COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

Mandataria

Mandanti

PROGETTAZIONE:

MANDATADIA

HUB

MANDANTI

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTI 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN – SISTEMAZIONI IDRAULICHE IN04 – Relazione di calcolo canale

L'Appaltatore
Ing. Gianguido Babini
Ing. Gianguido Babini
Ing. Gianguido Babini
Ing. Gianguido Babini
Ing. Massimo Facchini

 COMMESSA
 LOTTO
 FASE
 ENTE
 TIPO DOC
 OPERA / DISCIPLINA
 PROGR
 REV
 SCALA

 L I O B
 O 2
 E
 Z Z
 C L I N O 4 O 0
 O 0 1
 B
 --

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
	Prima emissione	C.Cofone	Can 2022	O.Caruso	Gen 2023	V.Secreti	Gen 202	TATA
Α			Gen 2023					NZ
		F.Pagliuso	Giu 2023	O.Caruso	Giu 2023	V.Secreti		43 8
В	Seconda emissione	R	Glu 2023	C			m a U	4 03 CO Comini
		7					E1510	
						1	18/3/	The world was
					-	\	CF	OFON
File: LIOD	02EZZRIID0001001A.DOCX						IMO	n Flah
File: LIUB	UZEZZKIIDUUU1UU1A.DUCX					1	<i>N</i> .	n E ab.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN04 - Relazione di calcolo canale

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	2

INDICE

1.	PRE	EMESSA	4
	1.1	BREVE DESCRIZIONE DELL'OPERA	4
	1.2	TIPO DI ANALISI SVOLTA	5
	1.3	NORMATIVE DI RIFERIMENTO	5
2.	MA	TERIALI	6
3.	CEN	NNI TEORICI – SOFTWARE DI CALCOLO SCAT V.14	7
;	3.1	SPINTA SUI PIEDRITTI	7
;	3.2	VERIFICA AL CARICO LIMITE	7
;	3.3	STRATEGIA DI SOLUZIONE	9
4.	CRI	TERI DI VERIFICA	9
	4.1	VERIFICHE DI RESISTENZA (SLU)	10
	4.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)	14
5.	CAF	RATTERIZZAZIONE SISMICA	16
6.	DIM	ENSIONAMENTO CANALE IN C.A.	18
(6.1	GEOMETRIA	18
(6.2	STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI CALCOLO	18
(6.3	CONDIZIONI DI CARICO	20
(6.4	COMBINAZIONI DI CARICO	21
(6.5	IMPOSTAZIONI DI PROGETTO	34
(6.6	ANALISI DELLA SPINTA E VERIFICHE	36
(6.7	SISMA	37

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

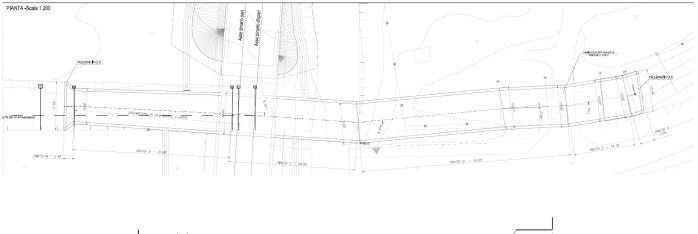
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	3

6.8	RISULTATI DI CALCOLO – INVILUPPO SOLLECITAZIONI	. 38
6.9	VERIFICHE STRUTTURALI	. 41
6.10	VERIFICHE GEOTECNICHE	. 48
6.11	INCIDENZA ARMATURE	. 48

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	INA	PROGR	REV	FOGLIO
Relazione di calcolo scatolare IN04	LIOB	02	E	ZZ	CL	IN	04	00	001	В	4


1. PREMESSA

La presente relazione tecnica contiene il dimensionamento del canale di bonifica n°2 ubicato al km 2+787,11 in c.a denominato IN04, previsto nell'ambito dell'appalto relativo ai "Lavori di RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA, rientrante nella categoria di opere d'arte minori.

1.1 BREVE DESCRIZIONE DELL'OPERA

L'opera d'arte minore che sarà realizzata è rappresentata dal nuovo canale che attraverserà la nuova sede ferroviaria.

Il canale presenta una forma rettangolare aperta di dimensioni interne 9.00m x 4.40m, spessore dei setti di 60cm e delle fondazioni pari a 80 cm e dovrà sostituire il canale che allo stato attuale è situato sul lato sinistra della strada in direzione Nord-Est.

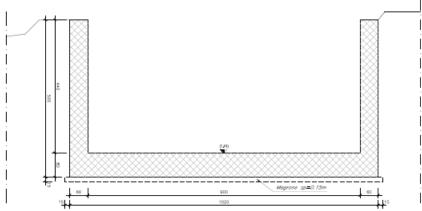


Figura 1-1 Planimetria e Sezione tipologica del canale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04
-----------	----	---------	-----------	-------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	INA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	5

1.2 TIPO DI ANALISI SVOLTA

L'analisi strutturale e le verifiche sono condotte con l'ausilio del codice di calcolo automatico SCAT 14, sviluppato dalla Aztec Informatica srl, in condizioni di spinta a riposo.

La struttura viene discretizzata in elementi tipo trave mutuamente incastrati facendo riferimento ad una larghezza unitaria di struttura che viene pertanto risolta come struttura piana.

Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione.

L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del Circolare n.7 del 21/01/2019 Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018).

La verifica delle sezioni degli elementi strutturali confacenti il canale è eseguita con il metodo degli Stati Limite mediante il software di calcolo dedicato SAX v.10 di Aztec informatica srl.

Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

1.3 NORMATIVE DI RIFERIMENTO

I riferimenti normativi per la redazione della presente relazione di calcolo sono i seguenti:

- [N.1]. D.M. 05/11/01 "Norme funzionali e geometriche per la costruzione delle strade";
- [N.2]. Norme Tecniche per le Costruzioni D.M. 147/01/2008 (NTC-2008);
- [N.3]. ORD. P.C.M. n°3274 del 20.03.2003 e s.m.i.: "Criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica";
- [N.4]. D.M. 11.03.1988: "Indagini sui terreni e sulle rocce";
- [N.5]. L.R. 11/7/94 n° 17: "Snellimento delle procedure precisate dalla L. 64/74 per costruzioni in zone sismiche;
- [N.6]. D.lgs 50/2016 e successive modificazioni e integrazioni: Nuova normativa sui LL.PP;

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	6

[N.7]. Decreto del Ministero dello Sviluppo Economico 17 aprile 2008 "Regola tecnica per la progettazione, costruzione, collaudo, esercizio e sorveglianza delle opere e degli impianti di trasporto di gas naturale con densità non superiore a 0,8;

[N.8]. Istruzioni delle Ferrovie dello Stato FS 44a_cavalcavia su sede ferroviaria;

[N.9]. L.R. 04/1998, n°7: Disciplina per le costruzioni ricadenti in zone sismiche. Snellimento delle procedure in attuazione dell'art. 20 della Legge 10 Dicembre 1981, n°741;

[N.10]. RFI DTC SI PS MA IFS 001 B - Manuale di Progettazione delle Opere Civili del 22/12/2017.

