COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

Mandataria

Mandanti

PROGETTAZIONE:

MANDATARIA

MANDANTI

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTI 2 e 3 - RADDOPPIO TERMOLI – RIPALTA

Opere d'arte maggiori - Ponti e Viadotti ferroviari

VI14 - Viadotto da km 21+912,55 a km 22+037,55

Relazione di calcolo Spalla \$2

L'Appaltatore
Ing. Gianguido Babini

Data Dicembre 2022

A.A.D'AGOSTINO COSTRUZIONI GENERALI S.r.I.
I progettisti (il Direttore della progettazione)
Ing. Massimo Facchini
Data Dicembre 2022

firma

Data Dicembre 2022

firma

COMMESSA LOTTO FASE ENTE TIPO DOC OPERA / DISCIPLINA REV PROGR SCALA 0 2 ZZ0 B 404 002 В Е

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
Α	Prima emissione	Marino	Dicembre 2022	Martignoni	Dicembre 2022	Rinaldi	Dicembre 2022	
					2022		2022	CONFRI
В	Aggiography and DdV	Marino	23/05/23	Martignoni	24/05/23	Rinaldi	25/05/23	THOE DOLL WO
	Aggiornamento per RdV		25/05/25		_ ,,,,,,,			M. Facchini
								Sez A Settler (a) b (c)
								(E) is a region of
								MILANO
File: LI0E	3.0.2.E.ZZ.CL.VI14.0.4.002.B.DOCX	·	·	·	•	·	·	n. Elab.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	1

INDICE

1	PREI	MESSA	3
2. .	DES	CRIZIONE DELL'OPERA	
	2.1	Descrizione della spalla in esame	6
_			_
		UMENTAZIONE DI RIFERIMENTO	
	3.1	Normativa di riferimento	
	3.2	Normativa tecnica nazionale	
	3.3	Manuali ITF	
	3.4	Bibliografia e altri riferimenti	9
4	CAR	ATTERISTICHE DEI MATERIALI	10
	4.1	Calcestruzzo	10
	4.2	Acciaio	11
	4.3	Durabilità	12
_	A DDI		40
		ROCCIO DI CALCOLO	
	5.1 5.2	Caratteristiche delle opere	
		Criteri generali di verifica	
	5.3	Software di calcolo	
	5.4	Validazione programmi di calcolo	20
6	CAR	ATTERIZZAZIONE GEOTECNICA	26
	6.1	Categoria di sottosuolo	26
	6.2	Capacità portante dei pali e stratigrafia di progetto	26
7	Λ NI Λ I	LISI DEI CARICHI	27
	7.1	Azioni permanenti strutturali (G ₁)	
	7.2	Azioni permanenti non strutturali (G ₂)	
	7.3	Ritiro del calcestruzzo (ε ₂)	
	7.4	Spinta del terreno (G ₃)	
	7.5	Azioni variabili verticali (Q)	
	7.6	Azioni Eccezionali (A)	
	7.7	Azioni variabili orizzontali (Q)	
	7.8	Azione del vento (Q_6)	
	7.9	Azione sismica (e)	
		Variazioni termiche (Q ₇)	
		Attrito (Q ₈)	
		Scarichi agli appoggi	
		5 55	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	2

8 CON	MBINAZIONI DI CARICO	83
8.1	Combinazioni di carico adottate	84
9 VER	IFICHE DEGLI ELEMENTI STRUTTURALI	86
9.1	Elementi in cemento armato	86
10.	MODELLO DI CALCOLO	92
11.	ANALISI SPALLA FISSA S2	94
11.1	Azione impalcati	94
11.2	Sollecitazioni elevazione	100
11.3	Sollecitazioni in fondazione	108
11.4	Sollecitazioni muro paraghiaia	117
11.5	Sollecitazioni muro d'ala	121
11.6	Verifiche Muro Frontale	129
11.7	Verifiche plinto fondazione	140
11.8	Verifiche muro d'ala	153
11.9	Verifiche Muro Paraghiaia	165
12.	VERIFICHE LOCALI	171
12.1	Baggioli	171
12.2	Deformabilità spalla	173
12.3	Ritegni	176
13.	RIEPILOGO INCIDENZE C.A.	178
14.	APPOGGI E GIUNTI	179
14.1	Appoggi	179
14.2	Escursione dei giunti	180

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	3

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al raddoppio ferroviario della Linea Bari - Pescara nella tratta Termoli - Ripalta, per uno sviluppo complessivo di 24.930,52 km.

L'opera oggetto delle analisi riportate nei paragrafi seguenti rientra fra quelle inserite nella categoria denominata "OPERE PRINCIPALI – PONTI E VIADOTTI".

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	4

2. DESCRIZIONE DELL'OPERA

La presente relazione ha per oggetto l'analisi e la verifica della Spalla 02 che sostiene la campata in c.a.p. da 25 m del viadotto ferroviario denominato VI14, previsto tra le progressive chilometriche 21+912,55 e 22+037,55.

Il viadotto, avente lunghezza complessiva pari a circa 125m è a doppio binario composto da 5 campate in semplice appoggio da 25 m costituite da quattro travi a cassoncino in c.a.p. preteso. La piattaforma ha una larghezza totale di 13.70 m ed ospita due binari posti ad interasse di 4.0 m.

Figura 1 – Profilo longitudinale VI14

Gli impalcati in c.a.p di campata 25m sono costituiti da quattro travi in C.A.P. a cassoncino prefabbricate (precompressione a fili aderenti) solidarizzate da 4 traversi (2 sull'asse-appoggi e 2 in campata), prefabbricati insieme alle travi e da una soletta superiore in c.a. gettata in opera con una larghezza complessiva pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4 m, in maniera simmetrica rispetto alla mezzeria del viadotto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	5

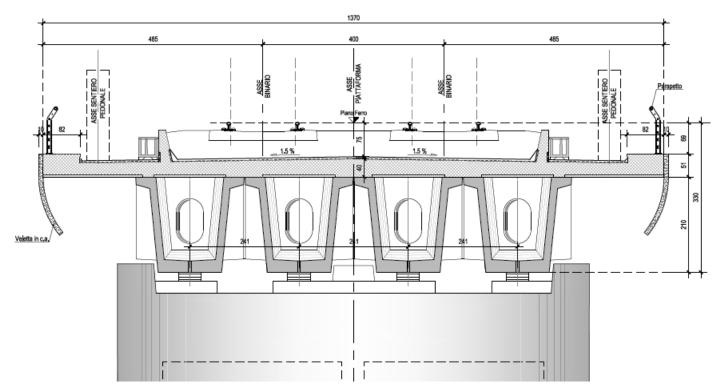


Figura 2 – Sezione trasversale impalcato

Nel presente documento si analizzano alcune delle sottostrutture del viadotto in esame.

					II	MPALCA	ATI			S	ISMA			FOND	AZIONE					
WBS	SPALLE	H _{calcolo}	R _{min}	Lato	L	Ann	Lato	L	Ann	Zona	Categoria	D _{pali}	n _{pali}	Stratia	Liquefaz.	Scalzam.				
							[m]	sx	[m]	Арр.	dx	[m]	Арр.	Sismica	Sottosuolo	[m]	[m]	Stratig.	Liqueraz.	[m]
VI14	S01	5.00	2200	-	-	-	C.a.p.	25	Mobile	S4	В	1.5	12	1	NO	-				
V114	S02	2.50	2200	C.a.p.	25	Fisso	-	-	-	S4	В	1.5	8	8	NO	-				

Tabella 1 - Sintesi delle spalle VI14

Oggetto del presente documento sono quindi le analisi e le verifiche delle spalle, in particolare della spalla S02, relativa all'impalcato in c.a.p.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	14	04	002	В	6

2.1 DESCRIZIONE DELLA SPALLA IN ESAME

Le sottostrutture consistono in due spalle con fondazioni di tipo profondo su pali. La spalla indicata con "S01" è la spalla mobile mentre quella indicata con "S02" è la spalla fissa. Il presente documento contiene le verifiche strutturali e geotecniche della spalla S02.

Di seguito si riportano alcune immagini esplicative delle sottostrutture in esame. Per maggiori dettagli si rimanda agli elaborati grafici di progetto.

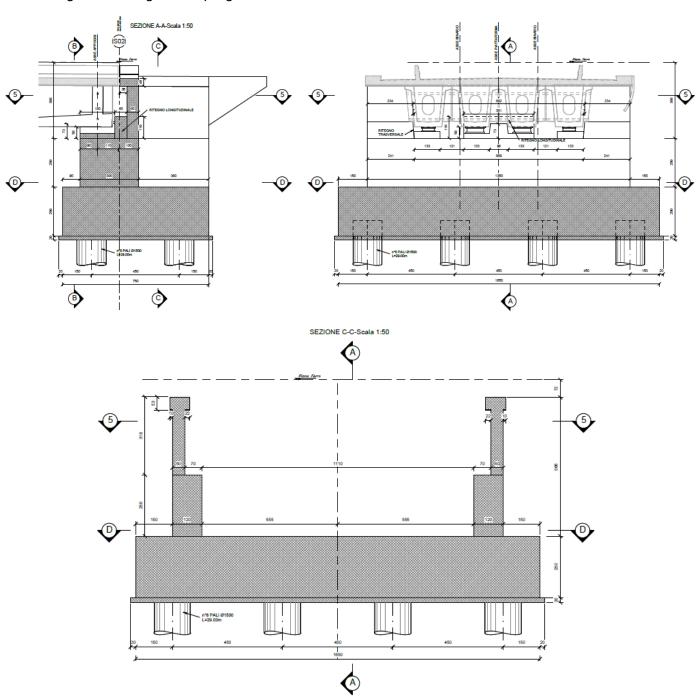


Figura 3 – Sezioni in direzione longitudinale e trasversale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	7

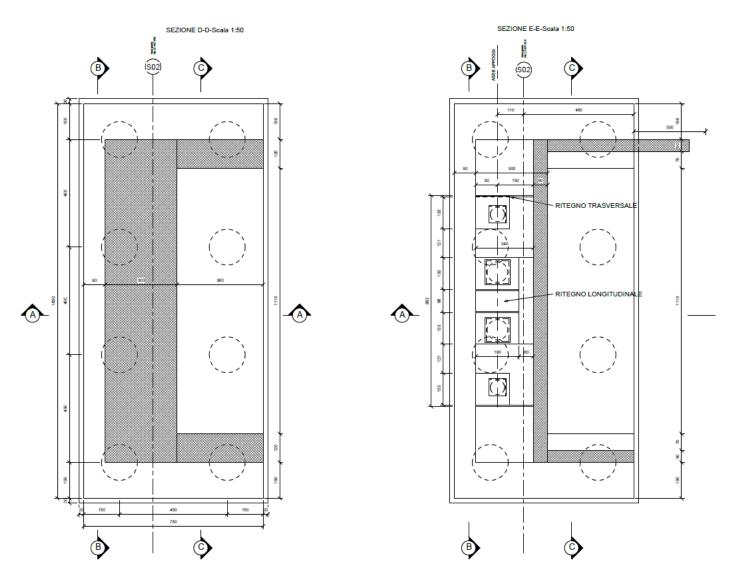


Figura 4 – Vista in pianta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	8

3. DOCUMENTAZIONE DI RIFERIMENTO

3.1 NORMATIVA DI RIFERIMENTO

3.1.1 Specifiche tecniche interoperabilità ferroviarie

[1] Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

3.1.2 Materiali

- [2] UNI 11104: 2016 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206";
- [3] UNI EN 206: 2014 "Calcestruzzo: Specificazione, prestazione, produzione e conformità";

3.1.3 Costruzioni in c.a. e acciaio

Eurocodice 1 - "Azioni sulle strutture"

- [4] UNI EN 1991-1-4:2010 "Parte 1-4: Azioni in generale Azioni del vento";
- [5] UNI EN 1991-1-5:2004 "Parte 1-5: Azioni in generale Azioni termiche";
- [6] UNI EN 1991-1-7:2014 "Parte 1-7: Azioni in generale Azioni eccezionali";
- [7] UNI EN 1991-2:2005 "Parte 2: Carichi da traffico sui ponti";

Eurocodice 2 - "Progettazione delle strutture in calcestruzzo"

- [8] UNI EN 1992-1-1:2015 "Parte 1-1: Regole generali e regole per gli edifici";
- [9] UNI EN 1992-2:2006 "Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi";

Eurocodice 3 - "Progettazione delle strutture in acciaio"

- [10] UNI EN 1993-1-1:2014 "Parte 1-1: Regole generali e regole per gli edifici";
- [11] UNI EN 1993-1-3:2007 "Parte 1-3: Regole generali Regole supplementari per l'impiego dei profilati e delle lamiere sottili piegati a freddo";

3.2 NORMATIVA TECNICA NAZIONALE

- [12] Legge 5 Novembre 1971 n°1086 "Norme per la disciplina delle opere in calcestruzzo cementizio, normale e precompresso ed a struttura metallica";
- [13] Legge 2 Febbraio 1974 n°64 "Provvedimenti per le costruzioni, con particolari prescrizioni per le zone sismiche";
- [14] D.M. 14/01/2008 "Norme tecniche per le costruzioni";

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	VI 14 04		002	В	9

[15] Circolare LL.PP. n°617 02/02/2009 - "Istruzioni per l'applicazione dell'Aggiornamento delle norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008".

3.3 MANUALI ITF

- [16] RFI DTC SI PS MA IFS 001 E Manuale di progettazione delle opere Civili;
- [17] RFI DTC SI SP IFS 001 C Capitolato generale tecnico di Appalto delle opere civili;
- [18] RFI DINIC MA PO 00 001 B Manuale di progettazione Ponti
- [19] RFI DTC ICI PO SP INF 001 A Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari del 12/10/2009
- [20] RFI DINIC MA PO 00 001 C Prescrizioni tecniche per la progettazione esecutiva ponti Vol.1 e vol.2
- [21] RFI DTC INC PO SP IFS 003 A Specifica per la verifica a fatica dei ponti ferroviari
- [22] RFI DTC INC PO SP IFS 005 A Specifica per il calcolo, l'esecuzione e il collaudo e la posa in opera dei dispositivi di vincolo e dei coprigiunti negli impalcati ferroviari e cavalcavia.

3.4 BIBLIOGRAFIA E ALTRI RIFERIMENTI

- [23] Lancellotta R. [1991] " Geotecnica" Edizioni Zanichelli.
- [24] Migliacci F. Mola "Progetto agli stati limite delle strutture in c.a." Masson Italia Editori 1985
- [25] C. Cestelli Guidi "Geotecnica e tecnica delle fondazioni" Ulrico Hoepli Editore 1987
- [26] R. Lancellotta "Geotecnica" Edizioni Zanichelli 1987
- [27] Bowles J.E.: "Foundations Analysis and Design" 4th edition McGraw-Hill New York, 1988
- [28] Bustamante M., Gianeselli L. [1982] "Pile bearing capacity prediction by means of static penetrometer CPT" -. Pr. of the 2th European symposium on penetration testing, Amsterdam.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	10

4. CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

4.1.1 Calcestruzzo per magrone sottofondi

Classe minima C12/15
Classe di esposizione ambientale XC0

4.1.2 Calcestruzzo pali e plinti di fondazione

Classe minima	C25/30		
Classe di esposizione ambientale	XC2		
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 30	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	24.90	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	32.90	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{0.3}$	$^{3} = 31447$	MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	2.56	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	1.79	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γ _C =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC} * f_{ck} / \gamma_{C} =$	14.11	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.19	MPa
Valore ultimo della deformazione a compressione	$\epsilon_{cu} = 3.5 \%$		
Stato limite di esercizio			
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	13.70	MPa
Tensione max di compressione – Comb. Quasi perm.	$\sigma_{c} = 0.40^{*}f_{ck} =$	9.96	MPa

4.1.3 Calcestruzzo parti in elevazione pile, spalle e solettoni

C32/40		
XC4 - XS1		
R_{ck}	≥ 40	MPa
$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa
$f_{cm} = f_{ck} + 8 =$	41.20	MPa
$E_c = 22000*(f_{cm}/10)^{0}$	0.3 = 3364	3 MPa
$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa
$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa
γ _C =	1.5	
$\alpha_{CC} =$	0.85	
$f_{cd} = \alpha_{CC} * f_{ck} / \gamma_{C} =$	18.81	MPa
$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa
$\epsilon_{cu} = 3.5 \%$		
	$ \begin{array}{l} XC4 - XS1 \\ R_{ck} \\ f_{ck} = R_{ck} * 0.83 = \\ f_{cm} = f_{ck} + 8 = \\ E_c = 22000 * (f_{cm} / 10)^{0} \\ f_{ctm} = 0.3 * (f_{ck})^{2/3} = \\ f_{ctk} = 0.7 * f_{ctm} = \\ \\ \\ V_C = \\ \alpha_{CC} = \\ f_{cd} = \alpha_{CC} * f_{ck} / \gamma_C = \\ f_{ctd} = f_{ctk} / \gamma_C = \\ \end{array} $	$\begin{array}{llll} & \text{XC4} - \text{XS1} \\ & R_{ck} & \geq 40 \\ & f_{ck} = R_{ck}{}^*0.83 = & 33.20 \\ & f_{cm} = f_{ck}{}^*+8 = & 41.20 \\ & E_c = 22000{}^*(f_{cm}/10)^{0.3} = 3364 \\ & f_{ctm} = 0.3{}^*(f_{ck})^{2/3} = & 3.10 \\ & f_{ctk} = 0.7{}^*f_{ctm} = & 2.17 \\ & \forall c = & 1.5 \\ & \alpha_{CC} = & 0.85 \\ & f_{cd} = \alpha_{CC}{}^*f_{ck} / \forall c = & 18.81 \\ & f_{ctd} = f_{ctk} / \forall c = & 1.45 \\ & \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	11

Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} = 10$	8.26	MPa
Tensione max di compressione - Comb. Quasi per	rm. $\sigma_c = 0.40^* f_{ck} = 13$	3.28	MPa

4.1.4 Calcestruzzo per baggioli e ritegni

Classe minima	C32/40		
Classe di esposizione ambientale	XC4 – XS1		
Resistenza caratteristica a compressione cubica a 28 gg	R_{ck}	≥ 40	MPa
Resistenza caratteristica a compressione cilindrica	$f_{ck} = R_{ck}^* 0.83 =$	33.20	MPa
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8 =$	41.20	MPa
Modulo elastico	$E_c = 22000*(f_{cm}/10)^{0.3}$	$^{3} = 33643$	3 MPa
Valore medio di resistenza a trazione semplice	$f_{ctm} = 0.3*(f_{ck})^{2/3} =$	3.10	MPa
Resistenza di calcolo a trazione semplice	$f_{ctk} = 0.7*f_{ctm} =$	2.17	MPa
Stato limite ultimo			
Coefficiente parziale di sicurezza	γc =	1.5	
Coefficiente riduttivo per resistenze di lunga durata	$\alpha_{CC} =$	0.85	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{CC}^* f_{ck} / \gamma_C =$	18.81	MPa
Resistenza di calcolo a trazione semplice	$f_{ctd} = f_{ctk} / \gamma_C =$	1.45	MPa
Valore ultimo della deformazione a compressione	$\epsilon_{cu} = 3.5 \%$		
Stato limite di esercizio			
Tensione max di compressione – Comb. Rara	$\sigma_c = 0.55^* f_{ck} =$	18.26	MPa
Tensione max di compressione – Comb. Quasi perm.	$\sigma_{c} = 0.40^{*}f_{ck} =$	13.28	Мра

4.2 ACCIAIO

4.2.1 Acciaio d'armatura in barre per calcestruzzo armato

Tensione caratteristica di rottura a trazione	$f_{tk} =$	≥ 540 MPa
Tensione caratteristica di snervamento a trazione	$f_{yk} =$	≥ 450 MPa
Modulo elastico	E _s =	200000 MPa
Stato limite ultimo		
Coefficiente parziale di sicurezza	γs =	1.15
Resistenza di calcolo	$f_{yd} = f_{yk} / \gamma_S =$	391.30 MPa
Valore ultimo della deformazione a trazione	ϵ_{cu} = 10 ‰	
Stato limite di esercizio		
Tensione max di trazione	$\sigma_{s} = 0.75^{*}f_{yk} =$	337.50 MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	12

4.3 DURABILITÀ

4.3.1 Conglomerati cementizi

Le classi di esposizione e le conseguenti limitazioni sulla composizione del calcestruzzo sono state ricavate ai sensi della normativa UNI EN 206: 2016 e UNI 11104: 2016, delle istruzioni contenute nella C.M. n°7 per l'applicazione delle NTC 2008, a cui si rimanda per ulteriori dettagli.

A seconda dell'esposizione ambientale, per opere con V_N = 50 anni la circolare al punto §C4.1.6.1.3 impone il rispetto dei limiti di copriferro riportati nella tabella successiva.

Per classi di resistenza inferiori a C_{min} i valori sono da aumentare di $\Delta c_{min} = +5$ mm.

Per produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di $\Delta c_{min} = -5$ mm.

A tali valori di tabella vanno aggiunte le tolleranze di posa Δc_{dev}.

Nella norma UNI EN 1992-1-1 sono indicati al §4.4.1.3 i metodi per la valutazione rigorosa dei copriferri in base alla tipologia di armature e altre particolari specifiche di dettaglio previste in progetto.

Nelle tabelle seguenti si indicano i copriferri nominali c_{nom} e i parametri di mix design minimi richiesti dalle normative per ottenere le prestazioni di durabilità minime di progetto.

									Classi di esi	occiziono									
	Nessun						Corrosione		ature indotte							A-1:			
UNI 11104:2016	rischio di corrosione dell'armatura						Acqua di mare Ck			Cloruri provenienti da altre fonti			Attacchi da cicli di gelo/disgelo				Ambiente aggressivo per attacco chimico		
	X0	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3	
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,4	15	0,55	0,50	0,45	0,50	0	,50	0,45	0,55	0,50	0,45	
Minima classe di resistenza	C12/15	C2	5/30	C30/37	C32/40	C32/40	C35	/45	C30/37	C32/40	C35/45	C32/40	C2	5/30	C30/37	C30/37	C32/40	C35/45	
Minimo contenuto in cemento (kg/m³)	-	3	00	320	340	340	36	0	320	340	360	320	3	340	360	320	340	360	
Contenuto minimo in aria (%)												b)		4,0 a)					
Altri requisiti						all	'utilizzo di ceme 'acqua di mare condo UNI 915	a					E' richiesto l'utilizzo di aggregati conformi alla UNI EN 12620 di adeguata resistenza						

ndo UNI CENtrS 12390 -9, UNI CENtrR 15177 0 UNI 7087 per la relativa classe di esposizione. 11 valore minima di aria ingiobata del 4% pub ritenersi adeg

Tabella C4.1.IV - Copriferri minimi in mm

				arre da c.a. enti a piastra		rre da c.a. ri elementi		vi da c.a.p. enti a piastra	cavi da c.a.p. altri elementi		
C _{min}	Co	ambiente	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35	
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45	
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50	

La classe di resistenza minima C_{min} indicata in tabella deve comunque intendersi riferita alla pertinente classe di esposizione di cui alla UNI EN 206:2016 richiamata nella Tabella 4.1.III delle NTC.

nte aumentato (ad esempio 5% per Dupper tra 12 mm e 16 mm). se di esposizione XFI si adotano le specifiche di composizione pre

poper zoutini, per cupper interno misse minital activa opportunatement autherbalo (all exempto the per upper int zi min e) to 1 min.

The area infering opportuno miplegare calcestruzzo aeratio anche in classe de legositione XFI si additato le specifiche del compositione presente per le classi XF2 e XF3.

mendi resistenti ai solfati sono definit dalla UNI EN 1197-1 e su base nazionale dalla UNI 9105, La UNIS1016 classifica i cemendi resistenti ai solfati in tre classifica condenta

La classe de resistenza solfatia del cemento deve eserce prescota in relationa alla classe del esposizione del calcestruzzo secondo il criterio di corrispondenza di

tando si applica il concide di valore ki il rapporto massimo alc e il contenuto minima di cementa sono calcolati in conformita al punto 5.2.2.

Tabella 2 - Prospetto requisiti di mix-design (UNI 11104)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	13

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4 - Condizioni ambientali e classi di esposizione

		DURABILITA' CALCESTRUZZI (UNI EN 206, UNI 11104, UNI EN 1992	2-1-1, NTC2008)	Rev. 00.1
CLASSE DI ESPOSIZIONE				
Corrosione da carbonatazione	XC2	ambiente prevalentemente acquoso o saturo d'acqua, raramente secco	ı.	
		cls a contatto con acqua per lungo tempo. Cls di strutture di contenime ondazioni.	ento acqua. Cls di mo	lte
- Valori raccomandati per il mix-de	esign (UNI EN 206: 2	16)	Mix design	di progetto:
·	•	XC2		XC2
	Rapporto max A/C	0,60		0,6
Classe d	di resistenza minima	C25/30		C25/30
Contenuto minimo	di cemento (kg/m³)	300		300
Contenuto	o minimo di aria (%)	-		-
Aggregati resistenti al gelo	/disgelo (EN 12620)	-		-
Cemento	resistente ai solfati	-		-
Cemento resisten	nte all'acqua di mare	-		_
$c_{min} = max(c_{min,b}; c_{min,dur} + \Delta$	71	_{radd} ; 10 mm) (Formula 4.2 UNI EN 1992-1-1) _{cmin} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1)		
	c _{nom} =	_{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1)	Ac (mm)	10
- Margine di scostamento Δc _{dev} (4	c _{nom} = 4.4.1.3 Annesso italia	_{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1)	Δc _{dev} (mm)	10
- Margine di scostamento Δc _{dev} (4	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre	c _{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1)	Δc_{dev} (mm) $c_{nom,min}$ (mm)	10
- Margine di scostamento Δc _{dev} (- Copriferro minimo per messa in α - Copriferro minimo per aderenza (c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El	c _{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1)	,	
- Margine di scostamento Δc _{dev} (- Copriferro minimo per messa in α - Copriferro minimo per aderenza (- Tipo di acc	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI Elisiaio Ordinario	c _{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1)	c _{nom,min} (mm)	
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26	Formula 4.1 UNI EN 1992-1-1	c _{nom,min} (mm)	
- Margine di scostamento Δc _{dev} (- Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26	c _{min} + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1)	c _{nom,min} (mm)	
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n D _{upper} (n	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26 mm) 25	cmin + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1) 1992-1-1) diametro barra Ø (isolata) o equivalente Øn (raggruppate, vedi §8.9) dimensione max aggregato	c _{nom,min} (mm)	26
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n D _{upper} (n	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26 mm) 25	cmin + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1) 1992-1-1) diametro barra Ø (isolata) o equivalente Øn (raggruppate, vedi §8.9) dimensione max aggregato	c _{nom,min} (mm)	26
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n D _{upper} (n	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26 mm) 25 (Tabella C4.1.IV NTC ente Ordinario	cmin + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1) 1992-1-1) diametro barra Ø (isolata) o equivalente Øn (raggruppate, vedi §8.9) dimensione max aggregato	c _{nom,min} (mm) c _{min,b} (mm)	26
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n D _{upper} (n - Copriferro minimo per durabilità (c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26 mm) 25 (Tabella C4.1.IV NTC ente Ordinario nale 75	cmin + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1) I 1992-1-1) diametro barra Ø (isolata) o equivalente Øn (raggruppate, vedi §8.9) dimensione max aggregato	c _{nom,min} (mm) c _{min,b} (mm)	26
- Margine di scostamento Δc _{dev} (4 - Copriferro minimo per messa in α - Copriferro minimo per aderenza (Tipo di acc Ø (n D _{upper} (n - Copriferro minimo per durabilità (Ambie Vita nomin	c _{nom} = 4.4.1.3 Annesso italia opera su superfici irre (Prospetto 4.2 UNI El ciaio Ordinario mm) 26 mm) 25 (Tabella C4.1.IV NTC ente Ordinario nale 75 e cls NO	Comin + Δc _{dev} (Formula 4.1 UNI EN 1992-1-1) no UNI EN 1992-1-1) golari (4.4.1.3 (4) Annesso italiano UNI EN 1992-1-1) I 1992-1-1) diametro barra Ø (isolata) o equivalente Øn (raggruppate, vedi §8.9) dimensione max aggregato 2008) valori tabella +5 mm C C25/30 Classe di resister	c _{nom,min} (mm) c _{min,b} (mm)	10 26 30

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	14

NOME: ELEVAZIONI	REQUI	SITI DURABILI	TA' CALCESTRU	JZZI (UNI EN 2	206, UNI 11	1104, UNI EN 1992	-1-1, NTC2008)	Rev. 00.
CLASSE DI ESPOSIZIONE								
Corrosione da carbonatazione	xC4	Ambiente d	ciclicamente seco	co e acquoso d	saturo d'a	acqua.		
			•	00		ambiente secco ed ricadono nella clas	l acquoso o saturo d'a	acqua. Cls
Corrosione da cloruri marini	XS1			•			con l'acqua di mare.	
corrosione da ciorum manni	X31		ii ana che traspor ture in zone costi		ianna in as	ssenza di contatto (con racqua di mare.	
			tule ili zone costi	icic.				
Valori raccomandati per il m	ix-design (UNI EN 20	6: 2016)					Mix design of	
			XC4	XS	-			XC4+XS1
01	Rapporto max /		0,50	0,5				0,5
	se di resistenza mini		C32/40 340	34	2/40			C32/40 340
	nimo di cemento (kg/ enuto minimo di aria	,	340	341	U			340
Aggregati resistenti al		. ,	-	_				-
00 0	gelo/disgelo (EN 126 lento resistente ai sol	•	-	_				-
	istente all'acqua di m		_	SI				SI
	•							
		40	, , , , ,	1- 4 0 1 1	U EN 4000			
$c_{min} = max(c_{min,b}; c_{min,du})$	C _{no}	$c_{min} = c_{min} + \Delta c_{de}$	ev (F	Formula 4.2 UN Formula 4.1 UN		•	A. ()	
$c_{min} = max(c_{min,b}; c_{min,du})$	C _{no}	$c_{min} = c_{min} + \Delta c_{de}$	ev (F			•	Δc _{dev} (mm)	10
$c_{min} = max(c_{min,b}; c_{min,du})$ - Margine di scostamento Δc_c	c _{no}	$c_{om} = c_{min} + \Delta c_{de}$ italiano UNI EN	(FI 1992-1-1)	Formula 4.1 UN	II EN 1992	·-1-1)	Δc _{dev} (mm) c _{nom,min} (mm)	10
$c_{min} = max(c_{min,b};c_{min,du}$ - Margine di scostamento Δc_c - Copriferro minimo per messa	c _{no} dev (4.4.1.3 Annesso a in opera su superfic	$c_{om} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4.	(F I 1992-1-1) 1.3 (4) Annesso i	Formula 4.1 UN	II EN 1992	·-1-1)		10
$c_{min} = max(c_{min,b}; c_{min,du})$ - Margine di scostamento Δc_c - Copriferro minimo per messa - Copriferro minimo per aderer	c _{no} dev (4.4.1.3 Annesso a in opera su superfic	$c_{mm} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4.	(F I 1992-1-1) 1.3 (4) Annesso i	Formula 4.1 UN	II EN 1992	·-1-1)	c _{nom,min} (mm)	
$c_{min} = max(c_{min,b}; c_{min,du})$ - Margine di scostamento Δc_c - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di	c _{no} dev (4.4.1.3 Annesso a in opera su superfic nza (Prospetto 4.2 Ul	$c_{om} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1)	(F I 1992-1-1) 1.3 (4) Annesso i	Formula 4.1 UN	N 1992 N 1992-1-1)	·-1-1)	c _{nom,min} (mm)	
c _{min} = max(c _{min,b} ; c _{min,du} - Margine di scostamento Δc _c - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di	c _{no} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 Ul acciaio Ordina	$c_{mm} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro	(F I 1992-1-1) 1.3 (4) Annesso i	Formula 4.1 UN italiano UNI EN o equivalente (N 1992 N 1992-1-1)	·-1-1)	c _{nom,min} (mm)	
$c_{\text{min}} = \text{max}(c_{\text{min,b}}; c_{\text{min,du}})$ - Margine di scostamento Δc_{c} - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di D_{upp}	c _{no} c _{no} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 Ul acciaio Ordina Ø (mm) per (mm)	$c_{m} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro 25 dimensio	(FI 1992-1-1) 1.3 (4) Annesso i) barra Ø (isolata)	Formula 4.1 UN italiano UNI EN o equivalente (N 1992 N 1992-1-1)	·-1-1)	c _{nom,min} (mm)	26
c _{min} = max(c _{min,b} ; c _{min,du} - Margine di scostamento Δc _c - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di D _{upp} - Copriferro minimo per durabi	c _{no} c _{no} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 Ul acciaio Ordina Ø (mm) per (mm)	$c_{m} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro 25 dimensio	(FI 1992-1-1) 1.3 (4) Annesso i) barra Ø (isolata)	Formula 4.1 UN italiano UNI EN o equivalente (N 1992 N 1992-1-1)	·-1-1)	c _{nom,min} (mm) c _{min,b} (mm)	26
 Margine di scostamento Δc_c Copriferro minimo per messa Copriferro minimo per aderer Tipo di D_{upi} Copriferro minimo per durabi A 	c _{no} c _{no} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 Ul acciaio Ordina Ø (mm) per (mm) lità (Tabella C4.1.IV I	$c_{m} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro 25 dimensio	1 1992-1-1) 1.3 (4) Annesso i barra Ø (isolata) ne max aggregati	Formula 4.1 UN italiano UNI EN o equivalente (N 1992 N 1992-1-1)	·-1-1)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	
c _{min} = max(c _{min,b} ; c _{min,du} - Margine di scostamento Δc _c - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di D _{upi} - Copriferro minimo per durabi	c _{not} c _{not} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 UI acciaio Ordina Ø (mm) per (mm) lità (Tabella C4.1.IV I mbiente Aggressivo nominale	$c_{mm} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro 25 dimensio	barra Ø (isolata) ne max aggregati	Formula 4.1 UN italiano UNI EN o equivalente s o	II EN 1992 I 1992-1-1) Øn (raggru¦	-1-1)) ppate, vedi §8.9)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	26
c _{min} = max(c _{min,b} ; c _{min,du} - Margine di scostamento Δc _c - Copriferro minimo per messa - Copriferro minimo per aderer Tipo di D _{upp} - Copriferro minimo per durabi A Vita n	c _{not} c _{not} dev (4.4.1.3 Annesso a in opera su superfice nza (Prospetto 4.2 UI acciaio Ordina Ø (mm) per (mm) lità (Tabella C4.1.IV I mbiente Aggressivo nominale ciale cIs	$c_{m} = c_{min} + \Delta c_{de}$ italiano UNI EN i irregolari (4.4. NI EN 1992-1-1) ario 26 diametro 25 dimensio NTC 2008)	barra Ø (isolata) ne max aggregati	Formula 4.1 UN italiano UNI EN o equivalente 9 o C	NI EN 1992 N 1992-1-1) Øn (raggruµ C32/40	-1-1)) ppate, vedi §8.9)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	26

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	15

	OLI E RITEGNI	REQUISITI	DURABILITA' CALCEST	RUZZI (UNI EN 2	06, UNI 11	<u>1104, UNI</u> EN 1 <u>9</u> 92	-1-1, NTC2008)	Rev. 00.
CLASSE DI ESPO	SIZIONE							
Corrosione da carbo	onatazione	XC4	Ambiente ciclicamente se	ecco e acquoso o	saturo d'a	icqua.		
			Cls in esterni con superfic ciclicamente esposto all'a				•	cqua. Cls
Corrosione da cloru	ıri marini		Ambiente di aria che tras _l Cls di strutture in zone co		narina in as	ssenza di contatto	con l'acqua di mare.	
Valori raccomanda	ati per il mix-desig	ın (UNI EN 206: 2	016)				Mix design d	i progetto:
		,	XC4	XS	1			XC4+XS1
	Ra	apporto max A/C	0,50	0,5	0			0,5
	Classe di re	sistenza minima	C32/40	C3.	2/40			C32/40
Con	ntenuto minimo di	cemento (kg/m³)	340	340)			340
	Contenuto m	inimo di aria (%)	-	-				-
Aggregati res	sistenti al gelo/dis	gelo (EN 12620)	-	-				-
	Cemento res	sistente ai solfati	-	-				-
Ce	mento resistente a	all'acqua di mare	-	SI				SI
	MINALE _{n,b} ; c _{min,dur} + Δc _{du}	71		(Formula 4.2 UN		•	l	
$c_{min} = max(c_{min})$	$_{\rm n,b}$; $c_{\rm min,dur} + \Delta c_{\rm du}$	C _{nom} =	c _{min} + ∆c _{dev}	(Formula 4.2 UN (Formula 4.1 UN		•	Δc _{dev} (mm)	11
c _{min} = max(c _{min}	$_{\rm n,b}$; $_{\rm c_{min,dur}}$ + $_{\rm \Delta c_{du}}$ $_{\rm c_{min,dur}}$ + $_{\rm \Delta c_{dev}}$ (4.4.	c _{nom} = 1.3 Annesso italia	c_{min} + Δc_{dev} ano UNI EN 1992-1-1)	(Formula 4.1 UN	II EN 1992	-1-1)	Δc _{dev} (mm)	10
$c_{min} = max(c_{min})$ - Margine di scosta - Copriferro minimo	$_{\rm n,b}$; $_{\rm c_{min,dur}}$ + $_{\rm \Delta c_{du}}$ $_{\rm c_{min,dur}}$ + $_{\rm \Delta c_{dev}}$ (4.4. per messa in ope	c _{nom} = 1.3 Annesso italia ra su superfici irre	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness	(Formula 4.1 UN	II EN 1992	-1-1)	c _{nom,min} (mm)	
$c_{min} = max(c_{min})$ - Margine di scosta - Copriferro minimo	$_{\rm n,b}$; $_{\rm cmin,dur}$ +	C _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness	(Formula 4.1 UN	II EN 1992	-1-1)		10
$c_{min} = max(c_{min})$ - Margine di scosta - Copriferro minimo	n,b; C _{min,dur} + Δc _{du} mento Δc _{dev} (4.4. per messa in ope per aderenza (Pro Tipo di acciaio	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1)	(Formula 4.1 UN	II EN 1992 I 1992-1-1)	-1-1)	c _{nom,min} (mm)	
$c_{min} = max(c_{min})$ - Margine di scosta - Copriferro minimo	$_{\rm n,b}$; $_{\rm cmin,dur}$ +	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario) 26	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness	(Formula 4.1 UN to italiano UNI EN	II EN 1992 I 1992-1-1)	-1-1)	c _{nom,min} (mm)	
c _{min} = max(c _{min} - Margine di scosta - Copriferro minimo - Copriferro minimo	mento Δc_{dev} (4.4. per messa in ope per aderenza (Pro Tipo di acciaio \varnothing (mm) D_{upper} (mm)	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario) 26) 25	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1) diametro barra Ø (isolat dimensione max aggreg	(Formula 4.1 UN to italiano UNI EN	II EN 1992 I 1992-1-1)	-1-1)	c _{nom,min} (mm) c _{min,b} (mm)	
c _{min} = max(c _{min} - Margine di scosta - Copriferro minimo - Copriferro minimo	$_{ m n,b}$; $_{ m c_{min,dur}}$ + $_{ m \Delta c_{du}}$ mento $_{ m \Delta c_{dev}}$ (4.4. per messa in ope per aderenza (Pro-Tipo di acciaio $_{ m (mm)}$ $_{ m D_{upper}}$ (mm) per durabilità (Tab	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario) 26) 25	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1) diametro barra Ø (isolat dimensione max aggreg	(Formula 4.1 UN to italiano UNI EN	II EN 1992 I 1992-1-1)	-1-1)	c _{nom,min} (mm)	21
c _{min} = max(c _{min} - Margine di scosta - Copriferro minimo - Copriferro minimo	$_{ m n,b}$; $_{ m c_{min,dur}}$ + $_{ m \Delta c_{du}}$ mento $_{ m \Delta c_{dev}}$ (4.4. per messa in ope per aderenza (Pro-Tipo di acciaio $_{ m (mm)}$ $_{ m D_{upper}}$ (mm) per durabilità (Tab	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El Ordinario) 26) 25 pella C4.1.IV NTC e Aggressivo	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1) diametro barra Ø (isolat dimensione max aggreg	(Formula 4.1 UN to italiano UNI EN	II EN 1992 I 1992-1-1)	-1-1)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	20
c _{min} = max(c _{min} - Margine di scosta - Copriferro minimo - Copriferro minimo - Copriferro minimo	mento Δc _{dev} (4.4. per messa in ope per aderenza (Pro Tipo di acciaio Ø (mm) D _{upper} (mm) per durabilità (Tab	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario) 26) 25 oella C4.1.IV NTC e Aggressivo	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1) diametro barra Ø (isolat dimensione max aggreg	(Formula 4.1 UN so italiano UNI EN sa) o equivalente gato	II EN 1992 I 1992-1-1) Øn (raggru∣	-1-1) opate, vedi §8.9)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	21
- Margine di scosta - Copriferro minimo - Copriferro minimo - Copriferro minimo - Copriferro minimo	n,b; C _{min,dur} + Δc _{du} mento Δc _{dev} (4.4. per messa in ope per aderenza (Pro Tipo di acciaio Ø (mm) D _{upper} (mm) per durabilità (Tab Ambiente Vita nominale	c _{nom} = 1.3 Annesso italia ra su superfici irre ospetto 4.2 UNI El o Ordinario) 26) 25 oella C4.1.IV NTC e Aggressivo e 75 s SI	c _{min} + Δc _{dev} ano UNI EN 1992-1-1) egolari (4.4.1.3 (4) Anness N 1992-1-1) diametro barra Ø (isolat dimensione max aggreg 2008) valori tabella +5 mm	(Formula 4.1 UN so italiano UNI EN sa) o equivalente 6 gato	II EN 1992 I 1992-1-1) Øn (raggru _l C32/40	-1-1) opate, vedi §8.9)	c _{nom,min} (mm) $c_{min,b} (mm)$ $c_{min,dur} (mm)$	20

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	16

5. APPROCCIO DI CALCOLO

5.1 CARATTERISTICHE DELLE OPERE

Le opere oggetto della presente relazione sono state progettate e calcolate secondo i metodi della scienza delle costruzioni, adottando per le verifiche il criterio degli stati limite (S.L.).

I criteri generali di sicurezza, le azioni di calcolo e le caratteristiche dei materiali sono stati assunti in conformità con il D.M. 14.01.2008 – "Norme tecniche per le costruzioni" e relativa circolare esplicativa (Circolare 02.02.2009 n. 617/C.S.LL.PP.).

Con riferimento alle NTC, per le opere in oggetto si considerano i seguenti parametri di calcolo:

Vita nominale $V_N = 75$ anni

(§ 2.4.1 "Costruzioni con livelli di prestazioni ordinari")

Classe d'uso III

(§ 2.4.2, "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.

Dighe rilevanti per le conseguenze di un loro eventuale collasso.")

Coefficiente d'uso $C_U = 1.5$

Periodo di riferimento $V_R = V_N \cdot C_U = 112.5$ anni

5.2 CRITERI GENERALI DI VERIFICA

In accordo con quanto definito nel §2.3 delle NTC 2008, devono essere svolte le verifiche di sicurezza e delle prestazioni attese per Stati Limite Ultimi (SLU) e Stati Limite d'Esercizio (SLE) secondo opportune combinazioni di carico delle azioni.

5.2.1 Combinazioni di carico

Come riportato al §2.5.3 delle NTC 2008, si considerano le seguenti combinazioni delle azioni:

 $V_{G_1} \cdot G_1 + V_{G_2} \cdot G_2 + V_P \cdot P + V_{Q_1} \cdot Q_{k_1} + V_{Q_2} \cdot \Psi_{0_2} \cdot Q_{k_2} + V_{Q_3} \cdot \sum_{i=3}^n \Psi_{0i} \cdot Q_{k_i}$

Combinazione fondamentale SLU

 $G_1+G_2+P+Q_{k1}+\Psi_{02}\cdot Q_{k2}+\sum_{j=3}^n \Psi_{0j}\cdot Q_{kj}$

Combinazione caratteristica rara SLE

 $G_1+G_2+P+\Psi_{11}\cdot Q_{k1}+\sum_{i=2}^n \Psi_{2i}\cdot Q_{ki}$

Combinazione frequente SLE

 $G_1 + G_2 + P + \sum_{j=1}^{n} \Psi_{2j} \cdot Q_{kj}$

Combinazione quasi permanente SLE

 $E+G_1+G_2+P+\sum_{j=1}^{n}\Psi_{2j}\cdot Q_{kj}$

Combinazione sismica SLE e SLU

 $G_1+G_2+P+A_d+\sum_{i=1}^{n}\Psi_{2i}\cdot Q_{ki}$

Combinazione eccezionale SLU

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali

P precompressione e pretensione Q_{ki} masse dei carichi accidentali

E azione sismica A_d azione eccezionale

ψ₀, ψ₁, ψ₂ coefficienti di contemporaneità delle azioni (Tab.. 2.5.I oppure Tab.. 5.1.VI per i ponti stradali

e Tab.. 5.2.VII per i ponti ferroviari)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	17

5.2.2 Stati limite ultimi

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione:

 $R_d \ge E_d$ (Eq. 2.2.1)

E_d = E(F_d; X_d; a_d) valore di progetto della domanda, funzione dei valori di progetto delle azioni (F_d)

e dei valori nominali delle grandezze geometriche della struttura interessate (a_d)

R_d = R(F_d; X_d; a_d) capacità di progetto in termini di resistenza, duttilità e/o spostamento della

struttura, funzione delle caratteristiche meccaniche dei materiali che la compongono (X_d) e dei valori nominali delle grandezze geometriche interessate

 (a_d)

 $F_d = \gamma_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ proprietà del materiale di progetto a_d parametri geometrici di progetto

γ_M coefficiente parziale di sicurezza del materiale

Nelle verifiche agli stati limite ultimi si distinguono:

stato limite di equilibrio come corpo rigido: EQU

stato limite di resistenza della struttura compresi gli elementi di fondazione: STR

stato limite di resistenza del terreno: GEO

5.2.3 Strutture non geotecniche

Fatte salve le prescrizioni specifiche e con riferimento alle tabelle seguenti, per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, i valori dei coefficienti parziali γ_F da assumersi per la determinazione degli effetti delle azioni per le verifiche di equilibrio (SLU EQU) sono quelle della colonna EQU mentre per le verifiche strutturali (SLU STR) sono quelle della colonna A1.

Tab. 5.2.IV -Valutazione dei carichi da traffico

	V HEREINGSTOVEC HE						
TIPO DI CARICO	Azioni v	erticali		Azioni orizzont	ali		
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,0	•	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6;0,4)	0,8		0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione	

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali.

I valori campiti in grigio rappresentano l'azione dominante.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	18

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	ente		EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γG2	0,00 1,50	0,00 1,50	0,00 1,30
Ballast ⁽³⁾	favorevoli sfavorevoli	YΒ	0,90 1,50	1,00 1,50	1,00 1,30
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25
Azioni variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Precompressione	favorevole sfavorevo- le	γP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tabella 6 - Coefficienti parziali per le azioni nelle verifiche SLU (NTC 2008) - Ponti ferroviari

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		ψ ₀	ψ1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

^{(5) 1,30} per instabilità in strutture con precompressione esterna

^{(6) 1,20} per effetti locali

Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	19

5.2.4 Strutture geotecniche

Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche strutturali (SLU STR) e geotecniche (SLU GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi.

Approccio 1

Le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali per le azioni (γ_F), la resistenza dei materiali (γ_M) e eventualmente la resistenza globale del sistema (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti della colonna A1 per una *Combinazione 1* e i coefficienti della colonna A2 per una *Combinazione 2*.

In tutti i casi, sia nei confronti del dimensionamento strutturale che per quello geotecnico si deve utilizzare la combinazione più gravosa fra le due precedenti.

Approccio 2

Le verifiche si conducono con un'unica combinazione dei gruppi di coefficienti parziali per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e eventualmente per la resistenza globale (γ_R).

In tale approccio nelle rispettive tabelle di combinazione si impiegano i coefficienti γ_F riportati nella colonna A1.

Per ogni stato limite per perdita di equilibrio (SLU EQU), come definito al §2.6.1, impiegando come fattori parziali per le azioni i valori γ_F riportati nella colonna EQU della tabella 6.2.I, deve essere rispettata la condizione:

 $E_{inst,d} \le E_{stb,d}$

E_{inst,d} valore di progetto dell'azione instabilizzante E_{stb,d} valore di progetto dell'azione stabilizzante

Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (SLU STR) o del terreno (SLU GEO), come definiti al §2.6.1, impiegando diverse combinazioni di gruppi di coefficienti parziali per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3), deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F^*F_k; X_k/\gamma_M; a_d)$ valore di progetto dell'azione

 $E_d = \gamma_E * E(F_k ; X_k/\gamma_M ; a_d)$ valore di progetto dell'effetto dell'azione

 $R_d = 1/\gamma_R * R(\gamma_F * F_k ; X_k/\gamma_M; a_d)$ valore di progetto della resistenza del sistema geotecnico

 $F_d = \gamma_F^* F_k$ azioni di progetto

 $X_d = X_k/\gamma_M$ parametri geotecnici di progetto a_d parametri geometrici di progetto

γ_E coefficiente parziale di sicurezza sugli effetti delle azioni

γ_M coefficiente parziale di sicurezza del materiale

γ_R coefficiente parziale di sicurezza globale sulle resistenze

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	20

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	ΥG1	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	8,0	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Tabella 8 - Coefficienti parziali per le azioni nelle verifiche SLU (NTC 2008) - Strutture geotecniche

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 9 - Coefficienti parziali per le resistenze nelle verifiche SLU (NTC 2008) - Strutture geotecniche

5.2.5 Stati limite di esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 del [14], la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $C_d \ge E_d$ (Eq. 2.2.2)

 $E_d = E(F_d; X_d; a_d)$ valore di progetto dell'effetto delle azioni

 $C_d = C(F_d; X_d; a_d)$ valore limite di progetto associato a ciascun aspetto di funzionalità esaminato

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

Il prescritto valore limite dell'effetto delle azioni deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

5.2.6 Stati limite ultimi e di esercizio sismici

Con riferimento al §3.2.1 delle NTC 2008, nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

Gli Stati limite di esercizio (SLE) comprendono:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	21

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Con riferimento al §3.2.1 delle NTC 2008, per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto. Le verifiche degli *elementi strutturali primari (ST)* si eseguono, come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU):

- nel caso di <u>comportamento strutturale non dissipativo</u>, in termini di *rigidezza (RIG)* e di *resistenza (RES)*,
 senza applicare le regole specifiche dei dettagli costruttivi e della progettazione in capacità;
- nel caso di comportamento strutturale dissipativo, in termini di rigidezza (RIG), di resistenza (RES) e di duttilità (DUT) (quando richiesto), applicando le regole specifiche dei dettagli costruttivi e della progettazione in capacità.

Le verifiche degli elementi strutturali secondari si effettuano solo in termini di duttilità, mentre le verifiche degli elementi non strutturali (NS) e degli impianti (IM) si effettuano in termini di funzionamento (FUN) e stabilità (STA), come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU).

Per le verifiche dettagliate di ogni parte strutturale si rimanda al capitolo §7 delle NTC 2018.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
-	LI0B	02	Н	ZZ	CL	VI	14	04	002	В	22

Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti

		CUI		CU II			CU III e IV	
STATI	LIMITE	ST	ST NS		IM	ST	ST NS	
CIT	SLO					RIG		FUN
SLE	SLD	RIG	RIG			RES		
CIII	SLV	RES	RES	STA	STA	RES	STA	STA
SLU	SLU		DUT(**)			DUT ^(**)		

^(°) Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

Tabella 10 – Schema delle verifiche da attuare per gli elementi strutturali primari in base alla tipologia, allo stato

^(**) Nei casi esplicitamente indicati dalle presenti norme.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	23

5.3 SOFTWARE DI CALCOLO

Sono stati utilizzati i programmi di calcolo elencati nel seguito. La scrivente ha esaminato preliminarmente la documentazione a corredo dei software per valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. Tale documentazione, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati. Il sottoscritto, inoltre, ha verificato l'affidabilità dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.3.1 Analisi strutturale generica

Titolo:

Caratteristiche: Programma di calcolo strutturale agli elementi finiti che esegue il calcolo di strutture

spaziali composte da elementi mono e/o bidimensionali anche con non linearità di

materiale o con effetti dinamici

Autore: G + D Computing Pty Limited - Sidney NSW 2000 Australia

Distribuzione: HSH srl - Padova Italia

Versione: 2.4.6

5.3.2 Verifiche sezioni strutturali

Titolo:

Caratteristiche: Programma per la verifica di sezioni generiche Autore: Aztec Informatica – Casole Bruzio, Cosenza

Distribuzione: Aztec Informatica S.r.l.

Versione: 10.05a

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	24

Titolo:

Sezione generica in C.A. e C.A.P. VERIFICHE A PRESSO-FLESSIONE Stato Limite Ultimo Metodo n

Progetto a flessione e taglio di sezione rettangolare

Progetto pilastri in zona sismica

Il modulo Progetto Sezione Rettangolare è stato sviluppato nella tesi di laurea dell'Ing. Davide Pari (2001)

Il modulo Sismica è stato parzialmente sviluppato nella tesi di laurea degli Ingg. Alberto Antonini e Giovanni Tanghetti (2006)

by Prof. Piero Gelfi

VERSIONE 7.8 (novembre 2021)

Aggiornamnento sviluppato da Ing. Paolo Bertacchini con il supporto dell'Ordine degli Ingegneri della Provincia di Brescia. Supervisione Prof. Giovanni Metelli.

free distribution

vietata la vendita

Caratteristiche: Programma per la verifica di sezioni generiche

Autore: Prof. Piero Gelfi
Distribuzione: Distribuzione libera

Versione: 7.8

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	25

5.4 VALIDAZIONE PROGRAMMI DI CALCOLO

5.4.1 Analisi e verifiche svolte con l'ausilio di codici di calcolo

Ai sensi del §10.2 delle NTC 2008 si dichiara quanto segue.

