

REGIONE SICILIANA

Città Metropolitana di Catania

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRIVOLTAICO DENOMINATO "LENTINI1" DELLA POTENZA NOMINALE DI 60.016 kW E POTENZA DI IMMISSIONE 52.300 kW E DELLE RELATIVE OPERE CONNESSE NEI COMUNI DI LENTINI (SR) E PALAGONIA (CT)

COMMITTENTE

Iberdrola Renovables Italia S.p.A.

Sede Legale Piazzale dell'Industria n. 40 ROMA (ŘM) CAP 00144 CF/P.IVA 06977481008

SVILUPPATORE

Fabroen s.r.l

Sede legale Via Brunetto Latini n. 11 Palermo (PA) CAP 90141 CF/P.IVA 05052720827 Legale rappresentante Avv. Fabrizio Romeo

CALCOLO DI PRODUCIBILITA' IMPIANTO

Data	Formato	Scala	Cod Elaborato	Cod TERNA	Livello Progettazione	REV	Visto
10/05/2024			RS06REL0010A0	202203039	definitivo		

COMMITTENTE		Iberdrola Renovables S.p.A	REDAZIONE	Dr. Arch. Calogero Morreale
STRUTTURA DI PROGETTAZIONE	REDAZIONE	Dr. Geol. Francesco La Mendola	REDAZIONE	Dr. Natur. Mirko Amato
SI	REDAZIONE	Ing. Elett.Giuseppe Lo Presti	REDAZIONE	Dr. Agr. Paolo Di Bella

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Sommario

1. PA	RCO FOTOVOLTAICO	3
1.1	Premessa	3
1.2	DATI dell'Impianto	6
1.3	Descrizione dell'Impianto	8
1.4	Generatore fotovoltaico	8
2. Car	ratteristiche dell'opera	11
3. Pro	oduzione di energia elettrica attesa	11
3.1	Stime di producibilità da irraggiamento solare	13
3.2	Stime mensili dell'irraggiamento solare negli ultimi 15 anni	15
3.3	Irradiazione giornaliera nel mese di gennaio	16
3.4	Irradiazione giornaliera nel mese di febbraio	17
3.5	Irradiazione giornaliera nel mese di marzo	18
3.6	Irradiazione giornaliera nel mese di aprile	19
3.7	Irradiazione giornaliera nel mese di maggio	20
3.8	Irradiazione giornaliera nel mese di giugno	20
3.9	Irradiazione giornaliera nel mese di luglio	21
3.10	Irradiazione giornaliera nel mese di agosto	22
3.11	Irradiazione giornaliera nel mese di settembre	23
3.12	Irradiazione giornaliera nel mese di ottobre	24
3.13	Irradiazione giornaliera nel mese di novembre	25
3.14	Irradiazione giornaliera nel mese di dicembre	26
3.15	Compatibilità tra moduli e inverter	26
4. Ris	sultati delle Verifiche Elettriche	29
5. AP	PENDICE	32
5.1	Stime mensili dell'irraggiamento solare	
5.2	Rapporto medio mensile diffuso/globale	33
5.3	Temperature medie mensili	

FABROEN SRL CALCOLO PRODUCBILITA' IMPIANTO		ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

1. PARCO FOTOVOLTAICO

1.1 Premessa

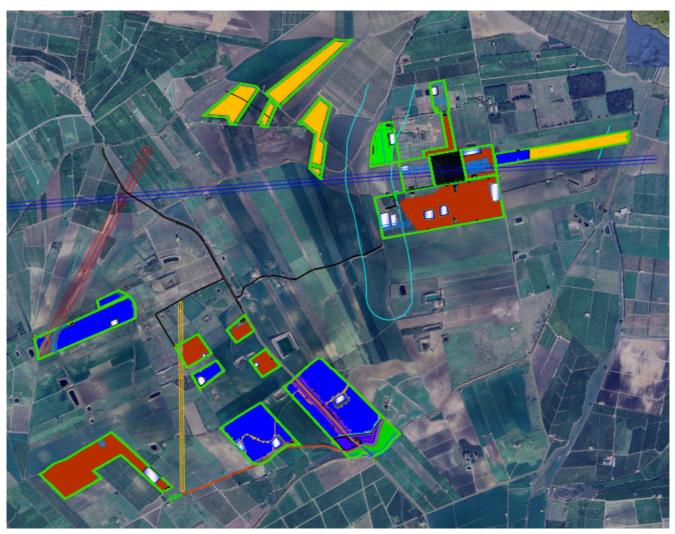
Il progetto di cui è parola è finalizzato alla realizzazione di un impianto agrivoltaico del tipo a struttura fissa per la produzione di energia elettrica, sito in nei comuni di Lentini (SR) e Palagonia (CT)

L'energia prodotta dall'impianto sarà immessa nella rete RTN direttamente alla potenza di 60.016 kW.

La realizzazione dell'opera è inserita in un programma di pianificazione per l'utilizzazione accorta e razionale delle risorse naturali, solari e agricole, rispettando gli indicatori sociali, ambientali e territoriali, in particolare la tutela e miglioramento della qualità dell'ambiente, della protezione della salute umana.

Il sito, ove è prevista la realizzazione dell'impianto agrivoltaico, è relativo ad un'area attualmente utilizzata ai fini agricoli avente estensione di circa 128 ha.

L'area di studio si trova ad un'altitudine mediamente di 65 mt s.l.m. –presenta una pendenza variegata, che ha consentito di inclinare i moduli verso sud, al fine di ottenere una esposizione ottimale per lo sfruttamento dell'irraggiamento solare.


L'impianto è distribuito su più aree di forma irregolare.

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Sistemi di riferimento

Layout su ortofoto Coord.

GaussBoaga: 2505755 4136000

WGS84: 37.372365° 14.839747°

CTR Sicilia 640020 640030 640060 640070

UTM 33N: E 485811 N 4136193

L'impianto è composto da 19 sottocampi sotto altrettante cabine di conversione e trasformazione (UP) della potenza di 3,437 kVA.

Ciascuno sottocampo alla tensione di 36 kV si connette al quadro AT su 6 scomparti AT posti in un edificio sito nel piazzale di stazione per poi connettersi ad una nuova stazione RTN attraverso 2 terne di cavo interrati da 630 mm².

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

TERNA SPA ha rilasciato il preventivo di connessione (STMG) il quale indica Tale preventivo indica che "l'allacciamento alla RTN prevede che la. centrale venga collegata in antenna con la sezione a 36 kV di una nuova stazione elettrica (SE) RTN 380/150/36 kV da inserire in entra – esce sulla linea RTN a 380 kV "Chiaramonte Gulfi - Paternò".

TERNA, in atto, è in fase decisionale per realizzare la nuova stazione presso un sito individuato da un precedente preventivo, per cui si attende la formalizzazione della realizzazione della citata stazione, per i dettagli di connessione.

Alla luce di quanto sopra, lo scenario assume la configurazione che l'energia prodotta, dal presente impianto, sarà immessa sulla rete RTN a 36 kV, con una doppia terna di cavi interrati lungo le esistenti strade (SP74 ed SP69) e stradelle interpoderali per una lunghezza non esattamente definibile di circa 9 Km fino allo stallo AT 36 kV, della nuova stazione, che sarà indicato da Terna, in un sito in fase decisionale.

La potenza nominale del presente campo fotovoltaico è di 60.016 kWp e 52.300 kW in immissione al punto di consegna.