2. MATERIALI

Per la realizzazione del canale è stato scelto un calcestruzzo C32/40 aventi le seguenti caratteristiche:

Resistenza a compressione (cilindrica)	$f_{ck} = 0.83 \cdot R_{ck} = 33.20 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 0.85 \cdot f_{ck} / 1.5 = 18.81 \text{ N/mm}^2$
Resistenza a trazione media	$f_{ctm} = 0.30 \cdot f_{ck}^{2/3} = 3.10 \text{ N/mm}^2$
Resistenza a trazione caratteristica	$f_{ctk} = 0.7 \cdot f_{ctm} = 2.17 \text{ N/mm}^2$
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c = 1.45 \text{ N/mm}^2$
Modulo elastico	$E_{cm} = 22000 [(f_{ck}+8)/10]^{0.3} = 33642.78 \text{ N/mm}^2$
Classe di esposizione	XA1+XS1
Classe minima di consistenza	S4
Copriferro	5 cm
Rapporto acqua-cemento (a/c)	0.50
Diametro massimo inerti	25 mm

Per le armature metalliche si adottano barre in acciaio del tipo B450C controllato in stabilimento che presentano le seguenti caratteristiche:

– Limite di snervamento: f_{vk} ≥ 450 N/mm²

– Limite di rottura: $f_{tk} \ge 540 \text{ N/mm}^2$

– Fattore di sicurezza acciaio: $γ_s = 1.15$

- Resistenza a trazione di calcolo: $f_{yd} = f_{yk}/\gamma_s = 391.30 \text{ N/mm}^2$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	7

3. CENNI TEORICI – SOFTWARE DI CALCOLO SCAT V.14

3.1 SPINTA SUI PIEDRITTI

3.1.1 SPINTA A RIPOSO

Si assume che sui piedritti agisca la spinta calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione

K0 = 1 - sinf

dove f rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza

H valgono

s = g z K0 + pvK0

S = 1/2 g H2 K0 + pvK0 H

dove py è la pressione verticale agente in corrispondenza della calotta.

3.1.2 SPINTA IN PRESENZA DI SISMA - FORMULA DI WOOD

Spinta del terreno nel caso di strutture rigide.

Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato come:

DPd=agH2

a=ag/g*Ss*bm*St

H è l'altezza sulla quale agisce la spinta. Il punto di applicazione va preso a metà altezza.

3.2 VERIFICA AL CARICO LIMITE

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a hq. Cioè, detto Qu, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	8

$$\begin{array}{c} Q_u \\ \hline \\ R \end{array}$$

Terzaghi ha proposto la seguente espressione per il calcolo della capacità portante di una fondazione superficiale.

$$q_u = cN_c s_c d_c i_c g_c b_c + qN_q s_q d_q i_q g_q b_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

La simbologia adottata è la seguente:

- c coesione del terreno in fondazione;
- f angolo di attrito del terreno in fondazione;
- g peso di volume del terreno in fondazione;
- B larghezza della fondazione;
- D profondità del piano di posa;
- q pressione geostatica alla quota del piano di posa.

I fattori di capacità portante sono espressi dalle seguenti relazioni:

$$N_q = e^{\pi t g \phi} K_p par$$

$$N_c = (N_q - 1)ctg\phi$$

$$N_{\gamma} = 2(N_{q} + 1)tg\phi$$

I fattori di forma sc e sg che compaiono nella espressione di qu dipendono dalla forma della fondazione. In particolare valgono 1 per fondazioni nastriformi o rettangolari allungate e valgono rispettivamente 1.3 e 0.8 per fondazioni quadrate.

Il termine Kpg che compare nell'espressione di Ng non ha un'espressione analitica. Pertanto si assume per Ng l'espressione proposta da Meyerof

$$Ng = (Nq - 1)tg(1.4*f)$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	9

3.3 STRATEGIA DI SOLUZIONE

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di rinfianco e di fondazione viene invece schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$Ku = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

$$u = K-1 p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

4. CRITERI DI VERIFICA

Il dimensionamento delle opere è stato condotto in ottemperanza alle prescrizioni normative di riferimento secondo i criteri del metodo semiprobabilistico agli stati limite basato sull'impiego dei coefficienti parziali. Nel metodo agli stati limite, la sicurezza strutturale nei confronti degli stati limite ultimi deve essere verificata confrontando la capacità di progetto Rd, in termini di resistenza, duttilità e/o spostamento della struttura o della membratura strutturale, funzione delle caratteristiche meccaniche dei materiali che la compongono (Xd) e dei valori nominali delle grandezze geometriche interessate (ad), con il corrispondente valore di progetto della domanda

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-**LESINA**

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	10

Ed, funzione dei valori di progetto delle azioni (Fd) e dei valori nominali delle grandezze geometriche della struttura interessate. La verifica della sicurezza nei riguardi degli stati limite ultimi (SLU) è espressa dall'equazione:

$R_d \ge E_d$

La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

 $\textbf{Tabella 5.2.V} - Coefficienti \ parziali \ di \ sicurezza \ per \ le \ combinazioni \ di \ carico \ agli \ SLU, \ eccezionali \ e \ sismica$

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

4.1 **VERIFICHE DI RESISTENZA (SLU)**

Pressoflessione

Per la valutazione della resistenza ultima delle sezioni di elementi monodimensionali si adottano le seguenti ipotesi:

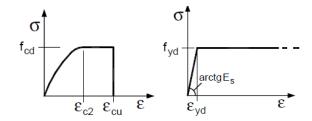
- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Resistenza a trazione del calcestruzzo nulla;

di GEO.

(i) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutati definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(i) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitati nelle verifiche.

⁽a) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
(5) Aliquota di carico da traffico da considerare.
(6) 1,30 per instabilità in strutture con precompressione esterna
(7) 1,20 per effetti locali


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

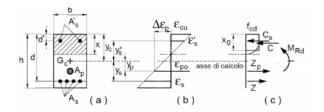
LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	COMMESSA	LOTTO	FASE	ENIE	TIPO DOC	OFE	KA / DISCIFI	LINA	FROGR	KE V	FOGLIO
Relazione di calcolo scatolare IN04	LIOB	02	E	ZZ	CL	IN	04	00	001	В	11

- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.

