(kNm) 0 0 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	(kN) 15080 15080 15080 15080 15080 15080 15080 15080	(kN) 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0	(kN) 175 0 175 0 175 0 175 0 175 175	(kNm) 1416 0 1416 0 1416 0 1416 0 1416	(kNm) 0 0 0 0 0 0 0 0 0 0 0

Tabella 37 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	102

11.3 SOLLECITAZIONI IN FONDAZIONE

In analogia con quanto svolto per le elevazioni, sempre mediante foglio di calcolo si sono valutate le azioni risultanti rispetto al punto G posto al centro palificata a quota testa pali.

Il calcolo è stato suddiviso per le azioni statiche SLU / SLE e sismiche SLV EL, queste ultime adottando uno spettro di progetto elastico con q=1.00 per tutte le direzioni, e sismiche SLV GR, adottando uno spettro di progetto con q>1.00, secondo le valutazioni sulle sezioni strutturali come descritto nell'analisi dei carichi per le azioni sismiche e nell'analisi delle elevazioni.

Le SLV EL, rappresentando il limite superiore delle azioni sismiche che le soprastrutture possono trasmettere alle fondazioni secondo le norme tecniche, sono valutate nell'ipotesi di spettri elastici q=1.00.

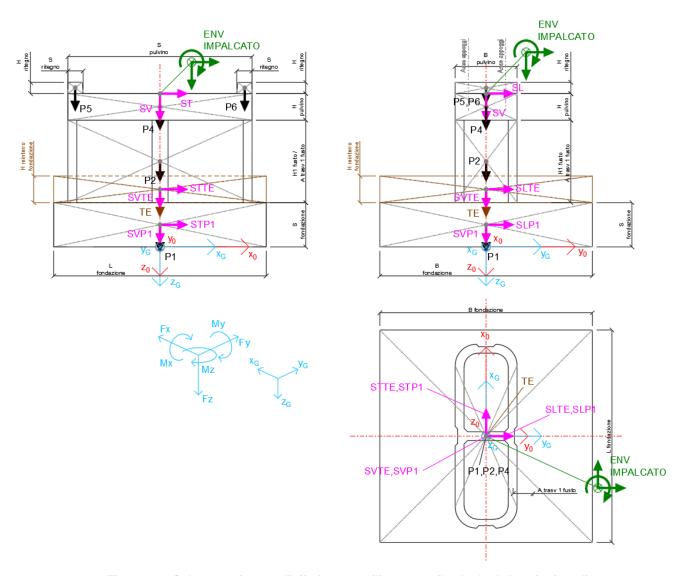


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	103

11.3.1 Analisi statica (SLU, SLE) e sismica (SLV EL)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV EL, secondo le combinazioni di carico descritte nei capitoli precedenti, considerando gli inviluppi totali delle azioni derivanti dal calcolo delle elevazioni.

Il calcolo dei periodi fondamentali di vibrazione, in condizione fessurata e non fessurata come descritto all'inizio del capitolo, sono riportati nel seguito.

NOME	: FONDAZIONI	E PILA CAP	H=7.5m					CALC	OLO SPET	TRO SISM	ICO ELAST	ICO				
	CARATTERIS	STICHE PILA	4													
	H _{pila} (m)	7,50	Altezza pi	la				V	V _{fusto} (kN)	1946	Peso fusto	pila				
	E (MPa)	33346	Modulo di	elasticità s	sezione nor	n fessurata	(E=Em)	W	_{pulvino} (kN)	1483	Peso pulvir	no+ritegni				
	E _f (MPa)	16673	Modulo di	elasticità s	sez. fessura	ata (E=0.50	*Em)		W _{pila} (kN)	3428	Peso pila					
	DIREZIONE L	ONGITUDIN	IALE			DI	REZIONE	TRASVER	SALE			I	DIREZIONE	VERTICAL	.E	
	I _{long} (m ⁴)	22,60				I _{tr}	_{rasv} (m ⁴)	127,00								
	k _{long} (N/m)	5,36E+09	Rigidezza	flessionale	Э	k _{tras}	_{sv} (N/m) 3	3,01E+10								
	$k_{f,long}$ (N/m)	2,68E+09	Rigidezza	flessionale	e fessurata	k _{f,tras}	_{sv} (N/m) ′	1,51E+10				(campata fis	ssa + mobil	e:	
	(campata fiss	a: peso imp	alcato sism	ico + Traffi	ico 2)	(c	ampata fis	sa + mobil	e: peso imp	oalcato + Tr	affico 4)	t	oeso impalo	cato + Traffi	co 4)	
	W _{imp,long} (kN)	11652	Peso impa	alcato			W_{imp}	,trasv (kN)	11652			W_{im}	_{p,vert} (kN)	11652		
	W _{treno,long} (kN)	3241	Traffico 2				W_{treno}	,trasv (kN)	3390	Traffico 4		١	W _{vert} (kg)	3390	Traffico 4	
	W _{eff,long} (kN)	14756	Peso eff. p	oila + peso	impalcato	+ 20% Traf	fico W _{eff}	,trasv (kN)	14785			Wef	f,vert (kN)	14785		
	m _{long} (kg)	1504130	Massa effi	cace			n	n _{trasv} (kg)	1507171				m _{v ert} (kg)	1507171		
	T _{1,long} (s)	0,105	Periodo di	vibrazione				T _{1,trasv} (s)	0,044			_	T _{1,vert} (s)	MAX		
	T _{1f,long} (s)	0,149	Periodo di	vibrazione	fessurata		Т	1f,trasv (s)	0,063				T _{1f,vert} (s)	MAX		
	T _B (s)	0,181						q (-)	1,00				a _g (g)	0,116	PGA vertical	le
	T _C (s)	0,547											S	1,000		
	a _q (g)	0,195	PGA orizz	ontale									F_{v}	1,509		
	S	1,404											q (-)	1,00		
	_	2,532														
	F ₀	2,552														
	F ₀ q (-)	1,00														
		1,00	PROGETTO	ı												
	q (-)	1,00 POSTA DI I	PROGETTO T _{1f,long}) (g)					S _{d,trasv} (T	1 _{f,trasv}) (g)	0,4194			S _{d,vert} (T _{1f,vert}) (g)	0,1750	
	q (-)	1,00 POSTA DI F S _{d,long} (0,6187		_		.,	1 _{1f,trasv}) (g)	0,4194 0,3768	_		-,	T _{1f,vert}) (g) (T _{1,vert}) (g)	0,1750 0,1750	
	q (-)	1,00 SPOSTA DI F S _{d,long} (S _{d,long} (T _{1f,long}) (g) (T _{1,long}) (g)	0,6187		[-	Trasversale	S _{d,trasv} (,,	•	[Verticale	-,	,, (0)		
	q (-) SPETTRI RIS Longitudinal	1,00 POSTA DI F S _{d,long} (S _{d,long} (T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g)	0,6187 0,5177		<u></u>	Frasversale	S _{d,trasv} (Γ _{1,trasv}) (g) S _{d,trasv} (g)	0,3768 0,4194	[-,	(T _{1,vert}) (g)	0,1750	
NOME	q (-) SPETTRI RIS	1,00 POSTA DI F S _{d,long} (S _{d,long} (T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g)	0,6187 0,5177		[-	Frasversale	S _{d,trasv} (Γ _{1,trasv}) (g) S _{d,trasv} (g)	0,3768 0,4194	[IE CORPO F		-,	(T _{1,vert}) (g)	0,1750	
NOME	q (-) SPETTRI RIS Longitudinal	1,00 POSTA DI F Sd,long (Sd,long (T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g)	0,6187 0,5177 0,6187	x _O (m)	y _O (m)		S _{d,trasv} (T _{1,trasv}) (g) S _{d,trasv} (g)	0,3768 0,4194		PILA	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g)	0,1750	M _{zG} (k
	q (-) SPETTRI RIS Longitudinal	1,00 POSTA DI F Sd,long (Sd,long (T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g) P H=7.5m	0,6187 0,5177 0,6187	x _O (m) 0,00			S _{d,trasv} (T _{1,trasv}) (g) S _{d,trasv} (g)	0,3768 0,4194 NI SISMICH		PILA	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g)	0,1750 0,1750	M _{zG} (k
sma	q (-) SPETTRI RIS Longitudinal FONDAZIONI	1,00 SPOSTA DI F Sd,long (Sd,long (E PILA CAP Fx0 (kN) 0	$T_{1f,long}$ (g) $(T_{1,long})$ (g) $S_{d,long}$ (g) P H=7.5m F_{yO} (kN)	0,6187 0,5177 0,6187 F _{zO} (kN)		y _O (m)	z _O (m) M	S _{d,trasv} (**) CALC	T _{1,trasv}) (g) S _{d,trasv} (g) OLO AZION Myo (kNm)	0,3768 0,4194 NI SISMICH M _{zo} (kNm)		PILA	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g)	0,1750 0,1750	M _{zG} (k
sma isse	q (-) SPETTRI RIS Longitudinal FONDAZIONI	1,00 POSTA DI F Sd.long (Sd.long (E E PILA CAF FxO (kN)	T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130	0,6187 0,5177 0,6187 F _{zO} (kN)		y _O (m)	z _O (m) M	S _{d,trasv} (**) CALC M _{xo} (kNm) N 91299 91299 0	T _{1,trasv}) (g) S _{d,trasv} (g) OLO AZION M _{yo} (kNm)	0,3768 0,4194 NI SISMICH M _{zo} (kNm) 0	F _{xG} (m)	PILA F _{yG} (m)	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm)	0,1750 0,1750 M _{yG} (kNm)	M _{zG} (k
sma asse	q (-) SPETTRI RIS Longitudinal E: FONDAZIONI	1,00 EPOSTA DI F Sd,long (Sd,long (e E PILA CAP F _{xO} (kN) 0 0	T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0	0,00	y _O (m) 0,00	z _O (m) N -10,00	S _{d,trasv} (CALC) CALC M _{xo} (kNm) N 91299 91299	Γ _{1,trasv}) (g) S _{d,trasv} (g) OLO AΖΙΟΙ Μ _{yo} (kNm) 0	0,3768 0,4194 NI SISMICH M _{zo} (kNm) 0	F _{xG} (m)	PILA F _{yG} (m)	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm)	0,1750 0,1750 M _{yG} (kNm)	M _{zG} (k
sma asse	q (-) SPETTRI RIS Longitudinal E: FONDAZIONI	1,00 POSTA DI F Sd,long (Sd,long (E PILA CAF F _{xO} (kN) 0 6202 6202 0	T _{1f,long}) (g) (T _{1,long}) (g) (S _{d,long} (g) (P H=7.5m F _{yO} (kN) 9130 0 0 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0	0,00	y _O (m) 0,00	z _O (m) N -10,00	S _{d,trasv} (**) CALC M _{xo} (kNm) N 91299 91299 0 0	F _{1,trasv}) (g) S _{d,trasv} (g) OLO AZION Myo (kNm) 0 -62017 -62017	0,3768 0,4194 NI SISMICH M _{ZD} (kNm) 0 0 0	F _{xG} (m)	PILA F _{yG} (m) 9130	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm) I	0,1750 0,1750 M _{yG} (kNm)	M _{zG} (k
sma asse	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST	1,00 POSTA DI F Sd,long (Sd,long (E PILA CAF F _{xO} (kN) 0 6202 6202	T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0	0,00	y _O (m) 0,00 0,00	z _O (m) N -10,00	S _{d,trasv} (**) CALC M _{xo} (kNm) ** 91299 91299 0	F _{1,trasv}) (g) S _{d,trasv} (g) OLO AZION Myo (kNm) 0 -62017 -62017	0,3768 0,4194 NI SISMICH M _{zo} (kNm) 0 0	F _{xG} (m)	PILA F _{yG} (m) 9130	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm) I	0,1750 0,1750 M _{yG} (kNm)	M _{zG} (k
sma asse caci	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST	1,00 POSTA DI F Sd,long (Sd,long (E PILA CAF F _{xO} (kN) 0 6202 6202 0	T _{1f,long}) (g) (T _{1,long}) (g) (S _{d,long} (g) (P H=7.5m F _{yO} (kN) 9130 0 0 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0 0 0 2588	0,00	y _O (m) 0,00 0,00	z _O (m) N -10,00	S _{d,trasv} (**) CALC M _{xo} (kNm) N 91299 91299 0 0	F _{1,trasv}) (g) S _{d,trasv} (g) OLO AZION Myo (kNm) 0 -62017 -62017	0,3768 0,4194 NI SISMICH M _{ZD} (kNm) 0 0 0	F _{xG} (m) 0 6202	PILA F _{yG} (m) 9130 0	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm) (9) 91299	0,1750 0,1750 M _{yG} (kNm) 0	M _{zG} (k
sma asse icaci	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST SV	1,00 POSTA DI F S _{d,long} (S _{d,long} (P E PILA CAF F _{xO} (kN) 0 0 6202 6202 0 0 0	T _{1f,long}) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 0 0 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0 0 0 2588 2588 0	0,00	y _O (m) 0,00 0,00 0,00	z _O (m) N -10,00 -10,00	CALC CALC C	F1,trasv (g) Sd,trasv (g) OLO AZION Myo (kNm) -62017 -62017 0 0	0,3768 0,4194 NI SISMICH M _{zo} (kNm) 0 0 0	F _{xG} (m) 0 6202	9130 0	S _{d,vert} F _{2G} (m) N 0 2588	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm) (9) 91299	0,1750 0,1750 M _{yG} (kNm) 0	M _{zG} (k
sma asse icaci	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST SV SLP1	1,00 POSTA DI F Sd,long (Sd,long (POSTA DI F Sd,long (POSTA D	T _{1f,long}) (g) (T _{1,long}) (g) (T _{1,long}) (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 0 0 0 5569	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0 0 0 2588 2588 0	0,00 0,00 0,00 0,00	y _O (m) 0,00 0,00 0,00 0,00	z _O (m) N -10,00 -10,00 -10,00	S _{d,trasv} (*) CALC CALC 9 91299 91299 0 0 0 6961	Γ _{1,trasv}) (g) S _{d,trasv} (g) DLO AZIOI M _{yo} (kNm) 0 -62017 -62017 0 0	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0	F _{xG} (m) 0 6202	PILA F _{yG} (m) 9130 0	S _{d,vert}	(T _{1,vert}) (g) S _{d,vert} (g) M _{xG} (kNm) (9) 91299	0,1750 0,1750 M _{yG} (kNm) 0	M _{zG} (k
sma asse icaci sma	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST SV SLP1	1,00 POSTA DI F S _{d,long} (S _{d,long} (P E PILA CAF F _{xO} (kN) 0 0 6202 6202 0 0 0	T _{1f,long}) (g) (T _{1,long}) (g) (T _{1,long}) (g) S _{d,long}	0,6187 0,5177 0,6187 F _{x0} (kN) 0 0 0 0 2588 2588 0 0	0,00 0,00 0,00 0,00	y _O (m) 0,00 0,00 0,00 0,00	z _O (m) N -10,00 -10,00 -10,00	Sd,trasv (**) CALCO M _{xo} (kNm) N 91299 0 0 0 0 6961 8687 15648 0	F1,trasv (g) Sd,trasv (g) OLO AZION Myo (kNm) -62017 -62017 0 0	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0 0 0	F _{xG} (m) 0 6202	9130 0	S _{d,vert} F _{2G} (m) N 0 2588	(T _{1,verl}) (g) S _{d,verl} (g) S _{d,verl} (g) M _{XG} (kNm) I 91299 0	0,1750 0,1750 0,1750 M _{yG} (kNm) 0 -62017	M _{zG} (k
sma asse caci sma ag	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST SV SLP1 SLTE	1,00 POSTA DI F S _{d,long} (S _{d,long} (P E PILA CAF F _{xO} (kN) 0 0 6202 6202 0 0 0 0 0	T _{1f,long}) (g) (T _{1,long}) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 0 0 0 0 5569 2673 8242	0,6187 0,5177 0,6187 F _{z0} (kN) 0 0 0 0 2588 2588 0 0	0,00 0,00 0,00 0,00 0,00	y _O (m) 0,00 0,00 0,00 0,00 0,00 0,00	z _O (m) N -10,00 -10,00 -10,00 -1,25 -3,25	Sd,trasv (**) CALCI M _{xo} (kNm) N 91299 0 0 0 6961 8687 15648 0 0	F _{1,trasv} (g) S _{d,trasv} (g) OLO AZION OLO AZION O O -62017 O O -4719 -5889	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0 0 0	F _{xG} (m) 0 6202	9130 0	S _{d,vert} F _{2G} (m) N 0 0 2588	(T _{1,verl}) (g) S _{d,verl} (g) S _{d,verl} (g) M _{XG} (kNm) I 91299 0	0,1750 0,1750 0,1750 M _{yG} (kNm) 0 -62017	M _{zG} (k
sma asse caci sma ag	q (-) SPETTRI RIS Longitudinal E: FONDAZIONI SL ST SV SLP1 SLTE STP1 STTE	1,00 POSTA DI F S _{d,long} (S _{d,long} (e E PILA CAF F _{xO} (kN) 0 0 6202 6202 0 0 0 0 3775	T _{1f,long}) (g) (T _{1,long}) (g) (T _{1,long}) (g) S _{d,long}	0,6187 0,5177 0,6187 F _{x0} (kN) 0 0 0 0 2588 2588 0 0	0,00 0,00 0,00 0,00 0,00 0,00	y ₀ (m) 0,00 0,00 0,00 0,00 0,00 0,00	z ₀ (m) N -10,00 -10,00 -10,00 -1,25 -3,25	Sd,trasv (**) CALCI M _{xo} (kNm) N 91299 0 0 0 6961 8687 15648 0 0	F1,trasv (g) Sd,trasv (g) OLO AZION OLO AZION OV -62017 -62017 0 0 -4719	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0 0 0 0 0 0 0 0 0	F _{xG} (m) 0 6202	9130 0	S _{d,vert} F _{2G} (m) N 0 2588	(T _{1,verl}) (g) S _{d,verl} (g) S _{d,verl} (g) M _{XG} (kNm) I 91299 0	0,1750 0,1750 0,1750 M _{yG} (kNm) 0 -62017	M _{zG} (l
NOME sma asse icaci sma ag sma assv sma	q (-) SPETTRI RIS Longitudinal FONDAZIONI SL ST SV SLP1 SLTE STP1	1,00 POSTA DI R Sd,long (Sd,long (E PILA CAP Fx0 (kN) 0 0 6202 0 0 0 0 3775 1812 5587	Trt,long) (g) (T _{1,long}) (g) S _{d,long} (g) S _{d,long} (g) P H=7.5m F _{yO} (kN) 9130 9130 0 0 5569 2673 8242 0 0 0	0,6187 0,5177 0,6187 F _{zO} (kN) 0 0 0 0 2588 2588 0 0 0 0 0 0	0,00 0,00 0,00 0,00 0,00 0,00 0,00	y ₀ (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00	z ₀ (m) N -10,00 -10,00 -10,00 -1,25 -3,25	Sd,trasv (** CALCI Mxo (kNm) N 91299 0 0 0 0 6961 8687 15648 0 0 0	F1,trasv (g) Sd,trasv (g) OLO AZION Myo (kNm) 0 -62017 -62017 0 0 -4719 -5889 -10608	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	F _{xG} (m) 0 6202 0	PILA F _{yG} (m) 9130 0 0	S _{d,vert} F _{2G} (m) N 0 0 2588	(T _{1,verl}) (g) S _{d,verl} (g) S _{d,verl} (g) M _{xG} (kNm) I 91299 0	0,1750 0,1750 0,1750 M _{yG} (kNm) 0 -62017 0	M _{zG} (k
sma asse icaci sma ng sma	q (-) SPETTRI RIS Longitudinal E: FONDAZIONI SL ST SV SLP1 SLTE STP1 STTE	1,00 POSTA DI R Sd,long (Sd,long (E PILA CAF Fx0 (kN) 0 0 6202 0 0 0 0 3775 1812	T _{1f,long}) (g) (T _{1,long}) (g) (T _{1,long}) (g) S _{d,long}	0,6187 0,5177 0,6187 F _{x0} (kN) 0 0 0 2588 2588 0 0 0	0,00 0,00 0,00 0,00 0,00 0,00	yo (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00	z ₀ (m) N -10,00 -10,00 -10,00 -1,25 -3,25 -1,25 -3,25	Sd,trasv (**) CALCI M _{xo} (kNm) N 91299 0 0 0 6961 8687 15648 0 0	F1,trasv (g) Sd,trasv (g) OLO AZION 0 0 0 -62017 -62017 0 0 -4719 -5889 -10608	0,3768 0,4194 NI SISMICH M ₂₀ (kNm) 0 0 0 0 0 0 0 0 0 0 0 0 0	F _{xG} (m) 0 6202 0	PILA F _{yG} (m) 9130 0 0	S _{d,vert} F _{2G} (m) N 0 0 2588	(T _{1,verl}) (g) S _{d,verl} (g) S _{d,verl} (g) M _{xG} (kNm) I 91299 0	0,1750 0,1750 0,1750 M _{yG} (kNm) 0 -62017 0	M _{zG} (k