5.4.2 Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di più codici di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. Per quanto riguarda i criteri di modellazione e le caratteristiche dei programmi utilizzati si rimanda ai relativi paragrafi.

5.4.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità. La documentazione fornita dai produttori dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza dei codici di calcolo sono garantite attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

5.4.4 Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

5.4.5 Informazioni generali sull'elaborazione

I software prevedono una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

5.4.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	26

6. CARATTERIZZAZIONE GEOTECNICA

6.1 CATEGORIA DI SOTTOSUOLO

Dalle indagini sismiche (M5) è possibile determinare la categoria di sottosuolo di riferimento per la definizione dell'azione sismica; per l'opera in esame si assume una categoria di sottosuolo B.

6.2 CAPACITÀ PORTANTE DEI PALI E STRATIGRAFIA DI PROGETTO

Vedi relazioni di calcolo di verifica pali.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Н	ZZ	CL	VI	14	04	002	В	27

7. ANALISI DEI CARICHI

7.1 AZIONI PERMANENTI STRUTTURALI (G1)

Nome	γ _G	ψο	Ψ1	Ψ2
	(Fav / Sfav)			
PP (cat. G ₁)	1.00 / 1.30	-	-	
PP (ponti stradali)	1.00 / 1.35	-	-	-

Per gli elementi in c.a. si considera un peso specifico $\gamma_c = 25$ kN/m³, per gli elementi in acciaio $\gamma_s = 78.5$ kN/m³.

Le azioni permanenti strutturali comprendono il peso proprio delle travi e il peso proprio della soletta.

Per il peso proprio delle travi di lunghezza 24.30 m, si considera un valore pari a 35 kN/m.

Per il peso proprio della soletta, si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 25 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
PP travi	35	35	35	35
PP soletta	52	4	4	52

Reazioni totali appoggio	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G ₁)	1075	475	475	1075

7.2 AZIONI PERMANENTI NON STRUTTURALI (G2)

Nome	Υ G (Fav / Sfav)	Ψο	Ψ1	Ψ2
PP (ponti ferroviari)	1.00 / 1.50	-	-	-

Per le valutazioni sul calcolo degli scarichi agli appoggi delle singole campate si fa riferimento all'analisi dei carichi impalcato, che sono ricavate del modello locale usato per l'analisi della soletta, riportate sulla relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m.

Si considera una distribuzione tra le travi secondo la loro posizione trasversale e lunghezza dell'impalcato 25 m. Per valutare gli scarichi agli appoggi delle singole campate, si fa riferimento al modello locale usato per l'analisi trasversale della soletta, vedi relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m, di cui in seguito si riporta un riepilogo degli scarichi e le reazioni totali sui singoli appoggi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	28

7.2.1 Ballast (G_{2,1})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Ballast	26	40	40	26

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R₄ [kN]
PP (cat. G _{2,1})	325	500	500	325

Inoltre, sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal peso del cassonetto di ballast, di larghezza circa 9.00 m, spessore 0.80 m e peso specifico 20 kN/m³.

Si valuta come carico permanente associato una pressione uniforme mediata sulla larghezza della spalla di 13.50 m, come di seguito esposto:

G2 = (0.80*20*8.2)/(13.50) = 9.72 kPa

Si ha pertanto una spinta a riposo distribuita sull'altezza libera fuori terra della spalla e di larghezza pari alle elevazioni spalle.

7.2.2 Velette (G_{2,2})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Velette	18	-11	-11	18

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R₄ [kN]
PP (cat. G _{2,1})	225	-138	-138	225

7.2.3 Arredi (G_{2,3})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Arredi	34	-18	-18	34

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	425	-225	-225	425

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	29

7.2.4 Barriere antirumore (G_{2,4})

Nome	R ₁ [kN/m]	R ₂ [kN/m]	R ₃ [kN/m]	R ₄ [kN/m]
Barriere	46	-26	-26	46

Azione totali	R ₁ [kN]	R ₂ [kN]	R ₃ [kN]	R ₄ [kN]
PP (cat. G _{2,1})	575	-325	-325	575

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	30

7.3 RITIRO DEL CALCESTRUZZO (E2)

Nome	Tipo	Υ ε2	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
RITIRO (ponti ferroviari)	Ritiro, viscosità,	EQU 0.00 / 1.20	-	-	-
	cedimenti imposti	(A1) 0.00 / 1.20			
		(A2) 0.00 / 1.00			

Dato che il ritiro dipende dal tempo di maturazione del calcestruzzo, dalla resistenza e dalle condizioni ambientali, gli effetti possono evidenziarsi sia in fase di costruzione sulla sezione mista composta da due materiali di diverso modulo elastico (ritiro primario) sia a lungo termine sulla statica globale dell'impalcato (ritiro secondario).

Nel primo caso l'accorciamento primario della soletta determina l'insorgenza di tensioni di scorrimento all'interfaccia soletta-trave e uno stato di pressoflessione della sezione mista.

Nel secondo caso l'accorciamento secondario della soletta determina l'insorgenza di reazioni iperstatiche sulla statica globale dell'impalcato.

Nel caso in cui l'impalcato presenti uno schema isostatico, il ritiro secondario viene interamente assorbito dalle sezioni resistenti longitudinali con l'insorgenza di sole deformazioni cinematiche e nessuna tensione aggiuntiva, pertanto tale azione non viene trattata direttamente per il calcolo delle sottostrutture in oggetto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	31

7.4 SPINTA DEL TERRENO (G₃)

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

Nome	Tipo	γ _{G1}	Ψο	Ψ1	Ψ2
		(Fav / Sfav)			
TERRENO, FALDA	Permanente	EQU 0.90 / 1.10 (A1) 1.00 / 1.30 (A2) 1.00 / 1.00	-	-	-

Le condizioni di spinta sono assunte in base agli spostamenti delle pareti, ovvero del grado di mobilitazione necessario per innescare il regime di spinta, vedi a riguardo le indicazioni contenute nell'EC7.

Table C.1 — Ratios v_s/h

Kind	lof	v₂/h	v₂/h							
wall	movement	loose soil	dense soil							
		%	%							
a)	V _a	0,4 to 0,5	0,1 to 0,2							
b)	V _a =	0,2	0,05 to 0,1							
c)	V _a	0,8 to 1,0	0,2 to 0,5							
d)	V ₂	0,4 to 0,5	0,1 to 0,2							
where v _a h										

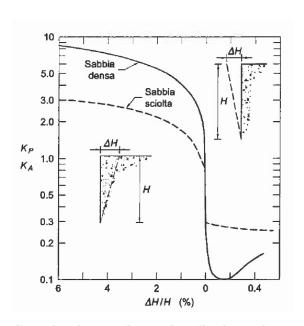


Figura 5 - Spostamenti relativi muro-terreno necessari per il raggiungimento di un regime di spinta attiva secondo EC7 Annex C e Lancellotta (1999)

7.4.1 Spinta a riposo

La spinta statica totale sulla parete S_{0h} si calcola secondo le seguenti relazioni:

$$S_{0h} = \int_{0}^{H} \sigma_h(z) dz$$

spinta a riposo statica totale sul muro

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	32

$$\sigma_h(z) = \sigma_v(z)^* k_0$$

pressione orizzontale di spinta del terreno

Per piano campagna orizzontale si fa riferimento alla seguente correlazione (Jaky, 1944 e Schmidt, 1966):

$$k_o = 1-sen(\phi')*OCR^{\alpha}$$

$$OCR = 1$$

grado di sovraconsolidazione

$$\alpha = 0.5$$

Per pendio inclinato (β) si può considerare che la spinta a riposo sia parallela al p.c. e che il coefficiente k_o valga:

$$k_o = (1-sen(\phi')*OCR^{\alpha})*(1+sen \beta)$$

$$\beta = 0$$

angolo inclinazione tra profilo e piano orizzontale

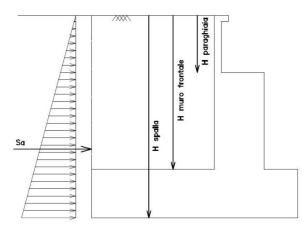


Figura 6: Schema per il calcolo degli effetti della spinta statica del terreno

7.4.2 Spinta attiva

Il coefficiente di spinta attiva (Ka) viene valutato ricorrendo alla correlazione generale di Mueller-Breslau basata sulla teoria di Coulomb e riferita a superfici di rottura piane. In questo caso l'approssimazione (rispetto a quanto si sarebbe ottenuto considerando superfici di rottura di geometria complessa) risulta molto contenuta e a favore di sicurezza.

La spinta attiva statica totale sulla parete S_{ah} si calcola secondo le seguenti relazioni:

$$S_{ah} = \int_0^H \sigma_h(z) dz$$

spinta attiva statica totale sul muro

$$K_{a} = \frac{\text{ser}^{2}(\psi + \phi)}{\text{ser}^{2}\psi \cdot \text{ser}(\psi - \delta)\!\!\left[1 + \sqrt{\frac{\text{ser}(\phi + \delta) \cdot \text{ser}(\phi - \beta)}{\text{ser}(\psi - \delta) \cdot \text{ser}(\psi + \beta)}}\right]^{2}}$$

coefficiente di spinta attiva

$$\sigma_{h}(z) = \sigma_{h}(z) \cdot K_{a} - 2 \cdot c \cdot \sqrt{K_{a}}$$

$$\sigma_{v}(z)$$
H
$$\phi$$

$$\delta = 0$$

pressione orizzontale di spinta del terreno pressione verticale del terreno altezza della parete di spinta angolo attrito del terreno attrito tra terreno e parete

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	33

 $\Psi = 90^{\circ}$ β

С

angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale coesione del terreno

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni, viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma' = \gamma_{sat} - \gamma_w$$

γ_{sat} peso di volume saturo del terreno (dipendente dall'indice dei pori)

γ_w peso di volume dell'acqua

 $S_{ah} = \int_0^H \sigma'_h(z) dz + E_{ws} + E_{wd}$ spinta attiva statica totale efficace sul muro

 $\sigma'_h(z) = \sigma'_h(z) \cdot K_a - 2 \cdot c \cdot \sqrt{K_a}$ pressione orizzontale di spinta efficace del terreno

 $\sigma'_{\nu}(z)$ pressione verticale efficace del terreno

 $\begin{array}{cc} E_{ws} & \text{spinta idrostatica} \\ E_{wd} & \text{spinta idrodinamica} \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	34

7.5 AZIONI VARIABILI VERTICALI (Q)

7.5.1 Azioni da traffico ferroviario (Q₁)

Nome	Tipo	γα		Ψο	Ψ1	Ψ2
		(Fav / Sfav)				
AZIONI VERTICALI	Variabili	EQU 0.00 / 1.45	Singole	0.80	0.50	0.00
	da traffico	(A1) 0.00 / 1.45	gr.1	0.80	0.80	0.00
	ferroviario	(A2) 0.00 / 1.25	gr.2	-	-	-
			gr.3	0.80	0.80	0.00
			gr.4	1.00	1.00	0.00

Si considerano i sovraccarichi ferroviari in accordo al $\S5.2.2.3$ delle NTC2008, per mezzo di diversi modelli di carico rappresentativi delle tipologie di traffico ferroviario, normale o pesante. I valori dei suddetti carichi saranno poi moltiplicati per un coefficiente di adattamento α , variabile in ragione della tipologia dell'infrastruttura (ferrovie ordinarie, ferrovie leggere, metropolitane, ecc.).

Per i requisiti S.T.I. imposti sulla tratta ferroviaria in progetto, per le categorie di traffico passeggeri P2/P4 il coefficiente $\alpha = 1.0$ e per le categorie merci F1 il coefficiente $\alpha = 1.0$.

Nei dimensionamenti per le opere in oggetto, rimanendo a favore di sicurezza, si considerano i coefficienti imposti dalle NTC2008, superiori o uguali a quelli S.T.I., come descritto nei paragrafi successivi per i singoli modelli di carico.

Tabella 11
Fattore alfa (α) per la progettazione di strutture nuove

Tipo di traffico	Valore minimo del fattore alfa (α)		
P1, P2, P3, P4	1,0		
P5	0,91		
P6	0,83		
P1520	Punto in sospeso		
P1600	1,1		
F1, F2, F3	1,0		
F4	0,91		
F1520	Punto in sospeso		
F1600	1,1		
	'		

Figura 7 – Specifiche Tecniche di Interoperabilità (S.T.I.) - Requisiti carichi da traffico ferroviario

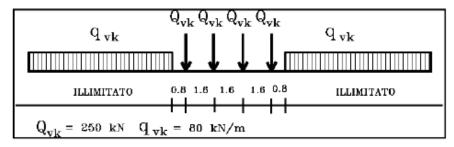
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	35

7.5.1.1 Modello di carico LM71

Il treno LM71 è schematizzato da n°4 assi da 250 kN su una lunghezza di 6.40 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una lunghezza illimitata.



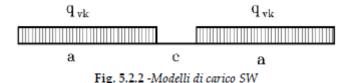

Fig. 5.2.1 - Modello di carico LM71

Figura 8 – Schema treno di carico LM71

Per questo modello è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s per tenere conto dello spostamento dei carichi. Per s=1435 mm risulta pari a s/18=80 mm. Per la progettazione di ferrovie ordinarie il valore del coefficiente di adattamento è α =1.1.

7.5.1.2 Modello di carico SW

Per tale modello di carico, sono considerate due distinte configurazioni, il modello di carico SW/0 schematizza gli effetti statici prodotti dal traffico ferroviario normale per travi continue (utilizzato solo per travi continue qualora più sfavorevole dell'LM71), il modello di carico SW/2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

Tab. 5.2.I - Caratteristiche Modelli di Carico SW

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]	
SW/0	133	15,0	5,3	
SW/2	150	25.0	7.0	

Figura 9 – Schema treno di carico SW

Il valore del coefficiente di adattamento da adottarsi nella progettazione delle ferrovie ordinarie è pari, rispettivamente, a α =1.1 per il modello di carico SW/0 ed a α =1.0 per il modello di carico SW/2.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	36

7.5.1.3 Effetti dinamici

Le azioni statiche dei modelli di carico devono essere incrementate per tenere conto della natura dinamica del transito dei convogli, gli effetti di amplificazione dinamica dovranno valutarsi:

- per le usuali tipologie di ponti e per velocità di percorrenza non superiore a 200 km/h, quando la frequenza propria della struttura ricade all'interno del fuso indicato nella figura seguente è sufficiente utilizzare i coefficienti dinamici Φ definiti in §5.2.2.2.3 D.M. 14/01/2008. Come riportato in § 2.5.1.4.2.5.2 del MdP, si adotta il coefficiente dinamico Φ₃=1.00 poiché si sta studiando il comportamento di una spalla;
- per le usuali tipologie di ponti, ove la velocità di percorrenza sia superiore a 200 km/h e quando la frequenza propria della struttura non ricade all'interno del fuso indicato nella figura seguente, e comunque per le tipologie non convenzionali (ponti strallati, ponti sospesi, ponti di grande luce, ponti metallici difformi dalle tipologie in uso in ambito ferroviario, ecc.) dovrà effettuarsi una analisi dinamica adottando convogli "reali" e parametri di controllo specifici dell'infrastruttura e del tipo di traffico ivi previsto, per ulteriori dettagli fare riferimento alle valutazioni contenute nella relazione di calcolo degli impalcati presenti sulla sottostruttura in oggetto.

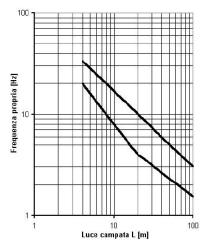
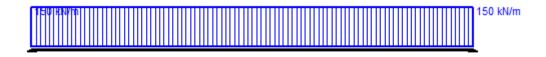



Fig. 5.2.7 - Limiti delle frequenze proprie no in Hz in funzione della luce della campata

Figura 10 – Limiti frequenze proprie per il calcolo del coefficiente dinamico Φ

7.5.1.4 Calcolo per campata L=25 m

Gli effetti sui singoli impalcati indotti dalle azioni da traffico, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Е	ZZ	CL	VI	14	04	002	В	37

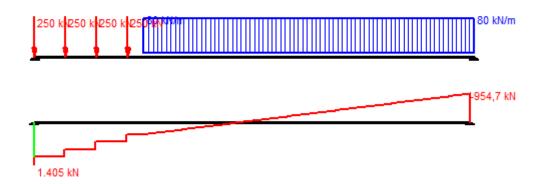



Figura 11 - Condizione di massimo taglio all'appoggio - Modello di carico SW/2

$$\begin{split} V_{max} &= 1695 \text{ kN} \\ q'_{V} &= V_{max} \text{ / (L/2)} = 1695 \text{ / (22.60/2)} = 150.0 \text{ kN} \\ Q_{1} &= \Phi_{3}^{*} \alpha^{*} q'_{V}^{*} \text{L/2} = 1.00^{*} 1.00^{*} 150.0^{*} 22.60/2 = 1695.0 \text{ kN} \end{split}$$

(Q1_SW/2 B1)
Carico equivalente tagliante
Azione verticale applicata con e=+2.00 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	38

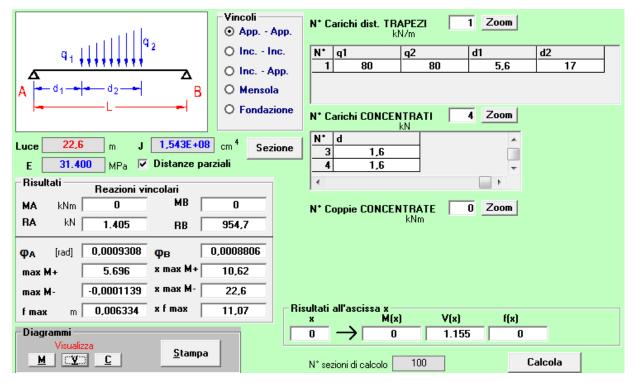


Figura 12 - Condizione di massimo taglio all'appoggio - Modello di carico LM71

 $V_{max} = 1405 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 1405 / (22.60/2) = 124.3 \text{ kN}$

 $Q_1 = \Phi_3^* \alpha^* q'_V^* L/2 = 1.00^* 1.10^* 124.3^* 22.60/2 = 1545.1 \text{ kN}$

 $V_{max} = 1405 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 1405 / (22.60/2) = 124.3 \text{ kN}$

 $Q_1 = \Phi_3 \alpha^* \alpha' \alpha' L/2 = 1.00 1.10 124.3 22.60/2 = 1545.1 \text{ kN}$

(Q1_LM71 B1)

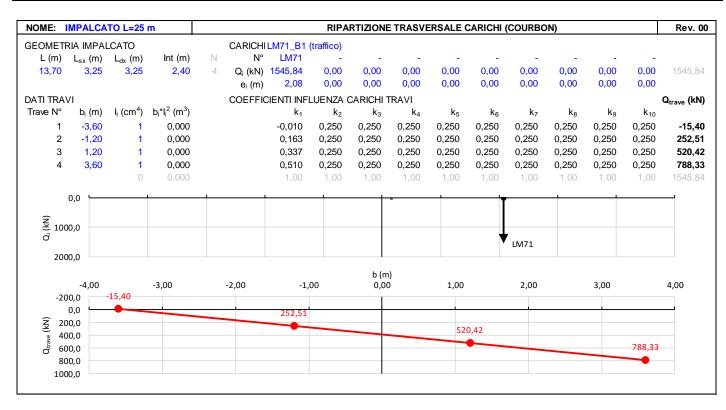
Carico equivalente tagliante

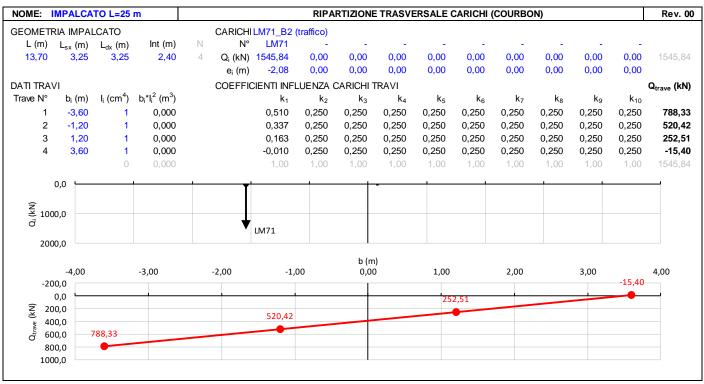
Azione verticale applicata con e=+2.08 m

(Q1_LM71 B2)

Carico equivalente tagliante

Azione verticale applicata con e=-2.08 m


Le precedenti azioni vengono rigidamente distribuite alla Courbon calcolando in prossimità degli appoggi trave le reazioni verticali di equilibrio.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	39



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	40

7.5.1.5 Decentramento dei carichi in tracciato curvilineo

Ai fini del calcolo delle sottostrutture, per un tracciato di lunghezza L=25 m, raggio massimo ipotetico di R=2200 m, si ha un decentramento del carico pari a circa e= $R-\sqrt{(R^2-L^2/4)}=0,035$ m; pertanto, si ritiene tale effetto trascurabile in relazione alle dimensioni geometriche della sezione di appoggio.

7.5.1.6 Carichi sui marciapiedi

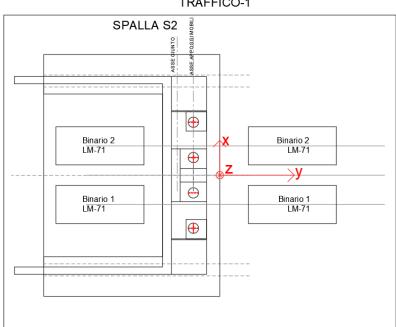
In accordo al punto 5.2.2.3.2, il carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e viene quindi utilizzato solo per le verifiche locali della soletta di impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	41

7.5.1.7 Numero di treni contemporanei


Nella progettazione andrà considerata l'eventuale contemporaneità di più treni, in genere sia per traffico normale (LM71) sia per traffico pesante (SW/2). Le azioni da traffico considerano una configurazione in campata, davanti alla spalla, in cui si massimizza il taglio all'appoggio.

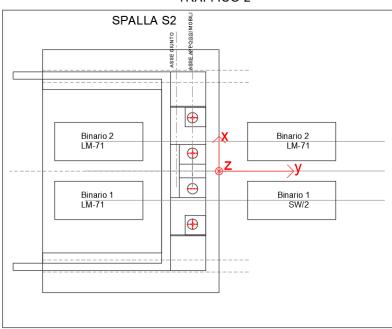
Dietro la spalla si è considerato un sovraccarico da traffico generato dalla presenza del treno di carico LM71 su entrambi binari dietro la spalla, che si considera in contemporaneo alla presenza dei treni di carico in campata.

Le condizioni da traffico in campata valutate per le spalle sono descritte in seguito:

- Traffico-1: Due treni di carico in contemporaneo: LM71 sul binario 1 "+" LM71 sul binario 2.
- Traffico-2: Due treni di carico in contemporaneo: SW2 sul binario 1 "+" LM71 sul binario 2
- Traffico-3: Un treno di carico: SW2 sul binario 1.

Nella figura successiva vengono riportati gli schemi considerati:

TRAFFICO-1



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	42

TRAFFICO-2

TRAFFICO-3

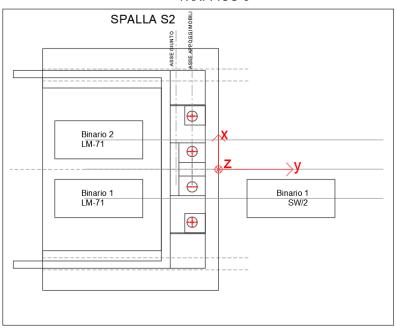


Figura 13 – Schemi di contemporaneità dei treni sui binari

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	43

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

Numero	Binari	Traffico	normale	
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
23	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Figura 14 – Carichi mobili da considerare nel caso di strutture a più binari

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	44

7.6 AZIONI ECCEZIONALI (A)

7.6.1 Deragliamento al di sopra del ponte

In accordo col §2.5.1.5 del Manuale di progettazione delle opere civili, parte II – sezione 2 – ponti e strutture, che riprende il contenuto del §5.2.2.9.2 delle NTC08, oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere si dovrà tenere conto della possibilità alternativa che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto.

7.6.1.1 Impalcato in c.a.p. di luce L=25 m

7.6.1.1.1 Caso 1

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Tali carichi saranno posizionati longitudinalmente su una lunghezza di 6,40 m. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12. Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

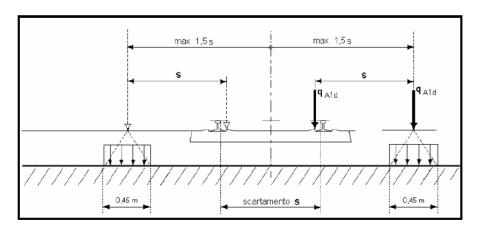
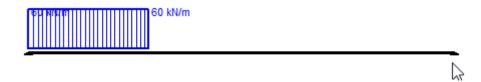



Figura 5.2.12 - Caso 1

Figura 15 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 1

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	45

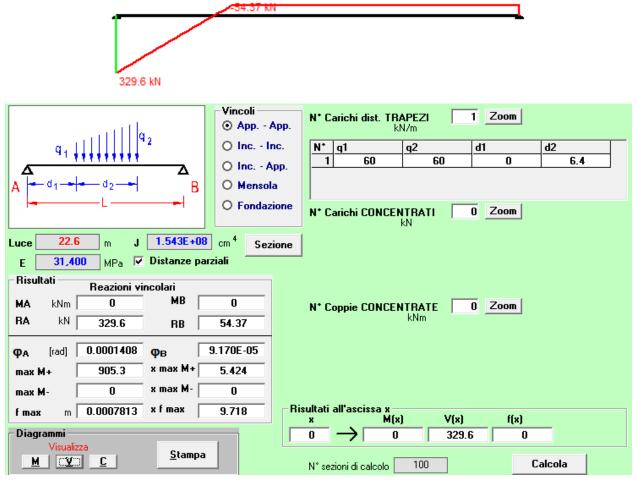


Figura 16 – Deragliamento al di sopra del ponte – Caso 1

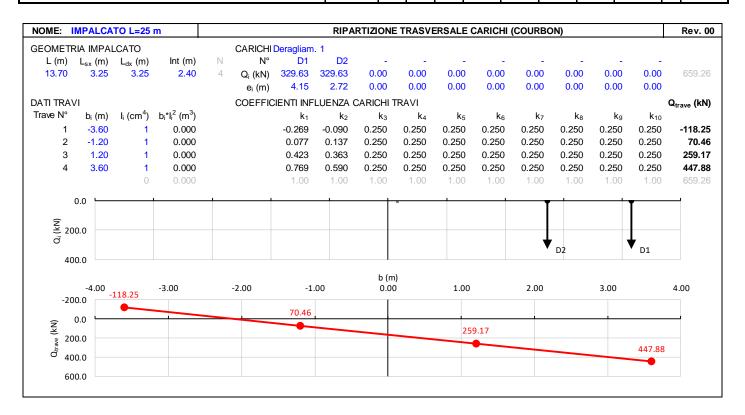
 $V_{max} = 329.6 \text{ kN}$

 $q'_V = V_{max} / (L/2) = 330 / (22.60/2) = 29.2 \text{ kN/m}$

 $Q_1 = q'_{V} L/2 = 29.2 22.60/2 = 329.60 \text{ kN}$

 $Q_1 = q'_V L/2 = 29.2 22.60/2 = 329.60 kN$

Carico equivalente tagliante


Azione verticale applicata e=+2.00+1.435*1.5=4.15 m Azione verticale applicata e=+2.00+1.435*0.5=2.72 m

| RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA | LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	46

7.6.1.1.2 Caso 2

Si considera un unico carico lineare $q_{A2d} = 80 \text{ kN/m} \times 1.4$ esteso per 20,00 m e disposto con una eccentricità massima, lato esterno, di 1,50 s rispetto all'asse del binario (Fig. 5.2.13). Per questa condizione convenzionale di carico andrà verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta, ecc. Per impalcati metallici con armamento diretto, il caso 2 dovrà essere considerato solo per le verifiche globali.

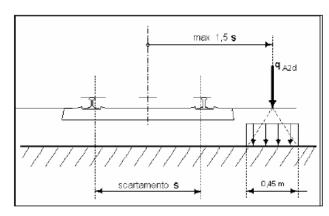


Figura 5.2.13 - Caso 2

Figura 17 – Azione eccezionale da traffico ferroviario – Deragliamento al di sopra del ponte – Caso 2

Gli effetti sui singoli impalcati indotti dalle azioni da traffico vengono valutati nella condizione di massimo taglio all'appoggio mediante dei carichi equivalenti taglianti, come di seguiti riportato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	47

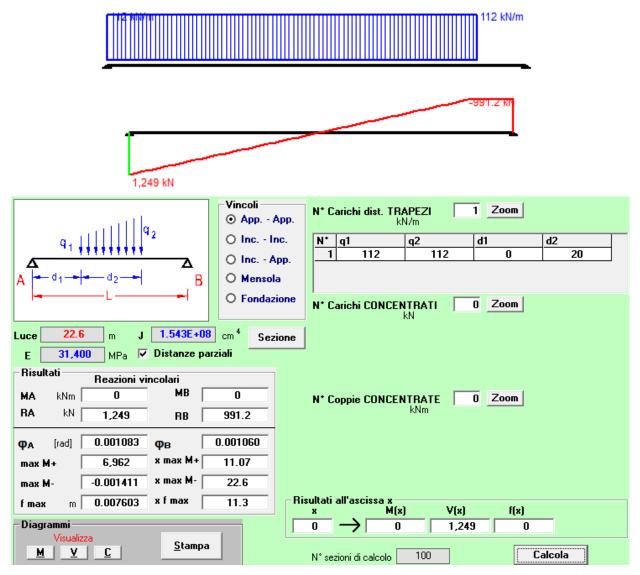
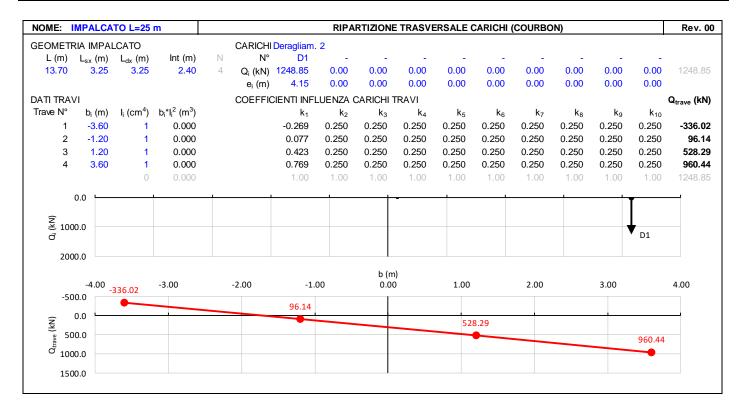


Figura 18 - Deragliamento al di sopra del ponte - Caso 2

 $V_{max} = 1248.8 \text{ kN}$

 $q'_{V} = V_{max} / (L/2) = 1248.8 / (22.60/2) = 110.5 \text{ kN/m}$ Carico equivalente tagliante

 $Q_1 = q'_V L/2 = 110.5*22.60/2 = 1248.8 \text{ kN}$


Azione verticale applicata e=+2.00+1.435*1.5=4.15 m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	48

7.6.1.1.3 Effetti sulla sottostruttura

Dato che le condizioni di carico previste sono da considerarsi solo per le verifiche eccezionali SLU con coefficiente unitario, mediante analisi preliminari si è accertato che tali combinazioni di azioni sollecitano la sottostruttura all'interno del campo di esercizio delle combinazioni SLU; pertanto, per brevità di trattazione non sono state direttamente esplicitate nei calcoli di dimensionamento dei capitoli successivi.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	49

7.7 AZIONI VARIABILI ORIZZONTALI (Q)

7.7.1 Azioni da traffico ferroviario (Q₁)

Sopra il profilo di monte della spalla si applicano le pressioni verticali derivanti dal transito ferroviario esterno. Come da normativa, si ipotizza come larghezza totale transitabile il tratto di profilo dove i carichi possono interagire con l'opera di sostegno, ovvero al di sopra della fondazione e all'interno del cuneo di spinta del terreno sulla parete.

Considerando caricati entrambi i binari, si valuta come carico accidentale associato una pressione uniforme media, come di seguito esposto:

 $q = \frac{1}{L_T \cdot L_L} \cdot \sum_1^n Q_i$ pressione uniforme media sull'area caricata $L_T^*L_L$

L_L = 6.40 m lunghezza longitudinale interessata dai carichi

(lunghezza fondazione di monte spalla, comprensiva del cuneo di spinta del

terreno)

L_T = 13.50 m larghezza trasversale transitabile (larghezza spalla)

Spalla S2

q = 1/(6.40*13.50)*(4*250)*2 = 23.15 kPa

Si ha pertanto una spinta a riposo distribuita sull'altezza libera fuori terra della spalla e di larghezza pari alle elevazioni spalle.

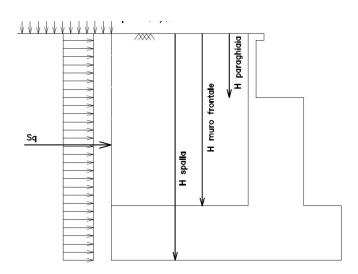


Figura 19: Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	50

7.7.1.1 Azione da traffico ferroviario sul muro paraghiaia

Al fine della valutazione degli effetti locali dei carichi verticali ferroviari sul muro paraghiaia è necessario operare una distribuzione degli stessi in direzione trasversale, eseguendo una diffusione del carico, a partire dalla larghezza della traversina ed ¼ attraverso la massicciata, per una lunghezza pari a:

b = (0.80-0.26)/4 * 2 + 2.40 = 2.67 m

laddove si sono considerate le seguenti caratteristiche geometriche:

	[m]
Altezza ballast	0.80
Altezza traversina	0.26
Larghezza traversina	2.40

Si considerano i carichi relativi al modello SW/2 visto che rappresentano una condizione più gravosa rispetto al modello di carico LM71, i cui vengono distribuiti secondo lo schema di Fig. 5.2.4 al §5.2.2.3.1.4 delle NTC2008.

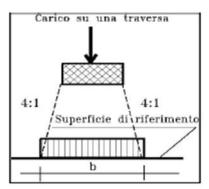


Fig. 5.2.4 - Distribuzione longitudinale dei carichi attraverso il ballast

In accordo con quanto riportato al par. 7.5.1 della presente relazione, si moltiplicano i valori dei carichi per il coefficiente di adattamento, ottenendo quindi:

TRENO SW/2 Q1 = 150 kN/m * 1.0 = 150.00 kN/m

Valore amplificato del carico longitudinale qvk

L'eccentricità non è da considerarsi per il caso di treno di carico SW/2, per il quale quindi si effettua la ripartizione semplicemente dividendo il valore q1 per la lunghezza b = 2.67 m, risultando dunque in una distribuzione di tensioni sul muro paraghiaia pari a:

 σ = 150.00 kN/m / 2.67 m = 56.18 kN/m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	51

7.7.2 Forza centrifuga (Q₄)

Nome	Tipo	Υ Q (Fav / Sfav)	Ψ0	Ψ1	Ψ2
CENTRIFUGA	Variabili da traffico ferroviario	, ,	0.80	0.50	0.00

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva.

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80 m al di sopra del P.F..

Le forze centrifughe sono valutate in accordo al par. 2.5.1.4.3.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture: "RFI DTC SI PS MA IFS 001 E".

Il valore caratteristico della forza centrifuga si determinerà in accordo con la seguente espressione:

$$q_{tk} = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$

qtk valore caratteristico della forza centrifuga, espresso in kN/m

q_{vk} valore caratteristico dei carichi verticali ferroviari, espresso in kN/m

V velocità di progetto, espressa in km/h

f fattore di riduzione

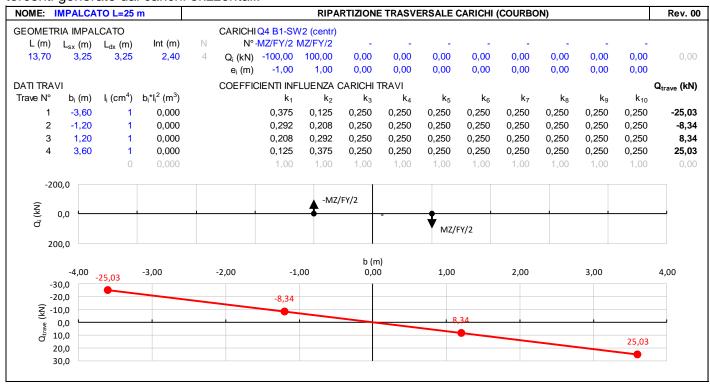
R raggio di curvatura, espresso in m

Nel caso in esame essendo V=200 km/h vanno considerati i seguenti casi di calcolo:

	Massima velocità della		Azio	ne centri	fuga basata su:	traffico verticale
Valore di α	linea [Km/h]	V	α	f		associato
SW/2	≥ 100	100	1	1	1 x 1 x SW/2	
	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤120	V	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

In particolare, per il treno LM71 andrà considerata la condizione più sfavorevole tra le due indicate in tabella.

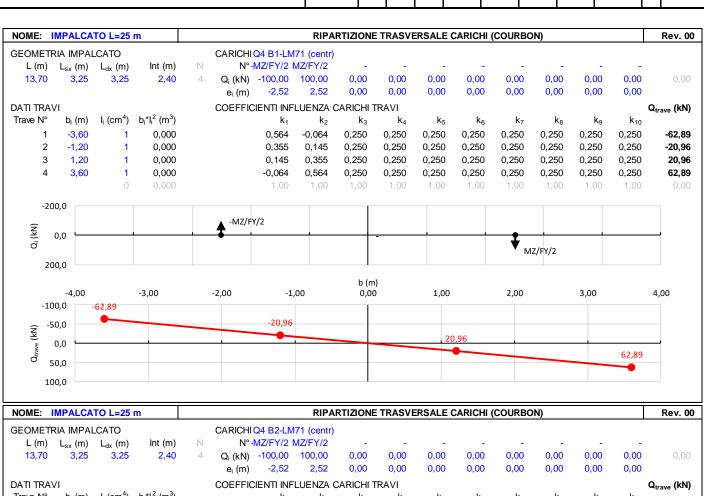

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

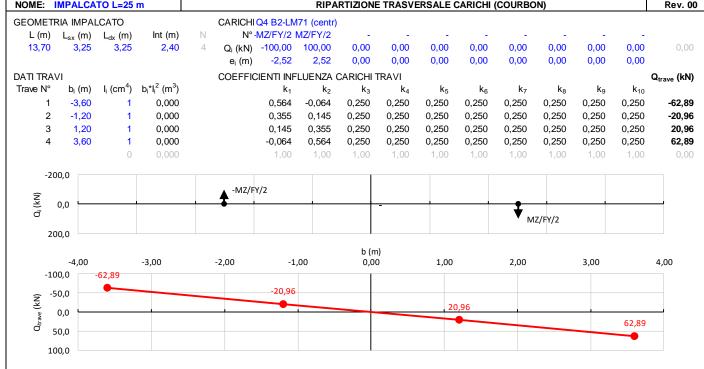
VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	52

TTO 200 Velocità di pro 2200 Raggio di curva 2,50 Lunghezza di I	atura		Distanza PF/appoggi (m) 3,30	
	oinario carico			
V/0	TRENO SW/2			
05,0	Q_{vk} (kN)	1695,0	Carichi verticali ferroviari caratteris	tico
so 1 Caso 2		Caso 1		
200 120	V (km/h)	100	Velocità di progetto	
1,00 1,10	α (-)	1,00	Coefficiente di adattamento	
,758 1,000	f (-)	1,00	Fattore di reduzione	
2,45 79,65				
52,4	Q _{4,c} (kN)	60,7	Forza centrifuga caratt. trasversale	е
03,1	M _{4,c} (kNm)	200,2	Momento torcente forza centrifuga	a caratt.
	05,0 so 1 Caso 2 200 120 1,00 1,10 ,758 1,000 2,45 79,65	Q _{vk} (kN) So 1 Caso 2 200 120 V (km/h) 1,00 1,10 α (-) ,758 1,000 f (-) 2,45 79,65 52,4 Q _{4,c} (kN)	O5,0 Q _{vk} (kN) 1695,0 so 1 Caso 2 Caso 1 200 120 V (km/h) 100 1,00 1,10 α (-) 1,00 ,758 1,000 f (-) 1,00 2,45 79,65 52,4 Q _{4,c} (kN) 60,7	Q _{vk} (kN) 1695,0 Carichi verticali ferroviari caratteris so 1 Caso 2 Caso 1 200 120 V (km/h) 100 Velocità di progetto 1,00 1,10 α (-) 1,00 Coefficiente di adattamento ,758 1,000 f (-) 1,00 Fattore di reduzione 2,45 79,65 Q _{4,c} (kN) 60,7 Forza centrifuga caratt. trasversale

Gli effetti sui singoli impalcati indotti dall'azione centrifuga, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti (modellate come azioni verticali di 100 kN eccentriche) in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.





RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	53

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

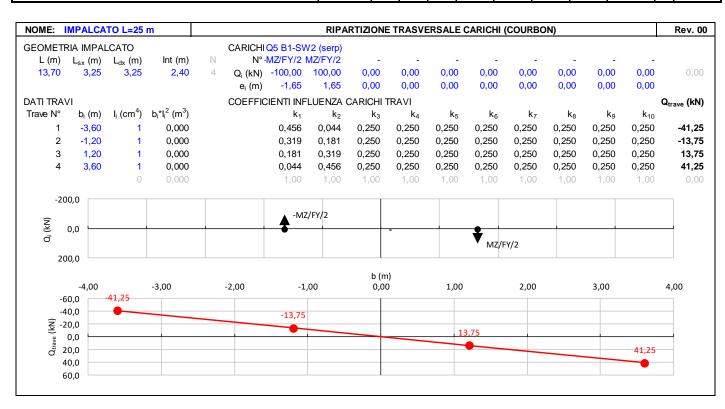
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	54

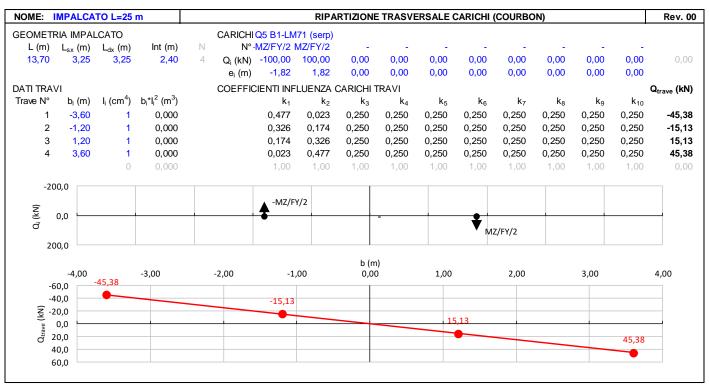
7.7.3 Azione laterale serpeggio (Q₅)

Nome	Tipo		γ Q	Ψ0	Ψ1	Ψ2
		(Fa	av / Sfav)			
SERPEGGIO	Variabili da traffico ferroviario	0.0	/ 1.45	0.80	0.50	0.00

L'azione laterale associata al serpeggio è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario, del valore di 100 kN. Tale valore deve essere moltiplicato per il coefficiente di adattamento α .

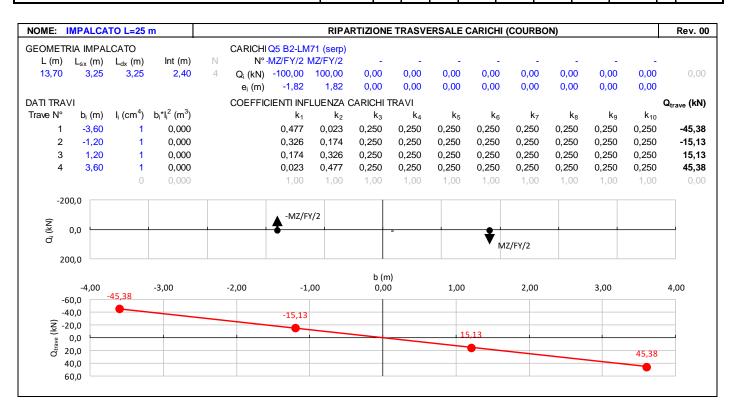
Gli effetti sui singoli impalcati indotti dall'azione di serpeggio, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti (modellate come azioni verticali di 100 kN eccentriche) in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.


NOME: IN	/IPALCAT	O L=25 m		CALCOL	O FORZA SERPEGGIO		Rev. 00
Q _{sk} (kN)	100.0	Azione caratte	eristica di serpeç	ggio	Distanza PF/appoggi (m)	3.30	
TRENO LM71	e SW/0		TRENO SW/2				
α (-)	1.10		α (-)	1.00			
Q _s (kN)	110.0		Q _s (kN)	100.0	Forza serpeggio caratt. trasve	rsal	е
M _{tk} (kNm)	363.00		M _{tk} (kNm)	330.00	Momento torcente forza serpe	ggio	caratt.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	55



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	56

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	57

7.7.4 Azioni di avviamento e frenatura (Q₃)

L'azione orizzontale associata all'avviamento e alla frenatura dei treni è definita al par. 1.4.3.2 delle Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari, che riprende il par. 5.2.2.4.2 delle NTC 2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, parallelamente all'asse del binario.

Nome	Tipo	γα	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
TRAFFICO LM71	Carichi da traffico	0.00 / 1.45	0.80	0.50	0.00
TRAFFICO SW/2	ferroviario	0.00 / 1.45	0.80	0.50	0.00

I valori caratteristici da considerare, da moltiplicare per i coefficienti di adattamento α, sono:

Avviamento

Q_{3a,k} = 33 [kN/m] * L [m]≤ 1000 KN modelli di carico LM71, SW/0, SW/2

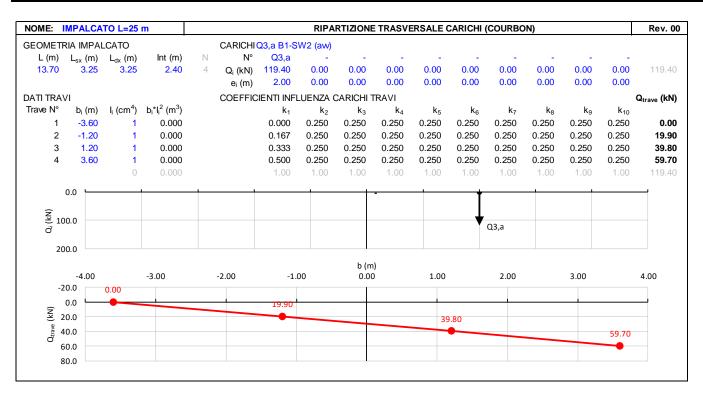
Frenatura

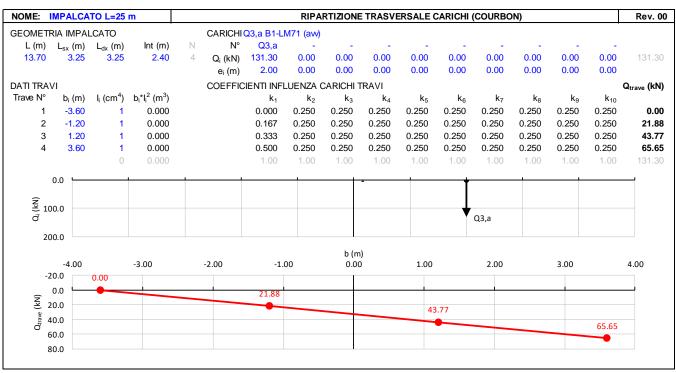
 $Q_{3f,k} = 35 [kN/m] * L [m]$ modelli di carico SW/2

 $Q_{3f,k} = 20 \text{ [kN/m] * L [m]} \le 6000 \text{ KN}$ modelli di carico LM71, SW/0

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura; pertanto, per ogni binario (B1 o B2) si può avere:

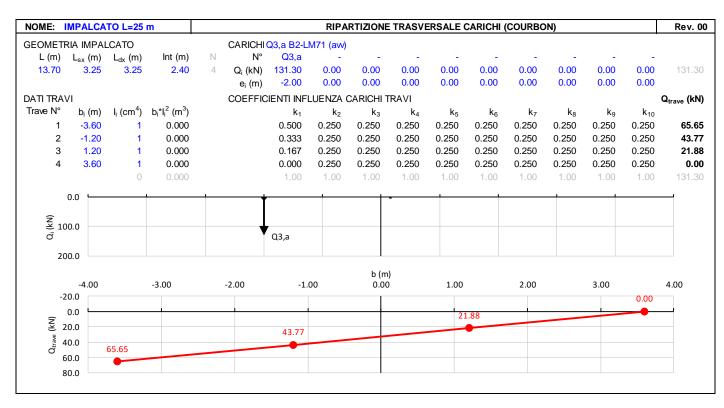
NOME: IN	IPALCAT	O L=25 m	CALCOL	O FORZ	A AVVIAMENTO / FRENATURA	Rev. 00
L calcolo (m) L (m)	22.80 25.00	Lunghezza tra Lunghezza di l	11 00		Distanza PF/appoggi (m) 3.30)
TRENO LM71 e	e SW/0		TRENO SW/2			
α (-)	1.10		α (-)	1.00		
Q _{3,f} (kN)	550.0		Q _{3,f} (kN)	875.0	Forza frenatura caratt. longitudina	ale
V _{3,f} (kNm)	79.6		V _{3,f} (kNm)	126.6	Forza frenatura caratt. verticale	
Q _{3,a} (kN)	907.5		Q _{3,a} (kN)	825.0	Forza awiamento caratt. longitud	inale
V _{3,a} (kNm)	131.3		V _{3,a} (kNm)	119.4	Forza awiamento caratt. verticale	

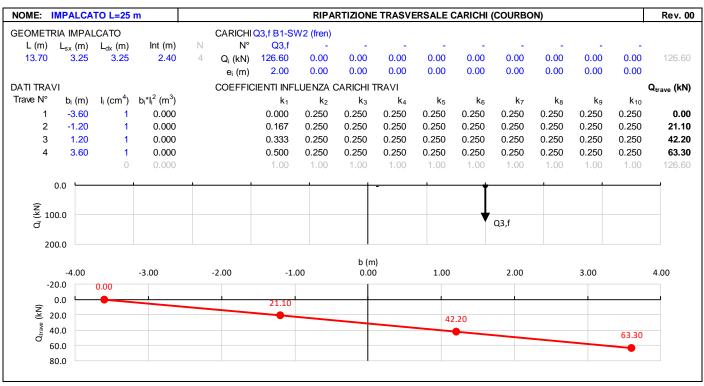

Gli effetti sui singoli impalcati indotti dall'azione di avviamento o frenatura, nelle varie combinazioni di carico accidentale ferroviario associate, vengono valutati secondo una lunghezza di influenza di mezza campata, distribuendo rigidamente alla Courbon le azioni torcenti in prossimità degli appoggi trave, i quali determinano delle reazioni verticali che equilibrano le azioni sollecitanti torcenti generate dai carichi orizzontali.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

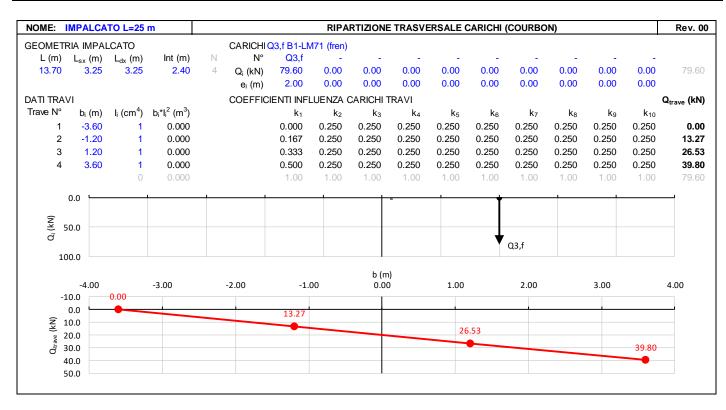
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	58





RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	59



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	60

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

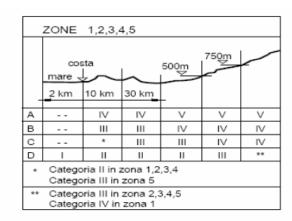
VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	61

7.8 AZIONE DEL VENTO (Q6)

Nome	Tipo	γα	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
VENTO	Variabile	EQU 0.00 / 1.50	0.60	0.50	0.00
		(A1) 0.00 / 1.50			
		(A2) 0.00 / 1.30			

In accordo con le raccomandazioni CNR DT207 R1/2018, l'azione del vento può essere convenzionalmente assimilata ad un carico statico uniformemente distribuito sulle superfici. La componente ortogonale è calcolata secondo la seguente espressione:


q_b (z) pressione cinetica di riferimento

c_e (z) coefficiente di esposizione

coefficiente di forma (o aerodinamico) complessivo

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, dalla categoria di esposizione dove sorge la costruzione. Viene calcolato con le seguenti espressioni:

$$\begin{split} c_{_{e}}(z) = & k_{_{r}}^{2} \cdot c_{_{t}}(z) \cdot \ln(z/z_{_{0}}) (7 + c_{_{t}}(z) \cdot \ln(z/z_{_{0}})) \\ c_{_{e}}(z) = & c_{_{e}}(z_{_{min}}) \end{split} \qquad \qquad z \geq z_{min} \\ z < z_{min} \end{split}$$

	ZONA	9
	mare -	costa
Α		1
В		_
С		_
D	I	- 1

	ZONA 6											
	co mare _s											
١ ـ	2 km	10 km										
	_		_									
А		III	IV	V	V							
В		II	III	IV	IV							
С		II	III	III	IV							
D	ı	I	II	II	III							

	ZONE	7,8										
		cos	eta /									
	mare 1.5 km	0.5 km										
А			IV									
В			IV									
С			Ξ									
D		=	*									
	* Categoria II in zona 8 Categoria III in zona 7											

Fig. 3.3.2 - Definizione delle categorie di esposizione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	62

Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

Categoria di esposizione del sito	K _r	≈ ₀ [m]	z _{min} [m]
I	0,17	0,01	2
П	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

Tabella 11 - Criterio di assegnazione della categoria di esposizione per le diverse zone italiane

Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa) c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

Tabella 12 - Classi di rugosità del terreno

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	63

Fig. 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

Figura 20 - Zone caratterizzate da diversi valori della velocità di riferimento

Tab. 3.3.I -Valori dei parametri v, a, k,

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k,
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Tabella 13 - Valori dei parametri vb,0, a0 e ka per le diverse zone italiane

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	64

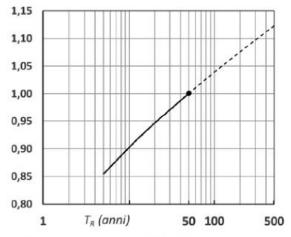
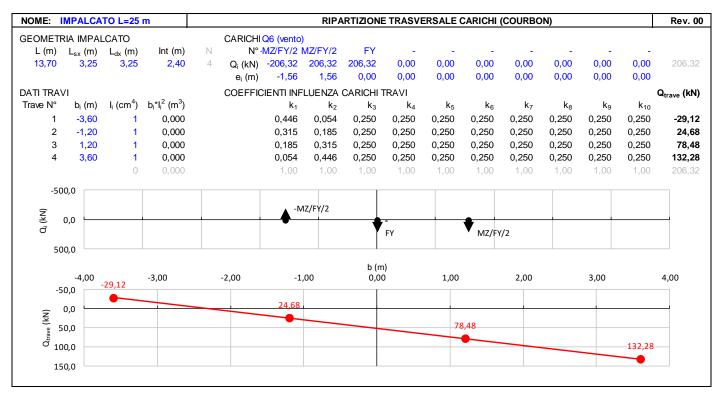


Figura C3.3.1 – Valori del coefficiente α_R in funzione del periodo di ritorno T_R , (asse in scala logaritmica),

Figura 21 - Diagramma del coefficiente di ritorno α r in funzione del periodo di ritorno TR

7.8.1 Azione del vento impalcato


NOME:	CAMPATA	L=25 m	C	ALCOLO AZION	IE VENT	O IMPALCATO (CNR DT207/2	(800	Rev. 00
PARAMETRI	VENTO DI	PROGETTO		DATI GEOME	ETRICI II	MPALCATO	AZIONI TOTALI IMF	PALCATO
Zona	3	(Tab.3.I)		h_{tot} (m)	7,80	Altezza impalcato	L influenza (m)	12,50
v _{b,0} (m/s)	27,00	Velocità base liv. mare	e (Tab.3.I)	d (m)	13,70	Larghezza impalcato	F_x (kN)	234,6
Ca	1,00	Coeff. altitudine		d/h _{tot}	1,76	(§G.10.3)	F_y (kN)	206,3
v _b (m/s)	27,00	Velocità base riferime	nto vento	z (m)	20,00	Altezza dal suolo impalcato	M_z (kNm)	645,6
T _R (anni)	75	Tempo ritorno vento		Ce	2,81	Coeff. esposizione		
Cr	1,037	Coeff. tempo ritorno		ρ (kg/m³)	1,25	Massa specifica aria		
v _r (m/s)	27,99	Velocità riferimento ve	nto	q _p (Pa)	1376	Pressione cinetica picco		
ka	0,02	Fattore altituudine (Ta	o.3.l)	c_{fx}	1,749			
a _s (m s.l.m.)	500	Altitudine sito		C_{fy}	0,876			
a ₀ (m s.l.m.)	500	Altitudine base (Tab.3	l)	C _{mz}	0,20			
Categoria	2	(Tab. 3.II - 3.III)		f_x (kN/m)	18,77	(§G.10.3)		
k _r	0,19	Fattore terreno (Tab.3.	II)	f_y (kN/m)	16,51	(§G.11.1)		
z _{min} (m)	4,00	Altezza minima (Tab.3	3.II)	m _z (kNm/m)	51,65	(§G.11.1)	$Y_{igwedge}$	
z ₀ (m)	0,05	Altezza rugosità (Tab.	3.II)					
Ct	1,00	Coeff. topografico					$\blacksquare \uparrow^{f_Y}$	
h _{tot}	Y	h _{tot}		d	h _{tot}	d	m_z	f_X X
h _{tot}		h _{tot}	I I	Д Д Д Д Д	h _{tot}	d d	$f_X(z) = q_p(z)$ $f_Y(z) = q_p(z)$ $m_Z(z) = q_p(z)$)·l·c _{fV}

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	65

7.8.2 Azioni del vento muro d'ala

Per la valutazione delle azioni agenti sul muro d'ala, si considera la risultante dell'azione del vento su una barriera alta 5m. Inoltre, questa azione comprende le azioni aerodinamiche, per la cui si fa riferimento all'analisi dei carichi impalcato, che sono ricavate del modello locale usato per l'analisi della soletta, riportate sulla relazione di calcolo dell'impalcato in c.a.p. di luce L=25 m, in cui è stata considerata una pressione totale di 1.99 kN/m².