Si assumeranno come diagrammi tensione-deformazione i diagrammi parabola-rettangolo e elastico perfettamente plastico per calcestruzzo e acciaio, rispettivamente.

Per la classe di calcestruzzo adoperata i valori di deformazione ec2 e ecu valgono rispettivamente 0.2% e 0.35%. La deformazione ultima eyd dell'acciaio è pari all'1%.


Con riferimento alla sezione pressoinflessa in figura, la verifica di resistenza si conduce controllando che:

$$M_{Rd}(N_{Ed}) \geq M_{Ed}$$

Dove:

MRd è il valore di calcolo del momento resistente corrispondente a NEd;

MEd è il valore di calcolo della componente flettente dell'azione.

Elementi senza armature trasversali resistenti al taglio

Se, sulla base del calcolo, non è richiesta armatura al taglio, è comunque necessario disporre un'armatura minima secondo quanto previsto al punto 4.1.6.1.1 delle NTC'08. È consentito omettere tale armatura minima in elementi quali solai, piastre e membrature a comportamento analogo, purché sia garantita una ripartizione trasversale dei carichi.

La verifica di resistenza (SLU) si pone con:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	12

VRd > VEd

dove VEd è il valore di progetto dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza di progetto a taglio si valuta con la seguente relazione:

$$V_{Rd} = \left\{ \frac{1}{\gamma_c} 0.18 \cdot k \cdot \left(100 \cdot \rho_l \cdot f_{ck} \right)^{\frac{1}{3}} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(\upsilon_{\min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d$$

con:

fck: resistenza caratteristica allo snervamento dell'acciaio, espressa in MPa;

$$k = 1 + \sqrt{\frac{200}{d}} \le 2$$

$$\upsilon_{\min} = 0.035 \cdot \sqrt{k^3 \cdot f_{ck}}$$

e dove:

- d: altezza ultile della sezione, espressa in mm;
- pl: rapporto geometrico di armatura longitudinale espresso mediante la seguente relazione:

$$\rho_l = \frac{A_{sl}}{b_{rr} \cdot d} < 0.02$$

σcp: tensione media di compressione nella sezione espressa mediante la seguente relazione:

$$\sigma_{cp} = \frac{N_{Ed}}{A} \le 0.2 f_{cd}$$

bw: larghezza minima della sezione;

Elementi con armature trasversali resistenti al taglio

La resistenza di progetto a taglio VRd di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	13

traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione Θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 < \cot \Theta < 2.5$$

La verifica di resistenza (SLU) si pone con:

dove VEd è il valore di progetto dello sforzo di taglio agente. Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con:

$$V_{Rod} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

La resistenza di progetto a taglio della trave è la minore delle due sopra definite:

$$VRd = min (VRsd; VRcd)$$

dove:

- d: altezza utile della sezione;
- bw: larghezza minima della sezione;
- σcp: tensione media di compressione della sezione;
- Asw: area dell'armatura trasversale;
- s: interasse tra due armature trasversali consecutive;
- α: angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
- ufcd: resistenza di progetto a compressione ridotta del calcestruzzo d'anima (υ= 0.5);
- α: coefficiente maggiorativo pari a:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04
-----------	----	---------	-----------	-------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	INA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	14

1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 f_{cd}$

1,25 per 0,25 $f_{cd} \le \sigma_{cp} \le 0.5 f_{cd}$

 $2.5 (1 - \sigma_{cp}/f_{cd})$ per $0.5 f_{cd} < \sigma_{cp} < f_{cd}$

4.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)

I valori delle proprietà meccaniche da adoperare nell'analisi sono quelli caratteristici e i coefficienti parziali sulle azioni e sui parametri di resistenza sono sempre unitari.

Per le verifiche in condizioni sismiche si fa riferimento allo Stato Limite di Danno (SLD).

Verifica delle tensioni di esercizio

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

In accordo al Manuale di Progettazione RFI, la massima tensione di compressione del calcestruzzo oc,max, deve rispettare la limitazione seguente:

- $-\sigma_{c,max}$ < 0.55 f_{ck} per combinazione caratteristica (Rara);
- $-\sigma_{c,max}$ < 0.40 f_{ck} per combinazione quasi permanente;

Tensione massima dell'acciaio in condizioni di esercizio

In accordo al Manuale di Progettazione RFI, la tensione massima, σ s,max , per effetto delle azioni dovute alla combinazione caratteristica (rara) deve rispettare la limitazione seguente:

$$-\sigma_{s,max}$$
 < 0.75 f_{vk}

Stato limite di fessurazione

La classe di esposizione di progetto è la XA1+XS1.

Tale classe di esposizione rientra nelle condizioni ambientali aggressive, come desumibile dalla tabella sottostante:

Condizioni ambientali	Classe di esposizione
-----------------------	-----------------------

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04
-----------	----	---------	-----------	-------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	15

Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Nel caso in esame, l'apertura convenzionale delle fessure in condizioni aggressive dovrà risultare:

$$\delta_f \le w_1 = 0.2 \text{ mm } (combinazione \ di \ carico \ caratteristica)$$

Alla luce delle condizioni ambientali di progetto e della classe di calcestruzzo impiegata è stato assunto un copriferro di 5cm.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	C OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	16

5. CARATTERIZZAZIONE SISMICA

Le coordinate relative allo scatolare in progetto sono le seguenti:

Latitudine: 41.664799

Longitudine: 14.664799

I parametri utilizzati per la definizione dell'azione sismica sono:

Vita nominale: VN = 75 anni
Classe d'uso: III (Cu=1.5)

