COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

MANDATARIA

MANDANTI

PROGETTAZIONE:

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTO 2 e 3: RADDOPPIO TERMOLI - RIPALTA

SL07 - Sottovia viabilità NV15 al km 20+113.64 (progr. ferr.) Relazione di calcolo muri

	CRI DEL		
APPALTATORE	PROGETTAZIONE		SCALA:
DIRETTORE TECNICO Ing. G.Babini A.A.D'AGOSTINO COSTRUZIONI GENERALI S.I Il Direttore Tecnico (Ing. Gianguido Babini)	DIRETTORE DELLA PRODE TAZIONE		
COMMESSA LOTTO FASE	ENTE TIPO DOC OPERA/DISCIPLINA	PROGR RFV	

02 E ZZ CL SL0700 002 B

Revis.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Prima Emissione	Ing. M. Calderoni	Dicembre 2022	Ing. V. Calzona	Dicembre 2022	S. Canale	Dicembre 2022	
В	Aggiornamento per Rdv n.0302	Ing. A. Zaza	Luglio 2023	Ing. M. Calderoni	Luglio 2023	INGE SHORINATE HOMA N°	Luglio 2023	SCHERI DELL
					1/2	7834	Le ,	MASSIMO MASSIMO
							. / \	Luglio 2023
								POWO * GASERITE

File: LI0B02EZZCLSL0700002B

n. Elab.:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 1 - RADDOPPIO RIPALTA-LESINA

SL07 - Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	1

INDICE

1 PF	REMESSA	2
2 NC	ORMATIVA DI RIFERIMENTO	3
3 M	ATERIALI	4
3.1	1 Calcestruzzo	4
3.2	2 Acciaio in barre ad aderenza migliorata B450 C	4
3.3	3 Verifica S.L.E.	5
4 IN	QUADRAMENTO GEOTECNICO	7
4.1	1 Terreno di ricoprimento/rinterro	7
4.2		7
4.3		
4.4	4 Carico accidentale di monte	7
5 C <i>A</i>	ARATTERIZZAZIONE SISMICA	8
5.1	1 Vita nominale e classe d'uso	8
5.2	2 Parametri di pericolosità sismica	8
6 ME	ETODO DI CALCOLO MURI DI SOSTEGNO	12
6.1	1 Condizioni di spinta sul muro in condizioni statiche	12
6.2		
6.3	3 Verifiche geotecniche	15
6.4	4 Verifiche strutturali	16
7 MU	URO TIPO H _{MAX} =7.81M	17
7.1	1 Parametri di calcolo	17
7.2	2 Verifiche Geotecniche	20
7.3	3 Verifiche strutturali	32
8 MU	URO TIPO H _{MAX} =4.01M	42
8.1		
8.2		
8.3	3 Combinazioni di carico	46
8.4	4 Verifiche	47
9 C	ALCOLO INCIDENZE ARMATURE	66

1. PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al Raddoppio Termoli - Lesina, Lotto 02: Termoli - Campomarino.

Nel seguito del presente paragrafo si riportano i criteri generali di Analisi ed i risultati del dimensionamento dei muri di sostegno da realizzare in prossimità delle sezioni di imbocco del Sottovia, al fine di contenere localmente il corpo del rilevato ferroviario.

A riguardo si precisa che i calcoli sono state effettuati, con riferimento ad un modello di muro di lunghezza unitaria.

Nell'immagine seguente si riporta la sezione longitudinale dell'opera.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

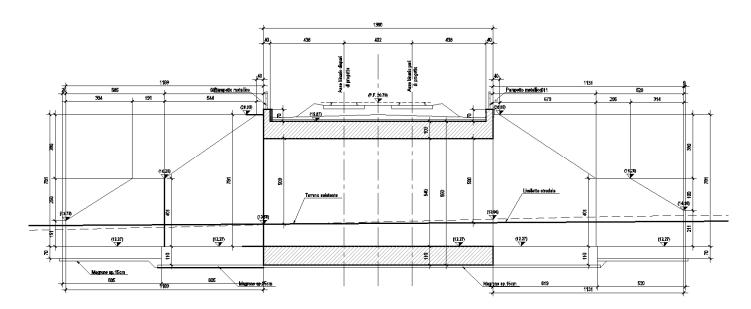


Fig. 1 -Sezione longitudinale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo)
muri				

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	3

2. NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- [N.1]. L. n. 64 del 2/2/1974 "Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- [N.2]. L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- [N.3]. Norme Tecniche per le Costruzioni D.M. 14-01-08 (NTC-2008);
- [N.4]. Circolare n. 617 del 2 febbraio 2009 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 14 gennaio 2008;
- [N.5]. Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- [N.6]. Eurocodici EN 1991-2: 2003/AC:2010.
- [N.7]. RFI DTC SI MA IFS 001 B del 22-12-17 Manuale di Progettazione delle Opere Civili.
- [N.8]. RFI DTC SI SP IFS 001 B del 22-12-17 Capitolato generale tecnico di Appalto delle opere civili.
- [N.9]. CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- [N.10]. UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	4

3. MATERIALI

Il progetto sarà realizzato utilizzando i seguenti materiali:

3.1 CALCESTRUZZO

Classe di resistenza: MAGRONE	C12/15		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	15	N/mm ²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	12.45	N/mm^2
Classe di esposizione		X0	
Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	40	N/mm^2
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33.2	N/mm^2
Resistenza a compressione cilindrica media	$f_{cm} =$	41.2	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	3.10	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	3.72	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	33643	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.17	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4.03	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18.8	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1.45	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_c =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	33.2	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2.17	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	19.92	N/mm^2
Combinazione quasi permanente	$\sigma_{c,ad} =$	14.94	N/mm^2
Classe di esposizione		XS1-XA1	
Classe di consistenza slump:		S4	
Massima dimensione aggregato		25	mm
Copriferro		50	mm

3.2 ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C

B450 C (controllato in stabilimento)

 $f_{\gamma k}$ = 450 MPa tensione caratteristica di snervamento

 f_{yd} = f_{yk} /1.15 =391 MPa tensione caratteristica di calcolo

Es = 210000 MPa modulo elastico

Stato limite di esercizio SLE:

 σ_{s} =0.8 f_{yk} = 360 MPa

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	5

3.3 VERIFICA S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.3.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI MA IFS 001 B del 22-12-17 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{yk}$.

Per il caso in esame risulta in particolare : CALCESTRUZZO

$$\sigma_{\text{cmax QP}}$$
 = (0,40 f_{cK}) = 13.28 MPa (Combinazione di Carico Quasi Permanente)

$$\sigma_{\text{cmax R}}$$
 = (0,55 f_{cK}) = 18.26 MPa (Combinazione di Carico Caratteristica - Rara)

ACCIAIO

$$\sigma_{s \text{ max}} = (0.75 \text{ fyK}) = 338 \text{ MPa}$$
 Combinazione di Carico Caratteristica(Rara)

3.3.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

În relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	6

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura			
esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile		
esigeliza			Stato limite	wd	Stato limite	wd
	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
L	Agamagairra	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁
	Malta Agamagiya	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
c	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame (XC4) così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	7

4. INQUADRAMENTO GEOTECNICO

4.1 TERRENO DI RICOPRIMENTO/RINTERRO

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 γ = 20 kN/m³ peso di volume naturale

 φ ' = 35° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

4.2 TERRENO DI FONDAZIONE

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte dalla relazione geotecnica e sono riportate sinteticamente di seguito (dedotte dalla linea alla progr. 20+125.00: Unità ba2 – Sabbia, sabbia limosa (Alluvioni attuali e recenti)

 $\gamma = 19 \div 20 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi' = 29 \div 35^{\circ}$ angolo di resistenza al taglio

Nspt = 2÷40 numero di colpi da prova SPT

 $Vs = 100 \div 250 \text{ m/s}$ velocità delle onde di taglio

Go = 20÷120 MPa modulo di deformazione a taglio iniziale

Eo = 50÷320 MPa modulo di deformazione elastico iniziale

 $k = 10^{-5} \text{ m/s}$ permeabilità

4.3 PENDIO

Per tenere in considerazione della leggera inclinazione planimetrica del muro rispetto al rilevato ferroviario e quindi della spinta del terreno esercitata sul paramento del muro si è posta una pendenza del rilevato pari a 10°

4.4 CARICO ACCIDENTALE DI MONTE

Per tenere in considerazione della leggera inclinazione planimetrica del muro rispetto al rilevato ferroviario e quindi della spinta del carico accidentale esercitata sul paramento del muro si è posto, a favore di sicurezza, un carico accidentale in testa all'opera pari a 10 kN/m².

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	8

5. CARATTERIZZAZIONE SISMICA

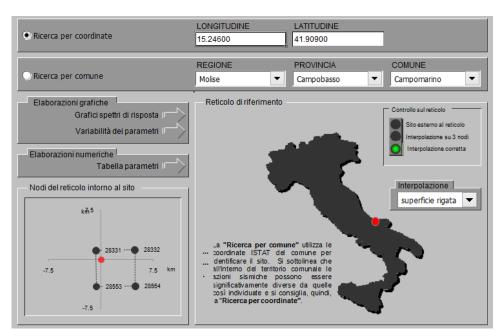
Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

5.1 VITA NOMINALE E CLASSE D'USO

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

Per l'opera in oggetto si considera una vita nominale: VN = 75 anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): C_u = 1.5.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale Vn per il coefficiente d'uso Cu, ovvero:

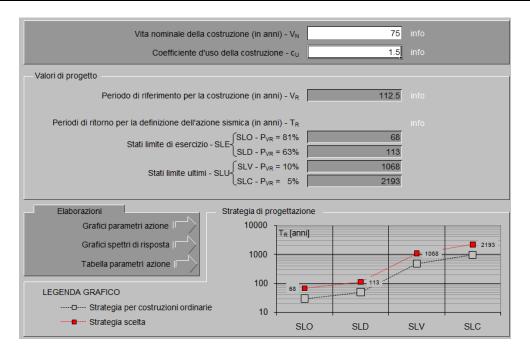

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

5.2 PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO		
LI0B	02	П	ZZ	CL	SL	07	00	002	В	9

I valori delle caratteristiche sismiche (ag, F0, T*C) per gli stati limite di normativa sono dunque:

SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	68	0.074	2.499	0.307
SLD	113	0.094	2.523	0.319
SLV	1068	0.242	2.452	0.346
SLC	2193	0.315	2.440	0.354

 $a_g \rightarrow$ accelerazione orizzontale massima del terreno, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; $T^*_C \rightarrow$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale; $S \rightarrow$ coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e

dell'amplificazione topografica (S_T).

Le accelerazioni massime per i vari stati limite di normativa nelle condizioni di sito reali sono:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO		
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	10

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.242 g
F _o	2.452
T _C *	0.346 s
Ss	1.163
Cc	1.360
S _T	1.000
q	1.000

Parametri dipendenti

S	1.163
η	1.000
T _B	0.157 s
Tc	0.470 s
T _D	2.567 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

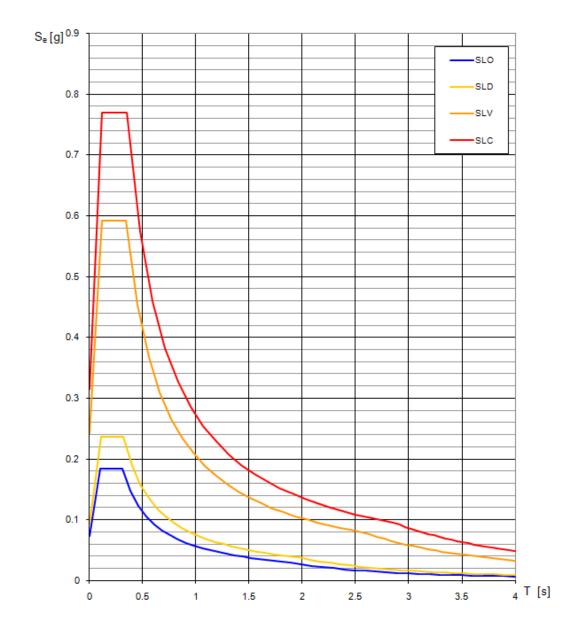
$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_B = T_C/3$$
 (NTC-07 Eq. 3.2.8)

$$T_c = C_c \cdot T_c^*$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)


$$\begin{split} 0 \leq T < T_B & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} \!+\! \frac{1}{\eta \cdot F_o} \! \left(1 \!-\! \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\alpha}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\alpha}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.281
T _B ◀	0.157	0.689
Tc◀	0.470	0.689
	0.570	0.568
	0.670	0.484
	0.770	0.421
	0.869	0.373
	0.969	0.334
	1.069	0.303
	1.169	0.277
	1.269	0.255
	1.369	0.237
	1.468	0.221
	1.568	0.207
	1.668	0.194
	1.768	0.183
	1.868	0.173
	1.968	0.165
	2.067	0.157
	2.167	0.149
	2.267	0.143
	2.367	0.137
	2.467	0.131
T₀◀	2.567	0.126
	2.635	0.120
	2.703	0.114
	2.771	0.108
	2.840	0.103
	2.908	0.098
	2.976	0.094
	3.044	0.090
	3.113	0.086
	3.181	0.082
	3.249	0.079
	3.317	0.076
	3.386	0.073
	3.454	0.070
	3.522	0.067
	3.590	0.064
	3.659	0.062
	3.727 3.795	0.060 0.058
		0.056
	3.863	
	3.932 4.000	0.054 0.052
ا	4.000	0.052

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	12

6. METODO DI CALCOLO MURI DI SOSTEGNO

L'analisi strutturale del muro di sostegno è stata condotta attraverso modelli di calcolo a mensola con incastro nella platea di fondazione (analisi del paramento) e con incastro nel paramento (analisi della fondazione lato valle e lato monte). Vista la geometria dell'opera a prevalente sviluppo longitudinale e le condizioni al contorno, le analisi e verifiche sono state effettuate prendendo in considerazione una porzione di muro corrispondente ad una larghezza unitaria. Per le verifiche strutturali si è considerato, a favore di sicurezza, l'altezza massima del paramento per il concio in esame mentre per le verifiche geotecniche si considera un valore dell'altezza del paramento a 2/3 della lunghezza del concio nel caso del solo concio in aderenza al sottopassso.