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	66

7.9 AZIONE SISMICA (E)

Nome	Tipo	γ ε	Ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
SISMA	Sismiche	EQU 0.00 / 1.00	-	-	-
		(A1) 0.00 / 1.00			
		(A2) 0.00 / 1.00			

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, che costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche. La pericolosità sismica del sito è definita in termini di:

ag accelerazione orizzontale massima del terreno

 F_0 valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale T_C^* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

L'accelerazione orizzontale massima attesa a_g è riferita in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale di categoria A, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R per ogni stato limite considerato.

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC.

7.9.1 Stati limite di progetto sismici

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria "Linea Pescara - Bari - Raddoppio Termoli - Lesina", che si sviluppa per circa 25Km, attraversando il territorio di diverse località, tra cui Termoli (CB), Campomarino (CB), Campomarino – Santa Monica (CB), Marina di Chieuti / Chieuti (FG), Serracapriola- Loc.SS16 (FG).

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	67

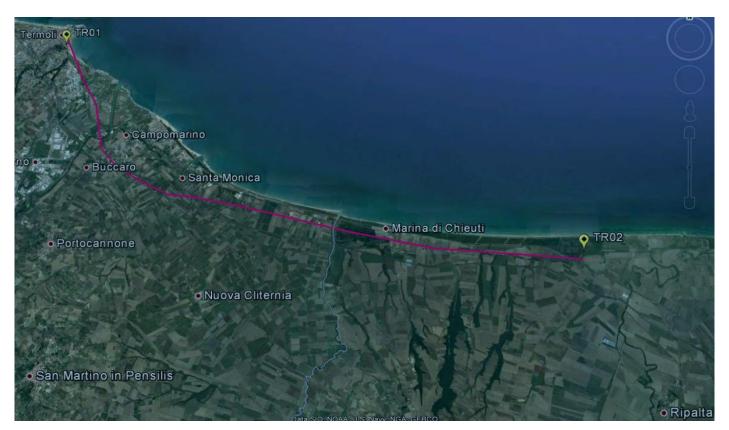


Figura 22- Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in quattro sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da nord verso sud; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

Progr. Inizio	Progr. Fine	Località di Riferimento Azioni Sismiche	Zona sismica Locale
0 5.250,00		Campomarino(CB)	S1
5.250,00 10.000,00		Campomarino - Santa Monica (CB)	S2
10.000,00	18.650,00	Marina di Chieuti /Chieuti (FG)	S3
18.650,00	24.200,00	Serracapriola- Loc.SS16 (FG)	S4

Tabella 14 - Tabella di riepilogo località di riferimento per la valutazione delle azioni sismiche per il progetto delle opere

La vita nominale V_N delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	68

_

TIPO DI COSTRUZIONE (1)	Vita Nominale V _N [Anni] ⁽¹⁾
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14.01.2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75
ALTRE OPERE NUOVE A VELOCITÀ V ≥ 250 km/h	100
OPERE DI GRANDI DIMENSIONI: PON'TI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (2)

⁽¹⁾ – La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse opere.

Per le opere definitive e tenendo conto delle indicazioni precedenti, si ha il periodo di riferimento della struttura $V_R = 112.5$ anni, si possono pertanto individuare i seguenti stati limite:

SLATO	T _R	a _g	F。	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0,066	2,494	0,324
SLD	113	0,082	2,548	0,332
SLV	1068	0,195	2,532	0,375
SLC	2193	0,253	2,507	0,382

Tabella 15 - Parametri sismici per i vari stati limite di progetto

Con riferimento al §7 delle NTC 2008, le costruzioni caratterizzate nei confronti dello SLV, da $a_gS \le 0.075g$, possono essere progettate e verificate con la sola verifica nei confronti dello SLV. Con riferimento alle caratteristiche dell'opera, si sono analizzati i seguenti stati limite di progetto:

Stato limite di danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature

Probabilità di superamento

 $P_{VR} = 63\%$

Tempo di ritorno

$$T_R = -V_R / \ln(1-P_{VR}) = -112.5 / \ln(1-0.63) = 113$$
 anni

 Stato limite ultimo di salvaguardia della vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva

^{(2) -} Da definirsi per il singolo progetto a cura di FERROVIE.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	69

invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali

Probabilità di superamento $P_{VR} = 10\%$

Tempo di ritorno $T_R = -V_R / \ln(1-P_{VR}) = -112.5 / \ln(1-0.10) = 1068$ anni

7.9.2 Spettri di risposta

Per il sito in esame, in base alle caratteristiche geotecniche di riferimento e dalla morfologia del terreno descritti nei capitoli precedenti, il sottosuolo può essere classificato come:

Categoria sottosuolo "B"

Rocce tenere e depositi di terreni a gran grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocita equivalente compresi tra

360 m/s e 800 m/s

Categoria topografica

"T1"

Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°

Lo spettro di risposta elastico orizzontale S_e(T) del sisma è definito dalle espressioni seguenti:

$$0 \le T < T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_{B} \leq T < T_{C} \hspace{1cm} S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o}$$

$$T_C \le T < T_D$$
 $S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T_C}{T} \right]$

$$\boldsymbol{T_D} \leq \boldsymbol{T} \hspace{1cm} \boldsymbol{S_e(T)} = \boldsymbol{a_g} \cdot \boldsymbol{S} \cdot \boldsymbol{\eta} \cdot \boldsymbol{F_o} \cdot \left[\frac{\boldsymbol{T_D} \cdot \boldsymbol{T_C}}{\boldsymbol{T}^2} \right]$$

T periodo di vibrazione orizzontale [s]

S_e(T) accelerazione spettrale orizzontale [m/s²]

 $S = S_S^*S_T$ coefficiente della categoria di sottosuolo e delle condizioni topografiche

S_S coefficiente di amplificazione stratigrafica (vedi tabella seguente)
S_T coefficiente di amplificazione topografica (vedi tabella seguente)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$ fattore che altera lo spettro elastico per smorzamento viscosi diversi dal 5%

ξ coefficiente di smorzamento viscoso [%]

F₀ fattore che quantifica l'amplificazione spettrale massima

 $T_C = C_C * T_C*$ periodo corrispondente all'inizio del tratto a velocità costante dello spettro

C_c coefficiente definito nella tabella seguente

 $T_B = T_C/3$ periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante $T_D = 4*a_o/q + 1,6$ periodo corrispondente all'inizio del tratto a spostamento costante dello spettro

Categoria sottosuolo	Ss	Cc
А	1.00	1.00
В	$1.0\!\leq\!1.40\!-\!0.40\!\cdot\! F_0\cdot\! a_g/g\!\leq\!1.20$	$1.10 \cdot (T_c^*)^{-0.20}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	70

С	$1.0 \le 1.70 - 0.6 \cdot F_0 \cdot a_g / g \le 1.50$	1.05·(T _c *) ^{-0.33}
D	$0.90\!\leq\!2.40\!-\!1.50\!\cdot\! F_0\cdot\! a_g/g\!\leq\!1.80$	1.25·(T _c *) ^{-0.50}
E	$1.0\!\leq\!2.00\!-\!1.10\!\cdot\! F_0\cdot\! a_g/g\!\leq\!1.60$	1.15·(T _c *) ^{-0.40}

Tabella 16 - Coefficienti di amplificazione stratigrafica orizzontale

Categoria topografica	Ubicazione dell'opera o dell'intervento	St
T1	-	1.0
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo	1.2
T4	In corrispondenza della cresta del rilievo	1.4

Tabella 17 - Coefficienti di amplificazione topografica

Lo spettro di risposta elastico verticale S_{ve}(T) del sisma è definito dalle espressioni seguenti:

$$\begin{split} 0 &\leq T < T_B & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \cdot \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T_C}{T} \right] \\ T_D &\leq T & S_{ve}(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T_D \cdot T_C}{T^2} \right] \\ T & \text{periodo di vibrazione verticale [s]} \\ S_{ve}(T) & \text{accelerazione spettrale verticale [m/s}^2] \\ F_V &= 1,35 \cdot F_0 \cdot \left(a_g / g \right)^{0.5} & \text{fattore che quantifica l'accelerazione spettrale massima} \end{split}$$

I parametri S_S , T_B , T_C e T_D per la definizione dello spettro verticale sono indipendenti dalla categoria di suolo e assumono i valori riportati nella tabella seguente.

Categoria sottosuolo	Ss	Тв	Tc	T _D
A, B, C, D, E	1.0	0.05 s	0.15 s	1.0 s

Tabella 18 - Coefficienti di amplificazione stratigrafica verticale

Le capacità dissipative della struttura possono essere considerate nella fase di analisi attraverso una riduzione delle forze elastiche, che tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni. In tal caso, lo spettro di progetto $S_d(T)$ da utilizzare è lo spettro elastico ridotto sostituendo nelle formule corrispondenti η con 1/q, dove q è il fattore di struttura. Si assume comunque $S_d(T) \ge 0,2a_q$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	71

Il valore del fattore di struttura q da utilizzare per ciascuna direzione della azione sismica dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato tramite la seguente espressione:

 $q = q_0 * K_R$

q₀ valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione

K_R fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione

Il valore di q utilizzato per la componente verticale dell'azione sismica allo SLV, a meno di adeguate analisi giustificative, è q = 1.50 per qualunque tipologia strutturale e di materiale, tranne che per i ponti per i quali è q = 1.00.

7.9.2.1 Pile e spalle da ponte

Le capacità dissipative delle singole sottostrutture sono variabili a seconda di che si tratti delle pile o delle spalle.

Nel caso di <u>comportamento strutturale non dissipativo</u>, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al Capitolo 4, senza nessun requisito aggiuntivo, a condizione che: per le strutture di calcestruzzo armato, nessuna sezione superi la curvatura convenzionale di prima plasticizzazione, come definita al § 7.4.4.1.2; per le strutture di calcestruzzo armato precompresso e per le strutture in carpenteria metallica, nessun materiale superi la deformazione di snervamento di progetto.

Nel caso di <u>comportamento strutturale dissipativo</u>, la struttura del ponte deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile nel quale la dissipazione sia limitata alle pile.

Ai soli fini del <u>progetto dei pali di fondazione</u>, con riferimento al §7.2.5, è possibile considerare una limitata capacità dissipativa, dividendo per 1.50 le sollecitazioni sismiche sui pali derivanti dall'analisi strutturale con comportamento non dissipativo. In questo caso, per una lunghezza pari a 10 diametri dalla sommità del palo, devono applicarsi i dettagli costruttivi di cui al §7.9.6.1 relativi alla CD"B".

Gli elementi ai quali non è mai richiesta capacità dissipativa devono mantenere un comportamento sostanzialmente elastico; essi sono: gli elementi progettati per avere un comportamento non dissipativo, le porzioni esterne alle zone dissipative delle pile, l'impalcato, gli apparecchi di appoggio, le strutture di fondazione, le spalle, le pile che non scambiano azioni orizzontali con l'impalcato.

Per le due componenti orizzontali dell'azione sismica, nel caso di comportamento strutturale non dissipativo $q_0 = 1.00$, mentre per comportamento strutturale dissipativo i valori di q_0 sono quelli di Tab. 7.3.II con le seguenti:

 $\lambda(\alpha) = 1.00$ $\alpha \ge 3.00$ $(\alpha/3)^{0.5}$ $3.00 > \alpha \ge 1.00$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	72

 $\alpha = L/H$

L distanza della sezione di cerniera plastica dalla sezione di momento nullo H dimensione della sezione nel piano di inflessione della cerniera plastica

Per gli elementi duttili di calcestruzzo armato si ha che per la scelta dei valori di q_0 si ha:

 $v_k < 0.30$ $q_0 = valori di Tab. 7.3.II$

 $\begin{array}{ll} 0.30 < v_k < 0.60 & q_0(v_k) = q_0(v_k = 0.3) - (v_k / 0.3 - 1)^* (q_0(v_k = 0.3) - 1) \\ v_k = N_{Ed} / (A_c^* f_{ck}) < 0.30 & \text{sollecitazione di compressione normalizzata} \end{array}$

N_{Ed} sforzo di progetto

A_c*f_{ck} resistenza a compressione semplice della sezione

In accordo al §7.9.2 delle NTC 2008, per le verifiche strutturali delle pile si considera classe di duttilità CD"B" e coefficiente di struttura $q_0 = 1.50$, per le spalle si considera coefficiente di struttura $q_0 = 1.50$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	73

Parametri e punti dello spettro di risposta orizzontale per lo stato limi\$LV

Parametri indipendenti

STATO LIMITE	SLV
a,	0,242 g
F _o	2,452
T _C *	0,346 s
Ss	1,163
Сс	1,360
S _T	1,000
q	1,000

Parametri dipendenti

S	1,163					
η	1,000					
T _B	0,157 s					
T _C	0,470 s					
T _D	2,567 s					

Espressioni dei parametri dipendenti

$$\mathbb{S} = \mathbb{S}_{S} \cdot \mathbb{S}_{T}$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55; \ \eta = 1/q$$
 (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_p / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \! \le \! T < \! T_{\!B} & \left[\begin{array}{c} S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} \! + \! \frac{1}{\eta \cdot F_o} \! \left(1 \! - \! \frac{T}{T_B} \right) \right] \\ T_B \! \le \! T < \! T_C & \left[S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \right. \\ T_C \! \le \! T < \! T_D & \left[S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \right. \\ T_D \! \le \! T & \left[S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \right. \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

ınti	dello spettro						
	T [s]	Se [g]					
	0,000	0,281					
T _₽	0,157	0,689					
T₀◀	0,470	0,689					
	0,570	0,568					
	0,670	0,484					
	0,770	0,421					
	0,869	0,373					
	0,969	0,334					
	1,069	0,303					
	1,169	0,277					
	1,269	0,255					
	1,369	0,237					
	1,468	0,221					
	1,568	0,207					
	1,668	0,194					
	1,768	0,183					
	1,868	0,173					
	1,968	0,165					
	2,067	0,157					
	2,167	0,149					
	2,267	0,143					
	2,367	0,137					
	2,467	0,131					
T₀◀	2,567	0,126					
	2,635	0,120					
	2,703	0,114					
	2,771	0,108					
	2,840	0,103					
	2,908	0,098					
	2,976	0,094					
	3,044	0,090					
	3,113	0,086					
	3,181	0,082					
	3,249	0,079					
	3,317	0,076					
	3,386	0,073					
	3,454	0,070					
	3,522	0,010					
	3,590	0,064					
	3,659	0,062					
	3,727	0,062					
	3,795	0,058					
	3,863	0,056					
		0,056					
	3,932 4,000	0,054					
	4,000	0,052					

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	74

Parametri e punti dello spettro di risposta verticale per lo stato limite\$LV

Parametri indipendenti

STATO LIMITE	SLV
a _{ov}	0,160 g
Ss	1,000
S _T	1,000
q	1,000
T _B	0,050 s
T _C	0,150 s
T _D	1,000 s

Parametri dipendenti

F _v	1,627
S	1,000
η	1,000

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = 1/q$$
 (NTC-08 §. 3.2.3.5)

$$F_v = 1,35 \cdot F_o \cdot \left(\frac{a_v}{g}\right)^{0.5}$$
 (NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \left| \begin{array}{l} S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \right| S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \left| S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \right. \\ T_D &\leq T \right| S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Pur

unti	dello spettro	di risposta
	T [s]	Se [g]
	0,000	0,160
T _₽ ◀	0,050	0,393
T₀◀	0,150	0,393
	0,235	0,251
	0,320	0,184
	0,405	0,146
	0,490	0,120
	0,575	0,103
	0,660	0,089
	0,745	0,079
	0,830	0,071
	0,915	0,064
T _e	1,000	0,059
	1,094	0,049
	1,188	0,042
	1,281	0,036
	1,375	0,031
	1,469	0,027
	1,563	0,024
	1,656	0,021
	1,750	0,019
	1,844	0,017
	1,938	0,016
	2,031	0,014
	2,125	0,013
	2,219	0,012
	2,313	0,011
	2,406	0,010
	2,500	0,009
	2,594	0,009
	2,688	0,008
	2,781	0,008
	2,875	0,007
	2,969	0,007
	3,063	0,006
	3,156	0,006
	3,250	0,006
	3,344	0,005
	3,438	0,005
	3,531	0,005
	3,625	0,004
	3,719	0,004
	3,813	0,004
	3,906	0,004
	4,000	0,004

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	75

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV

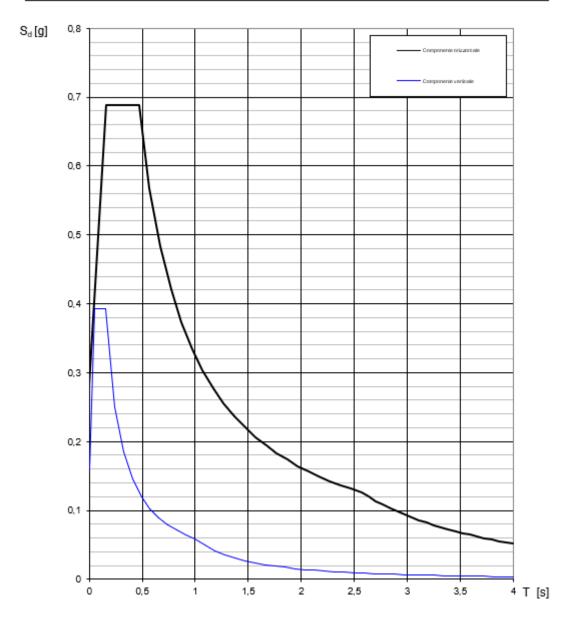


Figura 23 – Spettri di risposta elastici (componente orizzontale e verticale)

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e per la valutazione delle azioni sugli apparecchi di appoggio.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	76

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV S_d [g] 0,5 0,45 0,4 0,35 0,3 0,25 0,2 0,15 0,1 0,05 4 T [s]

Figura 24 - Spettri di risposta di progetto (componente orizzontale e verticale)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	77

7.9.3 Amplificazione sismica di progetto

7.9.3.1 Metodo pseudostatico per muri

Con riferimento al § 7.11.6.2 delle NTC 2008 si esegue l'analisi con il metodo pseudostatico, dove l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

La deformabilità della parete viene tenuta in conto mediante dei coefficienti riduttivi correlati al massimo spostamento u_s che l'opera di altezza complessiva H, può ammettere senza riduzioni di resistenza (u_{s,max}) e tale per cui sia verificata l'ipotesi di riduzione dell'azione sismica per duttilità strutturale (u_{s,min}).

 $k_v = \beta_m^* S_S^* S_T^* a_g/g$ coefficiente sismico orizzontale

 $k_v = \pm 0.5^* k_h$ coefficiente sismico verticale (di solito non considerato nelle paratie)

S_S = 1.404 coefficiente di amplificazione stratigrafica orizzontale

 $S_T = 1.00$ coefficiente di amplificazione topografica

accelerazione massima attesa al sito per lo Stato Limite considerato

 $g = 9.81 \text{ m/s}^2$ accelerazione di gravità

 $\beta_m = 1.00$ (per muri non liberi di seguire spostamenti relativi rispetto al terreno, vedi

§7.11.6.2.1 delle NTC2008)

Si aggiunge che, secondo le NTC2018, i valori del coefficiente β_m possono eventualmente essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il diagramma di Figura 7.11.3 di cui al successivo §7.11.6.3.2 (coefficiente delle spinte β_m vs spostamenti orizzontali massimi u_s).

Secondo il §3.10.3.1 del MdP del Corpo Stradale si ha infatti che:

"Nelle analisi di muri su pali eseguite con il metodo pseudostatico, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, potranno essere assunti come definito al paragrafo 7.11.6.2.1 delle NTC 2018 adottando coefficiente β_m unitario."

7.9.3.2 Azioni inerziali masse

Le azioni inerziali E_h e E_v associate alle masse degli elementi strutturali dei carichi permanenti strutturali e non strutturali sono determinati incrementando le masse schematizzate nel modello di calcolo secondo gli spettri di progetto secondo le seguenti relazioni:

$$\begin{split} E_h &= G \cdot S_e(T) & \text{azione inerziale orizzontale} \\ E_v &= G \cdot S_{ve}(T) & \text{azione inerziale verticale} \end{split}$$

Con riferimento a §3.2.4 delle NTC 2008, si considera in fase sismica il contributo delle azioni accidentali come previsto per i ponti ferroviari, pari al 20% del sovraccarico nominale:

$$G = G_1 + G_2 + \sum \psi_{2j} \cdot Q_{kj}$$

G massa totale efficace

G₁ masse dei pesi propri strutturali

G₂ masse dei carichi permanenti non strutturali (permanenti, terreno)

Q_{kj} masse dei carichi accidentali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	78

$$\Psi_{2i} = 0.2$$
 se ponti ferroviari (§5.2.2.8) o ponti stradali alto traffico (§5.1.3.12)

Le azioni inerziali orizzontali E_x e verticali E_y delle masse efficaci sono determinate incrementando i pesi propri G con accelerazioni verticali e orizzontali definite dai coefficienti di amplificazione dinamica k_h e k_v :

$$\begin{split} E_x &= G \cdot k_h & \text{azione inerziale orizzontale} \\ E_y &= G \cdot k_v & \text{azione inerziale verticale} \\ G &= G_1 + G_2 + \Psi_{2j}{}^*Q & \text{masse efficaci sismiche} \end{split}$$

7.9.4 Sovraspinte dinamiche del terreno

I valori delle spinte vengono computate automaticamente dai software secondo le metodologie seguenti, per ulteriori approfondimenti si rimanda direttamente al manuale d'uso.

7.9.4.1 Azioni inerziali masse

Le sovraspinte ΔS_{ah,E} sono calcolate in spinta attiva secondo il metodo di Mononome-Okabe:

$$\Delta S_{ahE} = S_{ahE} - S_{ah}$$

$$S_{ah} = \frac{1}{2} \cdot \gamma^* \cdot H^{*2} \cdot K_a$$

spinta attiva statica sulla parete

$$S_{ahE} = \frac{1}{2} \cdot \gamma^* \cdot (1 \pm k_v) \cdot H^{*2} \cdot K_{aE}$$

spinta attiva sismica sulla parete

$$K_{aE} = \frac{\operatorname{ser}^{2}(\psi + \phi - \theta)}{\operatorname{cos}\theta \cdot \operatorname{ser}^{2}\psi \cdot \operatorname{sen}(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\operatorname{sen}(\phi + \delta) \cdot \operatorname{sen}(\phi - \beta - \theta)}{\operatorname{sen}(\psi - \theta - \delta)}}\right]^{2}} \operatorname{coeff. spinta att. sismica (M-O)}$$

K_a coefficiente di spinta attiva statico

 $H^* = H + \Delta H$ altezza della parete di spinta dal fondo scavo

 $\Delta H = 0$ incremento dell'altezza della parete di spinta dal fondo scavo

 $\begin{array}{ll} \gamma^*(z) & \text{peso specifico del terreno} \\ \phi & \text{angolo attrito del terreno} \\ \delta & \text{attrito tra terreno e parete} \end{array}$

 $\psi = 90^{\circ}$ angolo tra parete di spinta e piano orizzontale angolo inclinazione tra profilo e piano orizzontale

 k_h coefficiente di amplificazione orizzontale k_v coefficiente di amplificazione verticale

$$\begin{split} \Theta &= \arctan(k_h \, / (1 \pm k_v)) & \text{terreni sopra falda} \qquad \gamma^* = \gamma_{sat} \\ \Theta &= \arctan(k_h \, / (1 \pm k_v))^* (\gamma_{sat} / (\gamma_{sat} - \gamma_w)) & \text{terreni sotto falda} \qquad \gamma^* = \gamma' \end{split}$$

Restando a favore della sicurezza, la risultante $\Delta S_{ah,E}$ viene applicata su tutta l'altezza H* come una pressione orizzontale distribuita $\Delta \sigma_{h,E}$ pari a:

$$\Delta \sigma_{h,E} = \Delta S_{ahs} / H^*$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	79

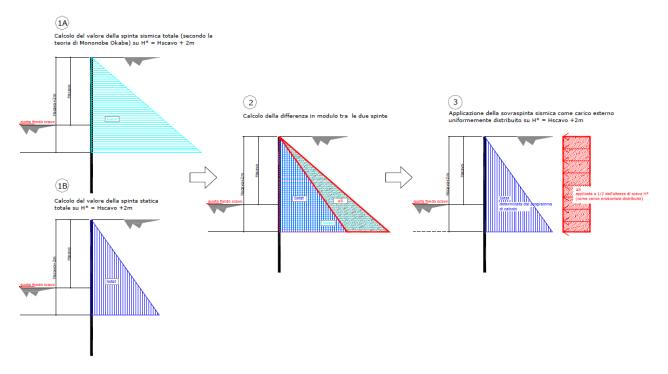


Figura 25 - Schema di calcolo sovraspinte dinamiche terreno

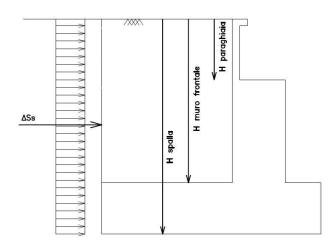


Figura 26: Schema per il calcolo degli effetti della sovraspinta sismica

7.9.4.2 Spinta attiva in Excel®

Si adotta la formulazione del metodo di Mononome-Okabe prima descritto.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	80

7.10 VARIAZIONI TERMICHE (Q7)

Essendo le campate isostatiche, tale azione non rientra direttamente nel calcolo delle sottostrutture, ma viene inclusa indirettamente nelle valutazioni sulle azioni agli appoggi (escursioni ed attriti meccanici).

La variazione termica è definita secondo quanto riportato nel § 2.5.1.4.4.1 del "Manuale di progettazione delle opere civili parte II - sezione 2- ponti e strutture" che riprende il § 5.2.2.5.2 delle NTC08.

La variazione termica uniforme volumetrica da considerare per l'impalcato risulta ±15°, ai fini della valutazione delle escursioni dei giunti e degli appoggi mobili viene incrementata del 50% per una variazione totale di calcolo di ±22.5 °C.

7.11 **ATTRITO (Q8)**

Nome	Tipo	γе	ψ0	Ψ1	Ψ2
		(Fav / Sfav)			
ATTRITO PERM	Permanenti non strutturali	1.00 / 1.50	-	-	-
ATTRITO VAR	Variabili traffico ferroviario	EQU 0.00 / 1.45 (A1) 0.00 / 1.45 (A2) 0.00 / 1.25	0.80	0.50	0.00

Gli effetti dell'attrito sono valutati associando, in corrispondenza degli appoggi scorrevoli, alle reazioni verticali dovute a carichi permanenti (V_G) e quelle dovute a carichi accidentali (V_Q) le seguenti forze orizzontali in direzione longitudinale, dove il coefficiente di attrito f=3%.

Q8
$$F_{a, G} = f^*(\Sigma V_{G,i})$$

Q8
$$F_{a,Q} = f^*(\Sigma V_{Q,i})$$

Per le forze orizzontali associate ubicate ai singoli appoggi, vedi tabella scarichi impalcato.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	81

7.12 SCARICHI AGLI APPOGGI

Dalle valutazioni sui carichi derivanti dagli impalcati in appoggio, effettuate mediante metodi semplificati e riportate nei capitoli precedenti per le varie tipologie di azione, si sono considerati i valori nominali degli scarichi riepilogati nella tabella seguente.

Tali scarichi sono stati confrontati rispetto alle calcolazioni di dettaglio effettuate mediante analisi FEM sui singoli impalcati, alle cui relazioni di calcolo si rimanda per ulteriori verifiche di confronto.

IMPALCATO CAP L=25m						Lato App	oggi Fissi					
	Арј	ooggio 1 (N	1)	Ар	poggio 2 (F	:)	Ар	poggio 3 (F	:)	Арр	oggio 4 (N	1)
	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)	y (m)	x (m)	z (m)
	0,00	-3,62	-0,60	0,00	-1,21	-0,60	0,00	1,21	-0,60	0,00	3,62	-0,60
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.
Permanenti	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
G1 (peso proprio)	0	0	1075	0	0	475	0	0	475	0	0	1075
Ballast												
G2,1 (ballast)	0	0	325	0	0	500	0	0	500	0	0	325
Perm. non strutturali												
G2,2 (velette)	0	0	225	0	0	-138	0	0	-138	0	0	225
G2,3 (arredi)	0	0	425	0	0	-225	0	0	-225	0	0	425
G2,4 (barriere)	0	0	575	0	0	-325	0	0	-325	0	0	575
Q8 Fa,G (attrito)	79	0	0	9	0	0	9	0	0	79	0	0
Accidentali da traffico												
Q1 LM71_B1 (traffico)	0	0	-15	0	0	253	0	0	520	0	0	788
Q1 LM71_B2 (traffico)	0	0	788	0	0	520	0	0	253	0	0	-15
Q1 SW2_B1 (traffico)	0	0	0	0	0	283	0	0	565	0	0	848
Q3,a B1-SW2 (avv)	0	0	0	-275	0	-20	1100	0	-40	0	0	-60
Q3,a B1-LM71 (avv)	0	0	0	-303	0	-22	1210	0	-44	0	0	-66
Q3,a B2-LM71 (avv)	0	0	-66	1210	0	-44	-303	0	-22	0	0	0
Q3,f B1-SW2 (fren)	0	0	0	-292	0	-21	1167	0	-42	0	0	-63
Q3,f B1-LM71 (fren)	0	0	0	-183	0	-13	733	0	-27	0	0	-40
Q3,f B2-LM71 (fren)	0	0	-40	733	0	-27	-183	0	-13	0	0	0
Q4 B1-SW2 (centr)	0	0	-25	0	30	-8	0	30	8	0	0	25
Q4 B1-LM71 (centr)	0	0	-63	0	76	-21	0	76	21	0	0	63
Q4 B2-LM71 (centr)	0	0	-63	0	76	-21	0	76	21	0	0	63
Q5 B1-SW2 (serp)	0	0	-41	0	50	-14	0	50	14	0	0	41
Q5 B1-LM71 (serp)	0	0	-45	0	55	-15	0	55	15	0	0	45
Q5 B2-LM71 (serp)	0	0	-45	0	55	-15	0	55	15	0	0	45
Q8 Fa,Q (attrito)	24	0	0	16	0	0	17	0	0	25	0	0
Effetti ambientali												
Q6 (vento)	0	0	-29	0	117	25	0	117	78	0	0	132

Tabella 21 – Scarichi caratteristici agli appoggi della spalla fissa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	82

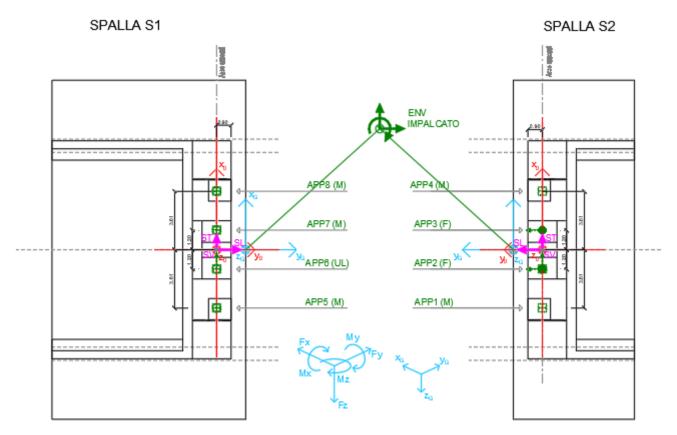


Figura 27- - Schema dei vincoli a terra impalcato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	83

8. COMBINAZIONI DI CARICO

Le singole azioni elementari vengono combinate utilizzando i coefficienti parziali di sicurezza γ_i e i coefficienti di combinazione ψ_i di seguito riportati:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni ψο ψ_1 Ψ_2 Azioni singole Carico sul rilevato a tergo delle 0,80 0,50 0,0 spalle da traffico Azioni aerodinamiche generate 0,80 0,50 0,0 dal transito dei convogli 0,80(2) 0,80(1) 0,0 gr_1 0,80(2) 0,80(1) Gruppi di gr_2 0,80(2) 0,80(1) carico 0,0 gr₃ 1,00(1) 1,00 0,0 gr_4 Azioni del vento 0,60 0,50 0,0 F_{Wk} Azioni da in fase di esecuzione 0.80 0,0 0,0 SLU e SLE 0,0 0,0 0,0 neve 0,50 0,60 0,60 Azioni termiche T_k

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

 $^{^{(2)}}$ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	84

8.1 COMBINAZIONI DI CARICO ADOTTATE

Per la determinazione degli effetti delle azioni da traffico si fa riferimento ai gruppi di carico da 1 a 4 secondo la tabella riportata di seguito:

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont	ali	
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	140	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

Nel caso in esame, le azioni agenti sull'impalcato sono state combinate secondo i gruppi 1 e 3 che comportano le maggiori sollecitazioni per le strutture in elevazione e in fondazione.

Nella figura successiva vengono esplicitate le tipologie di combinazioni utilizzate:

Tipo Comb

- 1 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+0,73*Qk3a,i+0,73*Qk3f,i+1,45*Qk4,i+1,45*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 2 1,35*Gk1+1,50*Gk2b+1,35*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 3 1,00°Gk1+1,00°Gk2b+1,00°Gk2v+0,73°Qk3a,i+0,73°Qk3f,i+1,45°Qk4,i+1,45°Qk5,i+0,9°Qk6+1,45°Qk1,i+1,35°Qk2g+1,45°Qk2q
- 4 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,45*Qk3a,i+1,45*Qk3f,i+0,73*Qk4,i+0,73*Qk5,i+0,9*Qk6+1,45*Qk1,i+1,35*Qk2g+1,45*Qk2q
- 5 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,50*Qk6+1,00*Qk2g
- 6 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk2g+0,73*Qk2q
- $7\ 1,00\text{*Gk1} + 1,00\text{*Gk2b} + 1,00\text{*Gk2v} + 0,8\text{*Qk3a}, i + 0.8\text{*Qk3f}, i + 1,00\text{*Qk4} + 1,00\text{*Qk5} + 0,6\text{*Qk6} + 1,00\text{*Qk1} + 1,00\text{*Qk2g} + 1,0$
- 8 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk3a,i+1,00*Qk3f,i+0,8*Qk4+0,8*Qk5+0,6*Qk6+1,00*Qk1+1,00Qk2g+1,00*Qk2q
- 9 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk6+1,00*Qk2g
- 10 1,00*Gk1+1,00*Gk2b+1,00*Gk2v
- 11 1,00*Gk1+1,00*Gk2b+1,00*Gk2v+1,00*Qk2g

Figura 28 - Tipologie di combinazioni di carico

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
	LI0B	02	Е	ZZ	CL	VI	14	04	002	В	85

NomeFox	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-Perm. non str. vari	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q attrito-Q8 Fa,Q (attrito)
SLU	_	1	SLU1	1,35	1,50		0,73	0,00	0,00	0,73	0,00	0,00			0,00	1,45	0,00	0,00	0,90			0,00	1,35	1,45
SLU	J 2	2	SLU2	1,35			1,45		0,00		0,00	0,00			0,00	0,73	0,00		0,90			0,00	1,35	1,45
SLU	J 1	3	SLU3	1,35	1,50	1,35	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU	J 2	4	SLU4	1,35	1,50	1,35	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU		5	SLU5	1 ′ 1			0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,90	0,00	0,00	1,45	1,35	1,45
SLI	J 2	6	SLU6	1,35			0,00		1,45		0,00	1,45	0,00	,	0,73		0,00	0,73	0,90	0,00	0,00	1,45	1,35	1,45
SLU			SLU7		1,00	-	-		0,00			0,00			0,00	,	0,00	0,00	0,90			0,00	1,35	1,45
SLU		_	SLU8		1,00					•		0,00	· ·		0,00	0,73			0,90			0,00	1,35	1,45
SLU			SLU9	'	1,00	,			0,00	0,00	0,73		· ·		0,00		1,45		0,90		1,45	0,00	1,35	1,45
SLU		10		′	1,00	,			0,00	0,00	1,45		· ·	,	0,00	0,00	0,73		0,90		1,45	0,00	1,35	1,45
SLU		11	SLU11		1,00				0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	,	0,90		0,00	1,45	1,35	1,45
SLI SLI		12 13	SLU12 SLU13	'	1,00 1,00	,		0,00	1,45 0,00	0,00	0,00	1,45 0,00	0,00	0,00	0,73	0,00	0,00	0,73	0,90 1,50	-	0,00	1,45 0,00	1,35 1,00	1,45 0,00
SLU		14		· '	1,00	,		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	-1,00	0,00
SLU		15			1,00			0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	1,00	0,00
SLI		16								0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	-1,00	0,00
SLI			SLU17		1,00		0,00		0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,73
SLU	J 6	18					0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	-0,73
SLE RA	٦ 7	19	RA1	1,00	1,00	1,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	8 4	20	RA2	1,00	1,00	1,00	1,00	0,00	0,00	1,00	0,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	A 7	21	RA3	1,00	1,00	1,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,60	0,00	1,00	0,00	1,00	1,00
SLE RA			RA4		1,00		0,00		0,00	0,00	1,00		0,00		0,00	0,00	0,80		0,60		1,00	0,00	1,00	1,00
SLE RA		23	RA5		1,00	-	0,00		0,80		0,00	0,80		0,00	1,00		0,00	-	0,60	0,00	0,00	1,00	1,00	0,50
SLE RA			RA6	'	1,00		,		1,00		0,00	1,00		0,00	0,80		0,00		0,60		0,00	1,00	1,00	0,50
SLE RA		_	RA7	1,00					0,00							1,00				1,00		,	-1,00 1,00	,
SLE RA				1,00	-																			-1,00 -1,00
SLE RA																							-1,00	
SLE RA		29	RA11																	0,00	,	,	-1,00	,
SLE RA		30												0,00						0,00			-1,00	
SLE RA		31		1,00								0,00			0,00		0,00			0,00			-1,00	
SLE RA		32		1,00		,	,	,	,	,	-			0,00			0,00			0,00			-1,00	
SLE RA		33		1,00		-			-						0,00		0,00		-	0,00	0,00	0,00	1,00	
SLE Q	P 10	34	QP1	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE Q		35		1,00	-														0,00	0,00	0,00	0,00	-1,00	0,00
SLE Q	P 11	36	QP3	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	86

9. VERIFICHE DEGLI ELEMENTI STRUTTURALI

9.1 ELEMENTI IN CEMENTO ARMATO

9.1.1 Stati Limite Ultimi strutturali (SLU STR)

Come riportato al §2.3 delle NTC 2008, per ogni stato limite ultimo deve essere rispettata la condizione:

 $E_d \le R_d$

 $E_d = E(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione $R_d = R(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto della resistenza del sistema geotecnico

 $\gamma_F \cdot F_k$ Azioni di progetto

 X_k/γ_M Proprietà del materiale di progetto

a_d Geometria di progetto

γ_M Coefficiente parziale di sicurezza del materiale

9.1.1.1 Verifica a presso/tenso flessione

Come previsto al §4.1.2.1.2.4 delle [12] con riferimento alla generica sezione, la verifica di resistenza allo SLU si esegue controllando che:

 $M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$

 $\begin{array}{ll} M_{Rd} & \text{Valore di calcolo del momento resistente corrispondente a N_{Ed}} \\ N_{Ed} & \text{Valore di calcolo della componente assiale (sforzo normale)} \\ M_{Ed} & \text{Valore di calcolo della componente flettente dell'azione} \end{array}$

9.1.1.2 Verifica a taglio

Secondo quanto previsto §4.1.2.1.3 delle [12], indicato con V_{Ed} il valore di calcolo dello sforzo di taglio agente allo SLU, si verifica in generale che risulti:

 $V_{Ed} < V_{Rd}$

Elementi senza armature resistenti a taglio

 $V_{Rd,c} = max \left\{ \left(0.18 \cdot k \cdot \frac{\sqrt[3]{100 \cdot \rho_{l} \cdot f_{ck}}}{\gamma_{c}} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_{w} \cdot d \right\} \\ \qquad \text{Resistenza di calcolo a taglion}$

 $k = 1 + \sqrt{\frac{200}{d}} \le 2$

 $v_{min} = 0.035 \cdot \sqrt{k^3} \cdot \sqrt{f_{ck}}$

 $\rho_{l} = \frac{A_{sl}}{b_{w} \cdot d} \le 0.02$ Rapporto percentuale armatura in zona tesa Asl

 $\sigma_{cp} = \frac{N_{Ed}}{A_c} \le 0.2 \cdot f_{cd}$ Tensione media di compressione nella sezione

d Altezza utile della sezione (mm)

b_w Larghezza minima della sezione (mm)

Elementi provvisti di armature resistenti a taglio

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	87

 $V_{Rd} = min(V_{Rd,s}; V_{Rd,max})$

 $V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$

 $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'} \cdot \frac{(\cot \alpha + \cot \theta)}{1 + \cot^2 \theta}$

θ

 $\cot \theta \leq 2.5$

 α A_{sw}

 $\dot{f}_{cd} = 0.5 \cdot f_{cd}$

 α_{c}

Resistenza di calcolo a taglio

Resistenza a taglio-trazione

Resistenza a taglio-compressione

Inclinazione puntoni di cls rispetto asse elemento (1 ≤

Inclinazione dell'armatura trasversale rispetto asse elemento

Area dell'armatura trasversale

Interasse tra due armature trasversali consecutive

Resistenza a compressione ridotta del calcestruzzo d'anima

Coefficienti maggiorativi pari a:

1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 \cdot f_{cd}$

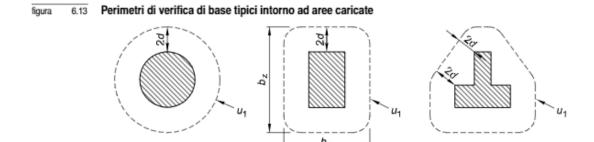
1.25 per $0.25 \cdot f_{cd} \le \sigma_{cp} < 0.50 \cdot f_{cd}$

 $2.5 \cdot (1 - \sigma_{cp} / f_{cd}) \qquad \text{per } 0.50 \cdot f_{cd} \le \sigma_{cp} < f_{cd}$

9.1.1.3 Verifica a punzonamento

In corrispondenza del collegamento tra setti, pilastri o pali di fondazione ed elementi piani (plinti, solette) si hanno sollecitazioni concentrate, con meccanismo resistente a taglio in condizioni di rottura SLU dipendente dalla geometria locale tra i due elementi e le loro condizioni al contorno.

Le verifiche a taglio-punzonamento vengono eseguite in accordo con le UNI EN 1992-1-1: 2005, dove il taglio sollecitante unitario v_{Ed} si assume distribuito sul perimetro u_i del cono di rottura:


 $v_{Ed} = \beta \frac{V_{Ed}}{u_i \cdot d}$

β coeff. posizioni reciproche tra aree di carico (pilastro interno 1.15, spigolo 1.50, bordo 1.40)

V_{Ed} azione sollecitante di progetto u_i perimetro della sezione di verifica

 $d = \frac{d_y - d_z}{2}$ altezza utile della sezione

d_y, d_z altezze utili delle armature disposte nelle due direzioni principali

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	88

figura 6.15 Perimetro di verifica di base per aree caricate in prossimità di bordi o di angoli

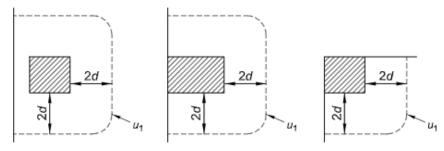


Figura 29 - Schemi aree di carico per diverse geometrie

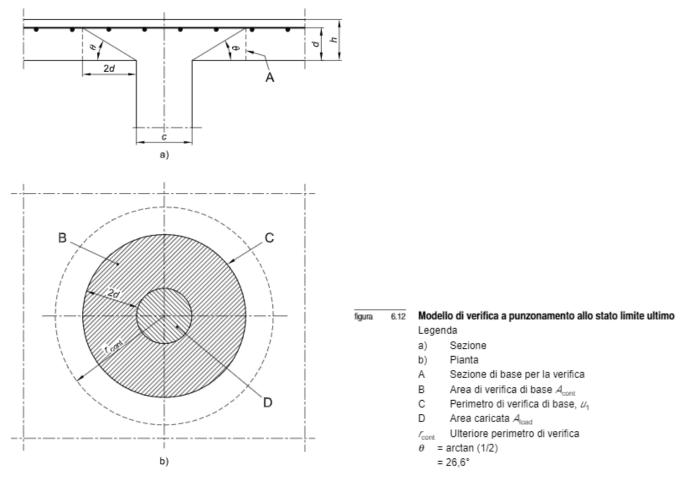


Figura 30 - Modello di verifica a punzonamento SLU

Per un elemento a piastra e lungo le sezioni di verifica considerate, si definiscono le seguenti resistenze di progetto a taglio-punzonamento:

 $\begin{aligned} v_{Rd,c} &= max \left(C_{Rd,c} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck} \right)^{1/3} + k_1 \cdot \sigma_{cp}; \ v_{min} + k_1 \cdot \sigma_{cp} \right) \end{aligned} \quad \text{per piastra senza armature a punzonamento} \\ v_{Rd,cs} &= 0.75 \cdot v_{Rd,c} + 1.5 \cdot \left(\frac{d}{s_r} \right) \cdot A_{sw} \cdot f_{ywd,ef} \cdot \frac{1}{u_1 \cdot d} \cdot \text{sen } \alpha \end{aligned} \quad \text{per piastra con armature a punzonamento}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	89

 $v_{Rd.max} = 0.5 \cdot v \cdot f_{cd}$ $C_{Rd,c} = \frac{0.18}{V_c}$

$$k = \min\left(1 + \sqrt{\frac{200}{d}}; 2\right)$$

$$\rho_1 = \min\left(\sqrt{\rho_{1y} \cdot \rho_{1z}}; 0.02\right)$$

$$\sigma_{cp} = \frac{\sigma_{cy} + \sigma_{cz}}{2}$$

$$\sigma_{cp} = \frac{N_{Ed,y}}{2} = \sigma_{cy} + \sigma_{cz}$$

 $\sigma_{c,y} = \frac{N_{Ed,y}}{A_{cy}}, \ \sigma_{c,z} = \frac{N_{Ed,z}}{A_{cz}}$

 $N_{Ed,y}, N_{Ed,z}$ A_{cy} , A_{cy}

$$v_{min}$$
=0.035· $\sqrt{k^3 \cdot f_{ck}}$

 $k_1 = 0.1$

 A_{sw}

 $f_{ywd,ef} = min(f_{ywd}; 250+0.25 \cdot d)$

 S_{r}

valore massimo assoluto

percentuale di armatura longitudinale nelle due direzioni principali

tensioni normali nelle due direzioni principali

azioni normali nelle due direzioni principali

aree delle due direzioni principali

(annesso italiano all'Eurocodice)

passo radiale perimetri di armatura a taglio-punzonamento

area armatura a taglio-punzonamento all'interno del perimetro di verifica resistenza di progetto efficace dell'armatura a taglio-punzonamento

angolo compreso tra l'armatura a taglio e il piano della piastra

La verifica da effettuare lungo il perimetro del pilastro u₀, descritto dall'area caricata A_{load}, è la seguente:

 $V_{Ed} \leq V_{Rd,max}$

= sviluppo del perimetro pilastro \mathbf{u}_0 $= c_2 + 3d \le c_2 + 2*c_1$ $= 3d \le c_1 + c_2$

pilastro interno pilastro di bordo pilastro d'angolo

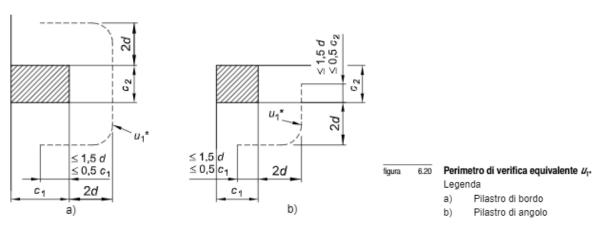


Figura 31 – Geometria dei perimetri pilastri per elementi d'angolo e di bordo

Le verifiche da effettuare lungo il perimetro di base u₁ sono le seguenti:

 $V_{Ed} \le V_{Rd,c}$ piastra senza armature a taglio-punzonamento piastra con armature a taglio-punzonamento $V_{Ed} \le V_{Rd,cs}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	90

9.1.2 Stati Limite Ultimi di esercizio (SLE STR, SLD)

9.1.2.1 Limiti tensionali in esercizio

Come riportato al §6.2.4.3 e §5.1.4.2 delle NTC 2008, la verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale. Si dovrà verificare che sia:

 $E_d \le C_d$

 $E_d = E(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore di progetto dell'azione o dell'effetto dell'azione

 $C_d = C(\gamma_F \cdot F_k; X_k/\gamma_M; a_d)$ Valore nominale o funzione di certe proprietà dei materiali legate agli effetti

progettuali delle azioni considerate

Le verifiche si risolvono nel controllare che i valori di tensione nei materiali siano inferiori ai valori limite delle tensioni riportati al paragrafo 2.5.1.8.3.2.1 del MdP ITF:

Combinazione quasi permanente $\sigma_c < 0.40 \cdot f_{ck}$

Acciaio teso Combinazione rara $\sigma_s < 0.75 \cdot f_{vk}$

9.1.2.2 Verifiche agli Stati Limite di Fessurazione

Viene eseguita la verifica allo stato limite di apertura delle fessure con riferimento al §4.1.2.2.4 delle NTC 2008. Prima di procedere alle verifiche a fessurazione è necessario definire delle apposite combinazioni di carico ed effettuare una valutazione relativa al grado di protezione delle armature metalliche contro la corrosione (in termini di condizioni ambientali e sensibilità delle armature stesse alla corrosione). Si distinguono i seguenti casi:

Combinazioni di azioni Rara (RA)

Quasi Permanente (QP)

Condizioni ambientali Ordinarie (Gruppo A)

Aggressive (Gruppo B)

Molto aggressive (Gruppo C)

Sensibilità delle armature alla corrosione Sensibili (acciai da precompresso)

Poco sensibili (acciai ordinari)

Stato limite Apertura fessure (AF)

Formazione fessure (FF) Decompressione (D)

Apertura delle fessure $w_1 = 0.20 \text{ mm}$

 $w_2 = 0.30 \text{ mm}$ $w_3 = 0.40 \text{ mm}$

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	91

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ze	Condizioni	Combinazione di		Arma	tura	
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gr Esi			Stato limite	$\mathbf{w}_{\mathbf{k}}$	Stato limite	w_k
Α	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$
A	Ordinarie	quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
В	Accessions	frequente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
Ь	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
C	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

Tabella 25 - Stati limite di fessurazione secondo NTC 2008

Il calcolo, condotto con riferimento alla procedura analitica prevista al §C4.1.2.2.4 del [15], prevede i seguenti passaggi:

- Valutazione della distanza media tra le fessure (Δ_{sm});
- Valutazione della deformazione media delle barre d'armatura (ε_{sm});
- Valutazione dell'ampiezza delle fessure (valore medio w_m e valore di calcolo w_k).