Progettazione Elettrica

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

1.2 DATI dell'Impianto

DATI IMPIANTO				
NOME IMPIANTO	LENTINI 1			
COMUNE	LENTINI-PALAGONIA			
PROVINCIA	SIRACUSA-CATANIA			
COORDINATE	37°21'18.94"N 14°50'16.11"E			
QUOTA	65 m.s.1.m.			
TIPOLOGIA IMPIANTO	IMPIANTO CON TRACKER A TETTOIA			
VIABILITA'	STRADA PROVINCIALE Nº 69-74			
ZONA P.R.G.	ZONA "E"			
CONFIGURAZIONE IMPIANTO TRACKER 1P				
POTENZA IMPIANTO	29.03 MWp			
POTENZA MODULO	720 Wp			
NUMERO MODULI	40.320			
NUMERO MODULI PER STRINGA	28			
NUMERO DI STRINGHE	1440			
NUMERO DI UP	9			
DISTANZE TRA STRUTTURE N-S	0.50 mt			
PITCH	4.8840 mt			
DISTANZE TRA STRUTTURE E-W	2.50 mt			
DIMENSIONE STRUTTURA 1X7	9.2410 mt X 2.384 mt			
SUPERFICIE CAPTANTE	125.248,11 mq			

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

DATI IMPIANTO				
NOME IMPIANTO	LENTINI 1			
COMUNE	LENTINI-PALAGONIA			
PROVINCIA	SIRACUSA-CATANIA			
COORDINATE	37°21'18.94"N 14°50'16.11"E			
QUOTA	65 m.s.1.m.			
TIPOLOGIA IMPIANTO	IMPIANTO CON TRACKER A TETTOIA			
VIABILITA'	STRADA PROVINCIALE Nº 69-74			
ZONA P.R.G.	ZONA "E"			
CONFIGURAZIONE IMPL	ANTO TRACKER 2P			
POTENZA IMPIANTO	30.98 MWp			
POTENZA MODULO	720 Wp			
NUMERO MODULI	43.036			
NUMERO MODULI PER STRINGA	28			
NUMERO DI STRINGHE	1537			
NUMERO DI UP	10			
DISTANZE TRA STRUTTURE N-S	0.50 mt			
PITCH	9.00 mt			
DISTANZE TRA STRUTTURE E-W	4.0820 mt			
DIMENSIONE STRUTTURA 1X7	18.5020mt X 4.9180 mt			
SUPERFICIE CAPTANTE	133.684,96 mq			

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

1.3 Descrizione dell'Impianto

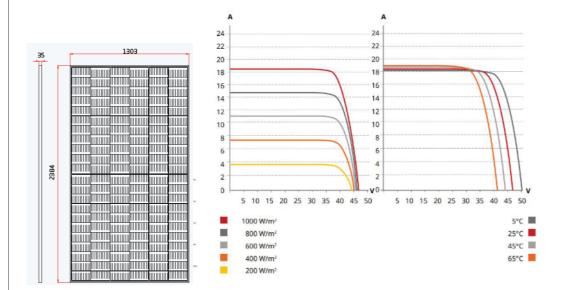
L'impianto fotovoltaico è costituito da:

- n. 83.356 moduli della potenza unitaria di 720 Wp (STC)
- 1.537 stringhe saranno composte 4x7 moduli fotovoltaici saranno installati sull'inseguitore su una sola fila (7 moduli) con una configurazione in verticale ("portrait") rispetto l'asse di rotazione del tracker.
- 1.440 stringhe saranno composte 28 moduli fotovoltaici saranno installati sull'inseguitore su 2 file 14 moduli per fila) con una configurazione in verticale ("portrait") rispetto l'asse di rotazione del tracker.
 - o In totale
- n. 2.977 stringhe da 28 moduli posizionati interesseranno tracker sia da 7 moduli sia da 28 moduli
- n. 3 aree geografiche impegnate (Nord e Sud)
- n. 19 sotto-campi
- n. 19 "Unità di Potenza" con inverter centralizzato da 3.437 kVA;
- N. 168 Quadri di parallelo (StringBox).

In particolare i calcoli di progetto dell'impianto sono stati suddiviso su 3 aree geografiche cosi configurate:

1.4 Generatore fotovoltaico

Il generatore fotovoltaico è costituito dal modulo fotovoltaico che contiene le celle fotovoltaiche (elemento di semiconduttore al silicio (fetta) opportunamente drogato)


È utile indicare che una cella fotovoltaica, in condizioni ambientali standard (25°, irraggiamento 1 kW/mq, produce energia ad una potenza di picco fino a 5 Wp.

Nella fattispecie il presente impianto fotovoltaico è costituito da moduli fotovoltaici al cui interno sono contenute 132 celle fotovoltaiche che producono energia alla potenza di **720 Wp** su una struttura delle dimensioni 2384*1303*35 mm

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039			
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW			

I dati caratteristici del modulo fotovoltaico da 720 W vengono di seguito riassunti:

Isc corrente di corto circuito =	17,67 A
Voc tensione a vuoto=	50,74 V
Pm potenza massima prodotta in condizioni standard (STC)=	720 Wp;
Imp corrente prodotta nel punto di massima potenza=	16,87 A;
Vmp tensione nel punto di massima potenza=	42,68 V
Efficienza =	23,18 %
FF Fattore di riempimento (fill factor)	<i>0</i> ,0,803

L'ideale è il Fill-Factor prossimo all'unità.

[FF= è un parametro che determinala forma della curva caratteristica V-I ed è il rapporto tra la potenza massima ed il prodotto (Voc. Isc) della tensione a vuoto per la corrente di corto circuito]. Fill Factor (FF) [Vmpp Imp/ Vo Isc] = 0,781

È evidente che il pannello fotovoltaico migliore è quello che riesce ad erogare una corrente costante al variare del voltaggio. L'allontanamento da questa situazione ideale viene quantificato dal Fill-Factor. Più questo indice è elevato, più il modulo è di qualità.

Inoltre tali valori sono influenzati dalle temperature di funzionamento

Coefficiente di temperatura di Pmax= $-026\%/^{\circ}$ C Coefficiente di temperatura di Voc = $-0.24\%/^{\circ}$ C Coefficiente di temperatura di Isc = $0.04\%/^{\circ}$ C

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

A questi valori bisogna considerare che la potenza è incrementabile fino al 20 % in considerazione del fatto che i moduli sono del tipo bifacciale, e che pertanto assumerebbe, i valori massimi di cui alla seguente tabella, calcolati con una irradiazione riflessa di 135 W/m²

Maximum Power	(Pmax)	785W
Optimum Operating Voltage	(Vmp)	42.54V
Optimum Operating Current	(Imp)	18 . 46A
Open Circuit Voltage	(Voc)	50.59V
Short Circuit Current	(Isc)	19.33A

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039				
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW				

2. Caratteristiche dell'opera

3. Produzione di energia elettrica attesa

Rendere efficiente l'impianto è quello di massimizzare la captazione e minimizzare le perdite di potenza fino al punto di immissione in rete.

La disponibilità della radiazione solare nel sito di installazione, ha il valore di 1947 Kw/mq, valore prelevato dal sistema PVGIS e compatibile con i valori medi pubblicati da UNI 10349.