Tabella 38 - Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

				TIPO DOC		RA 7 DISCIP		PROGR	REV	
IIIND	ハつ	F	77	CI	VI.	N5	N5	001	IR	104

NOME	: FONDAZIONE	PILA CAP	P H=7.5m					PAF	RAMETRI D	CALCOLO	FONDAZIO	NE				
St	fondazione (m)	2,50		H2	fusto (m)	0,00	Sį	oulvino (m)	10,40		H piano ap	poggi (m)	0,00			
Li	fondazione (m)	12,00	Ar	ea trasv 1 f	usto (m²)	12,97	В	oulvino (m)	3,50		B piano ap	poggi (m)	0,00	X_G for	ondazione	0,00
Bi	fondazione (m)	12,00	Ar	ea trasv 2 f	usto (m²)	12,97	Hr	itegno (m)	0,84	1	Peso terren	o (kN/m ³)	20,00	Y _G fo	ondazione	0,00
	H1 fusto (m)	6,00		Н рі	ulvino (m)	1,50	Sı	itegno (m)	0,80	H rein	nterro fonda	zione (m)	1,50	Z_G fo	ondazione	0,00
NOME	FONDAZIONE	PILA CAP	P H=7.5m						CALCOLO	AZIONI COR	PO PILA					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) I	И _{хG} (kNm) М	l _{yG} (kNm)	M _{zG} (kNm)
Peso	P1	0	0	9000	0,00	0,00	-1,25	0	0	0						
proprio	P2	0	0	1946	0,00	0,00	-5,50	0	0	0						
	P3	0	0	0	0,00	0,00	-8,50	0	0	0						
	P4	0	0	1365	0,00	0,00	-9,25	0	0	0						
	P5	0	0	59	4,80	0,00	-10,42	0	-282	0						
	P6	0	0	59	-4,80	0,00	-10,42	0	282	0						
	P7	0	0	0	0,00	0,00	-10,00	0	0	0						
_		0	0	12428				0	0	0	0	0	12428	0	0	0
Peso	TE	0	0	4320	0,00	0,00	-3,25	0	0	0	0	0	4320	0	0	0
terreno		0	0	4320				0	0	U	U	0	4320	0	0	0
NOME	: FONDAZIONE	PILA CAP	P H=7.5m					C	ALCOLO A	ZIONI DA IN	IPALCATO					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) I	И _{хG} (kNm) М	l _{yG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	654	2815	21512	0,00	0,00	-10,00	904	-12204	4648	654	2815	21512	29052	-18748	4648
SLU	Nvert Min	-702	175	11033	0,00	0,00	-10,00	105	2367	0	-702	175	11033	1853	9390	0
	Vtrasv Max	1182	1411	16353	0,00	0,00	-10,00	5610	-4324	-305	1182	1411	16353	19720	-16147	-305
	Vtrasv Min	-702	236	15606	0,00	0,00	-10,00	142	2367	0	-702	236	15606	2501	9390	0
	Mtrasv Max	-702	175	11033	0,00	0,00	-10,00	105	2367	0	-702	175	11033	1853	9390	0
	Mtrasv Min	1182	1407	21079	0,00	0,00	-10,00	508	-13761	1820	1182	1407	21079	14573	-25585	1820
	Vlong Max	654	2815	21512	0,00	0,00	-10,00	904	-12204	4648	654	2815	21512	29052	-18748	4648
	Vlong Min	-421	175	11281	0,00	0,00	-10,00	105	1420	0	-421	175	11281	1853	5634	0
	Mlong Max	728	2348	21007	0,00	0,00	-10,00	6261	-2760	475	728	2348	21007	29741	-10041	475
	Mlong Min	-702	175	11033	0,00	0,00	-10,00	105	2367	0	-702	175	11033	1853	9390	0
	Mtorc Max	654	2815	21512	0,00	0,00	-10,00	904	-12204	4648	654	2815	21512	29052	-18748	4648
	Mtorc Min	1182	1411	16353	0,00	0,00	-10,00	5610	-4324	-305	1182	1411	16353	19720	-16147	-305
		F_{xO} (kN)	F _{yO} (kN)	F_{zO} (kN)	x_{O} (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) I	M _{xG} (kNm) M	l _{yG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	257	1956	15042	0,00	0,00	-10,00	633	-7814	3422	257	1956	15042	20197	-10386	3422
SLE RA	Nvert Min	-468	175	11240	0,00	0,00	-10,00	105	1578	0	-468	175	11240	1853	6260	0
	Vtrasv Max	806	1422	14822	0,00	0,00	-10,00	4069	-2918	5	806	1422	14822	18293	-10975	5
	Vtrasv Min	-468	175	11240	0,00	0,00	-10,00	105	1578	0	-468	175	11240	1853	6260	0
	Mtrasv Max	-468	175	11240	0,00	0,00	-10,00	105	1578	0	-468	175	11240	1853	6260	0
	Mtrasv Min	525	1422	14744	0,00	0,00	-10,00	482	-8511	2350	525	1422	14744	14706	-13759	2350
	Vlong Max	257	1956	15042	0,00	0,00	-10,00	633	-7814	3422	257	1956	15042	20197	-10386	3422
	Vlong Min	-468	175	11240	0,00	0,00	-10,00	105	1578	0	-468	175	11240	1853	6260	0
	Mlong Max	338	1631	14694	0,00	0,00	-10,00	4325	-1421	188	338	1631	14694	20639	-4806	188
	Mlong Min	-468	175	11240	0,00	0,00	-10,00	105	1578	0	-468	175	11240	1853	6260	0
	Mtorc Max	257	1956	15042	0,00	0,00	-10,00	633	-7814	3422	257	1956	15042	20197	-10386	3422
	Mtorc Min	423	1356	14734	0,00	0,00	-10,00	4204	-1768	-16	423	1356	14734	17768	-5999	-16
	-	F_{xO} (kN)	F _{yO} (kN)	F_{zO} (kN)	x _O (m)	y ₀ (m)	z _O (m)	M _{xo} (kNm)	M_{yo} (kNm)	M_{zo} (kNm)	F_{xG} (m)	F_{yG} (m)	F _{zG} (m) I	И _{хG} (kNm) М	l _{yG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	0	175	11652	0,00	0,00	-10,00	105	0	0	0	175	11652	1853	0	0
SLE QP	Nvert Min	0		11652	0,00	0,00	-10,00	0	0		0	0	11652	0	0	0
	Vtrasv Max	0		11652	0,00	0,00	-10,00	105	0	0	0	175	11652	1853	0	0
	Vtrasv Min	0		11652	0,00	0,00	-10,00	0	0		0	0	11652	0	0	0
	Mtrasv Max	0	175	11652	0,00	0,00	-10,00	105	0	0	0	175	11652	1853	0	0
	Mtrasv Min	0	0	11652	0,00	0,00	-10,00	0	0	0	0	0	11652	0	0	0
	Vlong Max	0		11652	0,00	0,00	-10,00	105	0	0	0	175	11652	1853	0	0
	Vlong Min	0		11652	0,00	0,00	-10,00	0	0	0	0	0	11652	0	0	0
	Mlong Max	0		11652	0,00	0,00	-10,00	105	0		0	175	11652	1853	0	0
	Mlong Min	0		11652	0,00	0,00	-10,00	0	0		0	0	11652	0	0	0
	Mtorc Max	0		11652	0,00	0,00	-10,00	105	0		0	175	11652	1853	0	0
	Mtorc Min	0	0	11652	0,00	0,00	-10,00	0	0	0	0	0	11652	0	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LI0B	02	Е	ZZ	CL	VI	05	05	001	В	105
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO

Tipo azione	Descrizione	V_{trasv}	V _{long}	N_{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	[kNm]	My [kNm]	[kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	12428	0	0	0
Gk2 Perm. Non Str.	G2 (terreno)	0	0	4320	0	0	0
SLU	Nvert Max	654	2815	21512	29052	-18748	4648
Impalcato	Nvert Min	-702	175	11033	1853	9390	0
	Vtrasv Max	1182	1411	16353	19720	-16147	-305
	Vtrasv Min	-702	236	15606	2501	9390	0
	Mtrasv Max	-702	175	11033	1853	9390	0
	Mtrasv Min	1182	1407	21079	14573	-25585	1820
	Vlong Max	654	2815	21512	29052	-18748	4648
	Vlong Min	-421	175	11281	1853	5634	0
	Mlong Max	728	2348	21007	29741	-10041	475
	Mlong Min	-702	175	11033	1853	9390	0
	Mtorc Max	654	2815	21512	29052	-18748	4648
	Mtorc Min	1182	1411	16353	19720	-16147	-305
SLE RA	Nvert Max	257	1956	15042	20197	-10386	3422
Impalcato	Nvert Min	-468	175	11240	1853	6260	0
	Vtrasv Max	806	1422	14822	18293	-10975	5
	Vtrasv Min	-468	175	11240	1853	6260	0
	Mtrasv Max	-468	175	11240	1853	6260	0
	Mtrasv Min	525	1422	14744	14706	-13759	2350
	Vlong Max	257	1956	15042	20197	-10386	3422
	Vlong Min	-468	175	11240	1853	6260	0
	Mlong Max	338	1631	14694	20639	-4806	188
	Mlong Min	-468	175	11240	1853	6260	0
	Mtorc Max	257	1956	15042	20197	-10386	3422
	Mtorc Min	423	1356	14734	17768	-5999	-16
SLE QP	Nvert Max	0	175	11652	1853	0	0
Impalcato	Nvert Min	0	0	11652	0	0	0
	Vtrasv Max	0	175	11652	1853	0	0
	Vtrasv Min	0	0	11652	0	0	0
	Mtrasv Max	0	175	11652	1853	0	0
	Mtrasv Min	0	0	11652	0	0	0
	Vlong Max	0	175	11652	1853	0	0
	Vlong Min	0	0	11652	0	0	0
	Mlong Max	0	175	11652	1853	0	0
	Mlong Min	0	0	11652	0	0	0
	Mtorc Max	0	175	11652	1853	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

				TIPO DOC		RA 7 DISCIP		PROGR	REV	
LI0B	02	E	ZZ	CL	VI	05	05	001	B	106

	Mtorc Min	0	0	11652	0	0	0
E	Sisma long	0	17372	0	106947	0	0
Sisma	Sisma trasv	11789	0	0	0	-72625	0
	Sisma vert	0	0	4920	0	0	0

Tabella 40 – Risultanti azioni elementari al centro della palificata G (quota testa palo)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	ιοπο	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	107

			-	- 1				,		1							1										_	1				ı	1					1		-								
				Gk1 Perm. StrG1 (peso proprio)	erreno)																																											
				osad)	Gk2 Perm. Non StrG2 (terreno)																	×	_	×	_				×		Ļ				2	٤ .	_	¥ .	_	×		×	_	×	_			
				StrG1	Non St	Max	ij	Max	.g	Max	:	u <u>i</u>	Max	Min	Мах	Min	Max	Min	SLE RA-Nvert Max	L	er Min	SLE RA-Vtrasv Max	SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	SLE RA-Mtrasv Min	YEM POOLVIOOR Max	0	SLE RA-Vlong Min	SLE RA-Miong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SIF OP-Nvert Max	1 to 14	OLE OF WORK MAN	מבר מומפא וומפא	OLE QP-vtrasv Min	OLE CP-INITIASV INITIA	i i	SLE QP-Viong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	Ę.	,	2 =
Env:	TipoComb:	NumComb:	ö	Perm.	Perm.	SLU-Nvert Max	SLU-Nvert Min	SLU-Vtrasv Max	STILVirasy Min	SLU-Mtrasv Max		SLU-Mtrasv Min	SLU-Vlong Max	SLU-Vlong Min	SLU-Mlong Max	SLU-Mlong Min	SLU-Mtorc Max	SLU-Mtorc Min	RA-N		KA-IV	RA-Vtr	RA-Vtr	RA-Mtı	RA-Mt	2N-49		RA-VIC	RA-MIC	RA-MIC	RA-Mt	RA-Mt	N-d C	1 2	1	3	- L	1	1	OP-VIO	QP-VIC	QP-Mi	QP-Mi	QP-Mt	QP-Mt	E-Sisma long	Siemo tracat	E-Sisma ver
	Jodi		Comb:					S	ď	3 8		-S	SLU	SE	SLU-	SE	SE		S S	L	n H	SE	SE	SLE	S	<u>и</u>		S S	SLE	SLE	S.	S.	U.	1 0	<u>и</u>			0 0	9	N H	SE	SE	SE	S H	SE	-SiS	Ü	
SLU SLU	1	2	SLU1 SLU2	1,35 1,35	1,50 1,50	1,00	1,00				0,0,0			0,00	0,00	0,00	0,00	0,00	0,00			0,00	0,00	0,00	0,0),00),00	0,00	0,00	0,00					00 0,0					0,00	0,00	0,00	0,00	0,00	0,0	
SLU SLU	1	4	SLU3 SLU4	1,35 1,35	1,50 1,50	0,00	0,00	1,00 0,00	0,0		0,0,0			0,00	0,00 0,00	0,00	0,00	0,00	0,00			0,00 0,00	0,00	0,00	0,0		1 .),00),00	0,00	0,00	0,00				-,						0,00 0,00	0,00	0,00	0,00	0,00	0,0	
SLU SLU	1	5 6	SLU5 SLU6	1,35 1,35	1,50 1,50	0,00	0,00	0,00	0,0			00 0, 00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,0	00 0),00),00	0,00	0,00	0,0	0,0	0 0, 0 0,	00 0),00),00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	00 0,0	0,0	00 0,	00 0, 00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,0	-,
SLU SLU	1	7 8	SLU7 SLU8	1,35 1,35	1,50 1,50	0,00	0,00	0,00	0,0	0 0,00	0,0			0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,0		0,00	0,00	0,00	0,0	0,0	0 0,	00 0	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0		00 0,0	00 0,	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,0	
SLU	1	9	SLU9 SLU10	1,35 1,35	1,50 1,50	0,00	0,00	0,00	0,0	0 0,00	0,0		00		1,00	0,00	0,00	0,00	0,0	,.		0,00	0,00	0,00	0,0	0,0	,	00 0	,00	0,00	0,00	0,00	0,0	0 0,0	0,0	0,0		0,0		00 0,	00,	0,00	0,00	0,00	0,00	0,00		0,00
SLU	1	11	SLU11	1,35	1,50	0,00	0,00	0,00	0,0	0 0,00	0,	00 0,	00	0,00	0,00	0,00	1,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,0	0,0	0 0,		,00	0,00	0,00	0,00		0 0,0		0,0	0,0	0,0	00 0,		,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLU SLU	2	13	SLU12 SLU13	1,35 1,00	1,50 1,00	0,00 1,00		0,00	0,0		0,0,0	00 0,		0,00 0,00	0,00 0,00	0,00	0,00	1,00	0,00	,.		0,00	0,00	0,00	0,0			00),00),00	0,00	0,00	0,00		0 0,0	0,0	0,			,		00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLU SLU			SLU14 SLU15	1,00	1,00	0,00	0,00	1,00	0,0	0 0,00	0,0	00 0,	00 0	0,00 0,00	0,00	0,00	0,00	0,00	0,00	0,0	00 0	0,00 0,00	0,00	0,00	0,0	0,0	0 0, 0 0,	00 0),00),00	0,00	0,00	0,00	0,0	0 0,0	0,0	0,0	00 0,0	00 0,0	00 O,	00 0, 00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,0	-,
SLU SLU	2	16	SLU16 SLU17	1,00 1,00	1,00 1.00	0,00	0,00	0,00	1,0		0,0	00 0,		0,00	0,00	0,00	0,00	0,00	0,00	0,0		0,00	0,00	0,00	0,0	0,0	0 0,	00 0	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0		00 0,0	00 0,	00 0, 00 0.	00,	0,00	0,00	0,00	0,00	0,00	0,0	
SLU	2	18	SLU18 SLU19	1,00	1,00	0,00	0,00	0,00	0,0			00 0,		0,00	0,00	0,00	0,00	0,00	0,00	0,1		0,00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0		0,0	00 0,	00 0,	00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLU	2	20	SLU20	1,00	1,00	0,00	0,00	0,00	0,0	0 0,00	0,	00 0,	00 1	1,00	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,0	0,0			,00	0,00	0,00	0,00	1 '			0,0	0,0	0,0	00 0,		,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLU SLU	2	22	SLU21 SLU22	1,00 1,00	1,00 1,00	0,00	0,00	0,00	0,0		0,0,0		00	0,00	1,00 0,00	0,00 1,00	0,00	0,00	0,00	0,0	00	0,00	0,00	0,00	0,0		1 .	00),00),00	0,00	0,00	0,00	0,0	0,0	0,0	0,					,00	0,00 0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLU SLU	2	24	SLU23 SLU24	1,00 1,00	1,00 1,00	0,00	0,00	0,00	0,0	0 0,00	0,0,0	00 0, 00 0,	00 0	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,0	00 0),00),00	0,00	0,00	0,0	0 0,0 0 0,0	0 0, 0 0,	00 0),00),00	0,00	0,00	0,00	0,0	0,0	0,0	0,0 0,0	00 0,0	0,0	00 O,	00 0, 00 0,	00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLV EL		25 26	SLV1 SLV2	1,00 1,00	1,00 1,00	0,00	0,00	0,00	0,0	0 0,00	0,0	00 0, 00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,0	00 0	0,00	0,00	0,00	0,0	0,0	0 O,	00 0	0,00	0,00	0,00	0,00	1,0		0,0	0 0,0	00 0,0	0,0	00 0,	00 0, 00 0,	00,	0,00	0,00	0,00	0,00	1,00		
SLV EL	3	27 28	SLV3 SLV4	1,00	1,00	0,00	0,00	0,00	0,0		0,0	00 0,		0,00	0,00	0,00	0,00	0,00	0,00	,.		0,00	0,00	0,00	0,0	0,0		00 0	,00	0,00	0,00	0,00		0,0	0,0			0,0			00	0,00	0,00	0,00	0,00	0,30	1,0	
SLV EL SLV EL	3	29	SLV5 SLV6	1,00 1,00	1,00	0,00	0,00	0,00	0,0	-,-,-	0,0	00 0,		0,00	0,00	0,00	0,00	0,00	0,0	,.		0,00	0,00	0,00	0,0	0,0	,		,00	0,00	0,00	0,00		0,0	-,-	-,					00,	0,00	0,00	0,00	0,00	0,30	0,3	1,00
SLE RA	4	31	RA1	1,00	1,00	0,00	0,00	0,00	0,0	0 0,00	0,0	00 0,	00 0	0,00	0,00	0,00	0,00	0,00	1,0		00 0),00	0,00	0,00	0,0	0 0,0	0 0,	00 0),00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	00 0,0	0,0	00 0,	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE RA SLE RA	4	32 33	RA2 RA3	1,00 1,00		0,00	0,00	0,00	0,0	0,00	0,0,0	00 0,		0,00	0,00 0,00	0,00	0,00	0,00	0,00			0,00 1,00	0,00	0,00	0,0	0,0	0,	00 0),00),00	0,00	0,00	0,00	0,0	0,0	0,0	0,0 0,0	0,1	00 0,0	, ,	00 0, 00 0,	00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	
SLE RA SLE RA		34 35	RA4 RA5		1,00	0,00	0,00	0,00	0,0	-,-,-	0,0		- 1	0,00 0,00	0,00	0,00	0,00	0,00	0,00			0,00 0,00	1,00 0,00	0,00 1,00	0,0		,),00),00	0,00	0,00	0,00		/ -	0,0	0,0					00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	-,
SLE RA SLE RA	4	36 37	RA6 RA7	1,00	1,00 1,00	0,00	0,00	0,00	0,0	0,00	0,0	00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,0		0,00	0,00	0,00	1,0	1 .	,	00 0	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	00 0,0	0,0	00 0,	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,0	
SLE RA SLE RA	4	38	RA8 RA9	1,00 1,00	1,00	0,00	0,00	0,00	0,0		0,0		- 1	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,0	0,0	0 1,		,00	0,00	0,00	0,00		0,0		0 0,0					00,	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE RA	4	40	RA10	1,00	1,00	0,00	0,00	0,00	0,0	0,00	0,1	00 0,	00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,0	0,0	0 0,	00 0		1,00	0,00	0,00	0,0	/ -	0,0	0,1	00 0,0			00 0,	,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE RA SLE RA	4	41 42	RA12	1,00	1,00 1,00	0,00	0,00	0,00	0,0	0 0,00	0,0,0	00 0, 00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0 0,0	00 0	0,00	0,00	0,00	0,0	0,0	0 0, 0 0,	00 0),00),00	0,00	1,00 0,00	0,00 1,0 0		0 0,0	0,0	0,0	00 0,0	00 0,0 00 0,0	00 0, 00 0,	00 0, 00 0,	00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP SLE QP		43 44	QP1 QP2	1,00 1,00	1,00 1,00	0,00	0,00	0,00	0,0	0 0,00	0,0,0	00 0, 00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0 0,0	00 0	0,00 0,00	0,00	0,00	0,0	0,0	0 0, 0 0,	00 0),00),00	0,00	0,00	0,00	1,0 0,0		0,0	0,0		0,0	,	00 O,	00,	0,00 0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP SLE QP	5	45 46	QP3	1,00	1,00	0,00	0,00	0,00	0,0	0 0,00	0,0	00 0,	00 0	0,00	0,00	0,00	0,00	0,00	0,00	0 0,0	00),00).00	0,00	0,00	0,0	0,0	0 0,	00 0),00).00	0,00	0,00	0,00	1 '	0,0	0 1,0		0,0		00 0,	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP SLE QP	5	47 48	QP5 QP6	1,00 1,00	1,00	0,00	0,00	0,00	0,0	-,-,-	0 0,	00 0,		0,00	0,00	0,00	0,00	0,00	0,0	0,0	00	0,00	0,00	0,00	0,0	0,0		00 0	,00	0,00	0,00	0,00	1 '	0 0,0	0,0	0,1	00 1,0	0,0	00 0,		00,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP	5	49	QP7	1,00	1,00	0,00	0,00	0,00	0,0	0 0,00	0,0	00 0,	00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	00 0),00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,0	0,0	0,0	0,0	0,0	0,0	00 1,	00 0,	,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP SLE QP	5	50 51	QP9	1,00	1,00 1,00	0,00	0,00	0,00	0,0	0,00	0,1	00 0,	00 0	0,00	0,00 0,00	0,00	0,00	0,00	0,00	/ -	00 0),00),00	0,00	0,00	0,0	0,0	0 0,	00 0),00),00	0,00 0,00	0,00	0,00	0,0	0,0	0,0	0,0	0,0	0,0	00 0,	00 0,		0,00 1,00	0,00	0,00	0,00	0,00	0,0	0,00
SLE QP SLE QP		52 53	QP10 QP11		1,00 1,00	0,00	0,00	0,00	0,0	-,-,-	0,0		- 1	0,00	0,00	0,00	0,00	0,00	0,00			0,00	0,00	0,00	0,0),00),00	0,00	0,00	0,00			-,-	,						0,00	1,00	0,00 1,00	0,00	0,00		
SLE QP		54	QP12	1,00	1,00	0,00	0,00	0,00	0,0	0,00	0,	00 0,	00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0),00	0,00	0,00	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,0	0 0,0	0,0	0,0	0,0	0,0	00 0,	00 0,	.00	0,00	0,00	0,00	1,00	0,00	0,0	0,00