Periodo di riferimento: VR = 75 x 1.5 = 113 anni

Categoria stratigrafica: B

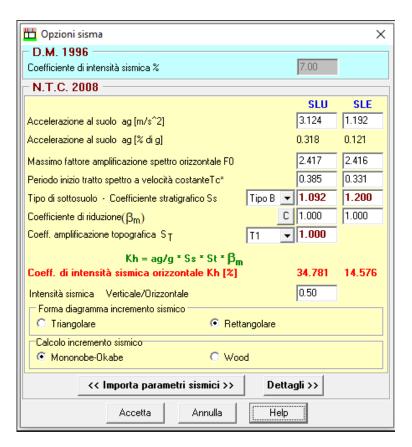
Categoria topografica del sito: T1

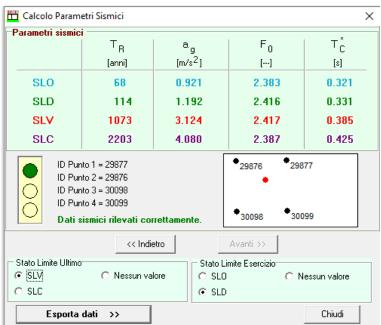
L'analisi in condizioni sismiche è eseguita con il metodo pseudo-statico. In particolare, l'azione sismica è definita mediante un'accelerazione equivalente, in accordo con quanto indicato nel capitolo 7 delle NTC 08. Tale accelerazione è proporzionale alla massa mediante due coefficienti, orizzontale e verticali, di seguito definiti:

$$k_h = S_s \cdot S_t \cdot \frac{a_g}{g}$$

$$k_v = \pm \frac{k_h}{2}$$

I risultati ottenuti, sia allo SLU (SLV) e sia allo SLE (SLD), sono riportati nella figura sottostante (output da software di calcolo):




RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMM	ESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI)B	02	E	ZZ	CL	IN	04	00	001	В	17

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO	l
Relazione di calcolo scatolare IN04	LIOB	02	E	ZZ	CL	IN	04	00	001	В	18	

6. DIMENSIONAMENTO CANALE IN C.A.

6.1 GEOMETRIA

Descrizione: Scatolare tipo vasca

Altezza esterna 5.20 [m]

Larghezza esterna 10.20 [m]

Spessore piedritto sinistro 0.60 [m]

Spessore piedritto destro 0.60 [m]

Spessore fondazione 0.80 [m]

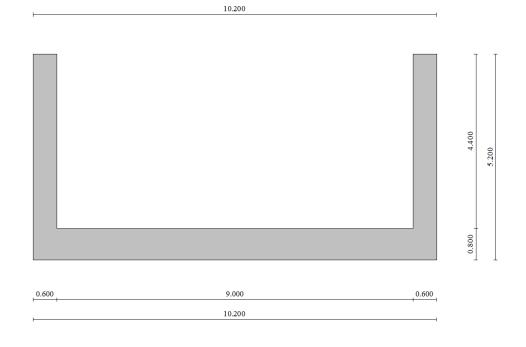


Figura 6-1 – Geometria del canale IN05

6.2 STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI CALCOLO

Strato di rinfianco

Descrizione Terreno di rinfianco (ba1)

Peso di volume 19.00 [kN/mc]

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	19

Peso di volume saturo 19.00 [kN/mc]

Angolo di attrito 36.50 [°]

Angolo di attrito terreno struttura 24.33 [°]

Coesione 0 [kPa]

Strato di base

Descrizione Terreno di base (ba3)

Peso di volume 19.00 [kN/mc]

Peso di volume saturo 19.00 [kN/mc]

Angolo di attrito 24.50 [°]

Angolo di attrito terreno struttura 16.33 [°]

Coesione 7.5 [kPa]

Costante di Winkler 6625 [kPa/m]

La costante di Winkler per il terreno di fondazione è stata determinata mediante la relazione empirica suggerita da Terzaghi e Peck (1948):

$$k_w = k_1 \cdot (\frac{B+b}{2 \cdot B})^2 = 6625 \frac{kPa}{m}$$

dove:

- k₁: valore tabellato in funzione della consistenza del terreno, assunto cautelativamente pari a 25 N/cm³ (Consistenza compatta, Cu=50-100 kPa);
- B: larghezza canale;
- b = 0.30 m;

|--|

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN	104
-----------------------------------	-----

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	20

(m)	(N/cm ³)	(m)	(kPa/m)
10.20	25	0.30	6625

La costante di Winkler per il terreno di rifianco è stata assunta pari a:

$$k_h = 0.5 * k_w = 3312.50 \, kPa/m$$

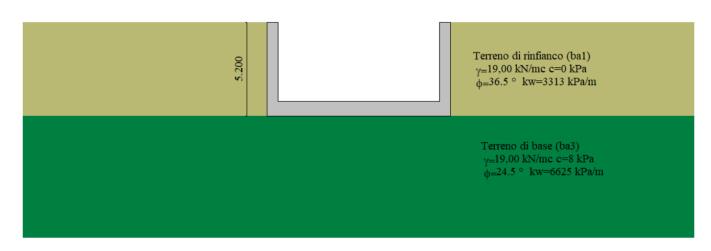


Figura 6-2 - Modello di calcolo

6.3 CONDIZIONI DI CARICO

Nel modello si è tenuto conto dei seguenti carichi:

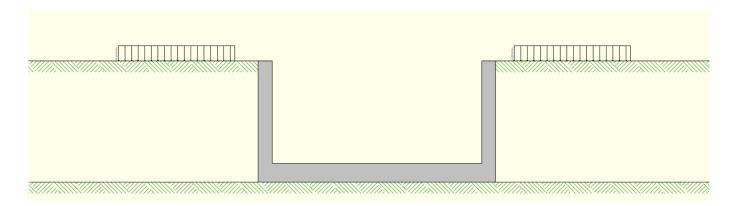
- Condizione di carico n°1 (Peso Proprio)
- Condizione di carico n°2 (Spinta terreno sinistra)
- Condizione di carico n°3 (Spinta terreno destra)
- Condizione di carico n°4 (Sisma da sinistra)
- Condizione di carico n°5 (Sisma da destra)
- Condizione di carico n
 ^o 7 (Traffico)

Distr Terreno $X_i = 15,00 \quad X_f = 22,00 \quad V_{ni} = 20,00 \quad V_{nf} = 20,00$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	21

• Condizione di carico n° 8 (Cantiere)

Distr Terreno $X_i = -6,00 \quad X_f = -1,00 \quad V_{ni} = 10,00 \quad V_{nf} = 10,00$

Distr Terreno $X_i = 11,00 \quad X_f = 16,00 \quad V_{ni} = 10,00 \quad V_{nf} = 10,00$

6.4 COMBINAZIONI DI CARICO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	G G1fav	1.00	1.00
Permanenti	Sfavorevole	G G1sfav	1.30	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di	calcolo	scatolare IN04
--------------	---------	----------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	22

