

Direzione Tecnica

INDICE

1	PREME	SSA	13
2	RIFERIN	MENTI NORMATIVI	14
3	PRINCI	PALLCARATTERISTICHE DELLE OPERE	15
1			10
4			10
5	INDAGI	NI	
5.1	Indagiı	ni anno 2004	22
5.2	Indagiı	ni anno 2012	
5.3	Indagii	ni anno 2018	
5.4	Indagiı	ni anni 2021/2022	
	5.4.1	I Fase	
	5.4.2	II Fase	
6	CARAT	TERIZZAZIONE GEOTECNICA DEI TERRENI	31
6.1	Introdu	uzione	
6.2	Terren	i di copertura	41
	6.2.1	Terreno vegetale – TV	
	6.2.2	Materiali di riporto – TR	
	6.2.3	Terre rosse – LR	
	6.2.4	Detrito a grana fina DTF – Detrito a grana grossa DTG	44
	6.2.5	Alluvioni a grana fina ALF – Alluvioni a grana grossa ALG	47
6.3	Terren	i delle formazioni di base	
	6.3.1	Sabbia calcarenitica - SC	53
	6.3.2	Limo argilloso – LA	56
	6.3.3	Argille del Flysch Numidico – FN, FNa	56
	6.3.4	Argilla e argilla marnosa – AM	68
	6.3.5	Marna argillosa e marna calcarea – CM	69
	6.3.5 6.3.6	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS	69 71
6.4	6.3.5 6.3.6 Rocce I	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS	
6.4	6.3.5 6.3.6 Rocce I 6.4.1	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS lapidee Calcarenite CL – CFC	
6.4	6.3.5 6.3.6 Rocce I 6.4.1 6.4.2	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS lapidee Calcarenite CL – CFC Calcari– Cf	
6.4	6.3.5 6.3.6 Rocce I 6.4.1 6.4.2 6.4.3	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS lapidee Calcarenite CL – CFC Calcari– Cf Calcari - C	
6.4	6.3.5 6.3.6 Rocce I 6.4.1 6.4.2 6.4.3 6.4.4	Marna argillosa e marna calcarea – CM Argilla sabbiosa - AS lapidee Calcarenite CL – CFC Calcari– Cf Calcari - C Radiolariti – R	

6.5	Falda		
6.6	Caratte	erizzazione geotecnica dei terreni	
	6.6.1	Caratterizzazione geotecnica dei terreni DTF	
6.7	Caratte	erizzazione geo-meccanica delle rocce	
7	CARATT	FRIZZAZIONE SISMICA DEI TERRENI	91
, Q			02
0			
8.1	Introdu	ızione	
8.2	Viadott	i	
	821	Vindette VI01 "Ferrovie"	02
	822	Viadotto VI01 "Fleuterio 1"	
	823	Viadotto VI02 Electrici 1 Viadotto VI03 "Fondo Villa"	96
	824	Viadotto VI04 "Segretaria"	
	8.2.5	Viadotto VI05 "Valanca"	
	8.2.6	Viadotto VI06 "Palmerino"	
	8.2.7	Viadotto VI07 "Sant'Antonio"	
	8.2.8	Viadotto VI08 "Rigano"	
	8.2.9	Viadotto VI 09 "Eleuterio 2"	
	8.2.10	Viadotto VI10 "Feotto"	
	8.2.11	Viadotto VI11 "Braschi"	
	8.2.12	Viadotto VI12 "Coda di Volpe"	
	8.2.13	Viadotto VI13 "Recupero"	
	8.2.14	Viadotto VI14 "Milicia 1"	
	8.2.15	Viadotto VI15 "Milicia 2"	
8.3	Cavalca	avia	110
	8.3.1	Cavalcavia CV01	110
8.4	Rilevati	i	111
85	Calleri	a naturali	116
0.5	Galleri		
	8.5.1	Galleria naturale 01 – Cannita	
	8.5.2	Galleria Naturale 02 "Don Cola"	
	8.5.3	Galleria naturale 03	
8.6	Tratti i	n trincea	119
8.7	Tratti i	n trincea tra paratie di pali	119

9 10	QUESTIONI GEOTECNICHE BONIFICA DEI TERRENI DI FONDAZIONE	.120 .122
10.1	Introduzione	. 122
10.2	2 Bonifica del piano di posa	. 122
11	 10.2.1 Verifica preliminare dell'idoneità del piano di posa	. 122 . 125 . 126 . 134 . 138
11.1	Introduzione	. 138
11.2	2 Modello geotecnico	. 141
11.3	3 Modello di calcolo	. 142
11.4	Risultati dei calcoli	. 144
12	CEDIMENTI DEI RILEVATI	.146
12.1	Introduzione	. 146
12.2	2 Schemi fisici di riferimento	. 146
12.3	B Caratteristiche geotecniche dei terreni di fondazione	. 153
12.4	Calcolo dei cedimenti	. 154
12.5	5 Software di calcolo	. 155
12.6	6 Risultati dei calcoli	. 156
12.7	Piano di monitoraggio dei cedimenti	. 169
13	VERIFICHE DI STABILITÀ GLOBALE	.170
13.1	Introduzione	. 170

	13.1.1 Azioni e combinazioni di carico	
13.2	Software di calcolo	
13.3	Modelli geotecnici di calcolo	
	13.3.1 Rilevati	
	13.3.2 Trincee e scavi provvisionali	
	13.3.3 Caratteristiche geotecniche dei terreni	
13.4	Risultati	
APPI	ENDICE A: Colonne stratigrafiche dei sondaggi	
APPI	ENDICE B: Superfici di rottura di forma circolare ipotizzate nei calcoli di Back A	nalysis

APPENDICE C: Report di calcolo - Stabilità dei rilevati

INDICE DELLE FIGURE

Figura 1-1: Itinerario Palermo – Agrigento	13
Figura 6-1: Frazioni granulometriche dei materiali di riporto TR.	41
Figura 6-2: Frazioni granulometriche delle Terre rosse LR.	43
Figura 6-3: Terre rosse LR – Risultati delle prove di taglio diretto	
CD.	43
Figura 6-4: Detrito a grana fina DTF lungo il sondaggio S06_PZ tra	
0.00 m e 2 m.	44
Figura 6-5: Detrito a grana fina DTF lungo il sondaggio S07_DH_Amb a 7,00 m.	44
Figura 6-6: Detrito a grana fina DTF lungo il sondaggio S32 DH Amb a 9.00 m.	45
Figura 6-7: Frazioni granulometriche del detrito a grana fina DTF.	45
Figura 6-8: Detrito a grana fina DTF – Risultati delle prove di taglio	
diretto CD.	46
Figura 6-9: Detrito a grana fina DTF – Risultati delle prove di	-
permeabilità tipo Lefranc.	47
Figura 6-10: Alluvioni a grana fina ALF lungo il sondaggio S06_PZ	
tra 20,0 m e 22,5 m.	48
Figura 6-11: Frazioni granulometriche delle alluvioni a grana fina	
ALF.	48
Figura 6-12 Alluvioni a grana fina ALF – Risultati delle prove di	
taglio diretto CD.	49
Figura 6-13: Alluvioni a grana fina ALF – Andamento con la	
profondità di N ₃₀ e Dr ricavati dalle prove SPT.	50
Figura 6-14: Alluvioni a grana fina – Andamento con la profondità di	
φ e E' _{op SPT} ricavati dalle prove SPT.	51
Figura 6-15: Alluvioni a grana fina – Risultati delle prove di	
permeabilità in sito tipo Lefranc.	51
Figura 6-16: Alluvioni a grana grossa ALG lungo il sondaggio	
S06_PZ tra 17 m e 20 m.	52
Figura 6-17: Alluvioni a grana grossa ALG lungo il sondaggio	
S45_PZ_Amb tra 10,7 m e 13,0 m.	52
Figura 6-18: Sondaggio S01_PZ da 15 m a 20 m. Alternanza di	
sabbia calcarenitica SC e calcarenite CL	53
Figura 6-19: Frazioni granulometriche della sabbia calcarenitica SC.	54
Figura 6-20 Sabbia calcarenitica SC – Risultati delle prove di taglio	
diretto.	54
Figura 6-21: Sabbia calcarenitica Sc – Andamento con la profondita	~ ~
di N ₃₀ e Dr ricavati dalle prove SPT.	22
rigura o-22. Sappia calcarenitica SC – Andamento con la profondita	
$dI \neq e \models op SPT$ ricavati dalle prove SPT.	55
rigura 6-23: Limo arginosa LA lungo II sondaggio SUT_PZ tra 11 m	= -
e 13 m.	56

UP62

Figura 6-24 Argilla scagliettata FN prelevata lungo i sondaggi	
S23_DH_Amb alla profondità di 8.5 m.	57
Figura 6-25 Argilla scagliettata FN prelevata lungo il sondaggi	
S35_PZ_Amb alla profondità di 15 m.	57
Figura 6-26 Argilla marnosa FN prelevata lungo il sondaggio	
S14_DH_Amb.	58
Figura 6-27: Argilla scagliettata FN con spalmature di dickite	
(S23_DN_ Amb - profondità di 20,5 m).	58
Figura 6-28: Frazioni granulometriche dell'argilla FN.	59
Figura 6-29 Argilla FN – Andamento, del contenuto naturale	
d'acqua e dei limiti di consistenza con la profondità.	60
Figura 6-30 Argilla FN – Andamento del peso di volume, dell'indice	
dei vuoti e del grado di saturazione con la profondità.	61
Figura 6-31 Argilla FN – Risultati delle prove di taglio diretto CD.	62
Figura 6-32: Argilla FN – Coesione non drenata da prove SPT in	
funzione della protondita.	63
Figura 6-33: Argilia FIN – Curve edometriche e modulo di	<i>C</i> 1
Compressione edometrica.	64
Figura 6-34. Argina FIN – Curve edometriche e modulo di	64
Eigure 6 25: Argillo EN ENA Coofficiente di permechilità de preve	04
L ofrance	65
Eigura 6-36 Argilla ENIA $-$ A) sondaggi S33 P7 Amb prof di 10 m:	05
B) sondardi S33 P7 Amb prof di 2.4 m	66
Figura 6-37: Frazioni granulometriche dell'argilla ENA	66
Figura 6-38 Argilla FN – Risultati delle prove di taglio diretto CD	67
Figura 6-39: Argilla FNA – Coesione non drenata da prove SPT in	07
funzione della profondità.	68
Figura 6-40: Marna argillosa CM lungo il sondaggio S7 DH Amb	00
tra 7.50 m e 10.50 m.	69
Figura 6-41: Sondaggio S7 DH Amb. Profondità a 9 m – Marna	
argillosa CM con tessitura scagliosa.	70
Figura 6-42: Frazioni granulometriche della marna argillosa CM.	70
Figura 6-43: Calcarenite CL, CFC – Risultati delle prove di rottura	
per compressione monoassiale.	72
Figura 6-44: Calcarenite CL, CFC – Risultati delle prove di	
permeabilità in sito	73
Figura 6-45: Calcarenite CFC lungo il sondaggio S5_PZ_ Amb tra	
1,00 m e 6,50 m.	73
Figura 6-46: Calcari Cf lungo il sondaggio S11_PZ_ Amb tra 25,50	
m e 30,00 m.	74
Figura 6-47: Calcare C lungo il sondaggio S8_PZ_Amb tra 6,70 m e	
12,00 m.	75
Figura 6-48: Calcare C lungo il sondaggio S8_PZ_Amb a 12,80 m.	
Discontinuità riempite da materiali di varia natura	76