Tabella 41 – Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOB			TIPO DOC		RA 7 DISCIP		PROGR	REV	
LIVD	UZ			VI	US	US	UUI	D	100

INVILUPPO:	SLU	N _{vert}	V_{trasv}	M _{trasv}	V _{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU7	44770	654	-18748	2815	29052	4648
N _{vert} Min	SLU22	27781	-702	9390	175	1853	0
V _{trasv} Max	SLU24	33101	1182	-16147	1411	19720	-305
V _{trasv} Min	SLU2	34291	-702	9390	175	1853	0
M _{trasv} Max	SLU4	38864	-702	9390	236	2501	0
M _{trasv} Min	SLU6	44337	1182	-25585	1407	14573	1820
V _{long} Max	SLU7	44770	654	-18748	2815	29052	4648
V _{long} Min	SLU22	27781	-702	9390	175	1853	0
M _{long} Max	SLU9	44265	728	-10041	2348	29741	475
M _{long} Min	SLU22	27781	-702	9390	175	1853	0
M _{torc} Max	SLU7	44770	654	-18748	2815	29052	4648
M _{torc} Min	SLU24	33101	1182	-16147	1411	19720	-305
INVILUPPO:	SLV EL	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M_{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)		
				•	•	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	Mx (kNm)	Mz (kNm)
Comb.	Comb. SLV5	(kN) 33320	(kN) 3537	(kNm) -21787	(kN) 5386	Mx (kNm) 33937	Mz (kNm) 0
N _{vert} Max	Comb. SLV5 SLV6	(kN) 33320 23480	(kN) 3537 3537	(kNm) -21787 -21787	(kN) 5386 5386	Mx (kNm) 33937 33937	Mz (kNm) 0
N _{vert} Max N _{vert} Min V _{trasv} Max	SLV5 SLV6 SLV3	(kN) 33320 23480 29876	(kN) 3537 3537 11789	(kNm) -21787 -21787 -72625	(kN) 5386 5386 5386	Mx (kNm) 33937 33937 33937	Mz (kNm) 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min	SLV5 SLV6 SLV3 SLV6	(kN) 33320 23480 29876 23480	(kN) 3537 3537 11789 3537	(kNm) -21787 -21787 -72625 -21787	(kN) 5386 5386 5386 5386	Mx (kNm) 33937 33937 33937 33937	Mz (kNm) 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	SLV5 SLV6 SLV3 SLV6 SLV1	(kN) 33320 23480 29876 23480 29876	(kN) 3537 3537 11789 3537 3537	(kNm) -21787 -21787 -72625 -21787	(kN) 5386 5386 5386 5386 17546	Mx (kNm) 33937 33937 33937 33937 108800	Mz (kNm) 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV1	(kN) 33320 23480 29876 23480 29876 29876	(kN) 3537 3537 11789 3537 3537 11789	(kNm) -21787 -21787 -72625 -21787 -21787 -72625	(kN) 5386 5386 5386 5386 17546 5386	Mx (kNm) 33937 33937 33937 33937 108800 33937	Mz (kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	SLV5 SLV6 SLV3 SLV6 SLV1 SLV1 SLV3	(kN) 33320 23480 29876 23480 29876 29876 29876	(kN) 3537 3537 11789 3537 11789 3537	(kNm) -21787 -21787 -72625 -21787 -72625 -21787	(kN) 5386 5386 5386 5386 17546 5386	Mx (kNm) 33937 33937 33937 108800 33937 108800	Mz (kNm) 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV3 SLV1 SLV5	(kN) 33320 23480 29876 23480 29876 29876 29876 33320	(kN) 3537 3537 11789 3537 11789 3537 3537	(kNm) -21787 -21787 -72625 -21787 -72625 -21787 -72625 -21787	(kN) 5386 5386 5386 5386 17546 5386 17546 5386	Mx (kNm) 33937 33937 33937 108800 33937 108800 33937	Mz (kNm) 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	SLV5 SLV6 SLV3 SLV6 SLV1 SLV3 SLV1 SLV3	(kN) 33320 23480 29876 23480 29876 29876 29876 33320 29876	(kN) 3537 3537 11789 3537 11789 3537 3537 3537	(kNm) -21787 -21787 -72625 -21787 -72625 -21787 -21787 -21787	(kN) 5386 5386 5386 5386 17546 5386 17546 5386	Mx (kNm) 33937 33937 33937 108800 33937 108800 33937 108800	Mz (kNm) 0 0 0 0 0 0

Tabella 42 – ENV SLU, SLV EL - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOB			TIPO DOC		RA 7 DISCIP		PROGR	REV	
LIUD	UZ		CL	VI	บอ	UO	UUT	D	109

INVILUPPO:	SLE RA	N_{vert}	V _{trasv}	M_{trasv}	V_{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	31790	257	-10386	1956	20197	3422
N _{vert} Min	RA10	27988	-468	6260	175	1853	0
V _{trasv} Max	RA3	31571	806	-10975	1422	18293	5
V _{trasv} Min	RA2	27988	-468	6260	175	1853	0
M _{trasv} Max	RA2	27988	-468	6260	175	1853	0
M _{trasv} Min	RA6	31492	525	-13759	1422	14706	2350
V _{long} Max	RA1	31790	257	-10386	1956	20197	3422
V _{long} Min	RA2	27988	-468	6260	175	1853	0
M _{long} Max	RA9	31442	338	-4806	1631	20639	188
M _{long} Min	RA2	27988	-468	6260	175	1853	0
M _{torc} Max	RA1	31790	257	-10386	1956	20197	3422
M _{torc} Min	RA12	31482	423	-5999	1356	17768	-16
INIVII LIDDO	a: = a=						
INVILUPPO:	SLE QP	N_{vert}	V _{trasv}	M _{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	N _{vert}	V _{trasv}	M _{trasv} My	V _{long} Fy	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)	Mx (kNm)	Mz (kNm)
Tipologia Comb.	Nome Comb.	Fz (kN) 28400	Fx (kN)	My (kNm)	Fy (kN) 175	Mx (kNm) 1853	Mz (kNm) 0
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. QP1 QP12	Fz (kN) 28400 28400	Fx (kN) 0 0	My (kNm) 0 0	Fy (kN) 175	Mx (kNm) 1853 0	Mz (kNm) 0 0
Tipologia Comb. N _{vert} Max N _{vert} Min V _{trasv} Max	Nome Comb. QP1 QP12 QP1	Fz (kN) 28400 28400 28400	Fx (kN) 0 0 0	My (kNm) 0 0	Fy (kN) 175 0 175	Mx (kNm) 1853 0 1853	Mz (kNm) 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min	Nome Comb. QP1 QP12 QP1 QP12	Fz (kN) 28400 28400 28400 28400	Fx (kN) 0 0 0 0	My (kNm) 0 0 0	Fy (kN) 175 0 175 0	Mx (kNm) 1853 0 1853 0	Mz (kNm) 0 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	Nome Comb. QP1 QP12 QP1 QP12 QP1	Fz (kN) 28400 28400 28400 28400 28400	Fx (kN) 0 0 0 0 0	My (kNm) 0 0 0	Fy (kN) 175 0 175 0 175	Mx (kNm) 1853 0 1853 0 1853	Mz (kNm) 0 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	Nome Comb. QP1 QP12 QP1 QP12 QP1 QP12	Fz (kN) 28400 28400 28400 28400 28400 28400	Fx (kN) 0 0 0 0 0 0	My (kNm) 0 0 0 0	Fy (kN) 175 0 175 0 175 0	Mx (kNm) 1853 0 1853 0 1853	Mz (kNm) 0 0 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	Nome Comb. QP1 QP12 QP1 QP12 QP1 QP12	Fz (kN) 28400 28400 28400 28400 28400 28400 28400	Fx (kN) 0 0 0 0 0 0 0 0	My (kNm) 0 0 0 0 0	Fy (kN) 175 0 175 0 175 0 175	Mx (kNm) 1853 0 1853 0 1853 0	Mz (kNm) 0 0 0 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	Nome Comb. QP1 QP12 QP1 QP12 QP1 QP12 QP1	Fz (kN) 28400 28400 28400 28400 28400 28400 28400 28400	Fx (kN) 0 0 0 0 0 0 0 0 0	My (kNm) 0 0 0 0 0 0 0 0 0 0	Fy (kN) 175 0 175 0 175 0 175 0	Mx (kNm) 1853 0 1853 0 1853 0	Mz (kNm) 0 0 0 0 0 0
Tipologia Comb. Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	Nome Comb. QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12 QP1	Fz (kN) 28400 28400 28400 28400 28400 28400 28400 28400 28400	Fx (kN) 0 0 0 0 0 0 0 0 0 0	My (kNm) 0 0 0 0 0	Fy (kN) 175 0 175 0 175 0 175 0 175	Mx (kNm) 1853 0 1853 0 1853 0 1853 0	Mz (kNm) 0 0 0 0 0 0

Tabella 43 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	110

11.3.2 Analisi sismica (SLV GR)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni sismiche SLV GR, secondo le combinazioni di carico descritte nei capitoli precedenti.

Le azioni risultanti sismiche SLV GR della soprastruttura sono quelle ricavate dall'analisi sismica SLV delle elevazioni opportunamente amplificate per i coefficienti γ_{Rd} , secondo il Metodo della Gerarchia delle Resistenze descritto nei capitoli precedenti.

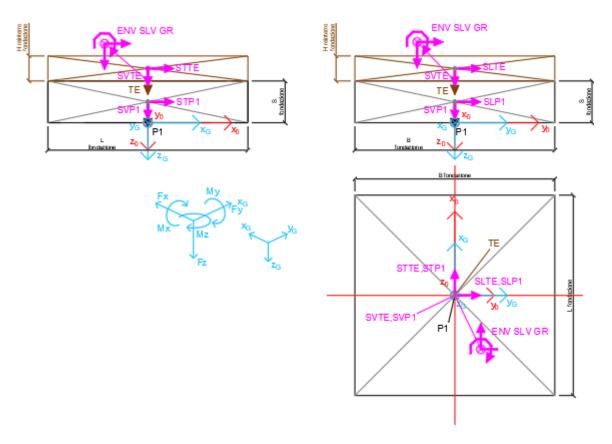


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	111

NOM	E: FONDAZION	E SISMA PI	LA CAP F	l=7.5 m				PARA	METRI DI C	CALCOLO	FONDAZIO	NE				
S	fondazione (m)	2,50		γ _{Rd} lor	gitudinale	1,10			ı	Peso terrei	no (kN/m³)	20,00		X _G fo	ondazione	0,0
L	fondazione (m)	12,00		γ _{Rd} t	rasversale	1,10			H rein	nterro fond	azione (m)	1,50		Y _G fo	ondazione	0,0
В	fondazione (m)	12,00												Z_G for	ondazione	0,0
NOM	E: FONDAZION	E SISMA PI	LA CAP F	H=7.5m				С	ALCOLO A	ZIONI COF	RPO PILA					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) M	I _{xo} (kNm) N	l _{yo} (kNm) N	1 _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M	I _{xG} (kNm) N	l _{yG} (kNm)	M _{zG} (kNn
eso	P1	0	0	9000	0,00	0,00	-1,25	0	0	0						
roprio		0	0	9000				0	0	0	0	0	9000	0	0	
eso	TE	0	0	4320	0,00	0,00	-3,25	0	0	0						
erreno		0	0	4320	0,00	0,00	0,20	0	0	0	0	0	4320	0	0	
NOM	E: FONDAZION	E SISMA PI	LA CAP F	l=7.5m				CALCOLO	AZIONI SIS	MICHE DA	ELEVAZIO	NE (GR)				
		F _{xO} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) M	I _{xo} (kNm) N	I _{vo} (kNm) N	I _{zo} (kNm)	F _{xG} (m)	F _{vG} (m)	F _{zG} (m) M	I _{xG} (kNm) N	l _{vG} (kNm)	M _{zG} (kNr
NV	Nvert Max	1655	2280	17668	0,00	0,00	-2,50	17213	-12413	0	1655	2280	17668	22913	-16550	\
LV	Nvert Min	1655	2280	12492	0,00	0,00	-2,50	17213	-12413	0	1655	2280	12492	22913	-16550	
	Vtrasv Max	5517	2280	15857	0,00	0,00	-2,50	17213	-41375	0	5517	2280	15857	22913	-55167	
	Vtrasv Min	1655	2280	12492	0,00	0,00	-2,50	17213	-12413	0	1655	2280	12492	22913	-16550	
	Mtrasv Max	1655	7150	15857	0,00	0,00	-2,50	53744	-12413	0	1655	7150	15857	71620	-16550	
	Mtrasv Min	5517	2280	15857	0,00	0,00	-2,50	17213	-41375	0	5517	2280	15857	22913	-55167	
	Vlong Max	1655	7150	15857	0,00	0,00	-2,50	53744	-12413	0	1655	7150	15857	71620	-16550	
	Vlong Min	1655	2280	17668	0,00	0,00	-2,50	17213	-12413	0	1655	2280	17668	22913	-16550	
	Mlong Max	1655	7150	15857	0,00	0,00	-2,50	53744	-12413	0	1655	7150	15857	71620	-16550	
	Mlong Min	1655	2280	17668	0,00	0,00	-2,50	17213	-12413	0	1655	2280	17668	22913	-16550	
	Mtorc Max	1655	2280	17668	0,00	0,00	-2,50	17213	-12413	0	1655	2280	17668	22913	-16550	
	Mtorc Min	1655	2280	12492	0,00	0,00	-2,50	17213	-12413	0	1655	2280	12492	22913	-16550	
NOM	E: FONDAZION	E SISMA PI	LA CAP F	l=7.5m				CALC	DLO SPETT	RO SISMI	CO ELAST	со				
	SPETTRI RIS	POSTA DI F	PROGETT	Ö												
			a _g (g)	0,195	PGA orizz	ontale							a _g (g)	0,116 P	GA vertica	le
			S	1,404	_					-			S	1,000		
	Longitudinal	e 5	S _{d,long} (g)	0,2738		Trasversale	S	d,trasv (g)	0,2738		Verticale		S _{d,vert} (g)	0,1160		
NOM	E: FONDAZION	E SISMA PI	LA CAP F	l=7.5m				CALCO	LO AZIONI	SISMICH	E CORPO F	ILA				
isma	SLP1	0	2464	0	0,00	0,00	-1,25	3080	0	0						
ong	SLTE	0	1183	0	0,00	0,00	-3,25	3844	0	0						
		0	3647	0				6924	0	0	0	3647	0	6924	0	
	STP1	2464	0	0	0,00	0,00	-1,25	0	-3080	0						
isma		1183	0	0	0,00	0,00	-3,25	0	-3844	0						
	STTE	1100		_				0	-6924	0	3647	0	0	0	-6924	
		3647	0	0												
isma asv isma			0	1044	0,00	0,00	-1,25	0	0	0						
asv	STTE	3647			0,00	0,00	-1,25 -3,25	0	0	0						

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOB	п2		TIPO DOC		RA 7 DISCIP		PROGR	REV	
	UZ	_		VI	UJ	UJ	UUI	_	112

Tipo azione		V _{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	Descrizione azione	= 0.50	E (1.1)	E 0.50	Mx	Му	Mz
		Fx [kN]	Fy [kN]	Fz [kN]	[kNm]	[kNm]	[kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	9000	0	0	0
Gk2 Perm. Non Str.	G2 (terreno)	0	0	4320	0	0	0
E	Sisma long	0	3647	0	6924	0	0
Sisma	Sisma trasv	3647	0	0	0	-6924	0
	Sisma vert	0	0	1545	0	0	0
SLV	Nvert Max	1655	2280	17668	22913	-16550	0
Impalcato	Nvert Min	1655	2280	12492	22913	-16550	0
	Vtrasv Max	5517	2280	15857	22913	-55167	0
	Vtrasv Min	1655	2280	12492	22913	-16550	0
	Mtrasv Max	1655	7150	15857	71620	-16550	0
	Mtrasv Min	5517	2280	15857	22913	-55167	0
	Vlong Max	1655	7150	15857	71620	-16550	0
	Vlong Min	1655	2280	17668	22913	-16550	0
	Mlong Max	1655	7150	15857	71620	-16550	0
	Mlong Min	1655	2280	17668	22913	-16550	0
	Mtorc Max	1655	2280	17668	22913	-16550	0
	Mtorc Min	1655	2280	12492	22913	-16550	0

