COMMITTENTE:

DIREZIONE INVESTIMENTI DIREZIONE PROGRAMMI INVESTIMENTI DIRETTRICE SUD - PROGETTO ADRIATICA

DIREZIONE LAVORI:

APPALTATORE:

Mandataria

Mandanti

PROGETTAZIONE:

MANDATARIA

MANDANTI

PROGETTO ESECUTIVO

LINEA PESCARA - BARI RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI - LESINA LOTTI 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN54 - Tombino 4 DN1500 al km 12+158.30 Relazione di calcolo tombino

L'Appaltatore Ing. Gianguido Babini	A.A.D'AGOSTINO COSTRUZIONI GENERALI S.r.l. II Direttore Tecnico (Ing. Gianguido Babini)	I progettisti (il Direttore o	della progettazione)
Data 18/12/2022	firma	Data 18/12/2022	firma

COMMESSA LOTTO TIPO DOC SCALA FASE ENTE OPERA / DISCIPLINA **PROGR** REV 0 2 ZZN 5 4 0 0 0 0 1 0 B C В Е

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
Α	Prima emissione	G. Troiano	Dicembre 2022	F. Volonnino	Dicembre	S Ganale	Dicembre	
	Tima dilissione		Dicembre 2022		2022	OF ORDINE	2022	SERI DELL
В	A : D. 0054	Ing. A.Zaza	Luglio 2023	Ing. M.Calderoni	Luglio 2023	S _R Ganale	Luglio 2023	Dott Tole TO
	Aggiornamento per Rdv n.0254		Lugilo 2023		Lugilo 2023	O 7834	Edgilo 2025	M. Facchin
					/ (- an	na (eg)	Luglio 2023 =
							(2)	Self in the self i
							/ /	700 * CASERIE
								<i>y</i>
LI0B02E	ZZCLIN5400001B.DOCX							n. Elab.

HYPro RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	1

INDICE

1. PREMESSA	3
1 NORMATIVA DI RIFERIMENTO	5
2 MATERIALI	G
2.1 Calcestruzzo Magrone	
2.1 Calcestruzzo Magrone	
2.1 Calcestruco	
2.2 Acciaio 6450C	C
3 INQUADRAMENTO GEOTECNICO	7
3.1 Terreno di ricoprimento/rinterro	7
3.2 Terreno di fondazione	
3.3 Interazione terreno-struttura	
4 CARATTERIZZAZIONE SISMICA	
4.1 Vita nominale e classe d'uso	
4.2 Parametri di pericolosità sismica	9
5 VERIFICHE STRUTTURALI	12
5.1 Verifica allo stato limite ultimo	12
5.2 Verifica S.L.E.	13
6 SOFTWARE DI CALCOLO	15
7 TOMBINO 4 DN 1500 AFFIANCATI	16
7.1 Modello di calcolo	17
7.2 Analisi dei carichi	
7.3 Azione sismica	
8 COMBINAZIONI DI CARICO	36
9 DIAGRAMMI DELLE SOLLECITAZIONI	40
10 VERIFICA DELLE SEZIONI IN C.A	ЛЗ
10.1 Soletta superiore	
10.1 Piedritto Sinistra	
10.2 Piedritto Destra	
10.3 Piedritto Interna	
10.4 Soletta inferiore	
10.4 Goletta Illichore	
11 RIEPILOGO ARMATURE	57
12 VERIFICA DI DEFORMABILITA'	FO
12 VERIFICA DI DEFURIVIADILITA	58

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	2

13 VERIFICHE GEOTECNICHE	59
13.1 Verifica della capacita portante	59

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54-	Relazione	di	calcolo
tombii	10		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	3

1. PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al Raddoppio della linea Termoli-Lesina, tratta Termoli - Ripalta.

Il tombino si rende necessario per garantire la continuità idraulica fra le aree a nord e a sud del nuovo tracciato ferroviario. Viene realizzato con uno scatolari in c.a..

Complessivamente la sezione è costituita da 4 tubolari ϕ 1500 affiancati e inglobati in un unico getto di c.a. di forma rettangolare di larghezza complessiva pari a 8.78m. Per tale motivo, in fase di calcolo, l'opera viene assimilata ad una sezione scatolare multicanna.

La sezione trasversale retta complessiva è assimilabile quindi ad una sezione scatolare di larghezza L = 8.78 m, altezza di H = 2.42 m, con lo spessore della platea di fondazione è di S_f = 0.30 m, lo spessore dei piedritti di S_p = 0.30 m e lo spessore della soletta di copertura è di S_s = 0.30 m. IL ricoprimento considerato è pari a 1.78m.

Nell'immagine seguente si riporta una sezione trasversale dell'opera.

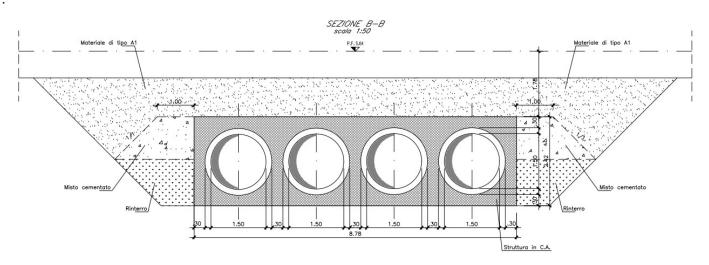


Fig. 1 - Sezione trasversale dell'opera

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	4

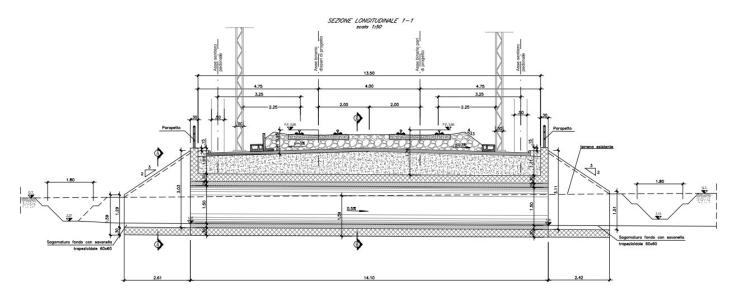


Fig. 2 – Sezione longitudinale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	5

1 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 E del 31/12/2020: Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;

RFI DTC SI CS MA IFS 001 E del 30/12/2020 : Manuale di progettazione delle opere civili – Parte II – Sezione 3 – Corpo Stradale;

- RFI DTC SI PS SP IFS 001 E del 31/12/2020: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento:
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN	54-	Relazione	di	calco	lo
toi	mbii	no			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	6

2 MATERIALI

2.1 CALCESTRUZZO MAGRONE

Conglomerato classe di resistenza C12/15 – Rck 15MPa

Resistenza caratteristica cubica: Rck = 15 N/mm2
Resistenza caratteristica cilindrica: fck = 12 N/mm2

Classe di esposizione: X0
Classe di consistenza slump: S3

2.1CALCESTRUCO

Conglomerato classe di resistenza C32/40 - Rck 40MPa

Conforme alla UNI EN 206-1

Classe di esposizione XS1

Rck (UNI EN 206-2016)>= 40 MPaClasse di resistenza (UNI EN 206-2016)C32/40Tipo cementoCEM III-VDimensione max aggregati25 mmClasse di consistenzaS4Copriferro minimo50 mm

2.2 ACCIAIO B450C

Tensione caratteristica di snervamento: $f_{yk} = 450 \text{ MPa};$ Tensione di progetto: $f_{yk} = 450 \text{ MPa};$ Tensione di progetto: $f_{yk} = f_{yd} / \gamma_m$

in cui $y_m = 1.15$ $f_{yd} = 450 / 1.15 = 391.3 \text{ MPa};$

Modulo Elastico E_s = 210'000 MPa.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN	54-	Relazione	di	calcolo
tω	mhii	20		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	OPERA 7 DISCIPLINA			REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	7

3 INQUADRAMENTO GEOTECNICO

3.1 TERRENO DI RICOPRIMENTO/RINTERRO

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 γ = 20 kN/m³ peso di volume naturale

 φ ' = 35° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

3.2 TERRENO DI FONDAZIONE

Per i parametri geologico-geotecnici si fa riferimento a: Geotechnica. Relazione geotecnica generale LI0B02EZZRGGE0005001B.

Unità ba3 - Argille limose (Alluvioni attuali e recenti)

 $\gamma = 18 \div 19 \text{ kN/m}^3$ peso di volume naturale

c' = 5-20 kPa coesione drenata

 $\phi' = 20 \div 25^{\circ}$ angolo di resistenza al taglio

cu = 40-175 kPa resistenza al taglio in condizioni non drenate

Nspt = $2 \div 30$ numero di colpi da prova SPT Vs = $70 \div 250$ m/s velocità delle onde di taglio

 $Go = 10 \div 120 \text{ MPa}$ modulo di deformazione a taglio iniziale $Eo = 25 \div 320 \text{ MPa}$ modulo di deformazione elastico iniziale

 $k = 10^{-8}$ - 10^{-6} m/s permeabilità

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

1	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
	LI0B	02	Е	ZZ	CL	IN	54	00	001	В	8

3.3 Interazione terreno-struttura

Il suolo viene modellato facendo ricorso all'usuale artificio delle molle elastiche alla Winkler.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Considerando un numero fisso e pari ad 11 di molle elastiche, la caratteristica elastica della generica molla viene calcolata attraverso la formulazione di Vogt:

- Ks = costante di sottofondo [F/L³]
- bt = dimensione trasversale dell'opera
- bl = dimensione longitudinale dell'opera
- (il modello del calcolo è effettuato al metro)

- E = modulo di Young del terreno

Nella presente relazione si adotta un modulo di reazione verticale K_s = 9375kN/m³

Con questo valore si ricavano i valori delle singole molle, ottenendo per le 5 molle centrali un valore di:

 $K_{centrale} = K_s * L_{int} / 10 = 7668.8 \text{ kN/m}^2$

I valori delle molle di spigolo si ottengono con la seguente formulazione:

 $K_{bordo} = K_s * 3L_p / 4 = 2109 \text{ kN/m}^2$

ed infine in valori delle molle nei nodi laterali:

 $K_{laterali} = K_s (L_{int} / 10/2 + L_p / 4) = 4537.5 \text{ kN/m}^2$

K_{orizzontali}= 10* K_{centrale} =76688 kN/m²

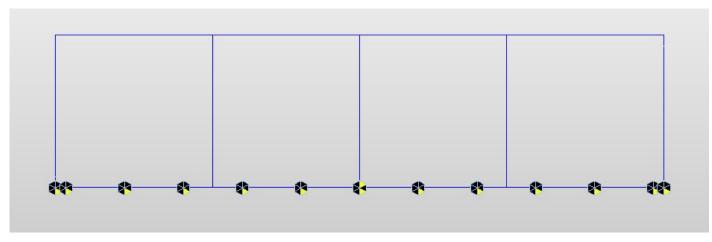


Fig. 3 – Modellazione molle elastiche in MIDAS

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione	di	calcolo
tombino		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	9