Permanenti non strutturali	Favorevole	G G2fav	0.80	0.80
Permanenti non strutturali	Sfavorevole	G G2sfav	1.50	1.30
Variabili	Favorevole	G Qifav	0.00	0.00
Variabili	Sfavorevole	G Qisfav	1.50	1.30
Variabili da traffico	Favorevole	G Qfav	0.00	0.00
Variabili da traffico	Sfavorevole	G Qsfav	1.35	1.15
Termici	Favorevole	G efav	0.00	0.00
Termici	Sfavorevole	G esfav	1.20	1.20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	<i>M</i> 2
Tangente dell'angolo di attrito	g _{tanf'}	1.00	1.25
Coesione efficace	g _{c'}	1.00	1.25
Resistenza non drenata	g cu	1.00	1.40
Resistenza a compressione uniassiale	g qu	1.00	1.60
Peso dell'unità di volume	g g	1.00	1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	G G1fav	1.00	1.00
Permanenti	Sfavorevole	G G1sfav	1.00	1.00
Permanenti	Favorevole	G G2fav	0.00	0.00
Permanenti	Sfavorevole	G G2sfav	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	23

Variabili	Favorevole	G Qifav	0.00	0.00
Variabili	Sfavorevole	G Qisfav	1.00	1.00
Variabili da traffico	Favorevole	G Qfav	0.00	0.00
Variabili da traffico	Sfavorevole	G Qsfav	1.00	1.00
Termici	Favorevole	G efav	0.00	0.00
Termici	Sfavorevole	Q _{esfav}	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	G tanf'	1.00	1.00
Coesione efficace	g c'	1.00	1.00
Resistenza non drenata	g cu	1.00	1.00
Resistenza a compressione uniassiale	g qu	1.00	1.00
Peso dell'unità di volume	g _g	1.00	1.00

Combinazione n° 1 SLU (Approccio 2)

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN	04
-----------------------------------	----

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	24

Combinazione n° 2 SLU (Approccio 2)

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Condizione 1	Sfavorevole	1.50	1.00	1.50
Condizione 2	Sfavorevole	1.50	1.00	1.50
Condizione 3	Sfavorevole	1.50	1.00	1.50

Combinazione n° 3 SLU (Approccio 2) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 4 SLU (Approccio 2) - Sisma Vert. negativo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LIOB	02	E	ZZ	CL	IN	04	00	001	В	25

Combinazione nº 5 SLU (Approccio 2) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 6 SLU (Approccio 2) - Sisma Vert. negativo

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 7 SLU (Approccio 2) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OOC OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	\mathbf{E}	ZZ	\mathbf{CL}	IN	04	00	001	В	26

Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 8 SLU (Approccio 2) - Sisma Vert. negativo

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 9 SLU (Approccio 2) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 10 SLU (Approccio 2) - Sisma Vert. negativo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04	Relazione	one di calcolo	scatolare IN04
-------------------------------------	-----------	----------------	----------------

LIOB	02	E	ZZ	CL	IN	04	00	001	В	27
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	

Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione n° 11 SLE (Rara)

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00

Combinazione n° 12 SLE (Frequente)

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04
-----------	----	---------	-----------	-------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LIOB	02	E	ZZ	CL	IN	04	00	001	В	28

Combinazione nº 13 SLE (Quasi Permanente)

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00

Combinazione nº 14 SLE (Rara) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 15 SLE (Rara) - Sisma Vert. negativo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione d	li calcolo	scatolare	IN04
-------------	------------	-----------	-------------

LIOB	02	E	ZZ	CL	IN	04	00	001	В	29
COMMESSA	LOTTO	FASE	ENIE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO

Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 16 SLE (Rara) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 17 SLE (Rara) - Sisma Vert. negativo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare INC)4
------------------------------------	----

LIOB	02	E	ZZ	CL	IN	04	00	001	В	30	
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	ı	

Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 18 SLE (Frequente) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 19 SLE (Frequente) - Sisma Vert. negativo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	31

Combinazione nº 20 SLE (Frequente) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 21 SLE (Frequente) - Sisma Vert. negativo

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

Combinazione n° 22 SLE (Quasi Permanente) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione	di	calcolo	scatolare	IN04
-----------	----	---------	-----------	-------------

LIOB	02	E	ZZ	CL	IN	04	00	001	В	32	l
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO	ı

Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione n° 23 SLE (Quasi Permanente) - Sisma Vert. negativo

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00

Combinazione nº 24 SLE (Quasi Permanente) - Sisma Vert. positivo

	Effetto	g	Υ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	33

Sisma da destra Sfavorevole 1.00 1.00 1.00

Combinazione n° 25 SLE (Quasi Permanente) - Sisma Vert. negativo

	Effetto	g	Y	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Condizione 1	Sfavorevole	1.00	1.00	1.00
Condizione 2	Sfavorevole	1.00	1.00	1.00
Condizione 3	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	34

Figura 6-3 - Riepilogo combinazioni di calcolo.

6.5 IMPOSTAZIONI DI PROGETTO

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo g _c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	35

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k*(100.0*r_i*fck)^{1/3}/g_c+0.15*s_{cp}]*bw*d>(vmin+0.15*s_{cp})*b_w*d$

V_{Rsd}=0.9*d*A_{sw}/s*fyd*(ctga+ctgq)*sina

 $V_{Rcd}=0.9*d*b_w*a_c*fcd'*(ctg(q)+ctg(a)/(1.0+ctgq^2)$

con:

d altezza utile sezione [mm]

b_w larghezza minima sezione [mm]

s_{cp} tensione media di compressione [N/mmq]

r₁ rapporto geometrico di armatura

A_{sw} area armatuta trasversale [mmq]

s interasse tra due armature trasversali consecutive [mm]

a_c coefficiente maggiorativo, funzione di fcd e s_{cp}

fcd'=0.5*fcd

 $k=1+(200/d)^{1/2}$

vmin=0.035*k^{3/2}*fck^{1/2}

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare) 0.60 fck

Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) 0.45 fck

Limite tensioni di trazione nell'acciaio (comb. rare) 0.80 fyk

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	36

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [m]

Apertura limite fessure w1=0.00020 w2=0.00030 w3=0.00040

Metodo di calcolo aperture delle fessure:

- NTC 2018 - C4.1.2.2.4.5

Resistenza a trazione per Flessione

Verifiche secondo: Norme Tecniche 2018

Copriferro sezioni 0,05 [m]

6.6 ANALISI DELLA SPINTA E VERIFICHE

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso

X ascisse (espresse in m) positive verso destra

Y ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm

V taglio espresso in kN

SN sforzo normale espresso in kN

ux spostamento direzione X espresso in m

uy spostamento direzione Y espresso in m

st pressione sul terreno espressa in kPa

Tipo di analisi

Pressione in calotta Pressione geostatica

I carichi applicati sul terreno sono stati diffusi secondo angolo di attrito

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	37

Metodo di calcolo della portanza Terzaghi

Spinta sui piedritti a Riposo

6.7 SISMA

Identificazione del sito

Latitudine 41.664799

Longitudine 14.664799

Comune Campobasso

Provincia Campobasso

Regione Molise

Punti di interpolazione del reticolo 29877 – 29876 – 30098 – 30099

Tipo di opera

Tipo di costruzione Opera ordinaria

Vita nominale 75 anni

Classe d'uso III - Affollamenti significativi e industrie non pericolose

Vita di riferimento 113 anni

Combinazioni SLU

Accelerazione al suolo ag = 3.12 [m/s²]