Tabella 44 – Risultanti azioni elementari al centro della palificata G (quota testa palo)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	113

	NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	GK2 Perm. Non StrG2 (terreno)	E-Sisma long	E-Sisma trasv	E-Sisma vert	SLV-Nvert Max	SLV-Nvert Min	SLV-Vtrasv Max	SLV-Vtrasv Min	SLV-Mtrasv Max	SLV-Mtrasv Min	SLV-Vlong Max	SLV-Vlong Min	SLV-Mlong Max	SLV-Mlong Min	SLV-Mtorc Max	SLV-Mtorc Min
	LV GR LV GR	1	1 2	SLV1 SLV2	1.00 1.00	1.00	1.00 1.00	0.30	0.30	1.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	3 4	SLV3 SLV4	1.00 1.00	1.00 1.00	0.30 0.30	1.00 1.00	0.30	1.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	5	SLV4	1.00	1.00	0.30	0.30	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	6 7	SLV6 SLV7	1.00 1.00	1.00 1.00	0.30 1.00	0.30	-1.00 0.30	1.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	8	SLV8	1.00	1.00	1.00	0.30	-0.30	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	9 10	SLV9 SLV10	1.00 1.00	1.00	0.30	1.00 1.00	0.30	0.00	1.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	11	SLV11	1.00	1.00	0.30	0.30	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	12 13	SLV12 SLV13	1.00	1.00	0.30 1.00	0.30	-1.00 0.30	0.00	1.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	14	SLV14	1.00	1.00	1.00	0.30	-0.30	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	15 16	SLV15 SLV16	1.00	1.00	0.30	1.00	0.30 -0.30	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	17	SLV17	1.00	1.00	0.30	0.30	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	18 19	SLV18 SLV19	1.00	1.00	0.30 1.00	0.30	-1.00 0.30	0.00	0.00	1.00 0.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	20	SLV20	1.00	1.00	1.00	0.30	-0.30	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	21 22	SLV21 SLV22	1.00	1.00	0.30	1.00	0.30	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	23	SLV23	1.00	1.00	0.30	0.30	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	24 25	SLV24 SLV25	1.00	1.00	0.30 1.00	0.30	-1.00 0.30	0.00	0.00	0.00	1.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	26	SLV26	1.00	1.00	1.00	0.30	-0.30	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	27 28	SLV27 SLV28	1.00	1.00	0.30	1.00	0.30	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	LV GR	1	29	SLV29	1.00	1.00	0.30	0.30	1.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	30 31	SLV30 SLV31	1.00	1.00	0.30 1.00	0.30	-1.00 0.30	0.00	0.00	0.00	0.00	1.00 0.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	32	SLV32	1.00	1.00	1.00	0.30	-0.30	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	33 34	SLV33 SLV34	1.00	1.00	0.30	1.00	0.30	0.00	0.00	0.00	0.00	0.00	1.00 1.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	35	SLV35	1.00	1.00	0.30	0.30	1.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	36 37	SLV36 SLV37	1.00 1.00	1.00	0.30 1.00	0.30 0.30	-1.00 0.30	0.00	0.00	0.00	0.00	0.00	1.00 0.00	0.00 1.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	38 39	SLV38 SLV39	1.00	1.00	1.00 0.30	0.30	-0.30 0.30	0.00	0.00	0.00	0.00	0.00	0.00	1.00 1.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	40	SLV40	1.00	1.00	0.30	1.00	-0.30	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	41 42	SLV41 SLV42	1.00 1.00	1.00 1.00	0.30	0.30	1.00 -1.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00 1.00	0.00	0.00	0.00	0.00	0.00
	LV GR	1	43	SLV42	1.00	1.00	1.00	0.30	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	44 45	SLV44 SLV45	1.00 1.00	1.00	1.00 0.30	0.30 1.00	-0.30 0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
S	LV GR	1	46	SLV46	1.00	1.00	0.30	1.00	-0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	LV GR LV GR	1	47 48	SLV47 SLV48	1.00 1.00	1.00	0.30	0.30	1.00 -1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
S	LV GR	1	49	SLV49	1.00	1.00	1.00	0.30	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
	LV GR LV GR	1	50 51	SLV50 SLV51	1.00	1.00		0.30 1.00	-0.30 0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
S	LV GR	1	52	SLV52	1.00	1.00	0.30	1.00	-0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
	LV GR LV GR	1		SLV53 SLV54																	
S	LV GR	1	55	SLV55	1.00	1.00	1.00	0.30	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
	LV GR LV GR	1		SLV56 SLV57																	
	LV GR	1		SLV58																	
	LV GR LV GR	1	60	SLV59 SLV60	1.00	1.00	0.30	0.30	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	LV GR	1		SLV61 SLV62															0.00		0.00
S	LV GR LV GR	1	63	SLV63	1.00	1.00	0.30	1.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
	LV GR	1		SLV64 SLV65																1.00	
	LV GR LV GR	1	66	SLV66	1.00	1.00	0.30	0.30	-1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
	LV GR LV GR	1		SLV67 SLV68																	
S	LV GR	1	69	SLV69	1.00	1.00	0.30	1.00	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
	LV GR LV GR	1		SLV70 SLV71																	1.00 1.00
	LV GR	1		SLV71							0.00				0.00		0.00	0.00	0.00		1.00

Tabella 45 – Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

LIOE			CL		RA 7 DISCIP		PROGR 001	REV B	
LIGE	02	-	 OL.	V .	03	03	001	ם	117

INVILUPPO:	SLV GR	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz Fx		Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLV5	32533	2749	-18627	3374	24990	0
N _{vert} Min	SLV72	24267	2749	-18627	3374	24990	0
V _{trasv} Max	SLV15	29640	9163	-62091	3374	24990	0
V _{trasv} Min	SLV72	24267	2749	-18627	3374	24990	0
M _{trasv} Max	SLV25	29640	2749	-18627	10797	78544	0
M _{trasv} Min	SLV15	29640	9163	-62091	3374	24990	0
V _{long} Max	SLV25	29640	2749	-18627	10797	78544	0
V _{long} Min	SLV71	27357	2749	-18627	3374	24990	0
M _{long} Max	SLV25	29640	2749	-18627	10797	78544	0
M _{long} Min	SLV71	27357	2749	-18627	3374	24990	0
M _{torc} Max	SLV71	27357	2749	-18627	3374	24990	0
M _{torc} Min	SLV72	24267	2749	-18627	3374	24990	0

Tabella 46 – ENV SLV GR - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	115

11.4 VERIFICHE ELEVAZIONE

Nelle seguenti tabelle sono riportate le sollecitazioni a quota spiccato pila (estradosso plinto) per le combinazioni di carico allo SLU e la relativa verifica di resistenza a pressoflessione.

11.4.1 Verifica a pressoflessione SLU, SLV, SLE

Il fusto è armato con un quantitativo di armatura longitudinale Φ 20/15 distribuito lungo il perimetro disposte sia lungo il lato interno-interno che interno-esterno, come rappresentato nella figura seguente per un totale di 356 ferri. La verifica risulta soddisfatta e porge i seguenti risultati. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

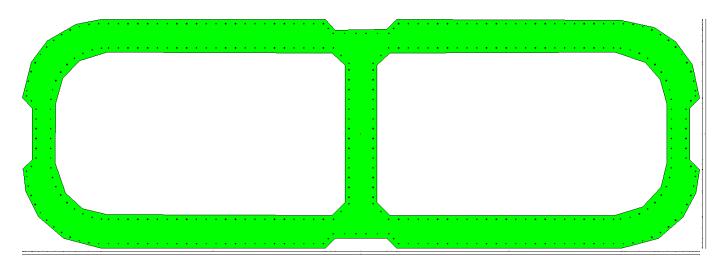


Figura 28 – Sezione trasversale base pila e relativa armatura

Dati

Nome sezione: SEZIONE1

Tipo sezione Sezione generica

Dimensione massima direzione X 1040,0 [cm]

Dimensione massima direzione Y 350,0 [cm]

Coordinate dei vertici :

Nr. poligono	Nr. vertici	X[cm]	Y[cm]
1	1	54,00	175,00
1	2	39,00	160,00
1	3	-40,00	159,00
1	4	-55,00	175,00
1	5	-400,00	175,00
1	6	-438,00	168,00
1	7	-482,00	142,00
1	8	-506,00	110,00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:		LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	PLINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	116

1	9	-520,00	55,00
1	10	-505,00	39,00
1	11	-505,00	-40,00
1	12	-520,00	-54,00
1	13	-519,00	-55,00
1	14	-515,00	-87,00
1	15	-495,00	-127,00
1	16	-457,00	-160,00
1	17	-400,00	-175,00
1	18	-55,00	-175,00
1	19	-40,00	-160,00
1	20	39,00	-160,00
1	21	54,00	-175,00
1	22	399,00	-175,00
1	23	405,00	-174,00
1	24	457,00	-160,00
1	25	494,00	-128,00
1	26	514,00	-91,00
1	27	519,00	-55,00
1	28	504,00	-40,00
1	29	504,00	39,00
1	30	519,00	54,00
1	31	508,00	106,00
1	32	483,00	141,00
1	33	450,00	163,00
1	34	399,00	174,00
2	1	469,00	46,00
2	2	459,00	83,00
2	3	436,00	109,00
2	4	389,00	125,00
2	5	44,00	124,00
2	6	24,00	105,00
2	7	24,00	-105,00
2	8	44,00	-125,00
2	9	389,00	-125,00
2	10	432,00	-112,00
2	11	460,00	-82,00
2	12	469,00	-45,00
3	1	-454,00	-91,00
3	2	-428,00	-115,00
3	3	-390,00	-124,00
3	4	-45,00	-125,00
3	5	-25,00	-105,00
3	6	-25,00	105,00
3	7	-45,00	124,00
3	8	-390,00	125,00
3	9	-432,00	112,00
3	10	-458,00	85,00
3	11	-469,00	46,00
3	12	-470,00	-45,00
		- ,	-,

Caratteristiche geometriche

Area sezione Inerzia in direzione X Inerzia in direzione Y Inerzia in direzione XY Ascissa baricentro sezione 129513,00 [cmq] 12761296729,8 2254328365,8 -6110038,7 X_G = -1,08 [cm]

[cm^4] [cm^4]

[cm^4]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	117

Ordinata baricentro sezione

 $Y_G = -0.01$ [cm]

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]
ω Area del ferro espresso in [cmq]

N°	x	Υ	d	ω
1	-57,65	168,60	20	3,14
2	-72,65	168,60	20	3,14
3	-87,65	168,60	20	3,14
4	-102,65	168,60	20	3,14
5	-117,65	168,60	20	3,14
6	-132,65	168,60	20	3,14
7	-147,65	168,60	20	3,14
8	-162,65	168,60	20	3,14
9	-177,65	168,60	20	3,14
10	-192,65	168,60	20	3,14
11	-207,65	168,60	20	3,14
12	-222,65	168,60	20	3,14
13	-237,65	168,60	20	3,14
14	-252,65	168,60	20	3,14
15	-267,65	168,60	20	3,14
16	-282,65	168,60	20	3,14
17	-297,65	168,60	20	3,14
18	-312,65	168,60	20	3,14
19	-327,65	168,60	20	3,14
20	-342,65	168,60	20	3,14
21	-357,65	168,60	20	3,14
22	-372,65	168,60	20	3,14
23	-387,65	168,60	20	3,14
24	-402,65	168,60	20	3,14
25	-417,60	167,36	20	3,14
26	-282,65	131,40	20	3,14
27	-297,65	131,40	20	3,14
28	-312,65	131,40	20	3,14
29	-327,65	131,40	20	3,14
30	-342,65	131,40	20	3,14
31	-357,65	131,40	20	3,14
32	-372,65	131,40	20	3,14
33	-387,65	131,40	20	3,14
34	-162,65	131,40	20	3,14
35	-177,65	131,40	20	3,14
36	-192,65	131,40	20	3,14
37	-207,65	131,40	20	3,14
38	-222,65	131,40	20	3,14
39	-237,65	131,40	20	3,14
40	-252,65	131,40	20	3,14
41	-267,65	131,40	20	3,14
42	-117,65	131,40	20	3,14
43	-132,65	131,40	20	3,14
44	-147,65	131,40	20	3,14
45	-72,65	131,40	20	3,14
46	-87,65	131,40	20	3,14

VI05 da km 9+666,20 a km 9+966,20:		LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	PLINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Е	ZZ	CL	VI	05	05	001	В	118

	•		_		
47	-102,65	131,40	20		3,14
48	-30,47	119,53	20		3,14
49	-42,35	131,40	20		3,14
50	-57,65	131,40	20		3,14
51	-7,50	153,60	20		3,14
52	-25,08	153,60	20		3,14
53	-42,65	153,60	20		3,14
54	-18,60	97,50	20		3,14
55	-18,60	107,65	20		3,14
56	-50,15	161,10	20		3,14
57	-18,60	82,50	20		3,14
58	-18,60	67,50	20		3,14
59	-18,60	52,50	20		3,14
60	-18,60	37,50	20		3,14
61	-18,60	22,50	20		3,14
62	-18,60	7,50	20		3,14
63	-432,18	163,81	20		3,14
64	-446,29	158,73	20		3,14
65	-459,45	151,59	20		3,14
66	-471,66	142,92	20		3,14
67	-482,72	132,81	20		3,14
68	-492,17	121,19	20		3,14
69	-500,17	108,51	20		3,14
70	-506,25	94,82	20		3,14
71	-510,78	80,53	20		3,14
72	-512,98	65,69	20		3,14
73	-513,51	57,56	20		3,14
74	-506,05	50,11	20		3,14
75 76	-498,60 408.60	37,50	20		3,14
76 77	-498,60	22,50	20		3,14
77 78	-498,60 -476,39	7,50	20 20		3,14
76 79	-476,39 -476,39	37,50 22,50	20		3,14 3,14
80	-476,39	7,50	20		3,14
81	-468,36	81,31	20		3,14
82	-473,48	67,23	20		3,14
83	-476,07	52,48	20		3,14
84	-439,91	115,51	20		3,14
85	-451,33	105,81	20		3,14
86	-460,92	94,31	20		3,14
87	-398,20	130,97	20		3,14
88	-412,93	128,24	20		3,14
89	-426,97	123,05	20		3,14
90	-57,65	-168,60	20		3,14
91	-72,65	-168,60	20		3,14
92	-87,65	-168,60	20		3,14
93	-102,65	-168,60	20		3,14
94	-117,65	-168,60	20		3,14
95	-132,65	-168,60	20		3,14
96	-147,65	-168,60	20		3,14
97	-162,65	-168,60	20		3,14
98	-177,65	-168,60	20		3,14
99	-192,65	-168,60	20		3,14
100	-207,65	-168,60	20		3,14
101	-222,65	-168,60	20		3,14
102	-237,65	-168,60	20		3,14
103	-252,65	-168,60	20		3,14
104	-267,65	-168,60	20		3,14
105	-282,65	-168,60	20		3,14

VI05 da km 9+666,20 a km 9+966,20:	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	119

	_			i l	i l	
106	-297,65	-168,60	20			3,14
107	-312,65	-168,60	20			3,14
108	-327,65	-168,60	20			3,14
109	-342,65	-168,60	20			3,14
110	-357,65	-168,60	20			3,14
111	-372,65	-168,60	20			3,14
112	-387,65	-168,60	20			3,14
113	-402,65	-168,60	20			3,14
114	-417,60	-167,36	20			3,14
115	-282,65	-131,40	20			3,14
116	-297,65	-131,40	20			3,14
117	-312,65	-131,40	20			3,14
118	-327,65	-131,40	20			3,14
119	-342,65	-131,40	20			3,14
120	-357,65	-131,40	20			3,14
121	-372,65	-131,40	20			3,14
122	-387,65	-131,40	20			3,14
123	-162,65	-131,40	20			3,14
124	-177,65	-131,40	20			3,14
125	-192,65	-131,40	20			3,14
126	-207,65	-131,40	20			3,14
127	-222,65	-131,40	20			3,14
128	-237,65	-131,40	20			3,14
129	-252,65	-131,40	20			3,14
130	-267,65	-131,40	20			3,14
131	-117,65	-131,40	20			3,14
132	-132,65	-131,40	20			3,14
133	-147,65	-131,40	20			3,14
134	-72,65	-131,40	20			3,14
135	-87,65	-131,40	20			3,14
136	-102,65	-131,40	20			3,14
137	-30,47	-119,53	20			3,14
138	-42,35	-131,40	20			3,14
139	-57,65	-131,40	20			3,14
140	-7,50	-153,60	20			3,14
141	-25,08	-153,60	20			3,14
142	-42,65	-153,60	20			3,14
143	-18,60	-97,50	20			3,14
144	-18,60	-107,65	20			3,14
145	-50,15	-161,10	20			3,14
146	-18,60	-82,50	20			3,14
147	-18,60	-67,50	20			3,14
148	-18,60	-52,50	20			3,14
149	-18,60	-37,50	20			3,14
150	-18,60	-22,50	20			3,14
151	-18,60	-7,50	20			3,14
152	-432,18	-163,81	20			3,14
153	-446,29	-158,73	20			3,14
154	-459,45	-151,59	20			3,14
155	-471,66	-142,92	20			3,14
156	-482,72	-132,81	20			3,14
157	-492,17	-121,19	20			3,14
158	-500,17	-108,51	20			3,14
159	-506,25	-94,82	20			3,14
160	-510,78	-80,53	20			3,14
161	-512,98	-65,69	20			3,14
162	-513,51	-57,56	20			3,14
163	-506,05	-50,11	20			3,14
164	-498,60	-37,50	20			3,14

VI05 da km 9+666,20 a km 9+966,20:		LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	120

	_				
			•		
165	-498,60	-22,50	20		3,14
166	-498,60	-7,50	20		3,14
167	-476,39	-37,50	20		3,14
168	-476,39	-22,50	20		3,14
169	-476,39 -476,39	-22,50 -7,50	20		3,14
	-468,36	-7,50 -81,31	20		3,14
170		•			•
171	-473,48 476.07	-67,23	20		3,14 3,14
172	-476,07	-52,48	20		
173	-439,91 454,33	-115,51	20		3,14
174	-451,33	-105,81	20		3,14
175	-460,92	-94,31	20		3,14
176	-398,20	-130,97	20		3,14
177	-412,93	-128,24	20		3,14
178	-426,97	-123,05	20		3,14
179	57,65	168,60	20		3,14
180	72,65	168,60	20		3,14
181	87,65	168,60	20		3,14
182	102,65	168,60	20		3,14
183	117,65	168,60	20		3,14
184	132,65	168,60	20		3,14
185	147,65	168,60	20		3,14
186	162,65	168,60	20		3,14
187	177,65	168,60	20		3,14
188	192,65	168,60	20		3,14
189	207,65	168,60	20		3,14
190	222,65	168,60	20		3,14
191	237,65	168,60	20		3,14
192	252,65	168,60	20		3,14
193	267,65	168,60	20		3,14
194	282,65	168,60	20		3,14
195	297,65	168,60	20		3,14
196	312,65	168,60	20		3,14
197	327,65	168,60	20		3,14
198	342,65	168,60	20		3,14
199	357,65	168,60	20		3,14
200	372,65	168,60	20		3,14
201	387,65	168,60	20		3,14
202	402,65	168,60	20		3,14
203	417,60	167,36	20		3,14
204	282,65	131,40	20		3,14
205	297,65	131,40	20		3,14
206	312,65	131,40	20		3,14
207	327,65	131,40	20		3,14
208	342,65	131,40	20		3,14
209	357,65	131,40	20		3,14
210	372,65	131,40	20		3,14
211	387,65	131,40	20		3,14
212	162,65	131,40	20		3,14
213	177,65	131,40	20		3,14
214	192,65	131,40	20		3,14
215	207,65	131,40	20		3,14
216	222,65	131,40	20		3,14
217	237,65	131,40	20		3,14
218	252,65	131,40	20		3,14
219	267,65	131,40	20		3,14
220	117,65	131,40	20		3,14
221	132,65	131,40	20		3,14
222	147,65	131,40	20		3,14
223	72,65	131,40	20		3,14