UP62

Figura 6-49: Calcare C lungo il sondaggio S8_PZ_ Amb tra 2,50 m	76
Figura 6-50: Breccia calcarea C lungo il sondaggio S3_PZ tra 21,0	70
Figura 6-51: Calcare C lungo il sondaggio S7_DH_ Amb tra 22,50	//
m e 27,00 m. Figura 6-52: Calcare C – Risultati delle prove di rottura per	77
compressione monoassiale. Figura 6-53: Calcare C – Risultati delle prove di permeabilità in	78
sito Figura 6-54: Radiolariti R lungo il sondaggio S9 P7 tra 12.00 m e	79
17,00 m. Figura 6 55: Padialariti P lungo il condaggio S0, DZ tro 22,70 m o	80
29,00 m.	80
Figura 6-56: Quarzosiltiti Q lungo il sondaggio S36_DH_Amb a 6,3 m.	82
Figura 6-57 Valutazione dell'indice GSI per rocce tenere.	89
fratturate.	90
Figura 8-1: Viadotto VI01 "Ferrovia" Rapporti opere-terreni	93
Figura 8-2: Viadotto VI02 "Eleuterio 1" Rapporti opere-terreni.	94
Schemi semplificati.	95
Figura 8-4: Viadotto VI03 "Fondo Villa" Rapporti opere-terreni.	96
Figura 8-5: Viadotto VI03 "Fondo Villa" Rapporti opere-terreni Schemi semplificati.	97
Figura 8-6: Viadotto VI04 "Segretaria" - Rapporti opere-terreni	08
Figura 8-7: Viadotto VI05 "Valanca" Rapporti opere-terreni.	99
Figura 8-8: Viadotto VI06 "Palmerino" Rapporti opere-terreni.	100
Figura 8-9: Viadotto VI07 "S. Antonio" Rapporti opere-terreni.	101
Figura 8-10: Viadotto VI08 "Rigano" - Rapporti opere-terreni.	102
Figura 8-11: Viadotto VI09 "Eleuterio 2" - Rapporti opere-terreni.	103
Figura 8-12: Viadotto VI10 "Feotto" Rapporti opere-terreni.	104
Figura 8-13: Viadotto VI11 "Braschi" Rapporti opere-terreni.	105
Figura 8-14: Viadotto VI12 "Coda di Volpe" Rapporti opere-terreni.	106
Figura 8-15: Viadotto VI13 "Recupero" - Rapporti opere-terreni.	107
Figura 8-16: Viadotto VI14 "Milicia 1" Rapporti opere-terreni.	108
Figura 8-17: Viadotto VI15 "Milicia 2" Rapporti opere-terreni.	109
Figura 8-18: Viadotto VI15 "Milicia 2" Rapporti opere-terreni.	110
Figura 8-19: Cavalcavia CV01 - Rapporti opere-terreni.	111
Figura 8-20: Tratti in rilevato– Rapporti-opere terreni – Caso I.	113
Figura 8-21: Tratti in rilevato– Rapporti-opere terreni – Caso II	113
Figura 8-22: Tratti in rilevato– Rapporti-opere terreni – Caso III	113
Figura 8-23: Tratti in rilevato– Rapporti opere terreni – Caso IV	114
Figura 8-24: Tratti in rilevato– Rapporti-opere terreni – Caso V.	115

Figura 8-25: Galleria Naturale GNU1 "Pizzo Cannita" – Rapporti-	110
opere terreni.	116
Figura 8-26: Galieria Naturale GNU2 "Don Cola" – Rapporti-opere	117
	117
Figura 8-27: Galleria Naturale GN03 – Rapporti-opere terreni.	118
Figura 10-1 Schema stratigrafico secondo il metodo di Burmister	125
<i>Figura 10-2</i> Rilevati da 0+000 a 0+480 e da 0+550 a 1+040.	
Spessori di bonifica per H < 1 m	127
<i>Figura 10-3</i> Rilevati da 0+000 a 0+480 e da 0+550 a 1+040.	
Spessori di bonifica per 1 < H < 2 m e H ≥ 2 m	127
Figura 10-4 Rilevato da 3+000 a 3+690. Spessori di bonifica per H	
< 1 m	128
Figura 10-5 Rilevato da 3+000 a 3+690. Spessori di bonifica per 1 <	
H < 2 m e H ≥ 2 m	128
Figura 10-6 Rilevato da 5+540 a 5+770. Spessori di bonifica per H	
< 1 m	129
Figura 10-7 Rilevato da 3+000 a 3+690. Spessori di bonifica per 1 <	
H < 2 m e H ≥ 2 m	129
Figura 10-8 Rilevato da 6+580 a 7+180. Spessori di bonifica per H \geq	
2 m	130
Figura 10-9 Rilevato da 7+480 a 8+080. Spessori di bonifica per H \geq	
2 m	130
Figura 10-10 Rilevato da 8+200 a 8+600. Spessori di bonifica per H	
$\geq 2 m$	131
Figura 10-11 Rilevato da 10+920 a 11+040. Spessori di bonifica per	-
1 < H < 2 m e H > 2 m	131
Figura 10-12 Rilevato da 10+920 a 11+040. Spessori di bonifica per	-
H < 1 m	132
Figura 10-13 Rilevato da 11+440 a 11+720. Spessori di bonifica per	102
H > 1 m	132
Figura 10-14 Rilevato da 13+000 a 13+800. Spessori di bonifica per	152
1 < H < 2 m = H > 2 m	133
Figura 10-15 Rilevato da 13+000 a 13+800. Spessori di bonifica per	155
H < 1 m	133
Figura 11-1: Sezione tipo Trincee Drenanti in progetto	133
Figura 11-2: Planimetria ubicazione trincee drenanti D17	130
Figura 11-3: Planimetria ubicazione trincee drenanti, D77.	140
Figura 11-3. Flanimetria ubicazione trincee drenanti, D27.	140
Figura 11-4. Fianmenta ubicazione innece dienanii, D40.	140
Droponti	142
Figura 11-6: Abachi nor la vorifica o progettazione trippee drepenti	142
alcolo interação (Decideri et al. 1007)	142
- calculu interasse (Desiden et al., 1997). Figure 11.7: Abachi por la verifica a progettazione trippee dregenti	143
rigura 11-7. Abacili per la veninca e progenazione innicee dienanii	1 4 4
- calcolo fattore tempo (Desiden et al., 1997).	144
rigura 11-o. Risultali venilica e progeliazione trincee drenanti –	145
calcolo interasse 5 [m].	145

Figura 12-1: I Schema. Rilevato tra pk 6+570 e pk 7+167 – Schema fisico di riferimento per il calcolo dei cedimenti.	149
Figura 12-2: Il Schema. Rilevato tra pk 12+484 e pk 12+580 – Schema fisico di riferimento per il calcolo dei cedimenti.	150
Figura 12-3: III Schema. Rilevato tra pk 7+470 e pk 8+068 –	151
Figura 12-4: IV Schema. Rilevato tra pk 12+923 e pk 13+446 –	151
Figura 12-5: V Schema. Rilevato tra pk 6+203 e pk 6+278 –	151
Schema fisico di riferimento per il calcolo dei cedimenti. Figura 12-6: VI Schema. Rilevato tra pk 0+555 e pk 1+043 –	152
Schema fisico di riferimento per il calcolo dei cedimenti.	152
Figura 12-7: Modello di calcolo - Condizione iltostatica iniziale Figura 12-8: I Schema H $\pm \pm = 4$ m. Andamento dei cedimenti nel	155
tempo in assenza di bonifica	158
Figura 12-9: I Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti nel}$	
tempo in assenza di bonifica	158
Figura 12-10: I Schema. $H_{calcolo} = 8 m - Andamento dei cedimenti nel termo in generaza di bonifica$	150
Figura 12-11: I Schema, $H_{enclose} = 4 \text{ m} - \text{Andamento dei cedimenti}$	138
nel tempo in presenza di bonifica	159
Figura 12-12: I Schema. $H_{calcolo} = 6 m - Andamento dei cedimenti$	
nel tempo in presenza di bonifica	159
Figura 12-13: T Schema. $H_{calcolo} = 8 \text{ m} - Andamento del cedimentinel tempo in presenza di bonifica$	159
Figura 12-14: Il Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	157
nel tempo in assenza di bonifica	160
Figura 12-15: Il Schema. $H_{calcolo} = 6 m - Andamento dei cedimenti$	
nel tempo in assenza di bonifica	160
Figura 12-16. Il Schema. $H_{calcolo} = 8 \text{ m} - Andamento dei cedimentinel tempo in assenza di bonifica$	160
Figura 12-17: Il Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	100
nel tempo in presenza di bonifica	161
Figura 12-18: II Schema. $H_{calcolo} = 6 \text{ m} - Andamento dei cedimenti$	
nel tempo in presenza di bonifica	161
Figura 12-19: Il Schema. $H_{calcolo} = 8 \text{ m} - Andamento del cedimenti nel tempo in presenza di bonifica$	161
Figura 12-20: III Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	101
nel tempo in assenza di bonifica	162
Figura 12-21: III Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	
nel tempo in assenza di bonifica	162
rigura 12-22. III Schema. $\pi_{calcolo} = 8 \text{ m} - Andamento del Cedimentinel tempo in assenza di bonifica$	167
Figura 12-23: III Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	102
nel tempo in presenza di bonifica	163