Come riportato al paragrafo 2.5.1.8.3.2.4 del MdP ITF, la verifica allo stato limite di apertura delle fessure viene calcolata con la combinazione caratteristica (rara) nei riguardi dello stato limite di esercizio. I limiti per l'apertura convenzionale delle fessure vengono valutati secondo le condizioni ambientali della struttura.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura. Si distinguono i seguenti casi:

Elemento strutturale	Classi di esposizione	Gruppo di esigenza	Condizioni ambientali	Combinaz. di azioni	Stato limite	Wk
Elevazioni	XC4 – XS1	В	Aggressive	RA	AF	$\leq w_1 = 0.20 \text{ mm}$
Fondazioni	XC2	Α	Ordinarie	RA	AF	\leq w ₂ = 0.30 mm

Tabella 26 - Riepilogo stati limite di fessurazione di verifica

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	92

10. MODELLO DI CALCOLO

Per il dimensionamento delle strutture di spalla sono stati adottati i seguenti diversi modelli di calcolo:

- modello generale della spalla, implementato in un foglio di calcolo Excel, specifico per ricavare le sollecitazioni globali sulle fondazioni partendo dagli scarichi appoggi dell'impalcato; sono considerati i pesi propri degli elementi strutturali, del terreno di riempimento della spalla, le spinte del terreno di rilevato e, in condizioni sismiche, le masse, secondo le ipotesi illustrate nell'analisi dei carichi; il solettone di fondazione viene considerato come una piastra rigida su pali;
 - a. modello locale del muro frontale, implementato in un foglio di calcolo Excel, considerando uno schema strutturale di mensola incastrata alla base;
 - b. modello locale del paraghiaia, implementato in un foglio di calcolo Excel, considerando uno schema strutturale di mensola incastrata alla base;
 - c. modello locale in direzione longitudinale della fondazione, implementato in un foglio di calcolo Excel, dove vengono calcolate le sollecitazioni del plinto in direzione longitudinale a partire dagli scarichi sui pali, desunti dalla relazione geotecnica;
 - d. modello locale dei muri laterali, implementato in un foglio di calcolo Excel, considerando uno schema strutturale di mensola incastrata alla base:

Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

Parametri	Geote	ecnici
γ	φ'	c'
[kN/m³]	[°]	[kPa]
20	38	0

Tabella 27 – Parametri geotecnici terreno di riempimento

Tutte le azioni e le combinazioni di carico considerate per le verifiche strutturali e geotecniche sono state sviluppate nell'ipotesi A1-M1.

10.1.1 Condizioni statiche

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta.

Si deve notare che essendo presente una fondazione su pali si ipotizza che la spalla sia impedita di traslare rispetto al terreno; pertanto, la spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta in quiete k₀.

Per considerare la presenza di un sovraccarico da traffico gravante sulla spalla e tergo di essa, si considera un carico uniformemente distribuito di lunghezza indefinita con valore equivalente pari ad entrambi i binari caricati con dei modelli di carico LM71, non amplificato per il coefficiente dinamico.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	93

10.1.2 Condizioni sismiche

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica viene calcolata con la teoria di Mononome-Okabe con β_m = 1.00, in quanto si considera la spalla debolmente deformabile in condizione sismica.

In fase sismica si considerano inoltre le azioni orizzontali e verticali dovute all'inerzia delle parti in calcestruzzo e del rinterro compreso tra i muri andatori.

| RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA | LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

l	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	94

11. ANALISI SPALLA FISSA S2

11.1 AZIONE IMPALCATI

Mediante l'ausilio di un foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) derivanti dagli scarichi degli impalcati in appoggio, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione spalla, secondo lo schema di riferimento, a quota estradosso muro frontale, e i rispettivi assi x, y, z come riportato nella figura seguente.

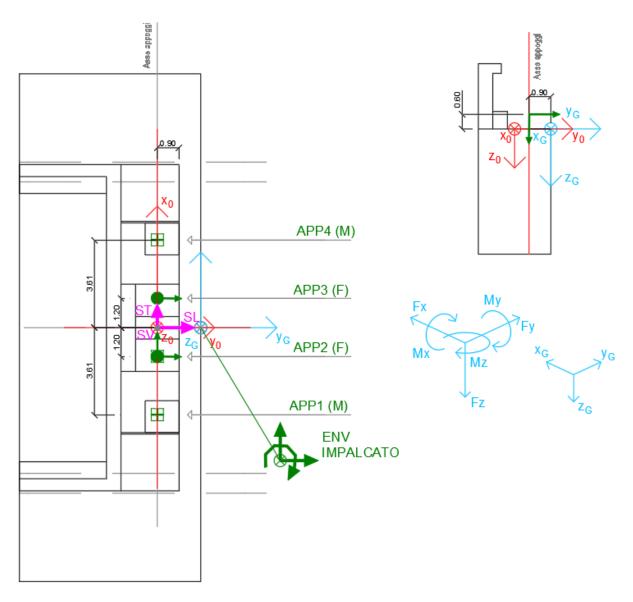


Figura 32 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	95

NOME: SPALLA 2	_						(CALCOLO A	ZIONI DA IN	IPALCATO					
LATO APPOGGI SCORRE\										_	_				
APPOGGIO 1 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN) 1075	x _O (m) -3,62	y _O (m) 0,00	z _O (m) -0,60	M _{xo} (kNm)	M _{yo} (kNm) 3887	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) I 1075	M _{xG} (kNm) M -968	l _{yG} (kNm) 1 3887	Λ _{zG} (kNm)
G1 (peso proprio) G2,1 (ballast)	0	0	325	-3,62	0,00	-0,60	0	1175	0	0	0	325	-293	1175	(
G2,2 (velette)	0	0	225	-3,62	0,00	-0,60	0	813	0	0	0	225	-203	813	C
G2,3 (arredi)	0	0	425	-3,62	0,00	-0,60	0	1536	0	0	0	425	-383	1536	(
G2,4 (barriere) Q3,a B1-SW2 (aw)	0	0	575 0	-3,62 -3,62	0,00 0,00	-0,60 -0,60	0	2079 0	0	0	0	575 0	-518 0	2079 0	(
Q3,a B1-LM71 (aw)	0	0	0	-3,62	0,00	-0,60	0	0	0	0	0	0	0	0	
Q3,a B2-LM71 (aw)	0	0	-66	-3,62	0,00	-0,60	0	-237	0	0	0	-66	59	-237	(
Q3,f B1-SW2 (fren)	0	0	0	-3,62	0,00	-0,60	0	0	0	0	0	0	0	0	(
Q3,f B1-LM71 (fren)	0	0	0	-3,62	0,00	-0,60	0	0	0	0	0	0	0	0	(
Q3,f B2-LM71 (fren)	0	0	-40	-3,62	0,00	-0,60	0	-144	0	0	0	-40	36	-144	(
Q4 B1-SW2 (centr)	0	0	-25	-3,62	0,00	-0,60	0	-90	0	0	0	-25	23	-90	
Q4 B1-LM71 (centr)	0	0	-63	-3,62	0,00	-0,60	0	-227	0	0	0	-63	57	-227	
Q4 B2-LM71 (centr)	0	0	-63	-3,62	0,00	-0,60	0	-227	0	0	0	-63	57	-227	
Q5 B1-SW2 (serp)	0	0	-41	-3,62	0,00	-0,60	0	-149	0	0	0	-41	37	-149	
Q5 B1-LM71 (serp)	0	0	-45	-3,62	0,00	-0,60	0	-164	0	0	0	-45	41	-164	
Q5 B2-LM71 (serp)	0	0	-45	-3,62	0,00	-0,60	0	-164	0	0	0	-45	41	-164	•
Q6 (vento)	0	0	-29	-3,62	0,00	-0,60	0	-106	0	0	0	-29	26	-106	
Q1 LM71_B1 (traffico) Q1 LM71 B2 (traffico)	0	0	-15 788	-3,62 -3,62	0,00 0,00	-0,60 -0,60	0	-56 2850	0	0	0	-15 788	14 -709	-56 2850	(
Q1 SW2_B1 (traffico)	0	0	0	-3,62	0,00	-0,60	0	2830	0	0	0	0	-709	2030	
Q8 Fa,G (attrito)	0	79	0	-3,62	0,00	-0,60	47	0	-285	0	79	0	47	0	-28
Q8 Fa,Q (attrito)	0	24	0	-3,62	0,00	-0,60	14	0	-85	0	24	0	14	0	-8
APPOGGIO 2 (F)		F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)		M _{xo} (kNm)			F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm) M		/I _{zG} (KNM
G1 (peso proprio) G2,1 (ballast)	0	0	475 500	-1,21 -1,21	0,00	-0,60 -0,60	0	573 603	0	0	0	475 500	-428 -450	573 603	,
G2,1 (ballast) G2,2 (velette)	0	0	-138	-1,21	0,00	-0,60	0	-166	0	0	0	-138	-450 124	-166	,
G2,3 (arredi)	0	0	-225	-1,21	0,00	-0,60	0	-271	0	0	0	-225	203	-271	,
G2,4 (barriere)	0	0	-325	-1,21	0,00	-0,60	0	-392	0	0	0	-325	293	-392	
Q3,a B1-SW2 (aw)	0	-275	-20	-1,21	0,00	-0,60	-165	-24	331	0	-275	-20	-147	-24	33
Q3,a B1-LM71 (aw)	0	-303	-22	-1,21	0,00	-0,60	-182	-26	365	0	-303	-22	-162	-26	36
Q3,a B2-LM71 (aw)	0	1210	-44	-1,21	0,00	-0,60	726	-53	-1458	0	1210	-44	765	-53	-1458
Q3,f B1-SW2 (fren)	0	-292	-21	-1,21	0,00	-0,60	-175	-25	351	0	-292	-21	-156	-25	35
Q3,f B1-LM71 (fren)	0	-183	-13	-1,21	0,00	-0,60	-110	-16	221	0	-183	-13	-98	-16	22
Q3,f B2-LM71 (fren)	0	733	-27	-1,21	0,00	-0,60	440	-32	-884	0	733	-27	464	-32	-88
Q4 B1-SW2 (centr)	30	0	-8	-1,21	0,00	-0,60	0	-28	0	30	0	-8	8	-28	27
Q4 B1-LM71 (centr)	76	0	-21	-1,21	0,00	-0,60	0	-71	0	76	0	-21	19	-71	69
Q4 B2-LM71 (centr)	76	0	-21	-1,21	0,00	-0,60	0	-71	0	76	0	-21	19	-71	69
Q5 B1-SW2 (serp) Q5 B1-LM71 (serp)	50 55	0	-14 -15	-1,21 -1,21	0,00 0,00	-0,60 -0,60	0	-47 -51	0	50 55	0	-14 -15	12 14	-47 -51	48 50
Q5 B1-LM71 (serp)	55	0	-15	-1,21	0,00	-0,60	0	-51	0	55	0	-15	14	-51 -51	50
Q6 (vento)	117	0	25	-1,21	0,00	-0,60	0	-40	0	117	0	25	-22	-40	10
Q1 LM71_B1 (traffico)	0	0	253	-1,21	0,00	-0,60	0	304	0	0	0	253	-227	304	(
Q1 LM71_B2 (traffico)	0	0	520	-1,21	0,00	-0,60	0	627	0	0	0	520	-468	627	(
Q1 SW2_B1 (traffico)	0	0	283	-1,21	0,00	-0,60	0	340	0	0	0	283	-254	340	(
Q8 Fa,G (attrito)	0	9	0	-1,21	0,00	-0,60	5	0	-10	0	9	0	5	0	-10
Q8 Fa,Q (attrito)	0	16	0	-1,21	0,00	-0,60	9	0	-19	0	16	0	9	0	-19
APPOGGIO 3 (F)		F _{yO} (kN)	F_{zO} (kN)	x _O (m)	y _O (m)		M _{xo} (kNm)			F _{xG} (m)	F _{yG} (m)		M _{xG} (kNm) M		
G1 (peso proprio)	0	0	475	1,21	0,00	-0,60	0	-573	0	0	0	475	-428	-573	(
G2,1 (ballast)	0	0	500 -138	1,21	0,00	-0,60	0	-603 166	0	0	0	500 -138	-450 124	-603 166	(
G2,2 (velette) G2,3 (arredi)	0	0	-138 -225	1,21 1,21	0,00 0,00	-0,60 -0,60	0	166 271	0	0	0	-138 -225	124 203	166 271	(
G2,4 (barriere)	0	0	-325	1,21	0,00	-0,60	0	392	0	0	0	-325	293	392	(
Q3,a B1-SW2 (aw)	0	1100	-40	1,21	0,00	-0,60	660	48	1326	0	1100	-325	696	48	1326
Q3,a B1-LM71 (aw)	0	1210	-44	1,21	0,00	-0,60	726	53	1458	0	1210	-44	765	53	1458
Q3,a B2-LM71 (aw)	0	-303	-22	1,21	0,00	-0,60	-182	26	-365	0	-303	-22	-162	26	-36
Q3,f B1-SW2 (fren)	0	1167	-42	1,21	0,00	-0,60	700	51	1406	0	1167	-42	738	51	140
Q3,f B1-LM71 (fren)	0	733	-27	1,21	0,00	-0,60	440	32	884	0	733	-27	464	32	88
Q3,f B2-LM71 (fren)	0	-183	-13	1,21	0,00	-0,60	-110	16	-221	0	-183	-13	-98	16	-22
Q4 B1-SW2 (centr)	30	0	8	1,21	0,00	-0,60	0	-28	0	30	0	8	-8	-28	2
Q4 B1-LM71 (centr)	76	0	21	1,21	0,00	-0,60	0	-71	0	76	0	21	-19	-71 	6
Q4 B2-LM71 (centr)	76	0	21	1,21	0,00	-0,60	0	-71	0	76	0	21	-19	-71	6
Q5 B1-SW2 (serp)	50	0	14	1,21	0,00	-0,60	0	-47	0	50	0	14	-12	-47	4
Q5 B1-LM71 (serp)	55 55	0	15 15	1,21	0,00	-0,60	0	-51	0	55 55	0	15 15	-14 14	-51	5
Q5 B2-LM71 (serp)	55 117	0	15 78	1,21 1,21	0,00 0,00	-0,60 -0.60	0	-51 -165	0	55 117	0	15 78	-14 -71	-51 -165	5 10
Q6 (vento) Q1 LM71_B1 (traffico)	117	0	78 520	1,21 1,21	0,00	-0,60 -0,60	0	-165 -627	0	117	0	78 520	-/1 -468	-165 -627	10
Q1 LM71_B1 (traffico)	0	0	253	1,21	0,00	-0,60	0	-304	0	0	0	253	-468 -227	-627 -304	
Q1 SW2_B1 (traffico)	0	0	565	1,21	0,00	-0,60	0	-681	0	0	0	565	-509	-681	
Q8 Fa,G (attrito)	0	9	0	1,21	0,00	-0,60	5	0	10	0	9	0	5	0	1
, - (0	•	0	1,21	0,00	-0,60	10	0	20	0	17	0	10	0	2

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	96

APPOGGIO 4 (M)	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm) M	yo (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M	_{xG} (kNm) M	_{yG} (kNm) N	Л _{zG} (kNm)
G1 (peso proprio)	0	0	1075	3,62	0,00	-0,60	0	-3887	0	0	0	1075	-968	-3887	0
G2,1 (ballast)	0	0	325	3,62	0,00	-0,60	0	-1175	0	0	0	325	-293	-1175	0
G2,2 (velette)	0	0	225	3,62	0,00	-0,60	0	-813	0	0	0	225	-203	-813	0
G2,3 (arredi)	0	0	425	3,62	0,00	-0,60	0	-1536	0	0	0	425	-383	-1536	0
G2,4 (barriere)	0	0	575	3,62	0,00	-0,60	0	-2079	0	0	0	575	-518	-2079	0
Q3,a B1-SW2 (aw)	0	0	-60	3,62	0,00	-0,60	0	216	0	0	0	-60	54	216	0
Q3,a B1-LM71 (aw)	0	0	-66	3,62	0,00	-0,60	0	237	0	0	0	-66	59	237	0
Q3,a B2-LM71 (aw)	0	0	0	3,62	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q3,f B1-SW2 (fren)	0	0	-63	3,62	0,00	-0,60	0	229	0	0	0	-63	57	229	0
Q3,f B1-LM71 (fren)	0	0	-40	3,62	0,00	-0,60	0	144	0	0	0	-40	36	144	0
Q3,f B2-LM71 (fren)	0	0	0	3,62	0,00	-0,60	0	0	0	0	0	0	0	0	0
Q4 B1-SW2 (centr)	0	0	25	3,62	0,00	-0,60	0	-90	0	0	0	25	-23	-90	0
Q4 B1-LM71 (centr)	0	0	63	3,62	0,00	-0,60	0	-227	0	0	0	63	-57	-227	0
Q4 B2-LM71 (centr)	0	0	63	3,62	0,00	-0,60	0	-227	0	0	0	63	-57	-227	0
Q5 B1-SW2 (serp)	0	0	41	3,62	0,00	-0,60	0	-149	0	0	0	41	-37	-149	0
Q5 B1-LM71 (serp)	0	0	45	3,62	0,00	-0,60	0	-164	0	0	0	45	-41	-164	0
Q5 B2-LM71 (serp)	0	0	45	3,62	0,00	-0,60	0	-164	0	0	0	45	-41	-164	0
Q6 (vento)	0	0	132	3,62	0,00	-0,60	0	-478	0	0	0	132	-119	-478	0
Q1 LM71_B1 (traffico)	0	0	788	3,62	0,00	-0,60	0	-2850	0	0	0	788	-709	-2850	0
Q1 LM71_B2 (traffico)	0	0	-15	3,62	0,00	-0,60	0	56	0	0	0	-15	14	56	0
Q1 SW2_B1 (traffico)	0	0	848	3,62	0,00	-0,60	0	-3064	0	0	0	848	-763	-3064	0
Q8 Fa,G (attrito)	0	79	0	3,62	0,00	-0,60	47	0	285	0	79	0	47	0	285
Q8 Fa,Q (attrito)	0	25	0	3,62	0,00	-0,60	15	0	92	0	25	0	15	0	92

Tabella 28 - Riepilogo azioni elementari derivanti dagli scarichi degli impalcati

Tino oriono	Descrizione	V_{trasv}	V_{long}	N _{vert}	M _{long}	M_{trasv}	M _{torc}
Tipo azione	azione						
		Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	3101	-2791	0	0
Gk2b Ballast	G2,1 (ballast)	0	0	1650	-1485	0	0
Gk2v	G2,2 (arredi vari)	0	0	1075	-968	0	0
Qk3a	Traffico 1	0	908	-131	663	264	1823
Avviamento	Traffico 2	0	825	-119	602	240	1657
	Traffico 3	0	825	-119	602	240	1657
Qk3f	Traffico 1	0	550	-80	402	-160	-1105
Frenatura	Traffico 2	0	550	-80	402	-160	-1105
	Traffico 3	0	875	-127	639	254	1757
Qk4	Traffico 1	305	0	0	0	-1193	274
Centrifuga	Traffico 2	213	0	0	0	-834	192
	Traffico 3	61	0	0	0	-237	55
Qk5	Traffico 1	220	0	0	0	-861	198
Serpeggio	Traffico 2	210	0	0	0	-822	189
	Traffico 3	100	0	0	0	-391	90
Qk6 vento	Q6 (vento)	234	0	206	-186	-789	211
Qk1	Traffico 1	0	0	3092	-2783	0	0
Treno	Traffico 2	0	0	3241	-2917	-176	0
	Traffico 3	0	0	1695	-1526	-3404	0
Qk2g attrito	Q8 Fa,G (attrito)	0	175	0	105	0	0
Qk2q attrito	Q8 Fa,Q (attrito)	0	82	0	49	0	8

Tabella 29 - Risultanti azioni elementari al centro dell'elevazione G (quota estradosso muro frontale)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	97

NomeFox	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2v-Perm. non str. vari	Qk3a-Traffico 1	Qk3a-Traffico 2	Qk3a-Traffico 3	Qk3f-Traffico 1	Qk3f-Traffico 2	Qk3f-Traffico 3	Qk4-Traffico 1	Qk4-Traffico 2	Qk4-Traffico 3	Qk5-Traffico 1	Qk5-Traffico 2	Qk5-Traffico 3	Qk6 vento-Q6 (vento)	Qk1-Traffico 1	Qk1-Traffico 2	Qk1-Traffico 3	Qk2g attrito-Q8 Fa,G (attrito)	Qk2q attrito-Q8 Fa,Q (attrito)
SLU	_	1	SLU1	1,35	1,50		0,73	0,00	0,00	0,73	0,00	0,00			0,00	1,45	0,00	0,00	0,90			0,00	1,35	1,45
SLU	J 2	2	SLU2	1,35			1,45		0,00		0,00	0,00			0,00	0,73	0,00		0,90			0,00	1,35	1,45
SLU	J 1	3	SLU3	1,35	1,50	1,35	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU	J 2	4	SLU4	1,35	1,50	1,35	0,00	1,45	0,00	0,00	1,45	0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,90	0,00	1,45	0,00	1,35	1,45
SLU		5	SLU5	1 ′ 1			0,00	0,00	0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	1,45	0,90	0,00	0,00	1,45	1,35	1,45
SLI	J 2	6	SLU6	1,35			0,00		1,45		0,00	1,45	0,00	,	0,73		0,00	0,73	0,90	0,00	0,00	1,45	1,35	1,45
SLU			SLU7		1,00	-	-		0,00			0,00			0,00	,	0,00	0,00	0,90			0,00	1,35	1,45
SLU		_	SLU8		1,00					•		0,00	· ·		0,00	0,73			0,90			0,00	1,35	1,45
SLU			SLU9	'	1,00	,			0,00	0,00	0,73		· ·		0,00		1,45		0,90		1,45	0,00	1,35	1,45
SLU		10		′	1,00	,			0,00	0,00	1,45		· ·	,	0,00	0,00	0,73		0,90		1,45	0,00	1,35	1,45
SLU		11	SLU11		1,00				0,73	0,00	0,00	0,73	0,00	0,00	1,45	0,00	0,00	,	0,90		0,00	1,45	1,35	1,45
SLI SLI		12 13	SLU12 SLU13	′	1,00 1,00	,		0,00	1,45 0,00	0,00	0,00	1,45 0,00	0,00	0,00	0,73	0,00	0,00	0,73	0,90 1,50	-	0,00	1,45 0,00	1,35 1,00	1,45 0,00
SLU		14		· '	1,00	,		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,50		0,00	0,00	-1,00	0,00
SLU		15			1,00			0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	1,00	0,00
SLI		16								0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	-1,50		0,00	0,00	-1,00	0,00
SLI			SLU17		1,00		0,00		0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,73
SLU	J 6	18					0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-1,00	-0,73
SLE RA	٦ 7	19	RA1	1,00	1,00	1,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	8 4	20	RA2	1,00	1,00	1,00	1,00	0,00	0,00	1,00	0,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	0,60	1,00	0,00	0,00	1,00	1,00
SLE RA	A 7	21	RA3	1,00	1,00	1,00	0,00	0,80	0,00	0,00	0,80	0,00	0,00	1,00	0,00	0,00	1,00	0,00	0,60	0,00	1,00	0,00	1,00	1,00
SLE RA			RA4		1,00		0,00		0,00	0,00	1,00		0,00		0,00	0,00	0,80		0,60		1,00	0,00	1,00	1,00
SLE RA		23	RA5		1,00	-	0,00		0,80		0,00	0,80		0,00	1,00		0,00	-	0,60	0,00	0,00	1,00	1,00	0,50
SLE RA			RA6	'	1,00		,		1,00		0,00	1,00		0,00	0,80		0,00		0,60		0,00	1,00	1,00	0,50
SLE RA		_	RA7	1,00					0,00							1,00				1,00		,	-1,00	,
SLE RA				1,00	-																			-1,00 -1,00
SLE RA																							-1,00	
SLE RA		29	RA11																	0,00	,	,	-1,00	,
SLE RA		30												0,00						0,00			-1,00	
SLE RA		31		1,00								0,00			0,00		0,00			0,00			-1,00	
SLE RA		32		1,00		,	,	,	,	,	-			0,00			0,00			0,00			-1,00	
SLE RA		33		1,00		-			-						0,00		0,00		-	0,00	0,00	0,00	1,00	
SLE Q	P 10	34	QP1	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
SLE Q		35		1,00	-														0,00	0,00	0,00	0,00	-1,00	0,00
SLE Q	P 11	36	QP3	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	98

INVILUPPO:	SLU	N _{vert}	V_{trasv}	M _{long}	V_{long}	M_{trasv}	M _{torc}
Tipologia Comb.	Nome Comb.	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Collib.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU3	12853	824	-3308	1351	-10757	1154
N _{vert} Min	SLU15	5517	-351	1184	175	-4860	-316
V _{trasv} Max	SLU7	10342	972	-3614	1411	-8461	1407
V _{trasv} Min	SLU16	5517	-351	1184	-175	-5070	-316
M _{long} Max	SLU15	5517	-351	1184	175	-4860	-316
M _{long} Min	SLU5	10578	444	-6200	1587	-8568	2886
V _{long} Max	SLU12	8113	327	-5386	2819	-5610	5257
V _{long} Min	SLU18	5826	0	0	-234	-5384	-6
M _{trasv} Max	SLU15	5517	-351	1184	175	-4860	-316
M _{trasv} Min	SLU3	12853	824	-3308	1351	-10757	1154
M _{torc} Max	SLU12	8113	327	-5386	2819	-5610	5257
M _{torc} Min	SLU16	5517	-351	1184	-175	-5070	-316

Tabella 31 – ENV SLU - Azioni totali inviluppo

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M _{long}	V _{long}	M _{trasv}	M _{torc}
Tipologia	Nome	Fz	Fx	Mx	Fy	Му	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA3	9031	564	-2241	1356	-7314	957
N _{vert} Min	RA14	5620	-234	789	-175	-5163	-211
V _{trasv} Max	RA1	8873	665	-2445	1422	-7132	1181
V _{trasv} Min	RA14	5620	-234	789	-175	-5163	-211
M _{long} Max	RA14	5620	-234	789	-175	-5163	-211
M _{long} Min	RA11	7448	301	-4111	1144	-6017	2998
V _{long} Max	RA6	7399	269	-3887	1916	-5510	3660
V _{long} Min	RA14	5620	-234	789	-175	-5163	-211
M _{trasv} Max	RA15	5826	0	0	256	-5090	8
M _{trasv} Min	RA9	9031	564	-2241	844	-7622	941
M _{torc} Max	RA6	7399	269	-3887	1916	-5510	3660
M _{torc} Min	RA14	5620	-234	789	-175	-5163	-211
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	QP3	5826	0	0	175	-5139	0
N _{vert} Min	QP2	5826	0	0	-175	-5348	0
V _{trasv} Max	QP3	5826	0	0	175	-5139	0
V _{trasv} Min	QP2	5826	0	0	-175	-5348	0
M _{long} Max	QP3	5826	0	0	175	-5139	0
M _{long} Min	QP2	5826	0	0	-175	-5348	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	99

V _{long} Max	QP3	5826	0	0	175	-5139	0
V _{long} Min	QP2	5826	0	0	-175	-5348	0
M _{trasv} Max	QP3	5826	0	0	175	-5139	0
M _{trasv} Min	QP2	5826	0	0	-175	-5348	0
M _{torc} Max	QP3	5826	0	0	175	-5139	0
M _{torc} Min	QP2	5826	0	0	-175	-5348	0

Tabella 32 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	100

11.2 SOLLECITAZIONI ELEVAZIONE

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate all'elevazione spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi, combinandole opportunamente con gli inviluppi di azioni totali ricavate a testa elevazione.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro della elevazione pila a quota estradosso fondazione, e i rispettivi assi x, y, z come riportato nella figura seguente.

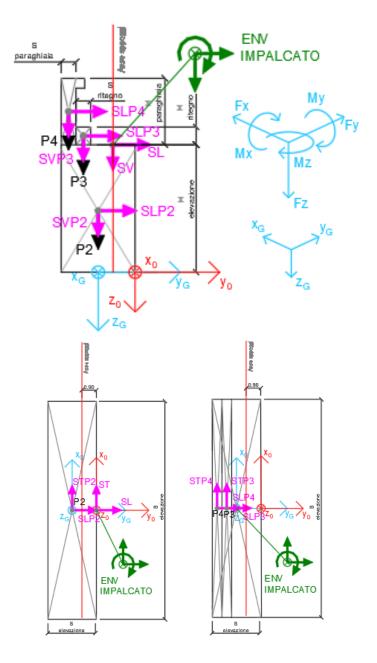


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	101

11.2.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOME	ELEVAZIO	NE SPALLA	2					CALC	OLO SPETT	RO SISMIC	O DI PROGE	TTO				
PGA orizzontale	a _g (g)	0,242				Co	oeff. sismi	co orizz. k _h	0,2814			Coeff. s	pinta attiva	sismica k _{aE}	0,3878	
Coeff. stratigrafic	o S _S	1,163				C	Coeff. sisn	nico vert. k _v	0,1407							
NOME	ELEVAZIO	NE SPALLA	2					CALC	OLO AZION	SISMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z ₀ (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{vG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{vG} (kNm)	M _{zG} (kNm)
Sisma long	SLP2	0	712	0	0,00	-1,50	-1,25	891	0	0						
	SLP3	0	52	0	0,00	-2,10	-2,96	155	0	0						
	SLP4	0	177	0	0,00	-2,70	-4,05	716	0	0						
		0	942	0				1761	0	0	0	942	0	1761	0	0
Sisma trasv	STP2	712	0	0	0,00	-1,50	-1,25	0	-891	1069						
	STP3	52	0	0	0,00	-2,10	-2,96	0	-155	110						
Sisma vert	STP4	177	0	0	0,00	-2,70	-4,05	0	-716	477						
		942	0	0				0	-1761	1656	942	0	0	0	-1761	243
Sisma vert	SVP2	0	0	356	0,00	-1,50	-1,25	-534	0	0						
	SVP3	0	0	26	0,00	-2,10	-2,96	-55	0	0						
	SVP4	0	0	88	0,00	-2,70	-4,05	-239	0	0						
		0	0	471				-828	0	0	0	0	471	-122	0	0
Sisma ballast	SGBH	0	150	0	0,00	-3,00	-2,80	421	0	0						
long		0	150	0				421	0	0	0	150	0	421	0	0
Sisma terreno	STHL	o o	866	0	0,00	-3,00	-2,80	2424	0	0						
long		0	866	0				2424	0	0	0	866	0	2424	0	0
Sisma impalcato	SL	0	0	0	0,00	0,00	-2,50	0	0							
long		0	0	0				0	0	0	0	0	0	0	0	0
Sisma impalcato	ST	2552	0	0	0,00	0,00	-2,50	0	-6380	0						
trasv		2552	0	0	·	·		0	-6380	0	2552	0	0	0	-6380	-3828
Sisma impalcato	SV	0	0	1276	0,00	0,00	-2,50	0	0	0						
vert		0	0	1276		,		0	0	0	0	0	1276	1914	0	0

Tabella 33 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	102

	: ELEVAZION	E SPALLA	2					PA	RAMETRI D	CALCOLO	ELEVAZION	IE				
H paraghiaia (m					zione (m)	2,50				no (kN/m3)	20,00		Cario	co variab. Q		23,1
S paraghiaia (m	n) 0,60			S eleva:	zione (m)	3,00			golo di attrito		38,00			XG	elevazione	0,0
H ritegno (m					zione (m)	13,50			spinta attiva		0,2379				elevazione	-1,5
S ritegno (m	n) 0,60		Carico pe	erm. Gb ball	ast (kPa)	9,72		Coeff.	spinta riposo	statica k0	0,3843			ZG	elevazione	0,0
NOME	: ELEVAZION	E SPALLA	2					(CALCOLO A	ZIONI CORP	O SPALLA					
		F _{xO} (kN)	F_{yO} (kN)	F_{zO} (kN)	x _O (m)	y ₀ (m)	z _O (m)	M_{xo} (kNm)	M_{yo} (kNm)	M_{zo} (kNm)	F_{xG} (m)	F_{yG} (m)	F_{zG} (m)	M_{xG} (kNm)	M_{yG} (kNm)	M_{zG} (kNm
Peso proprio	P2	0	0	2531	0,00	-1,50	-1,25	-3797	0	0						
	P3	0	0	186	0,00	-2,10	-2,96	-391	0	0						
	P4	0	0	628	0,00	-2,70	-4,05	-1695	0	0						
		0	0	3345				-5883	0	0	0	0	3345	-865	0	
Ballast	GBH	0	282	0	0,00	-3,00	-2,80	791	0	0						
		0	282	0				791	0	0	0	282	0	791	0	
Spinta terreno	THL	0	1627	0	0,00	-3,00	-1,87	3037	0	0						
		0	1627	0				3037	0	0	0	1627	0	3037	0	
Sovraccarico	Q1	0	673	0	0,00	-3,00	-2,80	1883	0	0						
long		0	673	0				1883	0	0	0	673	0	1883	0	
NOME	: ELEVAZION	E SPALLA	2						CALCOLO A	ZIONI DA IN	IPALCATO					
			F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	70 (m)		M _{vo} (kNm)		F _{xG} (m)	F _{vG} (m)	F = (m)	M _{xG} (kNm)	M a (kNm)	M a /kNm
ENV	Nvert Max	824	1351	12853	0,00	0,00	-2,50	-10757	-3308	1154	824	1351	12853	11901	-5369	-8
SLU	Nvert Min	-351	175	5517	0,00	0,00	-2,50	-4860	1184	-316	-351	175	5517	3852	2061	-o. 21
520	Vtrasv Max	972	1411	10342	0,00	0,00	-2,50	-8461	-3614	1407	972	1411	10342	10579	-6043	-5
	Vtrasv Min	-351	-175	5517	0,00	0,00	-2,50	-5070	1184	-316	-351	-175	5517	2768	2061	21
	Mlong Max	-351	175	5517	0,00	0,00	-2,50	-4860	1184	-316	-351	175	5517	3852	2061	21
	Mlong Min	824	1351	12853	0,00	0,00	-2,50	-10757	-3308	1154	824	1351	12853	11901	-5369	-8:
	Vlong Max	327	2819	8113	0,00	0,00	-2,50	-5610	-5386	5257	327	2819	8113	13608	-6204	476
	Vlong Min	0	-234	5826	0,00	0,00	-2,50	-5384	0	-6	0	-234	5826	2770	0	-
	Mtrasv Max	-351	175	5517	0,00	0,00	-2,50	-4860	1184	-316	-351	175	5517	3852	2061	21
	Mtrasv Min	444	1587	10578	0,00	0,00	-2,50	-8568	-6200	2886	444	1587	10578	11266	-7309	222
	Mtorc Max	327	2819	8113	0,00	0,00	-2,50	-5610	-5386	5257	327	2819	8113	13608	-6204	476
	Mtorc Min	-351	-175	5517	0,00	0,00	-2,50	-5070	1184	-316	-351	-175	5517	2768	2061	21
		F _{xO} (kN)	F_{yO} (kN)	F_{zO} (kN)	x_{O} (m)	y_0 (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M_{zo} (kNm)	F_{xG} (m)	F_{yG} (m)	F_{zG} (m)	M_{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm
ENV	Nvert Max	564	1356	9031	0,00	0,00	-2,50	-7314	-2241	957	564	1356	9031	9624	-3650	11:
SLE RA	Nvert Min	-234	-175	5620	0,00	0,00	-2,50	-5163	789	-211	-234	-175	5620	2830	1374	14
	Vtrasv Max	665	1422	8873	0,00	0,00	-2,50	-7132	-2445	1181	665	1422	8873	9733	-4108	18
	Vtrasv Min	-234	-175	5620	0,00	0,00	-2,50	-5163	789	-211	-234	-175	5620	2830	1374	14
	Mtrasv Max	-234	-175	5620	0,00	0,00	-2,50	-5163	789	-211	-234	-175	5620	2830	1374	14
	Mtrasv Min	301	1144	7448	0,00	0,00	-2,50	-6017	-4111	2998	301	1144	7448	8016	-4864	254
	Vlong Max	269	1916	7399	0,00	0,00	-2,50	-5510	-3887	3660	269	1916	7399	10378	-4559	325
	Vlong Min Mlong Max	-234 0	-175 256	5620 5826	0,00	0,00	-2,50 -2,50	-5163 -5090	789 0	-211 8	-234 0	-175 256	5620 5826	2830 4290	1374	14
	Mlong Min	564	844	9031	0,00	0,00	-2,50	-7622	-2241	941	564	844	9031	8034	-3650	9
	Mtorc Max	269	1916	7399	0,00	0,00	-2,50	-5510	-3887	3660	269	1916	7399	10378	-4559	325
	Mtorc Min	-234	-175	5620	0,00	0,00	-2,50	-5163	789	-211	-234	-175	5620	2830	1374	14
	-		F _{vO} (kN)			•			M _{vo} (kNm)		F _{xG} (m)	F _{vG} (m)		M _{xG} (kNm)		
ENV	Nvert Max	r _{xO} (KIN)	175	5826	x _O (m) 0,00	y _O (m) 0,00	-2,50	-5139	Wiyo (KINIII)	1VI _{ZO} (KINIII)	F _{xG} (III)	175	5826	4037	IVIyG (KINIII)	IVIZG (KINIII
SLE QP	Nvert Min	0	-175	5826	0,00	0,00	-2,50	-5139	0	0	0	-175	5826	2954	0	
	Vtrasv Max	0	175	5826	0,00	0,00	-2,50	-5139	0	0	0	175	5826	4037	0	
	Vtrasv Min	0	-175	5826	0,00	0,00	-2,50	-5348	0	0	0	-175	5826	2954	0	
	Mtrasv Max	0	175	5826	0,00	0,00	-2,50	-5139	0	0	0	175	5826	4037	0	-
	Mtrasv Min	0	-175	5826	0,00	0,00	-2,50	-5348	0	0	0	-175	5826	2954	0	
	Vlong Max	0	175	5826	0,00	0,00	-2,50	-5139	0	0	0	175	5826	4037	0	
	Vlong Min	0	-175	5826	0,00	0,00	-2,50	-5348	0	0	0	-175	5826	2954	0	1
	Mlong Max	0	175	5826	0,00	0,00	-2,50	-5139	0	0	0	175	5826	4037	0	
	Mlong Min	0	-175	5826	0,00	0,00	-2,50	-5348	0	0	0	-175	5826	2954	0	
	Mtorc Max	0	175	5826	0,00	0,00	-2,50	-5139	0	0	0	175	5826	4037	0	
İ	Mtorc Min	0	-175	5826	0,00	0,00	-2,50	-5348	0	0	0	-175	5826	2954	0	

Tabella 34 – Riepilogo azioni elementari statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

I	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Е	ZZ	CL	VI	14	04	002	В	103

Tipo azione	Descrizione	V_{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	3345	-865	0	0
Gk2b Ballast	G2,1 (ballast)	0	282	0	791	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	1627	0	3037	0	0
SLU	Nvert Max	824	1351	12853	11901	-5369	-82
Impalcato	Nvert Min	-351	175	5517	3852	2061	211
	Vtrasv Max	972	1411	10342	10579	-6043	-51
	Vtrasv Min	-351	-175	5517	2768	2061	211
	Mtrasv Max	-351	175	5517	3852	2061	211
	Mtrasv Min	824	1351	12853	11901	-5369	-82
	Vlong Max	327	2819	8113	13608	-6204	4766
	Vlong Min	0	-234	5826	2770	0	-6
	Mlong Max	-351	175	5517	3852	2061	211
	Mlong Min	444	1587	10578	11266	-7309	2221
	Mtorc Max	327	2819	8113	13608	-6204	4766
	Mtorc Min	-351	-175	5517	2768	2061	211
SLE RA	Nvert Max	564	1356	9031	9624	-3650	112
Impalcato	Nvert Min	-234	-175	5620	2830	1374	140
	Vtrasv Max	665	1422	8873	9733	-4108	183
	Vtrasv Min	-234	-175	5620	2830	1374	140
	Mtrasv Max	-234	-175	5620	2830	1374	140
	Mtrasv Min	301	1144	7448	8016	-4864	2547
	Vlong Max	269	1916	7399	10378	-4559	3257
	Vlong Min	-234	-175	5620	2830	1374	140
	Mlong Max	0	256	5826	4290	0	8
	Mlong Min	564	844	9031	8034	-3650	96
	Mtorc Max	269	1916	7399	10378	-4559	3257
	Mtorc Min	-234	-175	5620	2830	1374	140
SLE QP	Nvert Max	0	175	5826	4037	0	0
Impalcato	Nvert Min	0	-175	5826	2954	0	0
	Vtrasv Max	0	175	5826	4037	0	0
	Vtrasv Min	0	-175	5826	2954	0	0
	Mtrasv Max	0	175	5826	4037	0	0
	Mtrasv Min	0	-175	5826	2954	0	0
	Vlong Max	0	175	5826	4037	0	0
	Vlong Min	0	-175	5826	2954	0	0
	Mlong Max	0	175	5826	4037	0	0
	Mlong Min	0	-175	5826	2954	0	0
	Mtorc Max	0	175	5826	4037	0	0
	Mtorc Min	0	-175	5826	2954	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	104

Qk1	Q (acc. Traffico)	0	673	0	1883	0	0
E	Sisma long	0	1957	0	4606	0	0
Sisma	Sisma trasv	3493	0	0	0	-8141	-3584
	Sisma vert	0	0	1747	1792	0	0

Tabella 35 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso fondazione)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	105

Nome Env:	ripoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	SLU-Nvert Max	SLU-Nvert Min	SI ILVites v Max		SLU-vtrasv Min	SLU-Mtrasv Max	SLU-Mtrasv Min	SLU-Viong Max	SLU-Vlong Min	SLU-Mlong Max	SLU-Mlong Min	SLU-Mtorc Max	SLU-Mtorc Min	SLE RA-Nvert Max	SI F BA-Nhort Min	SIE DA Memor Max	LE IVA-VII dev Ivi da	SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	SLE RA-Mtrasv Min	SLE RA-Vlong Max	SLE RA-Vlong Min	SLE RA-Mlong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SLE QP-Nvert Max	SLE QP-Nvert Min	SLE QP-Vtrasv Max	SLE QP-Vtrasv Min	SLE QP-Mtrasv Max	SLE QP-Mtrasv Min	SLE QP-Vlong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	Qk1-Q (acc. Traffico)	F-Sisma lond	E-Sisma trasv	E-Sisma vert
SLU	F 1	ž 1	SLU1	ق 1,35	ق 1,50	ල 1,50	ැ 1,00	0.00	0.0	0.00	nn n	00 0	ග	ග	<u> </u>	0.00	5	0.00	S	000	0 0 0	0.0.0		_	.00 I	<u>ග</u>	ග	<u>ග</u>	<u>ග</u>	0.00	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0 0	0.00	0.00	0.00	5	1,45		<u>і</u>	0.00
SLU	1	2	SLU2	1,35	1,50	1,50	0,00	1,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0				,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	0,00
SLU	1	3	SLU3	1,35	1,50	1,50	0,00	0,00				- 1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	- 1 '	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		1,45			
SLU SLU	1	5	SLU4 SLU5	1,35 1,35	1,50 1,50	1,50 1,50	0,00	0,00	0,0	0 1,0		00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	10 O,	00 0	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	0,00
SLU	1	6	SLU6	1,35	1,50	1,50	0,00	0,00	0,0	0 0,0	00 0,	- 1	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	-,-	0,00	0,00
SLU	1	7	SLU7	1,35	1,50	1,50	0,00	0,00	0,0	0,0				1,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45			,
SLU SLU	1	8	SLU8 SLU9	1,35	1,50 1,50	1,50	0,00	0,00	-,-	0 0,0			0,00 0.00	0,00	1,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,		00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45			-,-,-
SLU		10	SLU9	1,35 1,35	1,50	1,50 1,50	0.00	0.00	0.0	0 0,0	00 0,	.00	0,00	0.00		1,00	1,00	0,00	0.00	0.0	0.0	0 0,0	00 0.		.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,45			
SLU	- 1	- 1	SLU11	1,35	1,50	1,50	0,00	0,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	
SLU		12	SLU12	1,35	1,50	1,50	0,00	0,00	-,-	0,0			0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,0	0,0	0 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45			,
SLU SLU			SLU13 SLU14	1,00		1,00 1,00	1,00	1,00	-,-	0 0,0			0,00 0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	00 0,		00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45	-,-	,	
SLU			SLU15			1,00	0,00	0,00		-,-,-		00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	
SLU		16	SLU16	1,00		1,00	0,00	0,00	0,0	0 1,0		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0,00	0,00
SLU SLU			SLU17 SLU18	1,00 1,00		1,00	0,00	0,00	-,-	0,0			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		-,	,
SLU				1,00		1,00 1,00	0.00	0.00	0.0	0 0,0	00,00		1,00	1,00		0.00	0.00	0.00	0.00	0.0	0.0	0 0.0	0 0.	00	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,45		0,00	0,00
SLU	2	20	SLU20				0,00	0,00	0,0	0,0	00 0,	,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45			
SLU			SLU21	1,00		1,00	0,00	0,00		0 0,0			0,00	0,00	0,00	1,00		0,00	0,00	0,0	0,0	0,0	00 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45			0,00
SLU SLU			SLU22 SLU23	1,00		1,00 1,00	0,00	0,00	-,-	-,-,-			0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,0	0,0	0 0,0	, ,		00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		-,	-,-,-
SLU		24	SLU24	1,00		1,00	0,00	0,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,45		0 0,00	0,0
SLV		25	SLV1	1,00		1,00	0,00	0,00	0,0	0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0		
SLV SLV		26 27	SLV2 SLV3	1,00	1,00	1,00 1,00	0,00	0,00	0,0	0 0,0		00,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	00 0,	00 0, 00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0		
SLV		28	SLV4			1,00	0,00	0,00	-,-	-,-,-			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	, ,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,			
SLV		29	SLV5	1,00		1,00	0,00	0,00	0,0	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,-		
SLV SLE RA		30 31	SLV6 RA1	1,00	1,00	1,00	0,00	0,00	0,0	0,0	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,3		0 -1,00
SLE RA		32	RA1			1,00	0.00	0.00	0.0	0 0,0	00 0,	.00	0,00	0.00		0.00	0.00	0.00	0.00	0.0		0 0.0	00 0.	00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00			
SLE RA		33	RA3			1,00	0,00	0,00	0,0	0 0,0		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0		0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00			
SLE RA		34	RA4	1,00		1,00	0,00	0,00	0,0	0 0,0	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 1,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00
SLE RA		35 36	RA5 RA6	1,00 1,00		1,00 1,00	0.00	0.00	0,0	0 0,0	nn n	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0,0 0 0 0	10 U,		.00	1,00	0.00	0.00	0,00	0,00	0,00	0,00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	1,00		0.00	0 0,00
SLE RA	4	37		1,00		1,00	0,00	0,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	
SLE RA		38	RA8			1,00	0,00	0,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,		,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00			-,-,-
SLE RA		39 40	RA9 RA10			1,00 1,00	0,00	0,00	0,0	0 0,0	nn n	00,00	0,00	0,00		0,00	0,00	0,00	0,00	0,0	0,0	0 0,0	υ 0, 10 0		00,	0,00	0,00	u,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00
SLE RA		41	RA11			1,00	0,00	0,00	0,0	0,0	00,		0,00	0,00	0,00	0,00	0,00	-,	0,00	0,0	0,0	0,0	, ,		,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00			
SLE RA	4	42	RA12	1,00	1,00	1,00	0,00	0,00	0,0	0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	0 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,0	0,00	0,0
SLE QP		43 44	QP1 QP2	1,00 1,00		1,00 1,00	0,00	0,00	0,0	0 0,0	00 0,	00,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00	0,00
SLE QP		45	QP3	1,00		1,00	0,00	0,00	0,0	0 0.0	00 0.	00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0 0.0	0,00	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00	0 0,00
SLE QP	5	46	QP4	1,00	1,00	1,00	0,00	0,00	0,0	0 0,0	00 0,	.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00	0,00
SLE QP		47 48	QP5	1,00		1,00	0,00	0,00	0,0	0 0,0	00 0,	00,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,00	0,00
SLE QP		48	QP6 QP7		1,00	1,00 1.00	0.00	0.00	0,0	0 0,0	00 O.	.00	0.00	0.00		0.00	0.00	0.00	0,00	0,0	0,0	0 0.0	10 O.	00 0	.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1,00	1,00	0.00	0.00	0.00	0.00	0.00	0,00	0,0	0.00	
SLE QP		50	QP8			1,00	0,00	0,00	-,-	0 0,0			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,0	0 0,00	0,00
SLE QP		51	QP9	1,00		1,00	0,00	0,00	-,-	0,0			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	,,,		,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00		-,	0,0	,	-,-,-
SLE QP		52 53	QP10 QP11	1,00		1,00	0,00	0,00	-,-	0 0,0			0,00	0,00	0,00	0,00	0,00		0,00	0,0					,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00			0,0		-,-,-
SLE QP	2	54		1,00			0,00	0,00	10,0	0,0	00 0,	00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	U,U	, U,	JU U	,00	0,00	U,UU	J,UU	U,UU	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1.00		0,0	0,00	0,00

Tabella 36 - Combinazioni di carico adottate

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	106

INVILUPPO:	SLU	N _{vert}	V _{trasv}	M _{trasv}	V _{long}	M _{long}	M_{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU6	17369	824	-5369	5191	19205	-82
N _{vert} Min	SLU24	8862	-351	2061	2710	8462	211
V _{trasv} Max	SLU3	14858	972	-6043	5251	17884	-51
V _{trasv} Min	SLU24	8862	-351	2061	2710	8462	211
M _{trasv} Max	SLU2	10033	-351	2061	4014	11157	211
M _{trasv} Min	SLU22	13923	444	-7309	4472	16959	2221
V _{long} Max	SLU7	12629	327	-6204	6659	20912	4766
V _{long} Min	SLU20	9171	0	0	2651	8464	-6
M _{long} Max	SLU7	12629	327	-6204	6659	20912	4766
M _{long} Min	SLU24	8862	-351	2061	2710	8462	211
M _{torc} Max	SLU7	12629	327	-6204	6659	20912	4766
M _{torc} Min	SLU13	16198	824	-5369	4236	17594	-82
INVILUPPO:	SLV	N _{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)	Mx (kNm)	Mz (kNm)
				•	•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb.	Comb. SLV5	(kN)	(kN) 3493	(kNm) -8141	(kN) 2672	(kNm) 10174	(kNm) -3584
N _{vert} Max	Comb. SLV5 SLV6	(kN) 10918 7425	(kN) 3493 3493	(kNm) -8141 -8141	(kN) 2672 2672	(kNm) 10174 6590	(kNm) -3584 -3584
N _{vert} Max N _{vert} Min V _{trasv} Max	SLV5 SLV6 SLV5	(kN) 10918 7425 10918	(kN) 3493 3493 3493	(kNm) -8141 -8141 -8141	(kN) 2672 2672 2672	(kNm) 10174 6590 10174	(kNm) -3584 -3584 -3584
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	SLV5 SLV6 SLV5 SLV2	(kN) 10918 7425 10918 8647	(kN) 3493 3493 3493 1048	(kNm) -8141 -8141 -8141 -2442	(kN) 2672 2672 2672 4042	(kNm) 10174 6590 10174 11068	-3584 -3584 -3584 -1075
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	SLV5 SLV6 SLV5 SLV2 SLV1	(kN) 10918 7425 10918 8647 9695	(kN) 3493 3493 3493 1048	-8141 -8141 -8141 -8141 -2442 -2442	(kN) 2672 2672 2672 4042 4042	(kNm) 10174 6590 10174 11068 12144	-3584 -3584 -3584 -1075 -1075
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	SLV5 SLV6 SLV5 SLV2 SLV1 SLV6	(kN) 10918 7425 10918 8647 9695 7425	(kN) 3493 3493 3493 1048 1048 3493	-8141 -8141 -8141 -2442 -2442 -8141	(kN) 2672 2672 2672 4042 4042 2672	10174 6590 10174 11068 12144 6590	-3584 -3584 -3584 -1075 -1075 -3584
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max	SLV5 SLV5 SLV5 SLV2 SLV1 SLV6	(kN) 10918 7425 10918 8647 9695 7425	(kN) 3493 3493 1048 1048 3493 1048	(kNm) -8141 -8141 -8141 -2442 -2442 -8141 -2442	(kN) 2672 2672 2672 4042 4042 2672 4042	10174 6590 10174 11068 12144 6590	-3584 -3584 -3584 -1075 -1075 -3584 -1075
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	SLV5 SLV6 SLV5 SLV1 SLV6 SLV1 SLV6	(kN) 10918 7425 10918 8647 9695 7425 9695 7425	(kN) 3493 3493 1048 1048 3493 1048 3493	-8141 -8141 -8141 -2442 -2442 -8141 -2442 -8141	(kN) 2672 2672 2672 4042 4042 2672 4042 2672	(kNm) 10174 6590 10174 11068 12144 6590 12144 6590	-3584 -3584 -3584 -1075 -1075 -3584 -1075 -3584
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	SLV5 SLV6 SLV2 SLV1 SLV6 SLV1 SLV6 SLV1	(kN) 10918 7425 10918 8647 9695 7425 9695 7425	(kN) 3493 3493 1048 1048 3493 1048 3493	-8141 -8141 -8141 -2442 -2442 -8141 -2442 -8141 -2442	(kN) 2672 2672 2672 4042 4042 2672 4042 2672 4042	(kNm) 10174 6590 10174 11068 12144 6590 12144 6590 12144	-3584 -3584 -3584 -1075 -1075 -3584 -1075 -3584 -1075