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Inquadramento geografico Lat 37.372452 Lon 14.839791

Prestazioni del fotovoltaico connesso alla rete (Stime PVGIS-5 della produzione di elettricità solare) Dati:

Orizzonte: calcolato (Database utilizzato: PVGIS-SARAH2)

Tecnologia fotovoltaica: Silicio cristallino

FV installato: 60.016 kWp Perdita di sistema: 10%

Risultati della simulazione

Angolo di inclinazione: 30° Angolo di azimut: 0°

Produzione annua di energia fotovoltaica: 123,681 GWh

Irraggiamento annuale in aereo: 2.679 [kWh/m²]: Irraggiamento annuale in aereo: 2.060 [kWh/m² / kW]

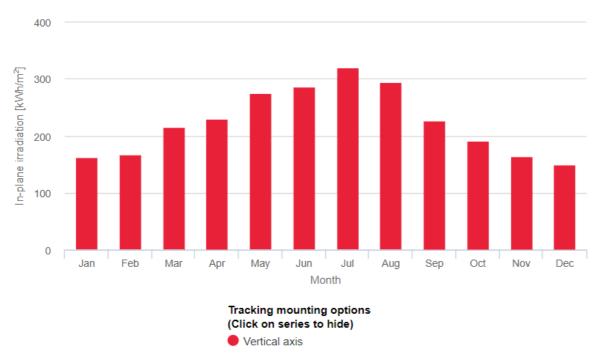
Variabilità di anno in anno: 3,653 GWh

Variazioni della produzione dovute a: Angolo di incidenza: -1,41 %

Effetti spettrali: 0,64 %

Temperatura e basso irraggiamento: -10,02 %

Perdita totale: -23 %



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.1 Stime di producibilità da irraggiamento solare

Produzione mensile di energia dal monitoraggio del sistema fotovoltaico

Irraggiamento mensile nel piano per il tracciamento del sistema fotovoltaico

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Mese	E_m	H(i)_m	SD_m
january	8028232	162.25	1058058
february	8140981	166.40	1132468
march	10309109	215.04	910405
april	10779763	230.44	1088096
may	12509231	274.05	793054
june	12687418	286.47	754688
july	13895707	319.58	473770
august	12880572	294.42	928264
september	10194740	225.93	749038
october	8884816	190.79	783318
november	7947474	164.62	762588
december	7423148.	150.08	728811

E_m: Produzione media mensile di energia elettrica dal sistema definito [kWh].

H(i)_m: Somma media mensile dell'irradiazione globale per m² ricevuta dai moduli del sistema considerato [kWh/m²].

SD_m: deviazione standard della produzione mensile di energia elettrica dovuta alla variazione di anno in anno [kWh].

La producibilità è stata calcolatavalutata assumendo l'inclinazione (tilt) dei moduli nel piano orizzontale attraverso la relazione

$$a = 90^{\circ} - lat + d$$

dove:

lat è il valore in gradi della latitudine del sito d'installazione dei moduli;

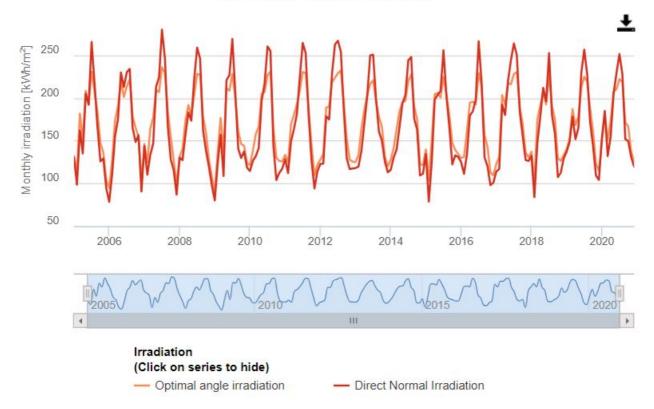
d è l'angolo di declinazione solare [23,45°]

Tuttavia conoscere l'angolo **a** non è sufficiente per determinare l'orientamento ottimale dei moduli. Occorre tenere in considerazione anche il percorso solare nella volta celeste nei diversi periodi dell'anno, per cui l'angolo di tilt dovrebbe essere mediato considerando tutti i giorni dell'anno. Ciò consente di ottenere una radiazione complessiva annuale captata dai moduli (e quindi una produzione energetica annuale) maggiore di quella che si avrebbe nella condizione di irr*aggiamento perpendicolare ai moduli durante il solstizio*.

La disponibilità della radiazione solare nel sito di installazione, ha il valore di 2.679 Kw/m², valore prelevato dal sistema PVGIS e compatibile con i valori medi pubblicati da UNI 10349.

[ore equivalenti]: N = (2679 kWh/mq) / (365) = (7,34 ore/die)

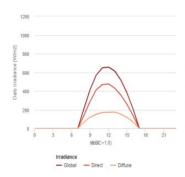
[La produzione dipende, anche, dall'orientamento e dalla inclinazione dei moduli e dalle perdite di energia nell'impianto (23%)].



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039			
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW			

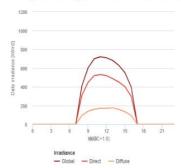
3.2 Stime mensili dell'irraggiamento solare negli ultimi 15 anni

Monthly solar irradiation estimates



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.3 Irradiazione giornaliera nel mese di gennaio



Irradiance on a fixed plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	0	0	209	414	571	648	656	614	517	379	204	0	0	0	0	0	0	0
Gb(i)	0	0	0	0	0	0	0	0	140	289	413	470	477	431	357	258	134	0	0	0	0	0	0	0
Gd(i)	0	0	0	0	0	0	0	0	67	121	152	171	172	176	153	117	68	0	0	0	0	0	0	0

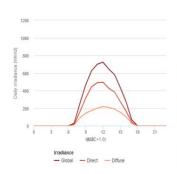
- G(i): Global irradiance on a fixed plane [W/m2]. Gb(i): Direct irradiance on a fixed plane [W/m2].
- Gd(i): Diffuse irradiance on a fixed plane [W/m2].

Daily average irradiance on sun-tracking plane

Irradiance on sun-tracking plane

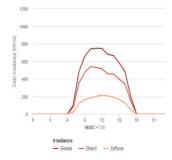
Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(n)	0	0	0	0	0	0	0	0	411	602	699	720	709	680	628	548	398	0	0	0	0	0	0	0
Gb(n	0	0	0	0	0	0	0	0	309	447	519	529	518	486	451	400	296	0	0	0	0	0	0	0
Gd(n)	0	0	0	0	0	0	0	0	93	139	160	171	171	175	159	133	94	0	0	0	0	0	0	0

 $G(n): \mbox{ Global irradiance on a 2-axis tracking plane [W/m2].} \label{eq:Global global global} Gb(n): \mbox{ Direct normal irradiance [W/m2].}$


Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.4 Irradiazione giornaliera nel mese di febbraio



Irradiance on a fixed plane

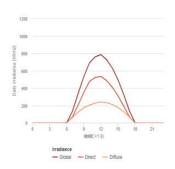
Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45	
G(i)	0	0	0	0	0	0	0	29	255	465	625	699	723	644	581	435	275	67	0	0	0	0	0	0	
Gb(i)	0	0	0	0	0	0	0	17	161	316	443	490	495	426	385	275	169	38	0	0	0	0	0	0	
Gd(i)	0	0	0	0	0	0	0	12	91	144	174	199	219	209	189	155	103	28	0	0	0	0	0	0	

 $G(i): \mbox{ Global irradiance on a fixed plane [W/m2].} \label{eq:global_global} Gb(i): \mbox{ Direct irradiance on a fixed plane [W/m2].} \mbox{ Gd(i): Diffuse irradiance on a fixed plane [W/m2].}$

Daily average irradiance on sun-tracking plane

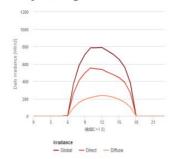
Irradiance on sun-tracking plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(n)	0	0	0	0	0	0	0	97	482	656	740	748	747	679	665	579	481	193	0	0	0	0	0	0
Gb(n)	0	0	0	0	0	0	0	76	351	474	537	529	514	456	455	396	340	145	0	0	0	0	0	0
Gd(n)	0	0	0	0	0	0	0	19	119	163	182	199	215	206	191	165	127	45	0	0	0	0	0	0