Figura 12-24: III Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	1.00
Figura 12-25: III Schema, Herege = 8 m – Andamento dei cedimenti	163
nel tempo in presenza di bonifica	163
Figura 12-26: IV Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	164
Figura 12-27: IV Schema, $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	164
nel tempo in assenza di bonifica	164
Figura 12-28: IV Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	165
Figura 12-29: IV Schema, $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	105
nel tempo in presenza di bonifica	165
Figura 12-30: V Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	1.00
Figura 12-31: V Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	100
nel tempo in assenza di bonifica	166
Figura 12-32: V Schema. $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	1.00
Figura 12-33: V Schema. $H_{calcolo} = 4 \text{ m} - \text{Andamento dei cedimenti}$	100
nel tempo in presenza di bonifica	167
Figura 12-34: V Schema. $H_{calcolo} = 6 \text{ m} - \text{Andamento dei cedimenti}$	167
Figura 12-35: V Schema. $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	107
nel tempo in presenza di bonifica	167
Figura 12-36: VI Schema. $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	169
Figura 12-37: VI Schema. $H_{calcolo} = 8 \text{ m} - \text{Andamento dei cedimenti}$	108
nel tempo in presenza di bonifica	168
Figura 12-11 Sezione tipo del rilevato strumentata	169
di riferimento.	173
Figura 13-2: Verifiche di stabilità globale – Caso 2 – Schema fisico	
di riferimento. Figura 13-3: Verifiche di stabilità globale – Caso 3 – Schema fisico	173
di riferimento.	174
Figura 13-4 Modello di calcolo verifiche di stabilità scavi a lungo e	
breve termine che interessano l'argilla alterata FNa del Elvsch Numidico	175
Figura 13-5 Modello di calcolo verifiche di stabilità scavi a breve	175
termine eseguiti nelle coltri LR-ALF-DTF.	176
Figura 13-6 Verifica di stabilita in condizioni statiche - Rilevati Caso	178
Figura 13-7 Verifica di stabilità in condizioni sismiche - Rilevati	170
Caso I – Superficie di scorrimento critica.	178
II – Superficie di scorrimento critica	179

Figura 13-9 Verifica di stabilità in condizioni sismiche - Rilevati	
Caso II – Superficie di scorrimento critica.	179
Figura 13-10 Verifica di stabilità in condizioni statiche - Rilevati	
Caso III – Superficie di scorrimento critica	180
Figura 13-11 Verifica di stabilità in condizioni sismiche – Rilevati	
Caso III – Superficie di scorrimento critica.	180
Figura 13-12 Verifica di stabilità degli scavi in trincea in condizioni	
statiche – Superficie di scorrimento critica.	181
Figura 13-13 Verifica di stabilità in trincea in condizioni sismiche –	
Superficie di scorrimento critica.	181
Figura 13-14 Verifica di stabilità a breve termine degli scavi	
provvisionali – Superficie di scorrimento critica.	182

INDICE DELLE TABELLE

Tabella 5-1: Attività sviluppate nel corso di indagini in sito (Indagini	23
Tabella 5-2: Attività sviluppate nel corso di indagini in sito (Indagini	23
del 2012). Tabella 5-3: Attività sviluppate nel corso di indagini in sito (Indagini	24
del 2018). Tabella 5-4 [.] Sondaggi eseguiti nel corso della LEase di indagini	25 27
Tabella 5-5: Elenco dei campioni ambientali prelevati nel corso	27
Tabella 5-6: Indagini di I Fase.	28
prelevati all'interno dei pozzetti esplorativi.	28
sito (indagini del 2021/2022).	29
Tabella 6-1 Classificazione geotecnica dei terreni.	32
Labella 6-2: Sintesi risultati prove di laboratorio.	33
roccia RQD.	72
Tabella 6-4: Calcareniti CFC – Valori dell'indice di qualità della roccia RQD.	74
Tabella 6-5: Calcari Cf – Valori dell'indice di qualità della roccia	75
Tabella 6-6: Calcari C – Valori dell'indice di qualità della roccia	78
Tabella 6-7: Radiolariti R – Valori dell'indice di qualità della roccia	70
RQD. Taballa 6 8: Quarzasiltiti Q. Valari dall'indica di qualità della receia	81
RQD.	81
Tabella 6-9 Letture piezometriche eseguite nel corso della prima fase delle indagini svolte nel 2021.	83
Tabella 6-10 Parametrici fisico-meccanici dei terreni di fondazione	0 /
LN.	64

Relazione Geotecnica

Tabella 6-11 Risultati dei calcoli mediante back analysis.	86
Tabella 6-12: Parametri di calcolo back analysis per schemi con	
pendio indefinito-	87
Tabella 6-13 Parametrici meccanici delle rocce	90
Tabella 8-1 Tratti in rilevato– Rapporti-opere terreni – Caso I.	112
Tabella 8-2 Tratti in rilevato– Rapporti-opere terreni – Caso II.	113
Tabella 8-3 Tratti in rilevato– Rapporti-opere terreni – Caso III.	114
Tabella 8-4 Tratti in rilevato– Rapporti-opere terreni – Caso IV.	115
Tabella 8-5 Tratti in rilevato– Rapporti-opere terreni – Caso V.	115
Tabella 8-6 Terreni presenti lungo i tratti in trincea tra paratie	119
Tabella 9-1 Frane oggetto di studio geotecnico.	121
Tabella 10-1: Classificazione dei terreni del piano di posa e valori	
del modulo di deformazione.	124
Tabella 10-2: Rilevati in corrispondenza delle prove di carico su	
piastra (°° H sempre > 2 m;** H sempre > 1 m).	124
Tabella 10-3: Verifica della necessità di bonifica del piano di posa	
dei rilevati.	125
Tabella 10-4: Spessori di bonifica determinati con il metodo di	
Burmister.	134
Tabella 10-5: Carreggiata dx – Spessori di scotico e bonifica.	136
Tabella 10-6: Carreggiata sx – Spessori di scotico e bonifica.	137
Tabella 11-1: Principali proprietà geotecniche usate nel	
dimensionamento delle trincee drenanti.	141
Tabella 11-2: Dimensionamento delle trincee drenanti. Risultati dei	
calcoli.	145
Tabella 12-1: Rilevati in carreggiata destra. Terreni di fondazione e	
spessori di scotico e di bonifica per Hmax	147
Tabella 12-2: Rilevati in carreggiata sinistra. Terreni di fondazione e	
spessori di scotico e di bonifica per Hmax.	149
Tabella 12-3 Parametri geotecnici utilizzati per il calcolo dei	
cedimenti.	153
Tabella 12-4: Spessori di bonifica determinati con il calcolo dei	
cedimenti.	156
Tabella 12-5 – Risultati del calcolo dei cedimenti.	157
Tabella 13-1 Coefficienti parziali per le azioni (Tabella 6.2.I - D.M.	
17/01/2018)	170
Tabella 13-2 Coefficienti parziali per i parametri geotecnici del	
terreno (Tabella 6.2.II - D.M. 17/01/2018)	170
Tabella 13-3 Coefficiente parziale di resistenza vR2 (Tabella 6.8.I -	
D.M. 17/01/2018)	170
Tabella 13-4 Coefficiente di riduzione ßs	171
Tabella 13-5 Parametrici fisico-meccanici dei terreni di fondazione	1,1
LR.	176
Tabella 13-6 Risultati delle verifiche di stabilità globale	177
	1,1

1 PREMESSA

La presente relazione geotecnica è stata redatta nell'ambito del Progetto Definitivo dell'"Itinerario Palermo – Agrigento – S.S. 121, Tratto A19 – Bolognetta".

L'intervento è parte di un più esteso complesso di opere riguardante l'ammodernamento dell'itinerario Palermo – Agrigento (S.S. 121 – Catanese) che si propone, in primo luogo, di ridurre l'alta incidentalità dell'itinerario attuale e di garantire, altresì, un più capace e rapido collegamento tra i due capoluoghi ed i relativi opposti versanti costieri, collegando con essi le aree più interne.

Il tratto in esame, dello sviluppo di circa 16,5 km, interessa la parte iniziale dell'itinerario ed è compreso tra lo svincolo sulla A19 "Palermo – Catania" e la rotatoria di Bolognetta, a Sud-Est di Palermo. Si prevede, inoltre, una bretella di raccordo con la SS113 "Settentrionale Sicula" fino alla rotatoria di Bagheria.

Figura 1-1: Itinerario Palermo – Agrigento

Lo studio geotecnico sul quale si riferisce con la presente relazione ha compreso la programmazione delle indagini (in sito ed in laboratorio); la sintesi e l'elaborazione critica dei dati sperimentali; la caratterizzazione geotecnica dei terreni di fondazione; la definizione dei rapporti opere-terreni; la ricerca, sotto il profilo geotecnico, delle soluzioni più idonee per la progettazione delle fondazioni delle opere d'arte e per l'esecuzione dei tratti in galleria e in trincea; la bonifica del piano di posa dei rilevati e il calcolo dei cedimenti; le verifiche di stabilità globale dei pendii.