Tabella 37 – ENV SLU, SLV - Azioni totali inviluppo

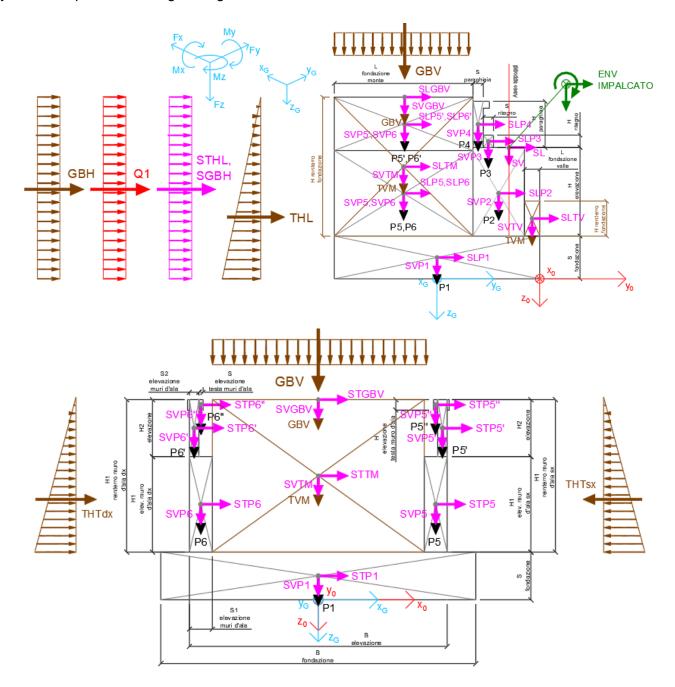
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	107

INVILUPPO:	SLE RA	N _{vert}	V _{trasv}	M _{trasv}	V_{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	12377	564	-3650	3939	14470	112
N _{vert} Min	RA12	8965	-234	1374	2407	7676	140
V _{trasv} Max	RA3	12218	665	-4108	4005	14579	183
V _{trasv} Min	RA12	8965	-234	1374	2407	7676	140
M _{trasv} Max	RA12	8965	-234	1374	2407	7676	140
M _{trasv} Min	RA6	10793	301	-4864	3727	12863	2547
V _{long} Max	RA7	10744	269	-4559	4498	15224	3257
V _{long} Min	RA12	8965	-234	1374	2407	7676	140
M _{long} Max	RA7	10744	269	-4559	4498	15224	3257
M _{long} Min	RA12	8965	-234	1374	2407	7676	140
M _{torc} Max	RA7	10744	269	-4559	4498	15224	3257
M _{torc} Min	RA9	9171	0	0	2839	9137	8
INVILUPPO:	SLE QP	N_{vert}	\mathbf{V}_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
					_		
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)	Fy (kN)	Mx (kNm)	Mz (kNm)
				•	•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb.	Comb. QP1	(kN)	(kN)	(kNm)	(kN) 2084	(kNm) 7000	(kNm)
N _{vert} Max	QP1 QP12	(kN) 9171 9171	(kN) 0 0	(kNm) 0 0	(kN) 2084 1735	(kNm) 7000 5917	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max	QP1 QP12 QP1	(kN) 9171 9171 9171	(kN) 0 0	(kNm) 0 0	(kN) 2084 1735 2084	(kNm) 7000 5917 7000	(kNm) 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	QP1 QP12 QP1 QP12	9171 9171 9171 9171 9171	(kN) 0 0 0	(kNm) 0 0 0 0 0	(kN) 2084 1735 2084 1735	(kNm) 7000 5917 7000 5917	(kNm) 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	QP1 QP12 QP1 QP1 QP12	(kN) 9171 9171 9171 9171 9171	(kN) 0 0 0 0	(kNm) 0 0 0 0 0 0	(kN) 2084 1735 2084 1735 2084	7000 5917 7000 5917 7000	(kNm) 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	QP1 QP12 QP1 QP12 QP1 QP12	(kN) 9171 9171 9171 9171 9171	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0	(kN) 2084 1735 2084 1735 2084 1735	7000 5917 7000 5917 7000 5917	(kNm) 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	QP1 QP12 QP1 QP12 QP1 QP1 QP12	(kN) 9171 9171 9171 9171 9171 9171	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0	(kN) 2084 1735 2084 1735 2084 1735 2084	7000 5917 7000 5917 7000 5917 7000	(kNm) 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	(kN) 9171 9171 9171 9171 9171 9171 9171	(kN) 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0	(kN) 2084 1735 2084 1735 2084 1735 2084 1735	7000 5917 7000 5917 7000 5917 7000 5917	(kNm) 0 0 0 0 0 0 0 0 0 0
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12 QP1	(kN) 9171 9171 9171 9171 9171 9171 9171 917	(kN) 0 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0	(kN) 2084 1735 2084 1735 2084 1735 2084 1735 2084	7000 5917 7000 5917 7000 5917 7000 5917 7000	(kNm) 0 0 0 0 0 0 0 0 0 0 0

Tabella 38 - ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	108

11.3 SOLLECITAZIONI IN FONDAZIONE

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}), non strutturali (G_{k2}) e accidentali (G_{ki}) applicate all'elevazione spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi, combinandole opportunamente con gli inviluppi di azioni totali ricavate a testa elevazione.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G posto al centro palificata a quota testa pali., e i rispettivi assi x, y, z come riportato nella figura seguente.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

CC	OMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
L	.I0B	02	Ε	ZZ	CL	VI	14	04	002	В	109

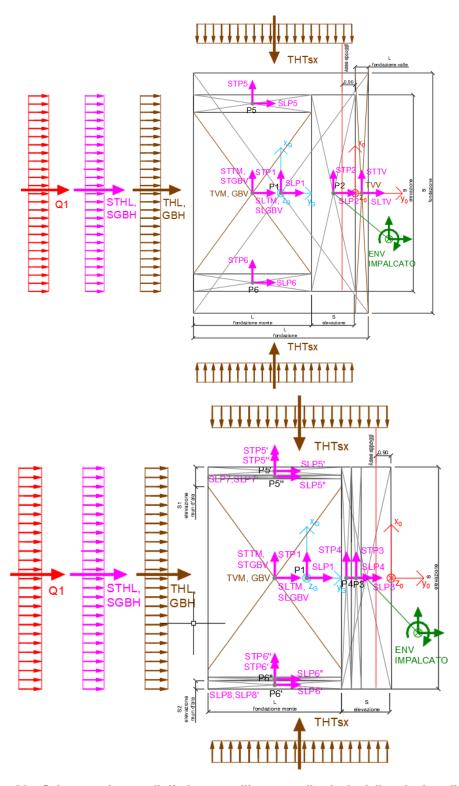


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	110

11.3.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

		ONE SPALLA	2						O SPETTR	O SISMICO	DI PROGE					
GA orizzontale Coeff. stratigrafic		0,242 1,163					eff. sismico peff. sismico		0,2814 0,1407			Coeff. spi	inta attiva sis	mica k _{aE}	0,3878	
NOME:	FONDAZIO	ONE SPALLA	2					CALCOL	O AZIONI S	ISMICHE (CORPO SPA	ALLA				
		F _{xO} (kN) F	yo (kN)	F _{zO} (kN)	xo (m)	y ₀ (m)	z _O (m) M	_{xo} (kNm) N	l _{yo} (kNm) N	I _{zo} (kNm)	F _{xG} (m)	Fyg (m)	F _{zG} (m) M	_{xG} (kNm)	M _{yG} (kNm) I	M _{zG} (kNm
isma long	SLP1	0	2177	0	0,00	-3,75	-1,25	2721	0	0						
	SLP2	0	712	0	0,00	-2,40	-3,75	2672	0	0						
	SLP3	0	52	0	0,00	-3,00	-5,46	286	0	0						
	SLP4	0	177	0	0,00	-3,60	-6,55	1157	0	0						
	SLP5 SLP5'	0	76 42	0 0	6,15 6,50	-5,70 -5,70	-3,75 -6,66	285 280	0	467 273						
	SLP5"	0	3	0	6,36	-5,70 -5,70	-8,05	25	0	19						
	SLP6	0	76	0	-6,15	-5,70	-3,75	285	0	-467						
	SLP6'	0	42	0	-6,50	-5,70	-6,66	280	0	-273						
	SLP6"	0	3	0	-6,36	-5,70	-8,05	25	0	-19						
	SLP7	0	0	0	6,50	-7,50	-8,32	0	0	0						
	SLP7'	0	0	0	6,50	-7,50	-8,32	0	0	0						
	SLP8	0	0	0	-6,50	-7,50	-8,32	0	0	0						
	SLP8'	0	0	0	-6,50	-7,50	-8,32	0	0	0		2004		0045		
		0	3361	0				8015	0	0	0	3361	0	8015	0	1
sma trasv	STP1	2177	0	0	0,00	-3,75	-1,25	0	-2721	8163						
	STP2	712	0	0	0,00	-2,40	-3,75	0	-2672	1710						
	STP3	52 177	0	0	0,00	-3,00	-5,46	0	-286	157 636						
	STP4 STP5	76	0	0	6,15	-3,60 -5,70	-6,55 -3,75	0	-1157 -285	433						
	STP5'	42	0	0	6,50	-5,70	-6,66	0	-280	240						
	STP5"	3	0	0	6,36	-5,70	-8,05	0	-25	17						
	STP6	76	0	0	-6,15	-5,70	-3,75	0	-285	433						
	STP6'	42	0	0	-6,50	-5,70	-6,66	0	-280	240						
	STP6"	3	0	0	-6,36	-5,70	-8,05	0	-25	17						
	STP7	0	0	0	6,50	-7,50	-8,32	0	0	0						
	STP7'	0	0	0	6,50	-7,50	-8,32	0	0	0						
	STP8	0	0	0	-6,50	-7,50	-8,32	0	0	0						
	STP8'	3361	0	0	-6,50	-7,50	-8,32	0	-8015	12047	3361	0	0	0	-8015	-555
											3301	U	U	U	-0013	-55
sma vert	SVP1	0	0	1088 356	0,00	-3,75	-1,25	-4082 -855	0	0						
	SVP2 SVP3	0	0 0	26	0,00	-2,40 -3,00	-3,75 -5,46	-855 -79	0	0						
	SVP4	0	0	88	0,00	-3,60	-6,55	-318	0	0						
	SVP5	0	0	38	6,15	-5,70	-3,75	-217	-234	0						
	SVP5'	0	0	21	6,50	-5,70	-6,66	-120	-137	0						
	SVP5"	0	0	2	6,36	-5,70	-8,05	-9	-10	0						
	SVP6	0	0	38	-6,15	-5,70	-3,75	-217	234	0						
	SVP6'	0	0	21	-6,50	-5,70	-6,66	-120	137	0						
	SVP6"	0	0	2	-6,36	-5,70	-8,05	-9	10	0						
	SVP7	0	0	0	6,50	-7,50	-8,32	0	0	0						
	SVP7' SVP8	0	0 0	0	6,50 -6,50	-7,50 -7,50	-8,32 -8,32	0	0	0						
	SVP8'	0	0	0	-6,50	-7,50	-8,32	0	0	0						
	0110	0	0	1680	0,00	1,50	0,02	-6023	0	0	0	0	1680	278	0	
isma ballast	SLGBV	0	133	0	0,00	-5,70	-8,32	1106	0	0						
ng	SGBH	0	217	0	0,00	-7,50	-0,32 -4,05	880	0	0						
9		0	350	0	-,	.,	.,	1986	0	0	0	350	0	1986	0	(
isma ballast	STGBV	133	0	0	0,00	-5,70	-8,32	0	-1106	758						
asv		133	0	0	0,00	0,10	0,02	0	-1106	758	133	0	0	0	-1106	259
isma ballast	SVGBV	0	0	66	0,00	-5,70	-8,32	-379	0	0						
rt	OVODV	0	0	66	0,00	3,10	0,02	-379	0	0	0	0	66	-130	0	(
sma terreno	SLVM	0	1260	0	0,00	-5,70	-5,30	6676	0	0		-			_	
ng	SLVV	0	167	0	0,00	-0,45	-3,50	585	0	0						
9	STHL	0	1811	0	0,00	-7,50	-2,70	4890	0	0						
		0	3238	0	.,	,	, ,	12151	0	0	0	3238	0	12151	0	(
sma terreno	STTM	1260	0	0	0,00	-5,70	-5,30	0	-6676	7180						
asv	STTV	167	0	0	0,00	-0,45	-3,50	0	-585	75						
		1427	0	0				0	-7261	7255	1427	0	0	0	-7261	190
sma terreno	SVTM	0	0	630	0,00	-5,70	-5,30	-3590	0	0						
rt	SVTV	0	0	84	0,00	-0,45	-3,50	-38	0	0						
		0	0	713	.,	-,	-,	-3628	0	0	0	0	713	-952	0	(
sma impalcato	SL	0	0	0	0,00	-0,90	-5,00	0	0	0						
sma impaicato ng		0	0	0	5,00	5,50	5,00	0	0	0	0	0	0	0	0	
sma impalcato	ST	2552	0	0	0,00	-0,90	-5,00	0	-12759	2297		-	-	-	-	
	<u> </u>	2552	0	0	0,00	0,50	-0,00	0	-12759	2297	2552	0	0	0	-12759	-7273
asv		_00_	•					-			_002		•	v		
asv isma impalcato	SV	0	0	1276	0,00	-0,90	-5,00	-1148	0	0						

Tabella 39 - Riepilogo azioni elementari sismiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	111

H paraghiaia (r	IE: FONDAZION	NE SPALL	A 2	Г				PARA	METRI DI (CALCOLO	FONDAZION	E				
i i paragriiaia (i				zione (m)	2,50	S2 eleve	azione mur		0,50		. testa muro		0,55	Carico va	riabile (kPa)	23,15
S paraghiaia (r		L fo	ndazione r		3,60		ev. muro d'		2,50			cchia (m)	0,00		ballast (kPa)	9,72
H ritegno (r			fondazione		0,90		ev. muro d'		2,50			cchia (m)	0,00		,	
S ritegno (r				zione (m)	7,50		ro muro d'		5,82			cchia (m)	0,00			
H elevazione (r				zione (m)	16,50		ro muro d'		5,82		Peso terren		20,00	X.	_G fondazione	0,00
S elevazione (r		H reinte	rro fondaz		2,00		elev. mur	. ,	3,32		spinta attiva :		0,2379		G fondazione	-3,75
B elevazione (r			zione mur		1,20		testa mur		0,22		pinta riposo :	-	0,2379		G fondazione	0,00
NOM	E: FONDAZION	NE SPALL	A 2					CAI	LCOLO AZ	IONI CORP	O SPALLA					
		F _{xO} (kN)		F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m) I	M _{xo} (kNm) M			F _{xG} (m)	F _{vG} (m)	F _{zG} (m) N	Λ _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
Peso proprio	P1	0	0	7734	0,00	-3,75	-1,25	-29004	0	0		7-17				
	P2	0	0	2531	0,00	-2,40	-3,75	-6075	0	0						
	P3	0	0	186	0,00	-3,00	-5,46	-559	0	0						
	P4	0	0	628	0,00	-3,60	-6,55	-2260	0	0						
	P5	0	0	270	6,15	-5,70	-3,75	-1539	-1661	0						
	P5'	0	0	149	6,50	-5,70	-6,66	-852	-971	0						
	P5"	0	0	11	6,36	-5,70	-8,05	-62	-69	0						
	P6	0	0	270	-6,15	-5,70	-3,75	-1539	1661	0						
	P6'	0	0	149	-6,50	-5,70	-6,66	-852	971	0						
	P6"	0	0	11	-6,36	-5,70	-8,05	-62	69	0						
	P7	0	0	0	6,50	-7,50	-8,32	0	0	0						
	P7'	0	0	0	6,50	-7,50	-8,32	0	0	0						
	P8	0	0	0	-6,50	-7,50	-8,32	0	0	0						
	P8'	0	0	0	-6,50	-7,50	-8,32	0	0	0						
	· ·	0	0	11940	3,00	.,00	3,02	-42803	0	0	0	0	11940	1973	0	0
Ballast	GBV	0	0	472	0,00	-5,70	-8,32	-2692	0	0	Ü	Ü		.575	3	0
Ddild5t		0	408	4/2 0	0,00				0	0						
	GBH	0			0,00	-7,50	-4,05	1654	0	0	0	400	470	700		0
Culate te	77.0		408	472	0.00		0.70	-1038			U	408	472	733	0	0
Spinta terreno	THL	0	3404	0	0,00	-7,50	-2,70	9191	0	0						
	THTsx	1756	0	0	6,75	-4,20	-2,77	0	-4870	7375						
	THTdx	-1756	0	0	-6,75	-4,20	-2,77	0	4870	-7375						
	TVM	0	0	4476	0,00	-5,70	-5,30	-25510	0	0						
	TVV	0	0	594	0,00	-0,45	-3,50	-267	0	0						
		0	3404	5070			•	-16586	0	0	0	3404	5070	2424	0	0
Sovraccarico	Q1	0	973	0	0,00	-7,50	-4,05	3940	0	0						
long		0	973	0				3940	0	0	0	973	0	3940	0	0
NOM	E: FONDAZION	NE SPALL	A 2					CA	LCOLO AZ	IONI DA IM	PALCATO					
			F _{vO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	70 (m) I	M _{xo} (kNm) M			F _{xG} (m)	F _{vG} (m)	F o (m) N	И _{хG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
ENV	Nvert Max	824	1351	12853	0,00	-0,90	-5,00	-10757	-3308	1154	824	1351	12853	32630	-7429	-1195
SLU	Nvert Min	-351	175	5517	0,00	-0,90	-5,00	-4860	1184	-316	-351	175	5517	11736	2939	685
SLO	Vtrasv Max	972	1411	10342	0,00	-0,90	-5,00	-8461	-3614	1407	972	1411	10342	28068	-8472	-1363
	Vtrasv Min	-351	-175	5517	0,00	-0,90	-5,00	-5070	1184	-316	-351	-175	5517	9779	2939	685
	Mlong Max	-351	175	5517	0,00	-0,90	-5,00	-4860	1184	-316	-351	175	5517	11736	2939	685
	Mlong Min	824	1351	12853	0,00	-0,90	-5,00	-10757	-3308	1154	824	1351	12853	32630	-7429	-1195
	Vlong Max	327	2819	8113	0,00	-0,90	-5,00	-5610	-5386	5257	327	2819	8113	31608	-7022	4324
	Vlong Min	0	-234	5826	0,00	-0,90	-5,00	-5384	0	-6	0	-234	5826	10050	0	-6
	Mtrasv Max	-351	175	5517	0,00	-0,90	-5,00	-4860	1184	-316	-351	175	5517	11736	2939	685
	Mtrasv Min	444	1587	10578	0,00	-0,90	-5,00					1587				
	Mtorc Max	327	2819	8113	0,00			-8568	-6200	2886	444		10578	29513	-8418	1622
	Mtorc Min	-351	-175			-0,90	-5,00	-5610	-5386	5257	327	2819	8113	31608	-7022	4324
			170	5517	0,00	-0,90	-5,00 -5,00									
		F _{xO} (kN)		F _{zO} (kN)	0,00 x _O (m)			-5610 -5070	-5386 1184	5257	327	2819	8113 5517	31608 9779	-7022	4324 685
ENV	Nvert Max	564				-0,90	-5,00 z _O (m) ! -5,00	-5610 -5070 M _{xo} (kNm) M -7314	-5386 1184	5257 -316 M _{zo} (kNm) 957	327 -351 F _{xG} (m) 564	2819 -175	8113 5517	31608 9779	-7022 2939	4324 685 M _{zG} (kNm) -649
ENV SLE RA	Nvert Max Nvert Min		F _{yO} (kN) 1356 -175	F _{zO} (kN)	x _O (m)	-0,90 y _O (m)	-5,00 z _O (m) I	-5610 -5070 M _{xo} (kNm) M	-5386 1184 I _{yo} (kNm) I	5257 -316 M _{zo} (kNm)	327 -351 F _{xG} (m)	2819 -175 F _{yG} (m) 1356 -175	8113 5517 F _{zG} (m) N	31608 9779 M _{xG} (kNm)	-7022 2939 M _{yG} (kNm)	4324 685 M _{zG} (kNm) -649 456
		564	F _{yO} (kN) 1356	F _{zO} (kN) 9031	x _O (m) 0,00	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) ! -5,00	-5610 -5070 M _{xo} (kNm) M -7314	-5386 1184 I _{yo} (kNm) N -2241	5257 -316 M _{zo} (kNm) 957	327 -351 F _{xG} (m) 564	2819 -175 F _{yG} (m) 1356	8113 5517 F _{zG} (m) N 9031	31608 9779 M _{xG} (kNm) 25207	-7022 2939 M _{yG} (kNm) -5059	4324 685 M _{zG} (kNm) -649
	Nvert Min	564 -234	F _{yO} (kN) 1356 -175	F _{zO} (kN) 9031 5620	x _O (m) 0,00 0,00	-0,90 y _O (m) -0,90 -0,90	-5,00 z _O (m) ! -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163	-5386 1184 N _{yo} (kNm) N -2241 789	5257 -316 M _{zo} (kNm) 957 -211	327 -351 F _{xG} (m) 564 -234	2819 -175 F _{yG} (m) 1356 -175	8113 5517 F _{zG} (m) N 9031 5620	31608 9779 M _{xG} (kNm) 25207 9980	-7022 2939 M _{yG} (kNm) -5059 1960	4324 685 M _{zG} (kNm) -649 456
	Nvert Min Vtrasv Max	564 -234 665	F _{yO} (kN) 1356 -175 1422	F _{zO} (kN) 9031 5620 8873	x _O (m) 0,00 0,00 0,00	-0,90 y _O (m) -0,90 -0,90 -0,90	-5,00 z _O (m) I -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132	-5386 1184 M _{yo} (kNm) M -2241 789 -2445	5257 -316 M _{zo} (kNm) 957 -211 1181	327 -351 F _{xG} (m) 564 -234 665	2819 -175 F _{yG} (m) 1356 -175 1422	8113 5517 F _{zG} (m) N 9031 5620 8873	31608 9779 M _{xG} (kNm) 25207 9980 25267	-7022 2939 M _{yG} (kNm) -5059 1960 -5771	4324 685 M _{zG} (kNm) -649 456 -715
	Nvert Min Vtrasv Max Vtrasv Min	564 -234 665 -234	F _{yO} (kN) 1356 -175 1422 -175	F _{zO} (kN) 9031 5620 8873 5620	x _O (m) 0,00 0,00 0,00 0,00	-0,90 y _O (m) -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) ! -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163	-5386 1184 M _{yo} (kNm) P -2241 789 -2445 789	5257 -316 M _{zo} (kNm) 957 -211 1181 -211	327 -351 F _{xG} (m) 564 -234 665 -234	2819 -175 F _{yG} (m) 1356 -175 1422 -175	8113 5517 F _{zG} (m) N 9031 5620 8873 5620	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960	4324 685 M _{zG} (kNm) -649 456 -715
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	564 -234 665 -234 -234	F _{yO} (kN) 1356 -175 1422 -175 -175	F _{zO} (kN) 9031 5620 8873 5620 5620	x _O (m) 0,00 0,00 0,00 0,00 0,00	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) I -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163	-5386 1184 M _{yo} (kNm) P -2241 789 -2445 789 789	5257 -316 M _{zo} (kNm) 957 -211 1181 -211	327 -351 F _{xG} (m) 564 -234 665 -234 -234	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175	8113 5517 F _{zG} (m) N 9031 5620 8873 5620 5620	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 9980	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960 1960	4324 685 M _{zG} (kNm) -649 456 -715 456
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min	564 -234 665 -234 -234 301	F _{yO} (kN) 1356 -175 1422 -175 -175 1144	F _{z0} (kN) 9031 5620 8873 5620 5620 7448	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) I -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -6017	-5386 1184 M _{yo} (kNm) P -2241 789 -2445 789 789 -4111	5257 -316 M _{zo} (kNm) 957 -211 1181 -211 -211 2998	327 -351 F _{xG} (m) 564 -234 665 -234 -234 301	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144	8113 5517 F _{zG} (m) N 9031 5620 8873 5620 5620 7448	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 9980 20932	-7022 2939 M _{y.G.} (kNm) -5059 1960 -5771 1960 1960 -5617	4324 685 M _{xG} (kNm) -649 456 -715 456 456
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max	564 -234 665 -234 -234 301 269	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916	F _{zO} (kN) 9031 5620 8873 5620 5620 7448 7399	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00	-0,90 y _O (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) ! -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -6017 -5510	-5386 1184 1 _{yo} (kNm) N -2241 789 -2445 789 789 -4111 -3887	5257 -316 M _{zo} (kNm) 957 -211 1181 -211 -211 2998 3660	327 -351 F _{xG} (m) 564 -234 665 -234 -234 301 269	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916	8113 5517 F _{zG} (m) N 9031 5620 8873 5620 5620 7448 7399	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 9980 20932 25155	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960 1960 -5617 -5232	4324 685 M _{zG} (kNm) -649 456 -715 456 456 2140 2894
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	564 -234 665 -234 -234 301 269 -234	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916 -175	F _{zO} (kN) 9031 5620 8873 5620 5620 7448 7399 5620	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	-0,90 y _O (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) ! -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -6017 -5510 -5163	-5386 1184 1 _{yo} (kNm) 1 -2241 789 -2445 789 789 -4111 -3887 789	5257 -316 M _{zo} (kNm) 957 -211 1181 -211 -2998 3660 -211	327 -351 F _{xG} (m) 564 -234 665 -234 -234 301 269 -234	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175	8113 5517 F _{zG} (m) N 9031 5620 8873 5620 5620 7448 7399 5620	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 9980 20932 25155 9980	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960 1960 -5617 -5232	4324 685 M _{zG} (kNm) -649 456 -715 456 456 2140 2894
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	564 -234 665 -234 -234 301 269 -234 0	Fyo (kN) 1356 -175 1422 -175 -175 1144 1916 -175 256	F _{zO} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y _O (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) I -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -6017 -5510 -5163 -5090	-5386 1184 1 _{yo} (kNm) 1 -2241 789 -2445 789 789 -4111 -3887 789	5257 -316 M _{zo} (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8	327 -351 F _{xG} (m) 564 -234 665 -234 -234 301 269 -234 0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256	8113 5517 F _{zG} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826	31608 9779 M_{xG} (kNm) 25207 9980 25267 9980 9980 20932 25155 9980 12797	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960 1960 -5617 -5232 1960	4324 685 M _{zG} (kNm) -649 456 -715 456 456 2140 2894 456
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min	564 -234 -665 -234 -234 -234 -234 -234 -234 -234 -569 -564	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916 -175 256 844	F _{zO} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -6017 -5510 -5163 -5090 -7622	-5386 1184 M _{yo} (kNm) M -2241 789 -2445 789 -4111 -3887 789 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941	327 -351 F _{xG} (m) 564 -234 665 -234 -234 301 269 -234 0 564	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844	8113 5517 F _{2G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031	31608 9779 M_{xG} (kNm) 25207 9980 25267 9980 9980 20932 25155 9980 12797 22335	-7022 2939 M _{y.G.} (kNm) -5059 1960 -5771 1960 1960 -5617 -5232 1960 0	4324 685 M _{zG} (kNm) -649 456 -715 456 2140 2894 456 8
	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min Mtorc Max	564 -234 665 -234 -234 301 269 -234 0 564 269 -234	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916 -175 284 494 1916 -175	F _{z0} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90	-5,00 z _O (m) I -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{so} (kNm) M -7314 -5163 -5163 -5163 -6017 -5510 -5163 -5090 -7622 -5510 -5163	-5386 1184 1 _{yo} (kNm) 1 -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 -2918 3660 -211 8 941 3660 -211	327 -351 F _{xG} (m) 564 -234 -665 -234 -234 -301 -269 -234 0 564 -269 -234	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 -174 1916 -175 256 844 1916 -175	8113 5517 F _{2G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620	31608 9779 A_{xG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980	-7022 2939 M _{yG} (kNm) -5059 1960 -5771 1960 1960 -5617 -5232 1960 0 -5059 -5232 1960	4324 685 M _{2G} (kNm) -649 456 -715 456 456 2140 2894 456 8 8 -665 2894
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min Mtorc Max Mtorc Min	564 -234 665 -234 -234 301 269 -234 0 564 269 -234	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN)	x _O (m) 0,00 0,	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 y ₀ (m)	-5,00 z ₀ (m) ! -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -5090 -5163 -5090 -7622 -5510 -5163 M _{xo} (kNm) M M _{xo} (kNm) M	-5386 1184 Iyo (kNm) N -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 1,000 (kNm) N	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm)	327 -351 F _{xG} (m) 564 -234 665 -234 -234 -234 -234 -234 -234 -234 -234	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m)	8113 5517 F _{2G} (m) N 9031 5620 8873 5620 7448 7399 5620 5826 9031 7399 5620 F _{2G} (m) N	31608 9779 I_{NG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980 I_{NG} (kNm)	-7022 2939 My _G (kNm) -5059 1980 -5771 1980 1960 -5617 -5232 1960 0 -5559 5232 1960 My _G (kNm)	4324 685 M _{2G} (kNm) -649 456 -715 456 456 2140 2894 456 8 8 -665 2894
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min	564 -234 -665 -234 -234 -234 -234 -234 -234 -234 -269 -234 -278 -286 -286 -286 -286 -286 -286 -286 -28	F _{yO} (kN) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yO} (kN)	F _{zO} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{zO} (kN) 5826	x _O (m) 0,00 0,	-0,90 y ₀ (m) -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 -0,90 y ₀ (m) -0,90	-5,00 z ₀ (m) ! -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -5163 -5163 -5163 -5163 -5090 -7622 -5510 -5163 M _{xo} (kNm) M -739	-5386 1184 Myo (kNm) N -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 -3660 -211 VM ₂₀ (kNm) 0	327 -351 F _{xG} (m) 564 -234 -234 -234 -209 -234 0 564 -269 -234 -269 -234 0 564 -269	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 -175 -175 256 844 1916 -175 F _{yG} (m)	8113 5517 F _{xG} (m) N 9031 5620 8873 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826	31608 9779 M_{xG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980 M_{xG} (kNm) 12339	-7022 2939 MyG (kNm) -5059 1960 -5771 1960 1960 -5673 1960 0 -5675 -5232 1960 0 -5655 -5232 1960 MyG (kNm) 0	4324 685 M _{2G} (kNm) -649 456 -715 456 456 2140 2894 456 8 8 -665 2894
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mlong Min Mtorc Max Mtorc Min	564 -234 -665 -234 -234 -301 -269 -234 -0 -564 -269 -234 -234 -200 -0 0	F _{yo} (kN) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yo} (kN) 175 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) 1 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -5090 -7622 -5510 -5163 M _{xo} (kNm) M -7334 -5163 -5090 -7622 -5510 -5163 -5163	-5386 1184 1 _{yo} (kNm) N -2241 789 789 -4111 -3887 789 0 -2241 -3887 789 0 0 -2241 -3887 789	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0	327 -351 F _{KG} (m) -564 -234 -665 -234 -234 -201 -201 -201 -201 -201 -201 -201 -201	2819 -175 F _{yG} (m) 1336 -175 1422 -175 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175 -175	8113 5517 F _{xG} (m) N 9031 5620 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826 5826	31608 9779 M_{XG} (kNm) 25207 9980 25267 9980 2982 25155 9980 12797 22335 22155 9980 M_{XG} (kNm) 12339 10382	-7022 2939 MyG (kNm) -5059 1960 -5771 1960 1960 -5617 -5232 1960 MyG (kNm) 0	4324 685 M _{zG} (kNm) -649 456 -715 456 2140 2894 456 2894 456 0 2894 456 0 0 0 0 0 0 0 0 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtong Min Mlong Max Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max	564 -234 -234 -234 -234 -234 -234 -234 -23	F _{yO} (kN) 1356 -175 1422 -175 -175 -1144 1916 -175 256 844 1916 -175 F _{yO} (kN) 175 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 5620 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -7314 -5163 -7132 -5163 -6107 -5510 -5163 -5007 -5163 -5009 -5163 M _{xo} (kNm) M -5139 -5348 -5139	-5386 1184 Iyo (kNm) P -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 10 10 10 10 10 10 10 10 10	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -218 -298 3660 -211 -8 941 3660 -211 M ₂₀ (kNm) 0 0	327 -351 F _{xG} (m) 564 -234 665 -234 -234 00 269 -234 0 4 564 269 -234 0 0 0 0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175	8113 5517 F _{2G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 F _{2G} (m) N 5826 5826 5826	31608 9779 M_{XG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 26155 9980 M_{XG} (kNm) 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1990 -5771 1990 -5771 1990 0 -5232 1990 0 -5059 -5232 1990 MyG (kNm) 0 0	4324 685 M ₂₆ (kNm) -649 4566 -715 456 456 21404 2894 456 8 8-665 2894 456 M ₂₆ (kNm) 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Ming Min Mtorc Max Mtorc Min Nvert Min Vtrasv Max Vtrasv Min	564 -234 -234 -234 -234 -234 -0 -234 -234 -234 -234 -234 -234 -230 -234 -230 -230 -230 -230 -230 -230 -230 -230	F _{yo} (kN) 1356 -175 1422 -175 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yo} (kN) 175 -175 175	F ₂₀ (kN) 9031 5620 8873 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) 1 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -5163 -5090 -5163 -5090 -56510 -5163 -5193 -5348 -5139 -5348	-5386 1184 M _{yo} (kNm) N -2241 789 -2445 789 -4111 -3887 789 0 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0	327 -361 F _{KG} (m) -564 -234 -665 -234 -234 -234 -0 -254 -0 -234 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175 -175	8113 5517 F _{xG} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826 5826 5826	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 2032 26155 9980 12797 22335 26155 9980 12797 12339 12339 1339 10382	-7022 2939 MyG (kNm) -5059 1990 -5771 1990 1990 0 590 0 0 0 0 MyG (kNm) 0 0 0 0	4324 685 M ₂₆ (kNm) -649 4566 -715 456 4566 21404 2894 456 8 8 -665 2894 456 0M ₂₆ (kNm) 0 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Miong Max Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max	564 -234 665 -234 301 269 -234 0 0 564 269 -234 0 0 0 0 0	F _{yO} (kN) 1356 -175 1422 -175 1144 1916 -175 256 844 1916 -175 F _{yO} (kN) 175 -175 -175 -175 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -5163 -5163 -5163 -5510 -5163 -5090 -7622 -5510 -5163 M _{xo} (kNm) M -5139 -5348 -5139 -5348 -5139	-5386 1184 I _{yo} (kNm) 1 -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0	327 -361 F _{xG} (m) -564 -234 -234 -234 -234 -209 -234 -0 -664 -269 -234 -269 -234 -0 -664 -669 -0 -0 -0 -0 -0 -0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175 -175 175 175	8113 5517 F _{xG} (m) N 9031 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826 5826 5826 5826 5826	31608 9779 M_{AG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980 12797 12339 10382 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1960 1960 1960 1960 0 -5171 1960 0 -5613 5-5232 1960 0 -5659 0 0 0 0 0 0	4324 685 M _{2G} (kNm) -649 456 456 456 2140 2894 456 8 8 -665 2894 456 M _{2G} (kNm) 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Vtrasv Min Vtrasv Min Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Max	564 -234 665 -234 301 269 -234 0 564 269 -234 F _{xO} (kN) 0 0 0 0	F _{yO} (kN) 1356 -175 1422 -175 1144 1916 -175 256 4144 1916 -175 F _{yO} (kN) 175 -175 -175 175 -175	F _{x0} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{x0} (kN) 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -5163 -5163 -5163 -5163 -5090 -7622 -5510 -5163 -5199 -5348 -5139 -5348 -5139 -5348	-5386 1184 Iyo (kNm) 1 -2241 789 789 -4111 -3887 789 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0	327 -361 F _{xG} (m) -564 -234 -234 -234 -301 -269 -234 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175 -175 175 -175 -175 -175	8113 5517 F _{3G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F _{3G} (m) N 5826 5826 5826 5826 5826 5826 5826 5826 5826	31608 9779 M_{AG} (kNm) 25207 9980 25267 9980 2982 25155 9980 12797 22335 25155 9980 12797 2335 25155 9980 12797 2335 25153 1339 10382 12339 10382 12339 10382	-7022 2939 MyG (kNm) -5059 1960 -5771 1960 1990 -5617 -5232 1960 0 -5059 -5232 1960 0 0 0 0 0	4324 685 M _{2G} (kNm) -649 456 456 456 2140 2894 456 8 -665 2894 00 00 00
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Vvert Max Nvert Min Vtrasv Min Vtrasv Min Mtrasv Max Vtrasv Min Mtrasv Min Vtrasv Min Vtrasv Min	564 -234 -234 -234 -234 -234 -0 -269 -234 -269 -234 -270 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	Fyo (kN) 1356 -175 1422 -175 -175 -175 -175 -256 844 1916 -175 Fyo (kN) 175 -175 -175 -175 -175 -175 -175 -175	F _{x0} (kN) 9031 5620 8873 5620 5620 7448 7399 5620 9031 7399 5620 F _{x0} (kN) 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (KNm) M -7314 -7314 -5163 -7132 -5163 -5163 -6107 -5510 -5163 -5009 -5163 -5009 -5163 -5193	-5386 1184 1194 1194 1194 1196 1194 1196	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -218 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0 0	327 -351 F _{xG} (m) 564 -234 665 -234 -234 0 0 269 -234 0 0 0 0 0 0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 1144 1916 -175 256 844 1916 -175 F _{yG} (m) 175 175 175 175 175	8113 5517 F _{3G} (m) N 9031 5620 8873 5620 7448 7399 5620 5826 5826 5826 5826 5826 5826 5826 5826	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 29980 25155 9980 12797 22335 25155 9980 12797 12339 10382 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1990 -5771 1990 -5771 1990 0 -5817 -5232 1990 0 0 0 0 0 0 0 0	4324 685 M ₂₆ (kNm) -649 4566 -715 456 456 21404 2894 456 8 8 665 2894 456 00 0 0 0 0 0 0 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Min Mtrasv Min Mtrasv Min Mtrasv Min Mtrasv Min Vlong Max	564 -234 -234 -234 -234 -234 -0 -564 -269 -234 -200 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	Fyo (kN) 1356 -175 1422 -175 -175 -1144 1916 -175 256 844 1916 -175 Fyo (kN) 175 -175 175 -175 -175 -175 -175 -175 -	F _{x0} (kN) 9031 5620 8873 5620 7448 7399 5620 9031 7399 5620 F _{x0} (kN) 5826 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -5163 -5163 -5090 -5163 -5090 -5163 -5199 -5348 -5139 -5348 -5139 -5348	-5386 1184 Myo (kNm) N -2241 789 -2445 789 -2445 789 0 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0 0 0	327 -361 F _{xG} (m) -564 -234 -665 -234 -234 -0 -234 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 1442 -175 -175 256 844 1916 -175 175 -175 175 -175 -175 -175 -175 -	8113 5517 F _{3G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 5826 5826 5826 5826 5826 5826 5826 5826	31608 9779 M _{xG} (kNm) 25207 9980 25267 9980 25267 9980 2032 25155 9980 12797 22335 25155 9980 M _{xG} (kNm) 12339 10382 12339 10382 12339 10382	-7022 2939 MyG (kNm) -5059 1990 -5771 1990 -5771 -5232 1990 0 -5752 -5232 1990 0 0 0 0 0 0 0 0	4324 685 M ₂₆ (kNm) -649 4566 -715 456 456 21404 2894 456 8 8-665 2894 456 000 000 000 000 000 000
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mtorc Max Mtorc Min Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Mtrasv Max Mtrasv Min Mtrasv	564 -234 665 -234 -234 301 269 -234 0 564 269 -234 F _{x0} (kN) 0 0 0 0 0 0	Fyo (kN) 1356 -175 1422 -175 -175 -175 -175 256 844 1916 -175 -175 -175 -175 -175 -175 -175 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826 5826 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z ₀ (m) 1 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -5163 -5163 -5163 -5163 -5163 -5163 -5103 -5163 -5109 -7622 -5510 -5139 -5348 -5139 -5348 -5139 -5348 -5139 -5348 -5139	-5386 1184 1 _{yo} (kNm) 1 -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 -211 8 941 -3660 -211 M ₂₀ (kNm) 0 0 0 0 0 0 0	327 -361 F _{xG} (m) -564 -234 -234 -234 -234 -234 -234 -234 -23	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -1475 1144 1916 -175 256 844 1916 -175 -175 -175 -175 -175 -175 -175 -175	8113 5517 F _{xG} (m) N 9031 5620 8873 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826	31608 9779 M_{AG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980 12339 10382 12339 10382 12339 10382 12339 10382 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1960 1960 1960 -5771 1960 1960 -5677 5232 1960 0 -5579 600 0 -5059 0 0 0 0 0 0 0 0 0	4324 685 M _{2G} (kNm) -649 456 456 456 456 2140 2894 456 8 8 -665 2894 456 0 0 0 0 0 0 0 0 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Min Mtorc Max Mtorc Min Nvert Max Nvert Min Vtrasv Min Mtrasv Min Mtrasv Min Mtrasv Min Mtrasv Min Vlong Max	564 -234 665 -234 -234 301 269 -234 0 564 269 -234 F _{xO} (kN) 0 0 0 0 0 0 0 0 0	Fyo (kN) 1356 -175 1422 -175 -175 -175 256 844 1916 -175 -175 -175 -175 -175 -175 -175 -175	F _{x0} (kN) 9031 5620 8873 5620 7448 7399 5620 9031 7399 5620 F _{x0} (kN) 5826 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z _O (m) I -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -7132 -5163 -5163 -5163 -5163 -5090 -5163 -5090 -5163 -5199 -5348 -5139 -5348 -5139 -5348	-5386 1184 I _{yo} (kNm) 1 -2241 789 789 -4111 -3887 789 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 2998 3660 -211 8 941 3660 -211 M ₂₀ (kNm) 0 0 0 0 0 0 0 0	327 -361 F _{xG} (m) -564 -234 -665 -234 -234 -0 -234 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	2819 -175 F _{yG} (m) 1356 -175 1422 -175 1442 -175 -175 256 844 1916 -175 175 -175 175 -175 -175 -175 -175 -	8113 5517 F _{3G} (m) N 9031 5620 8873 5620 5620 7448 7399 5620 5826 5826 5826 5826 5826 5826 5826 5826 5826	31608 9779 M _{AG} (kNm) 25207 9980 25267 9980 9980 20932 25155 9980 12797 22335 25155 9980 12339 10382 12339 10382 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1960 -5771 1960 1980 -5617 -5232 1960 0 -5059 -5232 1960 0 0 0 0 0 0 0 0 0 0 0	4324 685 M _{2G} (kNm) -649 456 -716 456 2140 2894 456 8 -665 2894 456 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SLE RA	Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max Mtorc Max Mtorc Min Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Mtrasv Max Mtrasv Min Mtrasv	564 -234 665 -234 -234 301 269 -234 0 564 269 -234 F _{x0} (kN) 0 0 0 0 0 0	Fyo (kN) 1356 -175 1422 -175 -175 -175 -175 256 844 1916 -175 -175 -175 -175 -175 -175 -175 -175	F ₂₀ (kN) 9031 5620 8873 5620 5620 7448 7399 5620 5826 9031 7399 5620 F ₂₀ (kN) 5826 5826 5826 5826 5826 5826 5826	x _O (m) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	-0,90 y ₀ (m) -0,90	-5,00 z ₀ (m) 1 -5,00	-5610 -5070 M _{xo} (kNm) M -7314 -5163 -5163 -5163 -5163 -5163 -5163 -5163 -5103 -5163 -5109 -7622 -5510 -5139 -5348 -5139 -5348 -5139 -5348 -5139 -5348 -5139	-5386 1184 1 _{yo} (kNm) 1 -2241 789 -2445 789 -4111 -3887 789 0 -2241 -3887 789 0 0 0 0 0 0 0 0 0 0 0 0	5257 -316 M ₂₀ (kNm) 957 -211 1181 -211 -211 -211 8 941 -3660 -211 M ₂₀ (kNm) 0 0 0 0 0 0 0	327 -361 F _{xG} (m) -564 -234 -234 -234 -234 -234 -234 -234 -23	2819 -175 F _{yG} (m) 1356 -175 1422 -175 -1475 1144 1916 -175 256 844 1916 -175 -175 -175 -175 -175 -175 -175 -175	8113 5517 F _{xG} (m) N 9031 5620 8873 5620 7448 7399 5620 5826 9031 7399 5620 F _{xG} (m) N 5826	31608 9779 M_{AG} (kNm) 25207 9980 25267 9980 20932 25155 9980 12797 22335 25155 9980 12339 10382 12339 10382 12339 10382 12339 10382 12339 10382 12339	-7022 2939 MyG (kNm) -5059 1960 1960 1960 -5771 1960 1960 -5677 5232 1960 0 -5579 600 0 -5059 0 0 0 0 0 0 0 0 0	4324 685 M _{2G} (kNm) -649 456 456 456 456 2140 2894 456 8 8 -665 2894 456 0 0 0 0 0 0 0 0 0 0

Tabella 40 – Riepilogo azioni elementari statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	112

Tipo azione	Descrizione	V_{trasv}	V_{long}	N_{vert}	M _{long}	M_{trasv}	M_{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	11940	1973	0	0
Gk2b Ballast	G2,1 (ballast)	0	408	472	733	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	3404	5070	2424	0	0
SLU	Nvert Max	824	1351	12853	32630	-7429	-1195
Impalcato	Nvert Min	-351	175	5517	11736	2939	685
	Vtrasv Max	972	1411	10342	28068	-8472	-1363
	Vtrasv Min	-351	-175	5517	9779	2939	685
	Mtrasv Max	-351	175	5517	11736	2939	685
	Mtrasv Min	824	1351	12853	32630	-7429	-1195
	Vlong Max	327	2819	8113	31608	-7022	4324
	Vlong Min	0	-234	5826	10050	0	-6
	Mlong Max	-351	175	5517	11736	2939	685
	Mlong Min	444	1587	10578	29513	-8418	1622
	Mtorc Max	327	2819	8113	31608	-7022	4324
	Mtorc Min	-351	-175	5517	9779	2939	685
SLE RA	Nvert Max	564	1356	9031	25207	-5059	-649
Impalcato	Nvert Min	-234	-175	5620	9980	1960	456
	Vtrasv Max	665	1422	8873	25267	-5771	-715
	Vtrasv Min	-234	-175	5620	9980	1960	456
	Mtrasv Max	-234	-175	5620	9980	1960	456
	Mtrasv Min	301	1144	7448	20932	-5617	2140
	Vlong Max	269	1916	7399	25155	-5232	2894
	Vlong Min	-234	-175	5620	9980	1960	456
	Mlong Max	0	256	5826	12797	0	8
	Mlong Min	564	844	9031	22335	-5059	-665
	Mtorc Max	269	1916	7399	25155	-5232	2894
	Mtorc Min	-234	-175	5620	9980	1960	456
SLE QP	Nvert Max	0	175	5826	12339	0	0
Impalcato	Nvert Min	0	-175	5826	10382	0	0
	Vtrasv Max	0	175	5826	12339	0	0
	Vtrasv Min	0	-175	5826	10382	0	0
	Mtrasv Max	0	175	5826	12339	0	0
	Mtrasv Min	0	-175	5826	10382	0	0
	Vlong Max	0	175	5826	12339	0	0
	Vlong Min	0	-175	5826	10382	0	0
	Mlong Max	0	175	5826	12339	0	0
	Mlong Min	0	-175	5826	10382	0	0
	Mtorc Max	0	175	5826	12339	0	0
	Mtorc Min	0	-175	5826	10382	0	0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	113

Qk1	Q (acc. Traffico)	0	973	0	3940	0	0
E	Sisma long	0	6949	0	22152	0	0
Sisma	Sisma trasv	7472	0	0	0	-29142	-5664
	Sisma vert	0	0	3736	2832	0	0

Tabella 41 – Risultanti azioni elementari al centro della palificata G (quota testa palo)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	114