VI05 da km 9+666,20 a km 9+966,20:	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO	
Relazione di calcolo pila CAP	LI0B	02	E	ZZ	CL	VI	05	05	001	В	121	

	_					
					•	
224	87,65	131,40	20		3,14	
225	102,65	131,40	20		3,14	
226	30,47	119,53	20		3,14	
227	42,35	131,40	20		3,14	
228	57,65	131,40	20		3,14	
229	7,50	153,60	20		3,14	
230	25,08	153,60	20		3,14	
231	42,65	153,60	20		3,14	
232	18,60	97,50	20		3,14	
233	18,60	107,65	20		3,14	
234	50,15	161,10	20		3,14	
235	18,60	82,50	20		3,14	
236	18,60	67,50	20		3,14	
237	18,60	52,50	20		3,14	
238	18,60	37,50	20		3,14	
239	18,60	22,50	20		3,14	
240	18,60	7,50	20		3,14	
241	432,18	163,81	20		3,14	
242	446,29	158,73	20		3,14	
243	459,45	151,59	20		3,14	
244	471,66	142,92	20		3,14	
245	482,72	132,81	20		3,14	
246	492,17	121,19	20		3,14	
247	500,17	108,51	20		3,14	
248	506,25	94,82	20		3,14	
249	510,78	80,53	20		3,14	
250	512,98	65,69	20		3,14	
251	513,51	57,56	20		3,14	
252	506,05	50,11	20		3,14	
253	498,60	37,50	20		3,14	
254	498,60	22,50	20		3,14	
255	498,60	7,50	20		3,14	
256	476,39	37,50	20		3,14	
257	476,39	22,50	20		3,14	
258	476,39	7,50	20		3,14	
259	468,36	81,31	20		3,14	
260	473,48	67,23	20		3,14	
261	476,07	52,48	20		3,14	
262	439,91	115,51	20		3,14	
263	451,33	105,81	20		3,14	
264	460,92	94,31	20		3,14	
265	398,20	130,97	20		3,14	
266	412,93	128,24	20		3,14	
267 268	426,97 57,65	123,05	20 20		3,14	
269	57,65 72,65	-168,60 -168,60	20		3,14 3,14	
270	87,65	-168,60	20		3,14	
271	102,65	-168,60	20		3,14	
272	117,65	-168,60	20		3,14	
273	132,65	-168,60	20		3,14	
274	147,65	-168,60	20		3,14	
275	162,65	-168,60	20		3,14	
276	177,65	-168,60	20		3,14	
277	192,65	-168,60	20		3,14	
278	207,65	-168,60	20		3,14	
279	222,65	-168,60	20		3,14	
280	237,65	-168,60	20		3,14	
281	252,65	-168,60	20		3,14	
282	267,65	-168,60	20		3,14	

VI05 da km 9+666,20 a km 9+966,20:	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	122

283	282,65	-168,60	20		3,14	
284	297,65	-168,60	20		3,14	
285	312,65	-168,60	20		3,14	
286	327,65	-168,60	20		3,14	
287	342,65	-168,60	20		3,14	
288	357,65	-168,60	20		3,14	
289	372,65	-168,60	20		3,14	
290	387,65	-168,60	20		3,14	
291	402,65	-168,60	20		3,14	
292	417,60	-167,36	20		3,14	
293	282,65	-131,40	20		3,14	
294	297,65	-131,40	20		3,14	
295	312,65	-131,40	20		3,14	
296	327,65	-131,40	20		3,14	
297	342,65	-131,40	20		3,14	
298	357,65	-131,40	20		3,14	
299	372,65	-131,40	20		3,14	
300		-131,40	20			
	387,65		20		3,14	
301	162,65	-131,40 131,40			3,14	
302	177,65	-131,40	20		3,14	
303	192,65	-131,40	20		3,14	
304	207,65	-131,40	20		3,14	
305	222,65	-131,40	20		3,14	
306	237,65	-131,40	20		3,14	
307	252,65	-131,40	20		3,14	
308	267,65	-131,40	20		3,14	
309	117,65	-131,40	20		3,14	
310	132,65	-131,40	20		3,14	
311	147,65	-131,40	20		3,14	
312	72,65	-131,40	20		3,14	
313	87,65	-131,40	20		3,14	
314	102,65	-131,40	20		3,14	
315	30,47	-119,53	20		3,14	
316	42,35	-131,40	20		3,14	
317	57,65	-131,40	20		3,14	
318	7,50	-153,60	20		3,14	
319	25,08	-153,60	20		3,14	
320	42,65	-153,60	20		3,14	
321	18,60	-97,50	20		3,14	
322	18,60	-107,65	20		3,14	
323	50,15	-161,10	20		3,14	
324	18,60	-82,50	20		3,14	
325	18,60	-67,50	20		3,14	
326	18,60	-52,50	20		3,14	
327	18,60	-37,50	20		3,14	
328	18,60	-22,50	20		3,14	
329	18,60	-7,50	20		3,14	
330	432,18	-163,81	20		3,14	
331	446,29	-158,73	20		3,14	
332	459,45	-151,59	20		3,14	
333	471,66	-142,92	20		3,14	
334	482,72	-132,81	20		3,14	
335	492,17	-121,19	20		3,14	
336	500,17	-108,51	20		3,14	
337	506,25	-94,82	20		3,14	
338	510,78	-80,53	20		3,14	
339	512,98	-65,69	20		3,14	
340	513,51	-57,56	20		3,14	L
341	506,05	-50,11	20		3,14	L

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Е	ZZ	CL	VI	05	05	001	В	123

498,60	-37,50	20	3,14
498,60	-22,50	20	3,14
498,60	-7,50	20	3,14
476,39	-37,50	20	3,14
476,39	-22,50	20	3,14
476,39	-7,50	20	3,14
468,36	-81,31	20	3,14
473,48	-67,23	20	3,14
476,07	-52,48	20	3,14
439,91	-115,51	20	3,14
451,33	-105,81	20	3,14
460,92	-94,31	20	3,14
398,20	-130,97	20	3,14
412,93	-128,24	20	3,14
426,97	-123,05	20	3,14
	498,60 498,60 476,39 476,39 468,36 473,48 476,07 439,91 451,33 460,92 398,20 412,93	498,60 -22,50 498,60 -7,50 476,39 -37,50 476,39 -22,50 476,39 -7,50 468,36 -81,31 473,48 -67,23 476,07 -52,48 439,91 -115,51 451,33 -105,81 460,92 -94,31 398,20 -130,97 412,93 -128,24	498,60 -22,50 20 498,60 -7,50 20 476,39 -37,50 20 476,39 -22,50 20 476,39 -7,50 20 468,36 -81,31 20 473,48 -67,23 20 476,07 -52,48 20 439,91 -115,51 20 451,33 -105,81 20 460,92 -94,31 20 398,20 -130,97 20 412,93 -128,24 20

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,000 [MPa]
Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcent espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ VD & & \text{verifica di dominio} \end{array}$

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M_{X}	M_t	T_Y	T_{x}	VD	VT
1	26139,8900	22015,2500	-17111,9800	0,0000	0,0000	0,0000	SI	NO
2	14461,3500	1415,7200	7634,2600	0,0000	0,0000	0,0000	SI	NO
3	20234,3900	1911,2200	7634,2600	0,0000	0,0000	0,0000	SI	NO
4	25707,3200	11056,2700	-22628,7700	0,0000	0,0000	0,0000	SI	NO
5	25635,0500	23871,1600	-8220,8200	0,0000	0,0000	0,0000	SI	NO
6	14461,3500	1415,7200	7634,2600	0,0000	0,0000	0,0000	SI	NO
7	17668,1900	15648,4800	-11284,1000	0,0000	0,0000	0,0000	SI	NO
8	12492,0100	15648,4800	-11284,1000	0,0000	0,0000	0,0000	SI	NO
9	15856,5300	48858,2700	-11284,1000	0,0000	0,0000	0,0000	SI	NO
10	15856,5300	15648,4800	-37613,6800	0,0000	0,0000	0,0000	SI	NO
11	15856,5300	48858,2700	-11284,1000	0,0000	0,0000	0,0000	SI	NO
12	17668,1900	15648,4800	-11284,1000	0,0000	0,0000	0,0000	SI	NO
13	18470,1000	15305,7800	-9742,8300	0,0000	0,0000	0,0000	NO	SLER
14	14667,6000	1415,7200	5089,5100	0,0000	0,0000	0,0000	NO	SLER
15	14667,6000	1415,7200	5089,5100	0,0000	0,0000	0,0000	NO	SLER

VI05 da km 9+666,20 a km 9+966,20:
Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	124

16 17 18 19	18171,7800 18121,9400 14667,6000 15080,1000	11150,4000 16560,5000 1415,7200 1415,7200	-12447,0500 -3959,3300 5089,5100 0,0000	0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000	0,0000 0,0000 0,0000 0,0000	NO NO NO	SLER SLER SLER SLEQP
20	15080,1000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
21	15080,1000	1415,7200	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
22	15080,1000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
23	15080,1000	1415,7200	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
24	15080,1000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	125

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
13	426,82	6,38	(-6325,21; -916,49)	(3727,53; 206,69)
14	1901,34	-32,16	(-4987,54; 1335,80)	(59641,69; -39298,13)
15	1901,34	-32,16	(-4987,54; 1335,80)	(59641,69; -39298,13)
16	527,24	11,09	(-1798,86; -636,14)	(44762,90; 8494,48)
17	381,70	2,39	(-3082,89; -319,22)	(11997,70; 311,38)
18	1901,34	-32,16	(-4987,54; 1335,80)	(59641,69; -39298,13)
19	2028,55	0,11	(-187027,62; -2207,93)	(1067898,60; 175,00)
20	797715,78	-86,89	(1073751,40; -5073408,23)	(-505,00; 14717633,46)
21	2028,55	0,11	(-187027,62; -2207,93)	(1067898,60; 175,00)
22	797715,78	-86,89	(1073751,40; -5073408,23)	(-505,00; 14717633,46)
23	2028,55	0,11	(-187027,62; -2207,93)	(1067898,60; 175,00)
24	797715.78	-86.89	(1073751.40: -5073408.23)	(-505.00: 14717633.46)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	σ _{c-max}	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{f\text{-max}}$	$\sigma_{\text{f-min}}$
13	2,583	0,000	0,000	38,239	-0,383
14	1,251	0,000	0,000	18,726	11,363
15	1,251	0,000	0,000	18,726	11,363
16	2,354	0,000	0,000	34,999	2,243
17	2,486	0,000	0,000	36,682	0,475
18	1,251	0,000	0,000	18,726	11,363
19	1,129	0,000	0,000	16,876	14,049
20	1,032	0,000	0,000	15,473	15,453
21	1,129	0,000	0,000	16,876	14,049
22	1,032	0,000	0,000	15,473	15,453
23	1,129	0,000	0,000	16,876	14,049
24	1,032	0,000	0,000	15,473	15,453

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione nº 1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:
Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	126

$N_{\rm u}$	M_{Xu}	\mathbf{M}_{Yu}	FS
<u>174954,9466</u>	<u>-114530,9160</u>	<u>147348,6265</u>	6,69
<u>245470,6024</u>	<u>-160692,6441</u>	22015,2500	9,39
<u>179688,0832</u>	-17111,9800	<u>151334,9166</u>	6,87
272492,7869	-17111,9800	22015,2500	10,42
26139,8900	<u>-297098,7724</u>	22015,2500	17,36
26139,8900	<u>-82336,9143</u>	<u>105929,7494</u>	4,81
26139,8900	-17111,9800	<u>107565,4407</u>	4,89
Cambinaniana nº 2			
Combinazione n° 2			
$N_{\rm u}$	\mathbf{M}_{Xu}	M_{Yu}	FS
<u>252089,8266</u>	<u>133080,1951</u>	24678,7893	17,43
<u>254519,5480</u>	134362,8641	1415,7200	17,60
<u>269658,6019</u>	7634,2600	<u>26398,7163</u>	18,65
· ·	·		
<u>285832,5403</u>	7634,2600	1415,7200	19,77
14461,3500	<u>260288,1836</u>	1415,7200	34,09
14461,3500	<u>241391,8233</u>	44764,4214	31,62
14461,3500	7634,2600	90567,5952	63,97
14401,3300	7034,2000	30301,3332	00,57
Combinazione n° 3			
N _u	M _{xu}	M_{Yu}	FS
<u>260560,4941</u>	98307,2165	<u>24610,9928</u>	12,88
<u>263588,4881</u>	<u>99449,6524</u>	1911,2200	13,03
<u>270260,1267</u>	7634,2600	<u>25527,1624</u>	13,36
285753,9097	7634,2600	1911,2200	14,12
20234,3900	281519,3945	1911,2200	36,88
•			
20234,3900	<u>245134,8428</u>	<u>61368,9623</u>	32,11
20234,3900	7634,2600	<u>99055,9140</u>	51,83
Combinations no 4			
Combinazione n° 4			
$N_{\rm u}$	\mathbf{M}_{Xu}	\mathbf{M}_{Yu}	FS
<u>209948,5181</u>	<u>-184806,3792</u>	90295,1962	8,17
234501,2445	-206418,8226	11056,2700	9,12
220950,0619	-22628,7700	<u>95026,7683</u>	8,59
<u>279554,6968</u>	-22628,7700	11056,2700	10,87
25707,3200	<u>-298929,8880</u>	11056,2700	13,21
25707,3200	<u>-193072,4542</u>	94333,9467	8,53
25707,3200	-22628,7700	106874,9681	9,67
20101,3200	22020,1700	10007 4,3001	3,07
Combinazione n° 5			
N _u	M _{xu}	M_{Yu}	FS
171070,4088	-54860,0076		
		<u>159299,4397</u>	6,67
<u>263768,7750</u>	<u>-84587,1423</u>	23871,1600	10,29
<u>172384,6216</u>	-8220,8200	160523,2244	6,72
271383,3386	-8220,8200	23871,1600	10,59
25635,0500	<u>-294675,0612</u>	23871,1600	35,84
•	· · · · · · · · · · · · · · · · · · ·	·	•
25635,0500	<u>-36695,1280</u>	<u>106553,2724</u>	4,46
25635,0500	-8220,8200	<u>106914,0708</u>	4,48
Combinations no C			
Combinazione n° 6		æ =	==
$N_{\rm u}$	\mathbf{M}_{Xu}	M_{Yu}	FS
<u>252089,8266</u>	<u>133080,1951</u>	24678,7893	17,43
254519,5480	134362,8641	1415,7200	17,60
<u>269658,6019</u>	7634,2600	26398,7163	18,65
<u>209030,0019</u>	1034,2000	<u> 20080,1 100</u>	10,00

VI05 da km 9+666,20 a km 9+966,20:		LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	E	ZZ	CL	VI	05	05	001	В	127

Relazione di calcolo p	oila CAP	LI0B	02 E	ZZ	CL	V
285832,5403 14461,3500 14461,3500 14461,3500	7634,2600 260288,1836 241391,8233 7634,2600	1415, 1415, <u>44764,</u> <u>90567,</u>	7200 <u>4214</u>		19, 34, 31, 63,	,09 ,62
Combinazione n° 7 Nu 171389,8922 247154,5847 176098,2345 276955,1746 17668,1900 17668,1900 17668,1900	M _{xu} -109461,1662 -157849,6184 -11284,1000 -11284,1000 -269930,2435 -67853,0771 -11284,1000	151797. 15648, 155967, 15648, 15648, 94096, 95286,	4800 8552 4800 4800 7840		9, 13, 9, 15, 23,	,97 ,68
Combinazione n° 8						
Nu 138131,7563 232918,2607 147432,9031 276955,1679 12492,0100 12492,0100 12492,0100	M _{Xu} -124775,1603 -210396,3210 -11284,1000 -11284,1000 -250407,0707 -62450,4935 -11284,1000	173034, 15648, 184686, 15648, 15648, 86604, 87640,	4800 <u>1183</u> 4800 4800 <u>6293</u>		11, 18, 11, 22, 22, 5,	,65 ,80 ,17
Combinazione n° 9						
N _u 42315,5651 236310,3902 42460,4098 253936,0635 15856,5300 15856,5300	M _{Xu} -30113,3393 -168167,3149 -11284,1000 -11284,1000 -243158,5174 -21367,9392 -11284,1000	130385, 48858, 130832, 48858, 48858, 92519, 92620,	2700 0401 2700 2700 6112		2, 14, 2, 16, 21,	,68 ,01
Combinazione n° 10						
N _u 120139,0341 161261,3958 167148,4889 275507,8983 15856,5300 15856,5300	M _{Xu} -284984,8728 -382532,2778 -37613,6800 -37613,6800 -263245,3483 -190423,8503 -37613,6800	118562, 15648, 164955, 15648, 15648, 79222, 92239,	4800 3708 4800 4800 3418		7, 10, 10, 17, 7, 5,	,54
Combinazione n° 11						
N _u 42315,5651 236310,3902 42460,4098 253936,0635 15856,5300 15856,5300	M _{Xu} -30113,3393 -168167,3149 -11284,1000 -11284,1000 -243158,5174 -21367,9392 -11284,1000	130385, 48858, 130832, 48858, 48858, 92519, 92620,	2700 0401 2700 2700 6112		2, 14, 2, 16, 21,	,68 ,01

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	128

Combinazione nº 12

$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
171389,8922	<u>-109461,1662</u>	<u>151797,7393</u>	9,70
247154,5847	<u>-157849,6184</u>	15648,4800	13,99
176098,2345	-11284,1000	<u>155967,8552</u>	9,97
276955,1746	-11284,1000	15648,4800	15,68
17668,1900	<u>-269930,2435</u>	15648,4800	23,92
17668,1900	<u>-67853,0771</u>	94096,7840	6,01
17668,1900	-11284,1000	95286,6501	6,09

Risultati fessurazione

Simbologia adottata

Ν° numero d'ordine della combinazione

 M_X Momento di prima fessurazione in direzione X, espresso in [kNm] M_Y Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa]

 σ_{f} Tensione nel calcestruzzo, espressa in [MPa] σ_{c} Area efficace a trazione, espressa in [cmq] Aeff

Deformazione media acciaio teso, espressa in [°] Distanza media tra le fessure, espresso in [mm]

Ampiezza delle fessure, espressa in [mm]

Ν°	M _X	M_{Y}	σ_{f}	σ_{c}	${\sf A}_{\sf eff}$	ε	S _{rm}	w
13	-25468,3665	40010,2655	-132,709	-9,058	49692,37	0,0000	0	0,0000
14	65133,7995	18117,8979	-96,933	-6,557	29265,28	0,0000	0	0,0000
15	65133,7995	18117,8979	-96,933	-6,557	29265,28	0,0000	0	0,0000
16	-38469,1639	34461,7050	-111,446	-7,551	38977,96	0,0000	0	0,0000
17	-10882,7444	45518,7337	-161,434	-11,050	51961,60	0,0000	0	0,0000
18	65133,7995	18117,8979	-96,933	-6,557	29265,28	0,0000	0	0,0000
19	0,0000	46789,5460	-190,719	-13,058	53415,58	0,0000	0	0,0000
20	0,0000	0,0000	15,453	1,030	0,00	0,0000	0	0,0000
21	0,0000	46789,5460	-190,719	-13,058	53415,58	0,0000	0	0,0000
22	0,0000	0,0000	15,453	1,030	0,00	0,0000	0	0,0000
23	0,0000	46789,5460	-190,719	-13,058	53415,58	0,0000	0	0,0000
24	0.0000	0.0000	15,453	1,030	0.00	0.0000	0	0,0000

Inviluppo verifiche a pressoflessione

Simbologia adottata

Ν Sforzo normale espresso in [kN] Momento in direzione X espresso in [kNm] Momento in direzione Y espresso in [kNm] Mx Му Sforzo normale ultimo espresso in [kN] Nu

Momento ultimo in direzione X espresso in [kNm] My,u Momento ultimo in direzione Y espresso in [kNm]

Fattore di sicurezza Comb. Combinazione critica

Sezione nº 1 - SEZIONE1

O	LIVIALI						
N	Mx	My	N	Mx,u	My,u	FS	Comb.
15856,53	-11284,10	48858,27	42315,57	-30113,34	130385,73	2.669	9
25707,32	-22628,77	11056,27	234501,24	-206418,82	11056,27	9.122	4
15856,53	-11284,10	48858,27	42460,41	-11284,10	130832,04	2.678	9
26139,89	-17111,98	22015,25	272492,79	-17111,98	22015,25	10.424	1
15856,53	-37613,68	15648,48	15856,53	-263245,35	15648,48	6.999	10
15856,53	-11284,10	48858,27	15856,53	-21367,94	92519,61	1.894	9
15856.53	-11284.10	48858.27	15856.53	-11284.10	92620.04	1.896	9

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	129

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

tensione di compressione nel cls espresso in [MPa] tensione di compressione limite nel cls espresso in [MPa] SCC scl sct tensione di trazione nel cls espresso in [MPa] sctl tensione di trazione limite nel cls espresso in [MPa] tensione minima e massima nell'armatura espressa in [MPa] sfc, sft sf tensione limite nell'armatura espressa in [MPa]

Combinazione critica Comb.