2 **RIFERIMENTI NORMATIVI**

- Legge n. 1086 del 05.11.1971 "Norme per la disciplina delle opere di conglomerato cementizio armato normale e precompresso ed a struttura metallica."
- D.M. 11/03/88 Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Circolare ministeriale LL.PP. 24/09/88 n. 30483 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- Eurocodice 7.1 (1997): Progettazione geotecnica Parte I: Regole Generali. UNI.
- Eurocodice 8 (1998). Progettazione delle strutture per la resistenza sismica.
- Eurocodice 7.3 (2002): Progettazione geotecnica Parte II: Progettazione assistita con prove in sito (2002). UNI.
- Eurocodice 7.2 (2002): Progettazione geotecnica Parte II: Progettazione assistita da prove di laboratorio (2002). UNI.
- Ordinanza del Presidente del Consiglio dei Ministri n° 3274/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica."; modificata dall'O.P.C.M. 3431 del 03/05/2005.
- Delibera della Giunta Regionale della Regione Siciliana n. 408 del 19/12/2003": Elenco dei comuni della Sicilia classificati sismici" pubblicato sulla GURS n.7 del 13/02/2004".
- Linee Guida dell'Associazione Geotecnica Italiana 2005. "Aspetti geotecnici nella progettazione in zona sismica".
- D.M. 14/01/2008 "Nuove Norme tecniche per le costruzioni".
- Aggiornamento delle «Norme tecniche per le costruzioni» (G.U. Serie Generale n.42 del 20-02-2018 Suppl. Ordinario n. 8).
- Circolare Ministero dei LL.PP. 21/01/19 n. 7 Istruzioni per l'applicazione dell'"Aggiornamento delle "Nuove Norme tecniche per le costruzioni"".
- Deliberazione Giunta Regionale n. 81 del 24/02/2022. Aggiornamento della classificazione sismica del territorio regionale della Sicilia. Applicazione dei criteri dell'Ordinanza del Presidente del Consiglio dei Ministri 28/04/2006, n. 3519.

3 PRINCIPALI CARATTERISTICHE DELLE OPERE

La Strada Statale SS121 "Catanese" ha costituito fino al 1975, anno del completamento dell'Autostrada A19, il più diretto collegamento tra Palermo, Catania e le province dell'entroterra della Sicilia centrale. L'arteria, oltre a congiungere le diverse località ubicate lungo il tracciato, rappresenta una delle principali vie di comunicazione su cui confluisce il traffico pendolare diretto a Palermo dai numerosi centri abitati (compreso il Corleonese) che gravitano nell'area metropolitana.

Il tracciato attuale, ammodernato nel corso degli anni sessanta, ha le caratteristiche di una sezione stradale assimilabile ad una tipo V n° 78/80. Le carenze riguardano i raggi di curvatura molto bassi (inferiori a 80 metri) spesso planimetricamente posti in successione di curve e controcurve.

L'intervento si propone, in primo luogo, di ridurre l'alta incidentalità del tracciato esistente e di garantire un più capace e rapido collegamento tra i due capoluoghi ed i relativi opposti versanti costieri. Il tracciato risulta, infatti, particolarmente pericoloso anche per la presenza di numerosi innesti a raso di viabilità minore ed accessi privati, questi ultimi molto frequenti nel tratto Palermo-Villafrati. Sono altresì frequenti gli attraversamenti di nuclei abitativi, con le conseguenti soggezioni al traffico di lunga percorrenza, soprattutto nel periodo estivo. Numerosi sono anche gli accessi ad attività commerciali ed intersezioni a raso non ben visibili all'utente lungo il tracciato. In conseguenza di ciò, si hanno dirette ripercussioni sulla sicurezza della circolazione.

Al termine di un lungo iter progettuale, che ha compreso lo studio di diverse alternative di tracciato, è stata in definitiva prescelta **l'alternativa A**, totalmente fuori sede, che risolve tutte le criticità evidenziate per il tracciato attuale della S.S. 121, garantendo una funzionalità adeguata ad una strada di tipo B

Le caratteristiche geometriche adottate per la piattaforma stradale, riportate nel prospetto seguente sono conformi a quanto definito nel D.M. 5/11/2001 "Norme funzionali e geometriche per la costruzione delle strade".

Progressiva iniziale [km]	Progressiva finale [km]	Categoria funzionale
0+000	0+600	Strada Extraurbana Secondaria
0+600	13+750	Strada Extraurbana Principale
13+750	16+600	Strada Extraurbana Secondaria

Il progetto stradale si compone di un asse principale che si sviluppa da Nord verso Sud attraverso un tracciato di lunghezza pari a 16,6 km circa caratterizzato, dal punto di vista planimetrico, da

curve di ampio raggio. In tale contesto, gli elementi geometrici utilizzati consentono il rispetto dei criteri di normativa (D.M. 05/11/2001).

Il tratto iniziale è interconnesso alla Strada Statale SS113 mediante la "Rotatoria Bagheria". A partire da tale rotatoria il tracciato sale rapidamente per poter passare sopra la linea ferroviaria Catania-Palermo con il Viadotto VI01 "Ferrovia".

Tra la rotatoria Bagheria e il successivo svincolo con l'Autostrada A19 la strada assume la categoria "C1" (extraurbana secondaria).

Lo svincolo tra la A19 e la SS121 si colloca in posizione circa baricentrica tra gli svincoli autostradali esistenti di Bagheria e Villabate. Dal momento che la zona è altamente edificata, è stato necessario prediligere soluzioni che minimizzassero gli impatti sulle costruzioni esistenti.

La A19 viene superata attraverso la Galleria Artificiale GA01 "A19".

Dopo lo svincolo, il tracciato scavalca il Fiume Eleuterio con il Viadotto VI02 "Eleuterio", seguito dalla Galleria Naturale GN01 "Pizzo Cannita" sotto l'omonimo rilievo.

In uscita della Galleria "Pizzo Cannita" si sfrutta la naturale conformazione del territorio per accompagnare dolcemente a mezza costa il vallone ad anfiteatro che prospetta sul fiume, riducendo così onerose opere d'arte.

Poco oltre si incontrano la Galleria Artificiale GA02 "Bassano" per attraversare un piccolo sperone roccioso ed i viadotti VI03 "Fondovilla", VI04 "Segretaria" e VI05 "Valanca".

Il successivo svincolo di Misilmeri Nord assolve alla importante funzione di riconnessione con la SS121. L'allaccio su tale arteria avviene in prossimità dello svincolo esistente tra la SS121 e la SP76, consentendo quindi un efficace interscambio tra queste tre infrastrutture viarie.

La Galleria Artificiale GA03 "Incorbina" consente lo scavalco della rampa che entra in direzione Palermo.

Più avanti, il tracciato entra nel fondo valle del Fiume Eleuterio. Altimetricamente il profilo si mantiene alto per risolvere una serie di interferenze, sia idrauliche (valloni provenienti dai versanti Ovest), che stradali. In questa zona si incontrano i viadotti VI06 "Palmerino", VI07 "S. Antonio" e VI08 "Rigano".

Lo svincolo di Misilmeri Sud assolve alle manovre che da Misilmeri sono dirette per/da Agrigento e l'entroterra siciliano in generale. L'opera ricade in una zona densamente edificata e risente, pertanto, dei condizionamenti presenti riguardo la possibile geometria delle rampe.

Al km 8+700 l'asse attraversa l'alveo del Fiume Eleuterio con il viadotto VI09 "Eleuterio 2", seguito dalla galleria naturale GN02 "Don Cola" e dalla galleria artificiale GA04 "Savona".

A partire dal km 10+000 il tracciato ricalca quanto previsto dal PFTE: la SS121 esistente infatti presenta caratteristiche geometriche insufficienti per un adeguamento in sede e si è optato per un

nuovo tracciato, con una alternanza di tratti a mezza costa, viadotti ed una breve galleria artificiale. In un primo tratto, che corre in affiancamento all'attuale SS121, si incontrano i viadotti VI10 "Feotto" e VI11 "Braschi". Dopo un tratto a mezza costa, seguono in successione il viadotto VI12 "Coda di Volpe", la galleria artificiale GA05 "Amari" e il viadotto VI13 "Recupero".

Più avanti, la zona dello svincolo di Bolognetta è piuttosto complessa, ricadendo in un vallone tra due creste, in presenza di diversi edifici. In questo caso si è optato per una soluzione con rampe dirette da ambo le parti della nuova strada. Dal lato Est ci si collega alla SS121, dal lato Ovest alla SP77. Il passaggio dall'una all'altra viabilità avviene attraverso il vicino svincolo SP77-SS121, senza allungamenti di percorso da/verso Bolognetta.

Subito dopo lo svincolo di Bolognetta si incontra la Galleria Naturale GN03 "Bolognetta", seguita dai viadotti VI14 "Milicia 1" e VI15 "Milicia 2".

Si segnala anche la presenza di una frana che ha portato ad uno spostamento del tracciato rispetto a quanto inizialmente previsto nel PFTE.

Alla progressiva 15+820 il tracciato si riconnette alla SS121 esistente con una nuova rotatoria, che va a sostituire l'attuale intersezione a raso. Si prosegue, infine, con adeguamento in sede della SS121 esistente fino a pk 16+500, dove ha termine l'intervento.

4 CENNO GEOLOGICO E GEOMORFOLOGICO

La successione stratigrafica dei terreni presenti nell'area d'interesse dell'opera è rappresentata, in senso stratigrafico dal basso verso l'alto, dalle formazioni di seguito indicate:

- Formazione Scillato;
- Formazione Fanusi;
- Formazione Crisanti;
- Calcari a crinoidi e brecce di Altofonte;
- Formazione Caltavuturo;
- Unità del Bacino Numidico (Flysch Numidico);
- Unità Sicilide;
- Terreni quaternari, olocenici ed attuali.

Con riferimento alla Relazione Geologica ed alla legenda contenuta nella Carta Geologica ricostruita per l'area in esame sulla base dei numerosi rilievi geologici e della cartografia ufficiale, si riportano di seguito i terreni rilevati, rimandando al suddetto studio per ulteriori dettagli.

UNITÁ DEI DEPOSITI DI COPERTURA

h- Materiali di riempimento e riporti a1a - Deposito di frana attiva a1b - Deposito di frana quiescente a - Detriti di falda e di versante **ELE** – Sintema del Fiume Grande (Eleuterio) ELEb – Depositi alluvionali recenti ELEbn1,2 - Depositi alluvionali terrazzati dell'Eleuterio ELEb2 - Depositi di origine mista ILC - Sintema del Fiume Milicia AFL - Sintema di Capo Plaia AFLbn1,2 - Depositi alluvionali terrazzati AFLb - Coltri eluvio-colluviali AFLb2 – Depositi di origine mista MRS - Sintema di Marsala MRSf - Conglomerato basale MRSe - Argille di Ficarazzi Auct. (Buccheri G., 1982; Ruggieri, 1993). MRSd - Calcareniti di Palermo

Relazione Geotecnica

UNITÀ SICILIDE

AVF - Argille Varicolori (Cretacico-Eocene)

UNITÀ DEL BACINO DEL FLYSCH NUMIDICO

FYN - Formazione del Flysch Numidico (Oligocene superiore-Miocene inferiore)

CAL - Formazione Caltavuturo (Cretaceo superiore-Eocene)

CRI - Formazione Crisanti (Lias medio-Cretaceo superiore)

MCD - Calcari a Crinoidi e Brecce di Altofonte (Lias medio-superiore)

FUN - Formazione Fanusi (Lias inferiore)

SCT - Formazione Scillato (Carnico superiore-Retico)

L'evoluzione geomorfologica dell'area è anche strettamente connessa ai processi tettonici di impilamento dell'edificio strutturale, che hanno indotto la riesumazione delle unità carbonatiche mesozoiche e la conseguente erosione di ingenti volumi di depositi principalmente terziari.