Nome Env:	ripoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	SLU-Nvert Max	SLU-Nvert Min	Ol III Vitemon Man	LO-Vilasy Max	SLU-Vtras v Min	SLU-Mtrasv Max	SLU-Mtrasv Min	SLU-Vlong Max	SLU-Viona Min	SI ILMiona May	San Brown	Scowing with	SLU-Mtorc Max	SLU-Mtorc Min	SLE RA-Nvert Max	SLE RA-Nvert Min	SLE RA-Vtrasv Max	SLE RA-Vtrasv Min	SLE RA-Mtrasv Max	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LE KA-MIRSV MIN	SLE RA-Vlong Max	SLE RA-Vlong Min	SLE RA-Mlong Max	SLE RA-Mlong Min	SLE RA-Mtorc Max	SLE RA-Mtorc Min	SLE QP-Nvert Max	SLE QP-Nvert Min	SLE QP-Vtrasv Max	SLE QP-Vtrasv Min	SLE QP-Mrasv Max	SLE QP-Mtrasv Min	SLE QP-Vlong Max	SLE QP-Vlong Min	SLE QP-Mlong Max	SLE QP-Mlong Min	SLE QP-Mtorc Max	SLE QP-Mtorc Min	Ok1-O (acc. Traffico)	Miller force	E-Sisma long	E-Sisma trasv
SLU	F 1	ž 1	SLU1	ق 1,35	ق 1,50	ق 1,50	ැ 1,00		0	5	00 1	ග	0.00	0.00		0 0 0	0.00	0 0.0		<u>ග</u>	ග		0.00	0.00	0,0	100	000	5 0	<u>00 0</u>	ග	ග	ი იი	0 0 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 0 0	0.00	0.00	0.00	5	0 1,4		<u>ii ii</u>	Ú 00 0.
SLU	1	2	SLU2	1,35	1,50	1,50	0,00	1,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		00 0,0	0 00
SLU	1	3	SLU3	1,35	1,50	1,50	0,00	0,00				0,00	0,00	0,00	0,00	0,0				,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0 1,4			
SLU SLU	1	5	SLU4 SLU5	1,35 1,35	1,50 1,50	1,50 1,50	0,00	0,00	0,0	10 1,	00,	0,00 1,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	00 0	0,00	0,00 n nn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		00 0,0	00 0
SLU	1	6	SLU6	1,35	1,50	1,50	0,00	0,00	0,0	00 0,	,00	0,00	1,00	0,00	0,00	0,0	0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		0,0	00 0
SLU	1	7	SLU7	1,35	1,50	1,50	0,00	0,00	0,0			0,00	0,00	1,00		0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,4			
SLU SLU	1	8	SLU8 SLU9	1,35	1,50 1,50	1,50	0,00	0,00	-,-			0,00 n nn	0,00	0,00	1,00		0,0	,,,	00 0	,00	0,00	0,00	0,00	0,00	0,0	-,-	0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4			
SLU		10	SLU9	1,35 1,35	1,50	1,50 1,50	0.00	0.00	0,0	00 0,	.00	0,00	0.00	0.00	0.00	1,0		0,	00 0	.00	0,00	0.00	0.00	0.00	0.0	0.0	00 0,	00 0	.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 1,4			
SLU	- 1	- 1	SLU11	1,35		1,50	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0			00	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		00 0,0	
SLU		12	SLU12	1,35	1,50	1,50	0,00	0,00	-,-			0,00	0,00	0,00	0,00	-,-				,00	0,00	0,00	0,00	0,00	0,0	0,0		00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,4			
SLU SLU			SLU13 SLU14	1,00		1,00	1,00	1,00	-,-	, ,	,	0,00 n nn	0,00	0,00	0,00	0,0	,.	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4			
SLU			SLU15			1,00	0,00	0,00			,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		00 0,0	
SLU		16	SLU16	1,00		1,00	0,00	0,00	0,0		,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,4		0,0	00 0
SLU SLU			SLU17 SLU18	1,00 1,00		1,00	0,00	0,00	-,-			1,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4			
SLU				1,00		1,00	0.00	0.00	0.0	00 0.	,00	0.00	0.00	1,00	0,00	0.0	0.0	00 0,0	00 0	.00	0.00	0.00	0.00	0.00	0.0	0.0	00 0.	00 0	.00 (0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 1,4		00,0	0,
SLU	2	20	SLU20				0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	1,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,4			
SLU			SLU21	1,00		1,00	0,00	0,00			,00	0,00	0,00	0,00	0,00				- 1	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4			00 0,
SLU SLU			SLU22 SLU23	1,00 1,00		1,00	0,00	0,00	-,-			0,00 n nn	0,00	0,00	0,00		,			,00	0,00	0,00	0,00	0,00	0,0			00 0	,	0,00	0,00 n nn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4			
SLU		24	SLU24	1,00	1,00	1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0		,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,4		0,0	0 00
SLV		25	SLV1	1,00	1,00	1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,00	00 0	,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0 1,0		
SLV SLV		26 27	SLV2 SLV3	1,00	1,00 1,00	1,00	0,00	0,00		00 0,		0,00 0.00	0,00	0,00	0,00	0,0	0 0,0	00 0,0		.00	0,00 0.00	0,00	0,00	0,00	0,0	0,0	00 0, 00 0.	00 0	,00 (0,00	0,00 0.00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 0,0	0 1,0		
SLV		28	SLV4			1,00	0,00	0,00	-,-			0,00	0,00	0,00	0,00	-,-				,00	0,00	0,00	0,00	0,00	0,0	-,-			,	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	-,-			
SLV		29	SLV5	1,00		1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00,	00 0	,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	, -		
SLV SLE RA		30 31	SLV6 RA1	1,00	1,00	1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00 1,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00 (0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 0,0	0 0,3		30 -1,
SLE RA		32	RA1			1,00	0.00	0.00	0,0	00 0,	.00	0,00	0.00	0.00	0.00	0.0	0 0,0	00 0,1	00 0	.00	0.00	1,00	0.00	0.00	0.0	0.0	00 0,	00 0	.00 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
SLE RA		33	RA3			1,00	0,00	0,00	0,0			0,00	0,00	0,00	0,00	0,0	0,0	0,0		,00	0,00	0,00	1,00	0,00	0,0			00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0			
SLE RA		34	RA4	1,00		1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	1,00		0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0		0,0	00 0,
SLE RA		35 36	RA5 RA6	1,00 1,00		1,00	0,00	0,00	0,0	00 0,	,00 (0,00 0.00	0,00	0,00	0,00	0,0	0 0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	1,0	0,0	00 0,	00 0	.00 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,0		00 0,0 00 0.0	00 0,
SLE RA		37		1,00		1,00	0,00	0,00	-,-	00 0,	,	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0				,00 (0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0			
SLE RA		38	RA8			1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0				,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0			
SLE RA		39 40	RA9 RA10			1,00	0,00	0,00	0,0	00 0,	00,	0,00 0.00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0		00 0,	00 0		1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0 1,0		00,0	0,
SLE RA		41	RA11			1,00	0,00	0,00	0,0	, ,	,00	0,00	0,00	0,00	0,00	-,-				,00	0,00	0,00	0,00	0,00	0,0		0,	00 0	,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0			
SLE RA	4	42	RA12	1,00	1,00	1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,0		0,0)0 0
SLE QP		43 44	QP1 QP2	1,00		1,00	0,00	0,00	0,0	00 0,	00,	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 00	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 00	,00	0,00	0,00	0,00	0,00	1,00	0,00 1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 0
SLE QP		44	QP2 QP3	1,00 1,00		1,00	0.00	0.00	0.0	10 O,	.00	0.00	0,00	0.00	0.00	-,-	0.0	0 0.1	00 0	.00	0.00	0.00	0.00	0.00	0,0	0.0	00 O.	00 0	.00 (0.00	0.00	0.00	0,00	0,00	0,00	1,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0 0,0	0 0.0	0.0	00 0
SLE QP	5	46	QP4	1,00	1,00	1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,0	0 0,0	00 0,0	0 00
SLE QP		47	QP5	1,00		1,00	0,00	0,00	0,0	00 0,	,00	0,00	0,00	0,00	0,00	0,0	0,0	0,0	00 0	,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00		0,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	0,
SLE QP		48 49	QP6 QP7		1,00 1,00	1,00	0,00	0,00	0,0	10 O,	,00	u,00 n nn	0,00	0,00	0,00	0,0	0 0,0	00 0,0	0 UU	,00	u,00	0,00	0,00	0,00	0,0	0,0	0,	0 0 0 0	00 0	J,00	u,00 n nn	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,0	00 00
SLE QP		50	QP8			1,00	0,00	0,00			,00	0,00	0,00	0,00	0,00	-,-	,.	-,		,00	0,00	0,00	0,00	0,00	0,0	0,0	00 0,	00 0	,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00	0 0,0	0 0,0	0,0	00 0
SLE QP	5	51	QP9	1,00	1,00	1,00	0,00	0,00	-,-			0,00	0,00	0,00	0,00			-,		,00	0,00	0,00	0,00	0,00	0,0			00 0	,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00		-,-,-	0,0		
SLE QP		52 53	QP10	1,00		1,00	0,00	0,00	-,-			0,00 0.00	0,00	0,00	0,00	-,-				.00	0,00	0,00	0,00	0,00	0,0			00 0 00 0	,	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,00	1,00					
SLE QP	5	54	QP11 QP12				0,00	U,UL	J U, C	JU U,	,UU I	0,00	0,00	0,00	0,00	0,0	U U, C	JU U,1	uu U	,00	0,00	U,UU	U,UL	0,00	0,01	U,U	JU U,	UU U	,00 (J,UU	u,UU	0,00	U,UU	0,00	0,00	0,00	0,00	U,UL	0,00	0,00	0,00	0,00	0,00	1,00	0,00		J U,C	JU 0,0	10 0

Tabella 42 - Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	115

INVILUPPO:	SLU	N _{vert}	V _{trasv}	M _{trasv}	V _{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	Му	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	SLU6	37285	824	-7429	8481	45743	-1195
N _{vert} Min	SLU24	22999	-351	2939	5049	20622	685
V _{trasv} Max	SLU3	34774	972	-8472	8541	41181	-1363
V _{trasv} Min	SLU24	22999	-351	2939	5049	20622	685
M _{trasv} Max	SLU6	29949	-351	2939	7304	24849	685
M _{trasv} Min	SLU24	27824	972	-8472	6634	38911	-1363
V _{long} Max	SLU7	32545	327	-7022	9949	44721	4324
V _{long} Min	SLU20	23308	0	0	4989	20894	-6
M _{long} Max	SLU2	37285	824	-7429	8481	45743	-1195
M _{long} Min	SLU15	22999	-351	2939	5049	20622	685
M _{torc} Max	SLU7	32545	327	-7022	9949	44721	4324
M _{torc} Min	SLU15	27824	972	-8472	6634	38911	-1363
INVILUPPO:	SLV	N_{vert}	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	N1	Fz	Fx	My	Fy	Mx	Mz
	Nome	1 4		,	. ,	IVIA	IVIZ
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
				•	•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
Comb. N _{vert} Max	Comb. SLV5	(kN) 27044	(kN) 2242	(kNm) -8742	(kN) 6072	(kNm) 26948	(kNm) -1699
Comb. N _{vert} Max N _{vert} Min	SLV5 SLV6	(kN) 27044 19572	(kN) 2242 2242	(kNm) -8742 -8742	(kN) 6072 6072	(kNm) 26948 21284	(kNm) -1699 -1699
N _{vert} Max N _{vert} Min V _{trasv} Max	SLV5 SLV6 SLV3	(kN) 27044 19572 24429	(kN) 2242 2242 7472	(kNm) -8742 -8742 -29142	(kN) 6072 6072 6072	(kNm) 26948 21284 24965	(kNm) -1699 -1699 -5664
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	SLV5 SLV6 SLV3 SLV6	(kN) 27044 19572 24429 19572	(kN) 2242 2242 7472 2242	(kNm) -8742 -8742 -29142 -8742	(kN) 6072 6072 6072 6072	(kNm) 26948 21284 24965 21284	(kNm) -1699 -1699 -5664 -1699
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	SLV5 SLV6 SLV3 SLV6 SLV1	(kN) 27044 19572 24429 19572 24429	(kN) 2242 2242 7472 2242 2242	(kNm) -8742 -8742 -29142 -8742 -8742	(kN) 6072 6072 6072 6072 10936	(kNm) 26948 21284 24965 21284 40472	(kNm) -1699 -1699 -5664 -1699 -1699
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV1	(kN) 27044 19572 24429 19572 24429 22187	(kN) 2242 2242 7472 2242 2242 7472	(kNm) -8742 -8742 -29142 -8742 -8742 -29142	(kN) 6072 6072 6072 6072 10936 6072	(kNm) 26948 21284 24965 21284 40472 23266	(kNm) -1699 -1699 -5664 -1699 -5664
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max	SLV5 SLV6 SLV6 SLV1 SLV6 SLV1	(kN) 27044 19572 24429 19572 24429 22187 24429	(kN) 2242 2242 7472 2242 7472 2242	(kNm) -8742 -8742 -29142 -8742 -8742 -29142 -8742	(kN) 6072 6072 6072 6072 10936 6072 10936	(kNm) 26948 21284 24965 21284 40472 23266 40472	(kNm) -1699 -1699 -5664 -1699 -5664 -1699
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Min Vlong Max Vlong Min	SLV5 SLV6 SLV3 SLV6 SLV1 SLV6 SLV1 SLV6	(kN) 27044 19572 24429 19572 24429 22187 24429 19572	(kN) 2242 2242 7472 2242 7472 2242 2242 22	(kNm) -8742 -8742 -29142 -8742 -29142 -8742 -8742 -8742	(kN) 6072 6072 6072 6072 10936 6072 10936 6072	(kNm) 26948 21284 24965 21284 40472 23266 40472 21284	(kNm) -1699 -1699 -5664 -1699 -5664 -1699 -1699
Nvert Max Nvert Min Vtrasv Max Vtrasv Min Mtrasv Max Mtrasv Max Mtrasv Min Vlong Max Vlong Min Mlong Max	SLV5 SLV6 SLV6 SLV1 SLV6 SLV1 SLV6 SLV1	(kN) 27044 19572 24429 19572 24429 22187 24429 19572 24429	(kN) 2242 2242 7472 2242 7472 2242 2242 22	(kNm) -8742 -8742 -29142 -8742 -8742 -8742 -8742 -8742 -8742	(kN) 6072 6072 6072 6072 10936 6072 10936 10936	(kNm) 26948 21284 24965 21284 40472 23266 40472 21284 40472	(kNm) -1699 -1699 -5664 -1699 -5664 -1699 -1699 -1699

Tabella 43 – ENV SLU, SLV - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	116

INVILUPPO:	SLE RA	N _{vert}	V_{trasv}	M_{trasv}	V_{long}	M _{long}	M _{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	RA1	26513	564	-5059	6142	34278	-649
N _{vert} Min	RA12	23102	-234	1960	4611	19050	456
V _{trasv} Max	RA3	26355	665	-5771	6208	34338	-715
V _{trasv} Min	RA12	23102	-234	1960	4611	19050	456
M _{trasv} Max	RA3	23102	-234	1960	4611	19050	456
M _{trasv} Min	RA12	26355	665	-5771	6208	34338	-715
V _{long} Max	RA7	24881	269	-5232	6701	34225	2894
V _{long} Min	RA12	23102	-234	1960	4611	19050	456
M _{long} Max	RA12	26355	665	-5771	6208	34338	-715
M _{long} Min	RA3	23102	-234	1960	4611	19050	456
M _{torc} Max	RA7	24881	269	-5232	6701	34225	2894
M _{torc} Min	RA3	26355	665	-5771	6208	34338	-715
INVILUPPO:	SLE QP	$N_{ m vert}$	V_{trasv}	M_{trasv}	V_{long}	M_{long}	M _{torc}
Tipologia	Nome	Fz	Fx	My	Fy	Mx	Mz
Camb					•		
Comb.	Comb.	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
N _{vert} Max	Comb. QP1	(kN) 23308		-	•		(kNm)
			(kN)	(kNm)	(kN)	(kNm)	, ,
N _{vert} Max	QP1	23308	(kN)	(kNm)	(kN) 3987	(kNm) 17470	0
N _{vert} Max N _{vert} Min	QP1 QP12	23308 23308	(kN) 0 0	(kNm) 0 0	(kN) 3987 3638	(kNm) 17470 15512	0
N _{vert} Max N _{vert} Min V _{trasv} Max	QP1 QP12 QP1	23308 23308 23308	(kN) 0 0	(kNm) 0 0	(kN) 3987 3638 3987	(kNm) 17470 15512 17470	0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min	QP1 QP12 QP1 QP12	23308 23308 23308 23308	(kN) 0 0 0	(kNm) 0 0 0	(kN) 3987 3638 3987 3638	(kNm) 17470 15512 17470 15512	0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max	QP1 QP12 QP1 QP12 QP1	23308 23308 23308 23308 23308	(kN) 0 0 0 0	(kNm) 0 0 0 0 0 0	(kN) 3987 3638 3987 3638 3987	(kNm) 17470 15512 17470 15512 17470	0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min	QP1 QP12 QP1 QP12 QP1 QP12	23308 23308 23308 23308 23308 23308	(kN) 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0	(kN) 3987 3638 3987 3638 3987 3638	(kNm) 17470 15512 17470 15512 17470 15512	0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max	QP1 QP12 QP1 QP12 QP1 QP12	23308 23308 23308 23308 23308 23308 23308	(kN) 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0	(kN) 3987 3638 3987 3638 3987 3638 3987	(kNm) 17470 15512 17470 15512 17470 15512 17470	0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max V _{long} Min	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	23308 23308 23308 23308 23308 23308 23308 23308	(kN) 0 0 0 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0	(kN) 3987 3638 3987 3638 3987 3638 3987 3638	(kNm) 17470 15512 17470 15512 17470 15512 17470 15512	0 0 0 0 0 0
N _{vert} Max N _{vert} Min V _{trasv} Max V _{trasv} Min M _{trasv} Max M _{trasv} Min V _{long} Max V _{long} Min M _{long} Max	QP1 QP12 QP1 QP12 QP1 QP12 QP1 QP12	23308 23308 23308 23308 23308 23308 23308 23308 23308	(kN) 0 0 0 0 0 0 0	(kNm) 0 0 0 0 0 0 0 0 0 0 0 0	(kN) 3987 3638 3987 3638 3987 3638 3987 3638 3987	(kNm) 17470 15512 17470 15512 17470 15512 17470 15512 17470	0 0 0 0 0 0

Tabella 44 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	117

11.4 SOLLECITAZIONI MURO PARAGHIAIA

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate al muro paraghiaia della spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G, posto al centro del muro paraghiaia a quota estradosso elevazione, e i rispettivi assi x, y, z come riportato nella figura seguente.

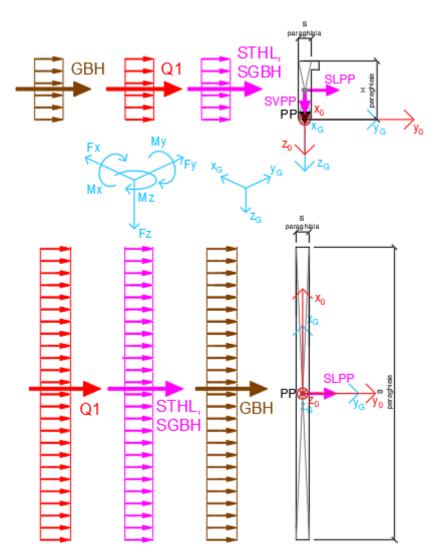


Figura 23 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	118

11.4.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOME	NOME: MURO PARAGHIAIA								OLO SPETT	RO SISMICO	DI PROGE	TTO				
PGA orizzontale	a _g (g)	0,242				С	oeff. sismi	co orizz. k _h	0,2814			Coeff.	spinta attiva	sismica k _{aE}	0,3878	
Coeff. stratigrafic	co S _s	1,163				Coeff. sismico vert. k _v 0										
NOME	: MURO PAF	RAGHIAIA						CALC	OLO AZION	I SISMICHE (CORPO SPA	ALLA				
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x ₀ (m)	y _o (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F_{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
Sisma long	SLPP	0	177	0	0,00	0,00	-1,55	274	0	0						
		0	177	0				274	0	0	0	177	0	274	0	0
Sisma vert	SVPP	0	0	88	0,00	0,00	-1,55	0	0	0						
		0	. 0	88				0	0	0	0	0	88	0	0	0
Sisma ballast	SGBH	0	83	0	0,00	-0,30	-1,55	129	0	0						
long		0	83	0			,	129	0	0	0	83	0	129	0	0
Sisma terreno	STHL	0	265	0	0,00	-0,30	-1,55	411	0	0						
long		0	265	0				411	0	0	0	265	0	411	0	0

Tabella 45 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

NOME:	MURO P	ARAGHIAIA				PARAMETRI DI CALCOLO I						HIAIA				
H paraghiaia (m)	3	,10	Carico p	erm. Gb ba	llast (kPa)	9,72		Ang	golo di attrito	terreno (°)	38,00			X	G elevazione	0,00
S paraghiaia (m)	0	,60	Carico	variab. Q LN	И71 (kРа)	56,18		Coeff	. spinta attiv	a statica ka	0,2379			Y	3 elevazione	0,00
B paraghiaia (m)	13	,50	- 1	Peso terren	o (kN/m3)	20,00		Coeff.	spinta ripos	o statica k0	0,3843			Z	3 elevazione	0,00
NOME:	MURO P	ARAGHIAIA				CALCOLO AZIONI CO V_{Ω} (m) V_{Ω} (m) V_{Ω} (m) V_{Ω} (kNm) V_{Ω} (kNm) V_{Ω} (kNm) V_{Ω} (kNm) V_{Ω} (kNm)										
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x ₀ (m)	y _o (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m)	M _{xG} (kNm)	M _{yG} (kNm)	M _{zG} (kNm)
Peso proprio	PP	0	0	628	0,00	0,00	-1,55	0	0	0						
Peso proprio PF		0	. 0	628			,	0	0	0	0	0	628	0	0	0
Ballast	GBH	0	156	0	0,00	-0,30	-1,55	242	0	0						
		0	156	0			,	242	0	0	0	156	0	242	0	0
Spinta terreno	THL	0	499	0	0,00	-0,30	-1,03	515	0	0						
		0	499	0				515	0	0	0	499	0	515	0	0
Sovraccarico	Q1	0	904	0	0,00	-0,30	-1,55	1401	0	0						
long		0	904	0		·		1401	0	0	0	904	0	1401	0	0

Tabella 46 - Riepilogo azioni elementari statiche

Tipo azione	Descrizione	V_{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	628	0	0	0
Gk2b Ballast	G2,1 (ballast)	0	156	0	242	0	0
Gk2 Perm. Non Str.	G2,2 (terreno)	0	499	0	515	0	0
Qk1	Q (acc. Traffico)	0	904	0	1401	0	0
Е	Sisma long	0	525	0	814	0	0
Sisma	Sisma vert	0	0	88	0	0	0
	-Sisma vert	0	0	-88	0	0	0

Tabella 47 – Risultanti azioni elementari al centro dell'elevazione G (quota estradosso fondazione)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPEI	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	119

NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (terreno)	Qk1-Q (acc. Traffico)	E-Sisma long	E-Sisma vert	ESisma vert
SLU	1	1	SLU1	1,35	1,50	1,50	0,00	0,00	0,00	0,00
SLU	2	2	SLU2	1,35	1,50	1,50	1,45	0,00	0,00	0,00
SLU	3	3	SLU3	1,00	1,50	1,50	0,00	0,00	0,00	0,00
SLU	4	4	SLU4	1,00	1,50	1,50	1,45	0,00	0,00	0,00
SLU	5	5	SLU5	1,00	0,00	0,00	1,45	0,00	0,00	0,00
SLV	6	6	SLV1	1,00	1,00	1,00	0,00	1,00	0,30	0,00
SLV	6	7	SLV2	1,00	1,00	1,00	0,00	1,00	0,00	0,30
SLV	6	8	SLV3	1,00	1,00	1,00	0,00	0,30	1,00	0,00
SLV	6	9	SLV4	1,00	1,00	1,00	0,00	0,30	0,00	1,00
SLE RA	7	10	RA1	1,00	1,00	1,00	1,00	0,00	0,00	0,00
SLE RA	8	11	RA2	1,00	1,00	1,00	0,00	0,00	0,00	0,00
SLE QP	8	12	QP1	1,00	1,00	1,00	0,00	0,00	0,00	0,00
SLE QP	9	13	QP2	1,00	0,00	0,00	0,00	0,00	0,00	0,00

Tabella 48 - Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	120

INVILUPPO:	SLU	N_{vert}	V_{long}	M _{long}
Tipologia	Nome	Fz	Fy	Mx
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	SLU2	847	2293	3167
N _{vert} Min	SLU5	628	1310	2031
V _{long} Max	SLU2	847	2293	3167
V _{long} Min	SLU3	628	982	1136
M _{long} Max	SLU2	847	2293	3167
M _{long} Min	SLU3	628	982	1136
INVILUPPO:	SLV	N_{vert}	V_{long}	M_{long}
			Fy	
Tipologia	Nome	Fz	ıу	Mx
Tipologia Comb.	Nome Comb.	rz (kN)	(kN)	Mx (kNm)
			•	
Comb.	Comb.	(kN)	(kN)	(kNm)
Comb.	Comb. SLV3	(kN) 716	(kN) 812	(kNm) 1002
N _{vert} Max	Comb. SLV3 SLV4	(kN) 716 539	(kN) 812 812	(kNm) 1002 1002
N _{vert} Max N _{vert} Min V _{long} Max	SLV3 SLV4 SLV1	(kN) 716 539 654	(kN) 812 812 1180	(kNm) 1002 1002 1571

Tabella 49 – ENV SLU, SLV - Azioni totali inviluppo

INVILUPPO:	SLE RA	N_{vert}	V_{long}	M _{long}
Tipologia	Nome	Fz	Fy	Mx
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	RA1	628	1559	2158
N _{vert} Min	RA2	628	655	758
V _{long} Max	RA1	628	1559	2158
V _{long} Min	RA2	628	655	758
M _{long} Max	RA1	628	1559	2158
M _{long} Min	RA2	628	655	758
INVILUPPO:	SLE QP	N_{vert}	V_{long}	M_{long}
INVILUPPO: Tipologia	SLE QP Nome	N _{vert}	V _{long}	M _{long}
Tipologia	Nome	Fz	Fy	Mx
Tipologia Comb.	Nome Comb.	Fz (kN)	Fy (kN)	Mx (kNm)
Tipologia Comb.	Nome Comb.	Fz (kN) 628	Fy (kN)	Mx (kNm) 758
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. QP1 QP2	Fz (kN) 628 628	Fy (kN) 655	Mx (kNm) 758 0
Tipologia Comb. N _{vert} Max N _{vert} Min V _{long} Max	Nome Comb. QP1 QP2 QP1	Fz (kN) 628 628	Fy (kN) 655 0 655	Mx (kNm) 758 0 758

Tabella 50 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	121

11.5 SOLLECITAZIONI MURO D'ALA

11.5.1 Sezione superiore muro d'ala

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate al muro laterale della spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G posto al baricentro del muro d'ala alla quota del ringrosso della sezione, e i rispettivi assi x, y, z come riportato nella figura seguente.

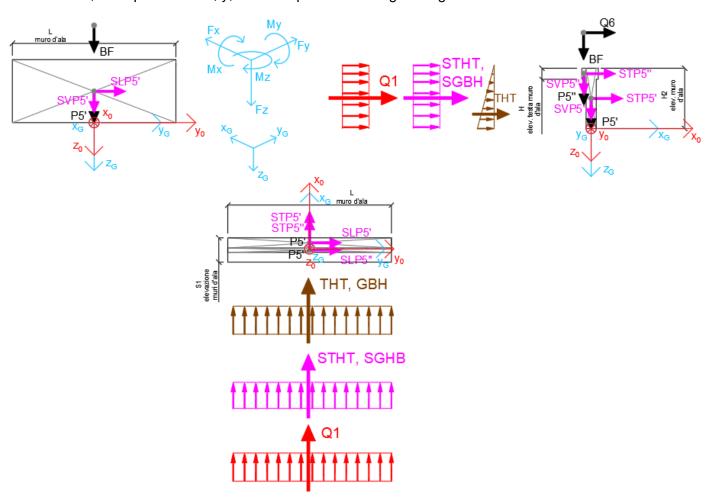


Figura 33 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	122

11.5.1.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NON	ME: SEZ. SU	P MURO D'	ALA SPAL	LA 2				CALC	OLO SPETT	RO SISMIC	DI PROGI	ETTO				
PGA orizzontale	a _g (g)	0,242				Co	oeff. sismi	co orizz. k _h	0,2814			Coeff. spi	inta attiva sisn	nica k _{aE}	0,3878	
Coeff. stratigrafic	co SS	1,163				(Coeff. sism	ico vert. k _v	0,1407							
NON	NE: SEZ. SU	P MURO D'	ALA SPAL	LA 2				CALCO	DLO AZION	SISMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M _x	(kNm) M	yG (kNm) M	_{zG} (kNm)
Sisma trasv	STP5'	42	0	0	0,00	0,00	-1,66	0	-70	0						
	STP5"	3	0	0	0,49	0,00	-3,05	0	-9	0						
	STP7	0	0	0	0,00	-1,80	-3,32	0	0	0						
	STP7'	0	0	0	0,00	-1,80	-3,32	0	0	0						
		45	0	0				0	-79	0	45	0	0	0	-79	0
Sisma vert	SVP5'	0	0	21	0,00	0,00	-1,66	0	0	0						
	SVP5"	0	0	2	0,49	0,00	-3,05	0	-1	0						
	SVP7	0	0	0	0,00	-1,80	-3,32	0	0	0						
	SVP7'	0	0	0	0,00	-1,80	-3,32	0	0	0						
		0	0	23				0	-1	0	0	0	23	0	-1	0
Sisma ballast	SGBH	24	0	0	-0,25	0,00	-1,66	0	-39	0						
trasv		24	0	0				0	-39	0	24	0	0	0	-39	0
Sisma terreno	STHT	81	0	0	-0,25	0,00	-1,11	0	-90	0						
trasv		81	0	0				0	-90	0	81	0	0	0	-90	0

Tabella 51 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

NOM	IE: SEZ. SU	P MURO D'	ALA SPAL	LA 2				CALCO	LO SPETT	RO SISMIC	O DI PROGI	ETTO				
PGA orizzontale	a _g (g)	0,242				Co	oeff. sismi	co orizz. k _h	0,2814			Coeff. spi	inta attiva sisr	mica k _{aE}	0,3878	
Coeff. stratigrafic	co SS	1,163				(Coeff. sisn	nico vert. k _v	0,1407							
NON	IE: SEZ. SU	P MURO D'	ALA SPAL	LA 2				CALCO	LO AZIONI	SISMICHE	CORPO SP	ALLA				
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z ₀ (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M _x	G (kNm) M _y	_G (kNm) M	l _{zG} (kNm)
Sisma trasv	STP5'	42	0	0	0,00	0,00	-1,66	0	-70	0						
	STP5"	3	0	0	0,49	0,00	-3,05	0	-9	0						
	STP7	0	0	0	0,00	-1,80	-3,32		0	0						
	STP7'	0	0	0	0,00	-1,80	-3,32	0	0	0						
		45	0	0				0	-79	0	45	0	0	0	-79	0
Sisma vert	SVP5'	0	0	21	0,00	0,00	-1,66	0	0	0						
	SVP5"	0	0	2	0,49	0,00	-3,05	0	-1	0						
	SVP7	0	0	0	0,00	-1,80	-3,32	0	0	0						
	SVP7'	0	0	0	0,00	-1,80	-3,32	0	0	0						
		0	0	23			I.	0	-1	0	0	0	23	0	-1	0
Sisma ballast	SGBH	24	0	0	-0,25	0,00	-1,66	0	-39	0						
trasv		24	0	0				0	-39	0	24	0	0	0	-39	0
Sisma terreno	STHT	81	0	0	-0,25	0,00	-1,11	0	-90	0						
trasv		81	0	0				0	-90	0	81	0	0	0	-90	0

Tabella 52 – Riepilogo azioni elementari statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	123

Tipo azione	Descrizione	V_{trasv}	V _{long}	N _{vert}	M _{long}	M_{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	160	0	-5	0
Gk2b Ballast	G2,1 (ballast)	45	0	0	0	-74	0
Gk2 Perm. Non Str.	G2,2 (barriera)	0	0	72	0	25	0
Gk2 Perm. Non Str. altri	G2,3 (terreno)	153	0	0	0	-169	0
Qk1	Q (acc. Traffico)	106	0	0	0	-177	0
Qk6	Vento MAX	36	0	0	0	-208	0
Vento	Vento MIN	-36	0	0	0	208	0
E	Sisma trasv	150	0	0	0	-208	0
Sisma	-Sisma trasv	-150	0	0	0	208	0
	Sisma vert	0	0	23	0	-1	0
	-Sisma vert	0	0	-23	0	1	0

Tabella 53 – Risultanti azioni elementari al centro del muro d'ala G (quota ringrosso sezione)

	NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (barriera)	Gk2 Perm. Non Str. altri-G2,3 (terreno)	Qk1-Q (acc. Traffico)	Qk6-Vento MAX	Qk6-Vento MIN	E-Sisma trasv	E-Sisma trasv	E-Sisma vert	ESisma vert
	SLU	1	1	SLU1	1,35	1,50	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	SLU	2	2	SLU2	1,35	1,50	1,50	1,50	1,45	0,90	0,00	0,00	0,00	0,00	0,00
	SLU	2	3	SLU3	1,35	1,50	1,50	1,50	1,45	0,00	0,90	0,00	0,00	0,00	0,00
	SLU SLU	3	4 5	SLU4 SLU5	1,35	1,50 1,50	1,50 1,50	1,50	0,00 1,45	1,50 0,00	0,00	0,00	0,00	0,00	0,00
F	SLV	4 5	6	SLV1	1,35 1,00	1,00	1,00	1,50 1,00	0,00	0,50	0,00	1,00	0,00	0,30	0,00
	SLV	5	7	SLV2	1,00	1,00	1,00	1,00	0,00	0,00	0,50	1,00	0,00	0,30	0,00
	SLV	5	8	SLV3	1,00	1,00	1,00	1,00	0,00	0,50	0,00	1,00	0,00	0,00	0,30
	SLV	5	9	SLV4	1,00	1,00	1,00	1,00	0,00	0,00	0,50	1,00	0,00	0,00	0,30
	SLV	5	10	SLV5	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,30	0,00	1,00	0,00
	SLV	5	11	SLV6	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,30	0,00	1,00	0,00
	SLV	5	12	SLV7	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,30	0,00	0,00	1,00
	SLV	5	13	SLV8	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,30	0,00	0,00	1,00
	SLV	5	14	SLV9	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	1,00	0,30	0,00
	SLV	5	15	SLV10	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	1,00	0,30	0,00
	SLV	5	16	SLV11	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	1,00	0,00	0,30
	SLV	5	17	SLV12	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	1,00	0,00	0,30
	SLV SLV	5	18 19	SLV13	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	0,30	1,00	0,00
1	SLV	5 5	20	SLV14 SLV15	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	0,00	0,00 0,50	0,50 0,00	0,00	0,30 0,30	1,00 0,00	0,00 1,00
	SLV	5	20	SLV 15 SLV 16	1,00	1,00	1,00	1,00	0,00	0,50	0,50	0,00	0,30	0,00	1,00
F	SLE RA	6	22	RA1	1,00	1,00	1,00	1,00	1,00	0,60	0,00	0,00	0,00	0,00	0,00
	SLE RA	6	23	RA2	1,00	1,00	1,00	1,00	1,00	0,00	0,60	0,00	0,00	0,00	0,00
	SLE RA	7	24	RA3	1,00	1,00	1,00	1,00	0,80	1,00	0,00	0,00	0,00	0,00	0,00
	SLE RA	7	25	RA4	1,00	1,00	1,00	1,00	0,80	0,00	1,00	0,00	0,00	0,00	0,00
	SLE QP	8	26	QP1	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	SLE QP	9	27	QP2	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	0,00	0,00	0,00
	SLE QP	9	28	QP3	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	0,00	0,00	0,00

Tabella 54 - Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	124

INVILUPPO:	SLU	N_{vert}	V_{trasv}	M _{trasv}
Tipologia	Nome	Fz	Fx	My
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	SLU3	324	418	-402
N _{vert} Min	SLU5	324	450	-590
V _{trasv} Max	SLU2	324	482	-777
V _{trasv} Min	SLU4	324	349	-646
M _{trasv} Max	SLU5	324	418	-402
M _{trasv} Min	SLU4	324	482	-777
			_	
INVILUPPO:	SLV	N _{vert}	V _{trasv}	M _{trasv}
INVILUPPO: Tipologia			V _{trasv}	M _{trasv}
	SLV	N_{vert}		
Tipologia	SLV Nome	N _{vert}	Fx	Му
Tipologia Comb.	SLV Nome Comb.	N _{vert} Fz (kN)	Fx (kN)	My (kNm)
Tipologia Comb.	Nome Comb.	N _{vert} Fz (kN) 255	Fx (kN)	My (kNm) -57
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. SLV14 SLV15	N _{vert} Fz (kN) 255 210	Fx (kN) 134 170	My (kNm) -57 -264
Tipologia Comb. N _{vert} Max N _{vert} Min V _{trasv} Max	Nome Comb. SLV14 SLV15 SLV3	N _{vert} Fz (kN) 255 210 226	Fx (kN) 134 170 365	My (kNm) -57 -264 -535

Tabella 55 – ENV SLU, SLV - Azioni totali inviluppo

INVILUPPO:	SLE RA	N_{vert}	V_{trasv}	M_{trasv}
Tipologia	Nome	Fz	Fx	Му
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	RA4	232	246	-156
N _{vert} Min	RA3	232	318	-573
V _{trasv} Max	RA1	232	325	-525
V _{trasv} Min	RA4	232	246	-156
M _{trasv} Max	RA4	232	246	-156
M _{trasv} Min	RA3	232	318	-573
INVILUPPO:	SLE QP	N_{vert}	V_{trasv}	$\mathbf{M}_{\text{trasv}}$
Tipologia	Nome	Fz	Fx	My
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)
				•
Comb.	Comb.	(kN)	(kN)	(kNm)
Comb.	Comb.	(kN)	(kN)	(kNm) -119
N _{vert} Max	QP3 QP2	(kN) 232 232	(kN) 179 215	(kNm) -119 -327
N _{vert} Max N _{vert} Min V _{trasv} Max	QP3 QP2 QP2	(kN) 232 232 232	(kN) 179 215 215	(kNm) -119 -327 -327

Tabella 56 - ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	125

11.5.2 Sezione base muro d'ala

In analogia con quanto svolto per gli scarichi di impalcato, sempre mediante foglio di calcolo, si sono valutate le singole azioni caratteristiche permanenti strutturali (G_{k1}) , non strutturali (G_{k2}) e accidentali (Q_{ki}) applicate al muro laterale della spalla, secondo le azioni descritte nei capitoli precedenti di analisi dei carichi.

Tutte le azioni elementari caratteristiche sopra descritte, accorpate per gruppi omogenei dello stesso tipo, sono state valutate come forze Fx (trasversali), Fy (longitudinali), Fz (verticali) e momenti Mx (longitudinali), My (trasversali), Mz (torcenti) rispetto al punto G posto al baricentro del muro d'ala a quota estradosso plinto., e i rispettivi assi x, y, z come riportato nella figura seguente.

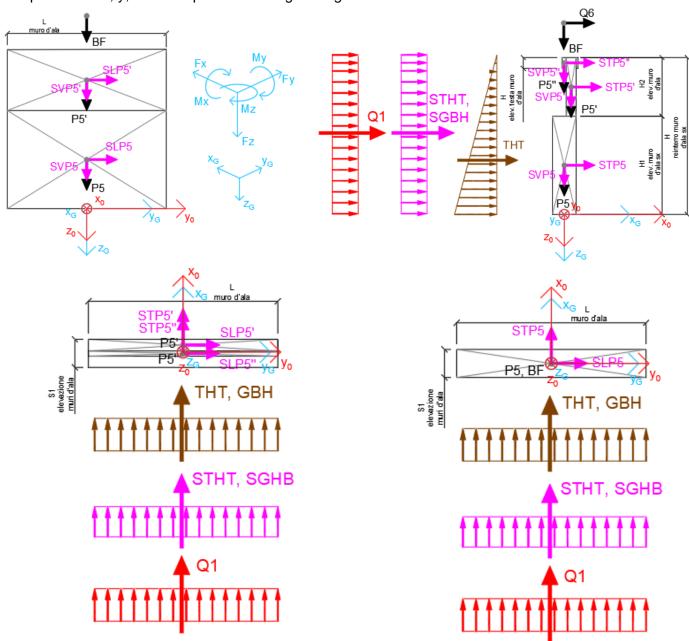


Figura 34 – Schema e sistema di riferimento utilizzato per il calcolo delle azioni applicate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	126

11.5.2.1 Analisi statica (SLU, SLE) e sismica (SLV)

Nel seguito vengono riportati i dettagli dei calcoli effettuati per la valutazione delle risultanti delle combinazioni statiche SLU / SLE e sismiche SLV, secondo le combinazioni di carico descritte nei capitoli precedenti.

NOM	E: SEZ. BA	SE MURO I	D'ALA SPA	LLA 2				CALCO	LO AZION	SISMICHE	CORPO SP	ALLA				
	-	F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y _O (m)	z _O (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M _{x0}	(kNm) M _y	_G (kNm) M _z	_{zG} (kNm)
Sisma trasv	STP5	76	0	0	0,00	0,00	-1,25	0	-95	0						
	STP5'	42	0	0	0,35	0,00	-4,16	0	-175	0						
	STP5"	3	0	0	-0,01	0,00	-5,55	0	-17	0						
	STP7	0	0	0	0,35	-1,80	-5,82	0	0	0						
	STP7'	0	0	0	0,35	-1,80	-5,82	0	0	0						
		121	0	0			· ·	0	-287	0	121	0	0	0	-287	0
Sisma vert	SVP5	0	0	38	0,00	0,00	-1,25	0	0	0						
	SVP5'	0	0	21	0,35	0,00	-4,16	0	-7	0						
	SVP5"	0	0	2	-0,01	0,00	-5,55	0	0	0						
	SVP7	0	0	0	0,35	-1,80	-5,82	0	0	0						
	SVP7'	0	0	0	0,35	-1,80	-5,82	0	0	0						
		0	0	61				0	-7	0	0	0	61	0	-7	0
Sisma ballast	SGBH	42	0	0	-0,60	0,00	-2,91	0	-121	0						
trasv		42	0	0	•	•		0	-121	0	42	0	0	0	-121	0
Sisma terreno	STHT	249	0	0	-0,60	0,00	-1,94	0	-484	0						
trasv		249	0	0				0	-484	0	249	0	0	0	-484	0

Tabella 57 – Calcolo spettri sismici risposta strutturale e riepilogo azioni elementari sismiche

NON	ME: SEZ. BAS	SE MURO I	'ALA SPA	LLA 2				PAI	RAMETRI D	I CALCOLO	MURO D'AI	_A				
S1 elevazione n	nuri d'ala (m)	1,20		L muro	d'ala (m)	3,60			Sc	recchia (m)	0,00		Carico va	ariab. Q LM	71 (kPa)	23,15
S2 elevazione n	nuri d'ala (m)	0,50	S elev	ı. testa muri	d'ala (m)	0,22			Peso terre	eno (kN/m³)	20,00			Carico balla	st (kPa)	9,72
H1 elev. muro	d'ala sx (m)	2,50	H elev.	testa muro	d'ala (m)	0,55		Coeff.	spinta attiv	a statica k _a	0,2379			X_G	muro sx	0,00
H2 elev. m	uro d'ala (m)	3,32		H1 ore	cchia (m)	0,00		Coeff.	spinta ripos	o statica k ₀	0,3843			Y_{G}	muro sx	0,00
H reinterro muro	d'ala sx (m)	5,82		H2 ore	cchia (m)	0,00								Z_{G}	muro sx	0,00
NON	ME: SEZ. BAS	SE MURO ['ALA SPA	LLA 2				C	ALCOLO A	ZIONI CORF	O SPALLA					
		F _{xO} (kN)	F _{yO} (kN)	F _{zO} (kN)	x _O (m)	y ₀ (m)	z ₀ (m)	M _{xo} (kNm)	M _{yo} (kNm)	M _{zo} (kNm)	F _{xG} (m)	F _{yG} (m)	F _{zG} (m) M _x	_G (kNm) M _y	_G (kNm) I	M _{zG} (kNm)
Peso proprio	P5	0	0	270	0,00	0,00	-1,25	0	0	0						
	P5'	0	0	149	0,35	0,00	-4,16	0	-52	0						
	P5"	0	0	11	-0,01	0,00	-5,55	0	0	0						
	P7	0	0	0	0,35	-1,80	-5,82	0	0	0						
	P7'	0	0	0	0,35	-1,80	-5,82	0	0	0						
		0	0	430				0	-52	0	0	0	430	0	-52	0
Barriera	BF	0	0	72	0,00	0,00	-8,32	0	0	0						
fonoassorbente		0	0	72			ı	0	0	0	0	0	72	0	0	0
Ballast	GBH	78	0	0	-0,60	0,00	-2,91	0	-228	0						
		78	0	0				0	-228	0	78	0	0	0	-228	0
Spinta terreno	THT	469	0	0	-0,60	0,00	-1,94	0	-909	0						
		469	0	0				0	-909	0	469	0	0	0	-909	0
Sovraccarico	Q1	186	0	0	-0,60	0,00	-2,91	0	-542	0						
traffico		186	0	0				0	-542	0	186	0	0	0	-542	0
Vento	Q6	36	0	0	0,00	0,00	-8,32	0	-298	0						
		36	0	0				0	-298	0	36	0	0	0	-298	0

Tabella 58 - Riepilogo azioni elementari statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	127

Tipo azione	Descrizione	V _{trasv}	V _{long}	N _{vert}	M _{long}	M _{trasv}	M _{torc}
	azione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Gk1 Perm. Str.	G1 (peso proprio)	0	0	430	0	-52	0
Gk2b Ballast	G2,1 (ballast)	78	0	0	0	-228	0
Gk2 Perm. Non Str.	G2,2 (barriera)	0	0	72	0	0	0
Gk2 Perm. Non Str. altri	G2,3 (terreno)	469	0	0	0	-909	0
Qk1	Q (acc. Traffico)	186	0	0	0	-542	0
Qk6	Vento MAX	36	0	0	0	-298	0
Vento	Vento MIN	-36	0	0	0	298	0
E	Sisma trasv	412	0	0	0	-892	0
Sisma	-Sisma trasv	-412	0	0	0	892	0
	Sisma vert	0	0	61	0	-7	0
	-Sisma vert	0	0	-61	0	7	0

Tabella 59 – Risultanti azioni elementari al centro del muro d'ala G (quota estradosso fondazione)

	NomeEnv:	TipoComb:	NumComb:	Comb:	Gk1 Perm. StrG1 (peso proprio)	Gk2b Ballast-G2,1 (ballast)	Gk2 Perm. Non StrG2,2 (barriera)	Gk2 Perm. Non Str. altri-G2,3 (terreno)	Qk1-Q (acc. Traffico)	Qk6-Vento MAX	Qk6-Vento MIN	E-Sisma trasv	ESisma trasv	E-Sisma vert	ESisma vert
	SLU	1	1	SLU1	1,35	1,50	1,50	1,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	SLU SLU	2	2	SLU2 SLU3	1,35 1,35	1,50 1,50	1,50 1,50	1,50 1,50	1,45 1,45	0,90	0,00 0,90	0,00	0,00	0,00	0,00
	SLU	3	4	SLU4	1,35	1,50	1,50	1,50	0,00	1,50	0,90	0,00	0,00	0,00	0,00
	SLU	4	5	SLU5	1,35	1,50	1,50	1,50	1,45	0,00	0,00	0,00	0,00	0,00	0,00
	SLV	5	6	SLV1	1,00	1,00	1,00	1,00	0,00	0,50	0,00	1,00	0,00	0,30	0,00
	SLV	5	7	SLV2	1,00	1,00	1,00	1,00	0,00	0,00	0,50	1,00	0,00	0,30	0,00
	SLV	5	8	SLV3	1,00	1,00	1,00	1,00	0,00	0,50	0,00	1,00	0,00	0,00	0,30
	SLV	5	9	SLV4	1,00	1,00	1,00	1,00	0,00	0,00	0,50	1,00	0,00	0,00	0,30
	SLV	5	10	SLV5	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,30	0,00	1,00	0,00
	SLV	5	11	SLV6	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,30	0,00	1,00	0,00
	SLV	5	12	SLV7	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,30	0,00	0,00	1,00
	SLV	5	13	SLV8	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,30	0,00	0,00	1,00
	SLV	5	14	SLV9	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	1,00	0,30	0,00
	SLV	5	15	SLV10	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	1,00	0,30	0,00
	SLV	5	16	SLV11	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	1,00	0,00	0,30
	SLV	5	17	SLV12	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	1,00	0,00	0,30
	SLV SLV	5 5	18 19	SLV13 SLV14	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	0,30	1,00	0,00
	SLV	5	20	SLV 14 SLV 15	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	0,00	0,00 0,50	0,50 0,00	0,00	0,30 0,30	1,00 0,00	0,00
	SLV	5	21	SLV15	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	0,30	0,00	1,00 1,00
-	SLE RA	6	22	RA1	1,00	1,00	1,00	1,00	1,00	0,60	0,00	0,00	0,00	0,00	0,00
	SLE RA	6	23	RA2	1,00	1,00	1,00	1,00	1,00	0,00	0,60	0,00	0,00	0,00	0,00
	SLE RA	7	24	RA3	1,00	1,00	1,00	1,00	0,80	1,00	0,00	0,00	0,00	0,00	0,00
- 1	SLE RA	7	25	RA4	1,00	1,00	1,00	1,00	0,80	0,00	1,00	0,00	0,00	0,00	0,00
	SLE QP	8	26	QP1	1,00	1,00	1,00	1,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	SLE QP	9	27	QP2	1,00	1,00	1,00	1,00	0,00	0,50	0,00	0,00	0,00	0,00	0,00
9	SLE QP	9	28	QP3	1,00	1,00	1,00	1,00	0,00	0,00	0,50	0,00	0,00	0,00	0,00

Tabella 60 - Combinazioni di carico adottate

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	128

INVILUPPO:	SLU	N_{vert}	V_{trasv}	M _{trasv}
Tipologia	Nome	Fz	Fx	My
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	SLU4	689	874	-2223
N _{vert} Min	SLU5	689	1091	-2562
V _{trasv} Max	SLU2	689	1123	-2831
V _{trasv} Min	SLU4	689	874	-2223
M _{trasv} Max	SLU5	689	874	-2223
M _{trasv} Min	SLU5	689	1123	-2831
INVILUPPO:	SLV	N_{vert}	V_{trasv}	M_{trasv}
Tipologia	SLV Nome	N _{vert}	V _{trasv}	M _{trasv}
			- 1.401	
Tipologia	Nome	Fz	Fx	Му
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)
Tipologia Comb.	Nome Comb.	Fz (kN) 563	Fx (kN) 405	My (kNm) -780
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. SLV14 SLV15	Fz (kN) 563 442	Fx (kN) 405 441	My (kNm) -780 -1063
Tipologia Comb. N _{vert} Max N _{vert} Min V _{trasv} Max	Nome Comb. SLV14 SLV15 SLV3	Fz (kN) 563 442 484	Fx (kN) 405 441 977	My (kNm) -780 -1063 -2228

Tabella 61 – ENV SLU, SLV - Azioni totali inviluppo

INVILUPPO:	SLE RA	N_{vert}	V_{trasv}	M_{trasv}
Tipologia	Nome	Fz	Fx	Му
Comb.	Comb.	(kN)	(kN)	(kNm)
N _{vert} Max	RA4	502	660	-1325
N _{vert} Min	RA3	502	732	-1921
V _{trasv} Max	RA1	502	755	-1910
V _{trasv} Min	RA4	502	660	-1325
M _{trasv} Max	RA4	502	660	-1325
M _{trasv} Min	RA3	502	732	-1921
INVILUPPO:	SLE QP	N _{vert}	V _{trasv}	M_{trasv}
	Nome	N _{vert}	V _{trasv}	M _{trasv}
Tipologia Comb.				
Tipologia	Nome	Fz	Fx	Му
Tipologia Comb.	Nome Comb.	Fz (kN)	Fx (kN)	My (kNm)
Tipologia Comb.	Nome Comb.	Fz (kN) 502	Fx (kN) 529	My (kNm) -1040
Tipologia Comb. N _{vert} Max N _{vert} Min	Nome Comb. QP3 QP2	Fz (kN) 502 502	Fx (kN) 529 565	My (kNm) -1040 -1338
Tipologia Comb. N _{vert} Max N _{vert} Min V _{trasv} Max	Nome Comb. QP3 QP2 QP2	Fz (kN) 502 502 502	Fx (kN) 529 565	My (kNm) -1040 -1338 -1338

Tabella 62 – ENV SLE RA, SLE QP - Azioni totali inviluppo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	129

11.6 Verifiche Muro Frontale

Nel seguente paragrafo vengono riportate le sollecitazioni a quota estradosso plinto di fondazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.6.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 24/20 e nel lato compresso di Φ 20/20 come rappresentato nella figura seguente per un totale di 156 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

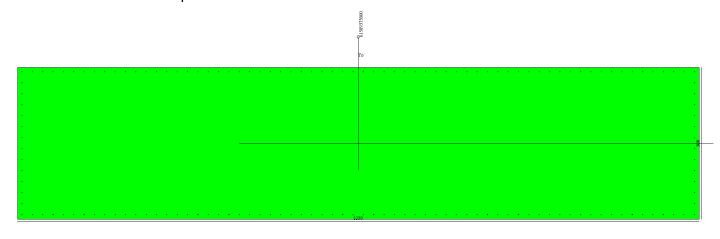


Figura 35 – Sezione trasversale spalla 2 e relativa armatura

Dati

Nome sezione: SEZIONE SPALLA S2

Tipo sezione Rettangolare Base 1350,0 [cm] Altezza 300,0 [cm]

Caratteristiche geometriche

Area sezione 405000,00 [cmq] 61509375000,0 Inerzia in direzione X [cm^4] Inerzia in direzione Y 3037500000,0 [cm^4] Inerzia in direzione XY [cm^4] $X_G = 675,00$ Ascissa baricentro sezione [cm] $Y_G = 150,00$ Ordinata baricentro sezione [cm]

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

ω Area del ferro espresso in [cmq]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	130

N°	X	Υ	d	ω
1	9,20	9,20	24	4,52
2	29,69	9,20	24	4,52
3	50,17	9,20	24	4,52
4	70,66	9,20	24	4,52
5	91,14	9,20	24	4,52
6	111,63	9,20	24	4,52
7	132,12	9,20	24	4,52
8	152,60	9,20	24	4,52
9	173,09	9,20	24	4,52
10	193,58	9,20	24	4,52
11	214,06	9,20	24	4,52
12	234,55	9,20	24	4,52
13	255,03	9,20	24	4,52
14	275,52	9,20	24	4,52
15	296,01	9,20	24	4,52
16	316,49	9,20	24	4,52
17	336,98	9,20	24	4,52
18	357,46	9,20	24	4,52
19	377,95	9,20	24	4,52
20	398,44	9,20	24	4,52
21	418,92	9,20	24	4,52
22	439,41	9,20	24	4,52
23	459,90	9,20	24	4,52
24	480,38	9,20	24	4,52
25	500,87	9,20	24	4,52
26	521,35	9,20	24	4,52
27	541,84	9,20	24	4,52
28	562,33	9,20	24	4,52
29	582,81	9,20	24	4,52
30	603,30	9,20	24	4,52
31	623,78	9,20	24	4,52
32	644,27	9,20	24	4,52
33	664,76	9,20	24	4,52
34	685,24	9,20	24	4,52
35	705,73	9,20	24	4,52
36	726,22	9,20	24	4,52
37	746,70	9,20	24	4,52
38	767,19	9,20	24	4,52
39	787,67	9,20	24	4,52
40	808,16	9,20	24	4,52
41	828,65	9,20	24	4,52
42	849,13	9,20	24	4,52
43	869,62	9,20	24	4,52
44	890,10	9,20	24	4,52
45	910,59	9,20	24	4,52
46	931,08	9,20	24	4,52
47	951,56	9,20	24	4,52
48	972,05	9,20	24	4,52
49	992,54	9,20	24	4,52
50	1013,02	9,20	24	4,52
51	1033,51	9,20	24	4,52
52	1053,99	9,20	24	4,52
53	1074,48	9,20	24	4,52
54	1094,97	9,20	24	4,52
55	1115,45	9,20	24	4,52
56	1135,94	9,20	24	4,52
57	1156,42	9,20	24	4,52
58	1176,91	9,20	24	4,52
59	1197,40	9,20	24	4,52

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	131

60	1217,88	9,20	24		4,52	
61	1238,37	9,20	24		4,52	
62	1258,86	9,20	24		4,52	
63	1279,34	9,20	24		4,52	
64	1299,83	9,20	24		4,52	
65	1320,31	9,20	24		4,52	
66	1340,80	9,20	24		4,52	
67	1341,00	291,00	20		3,14	
68	1320,51	291,00	20		3,14	
69	1300,02	291,00	20		3,14	
70	1279,52	291,00	20		3,14	
	•	•			-	
71	1259,03	291,00	20		3,14	
72	1238,54	291,00	20		3,14	
73	1218,05	291,00	20		3,14	
74	1197,55	291,00	20		3,14	
75	1177,06	291,00	20		3,14	
76	1156,57	291,00	20		3,14	
77	1136,08	291,00	20		3,14	
78	1115,58	291,00	20		3,14	
79	1095,09	291,00	20		3,14	
80	1074,60	291,00	20		3,14	
81	1054,11	291,00	20		3,14	
82	1033,62	291,00	20		3,14	
83	1013,12	291,00	20		3,14	
84	992,63	291,00	20		3,14	
85	972,14	291,00	20		3,14	
86	951,65	291,00	20		3,14	
87	931,15	291,00	20		3,14	
88	910,66	291,00	20		3,14	
89	890,17	291,00	20		3,14	
90	869,68	291,00	20		3,14	
91	849,18	291,00	20		3,14	
92	828,69	291,00	20		3,14	
93	808,20	291,00	20		3,14	
94	787,71	291,00	20		3,14	
95	767,22	291,00	20		3,14	
96	746,72	291,00	20		3,14	
97	726,23	291,00	20		3,14	
98	705,74	291,00	20		3,14	
99	685,25	291,00	20		3,14	
100	664,75	291,00	20		3,14	
101	644,26	291,00	20		3,14	
102	623,77	291,00	20		3,14	
103	603,28	291,00	20		3,14	
104	582,78	291,00	20		3,14	
105	562,29	291,00	20		3,14	
106	541,80	291,00	20		3,14	
107	521,31	291,00	20		3,14	
108			20			
	500,82	291,00			3,14	
109	480,32	291,00	20		3,14	
110	459,83	291,00	20		3,14	
111	439,34	291,00	20		3,14	
112	418,85	291,00	20		3,14	
113	398,35	291,00	20		3,14	
114	377,86	291,00	20		3,14	
115	357,37	291,00	20		3,14	
116	336,88	291,00	20		3,14	
117	316,38	291,00	20		3,14	
118	295,89	291,00	20		3,14	
119	275,40	291,00	20		3,14	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	132