Sezione n° 1 - SEZIONE1

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	1,129	13,280	0,933	3,099	14,049	16,876	450,000	19
SLER	2,583	18,260	-0,059	3,099	-0,383	38,239	337,500	13

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa] sc Aeff tensione nel cls espresso in [MPa] Area efficace a trazione espresso in [cmq] Eps Deformazione espressa in [%] spaziatura tra le fessure espressa in [mm] sr ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione nº 1 - SEZIONE1

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-190,719	-13,058	5238,362	0,0000	0,000	0,000	0,200	19
SLER	-132,709	-9,058	4873,234	0.0000	0,000	0.000	0,200	13

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	130

11.4.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato pila (estradosso plinto) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2, e considerando la sezione trasversale armata a taglio con armatura con barre $\phi 16/10$ in direzione longitudinale (6 bracci resistenti) e trasversale (4 bracci resistenti). Tale armatura viene ridotta al di fuori della zona critica dell'elemento strutturale.

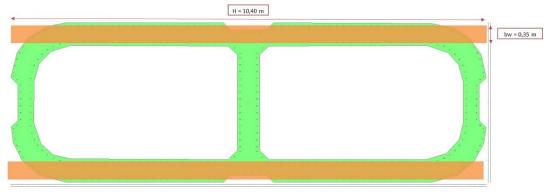


Figura 29 – Sezione considerata per la verifica a taglio trasversale

NOME: S	LV TR	ASV			CAL	COLO TA	AGLIO R	ESISTENT	E SEZIO	NE RETTAI	NGOLARE (NT	C 2008)		Rev. 10.
DATI SEZI	ONE							AZIONI C	CALCOLO)	CALCEST	RUZZO		
b _w (m)	d (m)	θ (°)	cotg θ					N _{Ed} (kN)	V _{Ed} (kN)		f _{ck} (MPa)	f _{cd} (MPa)	Yc	
0,70	10,34	42,80	1,08		1,00 ≤ 0	otg θ ≤	2,50	-15856,5	5015,2	37613,7	33,20	18,81	1,50	
VERIFICA	SENZA	ARMAT	TURE T	RASVERS	ALI (§4.	1.2.1.3.1)							
				A _{sl} (cm ²)	k ₁	k	ρ _I (%) (%)	v _{min} (MPa)	σ _{cp} (MPa)	α_{c}	V _{Rd} (kN)	V _{Ed} /V _{Rd}		
				175,93	0,15	1,14	0,24%	0,25	2,19	1,12	4362,9	114,9%	Necessa	ıria armatu
VERIFICA	CON A	RMATUF f _{ywd} (MPa)	RE TRA n _b	SVERSAL Ø (mm)	A_{sw} (cm ²)	2.1.3.2) α (°)	s (m)	V _{Rsd} (kN)	V _{Rcd} (kN)	V _{Rd} (kN)	V _{Rd} (kN)	V _{Ed} /V _{Rd}		
Staffe / Pi	oli (1)	391,3	4,0	16	8,04	90	0,10	31626,5	34105,4	31626,5	31626,5	15,9%	VERIFIC	A OK
700 600 500 400 300 200	00 00 00 00 00		VRd= VRd=	31626,5									VEd calcolo VRd senza a VRd con arr VRds,1 Staf	armature mature fe (1)
100	00	Rd=4362,9	VEd=5	015,2										
	1,00	1,10 1	1,20 1,	30 1,40	1,50 1	1,60 1,7	0 1,80	1,90 2,	00 2,10	2,20 2,3	30 2,40 2,50	cot θ		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	131

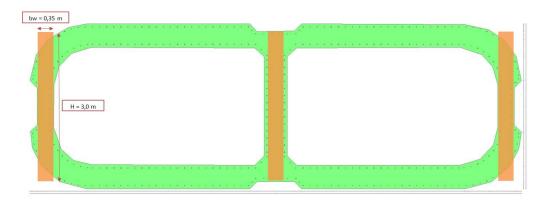
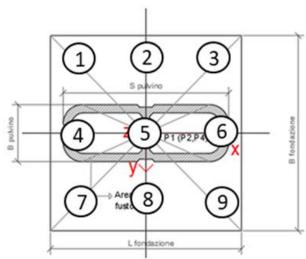


Figura 30 – Sezione considerata per la verifica a taglio longitudinale

CALCECTRUZZO		E SEZIO	4 7IONI C				<u> </u>			ME: SLV LO
$ \begin{array}{ccc} & & CALCESTRUZZO \\ M_{Ed} & f_{ck} & f_{cd} & \gamma_c \\ (kNm) & (MPa) & (MPa) \end{array} $	M_{Ed}	V _{Ed} (kN)	AZIONI C N _{Ed} (kN)					cotg θ	θ (°)	$\begin{array}{ccc} SEZIONE \\ b_w & d \\ (m) & (m) \end{array}$
33,20 18,81 1,50	48858,3	6500,5	-15856,5	2,50	cotg θ ≤	1,00 ≤		1,00	45,00	1,05 2,94
)	.1.2.1.3.1	SALI (§4.	RASVERS	URE TE	A ARMAT	IFICA SENZ
$lpha_c$ V_{Rd} V_{Ed}/V_{Rd} (kN)	α_{c}	σ _{cp} (MPa)	v _{min} (MPa)	•	k	k ₁	A _{sl} (cm ²)			
1,20 3301,0 196,9% Necessaria arma	1,20	3,76	0,29	1,12%	1,26	0,15	345,58	_		
					2.1.3.2)	_I (§4.1.2	SVERSAL	RE TRA	RMATUR	IFICA CON A
V_{Rd} V_{Rd} V_{Ed}/V_{Rd}		V_{Rcd}	V_{Rsd}	S	α	A_{sw}	Ø	n_{b}	$f_{y wd}$	
(kN) (kN)		(kN)	(kN)	(m)	(°)	(cm ²)	(mm)		(MPa)	
2490,7 12490,7 52,0% VERIFICA OK	12490,7	15680,7	12490,7	0,10	90	12,06	16	6,0	391,3	fe / Pioli (1)
10 V3 COL O	glio vs cot 6	enza ar ta;	uti di resisi	er contino	igramma u	Diag				35000
VEd calcolo VRd senza armature VRd con armature VRds,1 Staffe (1)	gliovs cot e	enza ai ta	uu ul lesisi		gramma u	Diag	7	=6500.5	VEd VRsd 1	30000 25000 25000 20000 20000 10000
	gilo vs cot t	enza ar ta	uti di resisi	ercontrib	igramma u	Diag				


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	132

11.5 VERIFICA PLINTO DI FONDAZIONE

Nel presente paragrafo sono stati eseguite le verifiche strutturali dei plinti di fondazione, considerando le reazioni in testa palo riportate nella specifica relazione di dimensionamento geotecnico delle palificate, di cui di seguito si riportano gli schemi generali e le azioni calcolate per i vari stati limite.

Azi	oni			Rij	oartizione d	egli sforzi n	ormali sui p	oali della pali	ficata		
Con	nbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Palo n.9	Hmax, singolo palo
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]
Nvert Max	SLU7	3232	4001	4770	4317	5086	5855	5402	6171	6940	324
Nvert Min	SLU22	2670	3018	3366	2739	3087	3435	2808	3155	3503	80
Vtrasv Max	SLU24	3600	3002	2404	4378	3780	3181	5155	4557	3959	207
Vtrasv Min	SLU2	3394	3742	4089	3462	3810	4158	3531	3879	4227	80
Mtrasv Max	SLU4	3878	4226	4573	3970	4318	4666	4063	4411	4759	82
Mtrasv Min	SLU6	5497	4479	3461	6046	5028	4010	6595	5577	4559	206
Vlong Max	SLU7	4770	4001	3232	5855	5086	4317	6940	6171	5402	324
Vlong Min	SLU22	2670	3018	3366	2739	3087	3435	2808	3155	3503	80
Mong Max	SLU9	4249	3875	3501	5399	5025	4651	6549	6175	5801	276
Mong Min	SLU22	2670	3018	3366	2739	3087	3435	2808	3155	3503	80
Mtorc Max	SLU7	4770	4001	3232	5855	5086	4317	6940	6171	5402	324
Mtorc Min	SLU24	3600	3002	2404	4378	3780	3181	5155	4557	3959	207
Nvert Max	SLV5	3380	2684	1988	4314	3618	2921	5247	4551	3855	487
Nvert Min	SLV72	2456	1760	1064	3390	2694	1997	4324	3627	2931	487
Vtrasv Max	SLV15	4681	2360	40	5615	3294	974	6549	4228	1907	1092
Vtrasv Min	SLV72	2456	1760	1064	3390	2694	1997	4324	3627	2931	487
Mtrasv Max	SLV25	1054	358	-338	3990	3294	2598	6927	6230	5534	1246
Mtrasv Min	SLV15	4681	2360	40	5615	3294	974	6549	4228	1907	1092
Vlong Max	SLV25	1054	358	-338	3990	3294	2598	6927	6230	5534	1246
Vlong Min	SLV71	2799	2103	1407	3733	3037	2341	4667	3971	3275	487
Mong Max	SLV25	1054	358	-338	3990	3294	2598	6927	6230	5534	1246
Mong Min	SLV71	2799	2103	1407	3733	3037	2341	4667	3971	3275	487
Mtorc Max	SLV71	2799	2103	1407	3733	3037	2341	4667	3971	3275	487
Mtorc Min	SLV72	2456	1760	1064	3390	2694	1997	4324	3627	2931	487

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	133

Azio	oni			Rip	artizione de	gli sforzi no	rmali sui pa	ıli della palifi	cata		
Com	nbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Palo n.9	Hmax, singolo
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]
Nvert Max	RA1	2418	2855	3291	3173	3609	4045	3928	4364	4800	221
Nvert Min	RA10	3273	3041	2809	3342	3110	2878	3410	3178	2946	56
Vtrasv Max	RA3	2462	2868	3275	3171	3578	3984	3881	4288	4694	183
Vtrasv Min	RA2	3273	3041	2809	3342	3110	2878	3410	3178	2946	56
Mtrasv Max	RA2	3273	3041	2809	3342	3110	2878	3410	3178	2946	56
Mtrasv Min	RA6	2460	3018	3576	3011	3569	4128	3562	4120	4679	170
Vlong Max	RA1	2418	2855	3291	3173	3609	4045	3928	4364	4800	221
Vlong Min	RA2	3273	3041	2809	3342	3110	2878	3410	3178	2946	56
Mong Max	RA9	2590	2769	2948	3388	3567	3746	4186	4365	4544	187
Mong Min	RA2	3273	3041	2809	3342	3110	2878	3410	3178	2946	56
Mtorc Max	RA1	2418	2855	3291	3173	3609	4045	3928	4364	4800	221
Mtorc Min	RA12	2656	2880	3103	3348	3571	3795	4039	4263	4486	160
Nvert Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Nvert Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Vtrasv Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Vtrasv Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Mtrasv Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Mtrasv Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Vlong Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Vlong Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Mong Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Mong Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Mtorc Max	QP1	3087	3087	3087	3156	3156	3156	3224	3224	3224	19
Mtorc Min	QP12	3156	3156	3156	3156	3156	3156	3156	3156	3156	0
Г	SLE RA	3273	3041	3576				4186	4365	4800	221
Ī	SLE QP	3156	3156	3156				3224	3224	3224	19

Tabella 48 – ENV SLE RA, SLE QP - Azioni normali sulla palificata

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	134

11.5.1 Verifiche a flessione (SLU, SLV, SLE)

Per valutare lo stato di sollecitazione del plinto di fondazione, si considera uno schema di trave a mensola incastrata con luce libera L che va dal filo esterno del fusto pila fino al bordo libero della fondazione, applicato al caso del palo più sollecitato d'angolo, quindi con larghezza di collaborazione B determinata dall'interasse tra i pali. La mensola è sollecitata da una azione verticale N_{Ed} e da una orizzontale H_{Ed} applicate ad una distanza x dall'incastro, e stabilizzate dall'azione distribuita del peso proprio strutturale PP e del peso del terreno PT di rinterro del plinto (valutati a favore di sicurezza con coefficiente 1.35 e 1.50).

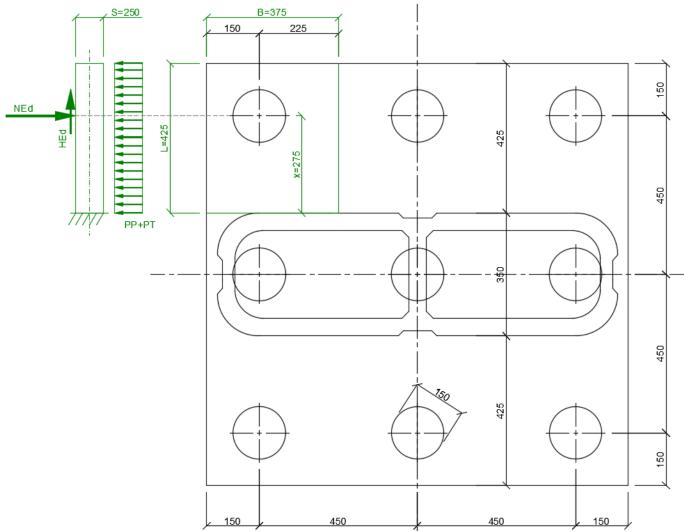
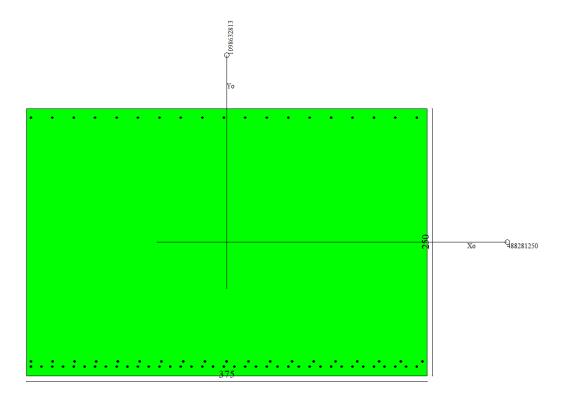


Figura 31 – Schema delle verifiche a flessione del plinto per il palo più caricato



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	135

NOME: F	PALO 7		CALCOLO MOMENTI PLINTO					
HT (m)	B (m)	S (m) I	PP (kN/m) P	T (kN/m)	L (m)			
1,50	3,75	2,50	234,4	112,5	4,25			
	x (m)		SLU	SLV	SLE RA	SLE QP		
Palo 7	2,75	N _{Ed} (kN)	6940	6927	4800	3224		
		H_{Ed} (kN)	324	1246	221	19		
		M _{Ed} (kNm)	15108	17474	10343	5758		

Dati

Nome sezione: PILE CAP H=7.5m

 Tipo sezione
 Rettangolare

 Base
 375,0 [cm]

 Altezza
 250,0 [cm]

Caratteristiche geometriche

Area sezione
Inerzia in direzione X
Inerzia in direzione Y
Inerzia in direzione XY
Ascissa baricentro sezione
Ordinata baricentro sezione

93750,00 [cmq] 1098632812,5 [cm^4] 488281250,0 [cm^4] 0,0 [cm^4] X_G = 187,50 [cm] Y_G = 125,00 [cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	05	05	001	В	136

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

 $\begin{array}{ll} X & & \text{Ascissa posizione ferro espresso in [cm]} \\ Y & & \text{Ordinata posizione ferro espresso in [cm]} \\ d & & \text{Diametro ferro espresso in [mm]} \\ \omega & & \text{Area del ferro espresso in [cmq]} \\ \end{array}$

N°	X	Υ	d	ω
1	365,45	241,40	26	5,31
2	345,38	241,40	26	5,31
3	325,32	241,40	26	5,31
4	305,25	241,40	26	5,31
5	285,19	241,40	26	5,31
6	265,13	241,40	26	5,31
7	245,06	241,40	26	5,31
8	225,00	241,40	26	5,31
9	204,94	241,40	26	5,31
10	184,87	241,40	26	5,31
11	164,81	241,40	26	5,31
12	144,75	241,40	26	5,31
13	124,68	241,40	26	5,31
14	104,62	241,40	26	5,31
15	84,55	241,40	26	5,31
16	64,49	241,40	26	5,31
17	44,43	241,40	26	5,31
18	24,36	241,40	26	5,31
19	4,30	241,40	26	5,31
20	4,30	8,60	26	5,31
21	14,33	8,60	26	5,31
22	24,36	8,60	26	5,31
23	34,40	8,60	26	5,31
24	44,43	8,60	26	5,31
25	54,46	8,60	26	5,31
26	64,49	8,60	26	5,31
27	74,52	8,60	26	5,31
28	84,55	8,60	26	5,31
29	94,59	8,60	26	5,31
30	104,62	8,60	26	5,31
31	114,65	8,60	26	5,31
32	124,68	8,60	26	5,31
33	134,71	8,60	26	5,31
34	144,75	8,60	26	5,31
35	154,78	8,60	26	5,31
36	164,81	8,60	26	5,31
37	174,84	8,60	26	5,31
38	184,87	8,60	26	5,31
39	194,90	8,60	26	5,31
40	204,94	8,60	26	5,31
41	214,97	8,60	26	5,31
42	225,00	8,60	26	5,31
43	235,03	8,60	26	5,31
44	245,06	8,60	26	5,31
45	255,10	8,60	26	5,31
46	265,13	8,60	26	5,31
47	275,16	8,60	26	5,31

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20:	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
Relazione di calcolo pila CAP	LI0B	02	Е	ZZ	CL	VI	05	05	001	В	137

48	285,19	8,60	26	5,31
49	295,22	8,60	26	5,31
50	305,25	8,60	26	5,31
51	315,29	8,60	26	5,31
52	325,32	8,60	26	5,31
53	335,35	8,60	26	5,31
54	345,38	8,60	26	5,31
55	355,41	8,60	26	5,31
56	365,45	8,60	26	5,31
57	4,30	13,30	26	5,31
58	24,66	13,30	26	5,31
59	45,01	13,30	26	5,31
60	65,37	13,30	26	5,31
61	85,72	13,30	26	5,31
62	106,08	13,30	26	5,31
63	126,43	13,30	26	5,31
64	146,79	13,30	26	5,31
65	167,14	13,30	26	5,31
66	187,50	13,30	26	5,31
67	207,86	13,30	26	5,31
68	228,21	13,30	26	5,31
69	248,57	13,30	26	5,31
70	268,92	13,30	26	5,31
71	289,28	13,30	26	5,31
72	309,63	13,30	26	5,31
73	329,99	13,30	26	5,31
74	350,34	13,30	26	5,31
75	370,70	13,30	26	5,31