La differente "elevazione tettonica" dei termini mesozoici rispetto a quelli terziari, ha controllato evidentemente i processi erosionali, che sono maggiormente sviluppati sui complessi argillosomarnoso e pelitico-arenaceo, producendo valli fluviali fortemente incise e versanti caratterizzati da scarpate, frequenti ondulazioni, contropendenze, incisioni (rivoli o solchi), che costituiscono forme tipiche di una evoluzione geomorfologica dominata da reptazione (soil creep), soliflusso e movimenti in massa, e da processi di ruscellamento areale/lineare.

Condizioni di instabilità relativamente più limitate si riscontrano sul Complesso Carbonatico, invece maggiormente conservativo di superfici strutturali e forme relitte (superfici planate e valli abbandonate), e forme carsiche (cavità, sprofondamenti, campi solcati).

Nelle zone di affioramento delle successioni carbonatiche, in corrispondenza dei versanti con pendenze superiori al 40% si può verificare che le coperture detritiche ad elementi carbonatici, frammiste ai materiali delle unità pelitico-argillose sottostanti, possono essere coinvolte in colamenti detritico-fangosi.

L'area di studio può essere schematicamente suddivisa dal punto di vista geomorfologico in quattro settori, ognuno dei quali contraddistinto da peculiari caratteri geomorfologici come di seguito descritti.

Settore Settentrionale

Comprende l'area tra la pianura costiera di Bagheria e il rilievo carbonatico di "Pizzo Cannita", che ne rappresenta il limite fisico a meridione. A meno del tratto meridionale del settore, caratterizzato da versanti più acclivi, l'area è caratterizzata da pendii a debole pendenza, degradanti verso mare e impostati sulle calcareniti quaternarie, profondamente incise dalla valle del Fiume Eleuterio.

Relazione Geotecnica

Il substrato locale è costituito sia da termini lapidei calcarei, calcareo-dolomitici e dolomitici mesozoici-terziari, in genere estremamente fratturati, che da sedimenti marini calcarenitici appartenenti ai cicli regressivi-trasgressivi del Pleistocene. I terreni di copertura corrispondono ai depositi alluvionali del Pleistocene medio-superiore e dell'Olocene, dominati dalla presenza di unità sabbioso-limose con ghiaie. I pendii ripidi in roccia, i versanti della valle dell'Eleuterio, così come la presenza di linee di deflusso incanalato, predispongono a fenomeni localizzati di instabilità gravitativa come colamenti e crolli, e mobilizzazione delle coperture detritiche superficiali questi ultimi in corrispondenza delle ripide scarpate vallive.

Nell'area di "Pizzo Cannita", l'ammasso roccioso, costituito prevalentemente da rocce dolomitiche, appare caratterizzato da pareti subverticali con trincee, contropendenze, intensa fratturazione e crolli diffusi che alimentano una estesa coltre di detrito a grossi blocchi. Inoltre, è presente una carsificazione ipogea probabilmente dovuta alla fitta maglia di reticolo di discontinuità ad andamento sub-verticale o variamente inclinato che interessa pervasivamente gli ammassi rocciosi.

Possono essere riconosciuti almeno due cicli carsici di età differente. Al primo ciclo, più antico, appartengono le grotte di grosse dimensioni con struttura ad antro, estese decine di metri in pianta e con altezze dell'ordine di diversi metri. Il secondo ciclo carsico, tutt'ora attivo, è invece responsabile della presenza di cavità lenticolari site poco al di sopra del livello marino, in prossimità o poco al di sotto di esso. A testimonianza di questo, negli ammassi presenti sul versante sinistro della Valle dell'Eleuterio, quasi in prossimità al fondovalle, sono state osservate più cavità carsiche di dimensioni variabili di cui alcune sospese a pochi metri sull'alveo attuale.

Settore Centrale

Coincide con il tratto mediano della valle del Fiume Eleuterio ed è inserito tra i rilievi carbonatici mesozoici di Monte Mastro Nardo e Rocca di Ciavole ad Ovest e le aree di affioramento del Flysch Numidico ad Est, lungo il versante occidentale di Monte Porcara.

Il substrato locale è costituito sia da termini lapidei mesozoici-terziari, che da alternanze peliticoarenacee oligo-mioceniche. Il lato occidentale del settore è inoltre caratterizzato dalla presenza di fronti di sovrascorrimento e di faglie a diverso cinematismo, che determinano condizioni di incisiva fratturazione ed alterazione degli ammassi lapidei carbonatici e una deformazione plastica delle sottostanti successioni pelitiche e pelitico-arenacee. I terreni di copertura corrispondono anche in questo caso ai depositi alluvionali del Pleistocene medio-superiore ed Olocene, dominati dalla presenza di unità sabbiose caratterizzate da un aumento della componente clastica in prossimità dei rilievi. In località "Cava di Pietra" è presente un collasso di un tratto del versante, avvenuto per fenomeni di Deformazione Gravitativa di Versante, probabilmente dovuto al rilascio di un'unica massa rocciosa competente in corrispondenza di sistemi di discontinuità preesistenti, costituita dai

termini della Formazione Scillato sovrascorsi originariamente sul Flysch Numidico e successivamente collassati a causa di riduzioni di volume delle sottostanti formazioni a comportamento plastico. La presenza di versanti in roccia fortemente degradati, predispongono quindi a fenomeni localizzati di instabilità gravitativa per crollo (es. "Monte delle Ciavole").

La contemporanea presenza di successioni deformate, a dominanza pelitico-arenacea, lungo i fianchi della valle dell'Eleuterio determina, invece, la presenza di molteplici e localizzati colamenti spesso coalescenti, associati a movimenti lenti, tipo soliflusso, su areali più vasti.

Settore Interno

E' caratterizzato dalla presenza di rilievi collinari impostati in substrati terrigeni, con morfologia più o meno contrastata in relazione al grado di erodibilità dei terreni.

La densità della rete di drenaggio aumenta rispetto agli altri settori, a causa della ridotta permeabilità dei terreni costituenti il substrato.

La valle dell'Eleuterio in questo settore diventa più ampia, assumendo una forma spiccatamente rombica, probabilmente originata a seguito del colmamento di un bacino strutturale secondario, collegata alla deformazione indotta dal binario trascorrente sinistro dell'Eleuterio.

I terreni di copertura corrispondono ai depositi alluvionali del Pleistocene medio-superiore a struttura prevalentemente ghiaiosa, con lenti sabbioso-limose, organizzati in conoidi alluvionali. Gli studi effettuati hanno consentito di evidenziare in modo preliminare le tracce di un reticolato idrografico pleistocenico sensibilmente sospeso e con andamento molto differente dal tratto d'acqua sviluppatosi a Nord di questo settore. A livello locale sono presenti lembi di terrazzi alluvionali sospesi. La presenza di successioni deformate, a dominanza pelitico-arenacea, lungo i fianchi della valle dell'Eleuterio determina, invece, la presenza di molteplici e localizzati colamenti spesso coalescenti, associati a movimenti lenti, tipo soliflusso su areali più vasti.

Settore Meridionale

E' caratterizzato dalla presenza di rilievi collinari impostati in substrati terrigeni, con morfologia più o meno contrastata in relazione al grado di erodibilità dei terreni.

La densità della rete di drenaggio aumenta rispetto agli altri settori, a causa della ridotta permeabilità dei substrati riferibili ai Complessi marnoso-argilloso e pelitico arenaceo.

A livello locale sono presenti lembi di terrazzi alluvionali sospesi.

La presenza di successioni deformate, a dominanza argilloso-marnosa e pelitico-arenacea determina invece la presenza di molteplici e localizzati colamenti spesso coalescenti, associati a movimenti lenti, tipo soliflusso su areali più vasti. Per ulteriori dettagli si rimanda alla Relazione Geologica allegata al progetto.

5 INDAGINI

5.1 Indagini anno 2004

Nell'ambito del Progetto Preliminare dell'ammodernamento a quattro corsie dell'Itinerario Palermo-Agrigento furono eseguite, nel 2004 indagini di carattere geotecnico che compresero l'esecuzione di 30 sondaggi a rotazione e carotaggio continuo, ubicati in corrispondenza delle principali opere d'arte dove si riscontrano problematiche particolari legate alla natura dei terreni.

All'interno dei fori furono prelevati campioni indisturbati e furono eseguite prove penetrometriche dinamiche (SPT), prove pressiometriche e prove di permeabilità tipo Lugeon. Fu inoltre rilevato il livello del pelo libero della falda al momento del carotaggio

In dipendenza della natura dei termini incontrati lungo i sondaggi, furono installati piezometri Casagrande ed a tubo aperto lungo tutte le verticali dove sono erano state rinvenute rocce lapidee (calcari ed arenarie), nonché in corrispondenza delle verticali dove era ipotizzabile la presenza di falda.

Sond.	profondità (m da p.c.)	SPT	CI	Prove Lefranc	Pressio- metriche	Inclino– metri	Piezometro
1	25						Х
2	35			1			Х
3	40		2		1		
4	20						
5	35		2				
9	20	2	2				
10	35		2				Х
11	19,5	3	1				
12	30		1	1			Х
13	20		1				
14	45		2				Х
16	20		2				Х
17	70		2	1	1		Х
18	80		2		1		Х
19	25	3	2				Х
20	25	3	3				Х
21	20		3				
22	20					Х	
23	20						
24	20					Х	
25	35				2		X
26	70			1	3		X

Relazione Geotecnica

Sond.	profondità (m da p.c.)	SPT	CI	Prove Lefranc	Pressio- metriche	Inclino– metri	Piezometro
28	30	3			1		
28bis	65				1		Х
29	40	2		1	2		Х
30	20						
31	40						
32	25						
33	30						
34	25						

Tabella 5-1: Attività sviluppate nel corso di indagini in sito (Indagini del 2004).