G(n): Global irradiance on a 2-axis tracking plane [W/m2], Gb(n): Direct normal irradiance [W/m2]. Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.5 Irradiazione giornaliera nel mese di marzo



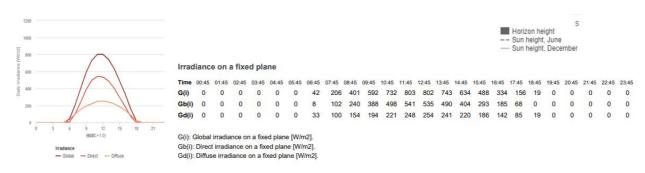
Irradiance on a fixed plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	1	131	335	530	691	759	786	726	630	495	326	136	0	0	0	0	0	0
Gb(i)	0	0	0	0	0	0	0	68	205	349	477	521	534	485	410	311	192	68	0	0	0	0	0	0
Gd(i)	0	0	0	0	0	0	1	61	125	173	204	226	240	231	211	176	129	66	0	0	0	0	0	0

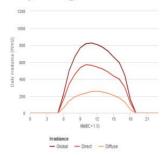
- $G(i): \mbox{ Global irradiance on a fixed plane [W/m2].} \label{eq:global_global} Gb(i): \mbox{ Direct irradiance on a fixed plane [W/m2].} \mbox{ Gd(i): Diffuse irradiance on a fixed plane [W/m2].} \label{eq:global_global}$

Daily average irradiance on sun-tracking plane

Irradiance on sun-tracking plane


Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	10:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45	ś
G(n)	0	0	0	0	0	0	6	366	584	707	784	784	789	750	709	653	562	379	0	0	0	0	0	0	
Gb(n)	0	0	0	0	0	0	4	261	411	495	553	542	537	504	476	443	387	266	0	0	0	0	0	0	
Gd(n)	0	0	0	0	0	0	1	96	156	192	213	227	238	231	217	192	158	103	0	0	0	0	0	0	

 $G(n); \ Global \ irradiance \ on \ a \ 2-axis \ tracking \ plane \ [W/m2].$ $Gb(n); \ Direct \ normal \ irradiance \ [W/m2].$ $Gd(n); \ Diffuse \ irradiance \ on \ a \ 2-axis \ tracking \ plane \ [W/m2].$



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

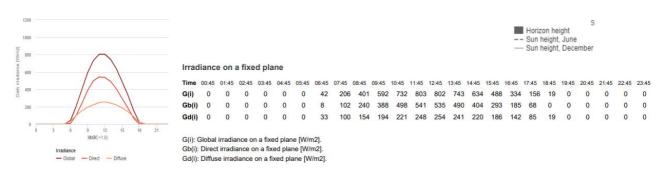
3.6 Irradiazione giornaliera nel mese di aprile

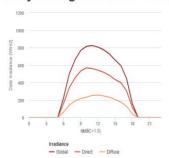
Daily average irradiance on sun-tracking plane

Irradiance on sun-tracking plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(n)	0	0	0	0	0	0	223	498	659	767	815	824	806	775	728	658	594	444	157	0	0	0	0	0
Gb(n)	0	0	0	0	0	0	157	341	451	533	568	561	541	518	482	435	399	303	116	0	0	0	0	0
Gd(n)	0	0	0	0	0	0	60	142	189	216	233	253	257	247	232	206	177	129	38	0	0	0	0	0

G(n): Global irradiance on a 2-axis tracking plane [W/m2].

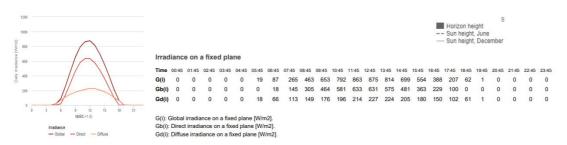

Gb(n): Direct normal irradiance [W/m2].
Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].



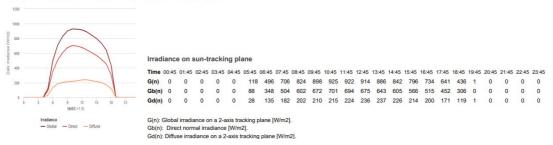
FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.7 Irradiazione giornaliera nel mese di maggio

Daily average irradiance on sun-tracking plane


Irradiance on sun-tracking plane

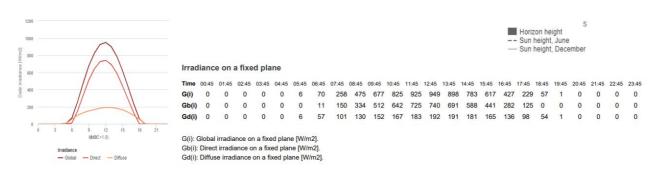
Time 00:45 01:45 02:45 03:45 04:45 05:45 06:45 07:45 08:45 09:45 10:45 10:45 11:45 12:45 13:45 14:45 15:45 16:45 17:45 18:45 19:45 20:45 21:45 22:45 23:45 0 0 0 0 223 498 659 767 815 824 806 775 728 658 594 444 157 0 0 0 0 0 0 G(n) 0 157 341 451 533 568 561 541 518 482 435 399 303 116 0 0 0 0 **Gb(n)** 0 0 0 0 0 0 0 Gd(n) 0 0 0 0 0 60 142 189 216 233 253 257 247 232 206 177 129 38 0 0 0


G(n): Global irradiance on a 2-axis tracking plane [W/m2]. Gb(n): Direct normal irradiance [W/m2].

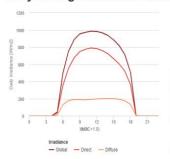
Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

3.8 Irradiazione giornaliera nel mese di giugno

Daily average irradiance on sun-tracking plane


A_z R T

Pag. 20

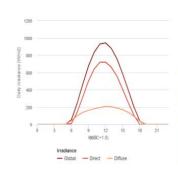


FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.9 Irradiazione giornaliera nel mese di luglio

Daily average irradiance on sun-tracking plane

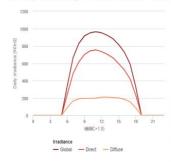
Irradiance on sun-tracking plane


Time 00:45 01:45 02:45 03:45 04:45 05:45 06:45 07:45 08:45 07:45 08:45 10:45 10:45 10:45 12:45 13:45 14:45 15:45 16:45 17:45 18:45 19:45 20:45 21:45 22:45 23:45 G(n) 0 0 0 0 0 0 44 498 753 888 954 972 966 982 966 985 884 816 713 507 1 0 0 0 0 0 Gb(n) 0 0 0 0 0 35 356 554 677 748 775 789 782 789 782 665 603 518 363 0 0 0 0 0 0 Gd(n) 0 0 0 0 0 8 130 179 189 189 186 191 196 200 202 201 192 175 132 1 0 0 0

G(n): Global irradiance on a 2-axis tracking plane [W/m2]. Gb(n): Direct normal irradiance [W/m2].
Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.10 Irradiazione giornaliera nel mese di agosto



Irradiance on a fixed plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	52	239	462	673	832	928	942	879	757	584	393	197	39	0	0	0	0	0
Gb(i)	0	0	0	0	0	0	8	136	316	499	639	718	719	660	555	405	248	100	0	0	0	0	0	0
Gd(i)	0	0	0	0	0	0	43	98	138	162	179	194	207	204	189	169	137	92	38	0	0	0	0	0

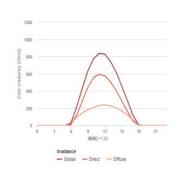
G(i): Global irradiance on a fixed plane [W/m2]. Gb(i): Direct irradiance on a fixed plane [W/m2]. Gd(i): Diffuse irradiance on a fixed plane [W/m2].