4 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

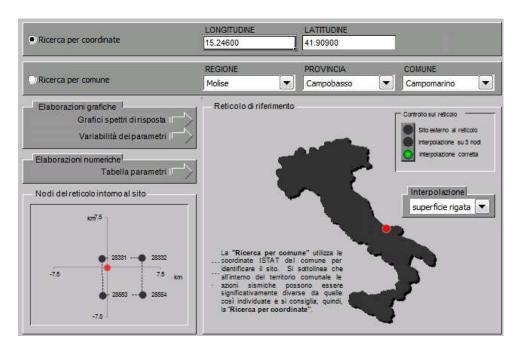
4.1 VITA NOMINALE E CLASSE D'USO

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

Per l'opera in oggetto si considera una vita nominale: VN = 75 anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): C_u = 1.5.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R ovvero:

$$V_R = V_N \cdot C_U$$

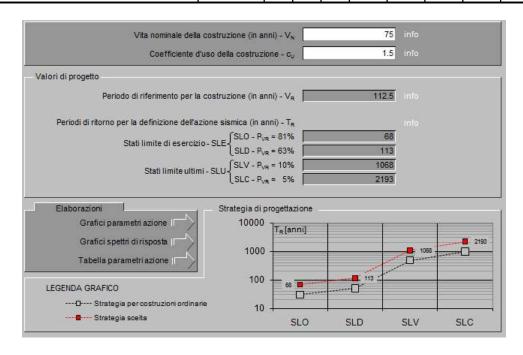

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

4.2 PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

- Categoria sottosuolo C

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17.01.18, si ottiene per il sito in esame:



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

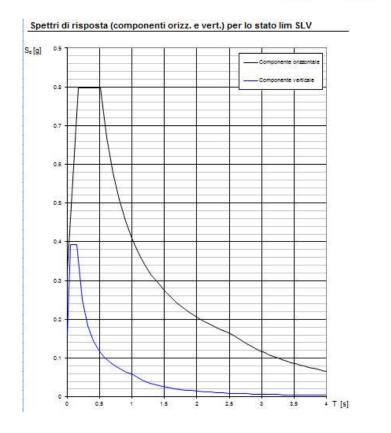
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	10

I valori delle caratteristiche sismiche (a_g, F_0, T^*_C) per gli stati limite di normativa sono dunque:

SLAT0	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.074	2.499	0.307
SLD	113	0.094	2.523	0.319
SLV	1068	0.242	2.452	0.346
SLC	2193	0.315	2.440	0.354

- $a_g o accelerazione$ orizzontale massima del terreno, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; $T^*_C \rightarrow$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- $S \to coefficiente$ che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T).

Le accelerazioni massime per i vari stati limite di normativa nelle condizioni di sito reali sono:



RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	11

arametri indipen	denti	Punti o	dello spettr	o di rispos
STATO LIMITE	SLV		T[s]	Se [g]
an	0.242 g		0.000	0.325
Fo	2.452	TB	0.172	0.797
T _C *	0.346 s	To	0.515	0.797
Ss	1.345		0.613	0.670
Co	1.491		0.711	0.578
ST	1.000		0.808	0.508
q	1.000		0.906	0.453
			1.004	0.409
			1.101	0.373
arametri dipende	enti		1.199	0.342
S	1.345		1.297	0.316
η	1.000		1.394	0.294
T _R	0.172 s		1.492	0.275
T _C	0.515 s		1.590	0.258
TD	2.567 s		1.687	0.243
			1.785	0.230
			1.883	0.218
pressioni dei pa	rametri dipendenti		1.980	0.207
			2.078	0.197
	(NTC-08 Eq. 3.2.5)		2.176	0.189
			2.274	0.181
	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)		2.371	0.173
			2.469	0.166
	(NTC-07 Eq. 3.2.8)	Tp	2.567	0.160
			2.635	0.152
	(NTC-07 Eq. 3.2.7)		2.703	0.144
			2.771	0.137

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toı	mbi	no		

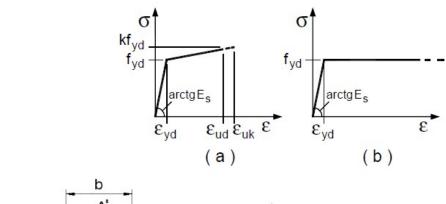
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	12

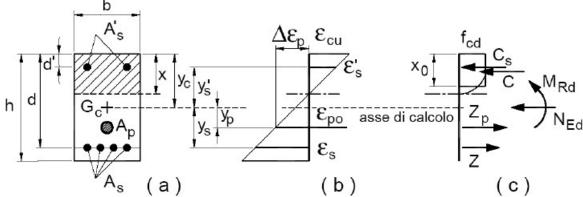
5 VERIFICHE STRUTTURALI

5.1 VERIFICA ALLO STATO LIMITE ULTIMO

5.1.1 Verifiche a Pressoflessione

Con riferimento alla sezione pressoinflessa assieme ai diagrammi di deformazione e di sforzo riportati nelle figure seguenti, la verifica di resistenza (SLU) si esegue controllando che:


$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$


dove

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed} ;

 N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

 $M_{\it Ed}$ è il valore di calcolo della componente flettente dell'azione.

5.1.2 Verifiche a Taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione Θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg\Theta \le 2.5$$

Per la verifica di resistenza (SLU) si dovrà avere che:

$$V_{Pd} \geq V_{Ed}$$

dove $V_{\rm Ed}$ è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è data da:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\Theta) \cdot \sin\alpha$$

Circa il calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola invece con la:

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	13

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \left(ctg\alpha + ctg\Theta \right) / \left(1 + ctg^2\Theta \right)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = \min(V_{Rsd}, V_{Rcd})$$

dove

d altezza utile della sezione (in mm);

b_w larghezza minima della sezione (in mm).

A_{sw} area dell'armatura trasversale;

s interasse tra due armature trasversali consecutive;

angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave; resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 \cdot f_{cd}$);

 α_c coefficiente maggiorativo pari a

1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 \cdot f_{cd}$

1,25 per $0.25 \le \sigma_{cp} < 0.5 \cdot f_{cd}$ $2.5 \cdot \left(1 - \sigma_{cp} / f_{cd}\right)$ per $0.5 \le \sigma_{cp} < f_{cd}$

 $\sigma_{cp} = N_{Ed}/A_c$ tensione media di compressione nella sezione (≤ 0.2 fcd);

5.2 VERIFICA S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

5.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI MA IFS 001 B del 22-12-17 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ob};
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{\gamma k}$.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toı	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	14

5.2.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura				
^ ^	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
esigenza			Stato limite w		Stato limite	wd	
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	≤w ₃	
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
l _a	A companies	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂	
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	
	Malta Agamagairra	frequente	formazione fessure	-	ap. fessure	\leq w ₁	
c	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame (XS1) così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.617/09.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

N	54-	Relazione	di	calcolo
toı	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	15

6 SOFTWARE DI CALCOLO

Il codice di calcolo utilizzato per l'analisi del Sottovia è il software agli elementi finiti Midas Civil 2021 versione 21.1 prodotto dalla «MIDAS Information Technology Co., Ltd.». Il pacchetto software comprende pre – post processore grafico interattivo destinato all'input della geometria di base ed alla manipolazione dei risultati di output ed un risolutore ad elementi finiti in campo lineare e non lineare; il medesimo solutore è impiegato per le analisi effettuate nello studio della fase sismica e per le verifiche di resistenza deli elementi strutturali.

Per le verifiche delle sezioni in c.a., si impiega sempre il software di calcolo Midas Civil.

Il programma consente la verifica di sezioni in cemento armato, soggette a presso-flessione o tenso-flessione retta o deviata, sia allo Stato Limite Ultimo che allo Stato Limite di Esercizio . Le unità di misura adottate sono le sequenti:

lunghezze: mforze: kN

- masse: kN massa

- temperature: gradi centigradi

angoli: gradi sessadecimali o radiantisi assume l'uguaglianza 1 kN = 100 kg

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toi	mbi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	16

7 TOMBINO 4 DN 1500 AFFIANCATI

La sezione trasversale retta ha una larghezza di L = 8.78 m ed un'altezza totale di H = 2.42 m; lo spessore della platea di fondazione è di S_f = 0.30 m, lo spessore dei piedritti è di S_p = 0.30 m e lo spessore della soletta di copertura è di S_s = 0.30 m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

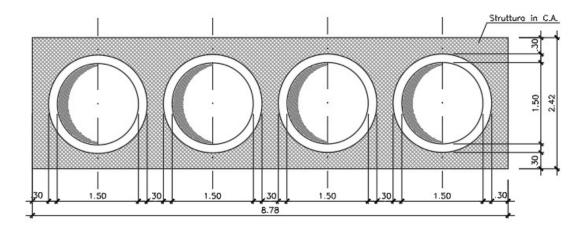


Fig. 4 - Geometria dell'opera

DATI GEOMETRICI									
Grandezza	Simbolo	Valore	U.M.						
Larghezza totale	Ltot	8.78	m						
Larghezza utile	Lint	8.18	m						
Larghezza interasse	La	8.48	m						
Spessore soletta superiore	Ss	0.30	m						
Spessore piedritti	Sp	0.30	m						
Spessore fondazione	Sf	0.30	m						
Altezza totale	Htot	2.42	m						
Altezza libera	Hint	1.82	m						
Altezza interasse	На	2.12	m						
Spessore medio del ballast (armamento ferroviario)	Hb	1.78	m						

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcol	0
tombino	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	17

7.1 MODELLO DI CALCOLO

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Nella modellazione vengono impiegati elementi finiti di tipo trave a 6 GL, che ovviamente nell'analisi 2D condotta (telaio piano) si riducono a 3. Ai suddetti elementi sono assegnate le caratteristiche inerziali della struttura reale derivanti dalle proprietà dei materiali e dalla geometria della sezione.

La geometria del modello ricalca la linea baricentrica degli elementi costituenti l'opera (modello in asse), pertanto alle intersezioni delle aste viene applicato un offset rigido che tiene conto delle dimensioni effettive delle sezioni degli elementi, in modo da tener conto delle effettive luci della struttura.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

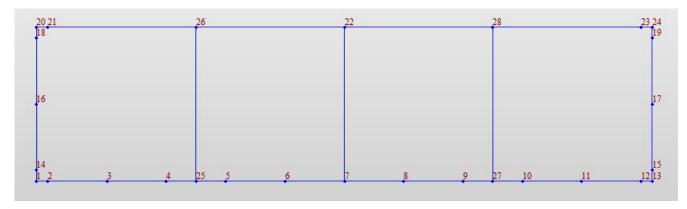


Fig. 5 –Numerazione dei nodi nel modello strutturale

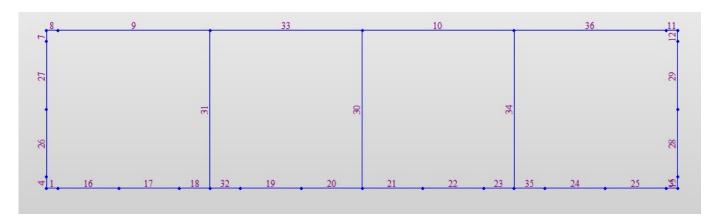


Fig. 6 –Numerazione dei frame nel modello strutturale

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

COMMESSA	LOTTO			TIPO DOC		RA 7 DISCIP		PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	IN	54	00	001	В	18

IN 54- Relazione di calcolo tombino

7.2 ANALISI DEI CARICHI

7.2.1 Peso proprio della struttura (DEAD)

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il c.a. γ_c = 25 kN/m³. Il peso proprio viene automaticamente calcolato dal programma in base alle dimensioni delle sezioni degli elementi.