Riguardo le prove di laboratorio, sui terreni a grana fina si eseguirono determinazioni delle principali proprietà indici (contenuto naturale d'acqua, peso specifico dei grani, limiti di consistenza, peso dell'unità di volume, composizione granulometrica). Sui medesimi terreni si effettuarono prove di compressione edometrica, prove di taglio diretto CD e prove di compressione semplice.

Per la caratterizzazione geomeccanica degli ammassi lapidei furono eseguite prove di compressione semplice e prove di taglio lungo i giunti.

In sito si effettuò il rilievo delle caratteristiche delle superfici di discontinuità, allo scopo di definire l'assetto strutturale dell'ammassi lapidei.

5.2 Indagini anno 2012

Per il progetto dello Svincolo Autostradale "Bagheria Ovest" ed il collegamento con la S.S. 113 e la S.P. 87, furono eseguite, nel 2012, n. 7 sondaggi a carotaggio continuo, spinti fino a profondità comprese tra 15 e 30,5 m dal piano campagna.

Due fori furono attrezzati per prove sismiche di tipo Down-Hole, altri due con piezometri a tubo aperto. Furono inoltre eseguite n. 11 prove SPT e prelevati n. 14 campioni indisturbati e campioni rimaneggiati.

Si procedette anche all'esecuzione di indagini geofisiche, comprendenti n. 6 prove di sismica passiva (HVRS) e n. 3 prospezioni tipo MASW.

Sondaggio	profondità (m da p.c.)	SPT	СІ	Down Hole	Piezometro
S1	15	1	1		
S2	30,5	2	3	Х	
S3	19	3			
S4	30	1	2	Х	

Relazione Geotecnica

Sondaggio	profondità (m da p.c.)	SPT	СІ	Down Hole	Piezometro
S5	20	1	3		
S6pz	20	2	3		Х
S7pz	15	1	2		х

Tabella 5-2: Attività sviluppate nel corso di indagini in sito (Indagini del 2012).

5.3 Indagini anno 2018

La campagna di indagini geognostiche, realizzata dalla Società Tecno In S.p.A. di Napoli tra giugno ed agosto 2018, ha interessato l'intero territorio in esame, con particolare riferimento alle aree interessate dalle alternative di tracciato 1 e 2.

La campagna di indagine ha previsto l'esecuzione di n. 19 sondaggi geognostici verticali di cui n.17 eseguiti interamente a carotaggio continuo e n. 2 in parte a distruzione di nucleo, con esecuzione di prove SPT in foro e prelievo di campioni, indisturbati e rimaneggiati, da sottoporre a prove di laboratorio geotecnico. Di tali perforazioni n. 7 perfori sono stati condizionati con piezometri a tubo aperto, n. 8 con tubazione per l'esecuzione di prove sismiche di tipo Down-Hole, e n. 1 con tubazione inclinometrica. Sono state eseguite, complessivamente, n. 60 prove penetrometriche dinamiche di tipo SPT, n. 3 prove di permeabilità in sito di tipo Lefranc e n. 7 prove pressiometriche. In corrispondenza della futura ubicazione dei rilevati stradali, sono stati aperti n. 15 pozzetti esplorativi, che hanno consentito di indagare i primi 2 m di terreno. All'interno sono state eseguite n. 12 prove di carico su piastra per la determinazione della capacità portante dei terreni di fondazione. Sui campioni di terreno sono state effettate prove geotecniche di laboratorio che hanno compreso le seguenti determinazione:

- caratteristiche fisiche: analisi granulometrica per setacciatura e sedimentazione, contenuto d'acqua, peso specifico dei grani, peso di volume allo stato naturale, peso di volume secco, limiti di Atterberg, porosità, indice dei vuoti, grado di saturazione, classificazione stradale;
- prove di compressione edometrica;
- prove di taglio diretto con scatola di Casagrande;
- prove triassiali di tipo non consolidate non drenate (UU) e consolidate non drenate (CIU).

Sui campioni di roccia, sono state effettuate delle prove di compressione uniassiale (UCS) con rilievo della curva di deformazione.

Sondaggio	profondità (m da p.c.)	SPT	CR	CI	Prove Lefranc	Pressio- metriche	Inclino- metri	Piezo- metro	Down- Hole
SF01	30	5	3						Х
SF02	40	3	2		1				Х

Relazione Geotecnica

Sondaggio	profondità (m da p.c.)	SPT	CR	CI	Prove Lefranc	Pressio- metriche	Inclino- metri	Piezo- metro	Down- Hole
SF03	30	1	1	1		1		Х	
SF04	40	2	3	1		2			Х
SF05	35	3	2	2					Х
SF06	30	3	3	2				Х	
SF07	30	3	3					Х	
SF08	30	5	3	1					Х
SF09	30	4	3	2				Х	
SF10	20	3	3	2				Х	
SF11	30	3	2	1					
SF12	25	3	3		1		Х		
SF13	30	5	3	2					Х
SF14	30	5	3	2	1			Х	
SF15	33,7		3	3		4			
SF16	30	5	3	2					Х
SF17	30	4	3	2				Х	
SF18	20								
SF19	36	3	1	1					Х

Tabella 5-3: Attività sviluppate nel corso di indagini in sito (Indagini del 2018).

5.4 Indagini anni 2021/2022

Per la progettazione definitiva delle opere sono state eseguite, nella presente fase degli studi, due campagne dii indagini in sito e di laboratorio finalizzate alo studio dei terreni e delle rocce di fondazione presenti lungo il percorso prescelto dell'"Alternativa A".

Dopo una prima fase che ha interessato l'intero tracciato, è stata sviluppata una seconda fase per approfondimenti puntuali legati anche a modifiche di tracciato sopravvenute a seguito dei primi studi.

5.4.1 | Fase

Durante la prima fase sono state eseguite indagini geognostiche e geofisiche, prove geotecniche in sito e in laboratorio e prove di caratterizzazione ambientale.

Le indagini geognostiche e geotecniche in sito sono state eseguite dalla società Si.Ar. Trivellazioni di Rosario Simonetti tra i mesi di luglio e ottobre 2021.ed hanno compreso n. 34 sondaggi meccanici a rotazione a carotaggio continuo, con profondità di investigazione variabile da 12 m a 45 m. Le carote di terreno estratte sono state poste in apposite cassette catalogatrici con idonei scomparti atti

alla loro conservazione. Nel corso dei sondaggi sono stati prelevati n. 58 campioni indisturbati del tipo Shelby, campioni rimaneggiati e campioni ambientali.

In Tabella 5-4 si riportano la cronologia per data di ciascun sondaggio, la profondità raggiunta e le coordinate geografiche che identificano i punti di perforazione. In Tabella 5-5 si allega l'elenco dei campioni ambientali.

Lungo le verticali sono state eseguite n. 90 prove penetrometriche dinamiche SPT, n. 33 prove dilatometriche, prove di permeabilità tipo Lugeon (n. 4) e tipo Lefranc (n. 65).

Alcuni fori di sondaggio sono stati attrezzati con piezometro a tubo aperto da 2" o da 3", altri con tubazione in PVC per le successive prove geofisiche. Il sondaggio S43 è stato attrezzato con tubazione di alluminio per il monitoraggio inclinometrico.

Le indagini in sito hanno anche compreso l'apertura di n. 14 pozzetti esplorativi all'interno dei quali sono state eseguite prove di carico su piastra. Contestualmente sono stati prelevati campioni rimaneggiati da sottoporre a prove geotecniche e campioni da inviare presso laboratorio di analisi chimiche. L'elenco di questi ultimi campioni è riportato in Tabella 5-6.

I risultati delle indagini in sito, comprensivi di schede e documentazione fotografica sono raccolti nell'elaborato predisposto dall'Impresa esecutrice.

Presso il Laboratorio autorizzato GEOPROVE di Lecce sono state eseguite prove geotecniche di laboratorio che hanno compreso la determinazione delle caratteristiche fisiche (granulometria, contenuto d'acqua, peso specifico dei grani, peso di volume allo stato naturale, peso di volume secco, limiti di Atterberg, porosità, indice dei vuoti, grado di saturazione, classificazione stradale).

Per la determinazione dei parametri di resistenza e di deformabilità dei terreni sono state eseguite:

- > prove di compressione edometrica;
- prove di taglio diretto consolidate drenate;
- prove di compressione triassiale di tipo non consolidate non drenate (UU) e consolidate non drenate (CIU);
- > prove di compressione a dilatazione trasversale libera.

Relazione Geotecnica

Data esecuzione	Sondaggio n.	Profondità m.	Latitudine gradi decimali	Longitudine gradi decimali	Altitudine Ellissoidica m.
19/07/21	S01Pz.	30.00	38,086974406	13,480469864	76,4019
20/07/21	S02Dh A	30.00	38,086426887	13,480249346	80,0951
22/07/21	S03Pz.	30,00	38,080981596	13,479659842	106,6983
27/07/21	S04Dh	30.00	38,080207	13,479965	107,22
29/07/21	S05Pz A	30.00	38,078079518	13,478812336	113,3883
02/08/21	S06Pz.	30.00	38,0766187	13,476837919	64,9053
01/09/21	S07Dh A	30.00	38,074962794	13,475272526	128,6172
07/09/21	S08Pz A	30.00	38,073458	13,474267	137,30
25/10/21	S09Pz	30,00	38,07242	13,473911	144,5714
09/09/21	S11Pz A	30.00	38,068012248	13,469036873	151,9
25/08/21	S12Pz A	30.00	38,060144081	13,466097101	112,4487
26/08/21	S13Pz	30.00	38,059181682	13,465951791	103,7112
30/08/21	S14Dh A	30.00	38,058542186	13,464781582	138,3635
04/08/21	S15Pz A	30,00	38,055067809	13,464345628	162,7689
06/08/21	S16Dh	30.00	38,054129626	13,463342996	162,4125
18.08.21	S17Pz	30.00	38,05311496	13,463346304	142,9327
19/08/21	S18Dh A	30,00	38,051645746	13,462637928	155,8308
20/08/21	S20Dh A	30.00	38,047967013	13,462292668	144,6496
23/08/21	S21Dh A	30.00	38,039482	13,46348	117,55
21/10/21	S23Dh	30.00	38,016934	13,456234	140,15
10/09/21	S24Pz A	12.00	38,014094	13,456745	142,75
28/08/21	S25Pz A	30.00	38,013030828	13,457336434	154,0687
17/09/21	S26Dh A	30.00	38,005949829	13,456483845	158,7626
27/09/21	S28Pz A	30.00	38,003731459	13,454688386	162,3726
18/10/21	S29DH	30.00	38,00134408	13,452682521	172,125
20/10/21	S 32Dh	30.00	37,993957357	13,448366166	206,9696
20/09/21	S33Pz A	30.00	37,993039632	13,447580364	199,5621
22/09/21	S35Pz A	25.00	37,989640315	13,448534906	244,9037
23/09/21	S36Dh A	30.00	37,988133726	13,448469988	228,3079
30/09/21	S38Pz A	21.00	37,980360486	13,450929334	291,6877
25/09/21	S40Pz A	45.00	37,973163589	13,458673276	371,1477
13/09/21	S42Pz A	30.00	37,968760633	13,462446368	311,4815
15/09/21	S43INCL A	35.00	37,966813889	13,463766973	316,5053
16.09/21	S45Pz A	17.00	37,961754	13,465467	330,25

Tabella 5-4: Sondaggi eseguiti nel corso della I Fase di indagini.