Daily average irradiance on sun-tracking plane

Irradiance on sun-tracking plane

Time 00:45 01:45 02:45 03:45 04:45 05:45 06:45 06:45 06:45 08:45 08:45 10:45 10:45 11:45 12:45 13:45 14:45 15:45 16:45 17:45 18:45 19:45 20:45 21:45 22:45 23:45 G(n) 0 0 0 0 0 0 0 0 0 343 664 827 916 952 963 951 923 883 815 729 523 327 0 0 0 0 0 Gb(n) 0 0 0 0 0 0 243 481 615 702 743 755 750 750 663 596 524 421 234 0 0 0 0 0 0 0 0 0 0 92 165 191 195 195 199 209 210 206 201 185 157 87 0 0 0

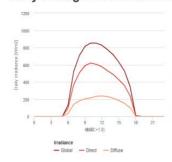
G(n): Global irradiance on a 2-axis tracking plane [W/m2]. Gb(n): Direct normal irradiance [W/m2].


Progettazione Elettrica

Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.11 Irradiazione giornaliera nel mese di settembre



Irradiance on a fixed plane

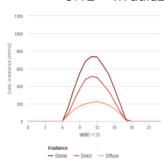
Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	27	214	430	633	773	837	825	741	618	454	285	111	2	0	0	0	0	0
Gb(i)	0	0	0	0	0	0	6	118	280	442	555	592	575	503	406	282	160	48	0	0	0	0	0	0
Gd(i)	0	0	0	0	0	0	21	93	143	181	206	232	238	227	203	165	121	61	2	0	0	0	0	0

G(i): Global irradiance on a fixed plane [W/m2]. Gb(i): Direct irradiance on a fixed plane [W/m2]. Gd(i): Diffuse irradiance on a fixed plane [W/m2].

Daily average irradiance on sun-tracking plane

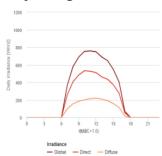
Irradiance on sun-tracking plane

Time 00:45 01:45 02:45 03:45 03:45 04:45 05:45 06:45 06:45 06:45 07:45 08:45 09:45 10:45 10:45 12:45 13:45 14:45 15:45 16:45 16:45 17:45 18:45 19:45 20:45 21:45 22:45 23:45 G(n) 0 0 0 0 0 0 131 520 706 814 853 852 827 776 717 630 528 347 10 0 0 0 0 0 0 Gb(n) 0 0 0 0 0 94 367 505 589 621 605 577 531 488 427 359 239 7 0 0 0 0 0 0 Gd(n) 0 0 0 0 0 0 33 139 181 204 215 234 238 231 213 185 153 100 3 0 0


 $G(n): \mbox{ Global irradiance on a 2-axis tracking plane [W/m2].} \label{eq:Global_global} Gb(n): \mbox{ Direct normal irradiance [W/m2].} \mbox{ Gd}(n): \mbox{ Diffuse irradiance on a 2-axis tracking plane [W/m2].} \label{eq:Global_global}$

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.12 Irradiazione giornaliera nel mese di ottobre



Irradiance on a fixed plane

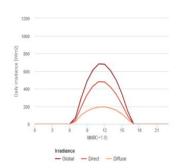
Tir	ne	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	0	161	369	548	683	736	732	640	538	375	199	19	0	0	0	0	0	0
G	o(i)	0	0	0	0	0	0	0	89	233	368	477	510	499	423	345	229	110	8	0	0	0	0	0	0
Go	(i)b	0	0	0	0	0	0	0	70	131	173	197	215	224	208	185	141	87	10	0	0	0	0	0	0

G(i): Global irradiance on a fixed plane [W/m2]. Gb(i): Direct irradiance on a fixed plane [W/m2]. Gd(i): Diffuse irradiance on a fixed plane [W/m2].

Daily average irradiance on sun-tracking plane

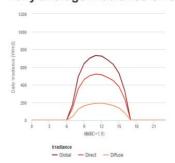
Irradiance on sun-tracking plane

Time 00:45 01:45 02:45 03:45 04:45 05:45 06:45 06:45 06:45 06:45 08:45 08:45 10:45 10:45 11:45 12:45 13:45 14:45 15:45 16:45 17:45 18:45 18:45 19:45 20:45 21:45 22:45 23:45
 G(n)
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0


G(n): Global irradiance on a 2-axis tracking plane [W/m2]. Gb(n): Direct normal irradiance [W/m2]. Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.13 Irradiazione giornaliera nel mese di novembre



Irradiance on a fixed plane

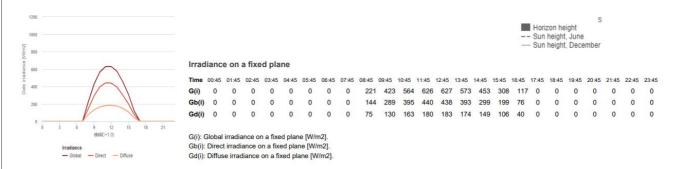
Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(i)	0	0	0	0	0	0	0	71	298	486	612	681	679	608	499	341	143	0	0	0	0	0	0	0
Gb(i)	0	0	0	0	0	0	0	44	194	332	429	480	477	421	338	221	90	0	0	0	0	0	0	0
Gd(i)	0	0	0	0	0	0	0	27	102	148	176	192	194	180	155	116	52	0	0	0	0	0	0	0

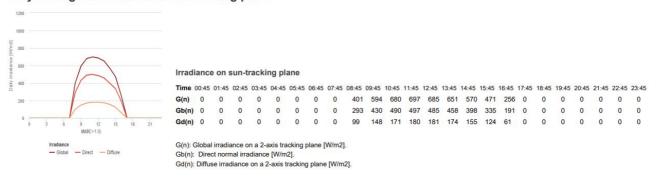
 $G(i): \mbox{ Global irradiance on a fixed plane [W/m2].} \label{eq:global_global} Gb(i): \mbox{ Direct irradiance on a fixed plane [W/m2].} \mbox{ Gd(i): Diffuse irradiance on a fixed plane [W/m2].}$

Daily average irradiance on sun-tracking plane

Irradiance on sun-tracking plane

Time	00:45	01:45	02:45	03:45	04:45	05:45	06:45	07:45	08:45	09:45	10:45	11:45	12:45	13:45	14:45	15:45	16:45	17:45	18:45	19:45	20:45	21:45	22:45	23:45
G(n)	0	0	0	0	0	0	0	174	492	638	702	730	724	683	631	530	328	0	0	0	0	0	0	0
Gb(r	0 (1	0	0	0	0	0	0	132	355	459	503	520	513	483	448	379	241	0	0	0	0	0	0	0
Gd(r) 0	0	0	0	0	0	0	39	124	161	179	190	191	181	165	137	82	0	0	0	0	0	0	0


G(n): Global irradiance on a 2-axis tracking plane [W/m2]. Gb(n): Direct normal irradiance [W/m2]. Gd(n): Diffuse irradiance on a 2-axis tracking plane [W/m2].



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

3.14 Irradiazione giornaliera nel mese di dicembre

Daily average irradiance on sun-tracking plane

3.15 Compatibilità tra moduli e inverter

Nella tabella seguente sono stati riportati i calcoli di verifica di compatibilità di accoppiamento stringa-inverter al variare della temperatura dei moduli fotovoltaici, quindi della temperatura d'ambiente.