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 30,000 [MPa] Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] Tensione snervamento acciaio 450,000 [MPa] 210000,000 [MPa] Modulo elastico E

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

Ν° numero d'ordine della combinazione sforzo normale espresso in[kN] Ν M_{Y} momento lungo Y espresso in [kNm] momento lungo X espresso in [kNm] Mt T_Y T_X VD momento torcente espresso in [kNm] taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN]

verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_Y	M _X	M _t	T_Y	T _x	VD	VT
1	0,0000	15107,7600	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	17473,6000	0,0000	0,0000	0,0000	0,0000	SI	NO

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	138

3 0,0000 10342,9000 0,0000 0,0000 0,0000 0,0000 NO **SLER** 0,0000 0,0000 5758,0700 0,0000 0,0000 0,0000 NO SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
3	62,35	0,20	(-54397,26; 0,00)	(18074,65; 250,00)
4	62,35	0,20	(-54397,26; 0,00)	(18074,65; 250,00)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	σ_{c-max}	σ_{c-min}	$ au_{ extsf{c}}$	$\sigma_{f\text{-max}}$	$\sigma_{\text{f-min}}$
3	3,683	0,000	0,000	47,607	-159,744
4	2.050	0.000	0.000	26.503	-88.932

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione nº 1

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 26642,5316
 1,76

Combinazione n° 2

 Nu
 Mxu
 Myu
 FS

 0,0000
 0,0000
 26642,5316
 1,52

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \qquad & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \qquad & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{lll} \sigma_{l} & & Tensione \ nell'acciaio, \ espressa \ in \ [MPa] \\ \sigma_{c} & & Tensione \ nel \ calcestruzzo, \ espressa \ in \ [MPa] \\ A_{eff} & & Area \ efficace \ a \ trazione, \ espressa \ in \ [cmq] \\ \epsilon & & Deformazione \ media \ acciaio \ teso, \ espressa \ in \ [°] \\ S_{rm} & & Distanza \ media \ tra \ le \ fessure, \ espresso \ in \ [mm] \\ w & & Ampiezza \ delle \ fessure, \ espressa \ in \ [mm] \\ \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	139

N°	M _X	M_Y	σ_{f}	σ_{c}	A_{eff}	3	S_{rm}	w
3	0,0000	8414,0595	-129,954	-9,078	11137,78	0,0509	227	0,1961
4	0,0000	8414,0595	-129,954	-9,078	11137,78	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 1 - PILE CAP H=7.5m

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,050	9,960	-6,213	2,558	-88,932	26,503	450,000	4
SLFR	3.683	13.695	-11.160	2.558	-159.744	47.607	337.500	3

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]
Comb. Combinazione critica

Sezione n° 1 - PILE CAP H=7.5m

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-129,954	-9,078	1092,260	0,0000	0,000	0,000	0,300	4
SLER	-129,954	-9,078	1092,260	0,0509	226,629	0,196	0,300	3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

LI0B 02 E ZZ CL VI 05 05 001 B 140	LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	140
--	------	----	---	----	----	----	----	----	-----	---	-----

11.5.2 Verifiche a taglio-punzonamento (SLU, SLV)

La verifica a taglio-punzonamento viene condotta, in accordo con i paragrafi descrittivi iniziali, rispetto al palo d'angolo caricato con la massima reazione verticale di V_{Ed} = 6939.9 kN, vedi schemi di calcolo seguenti.

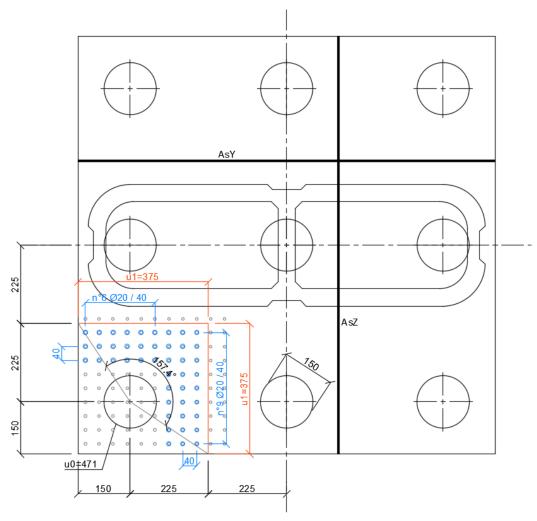


Figura 32 – Schema delle verifiche a taglio-punzonamento per il palo più caricato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	141

NOM	E: PILA	CAP H	7.5m		(CALCOLO	TAGLIO	-PUNZON	IAMENTO	- UNI E	NV 1992	-1-1: 2005		Rev. 10
DATI SEZIO	NE E AF	RMATURI						AZIONE C	ALCOLO		CALCE	STRUZZO		
	(d / m) (m		A_s ρ_l $(\%)$	N _{Ed} (kN)	σ _{cp} (MPa)		V _{ed} (kN)	β		f _{ck} (MPa)	f _{cd} (MPa)	Yc	
direzion direzion	,	41 2,4 39 2,3	,	,	0,0 0,0	0,00 0,00	_	6939,9	1,50	-	24,90	14,11	1,50	
						VERIFICA	A AREA C	CARICATA	(§6.4.5)					
Verifiche a perimetro u	• .			guite sul ordo pilastro		c (m)	u ₀ (m)	V		v _{Ed} (MPa)	v _{Rd,max} (MPa)	v _{Ed} /v _{Rd,max}		
					-	1,50	4,71	0,54	_	0,92	3,81	24,2%	VERIFICA	ОК
VERIFICA S	ENZA A	RMATUF	E TRAS	VERSALI (§6.4.4)									
,	golo setto li verifica			K ₁ k	d (m)	ρ _ι (%)	v _{min} (MPa)	σ _{cp} (MPa)		v _{Ed} (MPa)	v _{Rd,c} (MPa)	v _{Ed} /v _{Rd,c}		
	1	57 1,9	8 0,1	0 1,29	2,40	0,15%	0,26	0,00	_	0,58	0,62	93,4%	VERIFICA	OK
				richiede armatu ale non è richie	_	ıra a taglio			Perimetro A	` .		td,cs)	u ₁ (m)	r _{u1} (m)
•	>	0,3 d A - ≤ F	B d	Ą	T-	< d/2			erimetro		•	NB4c) I	u _{out,ef} (m)	r _{min} (m)
	<u> </u>								ltre 0,75d	,			7,01	2,55
	<u> </u>	≤ 0,75 d			≅ 2 d			. ,				•	iale s, estesa liale s,=1,5d e	

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	142

11.6 VERIFICHE PULVINO

Nel presente paragrafo sono stati eseguite le verifiche strutturali dei pulvini di testa pila sui quali poggiano le travi degli impalcati, considerando le massime azioni di scarico agli appoggi, vedi tabelle di riepilogo delle capacità massime dei dispositivi riportate nel capitolo seguente.

Lo schema statico di verifica prende in considerazione il comportamento trasversale della trave pulvino in accordo alla geometria strutturale delle elevazioni della pila cava sottostante.

Le azioni verticali N_{Ed} e V_{Ed} allo SLU scaricate dai due appoggi affacciati, variabili a seconda della loro tipologia, sono state considerate agenti contemporaneamente ed equilibrate dal sistema di forze accoppiato sotto riportato (modelli tirante – puntone come previsto in ENV 1992 e CEB-FIP Model Code 90).

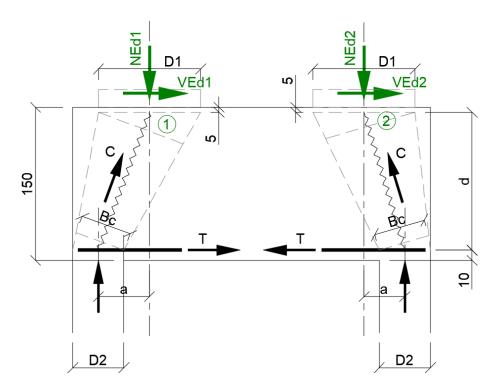


Figura 33 – Schema delle verifiche locali per il pulvino di testa pila

Nel caso in oggetto si è considerato il punto 1 come appoggio (F), dove si ipotizzano contemporaneamente le massime azioni orizzontali longitudinali e verticali, e il punto 2 come appoggio (UL).

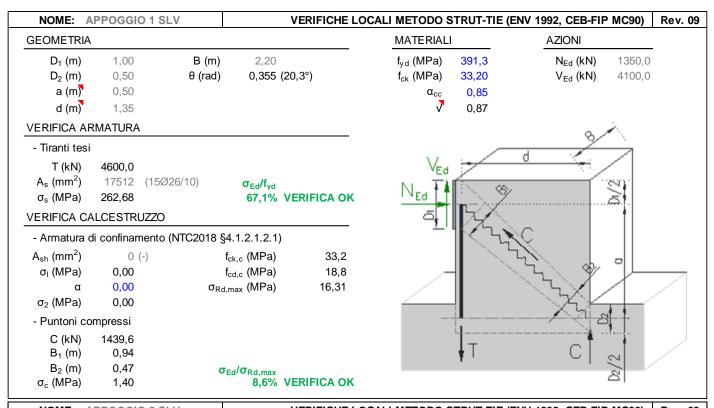
Con armature ad intradosso pulvino di 1° strato 1Ø26/10 + 2° strato 1Ø26/20, si hanno i seguenti rapporti di sfruttamento totali:

Condizioni SLV

Armatura tesa FS = 67.1+7.3 = 74.4% < 100%Calcestruzzo compresso FS = 8.6+8.6 = 17.2% < 100%

Condizioni SLU

Armatura tesa FS = 20.9+18.1 = 39.0% < 100% Calcestruzzo compresso FS = 19.3+21.2 = 40.5% < 100%



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	143

Dato il basso tasso di sfruttamento le verifiche SLE di limitazione delle tensioni e della fessurazione si ritengono automaticamente superate.

NOME: A	PPOGGI	O 2 SLV		VERIFICHE LO	CALI METODO S	TRUT-TIE (E	NV 1992, CEB-FIP	MC90)	Rev. 09
GEOMETRIA					MATERIALI		AZIONI		
D ₁ (m) D ₂ (m)	1,00 0,50	B (m) θ (rad)	2,20 0,355	(20,3°)	f _{yd} (MPa) f _{ck} (MPa)	391,3 33,20	N _{Ed} (kN) V _{Ed} (kN)	1350,0 0,0	
a (m) d (m)	0,50 1,35				α _{cc} √	0,85 0,87			
VERIFICA AF	RMATURA						8/	1	
- Tiranti tesi						_	d /	$\dot{\overline{}}$	
T (kN)	500,0				VEd	-	*** */		
A_s (mm ²)	17512	(15Ø26/10)	σ_{Ed}/f_{yd}		N _{Ed} +			54.	
σ_s (MPa)	28,55		7,3%	VERIFICA OK	, Eq.	<u></u>		ದ	
VERIFICA CA	LCESTRU	JZZO			<u>⊸</u>			11	
- Armatura d	li confinan	nento (NTC2018 §	4.1.2.1.2.1)				Ç I		
A_{sh} (mm ²)	0 ((-)	f _{ck,c} (MPa)	33,2		`_`	4		
σ_l (MPa)	0,00		f _{cd,c} (MPa)	18,8	_	-	\~\\\ \$\\\	_ار	
α	0,00	σ_{R_0}	_{I,max} (MPa)	16,31			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
σ_2 (MPa)	0,00						X		
- Puntoni co	mpressi					1		# +	
C (kN)	1439,6					1-			
B ₁ (m)	0,94					#	C	2	
B ₂ (m)	0,47	O	$\sigma_{\rm Ed}/\sigma_{\rm Rd,max}$					28	
σ_c (MPa)	1,40		8,6%	VERIFICA OK					

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	144

NOME: A	PPOGGIO	1 SLU		VERIFICHE LOC	CALI METODO S	TRUT-TIE (E	NV 1992, CEB-FIP MC	90) Rev. 09
GEOMETRIA					MATERIALI		AZIONI	
D ₁ (m)	1,00	B (m)	2,20	_	f _{vd} (MPa)	391,3	N _{Ed} (kN) 30	050,0
D ₂ (m)	0,50	θ (rad)	0,355	(20,3°)	f _{ck} (MPa)	33,20		300,0
a (m)	0,50				α_{cc}	0,85		
d (m)	1,35				√,	0,87		
VERIFICA AF	RMATURA						a A	
- Tiranti tesi							d ./	7
T (kN)	1429,6				VEd	-	* 	
$A_s (mm^2)$	17512	(15Ø26/10)	σ_{Ed}/f_{yd}					· l
σ_s (MPa)	81,64			VERIFICA OK	NEd	L		
VERIFICA CA	LCESTRU	JZZO			ā, [1	
- Armatura d	li confinam	nento (NTC2018 §4.	.1.2.1.2.1))			Ç	
A_{sh} (mm ²)	0 (-) f _{cl}	_{k,c} (MPa)	33,2		\\ \		
σ _ι (MPa)	0,00	f _c	_{d,c} (MPa)	18,8	_	-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
α	0,00	$\sigma_{Rd,m}$	_{lax} (MPa)	16,31			\\\\\ /	
σ_2 (MPa)	0,00					-		
- Puntoni co	mpressi					1	- X B	-
C (kN)	3252,5					1_		
B ₁ (m)	0,94					#	C N	
B ₂ (m)	0,47	σ_{E_0}	d/σ _{Rd,max}				. 2	
σ_c (MPa)	3,15		19,3%	VERIFICA OK			۵۱	

NOME: A	PPOGGIC	2 SLU		VERIFICHE LO	OCALI METODO S	TRUT-TIE (E	ENV 1992, CEB-FIP MC9	0) Rev. 09
GEOMETRIA					MATERIALI		AZIONI	
D ₁ (m) D ₂ (m) a (m) d (m)	1,00 0,50 0,50 1,35	B (m) θ (rad)	2,20 0,355 ((20,3°)	f _{yd} (MPa) f _{ck} (MPa) α _{cc} √	391,3 33,20 0,85 0,87	N _{Ed} (kN) 335 V _{Ed} (kN)	0,0
VERIFICA AR	RMATURA						a/N	
- Tiranti tesi T (kN) $A_s \; (\text{mm}^2) \\ \sigma_s \; (\text{MPa}) \\ \text{VERIFICA CA}$	1240,7 17512 70,85	(15Ø26/10) JZZO	σ _{Ed} /f _{yd} 18,1%	VERIFICA OK	N _{E0}		D/2	
- Armatura d	di confinam	ento (NTC2018 §4.	1.2.1.2.1)		<u></u> .	ᠰᢅ᠘	₹Ç	
A_{sh} (mm ²) σ_{l} (MPa) σ σ (MPa)	0,00 0,00 0,00	f _{cd}	,c (MPa) ,c (MPa) ax (MPa)	33,2 18,8 16,31			2	
- Puntoni co	mpressi					1		
$\begin{array}{c} C \text{ (kN)} \\ B_1 \text{ (m)} \\ B_2 \text{ (m)} \\ \sigma_c \text{ (MPa)} \end{array}$	3572,4 0,94 0,47 3,46	$\sigma_{\sf Ed}$	/σ _{Rd,max} 21,2%	VERIFICA OK		↓ T	C 2/2	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

l'asse x per condizioni diverse d/a (40)

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	145

12. VERIFICHE LOCALI

12.1 **BAGGIOLI**

Si procede alla verifica del baggiolo tipologico di dimensioni 150x150x30 cm, armato in verticale con 1\(\textit{\textit{Q}} \) 20/10 distribuiti sui lati perimetrali, armato in orizzontale con 1Ø12/10 staffe cerchianti esterne (n°2 braccia per direzione) e 6Ø12/10 ganci interni (n°6 braccia per direzione).

Al fine di mantenere un abbondante margine di sicurezza, i carichi di progetto verticale N_{Ed} ed orizzontale V_{Ed} sono stati ipotizzati come i massimi concomitanti previsti su tutti gli appoggi (F)-(UT)-(UL)-(M), vedi tabelle specifiche, inoltre l'impronta degli appoggi stessi è stata assunta cautelativamente assunta di 80x80 cm.

Le verifiche sono state svolte secondo le indicazioni del CEB-FIP Model Code 90 e secondo quanto riportato in letteratura riquardo gli studi di diffusione delle tensioni di compressione e trazione su un volume generico di calcestruzzo (Leonhardt, 1973).

Per le azioni dell'appoggio si considera una eccentricità addizionale di 5 cm, quindi una centratura non ottimale delle azioni sul volume di calcestruzzo del baggiolo con conseguente riduzione dell'area efficace di

Si sono considerate le armature di cerchiatura come collaboranti per il 0% ai fini dell'aumento della resistenza a compressione del calcestruzzo in zona compressa (Region I), mentre per le tensioni di trazione interna si sono considerate solo le armature trasversali interne (Region II).

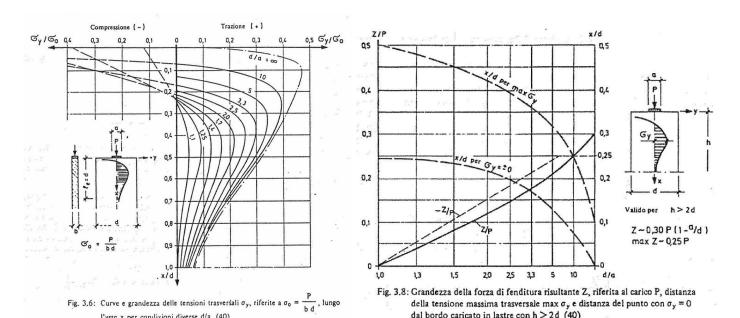


Figura 34 – Grafici da F. Leonhardt, 1973 "Casi speciali di dimensionamento delle strutture in c.a. e c.a.p."

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMES	SSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIO	В	02	Е	ZZ	CL	VI	05	05	001	В	146

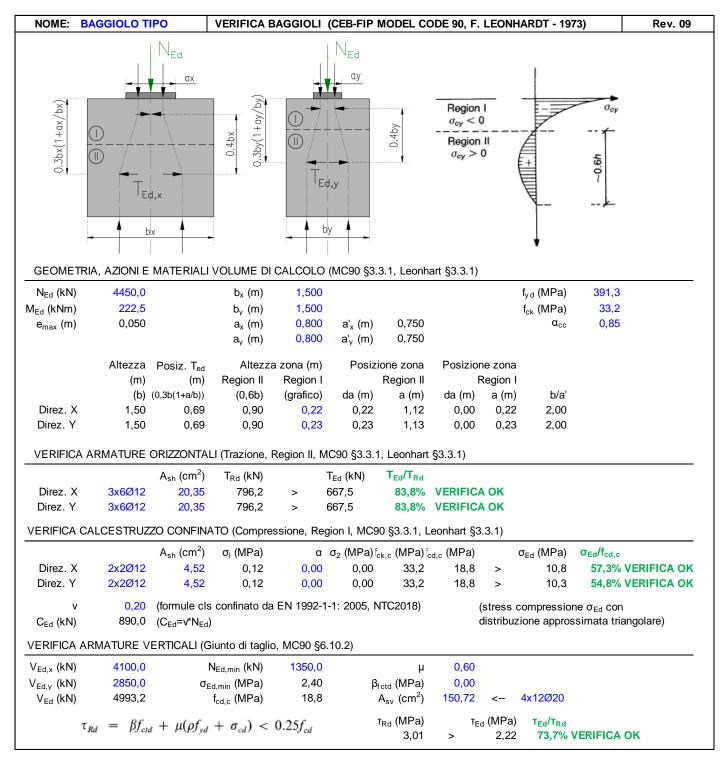


Figura 35 – Baggioli tipo – Verifica del calcestruzzo armato a compressione e trazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ΖZ	CL	VI	05	05	001	В	147

12.2 DEFORMABILITA' PILA

12.2.1 Verifiche sicurezza del binario

Per la sicurezza del binario occorre garantire quanto riportato al §2.5.1.4.5.2-3 del MdP.