Relazione Geotecnica

Sondaggio n°	Campioni
\$2	0/1 2/3 3/4
S5	0/1 2/3 3/4
S 7	0/1 2/3 3/4
S8	4/5 9/10 13/14
S11	4/5 9/10 13/14
S12	0/1 2/3 3/4
S14	0/1 2/3 3/4
S15	0/1 10/11 17/18
S18	0/1 2/3 3/4
S20	0/1 2/3 3/4
S21	0/1 2/3 3/4
S24	0/1 2/3 3/4
S25	0/1 2/3 3/4
S26	0/1 2/3 3/4
S28	0/1 2/3 3/4
S 33	0/1 2/3 3/4
\$35	0/1 9/10 15/16
S 36	0/1 2/3 3/4
S38	0/1 5/6 8/9
S40	35/37 37/40 42/43
S42	0/1 2/3 3/4
S43	0/1 2/3 3/4
S45	0/1 2/3 3/4

Tabella 5-5: Elenco dei campioni ambientali prelevati nel corso delle indagini di I Fase.

Sui campioni di roccia prelevati dalle cassette catalogatrici sono state effettuate prove di compressione monoassiale con rilievo della curva tensione-deformazione e prove di carico puntuale.

Pozzetto	Prova	Quota C.	Quota C.
Р	m.	Amb.1	Amb.2
P1	0.35	0.00-1.00	1.00-1.60
P2	0.35	0.00-0.80	1.00-1.50
P3	0.35	0.00-1.00	1.00-1.60
P4	0.35	0.00-1.00	1.00-1.50
P5	0.35	0.00-1.00	1.00-1.60
P6	0.35	0.00-1.00	1.00-1.60
P7	0.35	0.00-1.00	1.00-1.10
P8	0.35	0.00-1.00	1.00-1.60
P9	0.35	0.00-1.00	1.00-1.60
P10	0.40	0.00-1.00	1.00-1.50
P11	0.30	0.00-1.00	1.00-1.50
P12	0.35	0.00-1.00	1.00-1.60
P13	0.30	0.00-1.00	1.00-1.60
P14	0.35	0.00-1.00	1.00-1.60

Tabella 5-6: Indagini di I Fase – Elenco dei campioni ambientali prelevati all'interno dei pozzetti esplorativi.

5.4.2 II Fase

Le indagini in sito di II Fase sono state eseguite nel corso del 2022 dal CONSORZIO LR Laboratori Riuniti di San Giovanni La Punta (CT) ed hanno compreso l'esecuzione di N. 15 sondaggi meccanici a carotaggio continuo o a distruzione di nucleo, con prelievo di campioni indisturbati, rimaneggiati e ambientali. Al fine di individuare l'esatta posizione dei vari punti di indagine, si sono effettuate le operazioni di rilievo topografico in modalità GNSS.

Lungo le verticali sono state effettuate prove geotecniche in foro (prove SPT, prove di permeabilità tipo Lefranc e prove pressiometriche tipo Menard) ed è stata installata strumentazione geotecnica (piezometri a tubo aperto e colonne inclinometriche). Si è anche proceduto all'esecuzione di misure alla strumentazione.

In cinque perforazioni è stato effettuato il rilievo di gas.

I risultati delle indagini sono stati riportati in singole monografie allegate all'elaborato redatto dall'Impresa esecutrice.

Sondaggio	Carotaggio m	Distruzione m	Attrezzatura in foro	Campioni Cl n.	Campioni CR n.	Campioni CA n.	SPT n.	LeFranc n.	Pressiometrica n.	Rilievo GAS in foro
\$22	30		Piezometro (3")	2	2		2	2		
\$ 30	15			3	2	3	2	2	1	
\$34	30		Piezometro (2")	3			2	2	1	
\$37	15			2	2	3	1	2	1	
\$39	15		Piezometro (3")	1	1	1	2	1		eseguito
S40bis	20	45			2	1			1	eseguito
S41	30		Inclinometro		3		1	2	1	
S44	22		Piezometro (2")	1	4		3	2	1	
S4 6	15		Piezometro (2")	3	3		3	1		
\$4 7	30		Piezometro (2")	3	3		2	2	1	
S4 8	15		Piezometro (2")	3	3	3	1	1		eseguito
SN1	15		Piezometro (2")	3	3	3	1	2	1	eseguito
SN2	30			1	2	1	1	2	1	eseguito
SN3	30		Piezometro (3")	3	3	3	2	2	1	
SN4	25		Piezometro (2")	3	3	1	2	1	1	

In Tabella 5-7 si riporta il riepilogo delle attività.

Tabella 5-7: Attività sviluppate nel corso della II Fase di indagini in sito (indagini del 2021/2022).

Sui campioni di terreno sono state effettate prove geotecniche di laboratorio che hanno compreso le seguenti determinazioni:

- caratteristiche fisiche: analisi granulometrica per setacciatura e sedimentazione, contenuto d'acqua, peso specifico dei grani, peso di volume allo stato naturale, peso di volume secco, limiti di Atterberg, porosità, indice dei vuoti, grado di saturazione, classificazione stradale;
- prove di compressione edometrica;
- prove di taglio diretto con scatola di Casagrande;
- prove triassiali di tipo non consolidate non drenate (UU) e consolidate non drenate (CIU).

Le prove geotecniche di laboratorio, eseguite dal Laboratorio autorizzato GEOLAB di Carini (PA), hanno compreso determinazioni delle caratteristiche fisiche dei terreni a grana fina (granulometria, contenuto d'acqua, peso specifico dei grani, peso di volume allo stato naturale, limiti di Atterberg, indice dei vuoti, grado di saturazione, prove di taglio diretto CD, prove di compressione triassiale UU e prove di compressione ad espansione laterale libera.

Queste indagini sono state altresì integrate durante il rilievo geologico di campagna, come ampiamente descritto nella relazione Geologica, con n.4 rilievi geo-meccanici in parete, n.2 relativi alla Ex Cava Cerniglia ed n.2 per Pizzo Cannita. Tali risultati sono stati integrati ai dati provenienti dalla campagna geognostica per la definizione della qualità della roccia in posto.

6 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

6.1 Introduzione

Ai fini della caratterizzazione geotecnica dei terreni e delle rocce interessati dal tracciato stradale si è fatto riferimento ai risultati delle numerose campagne di indagini, richiamate nel paragrafo precedente, a conoscenze acquisite nel corso di numerose indagini geotecniche svolte nel territorio di Palermo e a dati di letteratura.

Per i terreni e le rocce che ricadono nel volume di terreno significativo ai fini geotecnici possono distinguersi i termini principali indicati nella tabella che segue.

	TERRENI DI COPERTURA											
тν	Terreno vegetale costituito di limo sabbioso argilloso talora ghiaioso di colore bruno marrone.											
TR	Materiali di riporto di varia natura e granulometria.											
LR	Terre rosse. Limo sabbioso e sabbia limosa di colore rossastro, con ghiaia di natura calcarea con diametri variabili tra 1-6 cm.											
DTF	Detrito a grana fina rimaneggiato costituito di argilla limosa sabbiosa, limo argilloso, limo sabbioso di colore variabile dal grigio, al marrone, al rossastro $w_n \le w_p$.											
DTG	Detrito a grana grossa di natura prevalentemente carbonatica, variamente frammisto a limo e sabbia.											
ALF	Alluvioni a grana fina: limo sabbioso e limo argilloso sabbioso di colore variabile dal grigio al marrone; w _n < w _p ; a tratti w _n > w _p . Presenza di sostanza organica.											
ALG	Alluvioni a grana grossa: ghiaia e sabbia con livelli di limo sabbioso, da sciolte a poco addensate. Presenza di blocchi e trovanti di varia natura. Gli elementi lapidei sono a spigoli arrotondati.											
TERRENI DELLE FORMAZIONI DI BASE												
SC	Sabbia, sabbia limosa e limo sabbioso di natura calcarenitica, di colore variabile dal giallastro, al biancastro al bruno, con frammenti e noduli di calcarenite di dimensioni centimetriche e decimetriche variamente sparsi nella massa.											
LA	Limo argilloso a tratti sabbioso di colore variabile dall'avana al grigiastro, da consistente a poco consistente, $w_n \le w_p$, con venature grigie, noduli di sabbia e talora fossili anche in frammenti											
FN	Argilla, argilla marnosa e argillite del Flysch Numidico, di colore grigio, generalmente dura o molto consistente, scagliettata, a tratti intensamente fratturata. Struttura a scaglie di forma prismatica, da minute a centimetriche, da debolmente a ben serrate, a spigoli vivi. Sono presenti discontinuità variamente orientate, A tratti si rinvengono livelli di quarzarenite di colore grigio-ocraceo. Possono rinvenirsi patine di dickite e livelli di calcite e di calcare. Nella parte superiore si presenta alterata (FNa) di colore marrone ocraceo per ossidazione.											
АМ	Argilla di colore grigio scuro a consistenza marnosa. A tratti la struttura è a scaglie di piccole dimensioni, di forma prismatica, con superfici debolmente lucide.											
СМ	Marna argillosa, marna calcarea, calcare marnoso, di consistenza lapidea, a frattura concoide, di colore variabile dal grigio chiaro al grigio scuro, al violaceo, con bande e venatura rosa. A tratti sono presenti discontinuità da sub-verticali a 45°, talora riempite di calcite secondaria.											
AS	Argilla sabbiosa di colore marrone da moderatamente consistente a consistente. Sono presenti livelli a spessore di radiolariti fratturate di colore rossastro. A tratti la struttura è scagliettata.											
	ROCCE LAPIDEE											
CL	Calcarenite a grana medio grossa, debolmente cementata, di colore variabile dal giallastro al biancastro.											