Si riporta di seguito una breve sintesi della procedura proposta per il calcolo delle spinte orizzontali agenti sulla parete dell'opera di sostegno e delle azioni verticali agenti sulla suola di fondazione.

6.1 CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI STATICHE

Considerato un terrapieno con peso per unità di volume γ, sovraccarico uniforme su terrapieno q, condizioni drenate ed assenza di falda, si assume in genere la distribuzione di pressioni riportata nella Fig. 11. Alla generica quota z dal piano campagna risulta:

$$\sigma_{a} = \gamma k_{a} z + q k_{a} - 2c' \sqrt{k_{a}}$$

$$\sigma_{n} = \gamma k_{n} z + q k_{n} - 2c' \sqrt{k_{n}}$$

Il problema si riconduce quindi al calcolo dei coefficienti di spinta attiva ka o passiva kp.

Con riferimento allo schema in figura, in condizioni statiche il coefficiente di spinta attiva e quello di spinta passiva sono valutati attraverso le espressioni di Muller-Breslau (1924):

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}\psi \cdot sen(\psi - \delta) \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\psi - \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

$$k_{p} = \frac{sen^{2}(\psi - \varphi)}{sen^{2}\psi \cdot sen(\psi + \delta) \left[1 - \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi + \varepsilon)}{sen(\psi + \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

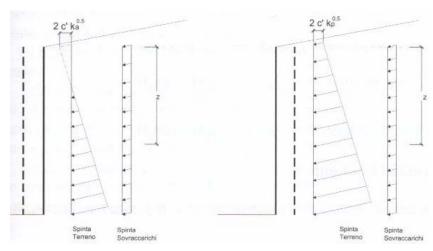


Fig. 2 – Spinte orizzontali in condizioni statiche

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	13

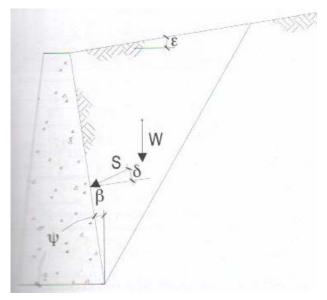


Fig. 3 – Parametri geometrici per la valutazione dei coefficienti di spinta

Il coefficiente di spinta passiva ove necessario può essere valutato con l'espressione di Caquot-Kerisel (1948) attraverso la quale si tiene in conto l'effetto sulla spinta della creazione in rottura passiva di superfici di scorrimento non piane. Non considerare tale effetto significherebbe sovrastimare considerevolmente la pressione passiva.

La distribuzione delle pressioni è da prassi considerata triangolare, mentre quella dei sovraccarichi è considerata costante con la profondità (rettangolare), per cui il punto di applicazione della spinta delle terre è posto a 1/3 dell'altezza del muro, mentre quella dei sovraccarichi è da considerarsi a metà dell'altezza del muro.

6.2 CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI SISMICHE

L'analisi delle spinte sull'opera di sostegno in condizioni sismiche è eseguita attraverso metodi pseudo-statici. Nell'ipotesi di muro libero di muoversi in testa il metodo più appropriato è quello di Mononobe-Okabe il quale rappresenta un'estensione del criterio di Coulomb in cui il cuneo di rottura si muove come un corpo rigido soggetto ad accelerazioni verticali ed orizzontali. Tali accelerazioni sono espresse in funzione di opportuni coefficienti di intensità sismica k_v e k_h , menzionati anche dalle norme vigenti. Nel metodo considerato le condizioni di equilibrio limite sono espresse ancora da coefficienti di spinta attiva e passiva definiti a partire dalla geometria del sistema e dalle condizioni sismiche di calcolo.

Considerando un terreno in assenza di falda, si definisce:

$$\theta = \arctan \frac{k_h}{1 \pm k_v}$$

ed i coefficienti di spinta sono definiti da:

$$k_{a} = \frac{sen^{2}(\psi + \phi - \theta)}{cos\theta \cdot sen^{2}\psi \cdot sen(\psi - \delta - \theta) \left[1 + \sqrt{\frac{sen(\phi + \delta) \cdot sen(\phi - \epsilon - \theta)}{sen(\psi - \delta - \theta) \cdot sen(\psi + \epsilon)}}\right]^{2}}{cos\theta \cdot sen^{2}\psi \cdot sen(\psi - \delta - \theta) \left[1 + \sqrt{\frac{sen(\phi + \delta) \cdot sen(\phi - \epsilon - \theta)}{sen(\psi - \delta - \theta) \cdot sen(\psi + \epsilon)}}\right]^{2}}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	14

$$k_{a} = \frac{\operatorname{sen}^{2}(\psi + \phi - \theta)}{\operatorname{cos}\theta \cdot \operatorname{sen}^{2}\psi \cdot \operatorname{sen}(\psi - \delta - \theta)}$$

$$k_{p} = \frac{\operatorname{sen}^{2}(\psi + \varphi - \Theta)}{\operatorname{cos}\Theta \cdot \operatorname{sen}^{2}\psi \cdot \operatorname{sen}(\psi + \Theta) \left[1 - \sqrt{\frac{\operatorname{sen}\varphi \cdot \operatorname{sen}(\varphi + \varepsilon - \Theta)}{\operatorname{sen}(\psi + \Theta)}}\right]^{2}}$$

La spinta del terreno in condizioni sismiche vale perciò:

$$S_a = \frac{1}{2} \gamma \left(1 \pm k_v \right) k_a H^2$$

$$S_{p} = \frac{1}{2} \gamma \left(1 \pm k_{v} \right) k_{p} H^{2}$$

con inclinazione del piano di rottura valutabile attraverso l'espressione:

$$\alpha = \phi - \theta + \arctan \left[\sqrt{\frac{P \cdot (P+Q) \cdot (1+Q \cdot R) - P}{1+R \cdot (P+Q)}} \right]$$
essendo:
$$P = \tan(\phi - \theta - \varepsilon)$$

$$Q = \cot(\phi - \theta - \beta)$$

$$R = \tan(\theta + \beta + \delta)$$

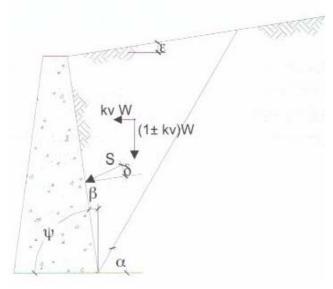


Fig. 4 – Azioni sismiche pseudo-statiche

Nel caso di terreno con presenza di falda e permeabilità inferiore a $5x10^{-4}$ m/sec si trascurano gli effetti idrodinamici dell'acqua maggiorando l'angolo θ secondo l'espressione:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	ca	Icol	0
muri				

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	PLINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	15

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 \pm k_v}\right)$$

e la spinta agente sulla parete si definisce solo a mezzo di effetti statici:

$$S_a = \frac{1}{2} \gamma' (1 + k_v) k_a H^2 + \frac{1}{2} \gamma_w H^2$$

Nel caso di valori maggiori di permeabilità va considerato anche l'effetto dinamico valutabile con l'espressione:

$$E_{wd} = \frac{7}{2} k_h \gamma_w H^2$$

azione applicata ad un'altezza pari ad 0.4H dalla base del muro.

Nell'analisi pseudostatica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico. (§ 7.11.6.2.1 DM2008)

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo					
	A	B, C, D, E				
	β_{m}	β_{m}				
$0.2 < a_g(g) \le 0.4$	0,31	0,31				
$0,1 < a_{g}(g) \le 0,2$	0,29	0,24				
$a_{g}(g) \leq 0,1$	0,20	0,18				

6.3 VERIFICHE GEOTECNICHE

Sono state condotte, in accordo con la normativa vigente, le seguenti verifiche globali di carattere geotecnico:

- verifica al ribaltamento, eseguita con riferimento allo spigolo anteriore della platea di fondazione, confrontando il momento stabilizzante Ms dovuto alle forze verticali con il momento ribaltante Mr provocato dalle forze orizzontali
- <u>verifica allo scorrimento</u>, eseguita controllando che la somma delle forze orizzontali sia sufficientemente minore della forza di attrito che si può esplicare per effetto dei carichi verticali N al contatto tra platea di fondazione e terreno. Il coefficiente di attrito f è assunto pari a: $f = tg(\delta) = tg(\phi)$ e si trascura il contributo stabilizzante dovuto alla spinta passiva del terreno anteriore.
- verifica al carico limite dell'insieme fondazione-terreno utilizzando l'espressione della portanza unitaria limite secondo la teoria di Meyerhoff.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	16

6.4 VERIFICHE STRUTTURALI

Sono state condotte, infine, le verifiche locali degli elementi che costituiscono l'opera di sostegno, valutando in corrispondenza delle sezioni caratteristiche le sollecitazioni esterne e i corrispondenti stati tensionali. Le sezioni di riferimento sono indicate nei report di calcolo. Le azioni sul paramento sono valutate considerando quest'ultimo incastrato nella soletta di fondazione. Le azioni sulla soletta di fondo (monte e valle) sono valutate col metodo del trapezio delle tensioni considerando questa incastrata al paramento.

7. MURO TIPO HMAX=7.81M

Si riportano di seguito le caratteristiche geometriche del muro di progetto.

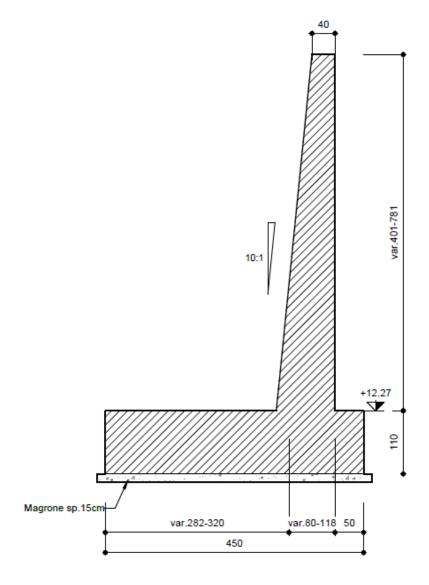


Fig. 5 – Sezione di riferimento muro tipo H_{max}=7.81m

L'altezza di calcolo è assunta, a favore di sicurezza, pari all'altezza massima del muro per le verifiche strutturali ed all'altezza del paramento nella posizione posta a 2/3 della lunghezza del concio per le verifiche geotecniche pari a 6.22m.

7.1 PARAMETRI DI CALCOLO

7.1.1 Sovraccarico permanente

Nelle analisi svolte si considera un riempimento a tergo del muro composto da terreno di riempimento per il quale si assumono i seguenti parametri geotecnici caratteristici in condizioni drenate, relativi a nuovi rilevati ferroviari:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	18

γ_k = 20 kN/m³ peso dell'unità di volume;

• $\varphi_k = 35^\circ$ angolo di resistenza al taglio;

• $c_k = 0$ coesione;

• $\delta_k = 23.3^{\circ}$ angolo di attrito tra paramento verticale muro e terreno.

7.1.2 Sovraccarico accidentale

A favore di sicurezza si considera un sovraccarico accidentale pari a **10,00 kN/m²** per tener conto della presenza dei mezzi d'opera e dell'accatastamento dei materiali in fase di scavo.

7.1.3 Forze inerziali

In condizioni sismiche le forze d'inerzia orizzontali e verticali su paramento, soletta di fondazione e terreno di riempimento su soletta di monte sono valutate attraverso le espressioni $F_h = k_h \cdot W$ e $F_v = k_v \cdot W$, dove W è il peso delle masse oscillanti applicato nei rispettivi baricentri ed i parametri di intensità sismica sono definiti al capitolo 6.

7.1.4 Combinazioni di carico

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nelle norme riportate nel Capitolo 2.