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

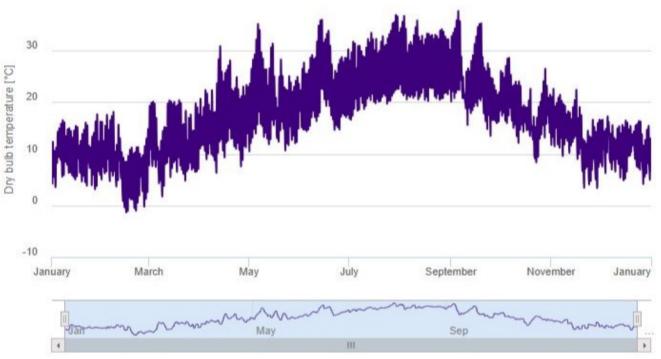
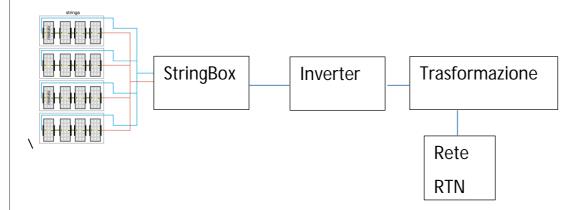


Grafico delle temperatura mensili (-0,25°C + 35°C)

Ciò perché all'aumentare della temperatura dei moduli fotovoltaici, la corrente prodotta resta praticamente invariata, mentre decresce la tensione e con essa si ha una riduzione delle prestazioni dei moduli in termini di potenza elettrica prodotta.

La variazione della tensione a vuoto Voc di un modulo fotovoltaico, rispetto alle condizioni standard Voc, stc, in funzione della temperatura di lavoro delle celle Tcel, è espressa dalla formula seguente (guida CEI 82-25 II ed.):

$$Voc(T) = Voc, stc - NS \cdot \beta \cdot (25-Tcella)$$


dove: β è il coefficiente di variazione della tensione con la temperatura e dipende dalla tipologia del modulo fotovoltaico (-2.5 mV/°C/cella per il modulo da 720 Wp di progetto)

NS è il numero di celle in serie nel modulo (nel nostro caso 1 stringa).

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Le verifiche hanno condotto ai seguenti risultati

Vmin stringa ≥ UMPPT min inverter Voc maxstringa ≤ UMAXinverter Vmax stringa≤ UMPPT max inverter

COMPATIBILITA' STRINGA INVERETR

$V_{MPPmin\ di\ stringa} > U_{MPPTmin\ di\ inverter}$	VERO
1065,97568 > 875	
V _{oMAX di stringa} < U _{MAXingr inverter}	VERO
1499,143744 < 1500	VERO
V _{MPPmax di stringa} < U _{MPPTmax dell'inverter}	VERO
1261,006208 < 1300	VERO

$$Voc(T) = Voc, stc - NS \cdot \beta \cdot (25-Tcel)$$

dove

Umin è la tensione del campo fotovoltaico con irraggiamento standard, in corrispondenza della temperatura massima di lavoro prevista per i moduli fotovoltaici nel sito di installazione Umax è la tensione del campo fotovoltaico con irraggiamento standard, in corrispondenza della temperatura minima di lavoro prevista per i moduli fotovoltaici nel sito di installazione Uoc max è la tensione a vuoto del campo fotovoltaico, in corrispondenza della temperatura minima di lavoro prevista per i moduli fotovoltaici nel sito di installazione UMPPT è la min tensione di funzionamento minima in ingresso ammessa dall'inverter UMPPT è la max tensione di funzionamento massima in ingresso ammessa dall'inverter UMAX è la tensione massima in ingresso sopportabile dall'inverter.

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

4. Risultati delle Verifiche Elettriche

COSMOTECK SRL Verifica Compatibilità

INVERTER dati di TARGA	UP+iNVERTER			
Ingresso	3			
Pnominale ingresso	Pni_i	3.437,0	kW	
U funzionamento MPPT minima	U _{MPPTmin}	875	V	
U funzionamento MPPT massima	U _{MPPTmax}	1.300	v	
U max ammessa sopportabile	U _{MAX}	1.500		
Vmax sistema	UxT	1.500	v	
Imax cc MPPT ingresso per ogni MPPT	lxMp	3997	Α	
Imax ctocto ingresso	lxcx	10000	Α	
tensione di avviamento	Uavv	875	V	
N. ingressi disponibili	Ningr	28		
U standard, a T° max	U _{min}	1080	V	
U standard, a T° minima	Us _{max}	1500,0	٧	
U a vuoto , a T° minima	Uoc _{max}	1398,56	V	
Uscita				
P uscita c.a	Wusc	3437	kW	
P uscita c.a	Vausc	3437	kVA	
V c.a trifase	Uca	800	V	
Corrente nominale c.a	Ica	3308,00	Α	
Imax Corrente c.a	Ixca	155,2	Α	
f	f	50	Hz	
fatt pot	cosó	1,00		
Rend EU	ηe	98,7%		
Rend max	ηx	99,0%		
Numero max ingressi per StringBox		32		
Unità di potenza (UP)				
Potenza AC a 40°	Pup40	3,437	KVA	
Potenza AC a 50°	Pup50	3.125	KVA	
Num ingressi inverter	NiUP	28	KVA	
Tensione max in ingresso	VxUP	915	v	
			A	
Tanslar a la vesita	ViveLID	26		
Tensione in uscita	VusUP	36	kV V	
Tensione Serv-Aux	Vsa	400	v	
Ridefinizione n moduli				
	oduli teorici	97.300		
Numero Mo	97.300			
Potre	nza totale =	65.677	kWp	

COSMOTECK_62.Verifica Elettrica PZ Armerina

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

COSMOTECK SRL Pagina 3 Verifica Compatibilità

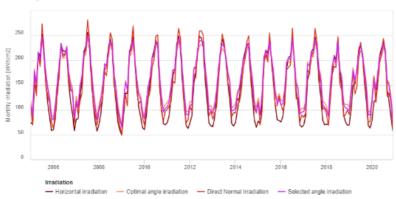
	GULTATI	
Pot. nominale [kWp]	65.677,50	65.677,50
	perdita % sistema	18,5%
	Potenz in immissione [kW]	53526,00
	Moduli per stringa	28
	Numero Stringhe reali	3475
	Potenza di stringa [kWp]	18,900
	Numero Moduli Totali	97.300
	Numero Unità di potenza	19
Potenza tota	ale disponibile dalle UP kVA	65.303
numero tot. ingressi dispon	ibili per gli inverter nelle UP	532
	numero inverter =	19
	Numero totale StringBox	133
	Numero Moduli	97.300
Distribuzione dei	49 StringBox in Area1	
Distribuzione dei	49 StringBox in Area1	
Distribuzione dei	84 StringBox in Area2	
	0 StringBox in Area3	
Totale = 133 StringBox	distribuiti sui 19 UP/Inverter	
COMPATIBILITA	' STRINGA INVERETR	
$V_{MPPmin di stringa} > U_{MPPT}$		VERO
V _{oMAX di stringa} < U _{MAXi} 1398,558 < 15		VERO
	max dell'inverter	VERO
964,236 > 87 V _{oMAX di stringa} < U _{MAXi} 1398,558 < 15	5 ingr inverter 00	VERO