7.2.2 Carichi permanenti portati (PERM)

Sul solettone superiore si considera uno spessore di ballast compresa la traversina pari a s_{tot} = 1.41 m con peso di unità di volume γ_{ball} = 18.00 kN/m³, ricorimento γ_r = 20.00 kN/m³ q= s_b x γ_b + s_r x γ_r = 33.70kN/m

Oltre viene aggiunta, come carico concentrato nei nodi 20 e 24, la parte di spinta del ballast esercitata su 1/2 spessore della piedriti.

 $Q = q \times S_p/2 = 5.05 \text{ kN}$

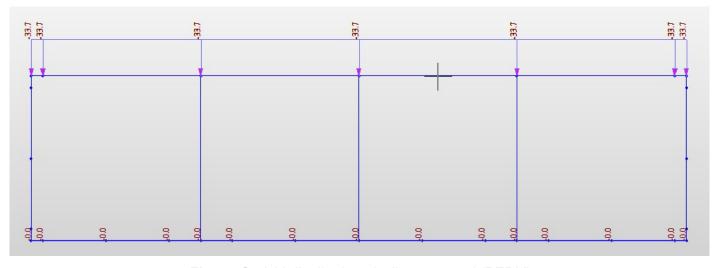


Fig. 7 - Carichi distributi verticali permanenti (PERM)

Fig. 8 – Carichi puntuali verticali permanenti (PERM)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione	di calcolo
tombino	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	19

7.2.3 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente (STS, STD)

Per il rinterro si prevede un terreno avente angolo di attrito ϕ =35° ed un peso di volume γ = 20.00 kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula

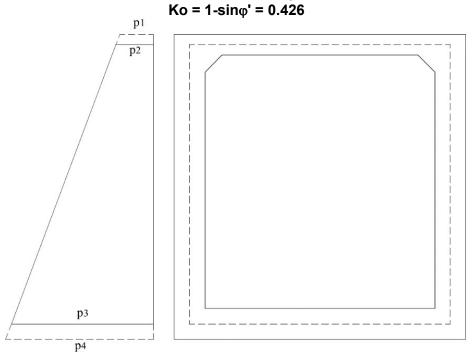


Fig. 9 - Spinta del terreno

	Cond. STR										
p ₁ =	13.7 kN/	/m Pressione estradosso soletta superiore									
p ₂ =	16.5 kN/	/m Pressione in asse soletta superiore									
p ₃ =	34.5 kN/	m Pressione in asse soletta inferiore									
p ₄ =	35.8 kN/	/m Pressione intradosso soletta inferiore									

In più, viene aggiunto, come carico concentrato nei nodi di estremità del piedritto la parte di spinta del terreno esercitata su metà spessore della soletta superiore e quello agente su metà spessore della soletta inferiore.

	Carico concentrato sui nodi 1,13,20 e 24										
Nodi sup.	1/2 * (p1 + p2) * Ss	2.3	kN	Spinta semispessore soletta superiore							
Nodi inf.	1/2 * (p3 + p4) * Sf	5.3	kN	Spinta semispessore soletta inferiore							

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toi	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	20

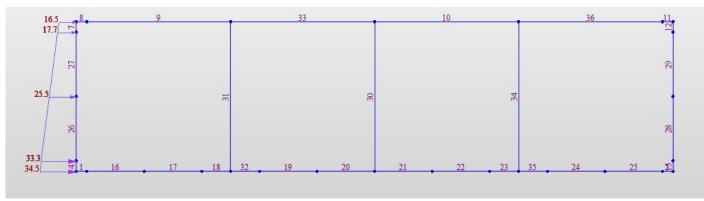


Fig. 10 – Applicazione Spinta terreno (simile per piedritto destro) (STS, STD)

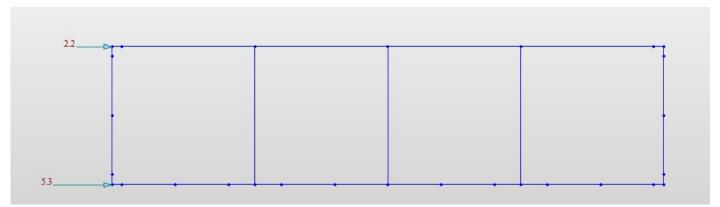


Fig. 11 –Applicazione carico concentrato sul piedritto sinistro (simile per piedritto destro) (STS, STD)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo	
tombino	

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	21

7.2.4 Treni di carico (TRM, TRV)

7.2.4.1. Treno di carico LM71

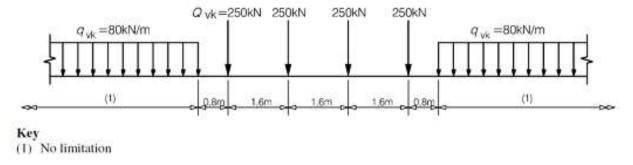


Fig. 12 - Modello di carico LM71 (al punto 6.3.2. della norma EN 1991-2:2003)

α = coefficiente di adattamento = 1.10

Per il calcolo del coefficiente dinamico Φ si fa riferimento al "Manuale di Progettazione delle Opere Civili" Considerando un ridotto standard manutentivo si ha:

ard manutentivo si ha:
$$L_{\Phi} = 1.3 * \left[\frac{2 * H_{tot} + L_{tot}}{3} \right]$$

$$1.00 \le \Phi_3 = 0.9 * \left[\frac{2.16}{\sqrt{L_{\Phi}} - 0.20} + 0.73 \right] \le 2.00$$

$$\Phi_3 = 1.52$$

$$L_{\Phi} = 8.66 \text{ m}$$

Il sovraccarico ferroviario si distribuisce attraverso il ricoprimento con la pendenza di 1/4 e con la pendenza a 45° all'interno del cls per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

Fig. 13 - Diffusione del carico in senso trasversale

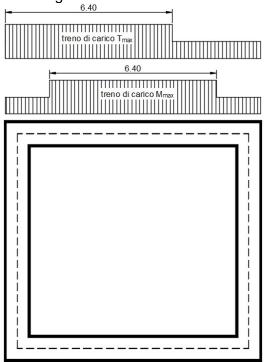
RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	IN	54	00	001	В	22

Nel caso in esame la diffusione trasversale del carico ferroviario interessa una larghezza pari a:

Diffusione del carico in senso trasversale		
$L_d = L_t + ([(H_b-H_{tb})/4 + H_r * 2/3 + S_s/2] * 2$	4.09	m


dove L_t indica la lunghezza della traversa pari a 2,40 m.

In senso longitudinale si è assunto che il carico si distribuisce sull'intero ingombro dei suoi assi, pari a $L_{long} = 6,40 \text{ m}.$

Pertanto il carico ripartito dovuto al singolo treno LM 71 risulta:

Carico ripartito prodotto dalle forze concentrate									
$Q_{vk} = (4*250/6.40)*\alpha*\Phi_3/L_d$ 71.36 kN/m ²									
Carico ripartito prodotto dal carico distribuito									
$q_{vk} = (80*\alpha*\Phi_3)/L_d$ 36.54 kN/m ²									

Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti.

Per tenere in conto i carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 10.87kN.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	23

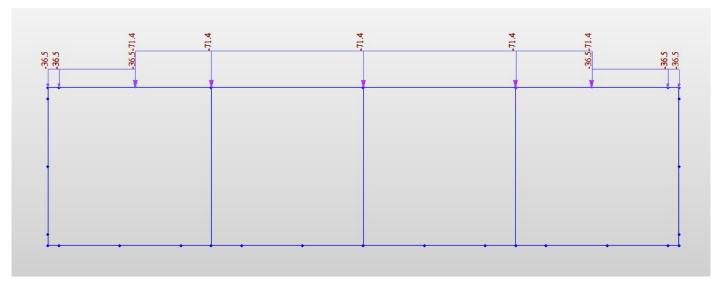


Fig. 14 – Carico LM71; condizione per massimizzare il momento flettente TRM

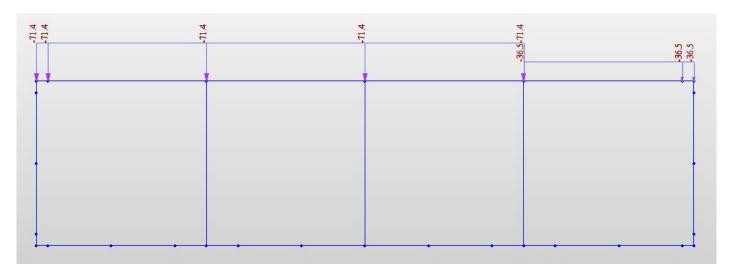


Fig. 15 – Carico LM71; condizione per massimizzare il taglio

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

FOGLIO

24

В

IN 54- Relazione di calcolo tombino	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR
	LI0B	02	Е	ZZ	CL	IN	54	00

7.2.5 Spinta del terreno indotta dai treni di carico (SAS, SAD)

Per il rinterro si prevede un terreno avente angolo di attrito ϕ =35° ed un peso di volume γ = 20.00 kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di K₀ = 0.426. La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula P = q * K₀

Inoltre, vengono aggiunte, come carichi concentrati nei nodi 1,13.20 e 24 le seguenti forze, derivante dalla parte di spinta agente su metà spessore della soletta:

Nodi sup.&inf (SAS , SAD) sui nodi 1,13, 20 e 24										
Q _h *S _s /2	2.7	kN								
Q _h *S _s /2	2.7	kN								

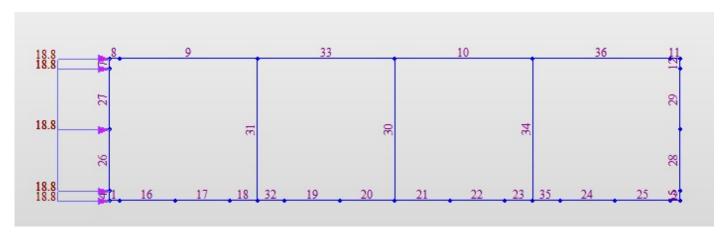


Fig. 16 – Spinta carico accidentale distribuito nel piedritto sinistro (simile per il piedritto destro) (SAS, SAD)

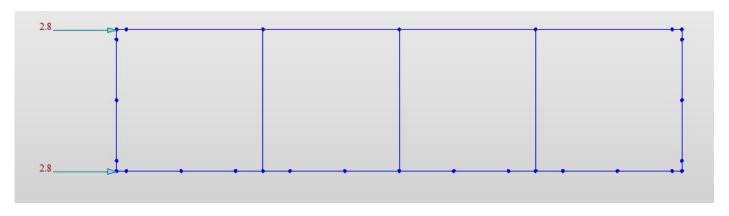


Fig. 17 – Spinta carico accidentale puntuale nel piedritto sinistro (simile per piedritto destro) (SAS, SAD)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toı	mbi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	25