Per il muro di sostegno sono state effettuate le verifiche con riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento;

secondo l'approccio progettuale "Approccio 2" con la combinazione (A1+M1+R3) e tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.5.I per le azioni, i parametri geotecnici e per i coefficienti di combinazione delle azioni:

comb. $2 \rightarrow (A1+M1+R3)$

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale \$\gamma_F (0 \gamma_E)\$	EQU	(A1) STR	(A2) GEO
	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
v ai iauii	Sfavorevole	$\gamma_{ m Qi}$	1,5	1,5	1,3

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

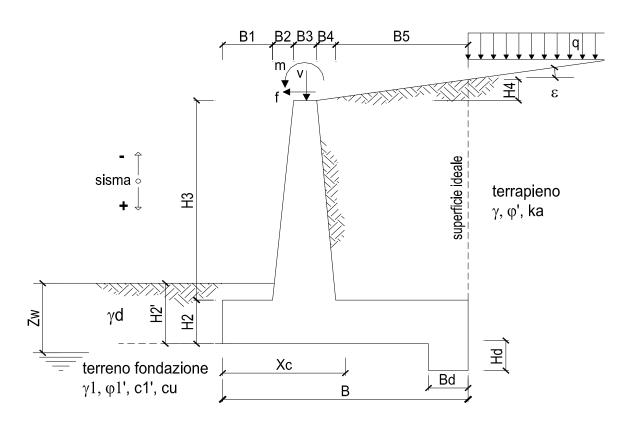
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	19

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	Υ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

$ext{Tab. 6.5.I}$ - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di calcolo
muri	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	20

7.2 VERIFICHE GEOTECNICHE

7.2.1 Dati di progetto

DATI DI PROGETTO:

Geometria del Muro			
Elevazione	H3 =	6.22	(m)
Aggetto Valle	B2 =	= 0.00	(m)
Spessore del Muro in Testa	B3 =	= 0.40	(m)
Aggetto monte	B4 =	0.62	(m)
Geometria della Fondazione			
Larghezza Fondazione	B =	= 4.50	(m)
Spessore Fondazione	H2 =	= 1.10	(m)
Suola Lato Valle	B1 =	= 0.50	(m)
Suola Lato Monte	B5 =	2.98	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	2.25	(m)
Peso Specifico del Calcestruzzo	γcls =	= 25.00	(kN/m³)

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	21

kv 0.0436

			valori caratte	eristici	valori di progetto		
Dati (<u>Geotecnici</u>			SLE		STR/GEO	EQU
eno	Angolo di attrito del terrapieno	(°)	φ'	35.00		35.00	29.26
Dati Terrapieno	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.00		20.00	20.00
	Angolo di attrito terreno-superficie ideale	(°)	δ	23.33		23.33	19.50
Fondazione	Condizioni		drenate	○ Non Dr	enate		
daz	Coesione Terreno di Fondazione	(kPa)	c1'	0.00		0.00	0.00
Fer	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	30.00		30.00	24.79
	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.00		20.00	20.00
Dati Terreno	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.00	20.00		20.00
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	13.00			
	Modulo di deformazione	(kN/m²)	Е	185000)		
	Accelerazione sismica		a _q /g	0.242	(-)		
	Coefficiente Amplificazione Stratigrafico		Ss	1.163	(-)		
:5	Coefficiente Amplificazione Topografico		S _T	1	(-)		
Sismici	Coefficiente di riduzione dell'accelerazione massima		β_s	0.31	(-)		
Dati 9	Coefficiente sismico orizzontale		kh (0.08724826	(-)		
ä	Coefficiente sismico verticale		kv	0.0436	(-)		

			SLE		STR/GEO		EC	บุบ	
	Coeff. di Spinta Attiva Statico	ka	0.275		0.275		0.351		
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.339		0.339		0.429		
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.346		0.346		0.438		
Sp. effi	Coeff. Di Spinta Passiva	kp	3.000		3.000		2.444		
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.851		2.851		2.309		
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.837		2.837		2.296		

7.2.2 Analisi dei carichi

Coefficiente sismico verticale Muro libero di traslare o ruotare

		valori caratteristici	valori di p	orogetto		
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte si no	(kN/m ²)	qp	0.00	0.00	0.00
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Ğ E	Forza Verticale in Testa permanente	(kN/m)	vp	0.00	0.00	0.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	10.00	15.00	15.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
ondizior Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
<u> </u>	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	ite Ψ1	0.50	condizione quasi perma	anente Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
O w	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

7.2.3 Verifiche

Coefficienti di sicurezza

	Scorrimento	Ribaltamento	Carico limite
Statico	2.31	6.64	1.81
Sismico	1.98	3.71	1.44

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	22

FORZE VERTICALI

- Peso del Mui	ro (Pm)		SLE	STR/GEO	EQU
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	62.20	62.20	55.98
Pm3 =	(B4*H3*γcls)/2	(kN/m)	60.65	60.65	54.58
Pm4 =	$(B*H2*_{\gamma}cls)$	(kN/m)	123.75	123.75	111.38
Pm5 =	(Bd*Hd [*] γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	246.60	246.60	221.94
- Peso del terri Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	350.68 0.00 48.52 0.00 399.20	350.68 0.00 48.52 0.00 399.20	315.62 0.00 43.66 0.00 359.28
Sovr acc. Stat	accidentale sulla scarpa di monte del muro q * (B4+B5) n qs * (B4+B5)	(kN/m) (kN/m)	35.99 0	53.985	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	43.54	43.54	39.19
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	70.35	70.35	63.31
Mm4 =	Pm4*(B/2)	(kNm/m)	278.44	278.44	250.59
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	392.33	392.33	353.09
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	1083.44	1083.44	975.09
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	68.89	68.89	62.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	1152.33	1152.33	1037.10

⁻ Sovraccarico accidentale sulla scarpa di monte del muro

Sovr acc. Stat *(B1+B2+B3+1/2*(B4+B5)) (kNm/m) 97.155005 145.732508

Sovr acc. Sism *(B1+B2+B3+1/2*(B4+B5)) (kNm/m) 0

LINEA PESCARA - BARI

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	23

INERZIA DEL	MURO E DEL TERRAPIENO		
- Inerzia orizzo	ontale e verticale del muro (Ps)		
Ps h=	Pm*kh	(kN/m)	21.51
Ps v=	Pm*kv	(kN/m)	10.76
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts	3)	
Ptsh =	Pt*kh	(kN/m)	34.83
Ptsv =	Pt*kv	(kN/m)	17.41
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (M	IPs h)	
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	22.85
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	16.79
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	5.94
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	45.58
	erticale di momento dovuto all'inerzia del muro (MPs	-	
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	1.90
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	3.07
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	12.15
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	17.11
	rizzontale di momento dovuto all'inerzia del terrapier	•	
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	128.81
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	22.21
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	151.02
	erticale di momento dovuto all'inerzia del terrapieno	` '	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	47.28
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	4.38
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	51.66

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di ca	Icolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	24

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5* _γ '*(H2+H3+H4+Hd)²*ka	(kN/m)	130.96	170.25	180.38
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	17.89	26.84	33.60
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	120.25	156.33	170.03
Sqh perm =	Sq perm*cosδ	(kN/m)	0.00	0.00	0.00
Sqh acc =	Sq acc*cos _δ	(kN/m)	16.43	24.64	31.67
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	51.86	67.42	60.21
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	7.09	10.63	11.22
- Spinta passiv	a sul dente				
Sp=½*g1'*Hd2	*\\\^2*\gamma_1\'*\text{Hd}^2*\text{kp+(2*c}_1\'*\text{kp}^{0.5}+\gamma_1\'*\text{kp*H2')*Hd}	(kN/m)	0.00	0.00	0.00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRAC	CARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	293.42	381.44	414.87
MSt2 =	Stv*B	(kNm/m)	233.39	303.40	270.96
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	60.13	90.19	115.93
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	31.88	47.83	50.48
$MSp = \gamma 1'*I$	-ld ³ *kp/3+(2*c1'*kp ^{0.5} + _γ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	$(vp+v)^*(B1 + B2 + B3/2)$	(kNm/m)	0.00	0.00	0.00

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcol	0
muri				

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	25

1

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze verticali (N)

Pm + Pt + v + Stv + Sqv perm + Sqv acc 723.85 (kN/m)

Risultante forze orizzontali (T)

Sth + Sqh + f 180.97 (kN/m)

Coefficiente di attrito alla base (f)

tg_{φ1}' 0.58 (-)

2.31 Fs scorr. (N*f + Sp) / T1.1

VERIFICA AL RIBALTAMENTO (EQU)

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 1390.19 (kNm/m)

Momento ribaltante (Mr)

MSt + MSq + Mfext1+ Mfext2 + MSp 209.35 (kNm/m)

Fs ribaltamento 6.64 Ms / Mr >

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	26

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risult	Risultante forze verticali (N)			Nmax	
N	=	Pm + Pt + v + Stv + Sqv (+ Sovr acc)	723.85	777.83	(kN/m)
Risult	ante forze	e orizzontali (T)			
Т	=	Sth + Sqh + f - Sp	180.97	180.97	(kN/m)
Risult	ante dei ı	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	1424.25	1569.98	(kNm/m)
Mome	ento rispe	tto al baricentro della fondazione (M)			
M	=	Xc*N - MM	204.40	180.13	(kNm/m)

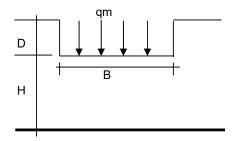
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz.	0.00 30.00		(kPa) (°)
γ1	peso unità di volume terreno fondaz.	10.00		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	15.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.28 3.94	0.23 4.04	(m) (m)
l valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			,
$Nq = tg^{2}(45 + t_{0})$ $Nc = (Nq - 1)/t_{0}$ $N_{\gamma} = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)	18.40 30.14 22.40		(-) (-)
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i_{\gamma} = (1 - T/(N + ic = iq))$,	0.56 0.54 0.42	0.59 0.54 0.42	(-) (-)
(fondazione na	striforme m = 2)			
qlim	(carico limite unitario)	341.20	348.47	(kN/m²)

1.85 Nmin **FS** carico limite F = qlim*B*/N1.4 1.81 Nmax



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	27

CEDIMENTO DELLA FONDAZIONE

 $\delta = \mu 0 * \mu 1 * qm * B* / E$ (Christian e Carrier, 1976)

N 701.20 (kN/m) M 107.20 (kNm/m) e=M/N 0.15 (m) B* 4.19 (m)

Profondità Piano di Posa della Fondazione

D = 1.50 (m) $D/B^* = 0.36$ (m)

 $Hs/B^* = 3.10$ (m)

Carico unitario medio (qm)

qm = N / (B - 2*e) = N / B* = 172.58 (kN/mq)

Coefficiente di forma μ 0 = f(D/B)

 μ 0 = 0.945

Coefficiente di profondità $\mu 1 = f(H/B)$

 $\mu 1 = 0.86$ (-)

(-)

Cedimento della fondazione

 $\delta = \mu 0 * \mu 1 * qm * B* / E = 3.18$ (mm)

CONDIZIONE SISMICA+

		_			
	TERRENO E DEL SOVRACCARICO ione sismica +		SLE	STR/GEO	EQU
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	130.96	130.96	163.98
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	34.00	34.00	39.10
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	120.25	120.25	154.57
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	31.22	31.22	36.85
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	51.86	51.86	54.74
Sst1v sism =	Sst1 sism*senδ	(kN/m)	13.47	13.47	13.05
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen δ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1+kv)$) Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + _γ 1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	28

- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +	co	SLE	STR/GEO	EQU
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	293.42	293.42	377.15
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	76.19	76.19	89.92
MSst2 stat =	Sst1v stat* B	(kNm/m)	233.39	233.39	246.33
MSst2 sism =	Sst1v sism* B	(kNm/m)	60.60	60.60	58.73
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSsq2 =	Ssq1v*B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ_1 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.00	
VERIFICA AL	LO SCORRIMENTO				
Risultante forze N =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		739.30	(kN/m)	
Risultante forze T =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		207.82	(kN/m)	
Coefficiente di	attrito alla base (f)				
f =	tg _{\phi} 1'		0.58	(-)	
Fs =	(N*f + Sp) / T		2.05	>	1.
VERIFICA AL	. RIBALTAMENTO				
Momento stabi Ms =	lizzante (Ms) Mm + Mt + Mfext3		1544.66	(kNm/m)	
Momento ribalt Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		289.83	(kNm/m)	
Fr =	Ms / Mr		5.33	>	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	29

Risulta	inte forze	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	739.30	739.30	(kN/m)
_	inte forze =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	207.82		(kN/m)
Risultai MM =		momenti rispetto al piede di valle (MM) Σ M	1341.22	1341.22	(kNm/m)
Momen M =	nto rispe =	etto al baricentro della fondazione (M) Xc*N - MM	322.20	322.20	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ 1' γ 1 $q_0 = \gamma d*H2'$	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz. sovraccarico stabilizzante	0.00 30.00 10.00		(kN/mq) (°) (kN/m³) (kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.44 3.63	0.44 3.63	(m) (m)
l valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + t_{0})$ $Nc = (Nq - 1)/t_{0}$ $N_{\gamma} = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)	18.40 30.14 22.40		(-) (-) (-)
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i_{\gamma} = (1 - T/(N + iq))$	91,,,	0.52 0.49 0.37	0.52 0.49 0.37	(-) (-) (-)
(fondazione na	striforme m = 2)			
qlim	(carico limite unitario)	293.65	293.65	(kN/m ²)

Nmin

Nmax

1.44

1.44

1.4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	30

1.98 >

1.1

CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
•	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	130.96	130.96	163.98
Sst1 sism =	·	(kN/m)	22.83	22.83	25.09
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	120.25	120.25	154.57
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	20.97	20.97	23.65
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	51.86	51.86	54.74
Sst1v sism =	Sst1 sism*senδ	(kN/m)	9.04	9.04	8.38
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1-kv)$	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO	Г	SLE	STR/GEO	EQU

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	со	SLE	STR/GEO	EQU
- Condizione s	ismica -		JLL	STRIGEO	
MSst1 stat = MSst1 sism= MSst2 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B	(kNm/m) (kNm/m) (kNm/m)	293.42 51.16 233.39	293.42 51.16 233.39	377.15 57.71 246.33
MSst2 sism = MSsq1 = MSsq2 =	Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B	(kNm/m) (kNm/m) (kNm/m)	40.69 0.00 0.00	40.69 0.00 0.00	37.69 0.00 0.00
MSp =	γ ₁ 1*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + _γ 1'*kps**H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 = Mfext3 =	(fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m)		0.00 0.00	

VERIFICA ALLO SCORRIMENTO

Risu N	ltante forz =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	678.53	(kN/m)
_	ltante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	197.56	(kN/m)
Coet f	ficiente di =	attrito alla base (f) $tg_{\phi 1}{}^{\prime}$	0.58	(-)

