FRED. OLSEN RENEWABLES ITALY S.R.L.

VIALE CASTRO PRETORIO 122 - 00185 ROMA (RM)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA MEDIANTE LO SFRUTTAMENTO DEL VENTO NEL TERRITORIO COMUNALE DI SAN GIULIANO DI PUGLIA (CB) E SANTA CROCE DI MAGLIANO (CB)

# PROGETTO DEFINITIVO

prima emissione: luglio 2021

| R | EV. | DATA     | DESCRIZIONE:                                                              |
|---|-----|----------|---------------------------------------------------------------------------|
|   | 02  | Apr 2024 | Revisionato a seguito delle osservazioni del MASE Prot.467 del 15.01.2024 |

ARCHITETTURA E PAESAGGIO

**PROGETTAZIONE** 

# via Volga c/o Fiera del Levante Pad.129 - BARI (BA) arch. Vincenzo RUSSO OF CIL ARCHITETT, via Puglie n.8 - Cerignola (FGX 1111-171) ing. Sebanino GIOTTA - ing. Fabio PACCAPELO Francesca SACCAROLA - geom. Raffaella TISTI EGLI INGA IMPIANTI ELETTRICI GLINGEGN FABIO ing. Roberto DI MONTE INGEGNERE FRANCESCO PELLEGRINO **GEOLOGIA** geol. Pietro PEPE / della p **ACUSTICA** DOMENICA CARRASSO Via G. Marconi, 19 70017 PUTIGNANO (BA) C. F. CRR DNC 89144 A1480 ing. Francesco PAPEO PEPÉ **ARCHEOLOGIA** dr.ssa archeol. Domenica CARRASSO ORIAGRON UGL STUDIO PEDO-AGRONOMICO ROCÇO dr.ssa Lucia PESOLA - dr. Rocco LABADESSA ABAD 1404 **ASPETTI FAUNISTICI** ALBO dott. nat. Fabio MASTROPASQUA BARI -



# Sommario

| 1. PREMESSA                             | 2 |
|-----------------------------------------|---|
| 2. METODOLOGIA DI RILEVAMENTO           | 3 |
| 3. DATI DELLA STRUMENTAZIONE UTILIZZATA | 4 |
| 4. LIBRETTO DEI PUNTI RILEVATI          | 5 |

## 1. PREMESSA

La presente relazione è parte della documentazione di progetto che per la realizzazione e gestione di un parco eolico costituito da n. 11 aerogeneratori, installati su altrettante torri tubolari in acciaio e mossi da rotori a tre pale.

I generatori che si prevede di utilizzare avranno potenza nominale di 6.2 MW; si avrà pertanto una capacità produttiva complessiva massima di 68.2 MW, da immettere sulla Rete di Trasmissione Nazionale. Le turbine in progetto saranno montate su torri tubolari di altezza (base-mozzo) pari a 125 m, con rotori a 3 pale e aventi diametro massimo di 162 m. Il parco eolico interesserà il Comune di San Giuliano di Puglia (CB).

#### 2. METODOLOGIA DI RILEVAMENTO

Il rilevamento GPS è stato effettuato al fine di posizionare correttamente e poi rilevare le quote altimetriche dei punti particolari degli aerogeneratori.

Per quanto concerne gli aerogeneratori sono stati prima picchettati sia il centro della torre, sia i vertici della piazzola definitiva. Successivamente su questi punti è stato effettuato un rilievo planoaltimetrico con misurazione cinematica, utilizzando un ricevitore fisso (Base) ed uno mobile (Rover).

Identico discorso è stato fatto per l'area interessata dalla SSE di elevazione. Al termine delle operazioni di campagna si è proceduto all'elaborazione dei dati acquisiti, riportando tutte le coordinate dei singoli punti al sistema UTM WGS84 33N, e riferendo le quote al livello medio del mare.

Brevi cenni sulla tipologia delle possibili misurazioni con strumentazione GPS

#### Misura statica:

Due ricevitori posizionati su due punti rimangono contemporaneamente in misura per un periodo di tempo che varia da pochi minuti (statico rapido) fino a più di un'ora.

Il tempo di misura, dipende dal fatto di dover acquisire una quantità di dati sufficienti per il calcolo preciso della distanza satelliti - ricevitore. Un maggior numero di satelliti presenti (superiore a 5) aumenta la quantità di dati disponibile e riduce il tempo di misura.