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.09

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (bm) 1.00

Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) kh=(ag/g*bm*St*Ss) = 34.78

Coefficiente di intensità sismica verticale (percento) kv=0.50 * kh = 17.39

Combinazioni SLE

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
Relazione di calcolo scatolare IN04	LIOB	02	E	ZZ	CL	IN	04	00	001	В	38

Accelerazione al suolo ag = $1.19 [m/s^2]$

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.20

Coefficiente di amplificazione topografica (St) 1.00

Coefficiente riduzione (bm) 1.00

Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) kh=(ag/g*bm*St*Ss) = 14.58

Coefficiente di intensità sismica verticale (percento) kv=0.50 * kh = 7.29

Forma diagramma incremento sismico Rettangolare

Spinta sismica Mononobe-Okabe

Angolo diffusione sovraccarico 30,00 [°]

6.8 RISULTATI DI CALCOLO - INVILUPPO SOLLECITAZIONI

Nel seguente paragrafo si riportano gli inviluppi in termini di sollecitazioni (flettenti, taglianti e di sforzo normale) dell'opera in esame.

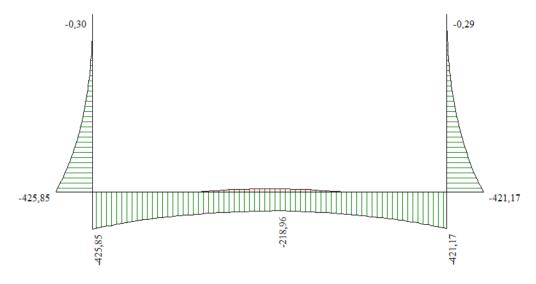


Figura 6-4 - SLU: Inviluppo momento flettente

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di c	calcolo scatolare	IN04
----------------	-------------------	-------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	39

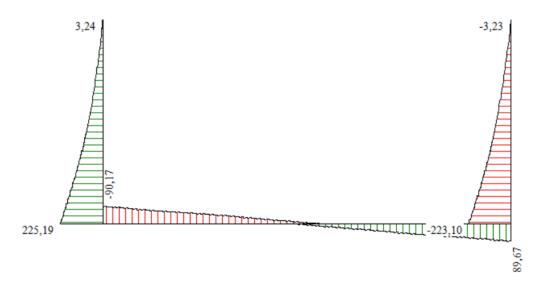


Figura 6-5 - SLU: Inviluppo taglio

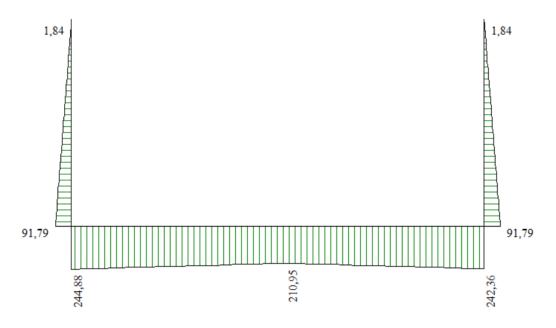


Figura 6-6 – SLU: Inviluppo sforzo normale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	INA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	40

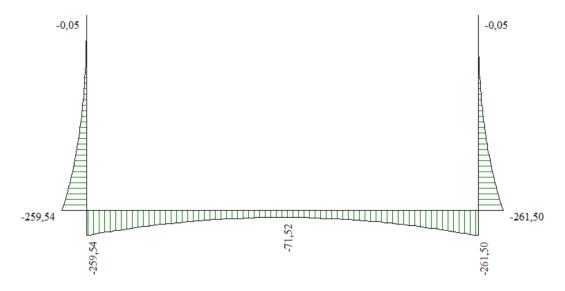


Figura 6-7 - SLE: Inviluppo momento flettente

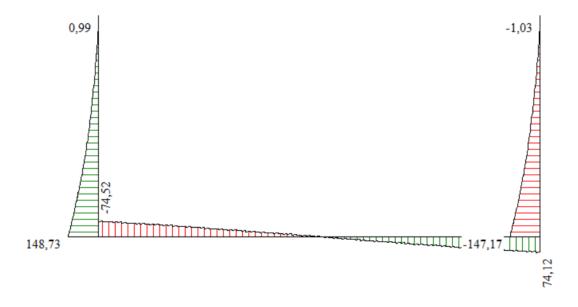


Figura 6-8 - SLE: Inviluppo taglio

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	41

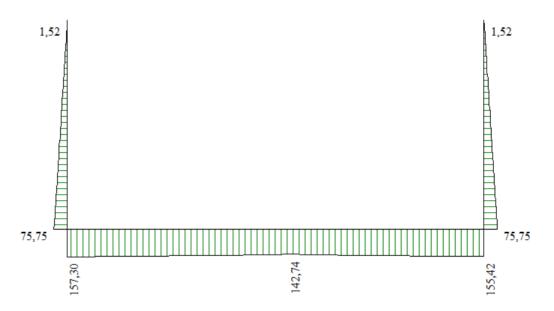


Figura 6-9 – SLE: Inviluppo sforzo normale

6.9 VERIFICHE STRUTTURALI

Le verifiche strutturali sono state condotte con l'ausilio del software SAX v.10 di Aztec Informatica Srl e di apposito foglio di calcolo (verifiche a taglio).

Nelle tabelle sottostanti si riepilogano i valori delle sollecitazioni più significativi ai fini delle verifiche. Tali valori sono riferiti ad un metro lineare di sviluppo.

Soletta di fondazione									
Stato limite	Stato limite M (kNm) T (kN)								
SLU	-421.17	90.17	244.88						
SLE (Rara)	-261.50	74.51	157.30						
SLE (QP)	-261.50	74.51	157.30						

Piedritti								
Stato limite	M (kNm)	T (kN)	N (kN)					

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	42

SLU	-425.85	225.19	91.79
SLE (Rara)	-200.32	116.67	68.18
SLE (QP)	-200.32	116.67	68.18

Si assumono, per convenzione, positivi i momenti che tendono le fibre del lato interno degli elementi e negativi i momenti che tendono le fibre lato esterno degli elementi.