7.2.6 Spinta del terreno indotta dai treni di carica she massimizzano le spinte (SASXLM71)

Carico distribuito (4*250/6.40 kN/m)-SASXLM71							
$Q_h=2*[4*250*\alpha/(L_d*6.40)]*K_0$	17.9	kN/m					

Diffusione del carico in senso trasversale per sovracca	rico a mor	ıte
$L_d = L_t + ([(H_b - H_{tb})/4 + H_r * 2/3] * 2$	3.79	m

Inoltre, vengono aggiunte, come carichi concentrati nei nodi 1 e 20 le seguenti forze, derivante dalla parte di spinta agente su metà spessore della soletta:

Nodi sup.&inf (SASXLM71) sui nodi 1e 20										
Q _h *S _f /2	2.7	kN								
Q _h *S _f /2	2.7	kN								

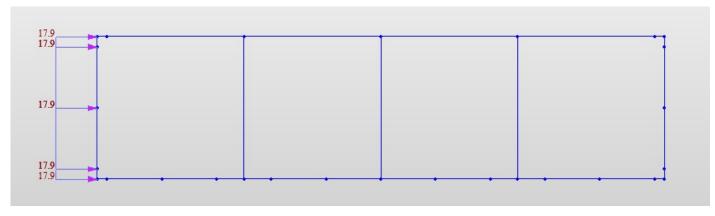


Fig. 18 – Spinta carico accidentale distribuito nel piedritto sinistro (SASXLM71)

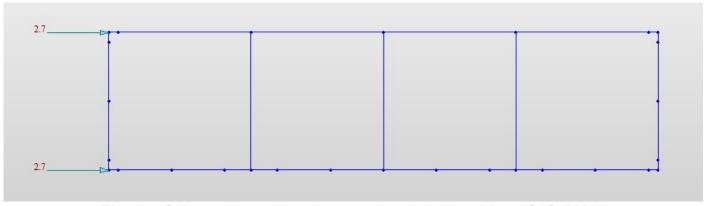
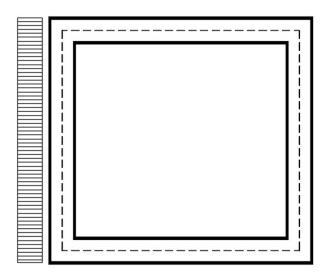
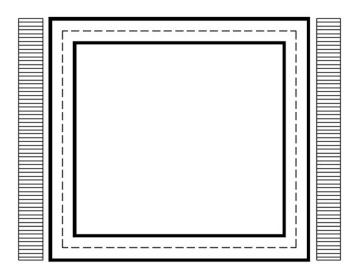


Fig. 19 – Spinta carico accidentale puntuale nel piedritto sinistro (SASXLM71)


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino


COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	26

La spinta del terreno viene analizzata in due diverse condizioni

a) Spinta sul piedritto sinistro

b) Spinta su entrambi i piedritti

7.2.7 Avviamento e frenatura (AVV)

avviamento: $Q_{lak} = 33 [kN/m] * L[m] < 1000 kN$ per modelli di carico LM 71 e SW/0 e SW/2

frenatura: Q_{lbk} = 20 [kN/m] * L[m] < 6000 kN per modelli di carico LM 71 e SW/0

Q_{lbk} = 35 [kN/m] * L[m] per modelli di carico SW/2

La forza di frenatura, per metro lineare, applicata alla soletta di copertura si ritiene uniformemente agente sulla larghezza ottenuta per diffusione dei carichi verticali con inclinazione 1/4 nello spessore del ballast e 45° nello spessore della soletta e vale:

A_{vv}	33	kN/m
$Q_{Av}=A_v/L_d$	8.87	kN/m

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	27

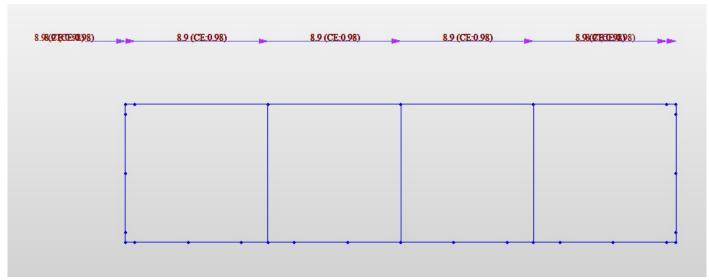


Fig. 20 – Applicazione dell'avviamento/frenatura

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	28

7.2.8 Ritiro differenziale della soletta di copertura

Si considera uan variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e DM 17-01-2018

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro:

Cls a t=0

 $\begin{array}{lll} f_{ck} = & 32 \; \text{Mpa} \\ f_{cm} = & 40 \; \text{MPa} \\ \alpha = & 0.00001 \\ \text{Ecm} = & 33345764 \; \text{kN/m}^2 \end{array}$

23345/64 KN/n

cls tipo =

k = 1 coef. di correzione di Ecm

Ecm = 33345764 kN/m²

Tempo e ambiente

ts = 2 gg età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento

to = 2 gg età del calcestruzzo in giorni al momento del carico

t = 25550 gg età del calcestruzzo in giorni

ho = 2Ac/u = 600 mm dimensione fittizia dell'elemento di cls

Ac = 300000 mmg sezione dell'elemento

u = 1000 mm perimetro a contatto con l'atmosfera

RH = 75 % umidità relativa percentuale

Coefficiente di viscosità φ (t,to) e modulo elastico ECt a tempo "t"

$$\phi$$
 (t,to)= ϕ o β c(t,to) = 2.147

φo=φRH βχ(fcm) βχ(to)= 2.178 coefficiente nominale di viscosità

$$\varphi_{\rm RH} = 1 + \left[\frac{1 - RH/100}{0.1 \cdot \sqrt[3]{h_0}} \alpha_1 \right] \alpha_2 =$$
 1.263 coefficiente che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} \left(35 / f_{cm}\right)^{0.7} per \ f_{cm} > 35 MPa \\ 1 \ per \ f_{cm} \leq 35 MPa \end{cases} = 0.911 \text{ coeff. per la resistenza del cls}$$

$$\alpha_2 = \begin{cases} \left(35 / f_{cm}\right)^{0.2} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases}$$
 0.974 coeff. per la resistenza del cls

$$\beta_c(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} = 2.656313$$
 coefficiente che tiene conto della resistenza del cls

$$\beta_{c}(t_{0}) = \frac{1}{(0.1 + t_{0}^{0.20})} = 0.649$$
 coefficiente per l'evoluzione della viscosità nel tempo

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$
 6.19 tempo to corretto in funzione della tipologia di cemento

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ZZ	CL	IN	54	00	001	В	29

α -

1

coefficiente per il tipo di cemento (-1 per Classe S, 0 per Classe N, 1 per Classe R)

S	-1
N	0
R	1

$$\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_H + t - t_0)} \right]^{0.3} =$$

0.986

coeff. per la variabilità della viscosità nel tempo

$$\beta_H = 1.5 \left[1 + \left(0.012 \cdot RH \right)^{18} \right] h_0 + 250 \cdot \alpha_3 \le 1500 \cdot \alpha_3 =$$

1268.9

coefficiente che tiene conto dell'umidità relativa

$$\alpha_3 = \begin{cases} \left(35/f_{cm}\right)^{0.5} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} =$$

0.935

coeff. per la resistenza del calcestruzzo

Il modulo elastico al tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} =$$

10596021 kN/m²

Deformazione di Ritiro

$$\varepsilon_s(t,t_o) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000350 deformazione di ritiro $\varepsilon(t,to)$

$$\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) K_b \varepsilon_{cd,0} =$$

0.000295 deformazione dovuta al ritiro per essiccamento

$$\beta_{dz}(t,t_z) = \left[\frac{(t-t_z)}{(t-t_z) + 0.04\sqrt{h_0^3}} \right] =$$

0.977507

Kh =

0.7

parametro che dipende da ho secondo il prospetto seguente

Valori di k

valori di A h	
h _o	4n
100	1,0
200	0,85
300	0,75
≥500	0,70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare.

$$\varepsilon_{cd,0} = 0.85 \left[\left(220 + 110\alpha_{ds1} \right) \cdot \exp(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} =$$

0.000432 deformazione di base

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] =$$

0.896094

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	30

 $\begin{array}{lll} f_{cm0} = & & 10 \text{ MPa} \\ RH0 = & & 100 \text{ \%} \\ \alpha_{ds1} = & & 6 \end{array}$

coefficiente per il tipo di cemento (3 per Classe S, 4 $\,$

per Classe N, 6 per Classe R)

 $\alpha_{ds2} = 0.11$

coefficiente per il tipo di cemento (0.13 per Classe

S, 0.12 per Classe N, 0.11 per Classe R)

$$\varepsilon_{ca}(t) = \beta_{as}(t) \varepsilon_{caoo} =$$

0.000055 deformazione dovuta al ritiro autogeno

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\epsilon_{caoo}$$
=2.5 (f_{ck}-10) 10-6 = 0.000055

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\text{sitiro}} = -\frac{\varepsilon_{z}(t, t_{0}) \cdot E_{cm}}{(1 + \varphi(t, t_{0})) \cdot E_{cm} \cdot \alpha} = -11.13 \text{ °C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

1

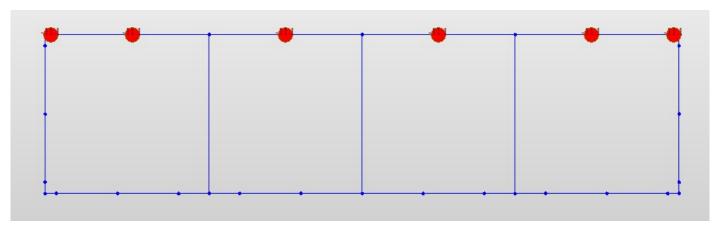
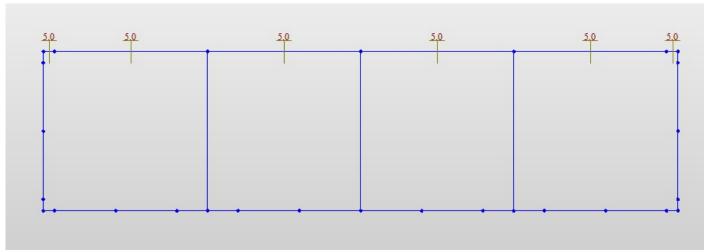


Fig. 21 – Ritiro


RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
tor	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	31

7.2.9 Azioni indotte dalle variazioni termiche (ΔT)

La variazione termica uniforme applicata alla soletta di copertura è pari a ΔT = ±15°C. La variazione termica a farfalla applicata alla soletta di copertura è pari a ΔT = ±5°C. L'azione è applicata alla soletta superiore dello scatolare.