120	254,91	291,00	20	3,14
121	234,42	291,00	20	3,14
122	213,92	291,00	20	3,14
123	193,43	291,00	20	3,14
124	172,94	291,00	20	3,14
125	152,45	291,00	20	3,14
126	131,95	291,00	20	3,14
127	111,46	291,00	20	3,14
128	90,97	291,00	20	3,14
129	70,48	291,00	20	3,14
130	49,98	291,00	20	3,14
131	29,49	291,00	20	3,14
132	9,00	291,00	20	3,14
133	1341,00	30,69	20	3,14
134	1341,00	52,38	20	3,14
135	1341,00	74,08	20	3,14
136	1341,00	95,77	20	3,14
137	1341,00	117,46	20	3,14
138	1341,00	139,15	20	3,14
139	1341,00	160,85	20	3,14
140	1341,00	182,54	20	3,14
141	1341,00	204,23	20	3,14
142	1341,00	225,92	20	3,14
143	1341,00	247,62	20	3,14
144	1341,00	269,31	20	3,14
145	9,00	269,31	20	3,14
146	9,00	247,62	20	3,14
147	9,00	225,92	20	3,14
148	9,00	204,23	20	3,14
149	9,00	182,54	20	3,14
150	9,00	160,85	20	3,14
151	9,00	139,15	20	3,14
152	9,00	117,46	20	3,14
153	9,00	95,77	20	3,14
154	9,00	74,08	20	3,14
155	9,00	52,38	20	3,14
156	9,00	30,69	20	3,14

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa]
Tensione snervamento acciaio 450,000 [MPa]
Modulo elastico E 210000,924 [MPa]
Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

N° numero d'ordine della combinazione
N sforzo normale espresso in[kN]
M_Y momento lungo Y espresso in [kNm]
M_X momento lungo X espresso in [kNm]
M_t momento torcente espresso in [kNm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	133

taglio lungo Y espresso in [kN]

 $\begin{array}{c} T_Y \\ T_X \\ VD \end{array}$ taglio lungo X espresso in [kN]

verifica di dominio

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_Y	M_X	Mt	T_Y	T_X	VD	VT
1	17369,3200	19205,4800	-5368,8400	0,0000	0,0000	0,0000	SI	NO
2	8861,9300	8461,7900	2061,3800	0,0000	0,0000	0,0000	SI	NO
3	10032,7800	11156,6400	2061,3800	0,0000	0,0000	0,0000	SI	NO
4	13922,9300	16959,3700	-7309,0100	0,0000	0,0000	0,0000	SI	NO
5	12628,8300	20912,3700	-6203,6300	0,0000	0,0000	0,0000	SI	NO
6	8861,9300	8461,7900	2061,3800	0,0000	0,0000	0,0000	SI	NO
7	10917,9700	-8140,8300	10174,1800	0,0000	0,0000	0,0000	SI	NO
8	7424,6300	-8140,8300	6589,9100	0,0000	0,0000	0,0000	SI	NO
9	9695,3000	-2442,2500	12143,7000	0,0000	0,0000	0,0000	SI	NO
10	7424,6300	-8140,8300	6589,9100	0,0000	0,0000	0,0000	SI	NO
11	9695,3000	-2442,2500	12143,7000	0,0000	0,0000	0,0000	SI	NO
12	7424,6300	-8140,8300	6589,9100	0,0000	0,0000	0,0000	SI	NO
13	12376,6900	-3650,2300	14469,8900	0,0000	0,0000	0,0000	NO	SLER
14	8965,0500	1374,2500	7676,2000	0,0000	0,0000	0,0000	NO	SLER
15	8965,0500	1374,2500	7676,2000	0,0000	0,0000	0,0000	NO	SLER
16	10793,2500	-4864,0500	12862,5800	0,0000	0,0000	0,0000	NO	SLER
17	10744,0500	-4559,1200	15223,7700	0,0000	0,0000	0,0000	NO	SLER
18	8965,0500	1374,2500	7676,2000	0,0000	0,0000	0,0000	NO	SLER
19	9171,3000	0,0000	7000,3300	0,0000	0,0000	0,0000	NO	SLEQP
20	9171,3000	0,0000	5916,6900	0,0000	0,0000	0,0000	NO	SLEQP
21	9171,3000	0,0000	7000,3300	0,0000	0,0000	0,0000	NO	SLEQP
22	9171,3000	0,0000	5916,6900	0,0000	0,0000	0,0000	NO	SLEQP
23	9171,3000	0,0000	7000,3300	0,0000	0,0000	0,0000	NO	SLEQP
24	9171,3000	0,0000	5916,6900	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

Ν° numero d'ordine della combinazione posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf)Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
13	541,75	11,51	(1350,00; 552,88)	(-1364,43; 0,00)
14	795,08	-15,33	(-1656,97; 300,00)	(1350,00; -524,42)
15	795,08	-15,33	(-1656,97; 300,00)	(1350,00; -524,42)
16	406,29	7,78	(1350,00; 410,06)	(-1651,86; 0,00)
17	436,40	9,76	(1350,00; 442,81)	(-1225,03; 0,00)
18	795,08	-15,33	(-1656,97; 300,00)	(1350,00; -524,42)
19	2674,14	-83,14	(-1343,41; 300,00)	(1350,00; -22095,16)
20	3032,53	-81,90	(-1713,08; 300,00)	(1350,00; -21226,35)
21	2674,14	-83,14	(-1343,41; 300,00)	(1350,00; -22095,16)
22	3032,53	-81,90	(-1713,08; 300,00)	(1350,00; -21226,35)
23	2674,14	-83,14	(-1343,41; 300,00)	(1350,00; -22095,16)
24	3032,53	-81,90	(-1713,08; 300,00)	(1350,00; -21226,35)

Risultati tensionali

Simbologia adottata

numero d'ordine della combinazione Ν°

Tensione massima nel calcestruzzo espresso in [MPa] σ_{c-max}

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COI	MMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
L	I0B	02	Ε	ZZ	CL	VI	14	04	002	В	134

σ _{c-min}	Tensione minima nel calcestruzzo espresso in [MPa]
$\sigma_{\text{f-max}}$	Tensione massima nel ferro espresso in [MPa]
σ _{f-min}	Tensione minima nel ferro espresso in [MPa]
τ_{c}	Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
13	0,622	0,000	0,000	9,144	-0,190
14	0,365	0,000	0,000	5,405	1,104
15	0,365	0,000	0,000	5,405	1,104
16	0,631	0,000	0,000	9,224	-1,480
17	0,643	0,000	0,000	9,409	-1,716
18	0,365	0,000	0,000	5,405	1,104
19	0,298	0,000	0,000	4,461	2,190
20	0,287	0,000	0,000	4,289	2,362
21	0,298	0,000	0,000	4,461	2,190
22	0,287	0,000	0,000	4,289	2,362
23	0,298	0,000	0,000	4,461	2,190
24	0,287	0,000	0,000	4,289	2,362

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione n° 1

N_{u}	M _{Xu}	M _{Yu}	FS
252859,3368	<u>-78158,5762</u>	279589,8132	14,56
737781,9322	<u>-228047,6811</u>	19205,4800	42,48
255565,7855	-5368,8400	282582,3684	14,71
765546,2408	-5368,8400	19205,4800	44,07
17369,3200	-247601,7201	19205,4800	46,12
17369,3200	<u>-17139,1063</u>	61310,2202	3,19
17369,3200	-5368,8400	<u>61347,9575</u>	3,19
17369,3200 17369,3200	<u>-247601,7201</u> <u>-17139,1063</u>	19205,4800 61310,2202	46 3

Combinazione n° 2

FS	M_{Yu}	M_{Xu}	$N_{\rm u}$
35,45	<u>299982,1008</u>	73078,7579	<u>314167,6145</u>
84,71	8461,7900	174622,8809	750708,6257
35,73	302357,0224	2061,3800	<u>316654,8410</u>
87,38	8461,7900	2061,3800	774398,9067
96,21	8461,7900	198332,9287	8861,9300
5,87	<u>49701,1285</u>	<u>12107,7115</u>	8861,9300
5.88	49724.6624	2061.3800	8861.9300

Combinazione nº 3

$N_{\rm u}$	\mathbf{M}_{Xu}	\mathbf{M}_{Yu}	FS
251668,6833	<u>51708,9770</u>	279860,3078	25,08
<u>754071,5819</u>	<u>154934,9310</u>	11156,6400	75,16
253200,4525	2061,3800	281563,6639	25,24
772224,2763	2061,3800	11156,6400	76,97
10032,7800	205139,3863	11156,6400	99,52
10032,7800	9482,5550	51321,6642	4,60
10032,7800	2061,3800	<u>51337,6574</u>	4,60

Combinazione nº 9

 $\boldsymbol{N_u}$

564086,4669

622006,0415

641148,8782

LINEA PESCARA - BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	135

Combinazione n° 4			
$N_{\rm u}$	M _{Xu}	M_{Yu}	FS
<u>209235,5576</u>	<u>-109840,7292</u>	<u>254867,5630</u>	15,03
<u>708495,9753</u>	<u>-371933,5060</u>	16959,3700	50,89
<u>213850,5586</u>	-7309,0100	<u>260489,0457</u>	15,36
<u>767399,6718</u>	-7309,0100	16959,3700	55,12
13922,9300	<u>-227528,9964</u>	16959,3700	31,13
13922,9300	<u>-24387,0118</u> -7309,0100	<u>56586,0980</u> 56657 1671	3,34 3,34
13922,9300	-7309,0100	<u>56657,1671</u>	3,34
Combinazione n° 5			
N _u	M _{Xu}	\mathbf{M}_{Yu}	FS
95935,5049	-47126,1690	158861,8086	7,60
712318,2346	-349910,3852	20912,3700	56,40
96679,7162	-6203,6300	160094,1652	7,66
764101,9912	-6203,6300	20912,3700	60,50
12628,8300	<u>-218587,8397</u>	20912,3700	35,24
12628,8300	-16273,6862	54858,4211	2,62
12628,8300	-6203,6300	<u>54891,4866</u>	2,62
Combinazione nº 6			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>314167,6145</u>	<u>73078,7579</u>	<u>299982,1008</u>	35,45
<u>750708,6257</u>	<u>174622,8809</u>	8461,7900	84,71
316654,8410	2061,3800	302357,0224	35,73
<u>774398,9067</u>	2061,3800	8461,7900	87,38
8861,9300	<u>198332,9287</u>	8461,7900	96,21
8861,9300 8861,9300	<u>12107,7115</u> 2061,3800	<u>49701,1285</u> 49724,6624	5,87 5,88
333.,0333	200.,0000	<u></u>	3,33
Combinazione nº 7			
N _u	M_{Xu}	M_{Yu}	FS
<u>377547,8230</u>	351827,2637	-281513,1974	34,58
<u>658645,8608</u>	613775,4128	-8140,8300	60,33
<u>407557,8645</u>	10174,1800	<u>-303889,7606</u>	37,33
<u>782269,6156</u>	10174,1800	-8140,8300	71,65
10917,9700	209142,7348	-8140,8300	20,56
10917,9700	<u>52897,5757</u>	<u>-42325,7866</u>	5,20
10917,9700	10174,1800	<u>-42623,5412</u>	5,24
Combinazione nº º			
Combinazione n° 8 N _u	M _{xu}	M_{Yu}	FS
239335,8696	М _{хи} 212428,3419	-262422,8584	32,24
<u>239333,6696</u> <u>664030,9135</u>	<u>589376,7040</u>	-8140,8300	32,24 89,44
254059,0956	6589,9100	<u>-278566,3268</u>	34,22
<u>254059,0950</u> 782355,5272	6589,9100	-8140,8300	105,37
7424,6300	187855,1453	-8140,8300	28,51
7424,6300	30491,4631	-37667,5581	4,63
7424,6300	6589,9100	-37772,1333	4,64
·	•	<u> </u>	•

 $\boldsymbol{M}_{\boldsymbol{X}\boldsymbol{u}}$

706537,8924

779084,1713

12143,7000

 M_{Yu}

-142093,6097

-161505,6623

-2442,2500

FS

58,18

64,16

66,13

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	136

782459,5983	12143,7000	-2442,2500	80,71
9695,3000	202955,4414	-2442,2500	16,71
9695,3000	172391,0859	-34670,0042	14,20
9695,3000	12143,7000	<u>-40921,0679</u>	16,76

Combinazione n° 10

N _u	M_{χ_u}	M_{Yu}	FS
239335,8696	212428,3419	<u>-262422,8584</u>	32,24
664030,9135	<u>589376,7040</u>	-8140,8300	89,44
254059,0956	6589,9100	<u>-278566,3268</u>	34,22
782355,5272	6589,9100	-8140,8300	105,37
7424,6300	<u>187855,1453</u>	-8140,8300	28,51
7424,6300	<u>30491,4631</u>	<u>-37667,5581</u>	4,63
7424.6300	6589.9100	-37772.1333	4.64

Combinazione n° 11

N _u	\mathbf{M}_{Xu}	M_{Yu}	FS
<u>564086,4669</u>	706537,8924	<u>-142093,6097</u>	58,18
622006,0415	779084,1713	-2442,2500	64,16
641148,8782	12143,7000	<u>-161505,6623</u>	66,13
782459,5983	12143,7000	-2442,2500	80,71
9695,3000	202955,4414	-2442,2500	16,71
9695,3000	172391,0859	<u>-34670,0042</u>	14,20
9695.3000	12143.7000	-40921,0679	16.76

Combinazione nº 12

$N_{\rm u}$	M_{Xu}	\mathbf{M}_{Yu}	FS
239335,8696	212428,3419	-262422,8584	32,24
664030,9135	<u>589376,7040</u>	-8140,8300	89,44
254059,0956	6589,9100	<u>-278566,3268</u>	34,22
782355,5272	6589,9100	-8140,8300	105,37
7424,6300	<u>187855,1453</u>	-8140,8300	28,51
7424,6300	<u>30491,4631</u>	<u>-37667,5581</u>	4,63
7424,6300	6589,9100	<u>-37772,1333</u>	4,64

Risultati fessurazione

Simbologia adottata

N°	numero	d'o	ordine	della	combinazione

 $\begin{array}{ll} M_X & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \\ \sigma_f & \text{Tensione nell'acciaio, espressa in [MPa]} \end{array}$

 $\begin{array}{lll} \sigma_f & & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_c & & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & & \text{Area efficace a trazione, espressa in [cmq]} \\ \epsilon & & \text{Deformazione media acciaio teso, espressa in [engleta]} \\ v & & & \text{Ampiezza delle fessure, espressa in [mm]} \\ \end{array}$

N°	M _x	M_Y	$\sigma_{\!\scriptscriptstyle f}$	σ_{c}	A_{eff}	3	S_{rm}	w
13	110406,3912	-27851,5401	-371,442	-25,407	108274,77	0,0000	0	0,0000
14	126117,5672	22578,4980	-388,104	-26,367	130127,91	0,0000	0	0,0000
15	126117,5672	22578,4980	-388,104	-26,367	130127,91	0,0000	0	0,0000
16	86078,7971	-32551,1346	-403,281	-27,715	128847,61	0,0000	0	0,0000
17	98895,0371	-29616,4709	-398,307	-27,299	115297,53	0,0000	0	0,0000
18	126117,5672	22578,4980	-388,104	-26,367	130127,91	0,0000	0	0,0000
19	225476,2541	0,0000	-714,268	-48,042	163491,45	0,0000	0	0,0000
20	225481,3580	0,0000	-714,288	-48,044	163491,45	0,0000	0	0,0000
21	225476,2541	0,0000	-714,268	-48,042	163491,45	0,0000	0	0,0000

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	137

22	225481,3580	0,0000	-714,288	-48,044	163491,45	0,0000	0	0,0000
23	225476,2541	0,0000	-714,268	-48,042	163491,45	0,0000	0	0,0000
24	225481,3580	0,0000	-714,288	-48,044	163491,45	0,0000	0	0,0000

Inviluppo verifiche a pressoflessione

Simbologia adottata

Ν Sforzo normale espresso in [kN]

Momento in direzione X espresso in [kNm] Momento in direzione Y espresso in [kNm] Mx My Sforzo normale ultimo espresso in [kN] Nu Momento ultimo in direzione X espresso in [kNm] My,u Momento ultimo in direzione Y espresso in [kNm]

FS Fattore di sicurezza Comb Combinazione critica

Sezione nº 1 - SEZIONE SPALLA S2

Comb.	FS	My,u	Mx,u	N	My	Mx	N
5	7.597	158861,81	-47126,17	95935,50	20912,37	-6203,63	12628,83
1	42.476	19205,48	-228047,68	737781,93	19205,48	-5368,84	17369,32
5	7.655	160094,17	-6203,63	96679,72	20912,37	-6203,63	12628,83
1	44.075	19205,48	-5368,84	765546,24	19205,48	-5368,84	17369,32
9	16.713	-2442,25	202955,44	9695,30	-2442,25	12143,70	9695,30
5	2.623	54858,42	-16273,69	12628,83	20912,37	-6203,63	12628,83
5	2.625	54891.49	-6203.63	12628.83	20912.37	-6203.63	12628.83

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa] tensione di compressione limite nel cls espresso in [MPa] scl tensione di trazione nel cls espresso in [MPa] sct sctl tensione di trazione limite nel cls espresso in [MPa] sfc, sft tensione minima e massima nell'armatura espressa in [MPa] tensione limite nell'armatura espressa in [MPa]

Comb Combinazione critica

Sezione nº 1 - SEZIONE SPALLA S2

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,298	14,940	0,145	3,099	2,190	4,461	450,000	19
SLER	0,643	18,260	-0,130	3,099	-1,716	9,409	337,500	17

Inviluppo verifiche fessurazione

Simbologia adottata

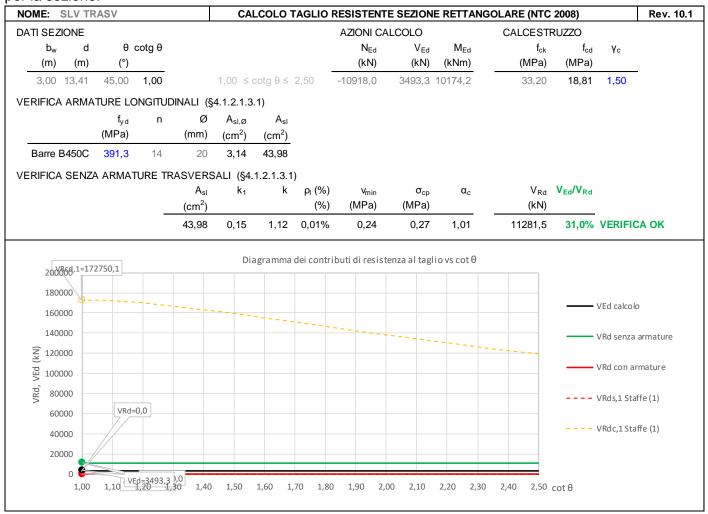
TC Tipo combinazione

tensione nell'acciaio espresso in [MPa] sf sc tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Eps Deformazione espressa in [%] spaziatura tra le fessure espressa in [mm] sr w, wl ampiezza fessure e fessura limite espresse in [mm]

Sezione nº 1 - SEZIONE SPALLA S2

TC	sf	SC	Aeff	Esp	sr	W	wi	Comb.
SLEQP	-714,268	-48,042	16033,289	0,0000	0,000	0,000	0,200	19
SLER	-371,442	-25,407	10618,296	0,0000	0,000	0,000	0,200	13

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

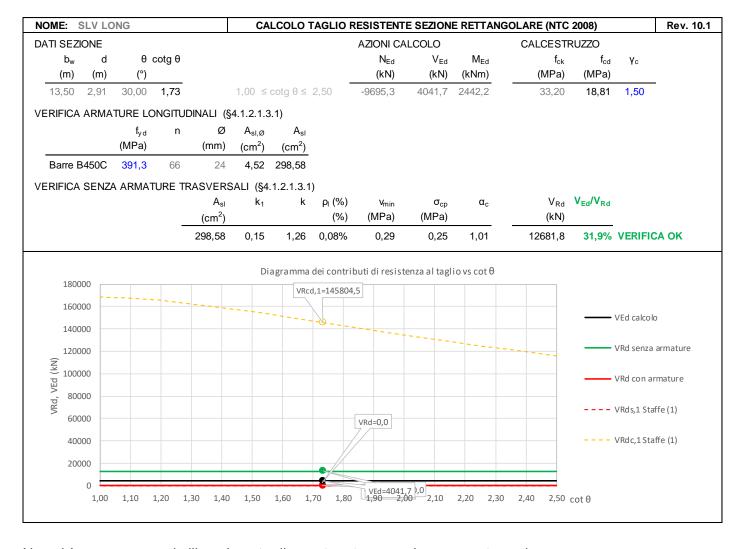
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	138

11.6.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato elevazione (estradosso plinto) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2. Si verifica che non viene necessaria una armatura trasversale per la sezione.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

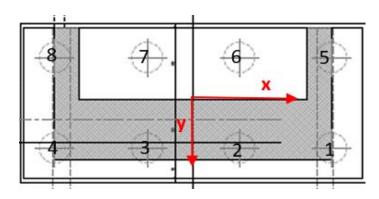


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	139

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	140

11.7 VERIFICHE PLINTO FONDAZIONE

Nel presente paragrafo sono state eseguite le verifiche strutturali del plinto di fondazione, considerando le reazioni in testa palo riportate nella specifica relazione di dimensionamento geotecnico delle palificate, di cui di seguito si riportano gli schemi generali e le azioni calcolate per i vari stati limite.

Azi	oni			Ripa	artizione de	gli sforzi no	rmali sui pa	li della palifi	cata		
Con	nbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Hmax, singolo palo	Mmax, singolo palo
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	[kNm]
Nvert Max	SLU6	7184	7350	7516	7683	1878	2045	2211	2377	1068	4102
Nvert Min	SLU24	4119	4053	3988	3923	1827	1762	1697	1631	633	2429
Vtrasv Max	SLU15	6573	6761	6950	7138	1784	1972	2161	2349	1077	4138
Vtrasv Min	SLU16	4119	4053	3988	3923	1827	1762	1697	1631	633	2429
Mtrasv Max	SLU13	5222	5157	5091	5026	2461	2396	2330	2265	914	3510
Mtrasv Min	SLU4	5560	5769	5979	6188	952	1162	1371	1580	856	3287
Vlong Max	SLU7	6409	6588	6766	6945	1317	1495	1674	1852	1247	4790
Vlong Min	SLU20	4071	4071	4071	4071	1757	1757	1757	1757	622	2389
Mong Max	SLU14	7184	7350	7516	7683	1878	2045	2211	2377	1068	4102
Mong Min	SLU22	4119	4053	3988	3923	1827	1762	1697	1631	633	2429
Mtorc Max	SLU19	6409	6588	6766	6945	1317	1495	1674	1852	1247	4790
Mtorc Min	SLU13	5578	5766	5955	6143	1042	1230	1418	1606	841	3230
Nvert Max	SLV5	4831	5032	5232	5433	1351	1552	1752	1953	908	3488
Nvert Min	SLV6	3530	3730	3931	4131	738	939	1139	1340	908	3488
Vtrasv Max	SLV3	3674	4343	5011	5679	435	1103	1772	2440	1288	4946
Vtrasv Min	SLV6	3530	3730	3931	4131	738	939	1139	1340	908	3488
Mtrasv Max	SLV1	5770	5970	6171	6371	-257	-57	144	344	1733	6655
Mtrasv Min	SLV6	3284	3952	4620	5289	251	919	1588	2256	1288	4946
Vlong Max	SLV1	5770	5970	6171	6371	-257	-57	144	344	1733	6655
Vlong Min	SLV6	3530	3730	3931	4131	738	939	1139	1340	908	3488
Mong Max	SLV1	5770	5970	6171	6371	-257	-57	144	344	1733	6655
Mong Min	SLV4	3530	3730	3931	4131	738	939	1139	1340	908	3488
Mtorc Max	SLV5	4831	5032	5232	5433	1351	1552	1752	1953	908	3488
Mtorc Min	SLV4	3284	3952	4620	5289	251	919	1588	2256	1288	4946

SLU			2461	2396	2330	2377	1247
SLV			1351	1552	1772	2440	1733

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	141

Azi	oni	Ripartizione degli sforzi normali sui pali della palificata													
Con	nbo	Palo n.1	Palo n.2	Palo n.3	Palo n.4	Palo n.5	Palo n.6	Palo n.7	Palo n.8	Hmax, singolo palo	Mmax, singolo palo				
		N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	N [kN]	[kNm]				
Nvert Max	RA1	5208	5321	5435	5548	1246	1359	1472	1586	773	3092				
Nvert Min	RA12	4011	3968	3924	3881	1895	1851	1808	1764	577	2308				
Vtrasv Max	RA3	5162	5290	5419	5547	1200	1328	1456	1584	783	3130				
Vtrasv Min	RA12	4011	3968	3924	3881	1895	1851	1808	1764	577	2308				
Mtrasv Max	RA1	4011	3968	3924	3881	1895	1851	1808	1764	577	2308				
Mtrasv Min	RA12	4651	4791	4931	5072	1247	1388	1528	1668	741	2965				
Vlong Max	RA7	4897	5029	5161	5292	1014	1146	1278	1409	839	3357				
Vlong Min	RA12	4011	3968	3924	3881	1895	1851	1808	1764	577	2308				
Mong Max	RA12	5162	5290	5419	5547	1200	1328	1456	1584	783	3130				
Mong Min	RA6	4011	3968	3924	3881	1895	1851	1808	1764	577	2308				
Mtorc Max	RA7	4897	5029	5161	5292	1014	1146	1278	1409	839	3357				
Mtorc Min	RA10	5162	5290	5419	5547	1200	1328	1456	1584	783	3130				
Nvert Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Nvert Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				
Vtrasv Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Vtrasv Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				
Mtrasv Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Mtrasv Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				
Vlong Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Vlong Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				
Mong Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Mong Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				
Mtorc Max	QP1	3884	3884	3884	3884	1943	1943	1943	1943	498	1994				
Mtorc Min	QP12	3775	3775	3775	3775	2052	2052	2052	2052	455	1819				

SLE RA			1895	1851	1808	1764	839
SLE QP			2052	2052	2052	2052	498

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	142

11.7.1 Verifiche a flessione (SLU, SLV, SLE)

Per valutare lo stato di sollecitazione del plinto di fondazione, si considera uno schema di trave a mensola incastrata con luce libera L che va dal filo esterno dell'elevazione spalla fino al bordo libero della fondazione, applicato alla coppia dei pali interni più sollecitati all'interno della fondazione, con larghezza di collaborazione B determinata dall'interasse tra i pali. La mensola è sollecitata da due azioni verticali N_{Ed1} , N_{Ed2} e da una massima orizzontale H_{Ed} applicate ad una distanza x_1 , x_2 dall'incastro, e stabilizzate dall'azione distribuita del peso proprio strutturale PP e del peso del terreno PT di rinterro del plinto (valutati a favore di sicurezza con coefficiente 1.35 e 1.50). In analogia all'analisi che si svolge per i pali interni, si considera uno schema di trave a mensola incastrata applicato al caso del palo più sollecitato d'angolo. La mensola è sollecitata da una azione verticale N_{Ed} e da una orizzontale H_{Ed} applicate ad una distanza x dall'incastro, e stabilizzate dall'azione distribuita del peso proprio strutturale PP e del peso del terreno PT di rinterro a valle del plinto (valutati a favore di sicurezza con coefficiente 1.35 e 1.50).

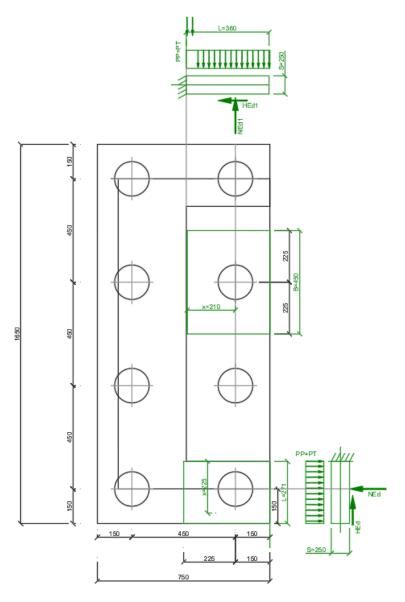
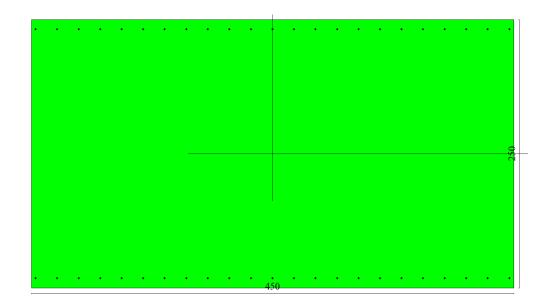


Figura 36 – Schema delle verifiche a flessione del plinto per i pali interni ed esterni più caricati


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	143

11.7.1.1 Pali interni

NOME: F	PALO 6			CALCOLO	MOMENT	PLINTO
HT (m)	B (m)	S (m)	PP (kN/m)	PT (kN/m)	L (m)	
5,82	4,50	2,50	281,3	523,8	3,60	
	x (m)		SLU	SLV	SLE RA	SLE QP
Palo 6	2,10	N _{Ed} (kN)	2396	1552	1851	2052
		H_{Ed} (kN)	1247	1733	839	498
		M _{Ed} (kNm)	-961	209	-281	-285

[cm^4]

Dati

Nome sezione: SPALLA S2

 $\begin{array}{ccc} \text{Tipo sezione} & \text{Rettangolare} \\ \text{Base} & 450,0 & \text{[cm]} \\ \text{Altezza} & 250,0 & \text{[cm]} \end{array}$

Caratteristiche geometriche

Area sezione 112500,00 [cmq]
Inerzia in direzione X 1898437500,0
Inerzia in direzione Y 585937500,0

Inerzia in direzione Y 585937500,0 [cm^4]
Inerzia in direzione XY 0,0 [cm^4]

Ascissa baricentro sezione $X_G = 225,00$ [cm] Ordinata baricentro sezione $Y_G = 125,00$ [cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	144

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

Diametro ferro espresso in [mm]
 Area del ferro espresso in [cmq]

N°	X	Υ	d	ω
1	446,00	241,00	20	3,14
2	425,91	241,00	20	3,14
3	405,82	241,00	20	3,14
4	385,73	241,00	20	3,14
5	365,64	241,00	20	3,14
6	345,55	241,00	20	3,14
7	325,45	241,00	20	3,14
8	305,36	241,00	20	3,14
9	285,27	241,00	20	3,14
10	265,18	241,00	20	3,14
11	245,09	241,00	20	3,14
12	225,00	241,00	20	3,14
13	204,91	241,00	20	3,14
14	184,82	241,00	20	3,14
15	164,73	241,00	20	3,14
16	144,64	241,00	20	3,14
17	124,55	241,00	20	3,14
18	104,45	241,00	20	3,14
19	84,36	241,00	20	3,14
20	64,27	241,00	20	3,14
21	44,18	241,00	20	3,14
22	24,09	241,00	20	3,14
23	4,00	241,00	20	3,14
24	4,00	9,00	20	3,14
25	24,09	9,00	20	3,14
26	44,18	9,00	20	3,14
27	64,27	9,00	20	3,14
28	84,36	9,00	20	3,14
29	104,45	9,00	20	3,14
30	124,55	9,00	20	3,14
31	144,64	9,00	20	3,14
32	164,73	9,00	20	3,14
33	184,82	9,00	20	3,14
34	204,91	9,00	20	3,14
35	225,00	9,00	20	3,14
36	245,09	9,00	20	3,14
37	265,18	9,00	20	3,14
38	285,27	9,00	20	3,14
39	305,36	9,00	20	3,14
40	325,45	9,00	20	3,14
41	345,55	9,00	20	3,14
42	365,64	9,00	20	3,14
43	385,73	9,00	20	3,14
44	405,82	9,00	20	3,14
45	425,91	9,00	20	3,14
46	446,00	9,00	20	3,14

Materiale impiegato: Calcestruzzo armato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	145

Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in[kN]} \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ \end{array}$

VD verifica di dominio

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_Y	Mx	Mt	T_Y	T_X	VD	VT
1	0,0000	-961,3600	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	208,7300	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	-280,8700	0,0000	0,0000	0,0000	0,0000	NO	SLER
4	0.0000	-285.0200	0.0000	0.0000	0.0000	0.0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
3	30,22	0,00	(450,00; 30,22)	(0,00; 30,22)
4	30,22	0,00	(450,00; 30,22)	(0,00; 30,22)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

τc Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	σ_{c-max}	$\sigma_{\text{c-min}}$	$ au_{ m c}$	σ_{f-max}	$\sigma_{\text{f-min}}$
3	0,161	0,000	0,000	1,694	-16,825
4	0,163	0,000	0,000	1,719	-17,073

Sollecitazioni ultime

Simbologia adottata

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	146

N٥ numero d'ordine della combinazione Nu Sforzo normale ultimo, espresso in [kN]

Momento ultimo in direzione X, espresso in [kNm] M_{Xu} Momento ultimo in direzione Y, espresso in [kNm] M_{Yu}

FS Fattore di sicurezza

Combinazione nº 1

FS N_u M_{Xu} M_{Yu} 0,0000 0,0000 -6663,3895 6,93

Combinazione nº 2

FS N_u M_{Xu} M_{Yu} 0,0000 0,0000 6663,3895 31,92

Risultati fessurazione

Simbologia adottata

numero d'ordine della combinazione N°

Mx Momento di prima fessurazione in direzione X, espresso in [kNm] M_{Y} Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa] σ_{f} Tensione nel calcestruzzo, espressa in [MPa] σ_c Aeff Area efficace a trazione, espressa in [cmq] Deformazione media acciaio teso, espressa in [°]

Srm Distanza media tra le fessure, espresso in [mm] Ampiezza delle fessure, espressa in [mm]

N°	M _X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
3	0,0000	-8895,2069	-532,844	-37,040	10800,00	0,0000	0	0,0000
4	0,0000	-8895,2069	-532,844	-37,040	10800,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

tensione di compressione nel cls espresso in [MPa] scc scl tensione di compressione limite nel cls espresso in [MPa] sct tensione di trazione nel cls espresso in [MPa] sctl tensione di trazione limite nel cls espresso in [MPa] sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

tensione limite nell'armatura espressa in [MPa]

Combinazione critica Comb

Sezione nº 3 - SPALLA S2 palo interno

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,163	9,960	-1,187	2,558	-17,073	1,719	450,000	4
SLER	0.161	13.695	-1.170	2.558	-16.825	1,694	337.500	3

Inviluppo verifiche fessurazione

Simbologia adottata

sf

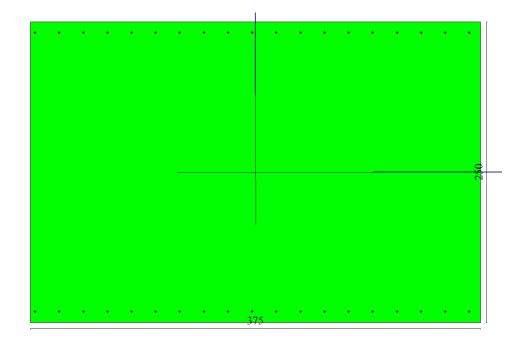
TC Tipo combinazione

tensione nell'acciaio espresso in [MPa] sc tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Eps Deformazione espressa in [%] sr spaziatura tra le fessure espressa in [mm] ampiezza fessure e fessura limite espresse in [mm]

Combinazione critica

Sezione nº 3 - SPALLA S2 palo interno

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.	
SLEQP	-532,844	-37,040	1059,135	0,0000	0,000	0,000	0,300	4	
SLER	-532.844	-37.040	1059.135	0.0000	0.000	0.000	0.300	3	


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	147

11.7.1.2 Pali esterni

NOME: F	PALO 5			CALCOLO	MOMENT	I PLINTO
HT (m)	B (m)	S (m)	PP (kN/m)	PT (kN/m)	L (m)	
5,82	3,75	2,50	234,4	436,5	2,71	
	x (m)		SLU	SLV	SLE RA	SLE QP
Palo 5	1,21	N _{Ed} (kN)	2461	2440	1895	2052
		H_{Ed} (kN)	1247	1733	839	498
		M _{Ed} (kNm)	970	1553	-224	-461

Dati

Nome sezione: SPALLA S2

 $\begin{array}{ccc} \text{Tipo sezione} & \text{Rettangolare} \\ \text{Base} & 450,0 & [\text{cm}] \\ \text{Altezza} & 250,0 & [\text{cm}] \end{array}$

Caratteristiche geometriche

Area sezione 112500,00 [cmq] 1898437500,0 [cm^4] Inerzia in direzione X Inerzia in direzione Y 585937500,0 [cm^4] Inerzia in direzione XY [cm^4] $X_G = 225,00$ Ascissa baricentro sezione [cm] Ordinata baricentro sezione $Y_G = 125,00$ [cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	148

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

Ascissa posizione ferro espresso in [cm] Ordinata posizione ferro espresso in [cm] Diametro ferro espresso in [mm] Area del ferro espresso in [cmq]

N° Χ Υ d ω 446,00 241,00 20 3,14 2 425,91 241,00 20 3,14 3 405,82 241,00 20 3,14 385,73 3,14 4 20 241,00 5 365,64 20 241,00 3,14 6 345,55 241,00 20 3,14 7 20 325,45 241,00 3,14 8 305,36 241,00 20 3.14 9 285,27 241,00 20 3,14 10 265,18 241,00 20 3,14 11 245,09 241,00 20 3,14 20 12 225,00 241,00 3,14 13 204,91 241,00 20 3,14 14 184,82 241,00 20 3,14 15 164,73 241,00 20 3,14 20 16 144,64 241,00 3,14 17 124.55 241,00 20 3.14 18 104,45 241,00 20 3,14 19 84,36 241,00 20 3,14 20 64,27 241,00 20 3,14 21 20 44,18 241,00 3,14 22 20 24,09 241,00 3,14 23 4,00 241,00 20 3,14 20 24 4,00 9,00 3,14 20 25 24,09 9,00 3.14 26 44,18 9,00 20 3,14 27 64,27 9,00 20 3,14 28 84,36 9,00 20 3,14 29 104,45 20 9,00 3,14 30 124,55 9,00 20 3,14 31 20 144,64 9,00 3,14 32 164,73 9,00 20 3,14 33 184,82 9,00 20 3,14 34 204,91 9,00 20 3,14 35 225,00 9,00 20 3,14 36 245,09 9,00 20 3,14 37 265,18 9,00 20 3,14 20 38 285,27 9,00 3,14 305,36 39 9,00 20 3,14 40 325,45 9,00 20 3,14 41 345,55 9,00 20 3,14 20 42 9,00 3,14 365,64 43 9.00 20 385,73 3.14 405,82 9,00 20 3,14 44 45 425,91 9,00 20 3,14 46 446,00 20 9.00 3,14

Materiale impiegato: Calcestruzzo armato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	149

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 30,000 [MPa]

Coeff. omogeneizzazione acciaio/calcestruzzo 15,00 Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in[kN]} \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{I} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ \end{array}$

VD verifica di dominio

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M _X	Mt	T_Y	T_x	VD	VT
1	0,0000	-961,3600	0,0000	0,0000	0,0000	0,0000	SI	NO
2	0,0000	208,7300	0,0000	0,0000	0,0000	0,0000	SI	NO
3	0,0000	-280,8700	0,0000	0,0000	0,0000	0,0000	NO	SLER
4	0,0000	-285,0200	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

lpha inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
3	30,22	0,00	(450,00; 30,22)	(0,00; 30,22)
4	30,22	0,00	(450,00; 30,22)	(0,00; 30,22)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{t-max}} & & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{t-min}} & & \text{Tensione minima nel ferro espresso in [MPa]} \\ \tau_{c} & & \text{Tensione tangenziale nel calcestruzzo espresso in [MPa]} \\ \end{array}$

N° σ_{c-max} σ_{c-min} $\sigma_{\text{f-max}}$ $\sigma_{\text{f-min}}$ 3 0,161 0,000 0,000 1,694 -16,825 4 0,163 0,000 0,000 1,719 -17,073

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	150

Sollecitazioni ultime

Simbologia adottata

Ν° numero d'ordine della combinazione Nυ Sforzo normale ultimo, espresso in [kN] Momento ultimo in direzione X, espresso in [kNm] M_{Xu} Momento ultimo in direzione Y, espresso in [kNm] Myu

Fattore di sicurezza

Combinazione nº 1

 N_{u} M_{Xu} M_{Yu} FS 0,0000 0,0000 -6663,3895 6,93

Combinazione nº 2

 M_{Yu} FS M_{Xu} 0,0000 0,0000 6663,3895 31,92

Risultati fessurazione

Simbologia adottata

numero d'ordine della combinazione

 M_X Momento di prima fessurazione in direzione X, espresso in [kNm] MY Momento di prima fessurazione in direzione Y, espresso in [kNm]

σf Tensione nell'acciaio, espressa in [MPa] Tensione nel calcestruzzo, espressa in [MPa] Aeff Area efficace a trazione, espressa in [cmq] Deformazione media acciaio teso, espressa in [°] Srm Distanza media tra le fessure, espresso in [mm] Ampiezza delle fessure, espressa in [mm]

N°	M_{x}	M_Y	σ_{f}	σ_{c}	A_{eff}	8	S _{rm}	w
3	0,0000	-8895,2069	-532,844	-37,040	10800,00	0,0000	0	0,0000
4	0.0000	-8895,2069	-532,844	-37,040	10800,00	0.0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa] scl tensione di compressione limite nel cls espresso in [MPa] sct tensione di trazione nel cls espresso in [MPa] sctl tensione di trazione limite nel cls espresso in [MPa] tensione minima e massima nell'armatura espressa in [MPa] sfc, sft

tensione limite nell'armatura espressa in [MPa]

Combinazione critica

Sezione nº 3 - SPALLA S2 palo interno

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	0,163	9,960	-1,187	2,558	-17,073	1,719	450,000	4
SLER	0,161	13,695	-1,170	2,558	-16,825	1,694	337,500	3

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa] sc tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Deformazione espressa in [%] Eps spaziatura tra le fessure espressa in [mm] sr ampiezza fessure e fessura limite espresse in [mm] Combinazione critica

Sezione nº 3 - SPALLA S2 palo interno

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-532,844	-37,040	1059,135	0,0000	0,000	0,000	0,300	4
SLER	-532.844	-37.040	1059.135	0.0000	0.000	0.000	0.300	3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	151

11.7.2 Verifiche a taglio-punzonamento (SLU, SLV)

La verifica a taglio-punzonamento viene condotta, in accordo con i paragrafi descrittivi iniziali, rispetto al palo di bordo più caricato (quello interno è più carico ma il cono di rottura è più grande) con la massima reazione verticale di V_{Ed} = 2461 kN, vedi schemi di calcolo seguenti.

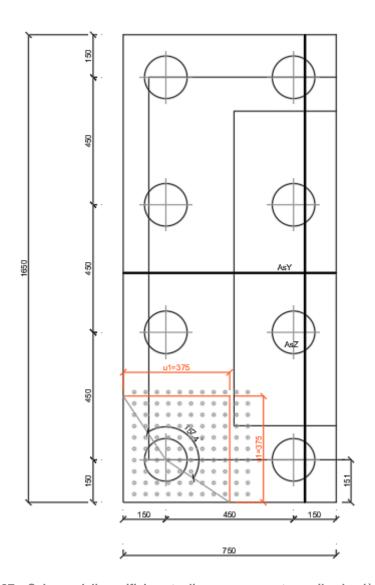


Figura 37 – Schema delle verifiche a taglio-punzonamento per il palo più caricato

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	152

NOME:	SPALLA	S2			C	ALCOLO	TAGLIO	-PUNZON	NAMENTO	- UNI E	NV 1992	-1-1: 2005		Rev. 10
DATI SEZIONE E	E ARMA	TURE						AZIONE C	CALCOLO		CALCE	STRUZZO		
	d (m)	A_c (m^2)	A_s (cm ²)	ρ _ι (%)	N _{Ed} (kN)	σ _{cp} (MPa)		V _{ed} (kN)	β		f _{ck} (MPa)	f _{cd} (MPa)	Yc	
direzione Y direzione Z	2,41 2,39	2,41 2,39	15,70 15,70	0,07% 0,07%	0,0 0,0	0,00 0,00	_	2396,0	1,40	-	24,90	14,11	1,50	
					,	VERIFICA	AREA C	CARICATA	(§6.4.5)					
/erifiche a taglio perimetro u1 pos	•		·			c (m)	u ₀ (m)	V		v _{Ed} (MPa)	v _{Rd,max} (MPa)	V _{Ed} /V _{Rd,max}		
					_	1,50	4,71	0,54	_	0,30	3,81	7,8%	VERIFICA	OK
ERIFICA SENZ	'A ARMA	TURE T	TRASVE	RSALI (§	6.4.4)									
Angolo : di veri	settore ifica (°)	a (m)	k ₁	k	d (m)	ρ _ι (%)	v _{min} (MPa)	σ _{cp} (MPa)		v _{Ed} (MPa)	v _{Rd,c} (MPa)	v _{Ed} /v _{Rd,c}		
	247	2,03	0,10	1,29	2,40	0,07%	0,26	0,00	_	0,12	0,60	19,3%	VERIFICA	OK
		erifica enti		ede armatura non è richiest	_	ra a taglio			Perimetro . da bordo p	, ,		Rd,cs)	u ₁ (m)	r _{u1} (m)
	> 0,3 a	≤ kd		<u> </u>		- 130,2		F	Perimetro	B (u _{out} co	on v _{Ed} <	ν _{Rd,c}) <u>ι</u>	J _{out,ef} (m)	r _{min} (m)
				1//				C	oltre 0,00d	da bordo	pilastro)	2,31	0,54
7	≤0	,75 d	\neg		≅ 2 d			. ,				di passo radi lel campo rad		-

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	153

11.8 VERIFICHE MURO D'ALA

11.8.1 Verifica sezione superiore muro d'ala

Nel seguente paragrafo vengono riportate le sollecitazioni alla quota del ringrosso della sezione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.8.1.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 20/10 e nel lato compresso di Φ 16/10 come rappresentato nella figura seguente per un totale di 20 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

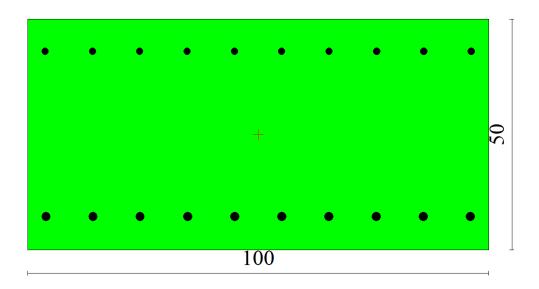


Figura 38 – Sezione trasversale muro d'ala e relativa armatura

Dati

Nome sezione: SEZIONE SUP MURO D'ALA SP2

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 50,0 [cm]

Caratteristiche geometriche

Area sezione	5000,00	[cmq]
Inerzia in direzione X	4166666,7	[cm^4]
Inerzia in direzione Y	1041666,7	[cm^4]
Inerzia in direzione XY	0,0	[cm^4]
Ascissa baricentro sezione	$X_G = 50,00$	[cm]
Ordinata baricentro sezione	$Y_G = 25.00$	[cm]

Elenco ferri

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	154

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

X Ascissa posizione ferro espresso in [cm]
Y Ordinata posizione ferro espresso in [cm]
d Diametro ferro espresso in [mm]

 $\begin{array}{ll} \text{d} & \text{Diametro ferro espresso in [mm]} \\ \omega & \text{Area del ferro espresso in [cmq]} \end{array}$

N°	X	Υ	d	ω
1	4,00	7,20	20	3,14
2	14,22	7,20	20	3,14
3	24,44	7,20	20	3,14
4	34,67	7,20	20	3,14
5	44,89	7,20	20	3,14
6	55,11	7,20	20	3,14
7	65,33	7,20	20	3,14
8	75,56	7,20	20	3,14
9	85,78	7,20	20	3,14
10	96,00	7,20	20	3,14
11	96,20	43,00	16	2,01
12	85,93	43,00	16	2,01
13	75,67	43,00	16	2,01
14	65,40	43,00	16	2,01
15	55,13	43,00	16	2,01
16	44,87	43,00	16	2,01
17	34,60	43,00	16	2,01
18	24,33	43,00	16	2,01
19	14,07	43,00	16	2,01
20	3,80	43,00	16	2,01

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E205942,924[MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in}[kN] \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcent espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ VD & & \text{verifica di dominio} \end{array}$

VD verifica di dominio
VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_Y	M_{X}	Mt	T_Y	T_X	VD	VT
1	90,1100	111,6800	0,0000	0,0000	0,0000	116,0200	SI	NO
2	90,1100	163,8000	0,0000	0,0000	0,0000	124,9800	SI	NO
3	90,1100	111,6800	0,0000	0,0000	0,0000	116,0200	SI	NO

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	155

4	90,1100	215,9200	0,000	0,0000	0,0000	133,9300	SI	NO
5	70,7900	15,8400	0,0000	0,0000	0,0000	37,2900	SI	NO
6	58,2600	73,3300	0,0000	0,0000	0,0000	47,2400	SI	NO
7	62,6500	24,9400	0,0000	0,0000	0,0000	8,1200	SI	NO
8	66,4000	148,8400	0,0000	0,0000	0,0000	101,4100	SI	NO
9	64,5300	43,2700	0,0000	0,0000	0,0000	68,4400	NO	SLER
10	64,5300	159,0800	0,0000	0,0000	0,0000	88,3400	NO	SLER
11	64,5300	43,2700	0,0000	0,0000	0,0000	68,4400	NO	SLER
12	64,5300	159,0800	0,0000	0,0000	0,0000	88,3400	NO	SLER
13	64,5300	33,0000	0,0000	0,0000	0,0000	49,7900	NO	SLEQP
14	64,5300	90,9000	0,0000	0,0000	0,0000	59,7400	NO	SLEQP
15	64,5300	33,0000	0,0000	0,0000	0,0000	49,7900	NO	SLEQP
16	64,5300	90,9000	0,0000	0,0000	0,0000	59,7400	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
9	18,34	0,00	(0,00; 31,66)	(100,00; 31,66)
10	15,67	0,00	(0,00; 34,33)	(100,00; 34,33)
11	18,34	0,00	(0,00; 31,66)	(100,00; 31,66)
12	15,67	0,00	(0,00; 34,33)	(100,00; 34,33)
13	19,60	0,00	(0,00; 30,40)	(100,00; 30,40)
14	16,38	0,00	(0,00; 33,62)	(100,00; 33,62)
15	19,60	0,00	(0,00; 30,40)	(100,00; 30,40)
16	16,38	0,00	(0,00; 33,62)	(100,00; 33,62)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

τ_c Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
9	1,358	0,000	0,000	12,596	-27,164
10	4,817	0,000	0,000	39,971	-125,151
11	1,358	0,000	0,000	12,596	-27,164
12	4,817	0,000	0,000	39,971	-125,151
13	1,047	0,000	0,000	10,098	-18,588
14	2,785	0,000	0,000	23,922	-67,372
15	1,047	0,000	0,000	10,098	-18,588
16	2,785	0,000	0,000	23,922	-67,372

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{ll} N^{\circ} & \quad \text{numero d'ordine della combinazione} \\ N_{u} & \quad \text{Sforzo normale ultimo, espresso in [kN]} \end{array}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	156

 $\begin{array}{ll} M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \\ \end{array}$

FS	Fattore	dι	sicurezza

Com	binaz	<u>ione</u>	n°	1

N _u	M_{Xu}	M_{Yu}	FS
<u>456,6751</u>	0,0000	<u>565,9913</u>	5,07
<u>10408,7226</u>	0,000	111,6800	115,51
90,1100	0,0000	<u>499,1963</u>	4,47
Combinazione n° 2			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>295,3756</u>	0,0000	<u>536,9273</u>	3,28
<u>10117,3957</u>	0,0000	163,8000	112,28
90,1100	0,0000	<u>499,1963</u>	3,05
Combinazione n° 3			
N _u	M_{Xu}	M_{Yu}	FS
<u>456,6751</u>	0,0000	<u>565,9913</u>	5,07
10408,7226	0,0000	111,6800	115,51
90,1100	0,0000	<u>499,1963</u>	4,47
Combinazione n° 4			
N _u	M_{χ_u}	M_{Yu}	FS
218,1971	0,0000	522,8402	2,42
<u>9821,7331</u>	0,0000	215,9200	109,00
90,1100	0,0000	499,1963	2,31
	-,		,-
Combinazione n° 5			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>4063,5511</u>	0,0000	909,2619	57,40
<u>10931,7980</u>	0,0000	15,8400	154,43
70,7900	0,0000	<u>495,6009</u>	31,29
Combinazione n° 6			
$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
<u>448,5164</u>	0,0000	<u>564,5333</u>	7,70
<u>10620,0690</u>	0,0000	73,3300	182,29
58,2600	0,0000	<u>493,2650</u>	6,73
Combinazione n° 7			
N _u	M_{Xu}	M_{Yu}	FS
<u>2042,3005</u>	0,000	<u>813,0084</u>	32,60
<u>10882,8676</u>	0,0000	24,9400	173,71
62,6500	0,0000	<u>494,0838</u>	19,81
Combinazione n° 8			
N _u	M_{Xu}	M_{Yu}	FS
<u>234,5867</u>	0,0000	525,8417	3,53
10201,4797	0,0000	148,8400	153,64
66,4000	0,0000	<u>494,7829</u>	3,32