6.9.1 VERIFICHE SLU

Soletta di fondazione

La sezione di calcolo ha dimensioni 100x80cm e risulta armata come segue:

Armatura principale: 5\psi22/m superiori

5φ22/m inferiori

Ripartitori: \$\phi12/30cm

Si prevedono inoltre n.9 ganci φ8/mq.

Il copriferro è pari a 5cm.

Flessione

A vantaggio di sicurezza non si è tenuto conto dello sforzo normale agente.

Figura 6-10 - Verifica a flessione

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	43

Come si evince dalla figura sopra riportata, risulta che:

 $M_{Rd} = 525.10 \text{ kNm} > M_{Ed} = 421.17 \text{ kNm}$

Pertanto, la verifica a flessione risulta soddisfatta.

Taglio (elementi senza armature trasversali)

Si riporta la verifica a taglio per elementi senza armature trasversali. Tale verifica, come da calcoli sottostanti, risulta soddisfatta in quanto:

 $V_{Rd} = 277.58 \text{ kN} > V_{Ed} = 90.17 \text{ kN}$

VERIFICA A TAGLIO SENZA ARMA	URE TRASVERSALI		
Significato dei simboli	Parametro	Valore	u.d.m.
Altezza utile della sezione in cls	d	750,00	mm
Larghezza minima della sezione in cls	b _w	1000,00	mm
Classe di calcestruzzo		C32/40	
Resistenza cilindrica caratteristica	f _{ck}	33,20	MPa
Coefficiente di sicurezza	γс	1,50	-
Acciao di armatura		B450C	
Tensione di snervamente caratteristica	f_{yk}	450,00	
Armatura longitudinale di calcolo	A _{sl}	1900,66	mm ²
armatura longitudinale in zona tesa minima	A _{s,min}	9591,11	mm ²
Armatura massima	A _{s,min}	30000,00	
Valore di calcolo dello sforzo normale agente	N _{ed}	0,00	N
-	k	1,52	-
Rapporto geometrico di armatura longitudinale	ρ	0,003	-
Tensione media di compressione sulla sezione	$\sigma_{\sf cp}$	0,00	MPa
-	V _{min}	0,38	MPa
Resistenza a taglio di progetto minima	V_{min}	282,43	kN
Resistenza a taglio di progetto	V_{rd}	277,58	kN
Valore di calcolo dello sforzo di taglio agente	V_{ed}	90,17	kN
Verificato	V _{ed} /V _{rd}	0,32	-

Figura 6-11 – Verifica a taglio

Pertanto non occorre prevedere apposita armatura trasversale aggiuntiva.

Piedritti

La sezione di calcolo ha dimensioni 100x60cm e risulta armata come segue:

Armatura principale: 6φ22/m lato monte

5φ16/m lato valle

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	44

- Ripartitori: φ12/30cm

Si prevedono inoltre n.9 ganci φ8/mq.

Il copriferro è pari a 5cm.

Flessione

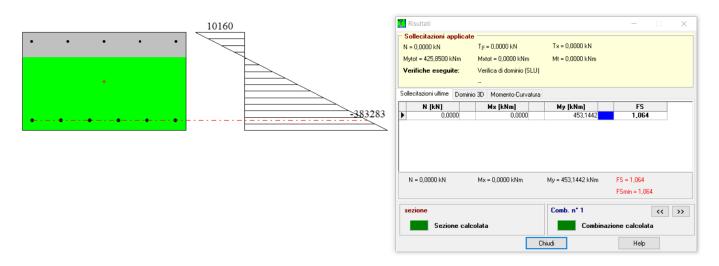


Figura 6-12 - Verifica a flessione

Come si evince dalla figura sopra riportata, risulta che:

 $M_{Rd} = 453.14 \text{ kNm} > M_{Ed} = 425.85 \text{ kNm}$

Pertanto, la verifica a flessione risulta soddisfatta.

Taglio (elementi senza armature trasversali)

Si riporta la verifica a taglio per elementi senza armature trasversali. Tale verifica, come da calcoli sottostanti, risulta soddisfatta in quanto:

VERIFICA A TAGLIO SENZA AR	MAURE TRASVERSALI		
Significato dei simboli	Parametro	Valore	u.d.m.
Altezza utile della sezione in cls	d	550,00	mm
Larghezza minima della sezione in cls	b _w	1000,00	mm
Classe di calcestruzzo		C32/40	
Resistenza cilindrica caratteristica	f _{ck}	33,20	MPa
Coefficiente di sicurezza	γс	1,50	-
Acciao di armatura		B450C	
Tensione di snervamente caratteristica	f _{yk}	450,00	
Armatura longitudinale di calcolo	A _{sl}	2280,80	mm ²
armatura longitudinale in zona tesa minima	A _{s,min}	7033,48	mm ²

 $V_{Rd} = 253.57 \text{ kN} > V_{Ed} = 225.19 \text{ kN}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	JINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	45

Armatura massima	A _{s,min}	22000,00	
Valore di calcolo dello sforzo normale agente	N _{ed}	0,00	N
-	k	1,60	-
Rapporto geometrico di armatura longitudinale	ρ	0,004	-
Tensione media di compressione sulla sezione	$\sigma_{\sf cp}$	0,00	MPa
-	V _{min}	0,41	MPa
Resistenza a taglio di progetto minima	V_{min}	225,12	kN
Resistenza a taglio di progetto	V_{rd}	253,57	kN
Valore di calcolo dello sforzo di taglio agente	V _{ed}	225,19	kN
Verificato	V _{ed} /V _{rd}	0,89	-

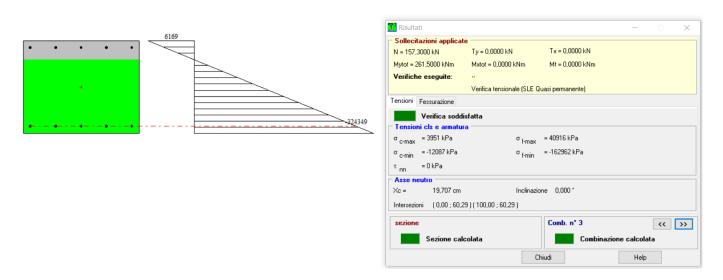
Figura 6-13 - Verifica a taglio

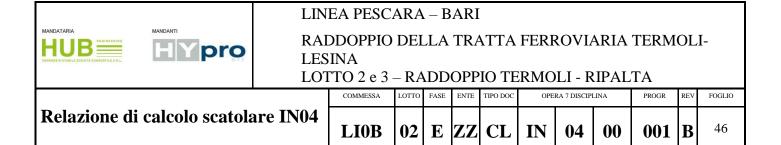
Pertanto non occorre prevedere apposita armatura trasversale aggiuntiva.