Fs	= (N*f	+	Sı	מ) /	Ι Τ	Ī

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		

FS carico limite

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	31

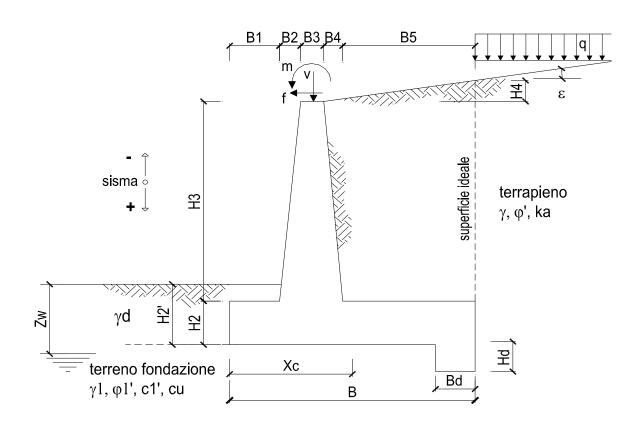
1.47

1.47

1.4

Nmin

Nmax


F = qlim*B*/N

	LIUB	UZ			CL	3L	U7	00	002	E
VERIFICA AL RIBALTAMENTO										
•										
Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3						1544.6	6 (k	Nm/m)		
Momento ribaltante (Mr) Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 416.21 (kNm/m)										
Fr = Ms/Mr						3.71		>	33-	1
VERIFICA A CARICO LIMITE DELLA FONDAZIONE										
Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v +	Ssq1v + Ps v	+ Pts	,			Nmi 678.5	55	Nmax 678.53	(kN/m)	
Risultante forze orizzontali (T)										
T = Sst1h + Ssq1h + fp + fs +Ps	s h + Ptsh - S	P				19	7.56		(kN/m)	
Risultante dei momenti rispetto al piede di va	alle (MM)									
$MM = \sum M$						1208.7	9	1208.79	(kNm/m)
Momento rispetto al baricentro della fondazione M = Xc*N - MM	one (M)					317.9	0	317.90	(kNm/m)
						011.0	•	017.00	(KI WIII	,
Formula Generale per il Calcolo del Car	ico Limite Ur	itrario	(Bri	nch-Ha	ansen, '	1970)				
Fondazione Nastriforme										
qlim = c'Nc*ic + q ₀ *Nq*iq + 0,5*γ1*B*Nγ*iγ										
c1' coesione terreno di fondaz.						C	0.00		(kN/mq)	
φ1' angolo di attrito terreno di fo							0.00		(°)	
γ ₁ peso unità di volume terreno	fondaz.					1	0.00		(kN/m ³)	
$q_0 = \gamma d^*H2'$ sowraccarico stabilizzante						1	5.00		(kN/m ²)	
e = M / N eccentricità						0.4	7	0.47	(m)	
B*= B - 2e larghezza equivalente						3.5	6	3.56	(m)	
I valori di Nc, Nq e Ng sono stati valutati con	le espression	i sugg	erite d	la Ves	ic (1975)				
Nq = $tg^2(45 + \phi'/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd	i)					1	8.40		(-)	
Nc = $(Nq - 1)/tg(\varphi')$ (2+ π in cond.						3	0.14		(-)	
$N_{\gamma} = 2*(Nq + 1)*tg(\phi')$ (0 in cond. nd))					2	2.40		(-)	
I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)										
$iq = (1 - T/(N + B*c'cotg_{\phi}))^m$ (1 in cond.)	nd)					0.5	0	0.50	(-)	
ic = iq - (1 - iq)/(Nq - 1)						0.4	7	0.47	(-)	
$i\gamma = (1 - T/(N + B*c'cotg_{\phi}))^{m+1}$						0.3	6	0.36	(-)	
(fondazione nastriforme m = 2)										
qlim (carico limite unitario)						280.8	2	280.82	(kN/m²)	

7.3 VERIFICHE STRUTTURALI

7.3.1 Dati di progetto

DATI DI PROGETTO:

Geometria del Muro

Geometra dei waro			
Elevazione	H3 =	7.81	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.78	(m)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

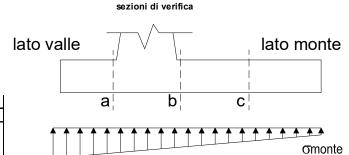
SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	33

7.3.2 Verifiche strutturali - Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

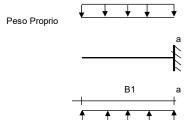

ovalle = N / A + M / Wgg

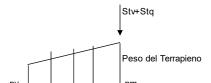
 σ monte = N / A - M / Wgg

 $A = 1.0*B = 4.50 (m^2)$

 $Wgg = 1.0*B^2/6 = 3.38$ (m³)

caso	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	892.07	452.63	332.35	64.13
	946.06	428.36	337.16	83.31
	910.03	617.41	385.17	19.29
sisma+	910.03	617.41	385.17	19.29
sisma-	835.49	600.55	363.61	7.72
	835.49	600.55	363.61	7.72


Mensola Lato Valle


Peso Proprio. PP = 27.50 (kN/m)

Ma = $\sigma^{1*}B^{12}/2 + (\sigma^{1*}B^{12}/3 - PP^*B^{12}/2^*(1\pm kv))$

 $Va = \sigma^{1*}B1 + (\sigma^{4}Valle - \sigma^{1})^{*}B1/2 - PP^{*}B1^{*}(1\pm kv)$

caso	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	332.35	302.55	36.86	144.97
	337.16	308.95	37.53	147.78
sisma+	385.17	344.51	42.86	178.23
SiSilia	385.17	344.51	43.01	178.23
sisma-	363.61	324.06	40.52	167.45
	363.61	324.06	40.37	167.45

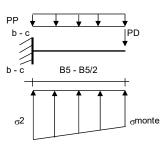
Mensola Lato Monte

PP	=	27.50	(kN/m^2)
PD	=	0.00	(kN/m)

peso proprio soletta fondazione peso proprio dente

σvalle

		Nmin	N max stat	N max sism	
pm	=	156.20	171.20	156.20	(kN/m ²
pm pvb	=	156.20	171.20	156.20	(kN/m ²
pvc	=	156.20	171.20	156.20	(kN/m ²


Mb=(_{Gmonte}-(pvb+PP)*(1±kv))*B5²/2+(_G2b-_{Gmonte})*B5²/6-(pm-pvb))*(1±kv)*B5²/3+ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}}(\text{pvc+PP})^*(1\pm \text{kv}))^*(\text{B5/2})^2/2 + (\sigma^2\text{Cc-}\sigma_{\text{monte}})^*(\text{B5/2})^2/6 - (\text{pm-pvc})^*(1\pm \text{kv})^*(\text{B5/2})^2/3 + \\ & - (\text{Stv+Sqv})^*(\text{B5/2}) - \text{PD}^*(1\pm \text{kv})^*(\text{B5/2-Bd/2}) - \text{PD}^*\text{kh}^*(\text{Hd+H2/2}) + \text{Msp+Sp}^*\text{H2/2} \end{aligned}$

Vb=(_{Gmonte}-(pvb+PP)*(1±kv))*B5+(_G2b-_{Gmonte})*B5/2-(pm-pvb))*(1±kv)*B5/2-(Stv+Sqv)-PD*(1±kv)

 $Vc = (G_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (G_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)/2 + (Sqv + Sqv) - PD^*(1 \pm kv)/2 - (Sqv + Sqv) - (Sqv + Sqv$

caso	σmonte	σ2b	Mb	Vb	_σ 2c	Мс	Vc
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m²]	[kNm]	[kN]
statico	64.13	232.15	-570.63	-213.07	148.14	-249.99	-222.16
Statico	83.31	242.33	-565.93	-213.97	162.82	-247.33	-219.43
	19.29	248.49	-654.39	-259.79	133.89	-269.76	-259.06
sisma+	19.29	248.49	-654.39	-259.79	133.89	-269.76	-259.06
-1	7.72	230.66	-626.49	-249.49	119.19	-257.13	-248.43
sisma-	7.72	230.66	-626.49	-249.49	119.19	-257.13	-248.43

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	34

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

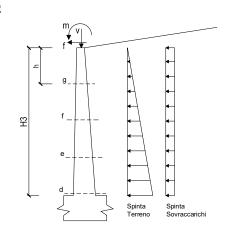
Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz}.*(1±kv)-Ka_{orizz}.)*h²*h/2 o *h/3

Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² M_{ext} = m+f*h $M_{inerzia} = \sum Pm_i *b_i *kh$

 N_{ext} = v

 $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$

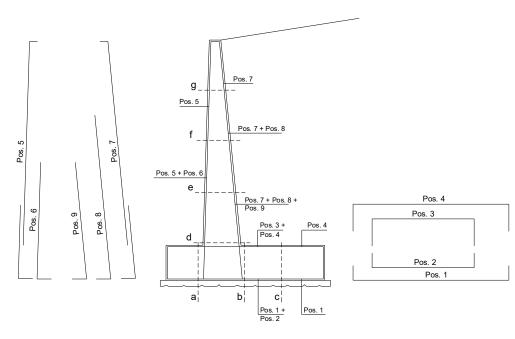

Vt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1 \pm kv) - Ka_{orizz.}) * h^2$

Vq = Ka_{orizz}*q*h

 $V_{\text{ext}} = f$

 $V_{inerzia} = \sum Pm_i^*kh$



condizione statica

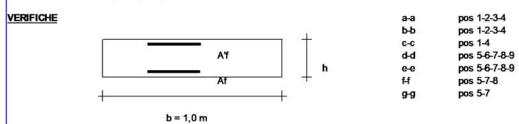
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
00210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.81	463.29	102.67	0.00	565.95	0.00	154.25	154.25
e-e	5.86	195.45	57.75	0.00	253.20	0.00	101.41	101.41
f-f	3.91	57.91	25.67	0.00	83.58	0.00	58.09	58.09
g-g	1.95	7.24	6.42	0.00	13.66	0.00	24.28	24.28

sezione	h	Vt	Vq	V _{ext}	V_{tot}
00210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.81	177.96	26.29	0.00	204.25
e-e	5.86	100.10	19.72	0.00	119.82
f-f	3.91	44.49	13.15	0.00	57.64
g-g	1.95	11.12	6.57	0.00	17.70

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	35

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	24		5	5.0	26	П
2	5.0	24	i l	6	0.0	16	
3	0.0	16		7	5.0	24	
4	10.0	26		8	5.0	16	
				9	0.0	12	

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

Sez.	M	N	h	Af	A'f	Mu	Mu/Med
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)	(-)
a - a	43.01	0.00	1.10	45.24	53.09	971.01	22.57
b - b	-654.39	0.00	1.10	53.09	45.24	1362.16	2.08
c - c	-269.76	0.00	1.10	53.09	22.62	1382.13	5.12
d - d	565.95	154.25	1.18	32.67	26.55	1214.43	2.15
e -e	253.20	101.41	0.99	32.67	26.55	989.29	3.91
f - f	83.58	58.09	0.79	32.67	26.55	767.13	9.18
a - a	13.66	24.28	0.60	22.62	26.55	454.52	33.28

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	178.23	1.10	431.86	8	40	40	21.8	287.66	Armatura a taglio non necessaria
b - b	259.79	1.10	455.53	8	40	40	21.8	287.66	Armatura a taglio non necessaria
C - C	259.06	1.10	455.53	8	40	40	21.8	287.66	Armatura a taglio non necessaria
d - d	204.25	1.18	424.54	8	40	40	21.8	309.79	Armatura a taglio non necessaria
e -e	119.82	0.99	379.22	8	40	40	21.8	255.85	Armatura a taglio non necessaria
f - f	57.64	0.79	332.14	8	40	40	21.8	201.92	Armatura a taglio non necessaria
g - g	17.70	0.60	249.79	8	40	40	21.8	147.98	Armatura a taglio non necessaria

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

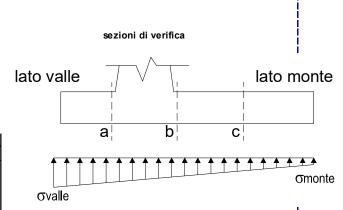
SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	36

7.3.3 Verifiche strutturali – Stato Limite di fessurazione

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

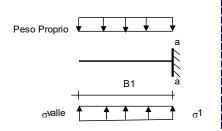

ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

A = 1.0*B = 4.50 (m²)

 $Wgg = 1.0*B^2/6 = 3.38 (m^3)$

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
Eroa	860.40	276.07	273.00	109.40
Freq.	878.39	267.98	274.60	115.80
Q.P.	856.09	241.23	261.72	118.77
Q.P.	856.09	241.23	261.72	118.77



Mensola Lato Valle

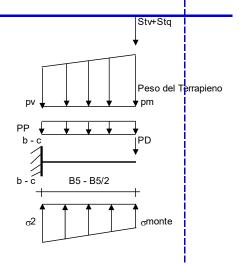
Peso Proprio. PP = 27.50 (kN/m)

Ma = $\sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1±kv)$

caso	σvalle	σ1	Ma
caso	[kN/m ²]	[kN/m ²]	[kNm]
Freq.	273.00	254.82	29.93
гіец.	274.60	256.95	30.15
0.0	261.72	245.83	28.62
Q.P.	261.72	245.83	28.62

Mensola Lato Monte

PP = 27.50 (kN/m²) peso proprio soletta fondazione PD = 0.00 (kN/m) peso proprio dente