COSMOTECK_62.Verifica Elettrica PZ Armerina

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Palermo 11/12/2023

Ing. Giuseppe Lo Presti



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

5. APPENDICE

5.1 Stime mensili dell'irraggiamento solare

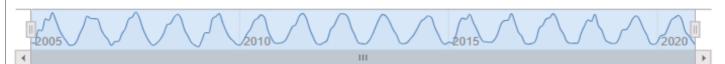
Monthly solar irradiation estimates

--- Sun neight, December

Slobal horizontal irradiation

Month	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
January	74.98	60.24	81.25	70.86	49.77	60.62	74.56	74.61	66.53	74.69	77.57	75.94	70.08	71.44	70.23	79.1
February	71.15	83.76	82.34	92.82	89.56	88.87	88.07	87.98	84.11	98.74	72.31	87.57	88.1	71.15	101.81	116.64
March	149.8	132.23	126.36	127.68	134	127.81	126.14	151.96	120.51	123.19	114.78	124.12	160.09	127.77	150.2	120.9
April	145.81	175.6	158.34	181.26	133.14	156.86	168.21	176.36	170.43	160.99	192.29	183.98	176.97	174.05	152.37	161.99
May	216.11	231.75	216.75	189.61	214.97	204.5	182.6	219.28	217.28	200.33	220.31	206.13	216.8	209.48	180.62	209.49
June	207.64	219.15	227.39	225.39	229.84	218.3	231.75	247.67	242.66	215.67	214.21	207.74	223.29	201.67	221.07	223.47
July	252.47	217.62	255.97	243.27	246.84	239.85	248.55	245.14	231.17	233.86	243.36	247.12	246.76	242.61	233.35	236.55
August	208.36	215.53	223.52	219.67	192.51	225.44	220.93	225.65	198.39	224.4	197.34	196.58	217.99	175.71	205.97	210.69
September	152.21	154.9	160.25	152.12	142.35	147.46	156.14	161.67	152	164.86	155.36	137.79	159.05	147.94	157.05	140.33
October	113.57	118.07	112.35	113.88	104.99	101.9	107.22	117.98	120.44	122.64	108.58	111.84	125.72	91.61	117.49	116.41
November	84.44	93.19	76.49	74.73	85.56	72.14	68.6	74.12	72.67	79.09	80.2	69.63	79.43	76.19	68.99	84.99
December	58.79	58.31	57.86	59.5	64.13	70.21	62.87	68.17	67.56	65.32	78.81	65.64	70.34	69.46	63.75	58.25

Direct Normal Irradiation


Month	2005	2006	2007	2008
January	109.9	63.24	117.38	98.06
February	69.85	92.29	91.51	108.93
March	166.44	130.45	117.75	126.4
April	128.37	167.63	132.9	177.08
May	213.71	234.02	203.65	168.82
June	186.91	207.59	223.54	216.31
July	272.74	210.55	280.66	254.83
August	223.5	227.4	243.03	241.68
September	149.03	160.75	164.86	153.91
October	127.18	138.68	113.72	122.36
November	114.9	139.72	91.13	93.25
December	75.1	71.13	70.25	68.5

Global irradiation optimum angle

MOHILI	2000	2000	2007	2000	2005	2010	2011	2012	2013	2014	2010	2010	2017	2010	2019	2020	
January	118.86	85.2	127.55	109.01	69.49	88.09	114.4	116.57	98.87	112.63	123.7	119.04	103.53	107.43	105.89	125.88	
February	92.16	113.64	110.43	126.6	119.56	120	122.62	117.21	113	137.68	94.16	118.2	117.55	91.68	143.95	168.84	
March	182.37	156.25	149.99	152.33	159.1	150.08	147.81	185.27	139.48	144.62	132.98	144.54	196.26	150.53	185.07	143.68	
April	151.75	189.31	167	192.18	139.99	165.72	180.67	187.14	181.84	169.9	206.21	196.36	188.34	186.89	157.99	172.39	
May	209.36	225.19	209.7	183.71	207.87	198.5	175.95	212.63	210.73	193.6	214.47	199.06	210.74	202.54	174.9	202.47	
June	192.33	203.29	210.3	208.17	211.95	202	215.03	228.54	223.58	200.09	198.51	192.67	205.91	186.18	204.99	206.33	
July	237.95	205.39	241.12	230.02	232.55	226.24	234.74	231.23	218.36	220.37	229.74	232.97	232.67	229.21	219.41	223.05	
August	212.63	222.03	230.89	226	197.56	232.36	227.36	233.15	202.65	231.72	203.66	201.27	223.97	179.37	210.42	218.01	
September	174.97	178.48	184.85	173.66	161.85	169.33	180.49	188.6	176.52	190.83	179.36	155.64	184.48	168.25	183.1	160.58	
October	148.5	156.72	142.78	146.45	135.17	128.12	136.05	154.72	159.66	163.09	138.33	145.81	168.53	115.19	153.53	154.32	
November	127.61	145.37	110.5	109.33	129.69	101.35	96.58	106.5	104.16	117.84	120.04	97.54	117.49	110.56	97.35	127.49	
December	90.51	88.09	87.19	88.19	99.36	111.31	96.83	109.26	107.29	105.25	132.87	103.37	114.22	111.7	95.95	85.12	

Global irradiation at angle

Month	2005	2006	2007	2008
January	109.97	80.35	118.22	101.39
February	88.42	108.14	105.32	120.39
March	177.72	153.11	146.79	148.96
April	152.81	189.51	167.88	193.11
May	215.06	231.5	215.6	188.8
June	200.14	211.6	219.14	216.91
July	246.94	212.76	250.29	238.43
August	215.83	225.04	233.92	229.24
September	172.56	176.02	182.24	171.62
October	142.42	149.91	137.68	140.91
November	119.06	134.97	103.88	102.57
December	84.09	82.11	81.31	82.47

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

5.2 Rapporto medio mensile diffuso/globale

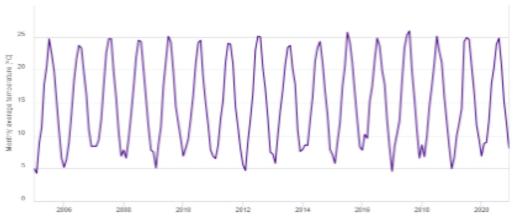
Monthly average diffuse to global ratio

Diffuse/global ratio

Month	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
January	0.42	0.57	0.41	0.42	0.56	0.54	0.46	0.42	0.49	0.48	0.39	0.39	0.5	0.48	0.48	0.4
February	0.57	0.48	0.48	0.44	0.47	0.45	0.42	0.46	0.48	0.4	0.55	0.45	0.48	0.56	0.36	0.31
March	0.35	0.43	0.45	0.43	0.45	0.43	0.48	0.34	0.49	0.48	0.52	0.48	0.34	0.46	0.33	0.46
April	0.43	0.37	0.45	0.37	0.48	0.43	0.4	0.39	0.39	0.46	0.34	0.35	0.36	0.35	0.44	0.39
May	0.32	0.29	0.35	0.37	0.34	0.37	0.43	0.33	0.33	0.38	0.34	0.37	0.34	0.38	0.44	0.37
June	0.36	0.32	0.29	0.32	0.3	0.35	0.3	0.25	0.26	0.32	0.35	0.34	0.31	0.35	0.33	0.32
July	0.24	0.33	0.23	0.25	0.24	0.28	0.25	0.26	0.28	0.29	0.26	0.25	0.25	0.28	0.3	0.28
August	0.3	0.29	0.27	0.26	0.3	0.26	0.27	0.26	0.34	0.25	0.32	0.34	0.28	0.42	0.32	0.3
September	0.39	0.36	0.37	0.37	0.41	0.39	0.34	0.35	0.37	0.36	0.36	0.45	0.33	0.41	0.35	0.43
October	0.43	0.4	0.47	0.44	0.45	0.51	0.47	0.38	0.41	0.38	0.48	0.41	0.38	0.52	0.43	0.4
November	0.41	0.34	0.49	0.46	0.41	0.53	0.54	0.48	0.49	0.43	0.41	0.53	0.44	0.48	0.53	0.4
December	0.51	0.52	0.52	0.55	0.5	0.46	0.51	0.45	0.46	0.44	0.37	0.47	0.43	0.45	0.53	0.57