Fig. 22 − ∆*T*

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

N	54-	Relazione	di	calcolo
toı	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	32

7.3 AZIONE SISMICA

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v^* W$

l valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g

 $k_v = \pm 0.5 * k_h$

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una III classe d'uso $C_u = 1.5$; segue un periodo di riferimento $V_R = V_N * C_u = 113$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_q= 0.242 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_q$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F_o si ottiene:

S_s= 1.34 Coefficiente di amplificazione stratigrafica

S_T= 1 Coefficiente di amplificazione topografica

ne deriva che:

 a_{max} = 1.34 * 1 * 0.242 g = 0.325 g

 $k_h = a_{max}/g = 0.325$

 $k_v = \pm 0.5 * k_h = 0.162$

7.3.1 Sovraspinta sismica del terreno (SISSX)

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

$$\Delta S_E = (a_{max}/g) * \gamma * H^2_{tot}$$

$$\Delta s_E = (a_{max}/g) * \gamma * H_{tot} = 13.77 kN/ml$$

Tale risultante applicata ad un'altezza pari ad H_{tot}/2.sarà considerata agente su uno solo dei piedritti dell'opera.

Inoltre, vengono aggiunte, come carichi concentrati nei nodi 1 e 20 le seguenti forze, derivante dalla parte di spinta agente su metà spessore della soletta:

Nodi sup.&inf (SISX) sui nodi 1 e 20									
$Q_h^*S_s/2$ 2.1 kN									
Q _h *S _s /2	2.1	kN							

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54- Relazione	di	calcolo
OI	mbino		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	33

Fig. 23 – Sovraspinta sismica distribuite SISSX

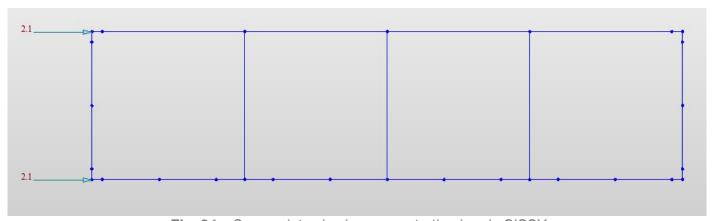


Fig. 24 – Sovraspinta sismica concentrati nei node SISSX

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toi	mbi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	34

7.3.2 Forze inerziali (INERZIEH e SISVER)

L'azione sismica è rappresentata da un insieme di forze statiche verticali, date dal prodotto delle forze di gravità per i coefficienti sismici in precedenza definiti, di cui la componente verticale è considerata agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli. Le masse sismiche sono valutate considerando le azioni dovute al carico ferroviario con coefficiente pari a 0.20

Dove: $F_{o,solettasup,tot} = F_{o,ballast+ricop+mass} + F_{o,soletta} + 0.2* F_{o,treno}$

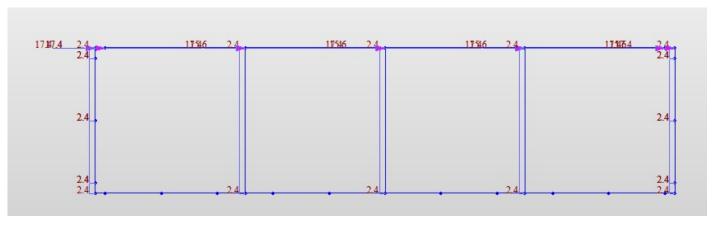


Fig. 25 - INERZIEH

F _{v,treno} =	±	10.06	kN/m²
F _{v,ballast+ricop+mass} =	±	5.47	kN/m ²
F _{v,solettasup} =	±	1.22	kN/m ²
F _{v,pav+ricop di sol. inf} =	±	0.00	kN/m ²
F _{v,solettainf} =	±	1.22	kN/m²
F _{v,solettasup,tot} =	±	8.70	kN/m ²
F _{v,montante} =	±	1.22	kN/m ²
F _{v,solettainf,tot} =	±	1.22	kN/m ²

 $Dove: F_{v, solettasup, tot} = F_{v, ballast + ricop + mass} + F_{v, soletta} + 0.2 * F_{v, treno} \ ;$

 $F_{v,solettainf,tot} = F_{v,pav+ricop\ di\ sol.inf} + F_{v,soletta\ inf}$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN	54-	Relazione	di	calcolo	
toı	mbii	no			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	35

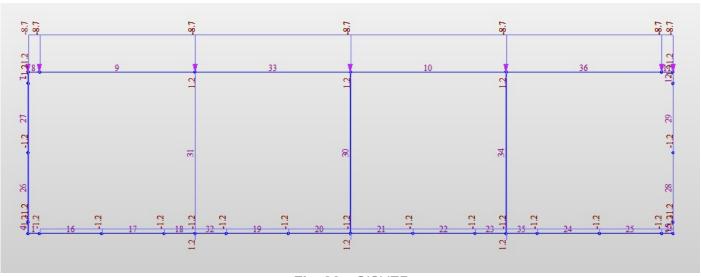


Fig. 26 - SISVER

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN	54-	Relazione	di	calcolo
to	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	36

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura scatolare si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	ca	lcolo)
toi	mbii	no				

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	37

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)

	ŕ	Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁺⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni (da DM 17/01/2018)

Azioni		Ψο	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	38

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente ψ_2 = 0.2 (punto 3.2.4 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tipo Carico	Abbreviazione
Peso proprio	DEAD
Carichi permanenti	PERM
Falda	FALDA
Spinta terreno sinistra	STS
Spinta terrenno destra	STD
Carico Ferroviario Centrato	TRM
Carico Ferroviario Laterale	TRV
Sovraccarico accidentale sinistra	SAS
Sovraccarico accidentale destra	SAD
Ritiro	RIT
Variazione termica	ΔΤ
Avviamento e frenatura	AVV
Azione sismica orizzontale	E _H
Azione sismica verticale	Eγ

Tabella 2 – Riepilogo condizioni di carico

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione γ ψ . Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verrano poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Si considerano, attraverso le combinazioni con carichi favorevoli/sfavorevoli, le spinte sbilanciate sui piedritti.

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ΖZ	CL	IN	54	00	001	В	39

	DEAD	PERM	STS	STD	TRM	TRV	SASX	SADX	SASXLM1	RIT	DT	AVV
SLU-1	1.35	1.5	1.35	1.35	1.45		1.45	1.45		1.35	0.72	1.45
SLU-2	1.35	1.5	1.35	1.35	1.45		1.45	1.45		1.35	-0.72	1.45
SLU-3	1.35	1.5	1.35	1	1.45		1.45			1.35	0.72	1.45
SLU-4	1.35	1.5	1.35	1	1.45		1.45			1.35	-0.72	1.45
SLU-5	1.35	1.5	1.35	1		1.45	1.45			1.35	0.72	1.45
SLU-6	1.35	1.5	1.35	1		1.45	1.45			1.35	-0.72	1.45
SLU-7	1.35	1.5	1.35	1					1.45	1.35	0.72	1.16
SLU-8	1.35	1.5	1.35	1					1.45	1.35	-0.72	1.16
SLU-9	1.35	1.5	1	1.35	1.45			1.45		1.35	0.72	1.45
SLU-10	1.35	1.5	1	1.35	1.45			1.45		1.35	-0.72	1.45
SLU-11	1.35	1.5	1	1.35		1.45		1.45		1.35	0.72	1.45
SLU-12	1.35	1.5	1	1.35		1.45		1.45		1.35	-0.72	1.45
SLU-13	1.35	1.5	1.35	1.35		1.45	1.45	1.45		1.35	0.72	1.45
SLU-14	1.35	1.5	1.35	1.35		1.45	1.45	1.45		1.35	-0.72	1.45
SLU-15	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	0.72	1.16
SLU-16	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	-0.72	1.16
SLU-17	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	0.72	1.16
SLU-18	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	-0.72	1.16
SLU-19	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	1.2	1.16
SLU-20	1.35	1.5	1.35	1.35	1.16		1.16	1.16		1.35	-1.2	1.16

Tabella 3 - Combinazioni di carico - SLU

	DEAD	PERM	STS	STD	TRM	TRV	SASX	SADX	SASXLM1	RIT	DT	AVV	FALDA
RARA-1	1	1	1	1	1		1	1		0.6	0.6	1	1
RARA-2	1	1	1	1	1		1	1			-0.6	1	1
RARA-3	1	1	1	1	0.8		0.8	0.8		0.6	0.6	0.8	1
RARA-4	1	1	1	1	0.8		0.8	0.8			-0.6	0.8	1
RARA-5	1	1	1	1	0.8		0.8	0.8		1	0.6	0.8	1
RARA-6	1	1	1	1	0.8		0.8	0.8		1	-0.6	0.8	1
RARA-7	1	1	1	1	0.8		0.8	0.8		0.6	1	0.8	1
RARA-8	1	1	1	1	0.8		0.8	0.8			-1	0.8	1
RARA-9	1	1	1	1					1	0.6	0.6		1
RARA-10	1	1	1	1					1		-0.6		1

Tabella 4 - Combinazioni di carico - RARA

	DEAD	PERM	STS	STD	TRM	TRV	SASX	SADX	SASXLM1	RIT	DT	AVV	FALDA	SISSX	INERZIAH	SISVER
SLV-1	1	1	1	1						0.5	0.5		1	1	1	0.3
SLV-2	1	1	1	1							-0.5		1	1	1	0.3
SLV-3	1	1	1	1						0.5	0.5		1	0.3	0.3	1
SLV-4	1	1	1	1							-0.5		1	0.3	0.3	1

Tabella 5 - Combinazioni di carico - SLV

	DEAD	PERM	STS	STD	TRM	TRV	SASX	SADX	SASXLM1	RIT	DT	AVV	FALDA
FREQ1	1	1	1	1	0.8		0.8	0.8		0.5	0.5	0.8	1
FREQ2	1	1	1	1	0.8		0.8	0.8			-0.5	0.8	1
FREQ3	1	1	1	1		0.8	0.8	0.8		0.5	0.5	0.8	1
FREQ4	1	1	1	1		0.8	0.8	8.0			-0.5	0.8	1
FREQ5	1	1	1	1					0.8	0.5	0.5		1
FREQ6	1	1	1	1					0.8		-0.5		1
FREQ7	1	1	1	1						0.5	0.5		1
FREQ8	1	1	1	1							-0.5		1

Tabella 6 - Combinazioni di carico – Frequente

QP1	1	1	1	1	0.5 0.5	1
QP2	1	1	1	1	-0.5	1

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
tor	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	40