Nmin N max Freq N max QP

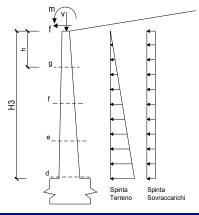
pm = 156.20 163.70 156.20 (kN/m²) pvb = 156.20 163.70 156.20 (kN/m²) pvc = 156.20 163.70 156.20 (kN/m²)

$$\label{eq:mbeta} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP))^*B5^2 / 2 + (\sigma^2 2b - \sigma_{monte})^*B5^2 / 6 - (pm - pvb))^*B5^2 / 3 + \\ &- (Stv + Sqv)^*B5 - PD^* (B5 - Bd/2) + Msp + Sp^*H2 / 2 \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} \cdot (\text{pvc} + \text{PP}))^* (\text{B5/2})^2 / 2 + (\sigma_{\text{2c} - \sigma_{\text{monte}}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (\text{B5/2} - \text{Bd/2}) + \text{Msp} + \text{Sp}^* \text{H2/2} \end{aligned}$

	omonte	σ2b	Mb	σ2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
	109.40	211.89	-394.33	160.64	-174.26
Freq.	115.80	215.28	-402.70	165.54	-175.86
ΟB	118.77	208.32	-356.02	163.54	-157.98
Q.P.	118.77	208.32	-356.02	163.54	-157.98

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

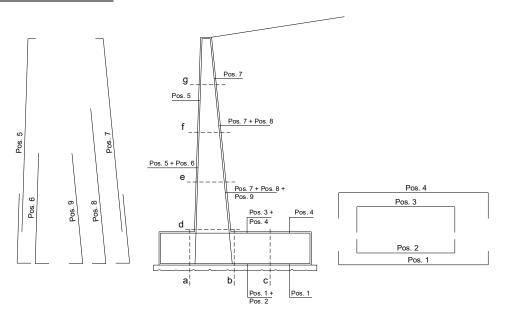

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	37

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2}$ Ka_{orizz}* γ *h²*h/3 Mq = $\frac{1}{2}$ Ka_{orizz}*q*h² = m+f*h $\mathsf{M}_{\mathsf{ext}}$ N_{ext} = v


condizione Frequente

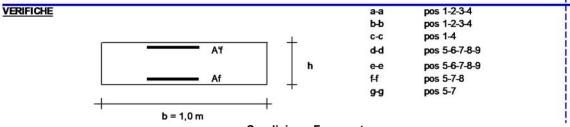
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.81	356.37	51.33	0.00	407.71	0.00	154.25	154.25
e-e	5.86	150.35	28.88	0.00	179.22	0.00	101.41	101.41
f-f	3.91	44.55	12.83	0.00	57.38	0.00	58.09	58.09
g-g	1.95	5.57	3.21	0.00	8.78	0.00	24.28	24.28

condizione Quasi Permanente

			COHUIZION	e Quasi reii	Hallelite			
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
302.01.0	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.81	356.37	0.00	0.00	356.37	0.00	154.25	154.25
e-e	5.86	150.35	0.00	0.00	150.35	0.00	101.41	101.41
f-f	3.91	44.55	0.00	0.00	44.55	0.00	58.09	58.09
g-g	1.95	5.57	0.00	0.00	5.57	0.00	24.28	24.28

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA


SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	38

ARMATUR	RE.							
pos	n°/ml	ф	II strato	pos	n°/ml	ф	∏ strato	
1	5.0	24		5	5.0	26		
2	5.0	24		6	0.0	16		
3	0.0	16		7	5.0	24		
4	10.0	26		8	5.0	16		
				9	0.0	12		

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

Condizione Frequente

Sez.	М	N	h	Af	A'f	$\sigma^{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	30.15	0.00	1.10	45.24	53.09	0.16	6.94	0.006	0.300
b - b	-402.70	0.00	1.10	53.09	45.24	2.10	79.67	0.065	0.300
C - C	-175.86	0.00	1.10	53.09	22.62	1.01	35.16	0.029	0.300
d - d	407.71	154.25	1.18	32.67	26.55	-0.59	-63.44	-0.059	0.300
e -e	179.22	101.41	0.99	32.67	26.55	-0.56	-47.08	-0.044	0.300
f - f	57.38	58.09	0.79	32.67	26.55	-0.65	-37.48	-0.035	0.300
g - g	8.78	24.28	0.60	22.62	26.55	0.42	11.54	0.013	0.300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	$\sigma_{\rm C}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	28.62	0.00	1.10	45.24	53.09	0.15	6.59	0.006	0.200
b - b	-356.02	0.00	1.10	53.09	45.24	1.86	70.43	0.057	0.200
c - c	-157.98	0.00	1.10	53.09	22.62	0.91	31.59	0.026	0.200
d - d	356.37	154.25	1.18	32.67	26.55	-0.63	-65.42	-0.061	0.200
е -е	150.35	101.41	0.99	32.67	26.55	-0.68	-51.91	-0.048	0.200
f - f	44.55	58.09	0.79	32.67	26.55	-1.89	-85.86	-0.080	0.200
g - g	5.57	24.28	0.60	22.62	26.55	0.12	0.87	0.001	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Pro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	39

7.3.4 Verifiche strutturali - Stato Limite di limitazione delle tensioni

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

ovalle = N/A+M/Wgg omonte = N/A-M/Wgg

A = 1.0*B

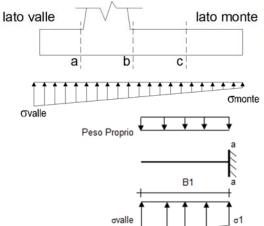
 $Wgg = 1.0*B^2/6$ 3.38 (m³)

	N	М	ovalle	omonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m²]
Rara	864.71	330.31	290.03	94.29
Raia	900.70	314.13	293.23	107.08

4.50

Mensola Lato Valle

Peso Proprio.


PP = 27.50 (kN/m)

(m²)

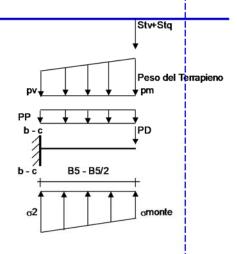
 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m²]	[kNm]
Rara	290.03	268.28	31.91
Raia	293.23	272.55	32.35

sezioni di verifica

Mensola Lato Monte

27.50 (kN/m^2) peso proprio soletta fondazione PD 0.00 (kN/m) peso proprio dente


Nmin N max stat N max sism

pm 156.20 166.20 156.20 (kN/m²)156.20 166.20 156.20 (kN/m²)pvb 156.20 166.20 156.20 (kN/m²)pvc

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1\pm kv)^*B5^2/3 + (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/3 + (\sigma_{mont$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (c_{monte} - (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (c_{2}c - c_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + (c_{2}c - c_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (c_{2}c - c_{monte})^2/3 + (c_{2}c - c_{m$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

	omonte	σ 2b	Mb	σ2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
D	94.29	216.91	-433.79	155.60	-188.98
Rara	107.08	223.69	-430.66	165.39	-187.20

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	40

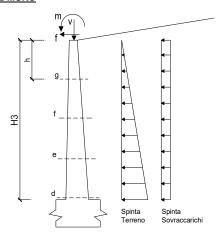
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

 $Mt \ sism = \ \ ^{1\!\!/_{2}} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^{2*}h/2 \quad o *h/3$

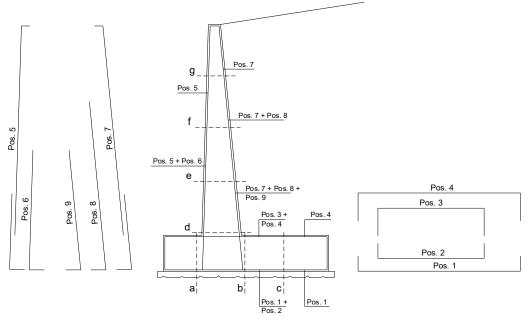
= $\frac{1}{2}$ Ka_{orizz}*q*h²


= m+f*h

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$

(solo con sisma)

 N_{ext}


 $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$

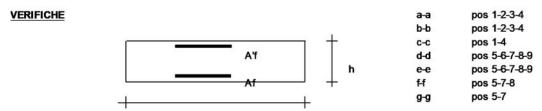
condizione statica

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
332.33.3	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	7.81	356.37	68.45	0.00	424.82	0.00	154.25	154.25
e-e	5.86	150.35	38.50	0.00	188.85	0.00	101.41	101.41
f-f	3.91	44.55	17.11	0.00	61.66	0.00	58.09	58.09
g-g	1.95	5.57	4.28	0.00	9.85	0.00	24.28	24.28

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	41

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	,
1	5.0	24		5	5.0	26		Calcola
2	5.0	24	님ㅣ	6	0.0	16		Calcula
3	0.0	16		7	5.0	24	_ -	
4	10.0	26		8	5.0	16	HI	
				9	0.0	12		

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

Combinazione Caratteristica (RARA)

Sez.	M	N	h	Af	A'f	$\sigma^{_{ extsf{C}}}$	σ^{f}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	32.35	0.00	1.10	45.24	53.09	0.17	7.45
b - b	-433.79	0.00	1.10	53.09	45.24	2.26	85.82
C - C	-188.98	0.00	1.10	53.09	22.62	1.09	37.78
d - d	424.82	154.25	1.18	32.67	26.55	-0.58	-63.12
e -e	188.85	101.41	0.99	32.67	26.55	-0.55	-46.47
f - f	61.66	58.09	0.79	32.67	26.55	-0.60	-35.46
g - g	9.85	24.28	0.60	22.62	26.55	0.55	16.79

Combinazione Quasi Oermanente.

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σ^{f}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	28.62	0.00	1.10	45.24	53.09	0.15	6.59
b - b	-356.02	0.00	1.10	53.09	45.24	1.86	70.43
c - c	-157.98	0.00	1.10	53.09	22.62	0.91	31.59
d - d	356.37	154.25	1.18	32.67	26.55	-0.63	-65.42
e -e	150.35	101.41	0.99	32.67	26.55	-0.68	-51.91
f - f	44.55	58.09	0.79	32.67	26.55	-1.89	-85.86
g - g	5.57	24.28	0.60	22.62	26.55	0.12	0.87

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

8. MURO TIPO HMAX=4.01M

Si riportano di seguito le caratteristiche geometriche del muro di progetto.

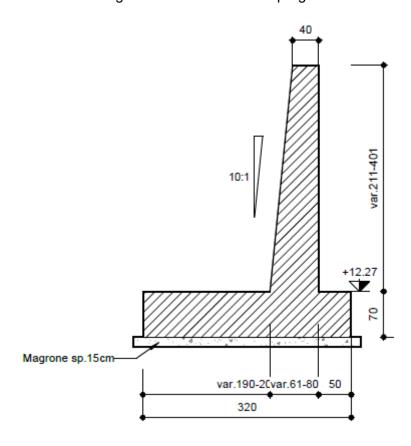
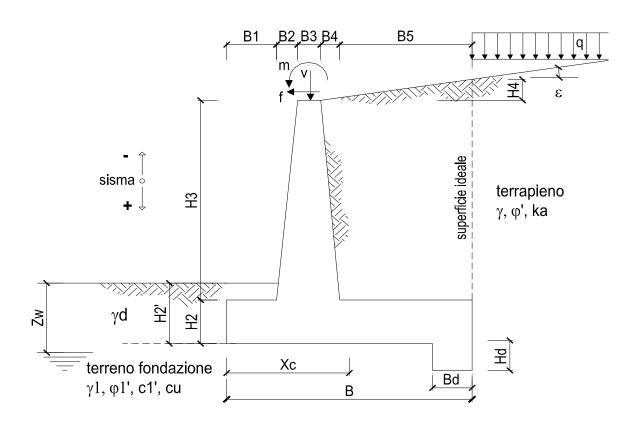


Fig. 6 – Sezione di riferimento muro tipo H_{max}=4.01m

L'altezza di calcolo è assunta, a favore di sicurezza, pari all'altezza massima del muro.



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	43

8.1 DATI DI PROGETTO

DATI DI PROGETTO:

Geometria del Muro

Elevazione	H3 =	4.01	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.40	(m)

Geometria della Fondazione

Larghezza Fondazione	B =	3.20	(m)
Spessore Fondazione	H2 =	0.70	(m)
Suola Lato Valle	B1 =	0.50	(m)
Suola Lato Monte	B5 =	1.90	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	1.60	(m)

Peso Specifico del Calcestruzzo γ cls =	= 25.00	(kN/m ³)
--	---------	----------------------

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OOC OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	44

			- 1	valori caratteristici	valori di p	orogetto
Dati 0	Geotecnici			SLE	STR/GEO	EQU
Dati errapieno	Angolo di attrito del terrapieno	(°)	φ'	35.00	35.00	29.26
Dati rrapie	Peso Unità di Volume del terrapieno	(kN/m³)	γ	20.00	20.00	20.00
	Angolo di attrito terreno-superficie ideale	(°)	δ	23.33	23.33	19.50
Fondazione	Condizioni		drenat	e ONon Drenate		
ıdaz	Coesione Terreno di Fondazione	(kPa)	c1'	0.00	0.00	0.00
Fon	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	30.00	30.00	24.79
2	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.00	20.00	20.00
Dati Terreno	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.00	20.00	20.00
∓	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	13.00		
<u>o</u>	Modulo di deformazione	(kN/m²)	E	185000		
	Accelerazione sismica		a _q /g	0.242 (-)	7	
	Coefficiente Amplificazione Stratigrafico		Ss	1.163 (-)		
Sismici	Coefficiente Amplificazione Topografico		S _T	1 (-)		
is.	Coefficiente di riduzione dell'accelerazione massima		β_s	0.31 (-)		
Dati	Coefficiente sismico orizzontale		kh	0.08724826 (-)		
Õ	Coefficiente sismico verticale		kv	0.0436 (-)	╛	
	Muro libero di traslare o ruotare		•	si Ono		

			SL	.E	STR/C	GEO	EG	บูบ
	Coeff. di Spinta Attiva Statico	ka	0.275		0.275		0.351	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.339		0.339		0.429	
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.346		0.346		0.438	
Sp. effi	Coeff. Di Spinta Passiva	kp	3.000		3.000		2.444	
ဝိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.851		2.851		2.309	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.837		2.837		2.296	

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

S107- F	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	C OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	45

8.2 ANALISI DEI CARICHI

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	0.00	0.00	0.00
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
ő E	Forza Verticale in Testa permanente	(kN/m)	vp	0.00	0.00	0.00
	Momento in Testa permanente (kNm/m)			0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	10.00	15.00	15.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
ndiz	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
Šά	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	0.50	condizione quasi perma	anente Ψ2	0.00
.⊑ a	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche (kl		VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

8.2.1 Sovraccarico permanente

Nelle analisi svolte si considera un riempimento a tergo del muro composto da terreno di riempimento per il quale si assumono i seguenti parametri geotecnici caratteristici in condizioni drenate, relativi a nuovi rilevati ferroviari:

• $\gamma_k = 20 \text{ kN/m}^3$ peso dell'unità di volume;

• $\varphi_k = 35^{\circ}$ angolo di resistenza al taglio;

• $c_k = 0$ coesione;

• $\delta_k = 23.33^{\circ}$ angolo di attrito tra paramento verticale muro e terreno.