6.9.2 VERIFICHE SLE

Soletta di fondazione

Verifica delle tensioni di esercizio




Figura 6-14 – Verifica tensionale (Comb. QP)

Come si evince dalla figura sopra riportata, risulta che:

 $\sigma_c = 3.95 \text{ MPa} < 0.40 f_{ck} = 13.28 \text{ MPa} \text{ (calcestruzzo)}$

 σ_s = 162.96 MPa < 0.75f_{yk} = 337.50 MPa (acciaio di armatura)

Verifica a fessurazione

Come si evince dalla figura sopra riportata, risulta che:

Figura 6-15 - Verifica a fessurazione (Comb. Rara)

 $w_d = 0.000 \text{ mm} < w_{LIM} = 0.200 \text{ mm}$

Piedritti

Verifica delle tensioni di esercizio

Figura 6-16 - Verifica tensionale (Comb. QP)

Come si evince dalla figura sopra riportata, risulta che:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	47

 σ_c = 12.90 MPa < 0.40f_{ck} = 13.28 MPa (calcestruzzo)

 σ_s = 166.39 MPa < 0.75f_{vk} = 337.50 MPa (acciaio di armatura)

Verifica a fessurazione

Come si evince dalla figura sopra riportata, risulta che:

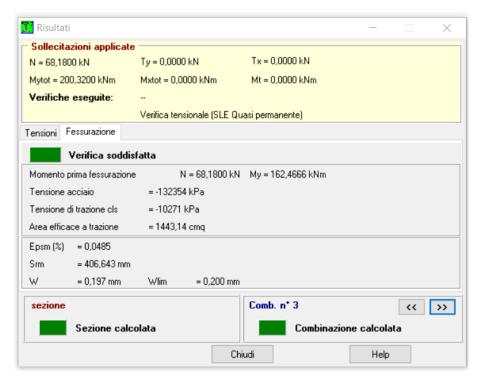


Figura 6-17 – Verifica a fessurazione (Comb. Rara)

 $w_d = 0.197 \text{ mm} < w_{LIM} = 0.200 \text{ mm}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	48

6.10 VERIFICHE GEOTECNICHE

Simbologia adottata

IC Indice della combinazione

 N_c , N_q , N_γ Fattori di capacità portante

 N'_{c} , N'_{q} , N'_{γ} Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

qu Portanza ultima del terreno, espressa in [kPa]

Q_U Portanza ultima del terreno, espressa in [kN]/m

Q_Y Carico verticale al piano di posa, espressa in [kN]/m

FS Fattore di sicurezza a carico limite

IC Nc	Nq	Nγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	\mathbf{Q}_{Y}	FS
1 20,01	10,12	10,13	24,09	11,73	10,13	2333	23799,18	428,36	55,56
2 20,01	10,12	10,13	23,88	11,64	10,00	2304	23498,32	428,36	54,86
3 20,01	10,12	10,13	10,47	5,75	3,09	937	9558,01	386,81	24,71
4 20,01	10,12	10,13	7,87	4,61	2,13	707	7213,17	272,21	26,50
5 20,01	10,12	10,13	10,10	5,59	2,95	909	9271,76	386,81	23,97
6 20,01	10,12	10,13	7,55	4,47	2,03	686	6994,72	272,21	25,70
7 20,01	10,12	10,13	10,47	5,75	3,09	937	9558,01	386,81	24,71
8 20,01	10,12	10,13	7,87	4,61	2,13	707	7213,17	272,21	26,50
9 20,01	10,12	10,13	9,79	5,46	2,83	883	9006,15	386,81	23,28
1020,01	10,12	10,13	7,19	4,31	1,91	657	6705,85	272,21	24,64

6.11 INCIDENZA ARMATURE

Si premette che nel calcolo dell'incidenza è stato applicato un incremento del 15% per tener conto delle sovrapposizioni delle armature correnti.

Soletta di fondazione

	Caratteris	tiche geom	etriche	
b (m)	h (m)	L (m)	A (mq)	V (mc)
10.20	0.80	1	8.16	8.16

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo scatolare IN04

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIPI	LINA	PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	49

Armatura	φ (mm)	n.	peso barra (kg/m)	I (m)	peso barra (kg)	sovrap. (kg)	peso tot (kg)
Principali	22	10	2.984	11.50	34.32	-	343.16
Ripartitori	12	68	0.888	1.00	0.888	0.133	69.43
Ganci	8	45	0.395	0.92	0.363	-	16.35
							429.00

Incidenza a metro lineare =
$$\frac{Peso\ tot\ (kg)}{V\ (mc)} = \frac{429.00\ kg}{8.16\ mc} = 52.60 \frac{kg}{mc}$$

Piedritto dx

Caratteristiche geometriche							
b (m) h (m) L (m) A (mq) V (m							
0.60	4.40	1	2.64	2.64			

Armatura	φ (mm)	n.	peso barra (kg/m)	I (m)	peso barra (kg)	sovrap. (kg)	peso tot (kg)
	22	6	2.984	6.30	18.80	-	112.80
Principali	16	5	1.578	6.30	9.94	-	49.71
Ripartitori	12	30	0.888	1.00	0.888	0.133	30.63
Ganci	8	35	0.395	0.72	0.284	-	9.95
					•		203.10

Incidenza a metro lineare =
$$\frac{Peso\ tot\ (kg)}{V\ (mc)} = \frac{203.10\ kg}{2.64\ mc} = 77.00 \frac{kg}{mc}$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA

LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Relazione di calcolo s	scatolare IN04
------------------------	----------------

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LIOB	02	E	ZZ	CL	IN	04	00	001	В	50

Piedritto sx

Caratteristiche geometriche							
b (m) h (m) L (m) A (mq) V (mc							
0.60	4.40	1	2.64	2.64			

Armatura	φ (mm)	n.	peso barra (kg/m)	I (m)	peso barra (kg)	sovrap. (kg)	peso tot (kg)
	22	6	2.984	6.30	18.80	-	112.80
Principali 16		5	1.578	6.30	9.94	-	49.71
Ripartitori	12	30	0.888	1.00	0.888	0.133	30.63
Ganci	8	35	0.395	0.72	0.284	-	9.95
							203.10

Incidenza a metro lineare =
$$\frac{Peso\ tot\ (kg)}{V\ (mc)} = \frac{203.10\ kg}{2.64\ mc} = 77.00 \frac{kg}{mc}$$