9 DIAGRAMMI DELLE SOLLECITAZIONI

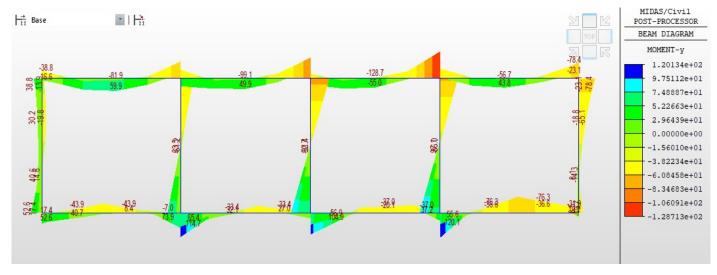


Fig. 27 – Inviluppo momenti flettenti SLU

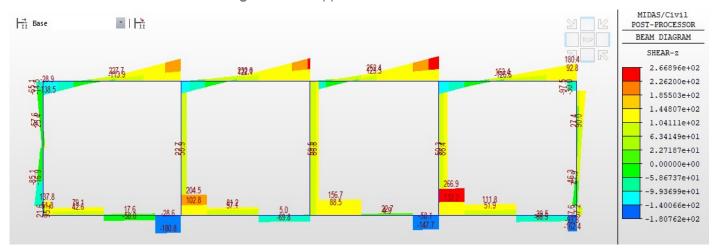


Fig. 28 – Inviluppo sforzi taglianti SLU

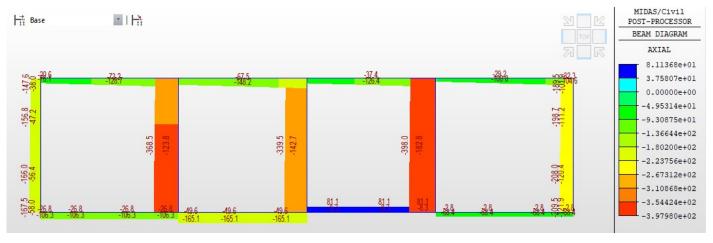


Fig. 29 – Inviluppo azioni assiali SLU

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	N	54	00	001	В	41

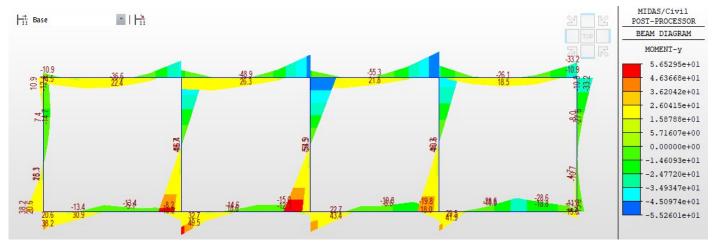


Fig. 30 - Inviluppo momenti flettenti SLV

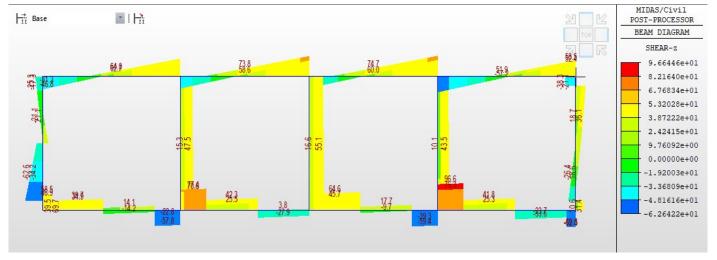


Fig. 31 – Inviluppo sforzi taglianti SLV

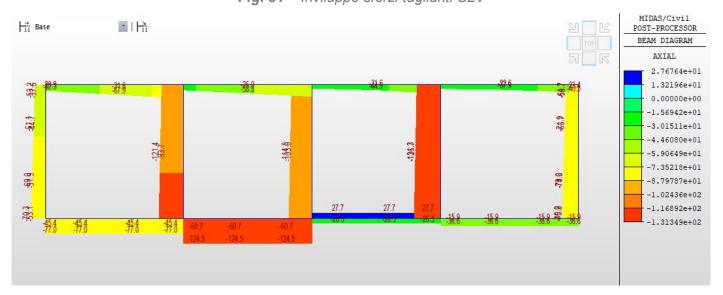


Fig. 32 – Inviluppo azioni assiali SLV

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	П	ZZ	CL	IN	54	00	001	В	42

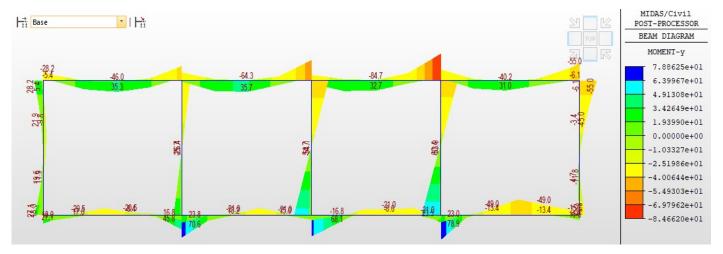


Fig. 33 - Inviluppo momenti flettenti RARA

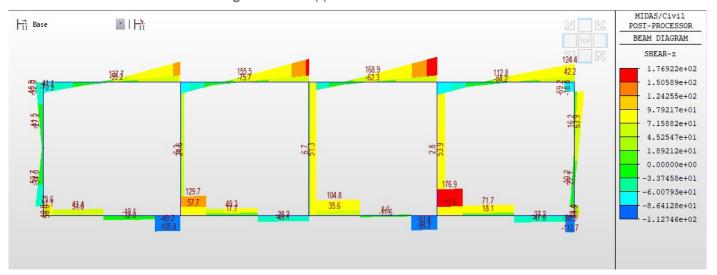


Fig. 34 - Inviluppo sforzi taglianti RARA

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo
tombino

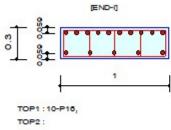
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	43

10 VERIFICA DELLE SEZIONI IN C.A.

10.1 SOLETTA SUPERIORE

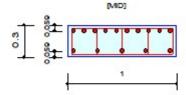
. Design Information

Design Code : Eurocode2-2:05

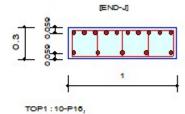

Unit System : kN, m

Material Data : fck = 32000, fyk = 450000, fyw = 450000 KPa

Beam Span : 2.045 m


Section Property : Sol-sup (No : 1)

. Section Diagram


BOT1 : 5-P16,

STIRRUPS: 5.0-P10 @0

TOP1:10-P16, TOP2: BOT1 : 5-P16, BOT2:

STIRRUPS: 5.0-P10 @0

TOP2: BOT1: 5-P16, BOT2:

STIRRUPS: 5.0-P10 @0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
OI	mhi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	44

. Bending Moment Capacity

	END-I	MID	END-J
Negative Moment (M_Ed)	47.95	35.21	130.83
(-) Load Combination No.	20	4	4
Factored Strength (M_Rd)	172.01	172.01	172.01
Check Ratio (M_Ed/M_Rd)	0.2788	0.2047	0.7606
Positive Moment (M_Ed)	53.92	59.86	28.94
(+) Load Combination No.	11	11	19
Factored Strength (M_Rd)	90.22	90.22	90.22
Check Ratio (M_Ed/M_Rd)	0.5977	0.6635	0.3207
Using Rebar Top (As_top)	0.0020	0.0020	0.0020
Using Rebar Bot (As_bot)	0.0010	0.0010	0.0010

. Shear Capacity

	END-I	MID	END-J
Load Combination No.	10	4	4
Factored Shear Force (V_Ed)	126.55	170.29	254.21
Shear Strength by Conc.(V_Rdc)	165.16	165.16	165.16
Shear Strength by Rebar.(V_Rds)	414.89	414.89	414.89
Using Shear Reinf. (Asw)	0.0000	0.0000	0.0000
Using Stirrups Spacing	5.0-P10 @0	5.0-P10 @0	5.0-P10 @0
Check Ratio	0.7663	0.4104	0.6127

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	45

Stress Check

END)-I	MII	D	END-J		
Concrete	Rebar	Concrete	Rebar	Concrete	Rebar	
38	38	28	28	21	21	
0.00	0.02	0.00	0.01	0.00	0.03	
0.00	0.36	0.00	0.36	0.00	0.36	
0.7092	0.0572	0.3558	0.0287	0.9800	0.0791	
27	27	27	27	27	27	
0.00	0.02	0.00	0.02	0.00	0.01	
0.00	0.36	0.00	0.36	0.00	0.36	
0.5037	0.0418	0.5494	0.0456	0.3271	0.0271	
	Concrete 38 0.00 0.00 0.7092 27 0.00 0.00	38 38 0.00 0.02 0.00 0.36 0.7092 0.0572 27 27 0.00 0.02 0.00 0.36	Concrete Rebar Concrete 38 38 28 0.00 0.02 0.00 0.00 0.36 0.00 0.7092 0.0572 0.3558 27 27 27 0.00 0.02 0.00 0.00 0.36 0.00	Concrete Rebar Concrete Rebar 38 38 28 28 0.00 0.02 0.00 0.01 0.00 0.36 0.00 0.36 0.7092 0.0572 0.3558 0.0287 27 27 27 0.00 0.02 0.00 0.02 0.00 0.36 0.00 0.36	Concrete Rebar Concrete Rebar Concrete 38 38 28 28 21 0.00 0.02 0.00 0.01 0.00 0.00 0.36 0.00 0.36 0.00 0.7092 0.0572 0.3558 0.0287 0.9800 27 27 27 27 27 0.00 0.02 0.00 0.02 0.00 0.00 0.36 0.00 0.36 0.00	

Crack Control

	END-I	MID	END-J
(-) Load Combination No.	28	28	22
Crack Width(w)	0.012	0.008	0.159
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0592	0.0407	0.7969
(+) Load Combination No.	27	27	27
Crack Width(w)	0.017	0.018	0.011
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0845	0.0922	0.0549

Condizione soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

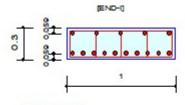
IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	46

10.1 PIEDRITTO SINISTRA

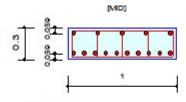
Design Information

Design Code : Eurocode2-2:05

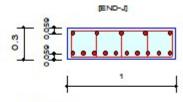

Unit System : kN, m

Material Data : fck = 32000, fyk = 450000, fyw = 450000 KPa

Beam Span : 0.91 m


Section Property : Piedr sx (No:7)

Section Diagram


TOP1 : 5-P14, TOP2 : BOT1 : 10-P14, BOT2 :

STIRRUPS: 5.0-P10 @0

TOP1: 5-P14, TOP2: BOT1:10-P14, BOT2:

STIRRUPS: 5.0-P10 @0

TOP1: 5-P14, TOP2: BOT1:10-P14, BOT2:

STIRRUPS: 5.0-P10 @0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

N	54-	Relazione	di	calcolo
tot	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	47

Bending Moment Capacity

	END-I	MID	END-J
Negative Moment (M_Ed)	18.55	19.80	18.20
-) Load Combination No.	7	7	7
Factored Strength (M_Rd)	69.98	69.98	69.98
Check Ratio (M_Ed/M_Rd)	0.2651	0.2830	0.2600
Positive Moment (M_Ed)	18.09	25.79	41.27
+) Load Combination No.	12	5	5
Factored Strength (M_Rd)	134.99	134.99	134.99
Check Ratio (M_Ed/M_Rd)	0.1340	0.1911	0.3057
Jsing Rebar Top (As_top)	0.0008	0.0008	0.0008
Jsing Rebar Bot (As_bot)	0.0015	0.0015	0.0015

Shear Capacity

	END-I	MID	END-J
Load Combination No.	7	7	7
Factored Shear Force (V_Ed)	39.44	69.30	85.12
Shear Strength by Conc.(V_Rdc)	151.13	151.13	151.13
Shear Strength by Rebar.(V_Rds)	414.89	207.44	207.44
Using Shear Reinf. (Asw)	0.0000	0.0000	0.0000
Using Stirrups Spacing	5.0-P10 @0	5.0-P10 @0	5.0-P10 @0
Check Ratio	0.2609	0.4585	0.5633