8.2.2 Sovraccarico accidentale

A favore di sicurezza si considera un sovraccarico accidentale pari a **10,00 kN/m²** per tener conto della presenza dei mezzi d'opera e dell'accatastamento dei materiali in fase di scavo.

8.2.3 Forze inerziali

In condizioni sismiche le forze d'inerzia orizzontali e verticali su paramento, soletta di fondazione e terreno di riempimento su soletta di monte sono valutate attraverso le espressioni $F_h = k_h \cdot W$ e $F_v = k_v \cdot W$, dove W è il peso delle masse oscillanti applicato nei rispettivi baricentri ed i parametri di intensità sismica sono definiti al capitolo 6.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	46

8.3 COMBINAZIONI DI CARICO

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nelle norme riportate nel Capitolo 2.

Per il muro di sostegno sono state effettuate le verifiche con riferimento ai seguenti stati limite:

- SLU di tipo geotecnico (GEO) e di equilibrio di corpo rigido (EQU)
- scorrimento sul piano di posa;
- collasso per carico limite dell'insieme fondazione-terreno;
- ribaltamento;

secondo l'approccio progettuale "Approccio 2" con la combinazione (A1+M1+R3) e tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.5.I per le azioni, i parametri geotecnici e per i coefficienti di combinazione delle azioni:

comb. $2 \rightarrow (A1+M1+R3)$

Tabella 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	γ _{G1}	1,1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	~	0,0	0,0	0,0
Permanenti non suttituran	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Variabili	Favorevole	24	0,0	0,0	0,0
variaom	Sfavorevole	γQi	1,5	1,5	1,3

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	γe	1,0	1,25
Resistenza non drenata	c _{uk}	Υcu	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

HYPIO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	47

Carico limite

8.4 **V**ERIFICHE

8.4.1 Verifiche geotecniche

Coefficienti di sicurezza

Ribaltamento

Sta	tico	2.29	8.08			2.63	
Sis	mico	2.06	4.56			2.33	
FORZE VERT	ICALI			_			
- Peso del Mur	o (Pm)				SLE	STR/GEO	EQU
Pm1 =	(B2*H3* _γ cls)/2			(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)			(kN/m)	40.10	40.10	36.09
Pm3 =	(B4*H3* _γ cls)/2			(kN/m)	20.05	20.05	18.05
Pm4 =	(B*H2* _γ cls)			(kN/m)	56.00	56.00	50.40
Pm5 =	(Bd*Hd [*] γcls)			(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pr	n3 + Pm4 + Pm5		(kN/m)	116.15	116.15	104.54
- Peso del terre	eno e sovr. perm. s	ulla scarpa di monte	del muro (Pt)				
Pt1 =	(B5*H3*γ')			(kN/m)	152.30	152.30	137.07
Pt2 =	(0,5*(B4+B5)*H4*	γ')		(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3* _γ ')/2	•		(kN/m)	16.04	16.04	14.44
Sovr =	qp * (B4+B5)			(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 +	Sovr		(kN/m)	168.34	168.34	151.51
- Sovraccarico	accidentale sulla s	carpa di monte del m	iuro				
Sovr acc. Stat		•		(kN/m)	22.99	34.485	
Sovr acc. Sism				(kN/m)	0		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

Scorrimento

- Muro (Mm)			SLE	STR/GEO	EQU
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	28.07	28.07	25.26
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	20.72	20.72	18.65
Mm4 =	Pm4*(B/2)	(kNm/m)	89.60	89.60	80.64
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	138.39	138.39	124.55
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	342.60	342.60	308.34
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	18.71	18.71	16.84
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	361.31	361.31	325.18

- Sovraccarico accidentale sulla scarpa di monte del muro

Sovr acc. Stat *(B1+B2+B3+1/2*(B4+B5)) Sovr acc. Sism *(B1+B2+B3+1/2*(B4+B5)) (kNm/m) 47.118005 70.6770075

(kNm/m)

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	48

INEDZIA DEI MIIDO E DEI TEDDADIENO

inerzia del	. MURO E DEL TERRAPIENO		
- Inerzia orizzo	ontale e verticale del muro (Ps)		
Ps h=	Pm*kh	(kN/m)	10.13
Ps v=	Pm*kv	(kN/m)	5.07
	ontale e verticale del terrapieno a tergo del muro (Pts	,	
Ptsh =	Pt*kh	(kN/m)	14.69
Ptsv =	Pt*kv	(kN/m)	7.34
Incremente e	orizzontale di momento dovuto all'inerzia del muro (M	Do h)	
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	9.46
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	3.56
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	1.71
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	14.74
IVIPS II—	WFS 1+WFS2+WFS3+WFS4+WFS3	(KINIII/III)	14.74
- Incremento v	erticale di momento dovuto all'inerzia del muro (MPs	v)	
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	1.22
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.90
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	3.91
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	6.04
		,	
		(1.17)	
	orizzontale di momento dovuto all'inerzia del terrapier	,	0= 04
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	35.94
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	4.72
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	40.66
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno (MPts v)	
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	14.95
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	1.05
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	16.00
1VII 13 V-	IVII to i IVII to Z I IVII to U	(13111/111)	10.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di ca	Icolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	49

CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU
St =	0,5* ₇ '*(H2+H3+H4+Hd)²*ka	(kN/m)	54.22	70.49	74.68
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	11.51	17.27	21.62
- Componente	orizzontale condizione statica				
Sth =	St*cos _δ	(kN/m)	49.79	64.72	70.39
Sqh perm =	Sq perm*cosδ	(kN/m)	0.00	0.00	0.00
Sqh acc =	Sq acc*cos _δ	(kN/m)	10.57	15.86	20.38
- Componente	verticale condizione statica				
Stv =	St*sen δ	(kN/m)	21.47	27.91	24.93
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	4.56	6.84	7.22
- Spinta passi	va sul dente				
Sp=½*g1'*Hd2	2* ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DE	ELLA SPINTA DEL TERRENO E DEL SOVRACC	ARICO	SLE	STR/GEO	EQU
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	78.17	101.62	110.52
MSt2 =	Stv*B	(kNm/m)	68.71	89.33	79.78
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	24.89	37.34	48.00
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	14.59	21.88	23.10
$MSp = \gamma 1'^*$				0.00	0.00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	$(vp+v)^*(B1 + B2 + B3/2)$	(kNm/m)	0.00	0.00	0.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo	
muri				

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	50

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze verticali (N)

N = Pm + Pt + v + Stv + Sqv perm + Sqv acc 319.24 (kN/m)

Risultante forze orizzontali (T)

T = Sth + Sqh + f 80.58 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg_{\phi 1}' \qquad 0.58 \qquad (-)$

Fs scorr. (N*f + Sp)/T 2.29 > 1.1

VERIFICA AL RIBALTAMENTO (EQU)

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 449.73 (kNm/m)

Momento ribaltante (Mr)

Mr = MSt + MSq + Mfext1+ Mfext2 + MSp 55.64 (kNm/m)

Fs ribaltamento Ms / Mr 8.08 > 1

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- I	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	51

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	319.24	353.73	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	80.58	80.58	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	471.95	542.63	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	38.83	23.33	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

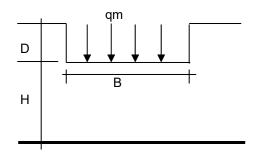
c1' coesione terreno di fondaz. $\phi 1'$ angolo di attrito terreno di fondaz. γ_1 peso unità di volume terreno fondaz.		0.00 30.00 10.00		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	15.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.12 2.96	0.07 3.07	(m) (m)
l valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
Nq = $tg^2(45 + \phi)$ Nc = (Nq - 1)/ tg N $_{\gamma}$ = 2*(Nq + 1)	(φ') (2+ π in cond. nd)	18.40 30.14 22.40		(-) (-) (-)
I valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq))		0.56 0.53	0.60 0.53	(-) (-)

$iq = (1 - T/(N + B*c'cotg_{\varphi}'))^m$	(1 in cond. nd)	0.56	0.60	(-)
ic = iq - (1 - iq)/(Nq - 1)		0.53	0.53	(-)
$i_{\gamma} = (1 - T/(N + B*c'cotg_{\phi}'))^{m+1}$		0.42	0.42	(-)

(fondazione nastriforme m = 2)

(carico limite unitario) qlim 292.64 302.97 (kN/m^2)

2.71 Nmin FS carico limite F = qlim*B*/N1.4 2.63 Nmax


HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

Profondità Piano di Posa della Fondazione

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	52

CEDIMENTO DELLA FONDAZIONE

 $\delta = \mu 0 * \mu 1 * qm * B* / E$ (Christian e Carrier, 1976

Ν

(kN/m) 8.09 (kNm/m) Μ e=M/N 0.03 (m) В* 3.15 (m)

308.24

1.50 D = (m)

D/B* = 0.48 (m)

 $Hs/B^* =$ 4.13 (m)

Carico unitario medio (qm) qm = N / (B - 2*e) = N / B* =101.43 (kN/mq)

0.939 Coefficiente di forma $\mu 0 = f(D/B)$ $\mu 0 =$ (-)

Coefficiente di profondità $\mu 1 = f(H/B)$ 0.99 (-)

Cedimento della fondazione $\delta = \mu 0 * \mu 1 * qm * B* / E =$ 1.60 (mm)

CONDIZIONE SISMICA+

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU
- Spinta condiz		L			
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	54.22	54.22	67.89
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	14.08	14.08	16.19
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	49.79	49.79	64.00
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	12.93	12.93	15.26
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*sen _δ	(kN/m)	21.47	21.47	22.66
Sst1v sism =	Sst1 sism*senδ	(kN/m)	5.58	5.58	5.40
Ssq1v perm=	Ssq1 perm*sen _δ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
$Sp = \frac{1}{2} \gamma_1 (1 + kv)$	Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + _γ 1' (1+kν) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00

Fr =

Ms / Mr

LINEA PESCARA – BARI

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	53

7.35 >

MOMENTI DE - Condizione si	ELLA SPINTA DEL TERRENO E DEL SOVRACCARI ismica +	SLE	STR/GEO	EQU				
MSst1 sism= MSst2 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B \$\gamma_1\frac{1}{4}\text{Hd}^3\text{Kps}^4/3+(2\text{c1}\frac{1}{4}\text{Kps}^{+0.5}+\gamma_1\frac{1}{4}\text{Kps}^{+*}\text{H2}^4/2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	78.17 20.30 68.71 17.84 0.00 0.00	78.17 20.30 68.71 17.84 0.00 0.00	100.47 23.96 72.52 17.29 0.00 0.00			
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 0.00				
VERIFICA AL	LO SCORRIMENTO							
Risultante forzo	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv		323.95	(kN/m)				
Risultante forzo	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh		87.54	(kN/m)				
Coefficiente di f =	attrito alla base (f) tg _{φ1} '		0.58	(-)				
Fs =	(N*f + Sp) / T		2.14	>	1.1			
VERIFICA AL	VERIFICA AL RIBALTAMENTO							
Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3 499.70 (kNm/m)								
Momento ribalt Mr =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts		67.98	(kNm/m)				

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Rela	zione	di	cal	colo	,
muri					

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	П	ZZ	CL	SL	07	00	002	В	54

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	323.95	323.95	(kN/m)
Risultante forze orizzontali (T)			
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp	87.54		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	454.43	454.43	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	63.89	63.89	(kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γι	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.	0.00 30.00 10.00		(kN/mq) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	15.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.20 2.81	0.20 2.81	(m) (m)
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + t_{0})$ $Nc = (Nq - 1)/t_{0}$ $N_{\gamma} = 2^{*}(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)	18.40 30.14 22.40		(-) (-) (-)
I valori di ic, iq	e i $_{\gamma}$ sono stati valutati con le espressioni suggerite da Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i_{\gamma} = (1 - T/(N + ic = iq))$		0.53 0.51 0.39	0.53 0.51 0.39	(-) (-) (-)
(fondazione na	striforme m = 2)			

qli	im (carico limite unitario		269.15 (I	kN/m²)

Nmin 2.33 **FS** carico limite F = qlim*B*/N1.4 2.33 Nmax

Pro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo	
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	55