"Al fine di garantire la sicurezza del binario rispetto a fenomeni di instabilità per compressione e rottura per trazione della rotaia, nonché rispetto ad eccessivi scorrimenti nel ballast, causa di un suo rapido deterioramento, occorre che vengano rispettati i seguenti limiti sull'incremento delle tensioni nel binario e sugli spostamenti relativi tra binario ed estradosso dell'impalcato o del rilevato. L'incremento massimo consentito di tensione nella rotaia causato dall'interazione binario-struttura prodotta dalle azioni indicate in 2.5.1.4.5.1 sarà assunto pari a:

 $\Delta \sigma c$, max = 60 N/mm2 (per la compressione)

 $\Delta \sigma t$, max = 70 N/mm2 (per la trazione)

Lo spostamento massimo consentito tra estradosso dell'impalcato o del rilevato e la faccia inferiore della traversa dovuto alle sole forze di avviamento e/o di frenatura sarà assunto pari a 5 mm. La verifica di sicurezza del binario, in termini di tensioni e spostamenti, andrà condotta considerando la combinazione caratteristica (rara) del metodo S.L.E., adottando per le azioni di cui al precedente punto 2.5.1.4.5.1 coefficienti yoi=1,0 fermi restando i su esposti limiti di incremento di tensione nella rotaia."

"Gli effetti dell'interazione binario-struttura in termini di azioni longitudinali trasmesse alla sottostruttura (reazioni vincolari negli appoggi fissi), tensioni supplementari nel binario e scorrimenti relativi binario-impalcato, saranno valutati mediante una serie di analisi di simulazione del comportamento del ponte soggetto alle azioni termiche ed ai carichi orizzontali e verticali dei convogli in transito, portando in conto la resistenza ai movimenti longitudinali del binario e la rigidezza della struttura, attraverso un modello di calcolo del tipo riportato in Fig. 2.5.1.4.5.3-1. In alternativa, è possibile effettuare una valutazione semplificata delle reazioni vincolari con il metodo riportato nell'Allegato 3, oppure con il metodo di cui all'Allegato 4 qualora siano rispettate le condizioni ivi elencate. In tal caso il rispetto dei limiti sulle altre grandezze di interesse (tensioni nelle rotaie e spostamenti relativi binario-impalcato) può ritenersi adeguatamente soddisfatto senza specifiche verifiche."

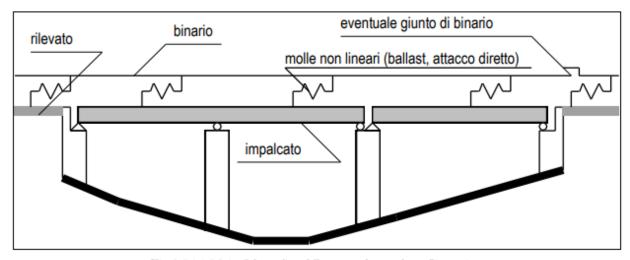


Fig. 2.5.1.4.5.3-1 - Schema di modello strutturale per valutare l'interazione.

Figura 36 – Interazione binario- struttura - Schema generale di calcolo

"ALLEGATO 4 – VALUTAZIONE SEMPLIFICATA DELLE REAZIONI DOVUTE AGLI EFFETTI DI INTERAZIONE, METODO PER SINGOLA LUCE APPOGGIATA

Per una sovrastruttura realizzata con un singolo impalcato (in semplice appoggio) non è necessario il controllo delle tensioni nella rotaia se:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	148

- La sottostruttura ha rigidezza K sufficiente a limitare lo spostamento dell'impalcato in direzione longitudinale dovuto all'avviamento e alla frenatura δ_B , ad un massimo di 5 mm in presenza delle forze longitudinali dovute all'avviamento e alla frenatura definite in 2.5.1.4.3.3; per la determinazione degli spostamenti si raccomanda di prendere in conto la configurazione e le proprietà della struttura date in 2.5.1.4.5.3;
- Per le azioni da traffico verticale lo spostamento longitudinale dell'estradosso dell'impalcato all'estremità dovuto alla deformazione dell'impalcato δH, non supera i 5mm;
- La lunghezza di espansione L_T è minore di 40 m."

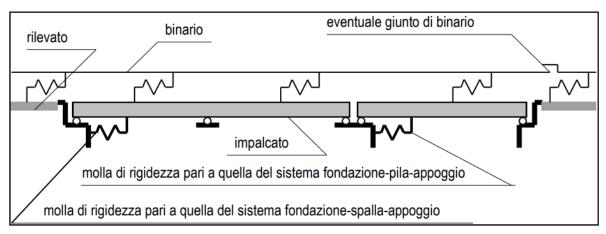


Fig. 2.5.1.4.5.3-3 - Schema di modello strutturale semplificato per valutare l'interazione.

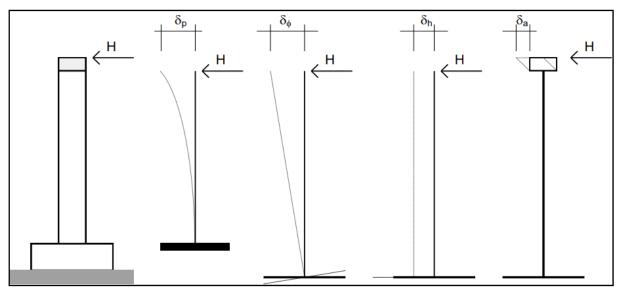


Fig. 2.5.1.4.5.3-4 - Individuazione dei contributi alla deformabilità complessiva del sistema fondazione-pila-appoggio

Figura 37 – Interazione binario- struttura - Schema semplificato di calcolo

Nel caso in oggetto, considerando la massima altezza pila prevista e le valutazioni effettuate nel dimensionamento delle sottofondazioni, alla cui documentazione di calcolo si rimanda per ulteriori dettagli, per la verifica di sicurezza si ha quanto segue.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	149

NOME:	IMPALCAT	O L=25 m	CALCOI	O FORZ	A AVVIAME	NTO / FRENATU	RA	Rev. 00
L calcolo (m)	22,80	Lunghezza tra a	ppoggi		Distanza F	PF/appoggi (m)	3,30	
L (m)	25,00	Lunghezza di bir				55 . ,		
TRENO LM71	e SW/0	Т	RENO SW/2					
α (-)	1,10		α (-)	1,00				
Q _{3,f} (kN)	550,0		Q _{3,f} (kN)	875,0	Forza frer	natura caratt. long	itudinale	Э
$V_{3,f}$ (kNm)	79,6		$V_{3,f}$ (kNm)	126,6	Forza frer	natura caratt. verti	cale	
Q _{3,a} (kN)	907,5		Q _{3,a} (kN)	825,0	Forza aw	iamento caratt. loi	ngitudin	ale
V _{3,a} (kNm)	131,3		V _{3,a} (kNm)	119,4	Forza aw	iamento caratt. ve	rticale	
VERIFICHE S Q _{3,f} (kN)	SICUREZZA 875,0	BINARIO (§2.5.1. Massima azione	,	LM71 o \$	SW/0 o SW	/2		
$Q_{3,a}$ (kN)	907,5	Massima azione	e awiamento p	er LM71	o SW/0 o S	W/2		
H (kN)	1782,5	Massima azione						
I_{L} (m ⁴)	22,60	Inerzia longitudi	nale elevazion	е				
E (MPa)	33346	Modulo elastico	elevazione					
H_{elev} (m)	7,50	Altezza elevazio	one					
K (kN/m)	5359073	$K=(3*E*I_L)/H_{elev}$	3					
δ_p (mm)	0,3	Spostamento de	eformabilità ela	astica ele	vazione	(da calco	lo fonda	zioni)
δ_{φ} (mm)	0,0	Spostamento de	eformabilità ro	tazione fo	ndazione	φ (rad) <mark>0</mark> ,	00001	
δ_h (mm)	1,0	Spostamento de	eformabilità tra	slazione	fondazione	s _h (mm)	1,0	
δ_a (mm)	1,0	Spostamento de	eformabilità ap	poggi		, ,		
$\Sigma \delta_i (mm)$	2,3	Spostamento to		<	5.0 mm	OK VERIFICAT	0	

12.2.2 Effetti del secondo ordine

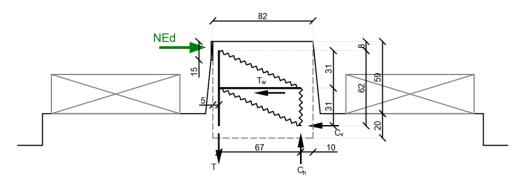
Con riferimento alle valutazioni degli spostamenti orizzontali di testa pila effettuati nella condizione di esercizio SLE RA (verifica di sicurezza del binario) e nella condizione sismica SLV (verifiche escursione giunti), visti i valori trascurabili in relazione alle dimensioni e alla snellezza della sottostruttura, si conferma che gli effetti del secondo ordine dei carichi applicati verticali sono irrilevanti ai fini dei calcoli di dimensionamento.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	150

12.3 RITEGNI


Si verificano i ritegni trasversali e longitudinali alle massime azioni sismiche SLV secondo il modello teorico locale a tirante – puntone, come previsto in ENV 1992 e CEB-FIP Model Code 90.

Nei paragrafi seguenti viene indicata la geometria, lo schema di calcolo, le armature previste e le massime azioni orizzontali N_{Ed} considerate nei vari casi, nell'ipotesi a favore di sicurezza di un'amplificazione delle forze sismiche trasmesse di 1.10 e di spessori strutturali delle superfici di contatto cautelativamente ridotte.

12.3.1 Campata L=25 m

12.3.1.1 Ritegni trasversali

Si considera l'azione N_{Ed} =1.10*2850 = 3135 kN, un'armatura al corrente teso verticale di 1Ø26/10 e un'armatura distribuita interna di staffe/ganci 1Ø20/10/20 ad assorbire le trazioni orizzontali all'interno del ritegno. A favore di sicurezza, si considera un effetto di confinamento delle armature trasversali nullo.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	151

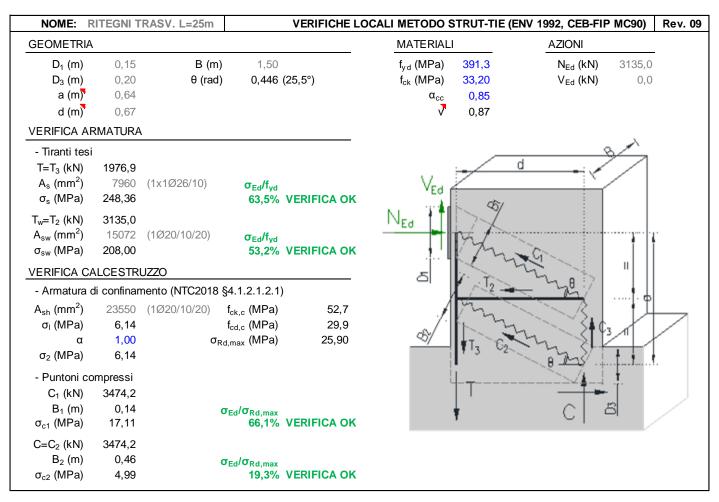
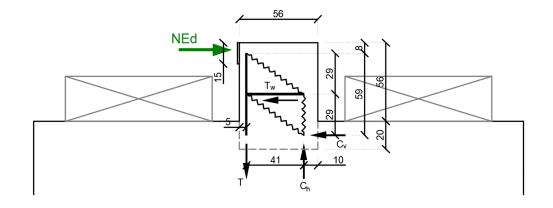



Figura 38 - Schema delle verifiche locali del ritegno trasversale

12.3.1.2 Ritegni longitudinali

Si considera l'azione $N_{Ed}=1.10^*4100=4510$ kN, un'armatura al corrente teso verticale di $2x1\varnothing26/15$ e un'armatura distribuita interna di staffe/ganci $1\varnothing20/10/10$ ad assorbire le trazioni orizzontali all'interno del ritegno. A favore di sicurezza, si considera un effetto di confinamento delle armature trasversali nullo.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	05	05	001	В	152

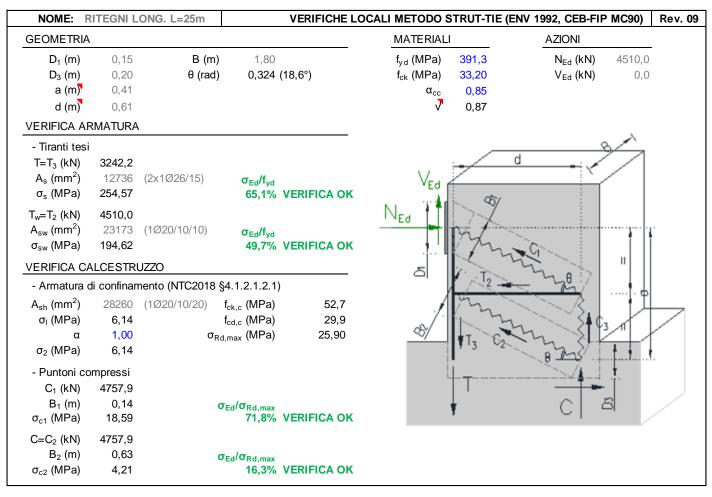


Figura 39 – Schema delle verifiche locali del ritegno longitudinale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

				TIPO DOC		RA 7 DISCIP			REV	
LI0B	กว	F	77	$\mathbf{C}\mathbf{I}$	VI	05	05	001	IR	153

13. RIEPILOGO INCIDENZE C.A.

Dalle verifiche effettuate sugli elementi in c.a. costituenti la sottostruttura in oggetto, si riassumono di seguito i principali valori di incidenza di armature previsti rispetto ai volumi totali di calcestruzzo.

Sottostruttura	Plinto (kg/m²)	Elevazione (kg/m²)			
PILA CAP H=7.5m	140	180	130	350	450

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

				TIPO DOC		OPERA 7 DISCIPLINA			REV	
LI0B	02	E	ZZ	CL	VI	05	05	001	В	154

14. APPOGGI E GIUNTI

14.1 APPOGGI

Gli apparecchi d'appoggio sono dimensionati per le massime azioni statiche orizzontali, trasversali e verticali in condizione statica SLU e sismica SLV, con riferimento all'analisi elastica con q=1.00.

Le massime azioni sismiche assorbite dai vincoli dell'impalcato in CAP L=25 m sono state valutate considerando lo spettro elastico longitudinale o trasversale del primo periodo di vibrazione della pila più sollecitata in condizione sismica, nel caso del viadotto in esame quella di altezza massima H=7.50 m. Tale assunzione risulta a favore di sicurezza anche per le spalle.

Massa efficace longitudinale (kg)	1288603	(Intera campata)
Massa efficace trasversale (kg)	687982	(Mezza campata)
Massa efficace verticale (kg)	687982	(Mezza campata)
Forza sismica longitudinale (kN)	7822	
Forza sismica trasversale (kN)	2831	
Forza sismica verticale (kN)	1181	
Spettro elastico longitudinale Se(T) (g)	0,6187	(vedi calcolo pila CAP H=7.5m)
Spettro elastico trasversale Se(T) (g)	0,4194	
Spettro elastico verticale Sve(T) (g)	0,1750	

IMPALCATO CAP L=25m												
APPOGGI	Ар	poggio (F)		Арр	oggio (UI	L)	Appoggio (M)					
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.			
SLU PERM												
Max (kN)	±Ο	±0	+1350	±0	±0	+1350	±0	±0	+2750			
Min (kN)	±0	±0	+1350	±0	±0	+1350	±0	±0	+2750			
SLU												
Max (kN)	±300	±350	+3050	±0	±650	+3350	±0	±0	+4450			
Min (kN)	-±850	-±50	+950	±0	-±100	+950	±0	±0	+1550			
SLV												
Max (kN)	±4100	±1400	+1350	±0	±2850	+1350	±0	±0	+2300			
Min (kN)	-±3700	-±1400	+650	±0	-±2850	+650	±0	±0	+1350			
TOTALE (kN)	±4100	±1400	±3050	±0	±2850	±3350	±0	±0	±4450			
Spost. Max (mm)	-	-	-	±110	-	-	±110	±5	-			

14.2 ESCURSIONE DEI GIUNTI

In accordo con il p.to 2.5.2.1.5.1 del RFI DTC SICS PS MA IFS 001 A, per ponti e viadotti costituiti da una serie di <u>travi semplicemente appoggiate di uguale luce</u>, l'entità dell'escursione totale dei giunti e degli apparecchi di appoggio può essere valutata come segue:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI05 da km 9+666,20 a km 9+966,20: Relazione di calcolo pila CAP

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	05	05	001	В	155

 $E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2D_t + 4d_{Ed} \cdot k_2 + 2d_{eg})$

E₁ spostamento dovuto alla variazione termica uniforme

E₂ spostamento dovuto alla risposta della struttura all'azione sismica

E₃ spostamento dovuto all'azione sismica fra le fondazioni non collegate

k₁ coefficiente di non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo

k₂ coefficiente legato alla probabilità di moto in controfase di due pile adiacenti

 $d_E = \pm \mu_d \cdot d_{Ee}$ spostamento relativo totale tra le parti, pari allo spostamento de prodotto dall'azione

sismica di progetto, calcolato come indicato nel paragrafo 7.3.3.3 delle NTC 2008

d_{Ee} spostamento corrispondente al periodo di vibrazione della pila ricavato dallo spettro

elastico in termini di spostamento e $\mu_D = q$ per $T_1 \ge T_C$ oppure $\mu_D = 1 + (q-1) \cdot T_C / T_1$ per T_1

< T_C e con la limitazione $\mu_D \le 5q-4$ (q è il fattore di struttura).

d_{eg} spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare

secondo il paragrafo 3.2.3.3 delle NTC 2008. Il valore di spostamento assoluto

orizzontale massimo del suolo di un punto può calcolarsi come $d_g = 0.025 \cdot a_g \cdot S \cdot T_C T_D$

a_g, S, T_C, T_D parametri sismici definiti ai capitoli precedenti

Nel caso in esame si suppone in via cautelativa che tale spostamento assoluto coincida con lo spostamento relativo tra due punti, ossia si sta valutando lo spostamento relativo della fondazione in esame rispetto ad un punto fermo.

NOME: P	ILE CAP H	-7.5m		CALCOLO GIUNTI IMPALCATO (MdP ITF Opere civili 2019)								
SPOSTAM	ENTO (§2.5	.2.1.5.1)	•							•		
1) Termico	uniforme		2) Sismico	strutturale		3) Sismico fo	ondazioni non d	collegate				
E ₁ (mm)	11,3	+	E ₂ (mm)	51,8	+	E ₃ (mm)	174,8	=	E _L (mm)	107,1		
E _⊤ (mm)	±5,6		d _{Ed} (mm)	±23,6		d _{eg} (mm)	±87,4		k_1	0,45		
			k_2	0,55		a _g SLV (g)	0,195		1			
L (mm)	25000		μ_{d}	1,00		S	1,404		Zona sismica	ag<0.25g		
α (1/°Cm)	1,00E-05		q	1,00		T _B (s)	0,181		E ₀ (mm)	130,5		
ΔT (°C)	±22,5		T_1 (s)	0,105		T _C (s)	0,547		1			
						T_D (s)	2,380		E _L (mm) >	E_0 (mm)		
	Sposta	mento si	smico a livell	o giunti:		F_0	2,532		>	E ₁ (mm)		
			d _{Ee} (mm)) 23,6 (da calcoli)					>	E ₂ (mm)		
									>	E_3 (mm)		
CORSA AF	PPOGGI MC	BILI (§2.	5.2.1.5.2)	± (E _L /2 +	Min(E	L/8; 15 mm))	±102 mm		\downarrow			
ESCURSIC	ESCURSIONI GIUNTI (§2.5.2.1.5.3)				10 mr	n)	±97 mm		\downarrow			
			OK	Escurs	ione g	iunti progetto	±110 mm	←	E _L (mm)	174,8		
AMPIEZZA	VARCHI (§	2.5.2.1.5	.4)	V ≥ (E _L /2	2 + 20	mm)	±107 mm					
			ОК	Varce	o impa	lcati progetto	±150 mm					