Risultati fessurazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	157

Simbologia adottata

numero d'ordine della combinazione

Momento di prima fessurazione in direzione X, espresso in [kNm] M_{Y} Momento di prima fessurazione in direzione Y, espresso in [kNm]

Tensione nell'acciaio, espressa in [MPa] Tensione nel calcestruzzo, espressa in [MPa] Aeff Area efficace a trazione, espressa in [cmq] Deformazione media acciaio teso, espressa in [°] S_{rm} Distanza media tra le fessure, espresso in [mm]

Ampiezza delle fessure, espressa in [mm]

N°	M_{x}	M_Y	σ_{f}	σ_{c}	A_{eff}	8	S _{rm}	w
9	0,0000	120,6489	-92,572	-7,827	1701,67	0,0000	0	0,0000
10	0,0000	120,6538	-92,576	-7,828	1701,68	0,0441	182	0,1364
11	0,0000	120,6489	-92,572	-7,827	1701,67	0,0000	0	0,0000
12	0,0000	120,6538	-92,576	-7,828	1701,68	0,0441	182	0,1364
13	0,0000	120,6563	-92,578	-7,828	1701,68	0,0000	0	0,0000
14	0,0000	120,6555	-92,578	-7,828	1701,68	0,0000	0	0,0000
15	0,0000	120,6563	-92,578	-7,828	1701,68	0,0000	0	0,0000
16	0,0000	120,6555	-92,578	-7,828	1701,68	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

SCC tensione di compressione nel cls espresso in [MPa] tensione di compressione limite nel cls espresso in [MPa] scl sct tensione di trazione nel cls espresso in [MPa] sctl tensione di trazione limite nel cls espresso in [MPa]

sfc, sft tensione minima e massima nell'armatura espressa in [MPa]

tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 2 - SEZIONE SUP MURO D'ALA SP2

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,785	14,940	-5,716	3,099	-67,372	23,922	450,000	14
SLER	4,817	18,260	-10,557	3,099	-125,151	39,971	337,500	10

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

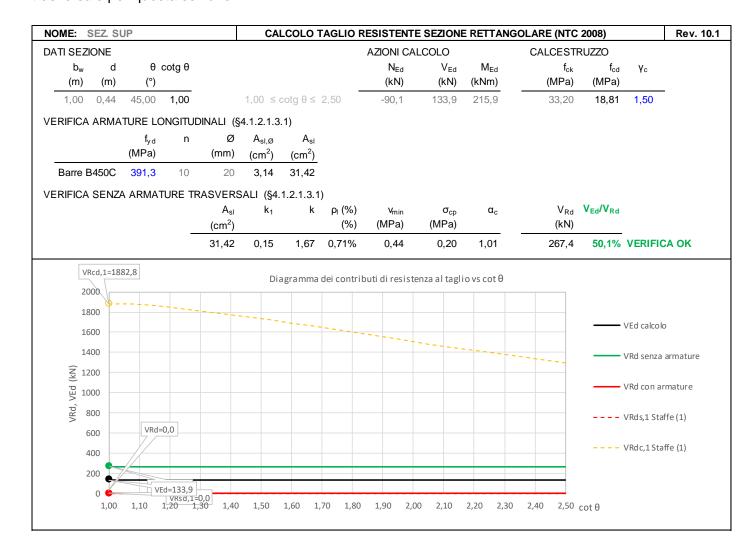
sf tensione nell'acciaio espresso in [MPa] tensione nel cls espresso in [MPa] Aeff Area efficace a trazione espresso in [cmq] Eps Deformazione espressa in [%] spaziatura tra le fessure espressa in [mm] sr ampiezza fessure e fessura limite espresse in [mm] w, wl

Combinazione critica

Sezione n° 2 - SEZIONE SUP MURO D'ALA SP2

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-92,578	-7,828	166,880	0,0000	0,000	0,000	0,200	13
SLER	-92,576	-7,828	166,880	0,0441	181,810	0,136	0,200	10

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	158

11.8.1.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato muro d'ala (estradosso plinto) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2. Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	159

11.8.2 Verifica sezione base muro d'ala

Nel seguente paragrafo vengono riportate le sollecitazioni a quota estradosso plinto di fondazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.8.2.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato tesso di Φ26/20 e nel lato compresso di Φ20/20 come rappresentato nella figura seguente per un totale di 10 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

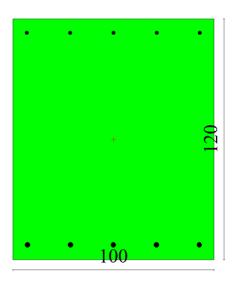


Figura 39 – Sezione trasversale muro d'ala e relativa armatura

Dati

SEZIONE BASE MURO D'ALA SP2 Nome sezione:

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 120,0 [cm]

Caratteristiche geometriche

Area sezione 12000,00 [cmq] Inerzia in direzione X 10000000,0 [cm^4] Inerzia in direzione Y 14400000,0 [cm^4] [cm^4] Inerzia in direzione XY 0.0 $X_G = 50,00$ [cm] Ascissa baricentro sezione Ordinata baricentro sezione $Y_G = 60,00$ [cm]

Elenco ferri

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	160

Simbologia adottata

Posizione riferita all'origine

numero d'ordine

X Y Ascissa posizione ferro espresso in [cm] Ordinata posizione ferro espresso in [cm]

d Diametro ferro espresso in [mm]

Area del ferro espresso in [cmq]

N°	Χ	Υ	d	ω
1	92,80	112,80	20	3,14
2	71,40	112,80	20	3,14
3	50,00	112,80	20	3,14
4	28,60	112,80	20	3,14
5	7,20	112,80	20	3,14
6	7,30	7,30	26	5,31
7	28,65	7,30	26	5,31
8	50,00	7,30	26	5,31
9	71,35	7,30	26	5,31
10	92,70	7,30	26	5,31

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo	40,000	[MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo	15,00	
Coeff. omogeneizzazione calcestruzzo teso/compresso	1,00	

Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio 450,000 [MPa] 450,000 [MPa] Tensione snervamento acciaio Modulo elastico E 205942,924 [MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

Ν° numero d'ordine della combinazione sforzo normale espresso in[kN] M_{Y} momento lungo Y espresso in [kNm] M_{X} momento lungo X espresso in [kNm] $M_{t} \\$ momento torcente espresso in [kNm] T_Y taglio lungo Y espresso in [kN] taglio lungo X espresso in [kN]

verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M_{X}	M_t	T_Y	T_X	VD	VT
1	191,3600	617,4700	0,0000	0,0000	0,0000	242,8100	SI	NO
2	191,3600	711,7800	0,0000	0,0000	0,0000	302,9600	SI	NO
3	191,3600	617,4700	0,0000	0,0000	0,0000	242,8100	SI	NO
4	191,3600	786,2800	0,0000	0,0000	0,0000	311,9200	SI	NO
5	156,3400	216,6500	0,0000	0,0000	0,0000	112,6100	SI	NO
6	122,7100	295,3500	0,0000	0,0000	0,0000	122,5600	SI	NO
7	134,4800	40,6000	0,0000	0,0000	0,0000	32,4800	SI	NO
8	144,5700	620,0300	0,0000	0,0000	0,0000	271,3600	SI	NO
9	139,5300	368,0700	0,0000	0,0000	0,0000	183,4000	NO	SLER
10	139,5300	533,6400	0,0000	0,0000	0,0000	203,3000	NO	SLER
11	139,5300	368,0700	0,0000	0,0000	0,0000	183,4000	NO	SLER
12	139,5300	533,6400	0,0000	0,0000	0,0000	203,3000	NO	SLER
13	139,5300	288,9200	0,0000	0,0000	0,0000	146,9500	NO	SLEQP
14	139,5300	371,7100	0,0000	0,0000	0,0000	156,9000	NO	SLEQP

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	161

15	139,5300	288,9200	0,0000	0,0000	0,0000	146,9500	NO	SLEQP
16	139,5300	371,7100	0,0000	0,0000	0,0000	156,9000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

N°	Хc	α	(xi; yi)	(xf; yf)
9	29,60	0,00	(0,00; 90,40)	(100,00; 90,40)
10	28,05	0,00	(0,00; 91,95)	(100,00; 91,95)
11	29,60	0,00	(0,00; 90,40)	(100,00; 90,40)
12	28,05	0,00	(0,00; 91,95)	(100,00; 91,95)
13	31,04	0,00	(0,00; 88,96)	(100,00; 88,96)
14	29,55	0,00	(0,00; 90,45)	(100,00; 90,45)
15	31,04	0,00	(0,00; 88,96)	(100,00; 88,96)
16	29.55	0.00	(0.00: 90.45)	(100.00: 90.45)

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \end{array}$

Tensione tangenziale nel calcestruzzo espresso in [MPa]

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{f\text{-max}}$	$\sigma_{\text{f-min}}$
9	2,582	0,000	0,000	29,314	-108,756
10	3,716	0,000	0,000	41,427	-168,234
11	2,582	0,000	0,000	29,314	-108,756
12	3,716	0,000	0,000	41,427	-168,234
13	2,037	0,000	0,000	23,468	-80,406
14	2,607	0,000	0,000	29,582	-110,062
15	2,037	0,000	0,000	23,468	-80,406
16	2,607	0,000	0,000	29,582	-110,062

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

Combinazione nº 1

Nu	M _{Xu}	M _{Yu}	FS
417,9292	0,0000	<u>1348,5511</u>	2,18
22494,1956	0,0000	617,4700	117,55
191,3600	0,0000	<u>1228,7611</u>	1,99

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	162

N _u 353,4244 22284,5473 191,3600	M _{xu} 0,0000 0,0000 0,0000	M _{Yu} <u>1314,5923</u> 711,7800 <u>1228,7612</u>	FS 1,85 116,45 1,73
Combinazione n° 3 N _u 417,9292 22494,1956 191,3600	M _{xu} 0,0000 0,0000 0,0000	M _{Yu} <u>1348,5511</u> 617,4700 <u>1228,7611</u>	FS 2,18 117,55 1,99
Combinazione n° 4 N _u 315,0010 22117,5039 191,3600	M _{xu} 0,0000 0,0000 0,0000	M _{Yu} <u>1294,3089</u> 786,2800 <u>1228,7611</u>	FS 1,65 115,58 1,56
Combinazione n° 5 Nu 1299,2548 23357,9572 156,3400	M _{Xu} 0,0000 0,0000 0,0000	M Yu 1800,4576 216,6500 1210,1184	FS 8,31 149,40 5,59
Combinazione n° 6 N _u 599,8063 23192,3980 122,7100	M _{xu} 0,0000 0,0000 0,0000	M _{Yu} <u>1443,6705</u> 295,3500 <u>1192,1836</u>	FS 4,89 189,00 4,04
Combinazione n° 7 N _u 12805,5402 23719,1699 134,4800	M _{xu} 0,0000 0,0000 0,0000	M Yu 3866,0391 40,6000 1198,4641	FS 95,22 176,38 29,52
Combinazione n° 8 N _u 299,9316 22488,5345 144,5700	M _{xu} 0,0000 0,0000 0,0000	M _{Yu} <u>1286,3427</u> 620,0300 <u>1203,8450</u>	FS 2,07 155,55 1,94

Risultati fessurazione

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{ll} M_X & \text{Momento di prima fessurazione in direzione X, espresso in [kNm]} \\ M_Y & \text{Momento di prima fessurazione in direzione Y, espresso in [kNm]} \end{array}$

 $\begin{array}{lll} \sigma_{l} & & & & & \\ Tensione nell'acciaio, espressa in [MPa] \\ \sigma_{c} & & & & \\ Tensione nel calcestruzzo, espressa in [MPa] \\ A_{eff} & & & & \\ Area efficace a trazione, espressa in [cmq] \\ \varepsilon & & & & \\ Deformazione media acciaio teso, espressa in [°] \\ S_{m} & & & \\ Distanza media tra le fessure, espresso in [mm] \\ w & & & \\ Ampiezza delle fessure, espressa in [mm] \\ \end{array}$

 $N^{\circ} \qquad M_{X} \qquad M_{Y} \qquad \sigma_{f} \qquad \sigma_{c} \qquad A_{eff} \qquad \epsilon \qquad S_{rm} \qquad w$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	163

9	0,0000	625,5393	-201,290	-14,570	2680,00	0,0000	0	0,0000
10	0,0000	625,5157	-201,281	-14,569	2680,00	0,0000	0	0,0000
11	0,0000	625,5393	-201,290	-14,570	2680,00	0,0000	0	0,0000
12	0,0000	625,5157	-201,281	-14,569	2680,00	0,0000	0	0,0000
13	0,0000	625,5231	-201,284	-14,569	2680,00	0,0000	0	0,0000
14	0,0000	625,5182	-201,282	-14,569	2680,00	0,0000	0	0,0000
15	0,0000	625,5231	-201,284	-14,569	2680,00	0,0000	0	0,0000
16	0,0000	625,5182	-201,282	-14,569	2680,00	0,000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione n° 1 - SEZIONE BASE MURO D'ALA SP2

TC	SCC	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	2,607	14,940	-7,982	3,099	-110,062	29,582	450,000	14
SLER	3.716	18.260	-12.183	3.099	-168.234	41.427	337.500	10

Inviluppo verifiche fessurazione

Simbologia adottata

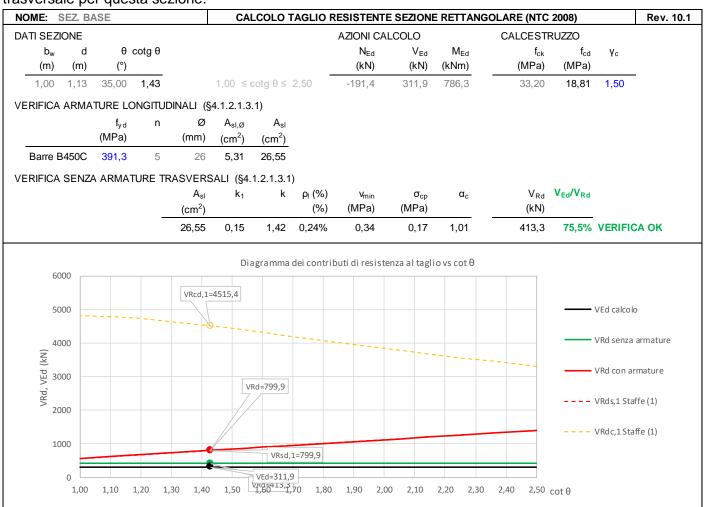
TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]
w, wl ampiezza fessure e fessura limite espresse in [mm]
Comb. Combinazione critica

Sezione n° 1 - SEZIONE BASE MURO D'ALA SP2

TC	sf	sc	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-201,284	-14,569	262,822	0,0000	0,000	0,000	0,200	13
SLER	-201,290	-14,570	262,822	0,0000	0,000	0,000	0,200	9

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	164

11.8.2.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato muro d'ala (estradosso plinto) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2. Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	165

11.9 VERIFICHE MURO PARAGHIAIA

Nel seguente paragrafo vengono riportate le sollecitazioni a quota estradosso elevazione per le combinazioni di carico allo SLU e le relative verifiche di resistenza a pressoflessione e taglio.

11.9.1 Verifica a pressoflessione SLU, SLV, SLE

La sezione è armata con un quantitativo di armatura longitudinale nel lato teso di Φ 16/10 e nel lato compresso di Φ 14/20 come rappresentato nella figura seguente per un totale di 15 ferri. I domini di resistenza M-N e i coefficienti di sicurezza a pressoflessione sono ottenuti attraverso il software SAX 10.0 distribuito da Aztec.

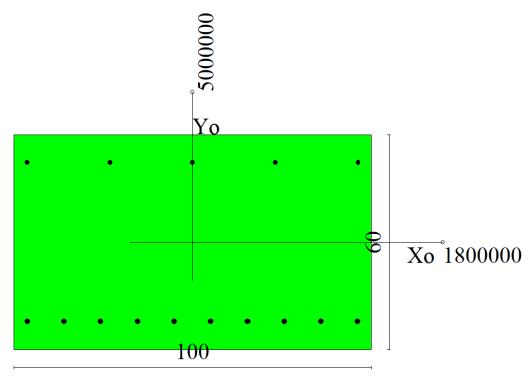


Figura 40 – Sezione trasversale muro paraghiaia e relativa armatura

Dati

Nome sezione: SEZIONE MURO PARAGHIAIA

Tipo sezione Rettangolare Base 100,0 [cm] Altezza 60,0 [cm]

Caratteristiche geometriche

Area sezione	6000,00	[cmq]
Inerzia in direzione X	5000000,0	[cm^4]
Inerzia in direzione Y	1800000,0	[cm^4]
Inerzia in direzione XY	0,0	[cm^4]
Ascissa baricentro sezione	$X_G = 50,00$	[cm]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	166

Ordinata baricentro sezione

 $Y_G = 30,00$ [cm]

Elenco ferri

Simbologia adottata

Posizione riferita all'origine

N° numero d'ordine

 $\begin{array}{ll} X & \quad & \text{Ascissa posizione ferro espresso in [cm]} \\ Y & \quad & \text{Ordinata posizione ferro espresso in [cm]} \\ d & \quad & \text{Diametro ferro espresso in [mm]} \\ \omega & \quad & \text{Area del ferro espresso in [cmq]} \\ \end{array}$

N°	X	Υ	d	ω
1	3,80	7,80	16	2,01
2	14,07	7,80	16	2,01
3	24,33	7,80	16	2,01
4	34,60	7,80	16	2,01
5	44,87	7,80	16	2,01
6	55,13	7,80	16	2,01
7	65,40	7,80	16	2,01
8	75,67	7,80	16	2,01
9	85,93	7,80	16	2,01
10	96,20	7,80	16	2,01
11	96,30	52,30	14	1,54
12	73,15	52,30	14	1,54
13	50,00	52,30	14	1,54
14	26,85	52,30	14	1,54
15	3,70	52,30	14	1,54

Materiale impiegato: Calcestruzzo armato

Caratteristiche calcestruzzo

Resistenza caratteristica calcestruzzo 40,000 [MPa]
Coeff. omogeneizzazione acciaio/calcestruzzo 15,00
Coeff. omogeneizzazione calcestruzzo teso/compresso 1,00
Forma diagramma tensione-deformazione - PARABOLA-RETTANGOLO

Caratteristiche acciaio per calcestruzzo

Tensione ammissibile acciaio450,000[MPa]Tensione snervamento acciaio450,000[MPa]Modulo elastico E210000,000[MPa]

Fattore di incrudimento acciaio 1,00

Combinazioni

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & & \text{numero d'ordine della combinazione} \\ N & & \text{sforzo normale espresso in[kN]} \\ M_{Y} & & \text{momento lungo Y espresso in [kNm]} \\ M_{X} & & \text{momento lungo X espresso in [kNm]} \\ M_{t} & & \text{momento torcente espresso in [kNm]} \\ T_{Y} & & \text{taglio lungo Y espresso in [kN]} \\ \end{array}$

VD verifica di dominio

VT verifica tensionale (SLER - Combinazione rara, SLER - Combinazione frequente, SLEQP - Combinazione quasi permanente, TAMM - Verifica a tensioni ammissibili)

N°	N	M_{Y}	M_{X}	$M_{\rm t}$	T _Y	T_X	VD	VT
1	62,7800	234,6100	0,0000	0,0000	0,0000	169,8300	SI	NO
2	46,5000	150,4400	0,0000	0,0000	0,0000	97,0600	SI	NO
3	62,7800	234,6100	0,0000	0,0000	0,0000	169,8300	SI	NO
4	46 5000	84 1700	0.000	0.000	0.000	72 7700	SI	NO

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55:
Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	VI	14	04	002	В	167

5	53,0400	74,2000	0,0000	0,0000	0,0000	60,1800	SI	NO
6	39,9600	74,2000	0,0000	0,0000	0,0000	60,1800	SI	NO
7	48,4600	116,4000	0,0000	0,0000	0,0000	87,4100	SI	NO
8	39,9600	74,2000	0,0000	0,0000	0,0000	60,1800	SI	NO
9	46,5000	159,8600	0,0000	0,0000	0,0000	115,4500	NO	SLER
10	46,5000	56,1100	0,0000	0,0000	0,0000	48,5100	NO	SLER
11	46,5000	159,8600	0,0000	0,0000	0,0000	115,4500	NO	SLER
12	46,5000	56,1100	0,0000	0,0000	0,0000	48,5100	NO	SLER
13	46,5000	56,1100	0,0000	0,0000	0,0000	48,5100	NO	SLEQP
14	46,5000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP
15	46,5000	56,1100	0,0000	0,0000	0,0000	48,5100	NO	SLEQP
16	46,5000	0,0000	0,0000	0,0000	0,0000	0,0000	NO	SLEQP

Risultati analisi

Caratteristiche asse neutro

Simbologia adottata

N° numero d'ordine della combinazione Xc posizione asse neutro espresso in [cm]

 α inclinazione asse neutro rispetto all'orizzontale, espressa in [°]

(xi; yi) - (xf; yf) Punti di intersezione dell'asse neutro con il perimetro della sezione, espressi in [cm]

(xf; yf)	(xi; yi)	α	Хc	N°
(100,00; 44,61)	(0,00; 44,61)	0,00	15,39	9
(100,00; 42,91)	(0,00; 42,91)	0,00	17,09	10
(100,00; 44,61)	(0,00; 44,61)	0,00	15,39	11
(100,00; 42,91)	(0,00; 42,91)	0,00	17,09	12
(100,00; 42,91)	(0,00; 42,91)	0,00	17,09	13
(100,00; -456,82)	(0,00; -456,82)	0,00	516,82	14
(100,00; 42,91)	(0,00; 42,91)	0,00	17,09	15
(100.00: -456.82)	(0.00: -456.82)	0.00	516.82	16

Risultati tensionali

Simbologia adottata

N° numero d'ordine della combinazione

 $\begin{array}{lll} \sigma_{\text{c-max}} & \text{Tensione massima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{c-min}} & \text{Tensione minima nel calcestruzzo espresso in [MPa]} \\ \sigma_{\text{f-max}} & \text{Tensione massima nel ferro espresso in [MPa]} \\ \sigma_{\text{f-min}} & \text{Tensione minima nel ferro espresso in [MPa]} \\ \end{array}$

N°	$\sigma_{\text{c-max}}$	$\sigma_{\text{c-min}}$	$ au_{ extsf{c}}$	$\sigma_{\text{f-max}}$	$\sigma_{\text{f-min}}$
9	4,387	0,000	0,000	32,886	-157,383
10	1,561	0,000	0,000	12,865	-48,134
11	4,387	0,000	0,000	32,886	-157,383
12	1,561	0,000	0,000	12,865	-48,134
13	1,561	0,000	0,000	12,865	-48,134
14	0,077	0,000	0,000	1,138	1,039
15	1,561	0,000	0,000	12,865	-48,134
16	0,077	0,000	0,000	1,138	1,039

Sollecitazioni ultime

Simbologia adottata

 $\begin{array}{lll} N^{\circ} & \text{numero d'ordine della combinazione} \\ N_{u} & \text{Sforzo normale ultimo, espresso in [kN]} \\ M_{Xu} & \text{Momento ultimo in direzione X, espresso in [kNm]} \\ M_{Yu} & \text{Momento ultimo in direzione Y, espresso in [kNm]} \end{array}$

FS Fattore di sicurezza

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	168

	$N_{\rm u}$	M_{χ_u}	\mathbf{M}_{Yu}	FS
	112,0500	0,0000	<u>418,7329</u>	1,78
<u>10</u>	0846,4332	0,0000	234,6100	172,77
	62,7800	0,0000	<u>406,4890</u>	1,73
			<u> </u>	
Combinazione n° 2				
	$N_{\rm u}$	M_{Xu}	M_{Yu}	FS
	130,8666	0,0000	<u>423,3886</u>	2,81
<u>11</u>	1240,3692	0,0000	150,4400	241,73
	46,5000	0,0000	402,4266	2,67
Combinazione n° 3				
	$N_{\rm u}$	M_{χ_u}	\mathbf{M}_{Yu}	FS
	112,0500	0,0000	<u>418,7329</u>	1,78
<u>10</u>	0846,4332	0,0000	234,6100	172,77
	62,7800	0,0000	<u>406,4890</u>	1,73
Combinazione n° 4				
	N_u	M_{χ_u}	M_{Yu}	FS
	250,0419	0,0000	<u>452,6027</u>	5,38
<u>11</u>	1543,9062	0,0000	84,1700	248,26
	46,5000	0,0000	<u>402,4266</u>	4,78
Combinazione n° 5				
	N_u	$\mathbf{M}_{\mathbf{X}\mathbf{u}}$	$\mathbf{M}_{\mathbf{Yu}}$	FS
	338,8642	0,000	<u>474,0521</u>	6,39
<u>11</u>	<u>338,8642</u> 1588,9996	0,0000 0,0000	<u>474,0521</u> 74,2000	6,39 218,50
<u>11</u>	338,8642	0,000	<u>474,0521</u>	6,39
<u>11</u>	<u>338,8642</u> 1588,9996	0,0000 0,0000	<u>474,0521</u> 74,2000	6,39 218,50
	<u>338,8642</u> 1588,9996	0,0000 0,0000	<u>474,0521</u> 74,2000	6,39 218,50
11 Combinazione n° 6	338,8642 1588,9996 53,0400	0,0000 0,0000 0,0000	474,0521 74,2000 404,0595	6,39 218,50 5,45
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u	0,0000 0,0000 0,0000 M _{Xu}	474,0521 74,2000 404,0595 M _{Yu}	6,39 218,50 5,45
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978	0,0000 0,0000 0,0000 M _{Xu} 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408	6,39 218,50 5,45 FS 6,08
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965	0,0000 0,0000 0,0000 M _{Xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000	6,39 218,50 5,45 FS 6,08 290,01
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978	0,0000 0,0000 0,0000 M _{Xu} 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408	6,39 218,50 5,45 FS 6,08
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965	0,0000 0,0000 0,0000 M _{Xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000	6,39 218,50 5,45 FS 6,08 290,01
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965	0,0000 0,0000 0,0000 M _{Xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000	6,39 218,50 5,45 FS 6,08 290,01
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600	0,0000 0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924	6,39 218,50 5,45 FS 6,08 290,01 5,40
Combinazione nº 6	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600	0,0000 0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924	6,39 218,50 5,45 FS 6,08 290,01 5,40
Combinazione nº 6 11 Combinazione nº 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534	0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477	6,39 218,50 5,45 FS 6,08 290,01 5,40
Combinazione nº 6 11 Combinazione nº 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824	0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000 M _{xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19
Combinazione nº 6 11 Combinazione nº 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534	0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477	6,39 218,50 5,45 FS 6,08 290,01 5,40
Combinazione nº 6 11 Combinazione nº 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824	0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000 M _{xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19
Combinazione n° 6 11 Combinazione n° 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824	0,0000 0,0000 M _{xu} 0,0000 0,0000 0,0000 M _{xu} 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19
Combinazione nº 6 11 Combinazione nº 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824 48,4600	0,0000 0,0000 M _{Xu} 0,0000 0,0000 0,0000 0,0000 M _{Xu} 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000 402,9161	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19 3,46
Combinazione n° 6 11 Combinazione n° 7	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824 48,4600	0,0000 0,0000 M _{Xu} 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000 402,9161	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19 3,46
Combinazione n° 6 11 Combinazione n° 7 11 Combinazione n° 8	338,8642 1588,9996 53,0400 Nu 242,7978 1588,9965 39,9600 Nu 181,4534 1397,0824 48,4600 Nu 242,7978	0,0000 0,0000 M _{Xu} 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000 402,9161 M _{Yu} 450,8408	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19 3,46
Combinazione n° 6 11 Combinazione n° 7 11 Combinazione n° 8	338,8642 1588,9996 53,0400 N _u 242,7978 1588,9965 39,9600 N _u 181,4534 1397,0824 48,4600	0,0000 0,0000 M _{Xu} 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	474,0521 74,2000 404,0595 M _{Yu} 450,8408 74,2000 400,7924 M _{Yu} 435,8477 116,4000 402,9161	6,39 218,50 5,45 FS 6,08 290,01 5,40 FS 3,74 235,19 3,46

Risultati fessurazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	169

M_X Momento di prima fessurazione in direzione X, espresso in [kNm]
M_Y Momento di prima fessurazione in direzione Y, espresso in [kNm]

 Momento di prima fessurazione in direzione Y, espresso in [kNm Tensione nell'acciaio, espressa in [MPa]

 $\begin{array}{lll} \sigma_{l} & \text{Tensione nell'acciaio, espressa in [MPa]} \\ \sigma_{c} & \text{Tensione nel calcestruzzo, espressa in [MPa]} \\ A_{eff} & \text{Area efficace a trazione, espressa in [cmq]} \\ \varepsilon & \text{Deformazione media acciaio teso, espressa in [em]} \\ S_{rm} & \text{Distanza media tra le fessure, espresso in [mm]} \\ w & \text{Ampiezza delle fessure, espressa in [mm]} \\ \end{array}$

N°	M _X	M_{Y}	σ_{f}	σ_{c}	A_{eff}	3	S _{rm}	w
9	0,0000	154,0838	-151,294	-12,226	1980,00	0,0403	220	0,1509
10	0,0000	154,0833	-151,294	-12,226	1980,00	0,0000	0	0,0000
11	0,0000	154,0838	-151,294	-12,226	1980,00	0,0403	220	0,1509
12	0,0000	154,0833	-151,294	-12,226	1980,00	0,0000	0	0,0000
13	0,0000	154,0833	-151,294	-12,226	1980,00	0,0000	0	0,0000
14	0,0000	0,0000	1,039	0,068	0,00	0,0000	0	0,0000
15	0,0000	154,0833	-151,294	-12,226	1980,00	0,0000	0	0,0000
16	0,0000	0,0000	1,039	0,068	0,00	0,0000	0	0,0000

Inviluppo verifiche tensionali

Simbologia adottata

TC Tipo combinazione

scc tensione di compressione nel cls espresso in [MPa]
scl tensione di compressione limite nel cls espresso in [MPa]
sct tensione di trazione nel cls espresso in [MPa]
sctl tensione di trazione limite nel cls espresso in [MPa]
sfc, sft tensione minima e massima nell'armatura espressa in [MPa]
sf tensione limite nell'armatura espressa in [MPa]

Comb. Combinazione critica

Sezione nº 1 - SEZIONE MURO PARAGHIAIA

TC	scc	scl	sct	sctl	sfc	sft	sfl	Comb.
SLEQP	1,561	14,940	-3,922	3,099	-48,134	12,865	450,000	13
SLER	4,387	18,260	-12,716	3,099	-157,383	32,886	337,500	9

Inviluppo verifiche fessurazione

Simbologia adottata

TC Tipo combinazione

sf tensione nell'acciaio espresso in [MPa]
sc tensione nel cls espresso in [MPa]
Aeff Area efficace a trazione espresso in [cmq]
Eps Deformazione espressa in [%]
sr spaziatura tra le fessure espressa in [mm]

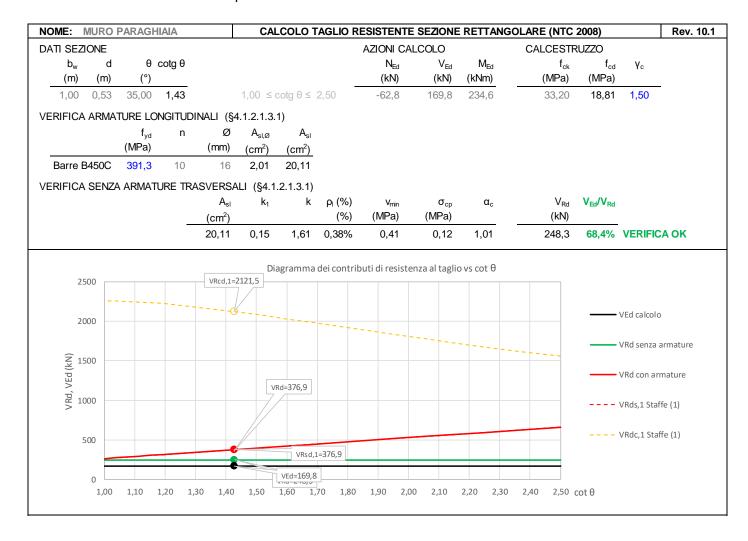
w, wl ampiezza fessure e fessura limite espresse in [mm]

Comb. Combinazione critica

Sezione nº 1 - SEZIONE MURO PARAGHIAIA

TC	sf	SC	Aeff	Esp	sr	w	wl	Comb.
SLEQP	-151,294	-12,226	194,175	0,0000	0,000	0,000	0,200	13
SLER	-151,294	-12,226	194,175	0,0403	220,115	0,151	0,200	9

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	170

11.9.2 Verifica a taglio SLU, SLV

Secondo le sollecitazioni a quota spiccato muro paraghiaia (estradosso elevazione) per le combinazioni di carico allo SLU riportate nel capitolo precedente, si riporta la relativa verifica di resistenza a taglio.

Il valore dei tagli resistenti è stato, invece, ricavato attraverso un apposito foglio di calcolo realizzato in accordo con il D.M. 14/01/2008 p.to 4.1.2.1.3.2.

Non si è reso necessario l'inserimento di armatura trasversale per questa sezione.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

l'asse x per condizioni diverse d/a (40)

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	171

12. VERIFICHE LOCALI

12.1 BAGGIOLI

Si procede alla verifica del baggiolo tipologico di dimensioni 150x180x30 cm, armato in verticale con (2x14+2x17)Ø14 distribuiti sui lati perimetrali, armato in orizzontale con 1Ø12/10 staffe cerchianti esterne (n°2 braccia per direzione) e 6Ø12/10 ganci interni (n°6 braccia per direzione).

Al fine di mantenere un abbondante margine di sicurezza, i carichi di progetto verticale N_{Ed} ed orizzontale V_{Ed} sono stati ipotizzati come i massimi concomitanti previsti su tutti gli appoggi (F)-(UT)-(UL)-(M), vedi tabelle specifiche, inoltre l'impronta degli appoggi stessi è stata assunta cautelativamente assunta di 80x80 cm.

Le verifiche sono state svolte secondo le indicazioni del CEB-FIP Model Code 90 e secondo quanto riportato in letteratura riguardo gli studi di diffusione delle tensioni di compressione e trazione su un volume generico di calcestruzzo (Leonhardt, 1973).

Per le azioni dell'appoggio si considera una eccentricità addizionale di 5 cm, quindi una centratura non ottimale delle azioni sul volume di calcestruzzo del baggiolo con conseguente riduzione dell'area efficace di contatto.

Si sono considerate le armature di cerchiatura come collaboranti per il 0% ai fini dell'aumento della resistenza a compressione del calcestruzzo in zona compressa (Region I), mentre per le tensioni di trazione interna si sono considerate solo le armature trasversali interne (Region II).

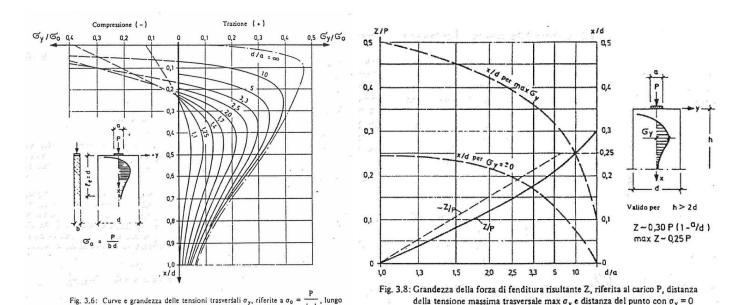


Figura 41 – Grafici da F. Leonhardt, 1973 "Casi speciali di dimensionamento delle strutture in c.a. e c.a.p."

dal bordo caricato in lastre con h > 2d (40)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	172

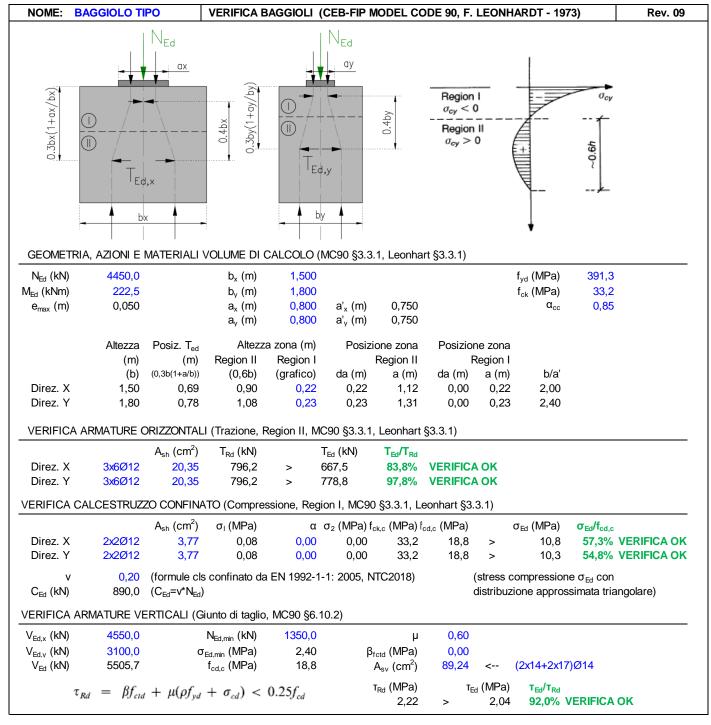


Figura 42 – Baggioli tipo – Verifica del calcestruzzo armato a compressione e trazione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	173

12.2 DEFORMABILITÀ SPALLA

12.2.1 Verifiche sicurezza del binario

Per la sicurezza del binario occorre garantire quanto riportato al §2.5.1.4.5.2-3 del MdP.

"Al fine di garantire la sicurezza del binario rispetto a fenomeni di instabilità per compressione e rottura per trazione della rotaia, nonché rispetto ad eccessivi scorrimenti nel ballast, causa di un suo rapido deterioramento, occorre che vengano rispettati i seguenti limiti sull'incremento delle tensioni nel binario e sugli spostamenti relativi tra binario ed estradosso dell'impalcato o del rilevato. L'incremento massimo consentito di tensione nella rotaia causato dall'interazione binario-struttura prodotta dalle azioni indicate in 2.5.1.4.5.1 sarà assunto pari a:

 $\Delta \sigma c$, max = 60 N/mm2 (per la compressione)

 $\Delta \sigma t$, max = 70 N/mm2 (per la trazione)

Lo spostamento massimo consentito tra estradosso dell'impalcato o del rilevato e la faccia inferiore della traversa dovuto alle sole forze di avviamento e/o di frenatura sarà assunto pari a 5 mm. La verifica di sicurezza del binario, in termini di tensioni e spostamenti, andrà condotta considerando la combinazione caratteristica (rara) del metodo S.L.E., adottando per le azioni di cui al precedente punto 2.5.1.4.5.1 coefficienti voi=1,0 fermi restando i su esposti limiti di incremento di tensione nella rotaia."

"Gli effetti dell'interazione binario-struttura in termini di azioni longitudinali trasmesse alla sottostruttura (reazioni vincolari negli appoggi fissi), tensioni supplementari nel binario e scorrimenti relativi binario-impalcato, saranno valutati mediante una serie di analisi di simulazione del comportamento del ponte soggetto alle azioni termiche ed ai carichi orizzontali e verticali dei convogli in transito, portando in conto la resistenza ai movimenti longitudinali del binario e la rigidezza della struttura, attraverso un modello di calcolo del tipo riportato in Fig. 2.5.1.4.5.3-1. In alternativa, è possibile effettuare una valutazione semplificata delle reazioni vincolari con il metodo riportato nell'Allegato 3, oppure con il metodo di cui all'Allegato 4 qualora siano rispettate le condizioni ivi elencate. In tal caso il rispetto dei limiti sulle altre grandezze di interesse (tensioni nelle rotaie e spostamenti relativi binario-impalcato) può ritenersi adeguatamente soddisfatto senza specifiche verifiche."

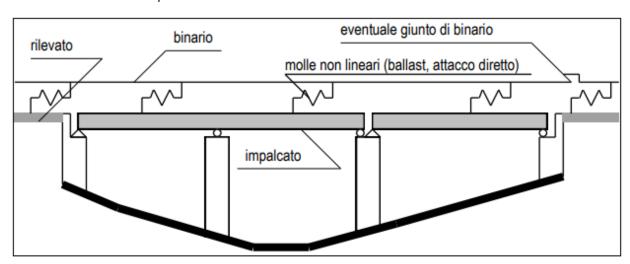


Fig. 2.5.1.4.5.3-1 - Schema di modello strutturale per valutare l'interazione.

Figura 43 – Interazione binario- struttura - Schema generale di calcolo

"ALLEGATO 4 – VALUTAZIONE SEMPLIFICATA DELLE REAZIONI DOVUTE AGLI EFFETTI DI INTERAZIONE, METODO PER SINGOLA LUCE APPOGGIATA

Per una sovrastruttura realizzata con un singolo impalcato (in semplice appoggio) non è necessario il controllo delle tensioni nella rotaia se:

• La sottostruttura ha rigidezza K sufficiente a limitare lo spostamento dell'impalcato in direzione longitudinale dovuto all'avviamento e alla frenatura δ_B , ad un massimo di 5 mm in presenza delle forze longitudinali dovute all'avviamento e alla frenatura definite in

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	174

- 2.5.1.4.3.3; per la determinazione degli spostamenti si raccomanda di prendere in conto la configurazione e le proprietà della struttura date in 2.5.1.4.5.3;
- Per le azioni da traffico verticale lo spostamento longitudinale dell'estradosso dell'impalcato all'estremità dovuto alla deformazione dell'impalcato δH, non supera i 5mm;
- La lunghezza di espansione L⊤ è minore di 40 m."

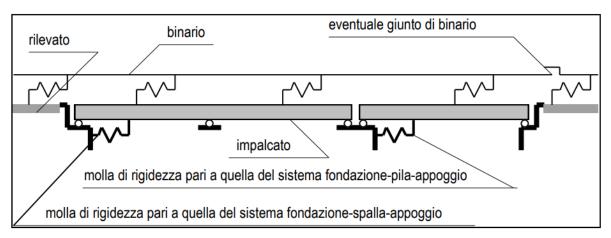


Fig. 2.5.1.4.5.3-3 - Schema di modello strutturale semplificato per valutare l'interazione.

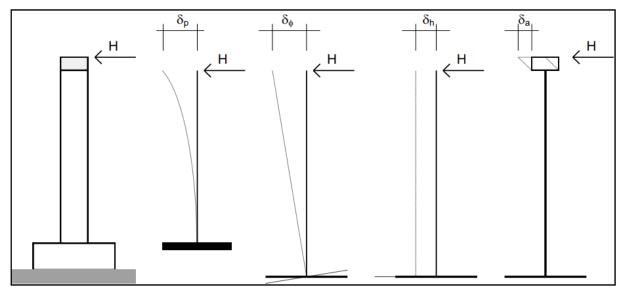


Fig. 2.5.1.4.5.3-4 - Individuazione dei contributi alla deformabilità complessiva del sistema fondazione-pila-appoggio

Figura 44 – Interazione binario- struttura - Schema semplificato di calcolo

Nel caso in oggetto, considerando la massima altezza pila prevista e le valutazioni effettuate nel dimensionamento delle sottofondazioni, alla cui documentazione di calcolo si rimanda per ulteriori dettagli, per la verifica di sicurezza si ha quanto segue.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	175

VERIFICHE S	SICUREZZA B	INARIO (§2.5.1.4.5.3 MdP)
$Q_{3,f}$ (kN)	875,0	Massima azione frenatura per LM71 o SW/0 o SW/2
$Q_{3,a}$ (kN)	907,5	Massima azione avviamento per LM71 o SW/0 o SW/2
H (kN)	1782,5	Massima azione applicata all'appoggio
I_{L} (m ⁴)	30,38	Inerzia longitudinale elevazione
E (MPa)	33346	Modulo elastico elevazione
H _{elev} (m)	2,50	Altezza elevazione
K (kN/m)	194505884	$K=(3*E*I_L)/H_{elev}^3$
δ _p (mm)	0,0	Spostamento deformabilità elastica elevazione (da calcolo fondazioni)
δ_{ϕ} (mm)	0,0	Spostamento deformabilità rotazione fondazione φ (rad) 1E-05
δ _h (mm)	1,0	Spostamento deformabilità traslazionefondazione s _h (mm) 1,0
δ _a (mm)	1,0	Spostamento deformabilità appoggi
Σδ _i (mm)	2,0	Spostamento totale < 5.0 mm OK VERIFICATO

12.2.2 Effetti del secondo ordine

Con riferimento alle valutazioni degli spostamenti orizzontali di testa spalla effettuati nella condizione di esercizio SLE RA (verifica di sicurezza del binario) e nella condizione sismica SLV (verifiche escursione giunti), visti i valori trascurabili in relazione alle dimensioni e alla snellezza della sottostruttura, si conferma che gli effetti del secondo ordine dei carichi applicati verticali sono irrilevanti ai fini dei calcoli di dimensionamento.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	176

12.3 RITEGNI

Si verificano i ritegni trasversali e longitudinali alle massime azioni sismiche SLV secondo il modello teorico locale a tirante – puntone, come previsto in ENV 1992 e CEB-FIP Model Code 90.

Nei paragrafi seguenti viene indicata la geometria, lo schema di calcolo, le armature previste e le massime azioni orizzontali N_{Ed} considerate nei vari casi, nell'ipotesi a favore di sicurezza di un'amplificazione delle forze sismiche trasmesse di 1.10 e di spessori strutturali delle superfici di contatto cautelativamente ridotte.

12.3.1 Campata L=25 m

12.3.1.1 Ritegni trasversali

Dato che si tratta degli stessi elementi di ritegno, fare riferimento a quanto riportato nella relazione di calcolo delle pile.

12.3.1.2 Ritegni longitudinali

Si considera l'azione N_{Ed} =1.10*4550 = 5005 kN, un'armatura al corrente teso verticale di 1Ø26/10 e un'armatura distribuita interna di staffe/ganci 1Ø14/10/10 ad assorbire le trazioni orizzontali all'interno del ritegno, 1Ø14/10/20 a contribuire all'aumento di resistenza per confinamento del corrente di calcestruzzo compresso.

NOME: F	RITEGNI L	ONG. L=25m		VERIFICHE LOCALI METODO STRUT-TIE (ENV 1992, CEB-FIP MC90)						
GEOMETRIA	1				MATERIALI		AZIONI			
D ₁ (m) D ₃ (m) a (m) d (m) VERIFICA AF	0.20 0.28 0.69 0.75	B (m) θ (rad)	1.80 0.431	(24.7°)	f _{y d} (MPa) f _{ck} (MPa) α _{cc}	391.3 33.20 0.85 0.87	N _{Ed} (kN) V _{Ed} (kN)	5005.0		
- Tiranti tesi		•								
$T=T_3$ (kN) A_s (mm ²) σ_s (MPa)	3206.8 9552 335.73	(1x1Ø26/10)	σ _{Ed} /f _{yd} 85.8%	VERIFICA OK	∧ ^{Eq} (7	d			
$T_w=T_2$ (kN) A_{sw} (mm ²) σ_{sw} (MPa)	5005.0 19109 261.91	(1Ø14/10/20)	σ _{Ed} /f _{yd} 66.9%	VERIFICA OK	NEd	M.		<u>.</u>		
VERIFICA CA	ALCESTR	UZZO			<u>a</u>		72			
- Armatura d	di confinan	nento (NTC2018 §	§4.1.2.1.2.1))		12	- Wyl /	↓ ∐		
$\begin{array}{c} A_{sh} \; (mm^2) \\ \sigma_l \; (MPa) \\ \alpha \\ \sigma_2 \; (MPa) \end{array}$	13847 3.01 1.00 3.01		f _{ck,c} (MPa) f _{cd,c} (MPa) d _{d,max} (MPa)	44.9 25.4 22.05		√13 €	Thung on			
- Puntoni co C ₁ (kN) B ₁ (m) σ _{c1} (MPa)	5509.1 0.18 16.84	c	σ _{Ed} /σ _{Rd,max} 76.4%	VERIFICA OK	Į	 	C	3		
$C=C_2$ (kN) B_2 (m) σ_{c2} (MPa)	5509.1 0.67 4.57	c	σ _{Ed} /σ _{Rd,max} 20.7%	VERIFICA OK						

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	177

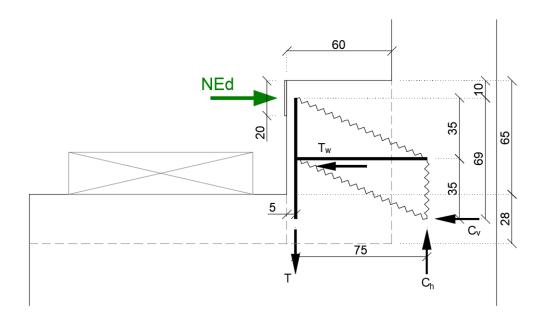


Figura 45 – Schema delle verifiche locali del ritegno longitudinale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	178

13. RIEPILOGO INCIDENZE C.A.

Dalle verifiche effettuate sugli elementi in c.a. costituenti la sottostruttura in oggetto, si riassumono di seguito i principali valori di incidenza di armature previsti rispetto ai volumi totali di calcestruzzo.

Sottostruttura	Plinto (kg/m²)	Elevazione (kg/m²)	Muri (kg/m²)	Paraghiaia (kg/m²)		
SPALLA S2	100	80	100	100	350	450

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	VI	14	04	002	В	179

14. APPOGGI E GIUNTI

14.1 Appoggi

Gli apparecchi d'appoggio sono dimensionati per le massime azioni statiche orizzontali, trasversali e verticali in condizione statica SLU e sismica SLV, con riferimento all'analisi elastica con q=1.00.

Le massime azioni sismiche assorbite dai vincoli dell'impalcato in c.a.p L=25 m sono state valutate considerando lo spettro elastico longitudinale o trasversale del primo periodo di vibrazione della pila più sollecitata in condizione sismica, nel caso del viadotto in esame quella di altezza massima H=8.00 m. Tale assunzione risulta a favore di sicurezza anche per le spalle.

Massa efficace longitudinale (kg)	1288603	(Intera campata)
Massa efficace trasversale (kg)	687982	(Mezza campata)
Massa efficace verticale (kg)	687982	(Mezza campata)
Forza sismica longitudinale (kN)	8724	
Forza sismica trasversale (kN)	3119	
Forza sismica verticale (kN)	1757	
Spettro elastico longitudinale Se(T) (g)	0,6901	(vedi calcolo pila H=8m)
Spettro elastico trasversale Se(T) (g)	0,4622	
Spettro elastico verticale Sve(T) (g)	0,2603	

	IMPALCATO CAP L=25m													
APPOGGI	Ар	poggio (F)		Арр	oggio (UI	L)	Appoggio (M)							
	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.	Vert.					
SLU PERM														
Max (kN)	±0	±0	+1350	±0	±0	+1350	±0	±0	+2750					
Min (kN)	±0	±0	+1350	±0	±0	+1350	±0	±0	+2750					
SLU														
Max (kN)	±300	±350	+3050	±0	±650	+3350	±0	±0	+4450					
Min (kN)	-±850	-±50	+950	±0	-±100	+950	±0	±0	+1550					
SLV														
Max (kN)	±4550	±1550	+1500	±0	±3100	+1500	±0	±0	+2450					
Min (kN)	-±4150	-±1550	+500	±0	-±3100	+500	±0	±0	+1200					
TOTALE (kN)	±4550	±1550	±3050	±0	±3100	±3350	±0	±0	±4450					
Spost. Max (mm)	-	-	-	±110	-	-	±110	±5	-					

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

VI14 da km 21+912,55 a km 22+037,55: Relazione di calcolo Spalla S2

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	VI	14	04	002	В	180

14.2 ESCURSIONE DEI GIUNTI

In accordo con il p.to 2.5.2.1.5.1 del RFI DTC SICS PS MA IFS 001 A, per ponti e viadotti costituiti da una serie di <u>travi semplicemente appoggiate di uguale luce</u>, l'entità dell'escursione totale dei giunti e degli apparecchi di appoggio mobili può essere valutata come segue:

$$E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2D_t + 4d_{Ed} \cdot k_2 + 2d_{eg})$$

E₁ spostamento dovuto alla variazione termica uniforme

E₂ spostamento dovuto alla risposta della struttura all'azione sismica

E₃ spostamento dovuto all'azione sismica fra le fondazioni non collegate

k₁ coefficiente di non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo

k₂ coefficiente legato alla probabilità di moto in controfase di due pile adiacenti

 $d_E = \pm \mu_d \cdot d_{Ee}$ spostamento relativo totale tra le parti, pari allo spostamento de prodotto dall'azione

sismica di progetto, calcolato come indicato nel paragrafo 7.3.3.3 delle NTC 2008

d_{Ee} spostamento corrispondente al periodo di vibrazione della pila ricavato dallo spettro

elastico in termini di spostamento e $\mu_D = q$ per $T_1 \ge T_C$ oppure $\mu_D = 1 + (q-1) \cdot T_C/T_1$ per T_1

< T_C e con la limitazione μ_D ≤ 5q-4 (q è il fattore di struttura).

d_{eg} spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare

secondo il paragrafo 3.2.3.3 delle NTC 2008. Il valore di spostamento assoluto orizzontale massimo del suolo di un punto può calcolarsi come $d_a = 0.025 \cdot a_a \cdot S \cdot T_C T_D$

a_q, S, T_C, T_D parametri sismici definiti ai capitoli precedenti

Nel caso in esame si ha che l'impalcato risulta vincolato con appoggi fissi al pulvino spalla, pertanto le fondazioni sono tra loro collegate e prive di spostamenti relativi, sia in condizione statica che sismica.

L'unico spostamento relativo al livello del giunto strutturale risulta in una minima deformazione termica del retrotrave, la quale escursione viene imposta con il valore convenzionale di ±5 mm e un varco di dimensioni 50 mm.