CONDIZIONE SISMICA -

SPINTE DEL TERRENO E DEL SOVRACCARICO - Spinta condizione sismica -		SLE	STR/GEO	EQU
Sst1 stat = 0,5* ₇ '*(H2+H3+H4+Hd) ² *ka	(kN/m)	54.22	54.22	67.89
Sst1 sism = $0.5*_{\gamma}$ '*(1-kv)*(H2+H3+H4+Hd) 2 *kas ⁻ -Sst1 stat	(kN/m)	9.45	9.45	10.39
Ssq1 perm= qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
Ssq1 acc = qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
- Componente orizzontale condizione sismica -				
Sst1h stat = Sst1 stat*cosδ	(kN/m)	49.79	49.79	64.00
Sst1h sism = Sst1 sism* $\cos\delta$	(kN/m)	8.68	8.68	9.79
Ssq1h perm= Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc= Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00
- Componente verticale condizione sismica -				
Sst1v stat = Sst1 stat*senδ	(kN/m)	21.47	21.47	22.66
Sst1v sism = Sst1 sism*senδ	(kN/m)	3.74	3.74	3.47
Ssq1v perm= Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc= Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente				
$Sp=\frac{1}{2}*_{\gamma_1}'(1-kv) \ Hd^{2*}kps^{-} + (2*c_1''kps^{-0.5} +_{\gamma}1' \ (1-kv) \ kps^{-*}H2')^*Hd$	(kN/m)	0.00	0.00	0.00

- Condizione si	ELLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	co	SLE	STR/GEO	EQU	
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B γ_1 *Hd ^{3*} kps*/3+(2*c1**kps*0.5+ γ_1 1*kps**H2')*Hd ² /2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	78.17 13.63 68.71 11.98 0.00 0.00 0.00	78.17 13.63 68.71 11.98 0.00 0.00	100.47 15.37 72.52 11.10 0.00 0.00 0.00	
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 0.00		

VERIFICA ALLO SCORRIMENTO

Risul	tante forze	e verticali (N)		
Ν	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	297.30	(kN/m)
_	tante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	83.29	(kN/m)
Coeff	iciente di	attrito alla base (f)		
f	=	$tg_{\phi 1}'$	0.58	(-)

Fs = (N*f + Sp) / T

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	56

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 499.70 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 109.67 (kNm/m)

Fr = Ms/Mr 4.56 > 1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N)

N = Pm+Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv

N = Pm+Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv

297.30 (kN/m)

Risultante forze orizzontali (T)

 $\Gamma = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 83.29 (kN/m)$

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = \sum M$ 411.16 (kNm/m)

Momento rispetto al baricentro della fondazione (M)

 $M = Xe^*N - MM$ 64.51 (kNm/m)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

$qlim = c'Nc*ic + q_0*Nq*iq + 0,5*_{\gamma}1*B*N_{\gamma}*i_{\gamma}$

c1'	coesione terreno di fondaz.	0.00	(kN/mq)
φ1'	angolo di attrito terreno di fondaz.	30.00	(°)
γι	peso unità di volume terreno fondaz.	10.00	(kN/m³)
$q_0 = \gamma d H2'$	sovraccarico stabilizzante	15.00	(kN/m ²)
e = M / N	eccentricità	0.22 0.22	, ,
B*= B - 2e	larghezza equivalente	2.77 2.77	

I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)

Nq = $tg^2(45 + \varphi'/2)*e^{(\pi^*tg(\varphi'))}$	(1 in cond. nd)	18.40	(-)
$Nc = (Nq - 1)/tg(\phi')$	$(2+\pi \text{ in cond. nd})$	30.14	(-)
$N_y = 2*(Nq + 1)*tq(o')$	(0 in cond. nd)	22.40	(-)

I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)

$iq = (1 - T/(N + B*c'cotg_{\phi}'))^m$	(1 in cond. nd)	0.52	0.52	(-)
ic = iq - (1 - iq)/(Nq - 1)		0.49	0.49	(-)
$i_{\gamma} = (1 - T/(N + B*c'\cot g_{\phi}'))^{m+1}$		0.37	0.37	(-)

(fondazione nastriforme m = 2)

qlim (carico limite unitario) 258.59 258.59 (kN/m²)

FS carico limite $F = q \lim^* B^* / N$ Nmin 2.41 > 1.4

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

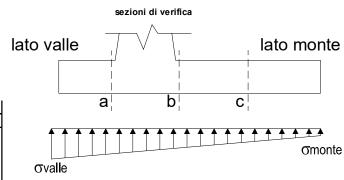
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	57

8.4.2 Verifiche strutturali - Stato Limite Ultimo

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

ovalle = N / A + M / Wgg

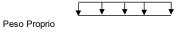

 $_{o}$ monte = N / A - M / Wgg

--

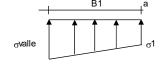
A = 1.0*B = 3.20 (m²)

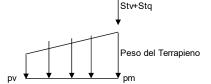
 $Wgg = 1.0*B^2/6 = 1.71 (m^3)$

caso	N	М	σvalle	σmonte
Caso	[kN]	[kNm]	[kN/m²]	[kN/m²]
statico	319.24	38.83	122.52	77.01
Statico	353.73	23.33	124.21	96.87
sisma+	323.95	63.89	138.67	63.80
SiSilia	323.95	63.89	138.67	63.80
sisma-	297.30	64.51	130.71	55.10
	297.30	64.51	130.71	55.10


Mensola Lato Valle

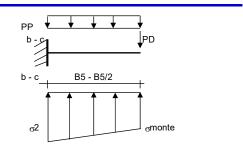
Peso Proprio. PP = 17.50 (kN/m)


Ma = $\sigma^{1*}B^{12}/2 + (\sigma^{1*}B^{12}/3 - PP^*B^{12}/2^*(1\pm kv))$


Va = $_{\sigma}$ 1*B1 + ($_{\sigma}$ valle - $_{\sigma}$ 1)*B1/2 - PP*B1*(1±kv)

caso	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	122.52	115.41	12.83	50.73
statico	124.21	119.94	13.16	52.29
sisma+	138.67	126.97	14.56	60.20
SiSilia	138.67	126.97	14.66	60.20
sisma-	130.71	118.89	13.75	56.22
SiSMa-	130.71	118.89	13.66	56.22

Mensola Lato Monte


PP	=	17.50	(kN/m^2)
PD	=	0.00	(kN/m)

peso proprio soletta fondazione peso proprio dente

		Nmin	N max stat	N max sism	
pm	=	80.20	95.20	80.20	
pvb	=	80.20	95.20	80.20	` ~′
pvc	=	80.20	95.20	80.20	(kN/m ²)

 $\label{eq:monte-poly-PP} $$ Mb=(\sigma_{monte}-(pvb+PP)^*(1\pm kv))^*B5^2/2+(\sigma_{2b}-\sigma_{monte})^*B5^2/6-(pm-pvb))^*(1\pm kv)^*B5^2/3+(Stv+Sqv)^*B5-PD^*(1\pm kv)^*(B5-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2) $$$

 $\begin{aligned} \text{Mc} = & (_{\text{Gmonte}}(\text{pvc}+\text{PP})^*(1\pm kv))^*(\text{B5}/2)^2/2 + (_{\text{G}}2\text{c}-_{\text{Gmonte}})^*(\text{B5}/2)^2/6 - (\text{pm}-\text{pvc})^*(1\pm kv)^*(\text{B5}/2)^2/3 + \\ & - (\text{Stv}+\text{Sqv})^*(\text{B5}/2)-\text{PD}^*(1\pm kv)^*(\text{B5}/2-\text{Bd}/2)-\text{PD}^*kh^*(\text{Hd}+\text{H2}/2)+\text{Msp}+\text{Sp}^*\text{H2}/2 \end{aligned}$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma_{2}b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv))^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - (Stv +$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_2 c - \sigma_{monte})^*(B5/2)/2 - (pm - pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)/2 - (Stv + Sqv)/2 -$

caso	σmonte	σ2b	Mb	Vb	σ 2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	77.01	104.02	-87.07	-48.40	90.51	-40.30	-47.99
Statico	96.87	113.09	-84.79	-49.41	104.98	-38.92	-45.93
	63.80	108.23	-93.47	-57.33	86.01	-39.55	-52.74
sisma+	63.80	108.23	-93.47	-57.33	86.01	-39.55	-52.74
-1	55.10	99.97	-90.04	-55.41	77.54	-37.85	-50.96
sisma-	55.10	99.97	-90.04	-55.41	77.54	-37.85	-50.96

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	58

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²*h/3

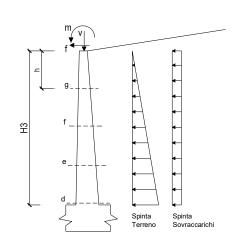
Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz} *(1±kv)-Ka_{orizz})*h²*h/2 o *h/3

= $\frac{1}{2}$ Ka_{orizz}*q*h² Mq

 M_{ext} = m+f*h $M_{inerzia} = \sum Pm_i^*b_i^*kh$

 N_{ext}

N _{pp+inerzia}= $\sum Pm_i^*(1\pm kv)$

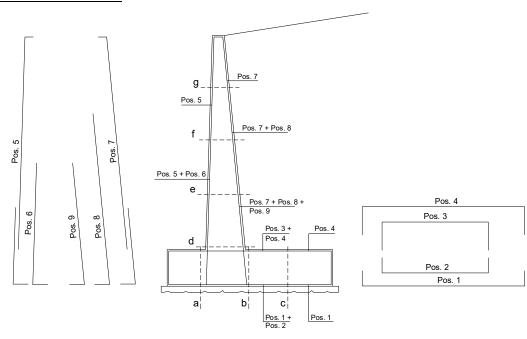

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} *_{\gamma} *(Kas_{orizz.} *(1\pm kv)-Ka_{orizz.})*h^2$

= Ka_{orizz}*q*h

 $V_{ext} = f$

 $V_{inerzia} = \sum Pm_i^*kh$



condizione statica

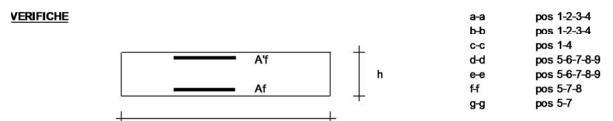
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.01	62.71	27.07	0.00	89.77	0.00	60.15	60.15
e-e	3.01	26.46	15.22	0.00	41.68	0.00	41.35	41.35
f-f	2.01	7.84	6.77	0.00	14.61	0.00	25.06	25.06
g-g	1.00	0.98	1.69	0.00	2.67	0.00	11.28	11.28

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
30210110	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.01	46.91	13.50	0.00	60.41
e-e	3.01	26.39	10.12	0.00	36.51
f-f	2.01	11.73	6.75	0.00	18.48
g-g	1.00	2.93	3.37	0.00	6.31

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Rel	azione	di	calcolo
muri			


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	59

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	5.0	20		5	5.0	14		
2	5.0	20		6	0.0	16		
3	5.0	20		7	5.0	20		Calcola
4	5.0	20		8	0.0	14		Salosia
				9	0.0	12		

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

		b = 1,0 m					
Sez.	M	N	h	Af	A'f	Mu	Mu/Med
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)	(-)
a - a	14.66	0.00	0.70	31.42	31.42	487.63	33.27
b - b	-93.47	0.00	0.70	31.42	31.42	578.04	6.18
C - C	-40.30	0.00	0.70	15.71	15.71	408.00	10.13
d - d	89.77	60.15	0.80	15.71	7.70	526.50	5.86
e -e	41.68	41.35	0.70	15.71	7.70	450.71	10.81
f - f	14.61	25.06	0.60	15.71	7.70	375.71	25.72
g - g	2.67	11.28	0.50	15.71	7.70	301.49	112.86

n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	60.20	0.70	299.86	8	40	40	21.8	177.02	Armatura a taglio non necessaria
b - b	57.33	0.70	299.86	8	40	40	21.8	177.02	Armatura a taglio non necessaria
C - C	52.74	0.70	246.66	8	40	40	21.8	177.02	Armatura a taglio non necessaria
d - d	60.41	0.80	282.87	8	40	40	21.8	204.68	Armatura a taglio non necessaria
e -e	36.51	0.70	252.33	8	40	40	21.8	177.02	Armatura a taglio non necessaria
f - f	18.48	0.60	222.65	8	40	40	21.8	149.36	Armatura a taglio non necessaria
g - g	6.31	0.50	200.58	8	40	40	21.8	121.70	Armatura a taglio non necessaria

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

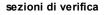
SI07- Relazione di calcolo muri

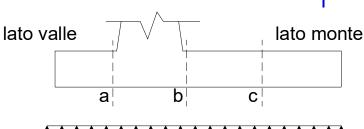
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	60

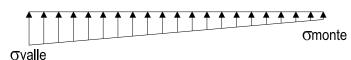
8.4.3 Verifiche strutturali – Stato Limite di fessurazione

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno


 σ valle = N / A + M / Wgg

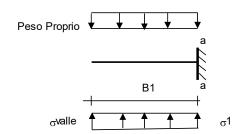

 σ monte = N / A - M / Wgg


 $A = 1.0*B = 3.20 (m^2)$

 $Wgg = 1.0*B^2/6 = 1.71 (m^3)$

	N	M	σ valle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	$[kN/m^2]$
Eroa	308.24	8.09	101.07	91.58
Freq.	319.74	2.93	101.63	98.20
0 D	305.96	-0.71	95.20	96.03
Q.P.	305.96	-0.71	95.20	96.03

Mensola Lato Valle


Peso Proprio.