#### Misura cinematica:

La misura cinematica di precisione è possibile solo se i ricevitori dispongono dei dati per calcolare esattamente la distanza satelliti-ricevitore e quindi la posizione. Il periodo di tempo per ottenere i dati necessari è detto "inizializzazione". L'inizializzazione di ricevitori doppia frequenza, richiede di solito un breve periodo d'osservazione quantificabile nell'ordine di pochi secondi: un ricevitore rimane stazionario su un punto (nel nostro caso la base TOPCON HIPER PRO), mentre il secondo (nel nostro caso il Rover TOPCON GR-3) acquisisce osservazioni in modo statico o in movimento.

Terminata l'inizializzazione un ricevitore rimane in misura fermo su un punto, mentre il secondo ricevitore si sposta e staziona per pochi secondi sui punti da rilevare (Cinematico Stop & Go). Durante gli spostamenti è necessaria la ricezione continua dei segnali da almeno quattro satelliti.

#### 3. DATI DELLA STRUMENTAZIONE UTILIZZATA

Le caratteristiche tecniche della strumentazione GPS utilizzata sono le seguenti:

## **TOPCON HIPER PRO**

Specifications

Tracking

Signal GPS/GLONASS L1/L2 C/A and P Code & Carrier WAAS/EGNOS

Channel 40

Cold Tracking <60 seconds

Warm Tracking <10 seconds

Reacquisition <1 seconds

Accuracy

Static 3mm +.5ppm horizontal, 5mm +.5ppm vertical

RTK/Kinematic 10mm + 1ppm horizontal, 15mm + 1ppm vertical

## **TOPCON GR-3**

Signal GPS/GLONASS L1/L2/L5 C/A and P Code & Carrier, Gallileo E

1/2/5a and L1, WAAS/EGNOS

Channel 72

Cold Tracking <30 seconds

Warm Tracking <5 seconds

Reacquisition <1 seconds

Static 3mm +.5ppm horizontal, 5mm + .5ppm vertical

RTK/Kinematic 10mm + 1 ppm horizontal, 15mm + 1 ppm vertical

DGPS > .25m Post Processing, < .50m Real time

# 4. LIBRETTO DEI PUNTI RILEVATI

| ID        | Tipo               | COORD, WG  | Quota alla base  |        |
|-----------|--------------------|------------|------------------|--------|
| WTG 01    | Picchetto in ferro | 502.617,65 | 4.615.430.054,00 | 318,78 |
| WTG 01.01 | Picchetto in ferro | 502.632,04 | 4.615.419.784,00 | 320,86 |
| WTG 01.02 | Picchetto in ferro | 502.635,50 | 4.615.399.071,00 | 324,16 |
| WTG 01.03 | Picchetto in ferro | 502.614,29 | 4.615.395.530,00 | 323,64 |
| WTG 01.04 | Picchetto in ferro | 502.610,83 | 4.615.416.243,00 | 319,91 |
| WTG 02    | Picchetto in ferro | 503.323,32 | 4.615.646,61     | 311,54 |
| WTG 02.01 | Picchetto in ferro | 503.334,14 | 4.615.635,65     | 313,36 |
| WTG 02.02 | Picchetto in ferro | 503.337,37 | 4.615.614,90     | 313,97 |
| WTG 02.03 | Picchetto in ferro | 503.316,13 | 4.615.611,59     | 312,29 |
| WTG 02.04 | Picchetto in ferro | 503.312,95 | 4.615.632,35     | 309,71 |
| WTG 03    | Picchetto in ferro | 501.268,92 | 4.614.551,64     | 386,90 |
| WTG 03.01 | Picchetto in ferro | 501.262,42 | 4.614.566,07     | 388,62 |
| WTG 03.02 | Picchetto in ferro | 501.283,25 | 4.614.563,44     | 388,06 |
| WTG 03.03 | Picchetto in ferro | 501.285,94 | 4.614.584,78     | 392,11 |
| WTG 03.04 | Picchetto in ferro | 501.265,10 | 4.614.587,40     | 391,51 |