Monthly average temperature

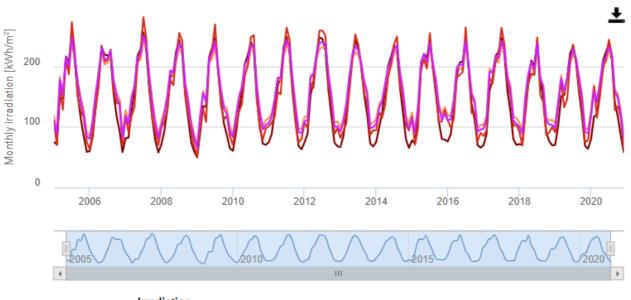
Month	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
January	5	5.2	8.4	7.8	7.5	6.9	6.9	5.6	7.2	7.9	7.1	7.8	4.6	8.6	5	6.9
February	4.3	6.4	8.4	6.6	5.1	8.1	6.5	4.7	5.8	8.6	5.8	10.2	8.4	6.8	6.6	8.8
March	8.8	9	9.4	9.5	8.6	9.5	8.5	9.1	10	8.5	9	9.6	10.3	9.9	10	9
April	11.2	13.3	12.5	13.2	11.3	12.6	12.5	12.5	13.8	12.3	11.9	15.2	12.3	14.4	11.9	12.4
May	17.8	18.2	17.7	17.3	17.5	16.1	15.3	16.4	16.9	15.8	17.4	17.5	18.3	17.5	14.1	17.9
June	20.4	21.6	22.6	21.8	21.3	20.9	21.1	23	20.8	21.3	20.5	21.5	23.4	21	24.3	20.4
July	24.7	23.7	24.7	24.5	25.1	24.1	24	25.1	23.4	23.4	25.7	24.8	25.3	25.1	24.9	23.9
August	22.5	23.3	24.7	24.3	24.2	24.5	23.9	25	23.7	24.3	24.2	23.6	25.9	22.8	24.6	24.8
September	19.9	19.6	19.6	20.1	19.8	18.8	20.9	20.3	20.1	21.2	21	19.9	19.9	21.1	20.6	20.8
October	15.3	16.2	15.7	15.7	14.4	15	14.4	17.1	17.8	16.8	16.5	17.8	15.6	16	16.7	15.3
November	10.7	10.9	10.5	11.3	11.9	11.7	11.3	12.7	10.8	13.2	12.3	12.3	10.8	12.1	11.6	12
December	6.6	8.4	6.9	7.8	9.5	7.8	8	7.5	7.6	7.9	8.3	8.1	6.6	8.3	9.4	8.1



FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

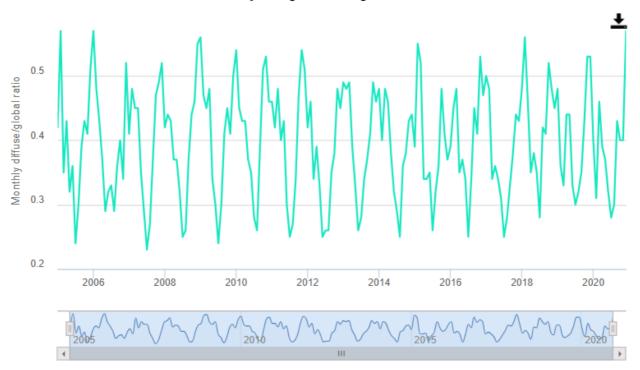
5.3 Temperature medie mensili




Monthly average temperature

Month	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
January	5	5.2	8.4	7.8	7.5	6.9	6.9	5.6	7.2	7.9	7.1	7.8	4.6	8.6	5	6.9
February	4.3	6.4	8.4	6.6	5.1	8.1	6.5	4.7	5.8	8.6	5.8	10.2	8.4	6.8	6.6	8.8
March	8.8	9	9.4	9.5	8.6	9.5	8.5	9.1	10	8.5	9	9.6	10.3	9.9	10	9
April	11.2	13.3	12.5	13.2	11.3	12.6	12.5	12.5	13.8	12.3	11.9	15.2	12.3	14.4	11.9	12.4
May	17.8	18.2	17.7	17.3	17.5	16.1	15.3	16.4	16.9	15.8	17.4	17.5	18.3	17.5	14.1	17.9
June	20.4	21.6	22.6	21.8	21.3	20.9	21.1	23	20.8	21.3	20.5	21.5	23.4	21	24.3	20.4
July	24.7	23.7	24.7	24.5	25.1	24.1	24	25.1	23.4	23.4	25.7	24.8	25.3	25.1	24.9	23.9
August	22.5	23.3	24.7	24.3	24.2	24.5	23.9	25	23.7	24.3	24.2	23.6	25.9	22.8	24.6	24.8
September	19.9	19.6	19.6	20.1	19.8	18.8	20.9	20.3	20.1	21.2	21	19.9	19.9	21.1	20.6	20.8
October	15.3	16.2	15.7	15.7	14.4	15	14.4	17.1	17.8	16.8	16.5	17.8	15.6	16	16.7	15.3
November	10.7	10.9	10.5	11.3	11.9	11.7	11.3	12.7	10.8	13.2	12.3	12.3	10.8	12.1	11.6	12
December	6.6	8.4	6.9	7.8	9.5	7.8	8	7.5	7.6	7.9	8.3	8.1	6.6	8.3	9.4	8.1

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW


Irradiation (Click on series to hide)

Progettazione Elettrica

Horizontal irradiation
 Direct Normal Irradiation

Optimal angle irradiation
Selected angle irradiation

Monthly average diffuse to global ratio

FABROEN SRL	CALCOLO PRODUCBILITA' IMPIANTO	ID TERNA 202203039
RSO6REL0010A0	PROGETTO IMPIANTO AGRIVOLTAICO LENTINI1	Pn 60.016 KW

Conclusioni

Per quanto sopra esposto si evidenzia l'incremento di energia captata con l'ausilio degli inseguitori mono-assiali.

L'efficienza di conversione dei moduli, si vede che dipende dalla temperatura dei moduli stessi e dalla riflettività della loro superficie, sugli ombreggiamenti e sulle prestazioni del BOS (segnatamente dei cavi e dell'inverter).

Per quanto riguarda gli effetti dell'aumento della temperatura, da valutazione preliminari risulta un incremento della perdita di energia producibile di circa dello 0,9% per i tracker mono-assiali.

Di contro si deve tener conto invece dell'aumento dell'efficienza dovuto alla riflettività dei moduli bifacciali valutabile in un incremento del 8%.

Relativamente alle perdite dovute all'effetto Joule di rete, sia per la potenza dovuta agli inseguitori sia per effetto della potenza di rete (perdite nella conversione, nella trasformazione, nella trasmissione), sia per effetto del BOS ('accoppiamento tra i vari moduli FV, i collegamenti con il/i convertitore/i, le perdite nei quadri, nei conduttori, ecc.),

si valuta complessivamente una perdita che PVGIS valuta verosimilmente del 23%.