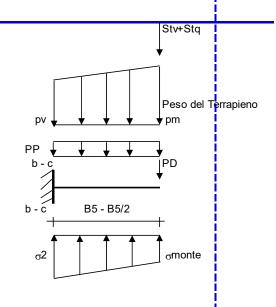
PP = 17.50

(kN/m)

Ma = $\sigma^{1*B1^2/2}$ + ($\sigma^{1*B1^2/3}$ - PP*B1²/2*(1±kv)

0000	σvalle	σ1	Ма
caso	[kN/m ²]	[kN/m²]	[kNm]
Frag	101.07	99.59	10.38
Freq.	101.63	101.10	10.49
0.0	95.20	95.33	9.72
Q.P.	95.20	95.33	9.72

Mensola Lato Monte


 $PP = 17.50 (kN/m^2)$ peso proprio soletta fondazione PD = 0.00 (kN/m) peso proprio dente

Nmin N max Freq N max QP 80.20 87.70 80.20 (kN/m^2) pm 80.20 87.70 80.20 (kN/m^2) pvb 80.20 87.70 80.20 (kN/m^2) рус

$$\label{eq:mbeta} \begin{split} Mb &= (\sigma_{monte} - (pvb + PP))^*B5^2 / 2 + (\sigma 2b - \sigma_{monte})^*B5^2 / 6 - (pm - pvb))^*B5^2 / 3 + \\ &- (Stv + Sqv)^*B5 - PD^*(B5 - Bd/2) + Msp + Sp^*H2/2 \end{split}$$

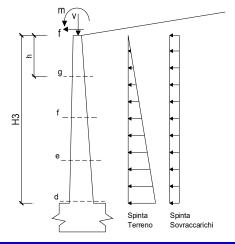
 $\begin{aligned} \text{Mc} = & (\sigma_{monte} - (\text{pvc} + \text{PP}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{monte})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (\text{B5/2} - \text{Bd/2}) + \text{Msp} + \text{Sp}^* + \text{H2/2} \end{aligned}$

caso	σmonte	σ2b	Mb	_σ 2c	Мс
caso	[kN/m²]	[kN/m ²]	[kNm]	[kN/m²]	[kNm]
Erog	91.58	97.21	-54.92	94.40	-25.97
Freq.	98.20	100.24	-58.66	99.22	-26.64
O D	96.03	95.54	-44.09	95.78	-21.18
Q.P.	96.03	95.54	-44.09	95.78	-21.18

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	61

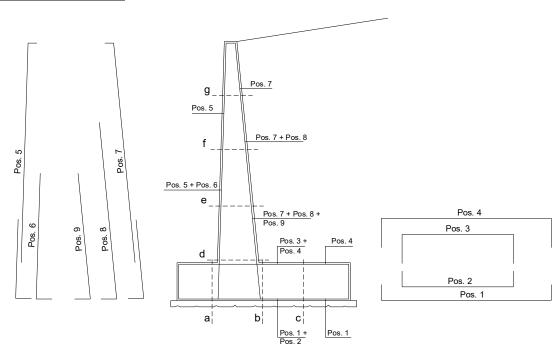

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt = $\frac{1}{2}$ Ka_{orizz.}* γ *h²*h/3 = $\frac{1}{2}$ Ka_{orizz}*q*h² Mq = m+f*h M_{ext}

= v

 N_{ext}



condizione Frequente Mt Mq M_{ext} N_{ext} N_{tot} h sezione [m] [kNm/m] [kNm/m] [kNm/m] [kNm/m] [kN/m] [kN/m] [kN/m] d-d 4.01 48.24 13.53 0.00 61.77 0.00 60.15 60.15 3.01 20.35 0.00 0.00 41.35 41.35 7.61 27.96 е-е f-f 2.01 6.03 3.38 0.00 9.41 0.00 25.06 25.06 1.00 0.75 0.85 0.00 1.60 0.00 11.28 11.28 g-g

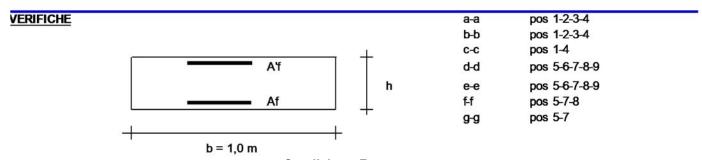
condizione Quasi Permanente

sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
30210110	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.01	48.24	0.00	0.00	48.24	0.00	60.15	60.15
e-e	3.01	20.35	0.00	0.00	20.35	0.00	41.35	41.35
f-f	2.01	6.03	0.00	0.00	6.03	0.00	25.06	25.06
g-g	1.00	0.75	0.00	0.00	0.75	0.00	11.28	11.28

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione	di	calcolo
muri		


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	62

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	5.0	20		5	5.0	14		
2	5.0	20		6	0.0	16		
3	5.0	20		7	5.0	20		Calcola
4	5.0	20		8	0.0	14		
				9	0.0	12		

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

Condizione Frequente

Sez.	M	N	h	Af	A'f	$\sigma^{_{ m C}}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	10.49	0.00	0.70	31.42	31.42	0.15	5.76	0.005	0.300
b - b	-58.66	0.00	0.70	31.42	31.42	0.84	32.19	0.031	0.300
C - C	-26.64	0.00	0.70	15.71	15.71	0.54	28.69	0.041	0.300
d - d	61.77	60.15	0.80	15.71	7.70	-2.02	-134.49	-0.190	0.300
e -e	27.96	41.35	0.70	15.71	7.70	-6.15	-327.64	-0.463	0.300
f - f	9.41	25.06	0.60	15.71	7.70	1.18	45.88	0.065	0.300
g - g	1.60	11.28	0.50	15.71	7.70	0.16	3.24	0.004	0.300

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	$\sigma^{\scriptscriptstyle extsf{C}}$	σ^{f}	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	9.72	0.00	0.70	31.42	31.42	0.14	5.33	0.005	0.200
b - b	-44.09	0.00	0.70	31.42	31.42	0.63	24.19	0.023	0.200
C - C	-21.18	0.00	0.70	15.71	15.71	0.43	22.81	0.032	0.200
d - d	48.24	60.15	0.80	15.71	7.70	-2.78	-175.94	-0.249	0.200
e -e	20.35	41.35	0.70	15.71	7.70	5.56	267.76	0.378	0.200
f - f	6.03	25.06	0.60	15.71	7.70	0.48	14.29	0.019	0.200
g - g	0.75	11.28	0.50	15.71	7.70	0.00	-	-	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

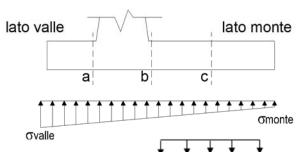
SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	SL	07	00	002	В	63

8.4.4 Verifiche strutturali - Stato Limite di limitazione delle tensioni

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno

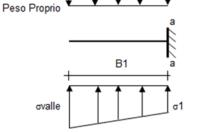

ovalle = N/A + M/Wggomonte = N/A - M/Wgg

$$A = 1.0*B$$
 = 3.20 (m²)

$$Wgg = 1.0*B^2/6 = 1.71 (m^3)$$

	N	М	σ valle	σmonte
caso	[kN]	[kNm]	[kN/m²]	[kN/m ²]
Rara	310.52	24.19	111.21	82.87
Raia	333.51	13.85	112.34	96.11

sezioni di verifica


Mensola Lato Valle

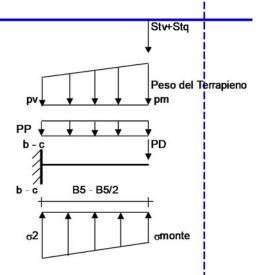
Peso Proprio.

PP = 17.50 (kN/m)

 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

caso	σvalle	σ1	Ma
Caso	[kN/m ²]	[kN/m ²]	[kNm]
Dava	111.21	106.78	11.53
Rara	112.34	109.80	11.75

Mensola Lato Monte


 $PP = 17.50 (kN/m^2)$ peso proprio soletta fondazione PD = 0.00 (kN/m) peso proprio dente

		Nmin	N max stat N r	nax sism	
pm	=	80.20	90.20	80.20	(kN/m^2)
pvb	=	80.20	90.20	80.20	(kN/m^2)
DVC	=	80.20	90.20	80.20	(kN/m^2)

$$\label{eq:mbeta} \begin{split} \text{Mb=} &(\sigma_{monte}-(\text{pvb+PP})^*(1\pm k\text{v}))^*\text{B5}^2/2 + (\sigma_2\text{b}-\sigma_{monte})^*\text{B5}^2/6 - (\text{pm-pvb}))^*(1\pm k\text{v})^*\text{B5}^2/3 + \\ &-(\text{Stv+Sqv})^*\text{B5-PD}^*(1\pm k\text{v})^*(\text{B5-Bd/2})-\text{PD}^*\text{kh}^*(\text{Hd}+\text{H2/2}) + \text{Msp+Sp}^*\text{H2/2} \end{split}$$

 $\begin{aligned} \text{Mc} = & (\sigma_{\text{monte}} - (\text{pvc} + \text{PP})^* (1 \pm \text{kv}))^* (\text{B5/2})^2 / 2 + (\sigma_2 \text{c} - \sigma_{\text{monte}})^* (\text{B5/2})^2 / 6 - (\text{pm-pvc})^* (1 \pm \text{kv})^* (\text{B5/2})^2 / 3 + \\ & - (\text{Stv} + \text{Sqv})^* (\text{B5/2}) - \text{PD}^* (1 \pm \text{kv})^* (\text{B5/2} - \text{Bd/2}) - \text{PD}^* \text{kh}^* (\text{Hd} + \text{H2/2}) + \text{Msp} + \text{Sp}^* + \text{H2/2} \end{aligned}$

	omonte	σ 2b	Mb	σ2c	Mc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN/m ²]	[kNm]
D	82.87	99.69	-66.07	91.28	-30.14
Rara	96.11	105.74	-64.55	100.92	-29.22

HYPO RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

SI07- Relazione di calcolo muri

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	SL	07	00	002	В	64

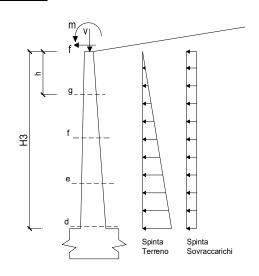
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}} * \gamma^* (1 \pm \text{kv}) * h^2 * h/3$

Mt sism = $\frac{1}{2} *_{\gamma} *(Kas_{orizz.} *(1\pm kv)-Ka_{orizz.})*h^2*h/2$ o *h/3

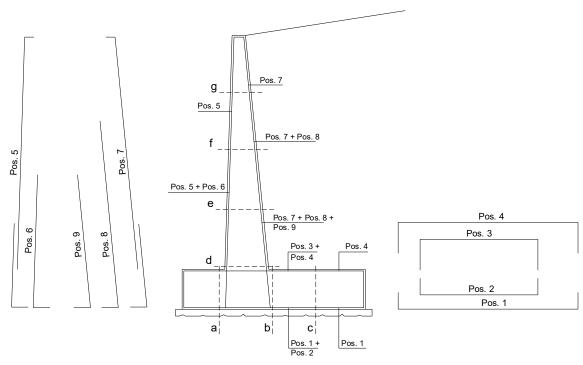
= $\frac{1}{2}$ Ka_{orizz}*q*h²


= m+f*h

 $M_{inerzia} = \sum Pm_i^*b_i^*kh$

(solo con sisma)

= v


 $N_{pp+inerzia} = \sum Pm_i^*(1\pm kv)$

condizione statica

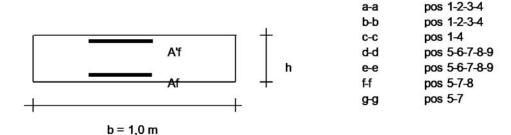
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.01	48.24	18.04	0.00	66.28	0.00	60.15	60.15
е-е	3.01	20.35	10.15	0.00	30.50	0.00	41.35	41.35
f-f	2.01	6.03	4.51	0.00	10.54	0.00	25.06	25.06
g-g	1.00	0.75	1.13	0.00	1.88	0.00	11.28	11.28

SCHEMA DELLE ARMATURE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

SI07-	Relazione	di	calcolo
muri			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	SL	07	00	002	В	65


ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato	
1	5.0	20		5	5.0	14		Calcola
2	5.0	20	님	6	0.0	16		Calcola
3	5.0	20		7	5.0	20		
4	5.0	20		8	0.0	14	H	
				9	0.0	12		

(NOTA BENE):

La spunta "Il strato" significa che il ferro indicato viene messo internamente alla sezione come secondo strato, altrimenti, quanto inserito, è considerato affiancato a quello principale.

Combinazione Caratteristica (RARA)

Sez.	М	Ň	, h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm^2)	(N/mm ²)
a - a	11.75	0.00	0.70	31.42	31.42	0.17	6.45
b - b	-66.07	0.00	0.70	31.42	31.42	0.94	36.25
C - C	-30.14	0.00	0.70	15.71	15.71	0.61	32.46
d - d	66.28	60.15	0.80	15.71	7.70	-1.93	-129.44
e -e	30.50	41.35	0.70	15.71	7.70	-4.63	-250.28
f - f	10.54	25.06	0.60	15.71	7.70	1.45	58.38
g - g	1.88	11.28	0.50	15.71	7.70	0.19	4.26

Combinazione Quasi Oermanente.

Sez.	М	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	9.72	0.00	0.70	31.42	31.42	0.14	5.33
b - b	-44.09	0.00	0.70	31.42	31.42	0.63	24.19
C - C	-21.18	0.00	0.70	15.71	15.71	0.43	22.81
d - d	48.24	60.15	0.80	15.71	7.70	-2.78	-175.94
e -e	20.35	41.35	0.70	15.71	7.70	5.56	267.76
f - f	6.03	25.06	0.60	15.71	7.70	0.48	14.29
g - g	0.75	11.28	0.50	15.71	7.70	0.04	-

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

9 CALCOLO INCIDENZE ARMATURE

Si riporta di seguito una tabella riassuntiva con il calcolo dell'incidenza delle armature:

	Muri d'ala				
SL07	Zattera di Fondazione kg/m³	Elevazione kg/m³			
Muro H: 7.81	105	110			
Muro H: 4.01	150	80			