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	48

Stress Check

	ENI	D-I	MII	D	END-J		
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar	
(-) Load Combination No.	29	29	29	29	29	29	
Stress(s)	0.00	0.00	0.00	0.00	0.00	0.00	
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36	
Stress Ratio(s/sa)	0.1541	0.0127	0.1541	0.0127	0.0742	0.0061	
(+) Load Combination No.	38	38	38	38	36	36	
Stress(s)	0.00	0.00	0.00	0.01	0.00	0.01	
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36	
Stress Ratio(s/sa)	0.0992	0.0080	0.2889	0.0234	0.4276	0.0346	

Crack Control

	END-I	MID	END-J
(-) Load Combination No.	29	29	29
Crack Width(w)	0.006	0.006	0.003
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0284	0.0284	0.0137
(+) Load Combination No.	28	28	28
Crack Width(w)	0.001	0.005	0.008
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0054	0.0259	0.0413

Condizione soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

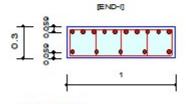
IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	49

10.2 PIEDRITTO DESTRA

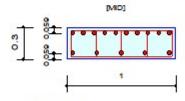
Design Information

Design Code : Eurocode2-2:05

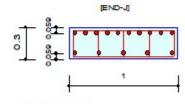

Unit System : kN, m

Material Data : fck = 32000, fyk = 450000, fyw = 450000 KPa

Beam Span : 0.91 m


Section Property : Piedrdx (No : 5)

Section Diagram


TOP1:10-P14, TOP2: BOT1:5-P14, BOT2:

STIRRUPS: 5.0-P10 @0

TOP1:10-P14, TOP2: BOT1:5-P14, BOT2:

STIRRUPS: 5.0-P10 @0

TOP1:10-P14, TOP2: BOT1:5-P14, BOT2:

STIRRUPS: 5.0-P10 @0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo	
OI	mbi	no			

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	N	54	00	001	В	50

Bending Moment Capacity

	END-I	MID	END-J
Negative Moment (M_Ed)	27.49	51.53	65.12
(-) Load Combination No.	4	4	4
Factored Strength (M_Rd)	134.99	134.99	134.99
Check Ratio (M_Ed/M_Rd)	0.2036	0.3817	0.4824
Positive Moment (M_Ed)	9.51	6.42	3.99
(+) Load Combination No.	4	2	13
Factored Strength (M_Rd)	69.98	69.98	69.98
Check Ratio (M_Ed/M_Rd)	0.1359	0.0917	0.0570
Using Rebar Top (As_top)	0.0015	0.0015	0.0015
Using Rebar Bot (As_bot)	0.0008	0.0008	0.0008

Shear Capacity

	END-I	MID	END-J
Load Combination No.	2	2	2
Factored Shear Force (V_Ed)	52.43	78.08	90.00
Shear Strength by Conc.(V_Rdc)	151.13	151.13	151.13
Shear Strength by Rebar.(V_Rds)	207.44	207.44	207.44
Using Shear Reinf. (Asw)	0.0000	0.0000	0.0000
Using Stirrups Spacing	5.0-P10 @0	5.0-P10 @0	5.0-P10 @0
Check Ratio	0.3469	0.5166	0.5955

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	51

Stress Check

	ENI	D-I	MII	D	END-J	
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	37	37	22	22	22	22
Stress(s)	0.00	0.01	0.00	0.01	0.00	0.02
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36
Stress Ratio(s/sa)	0.2012	0.0163	0.4790	0.0388	0.6856	0.0555
(+) Load Combination No.	22	22	22	22	37	37
Stress(s)	0.00	0.00	0.00	0.00	0.00	0.00
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36
Stress Ratio(s/sa)	0.0736	0.0061	0.0736	0.0061	0.0522	0.0043

Crack Control

	END-I	MID	END-J
(-) Load Combination No.	29	22	22
Crack Width(w)	0.004	0.012	0.017
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0223	0.0593	0.0849
(+) Load Combination No.	22	22	27
Crack Width(w)	0.003	0.003	0.002
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.0136	0.0136	0.0087

Condizione soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

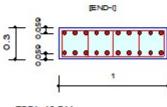
IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	N	54	00	001	В	52

10.3 PIEDRITTO INTERNA

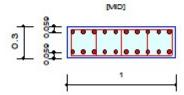
. Design Information

Design Code : Eurocode2-2:05

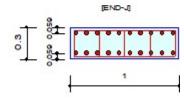

Unit System : kN, m

Material Data : fck = 32000, fyk = 450000, fyw = 450000 KPa

Beam Span : 2.12 m


Section Property : Piedr-Internal (No : 11)

. Section Diagram


TOP1:10-P14, TOP2: BOT1:10-P14, BOT2:

STIRRUPS: 5.0-P10 @0

TOP1:10-P14, TOP2: BOT1:10-P14, BOT2:

STIRRUPS: 5.0-P10 @0

TOP1:10-P14, TOP2: BOT1:10-P14, BOT2:

STIRRUPS: 5.0-P10 @0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
OI	mbi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA		PROGR	REV	FOGLIO	
LI0B	02	Е	ZZ	CL	N	54	00	001	В	53

Bending Moment Capacity

	END-I	MID	END-J
Negative Moment (M_Ed)	0.00	46.10	92.46
(-) Load Combination No.	3	3	3
Factored Strength (M_Rd)	134.99	134.99	134.99
Check Ratio (M_Ed/M_Rd)	0.0000	0.3415	0.6850
Positive Moment (M_Ed)	99.75	52.80	0.00
(+) Load Combination No.	4	4	3
Factored Strength (M_Rd)	134.99	134.99	134.99
Check Ratio (M_Ed/M_Rd)	0.7390	0.3911	0.0000
Using Rebar Top (As_top)	0.0015	0.0015	0.0015
Using Rebar Bot (As_bot)	0.0015	0.0015	0.0015

Shear Capacity

	END-I	MID	END-J
Load Combination No.	4	4	4
Factored Shear Force (V_Ed)	88.59	88.59	88.59
Shear Strength by Conc.(V_Rdc)	151.13	151.13	151.13
Shear Strength by Rebar.(V_Rds)	207.44	207.44	207.44
Using Shear Reinf. (Asw)	0.0000	0.0000	0.0000
Using Stirrups Spacing	5.0-P10 @0	5.0-P10 @0	5.0-P10 @0
Check Ratio	0.5862	0.5862	0.5862

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	54

Stress Check

	END)-I	MII	D	END-J	
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	36	36	21	21	21	21
Stress(s)	0.00	0.01	0.00	0.01	0.00	0.02
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36
Stress Ratio(s/sa)	0.2217	0.0181	0.4042	0.0331	0.8128	0.0665
(+) Load Combination No.	22	22	22	22	36	36
Stress(s)	0.00	0.03	0.00	0.01	0.00	0.00
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36
Stress Ratio(s/sa)	0.9070	0.0742	0.4777	0.0391	0.1664	0.0136

Crack Control

	END-I	MID	END-J
(-) Load Combination No.	37	21	21
Crack Width(w)	0.000	0.010	0.020
Allowable Crack Width(wa)	0.000	0.200	0.200
Check Ratio(w/wa)	****	0.0507	0.1020
(+) Load Combination No.	22	22	37
Crack Width(w)	0.023	0.012	0.000
Allowable Crack Width(wa)	0.200	0.200	0.000
Check Ratio(w/wa)	0.1139	0.0600	****

Condizione soddisfatta

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

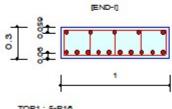
IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	55

10.4 SOLETTA INFERIORE

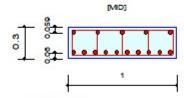
. Design Information

Design Code : Eurocode2-2:05

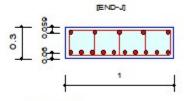

Unit System : kN, m

Material Data : fok = 32000, fyk = 450000, fyw = 450000 KPa

Beam Span : 0.409 m


Section Property : Sol-Inf (No : 3)

. Section Diagram


TOP1 : 5-P16, TOP2 : BOT1 : 10-P16,

STIRRUPS: 5.0-P12 @0

TOP1 : 5-P16, TOP2 : BOT1 : 10-P16,

STIRRUPS: 5.0-P12 @0

TOP1 : 5-P16, TOP2 : BOT1 : 10-P16, BOT2 :

STIRRUPS: 5.0-P12 @0

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
hOt	mbi	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	56

Bending Moment Capacity

	END-I	MID	END-J
Negative Moment (M_Ed)	77.84	66.44	77.84
(-) Load Combination No.	4	4	4
Factored Strength (M_Rd)	90.22	90.22	90.22
Check Ratio (M_Ed/M_Rd)	0.8628	0.7364	0.8628
Positive Moment (M_Ed)	121.79	95.56	73.90
(+) Load Combination No.	4	5	10
Factored Strength (M_Rd)	171.23	171.23	171.23
Check Ratio (M_Ed/M_Rd)	0.7113	0.5581	0.4316
Using Rebar Top (As_top)	0.0010	0.0010	0.0010
Using Rebar Bot (As_bot)	0.0020	0.0020	0.0020

Shear Capacity

Load Combination No. Factored Shear Force (V_Ed)	4	4	4
Factored Shear Force (V_Ed)	055.05		
**************************************	266.85	268.92	269.95
Shear Strength by Conc.(V_Rdc)	164.86	164.86	164.86
Shear Strength by Rebar.(V_Rds)	295.49	295.49	295.49
Using Shear Reinf. (Asw)	0.0000	0.0000	0.0000
Using Stirrups Spacing	5.0-P12 @0	5.0-P12 @0	5.0-P12 @0
Check Ratio	0.9031	0.9101	0.9136

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Ν	54-	Relazione	di	calcolo
toi	mbii	no		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	57

Stress Check

	END)-I	MII	0	END-J		
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar	
(-) Load Combination No.	22	22	22	22	22	22	
Stress(s)	0.00	0.02	0.00	0.02	0.00	0.02	
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36	
Stress Ratio(s/sa)	0.7547	0.0626	0.6187	0.0513	0.7547	0.0626	
(+) Load Combination No.	24	24	22	22	36	36	
Stress(s)	0.00	0.03	0.00	0.03	0.00	0.02	
Allowable Stress(sa)	0.00	0.36	0.00	0.36	0.00	0.36	
Stress Ratio(s/sa)	0.9974	0.0796	0.9034	0.0721	0.7991	0.0638	

Crack Control

	END-I	MID	END-J
(-) Load Combination No.	22	22	22
Crack Width(w)	0.025	0.021	0.025
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.1266	0.1038	0.1266
(+) Load Combination No.	22	22	22
Crack Width(w)	0.148	0.021	0.016
Allowable Crack Width(wa)	0.200	0.200	0.200
Check Ratio(w/wa)	0.7421	0.1036	0.0778

Condizione soddisfatta

11 RIEPILOGO ARMATURE

Elemento	Sezione	Armatura	Armatura Taglio		
Soletta superiore	superiore	10d16	d10/20x20		
Soletta superiore	inferiore	5d16	010/20820		
Piedritti	interna	5d14	d10/20x40		
Plearitti	externa	10d14	010/20040		
Piedritti Interni	interna	10d14	d12/20x40		
Pleantti interni	externa	10d14	U12/20X40		
Solota Inferiore	superiore	5d16	d12/20v40		
Soleta Inferiore	inferiore	10d16	d12/20x40		

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	E	ΖZ	CL	IN	54	00	001	В	58

12 VERIFICA DI DEFORMABILITA'

Il confort dei passeggeri è controllato limitando i valori della freccia massima verticale, in funzione della luce e del numero di campate consecutive.