| WTG 04    | Picchetto in ferro | 501.758,73 | 4.614.409,72     | 361,32 |
| WTG_04.01 | Picchetto in ferro | 501.792,91 | 4.614.403,84     | 359,45 |
| WTG_04.02 | Picchetto in ferro | 501.770,02 | 4.614.423,32     | 363,07 |
| WTG_04.03 | Picchetto in ferro | 501.790,94 | 4.614.425,25     | 362,97 |
| WTG 04.04 | Picchetto in ferro | 501.772,00 | 4.614.401,91     | 360,04 |
| WTG 05    | Picchetto in ferro | 502.332,97 | 4.613.798,47     | 333,51 |
| WTG 05.01 | Picchetto in ferro | 502.317,35 | 4.613.796,45     | 332,52 |
| WTG 05.02 | Picchetto in ferro | 502.330,54 | 4.613.780,11     | 331,88 |
| WTG 05.03 | Picchetto in ferro | 502.313,52 | 4.613.766,67     | 329,72 |
| WTG 05.04 | Picchetto in ferro | 502.299,57 | 4.613.783,07     | 330,32 |
| WTG 06    | Picchetto in ferro | 500.869,36 | 4.615.950,18     | 392,18 |
| WTG 06.01 | Picchetto in ferro | 500.851,71 | 4.615.951,15     | 394,26 |
| WTG_06.02 | Picchetto in ferro | 500.867,72 | 4.615.965,50     | 391,21 |
| WTG_06.03 | Picchetto in ferro | 500.853,71 | 4.615.981,14     | 390,56 |
| WTG_06.04 | Picchetto in ferro | 500.837,70 | 4.615.966,79     | 393,90 |
| WTG_07    | Picchetto in ferro | 501.005,29 | 4.615.300,23     | 412,33 |
| WTG_07.01 | Picchetto in ferro | 501.022,83 | 4.615.302,40     | 409,36 |
| WTG_07.02 | Picchetto in ferro | 501.009,61 | 4.615.285,45     | 415,50 |
| WTG_07.03 | Picchetto in ferro | 501.026,17 | 4.615.272,54     | 415,75 |
| WTG_07.04 | Picchetto in ferro | 501.039,39 | 4.615.289,49     | 409,21 |
| WTG_08    | Picchetto in ferro | 501.540,87 | 4.615.148,59     | 376,17 |
| WTG_08.01 | Picchetto in ferro | 501.504,76 | 4.615.139,43     | 381,86 |
| WTG_08.02 | Picchetto in ferro | 501.516,58 | 4.615.122,07     | 382,01 |
| WTG_08.03 | Picchetto in ferro | 501.534,35 | 4.615.134,17     | 378,13 |
| WTG_08.04 | Picchetto in ferro | 501.522,53 | 4.615.151,53     | 379,09 |
| WTG_09    | Picchetto in ferro | 502.786,80 | 4.614.619,89     | 350,65 |
| WTG_09.01 | Picchetto in ferro | 502.797,70 | 4.614.609,01     | 349,75 |
| WTG_09.02 | Picchetto in ferro | 502.801,11 | 4.614.588,29     | 348,61 |
| WTG_09.03 | Picchetto in ferro | 502.779,89 | 4.614.584,81     | 347,03 |
| WTG_09.04 | Picchetto in ferro | 502.776,50 | 4.614.605,45     | 348,50 |
| WTG_10    | Picchetto in ferro | 504.777,72 | 4.614.985,14     | 239,17 |
| WTG_10.01 | Picchetto in ferro | 504.763,26 | 4.614.995,31     | 240,27 |
| WTG_10.02 | Picchetto in ferro | 504.766,96 | 4.614.974,13     | 241,07 |
| WTG_10.03 | Picchetto in ferro | 504.746,27 | 4.614.970,52     | 243,52 |
| WTG_10.04 | Picchetto in ferro | 504.742,57 | 4.614.991,70     | 242,89 |
| WTG_11    | Picchetto in ferro | 505.256,12 | 4.615.607,99     | 178,81 |
| WTG_11.01 | Picchetto in ferro | 505.241,71 | 4.615.618,23     | 178,99 |
| WTG_11.02 | Picchetto in ferro | 505.245,30 | 4.615.597,03     | 179,71 |
| WTG_11.03 | Picchetto in ferro | 505.224,60 | 4.615.593,52     | 180,70 |
| WTG_11.04 | Picchetto in ferro | 505.221,00 | 4.615.614,72     | 180,38 |