Nel seguito l'inflessione si calcolerà in asse binario, considerando il treno di carico LM 71 con il relativo incremento dinamico.

In base a quanto indicato in tabella 1.8.3.2.2-2 i valori limite del rapporto luce/freccia (L/ δ) nel nostro caso è 1000, ulteriormente moltiplicato per un coefficiente 0,7 in quanto trattasi di impalcato a singola campata.

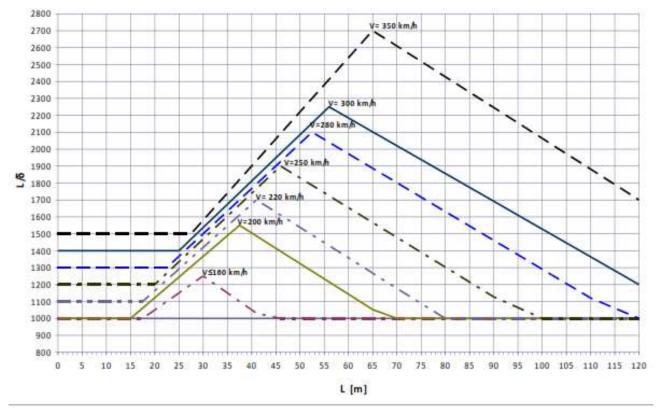


Fig. 5.2.1.8.3.2.2-2 Valori del limite di deformabilità L/δ per il confort dei passeggeri.

Nella seguente immagine si riporta la <u>deformazione</u> della soletta superiore dovuto al singolo carico del treno LM71

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione	di	calcolo
tombino		

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	59



Fig. 35 - Deformazione

Condizione da soddisfare: δ/L < 1/1000

Per il scatolare il valori per le freccie sono come segue:

- Freccia mezzeria della soleta –6.628mm
- Freccia appoggi della soleta –6.125mm

 $\delta = 6.628 - 6.125 = 0.503$ mm;

Per L=8.78m => δ/L < 1/1000 ;

0.503/8780 = 0.000057<0.001- **Verificata**

13 VERIFICHE GEOTECNICHE

13.1 VERIFICA DELLA CAPACITA PORTANTE

Per le verifiche geotecniche rimodelliamo la struttura senza vincoli cedevoli in funzione delle caratteristiche elastiche del terreno considerare solo una connessione incastro a metà della fondazione(Figura seguente) e dalla combinazione SLU (approccio 2: A1+M1+R3) e SLV (sisma) abbiamo i dati:

Node	Load	FX	FZ	MY
14000	Loau	(kN)	(kN)	(kN*m)
7	SLU-7	-258.3	722.9	-626.9
7	SLV-1	-198.8	527.0	-359.9

HUB RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo	COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
tombino	LI0B	02	Е	ZZ	CL	IN	54	00	001	В	60

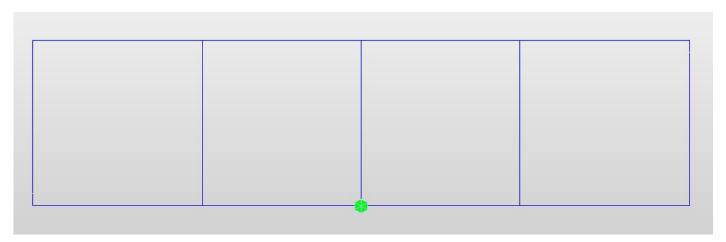


Fig. 36 – Modello di calcolo

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	IN	54	00	001	В	61

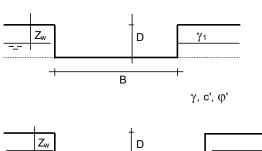
Fondazioni Dirette Verifica in tensioni efficaci

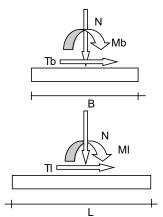
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

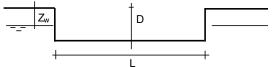
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

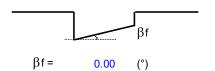

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

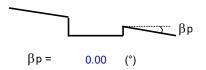

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà d	lel terreno	resist	enze
Metodo d	di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
nite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
o,	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00
Definiti da	Definiti dal Progettista		1.00	1.00	1.00	1.00	2.30	1.10




(Per fondazione nastriforme L = 100 m)

B = 8.79 (m)

L = 1.00 (m)

D = 1.19 (m)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

Valori di progetto

12.50

23.00

(kN/mq)

(°)

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Ε	ZZ	CL	IN	54	00	001	В	62

AZIONI

	valori d	di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	722.90		722.90
Mb [kNm]	-626.90		-626.90
MI [kNm]	0.00		0.00
Tb [kN]	-258.30		-258.30
TI [kN]	0.00		0.00
H [kN]	258.30	0.00	258.30

Peso unità di volume del terreno

 $\gamma_1 = 18.50 \text{ (kN/mc)}$ $\gamma = 18.50 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 12.50 (kN/mq) c' $<math>\phi' = 23.00 (°) \phi'$

Profondità della falda

Zw = 10.00 (m)

 $e_B = -0.87$ (m) $B^* = 10.52$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 22.02 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 18.50 \text{ (kN/mc)}$

Nc, Nq, Nγ : coefficienti di capacità portante

Nq = $tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 8.66

 $Nc = (Nq - 1)/tan\phi'$

Nc = 18.05

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 8.20$

s_c , s_q , s_γ : fattori di forma

 $s_c = 1 + B*Nq / (L*Nc)$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	63

$$s_c = 1.05$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.04$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.96$$

i_c , i_q , i_γ : fattori di inclinazione del carico

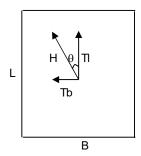
$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

1.91
$$\theta = \operatorname{arctg}(\mathsf{Tb/Tl}) =$$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

 $i_q = (1 - H/(N + B*L*c' \cot g\phi'))^m$


$$i_q = 0.58$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.52$$

$$i_{y} = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$$

$$i_{y} = 0.43$$

$d_c,\,d_q,\,d_\gamma$: fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*}\underline{<} \ 1; \ d_q = 1 \ +2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ &\text{per D/B*}\!\!> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_q = 1.27$$

$$d_c = d_q - (1 - d_q) / (N_c tan\phi')$$

$$d_c = 1.31$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

b_c , b_q , b_y : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 - RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPE	RA 7 DISCIP	LINA	PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	IN 54 00		001	В	64

 $b_c =$ 1.00

 $b_y = b_q$

 $b_{\gamma} = 1.00$

 $g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

 $g_q = (1 - \tan \beta_p)^2$

 $\beta_f + \beta_p =$

0.00

 $\beta_f + \beta_p < 45^\circ$

 $g_q = 1.00$

 $g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$

 $g_c = 1.00$

 $g_{\gamma} = g_{q}$

 $g_{\gamma} = 1.00$

Carico limite unitario

338.54 (kN/m^2) $q_{lim} =$

Pressione massima agente

 $q = N / B^* L^*$

q = 68.69 (kN/m^2)

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 147.19 \ge q = 68.69 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 258.30

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 438.41 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R =

398.55 ≥

(kN)

Hd =

258.30

(kN)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

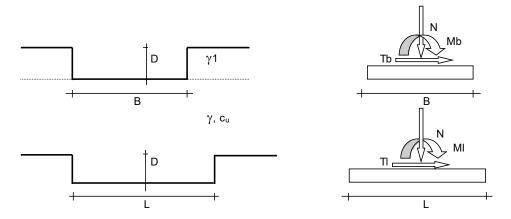
COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	65

Fondazioni Dirette Verifica in tensioni totali

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

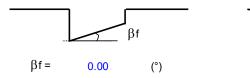

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

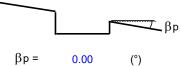
 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

coefficienti parziali

		azioni		proprietà del terreno		resist	enze	
Metodo di calcolo		permanenti	temporanee variabili	Cu		qlim	scorr	
-	A1+M1+R1	0	1.30	1.50	1.0	00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.40		1.80	1.00
	SISMA		1.00	1.00	1.40		1.80	1.00
	A1+M1+R3	D	1.30	1.50	1.0	00	2.30	1.10
	SISMA	D	1.00	1.00	1.00		2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00		3.00	3.00	
Definiti dal Progettista		1.00	1.00	1.00	1.00	2.30	1.10	




(Per fondazioni nastriformi L=100 m)

B = 8.79 (m)

L = 1.00 (m)

D = 1.19 (m)

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	66

AZIONI

		valori	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	527.00		527.00
Mb	[kNm]	-359.90		-359.90
MI	[kNm]	0.00		0.00
Tb	[kN]	-198.80		-198.80
П	[kN]	0.00		0.00
Н	[kN]	198.80	0.00	198.80

Peso unità di volume del terreno

 $\gamma_1 = 18.50 \text{ (kN/mc)}$ $\gamma = 18.50 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 107.50 \text{ (kN/mq)}$

 $e_B = -0.68$ (m) $e_L = 0.00$ (m)

Valore di progetto

= 107.50 (kN/mq)

 $B^* = 10.16$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 22.02 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.50 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

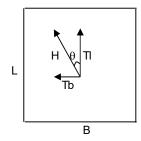
s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

s_c = 1.02

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) = 1.91$$


$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) = 1.09$$

$$\theta = \arctan(\text{Tb/Tl}) = 90.00$$
 (°)

m = 1.91

(m=2 nel caso di fondazione nastriforme e m=(m $_b$ sin $^2\theta$ +m $_l$ cos $^2\theta$) in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

RADDOPPIO DELLA TRATTA FERROVIARIA TERMOLI-LESINA LOTTO 2 e 3 – RADDOPPIO TERMOLI - RIPALTA

IN 54- Relazione di calcolo tombino

COMMESSA	LOTTO	FASE	ENTE	TIPO DOC	OPERA 7 DISCIPLINA			PROGR	REV	FOGLIO
LI0B	02	Е	ZZ	CL	N	54	00	001	В	67

 $i_c = 0.93$

d_c: fattore di profondità del piano di appoggio

per D/B* \leq 1; d_c = 1 + 0,4 D / B* per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)

 $d_c = 1.35$

b_c: fattore di inclinazione base della fondazione

 $b_c = (1 - 2 \beta_f / (\pi + 2))$

 $\beta_f + \beta_p = 0.00$

 $\beta_f + \beta_p < 45^\circ$

 $b_c = 1.00$

g_c : fattore di inclinazione piano di campagna

 $g_c = (1 - 2 \beta_f / (\pi + 2))$

 $\beta_f + \beta_p = 0.00$

 $\beta_f + \beta_p < 45^\circ$

 $g_c = 1.00$

Carico limite unitario

 $q_{lim} = 730.53$ (kN/m²)

Pressione massima agente

 $q = N / B^* L^*$

q = 51.89 (kN/m²)

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 317.62 \ge q = 51.89 \text{ (kN/m}^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 198.80 (kN)

Azione Resistente

Sd = cu B* L*

Sd = 1091.75 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 992.5 \geq Hd = 198.80 (kN)