Relazione Geotecnica

CFC	Calcarenite da mediamente a ben cementata, di colore giallastro rossastro, molto porosa, vacuolare, con cavità di forma da circolare ad allungata, del d_{max} 0-1 cm a talora riepite di terreno residuale
Cf	Calcare intensamente fratturato di colore variabile dal grigio al biancastro, con cavità di dimensioni anche decimetriche riempite di terreno residuale. La roccia è stata in genere carotata come ghiaia grossa.
С	Calcare di colore grigio chiaro, a grana molto fina, fratturato, talora vacuolare. Sono presenti discontinuità variamente orientate, con superfici scabre, da ondulate a irregolari, con patine di alterazione giallastre.
R	Radiolariti intensamente alterate e tettonizzate, prelevate nelle dimensioni della ghiaia fina e della sabbia grossa in matrice limosa, di colore prevalentemente nerastro.
Q	Quarzosiltiti e quarzareniti di colore grigiastro, a grana fina, con discontinuità chiuse e aperte, variamente orientate, con superfici piane e poco scabre.

Tabella 6-1 Classificazione geotecnica dei terreni.

Con riferimento alla classificazione geotecnica sopra riportata, in Appendice A si allegano le colonne stratigrafiche di sintesi dei sondaggi con l'indicazione delle sigle dei terreni riconosciuti dall'esame delle stratigrafie, la posizione dei campioni indisturbati, i valori N₃₀ ricavati dalle prove SPT, la profondità della falda se nota.

Dal punto di vista geotecnico è possibile dividere il tracciato in tre tratti.

Lungo il primo tratto, che si sviluppa fino alla progressiva 1+500 circa, si rinvengono con continuità *Terre rosse* (LR) a copertura di sabbie e calcareniti (SC, CFC, CL). E' inoltre presente un livello di limo argilloso (LA) intervallato alle rocce calcarenitiche. Nel segmento finale i termini calcarenitici si rinvengono al di sopra di argille sabbiose (AS) e calcari (C).

Nel tratto successivo la strada, che corre prevalentemente su viadotto o in galleria, attraversa dapprima terreni alluvionali a grana fina (ALF) e a grana grossa (ALG). Poco prima della 2+000 m si incontrano in successione rocce calcaree (C, Cf) e radiolariti (R), a tratti sormontate da coltri detritiche (DTg) e/o alluvionali (ALF) e da calcareniti (CL).

A partire dal km 3+000 circa e fino a fine tracciato sono presenti con continuità le argille del Flysch Numidico FN, alterate nei primi m (FNa). Tali termini sono in genere ricoperti da terreni detritici (DTf) e/o da alluvioni a grana fina e grossa (ALF, ALG), queste ultime in corrispondenza delle opere che attraversano il F. Eleuterio ed i suoi affluenti. Solo tra pr. 4+400 circa e pr. 4+650 circa, in corrispondenza della galleria GA02, il tracciato interessa i calcari Cf e successivamente i materiali di riporto TR.

Nel seguito si riporta una tabella riepilogativa delle prove di laboratorio e si illustrano, per ciascuno di termini indicati nella classificazione geotecnica, le principali caratteristiche fisiche e meccaniche determinate con le indagini in sito e di laboratorio.

Relazione Geotecnica

Tabella 6-2: Sintesi risultati prove di laboratorio.

Indagini Geognostiche e Unità Geotecnica					Proprietà identificative							Composizione granulometrica						Limiti di Atterberg				TX CID		(CIU	τχ υυ	E.L.L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	γ _d [kN/m³]	γ₅ [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	of[MPa] c _u [kPa]
S01Pz	CI1	2,50	2,90	LR	16,50	15,00	25,90	10,0	42,08	0,73	22,1	62,0	7,0	8,9	A2	27,6	18,9	8,7	31,6	5,5						
S01Pz	CR6	16,50	16,60	SC			26,60				13,0	53,9	14,5	18,6	A4	27,9	19,4	8,5								
S01Pz	CR7	23,90	24,00	SC			26,80				22,6	52,5	10,5	14,4												
S01Pz	CR8	27,90	28,00	SC			25,60				17,1	49,2	14,4	19,3												
S01Pz	CR9	29,90	30,00	SC			25,80				15,7	48,5	18,7	17,1												
S01Pz	CR2	3,00	3,10	LR			25,80				46,8	42,7	4,0	6,5	A1	27,6	18,9	8,7								
S01Pz	CR1	1,60	1,80	LR			25,80				45,9	40,4	5,1	8,6	A2	29,2	20,0	9,2								
S01Pz	CR4	8,70	8,90	SC			24,50				12,2	37,5	22,6	27,7	A7	46,5	26,3	20,2								
S01Pz	CR3	5,00	5,10	SC			25,00				36,8	24,4	17,1	24,7	A6	40,0	25,5	14,5								
S01Pz	CR5	12,50	12,80	LA			24,60					11,1	35,1	53,8	A7	60,7	29,4	31,3								
S02Dh A	CI1	6,00	6,30	SC	17,90	15,50	26,30	15,5	41,06	0,70		56,0	22,2	21,8	A4	31,7	22,6	9,1	27,6	5,7					19,0	
S02Dh A	CR8	25,40	25,55	SC			26,20				4,1	53,1	23,0	19,8	A4											
S02Dh A	CR1	1,80	2,10	LR			26,00				21,8	52,6	7,1	18,5		37,9	28,5	9,4								<u> </u>
S02Dh A	CR3	7,50	7,80	SC			26,60				4,6	48,6	24,3	22,5	A7	41,7	28,4	13,3								1
S02Dh A	CR7	22,80	23,05	SC			26,30				4,6	48,6	24,3	22,5	A7	41,7	28,4	13,3								<u> </u>
S02Dh A	CR10	29,70	29,80	SC			25,50				10,5	45,4	16,7	27,4	A7	53,3	30,6	22,7								<u> </u>
S02Dh A	CR9	27,60	27,70	SC			25,10				22,7	40,6	20,1	16,6	A7	50,1	27,2	22,9								<u> </u>
S02Dh A	CR2	3 <i>,</i> 40	3,55	LR			25,50				55,9	34,2	4,5	5,4	A1											<u> </u>
S02Dh A	CR4	11,30	11,50	LA			25,70				2,6	24,3	40,6	32,5	A7	49,0	21,4	27,6								<u> </u>
S02Dh A	CR5	17,60	17,75	SC			26,40				2,6	24,3	40,6	32,5	A4											
S02Dh A	CR6	18,70	18,95	SC			26,80				3,5	20,4	45,0	31,1	A7	40,9	23,5	17,4								
S02Dh A	CI2	9,00	9,50	SC	19,00	15,80	26,50	20,3	40,38	0,68		5,0	68,0	27,0	A7	53,2	23,8	29,4	20,6	43,4			17,8	21,4		
S03Pz	CR5	9,80	10,00	SC			27,10				18,2	62,2	8,7	10,9	A2											
S03Pz	CR4	8,10	8,30	SC			26,20				4,0	48,6	22,6	24,8	A7	53,1	26,6	26,5								,
S03Pz	CR2	3,60	3,80	LR			25,60				17,5	44,7	14,5	23,3	A7	48,4	29,8	18,6								,
S03Pz	CR6	14,80	15,00	SC			26,70				28,1	42,1	12,4	17,4	A2											·
S03Pz	CR3	6,20	6,35	SC			26,40				14,3	42,0	21,5	22,2	A7	45,9	27,7	18,2								·
S03Pz	CR1	2,60	2,80	LR			26,60				12,7	38,2	16,6	32,5	A7	52,2	29,1	23,1								·
S03Pz	CI1	1,50	1,85	LR	18,90	15,60	26,40	21,2	40,91	0,69	3,1	11,2	57,0	28,7	A7	46,8	31,6	15,2	24,2	10,9						
S04Dh	CR4	10,50	10,60	С			26,30					66,4	17,5	16,1	A2	31,2	20,9	10,3								·
S04Dh	CI1	4,70	5,05	SC	20,90	18,00	26,00	16,1	30,77	0,44	1,4	61,4	18,7	18,5		30,8	23,2	7,6								0,2 78,5
S04Dh	CR3	7,80	8,00	SC			26,60				35,6	37,4	14,2	12,8	A2	28,6	22,1	6,5								
S04Dh	CI2	29,60	30,00	AM	20,10	18,20	26,70	10,4	31,84	0,47	11,9	37,4	16,2	34,5	A6	50,7	30,1	20,6	28,3	18,1						·
S04Dh	CR2	7,50	7,70	SC			26,90				39,3	35,0	13,8	11,9	A4											·
S04Dh	CR1	0,80	1,00	LR			25,80				25,6	30,4	8,1	35,9	A7	50,9	36,2	14,7								
S05Pz A	CR5	26,00	26,30	AM			26,80					72,3	15,4	12,3	A6	37,2	25,2	12,0								·
S05Pz A	CR6	29,00	29,15	AM			26,60					67,1	19,7	13,2	A7	41,0	25,4	15,6								<u> </u>

SS 121 "Catanese" Itinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta

UP62

Relazione Geotecnica

Indagini Geognostiche e Unità Geotecnica					Proprietà identificative							Compo	sizion	e granulo	ometrica	Limit	i di Atte	rberg		TD	TX CID		TX CIU		ΤΧ UU		L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	^γ α [kN/m³]	γ₅ [kN/m³]	w [%]	n [%]	e₀ [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	र्ज[MPa]	cu [kPa]
S05Pz A	CR4	21,50	21,70	AM			26,40				5,8	56,0	20,5	17,7	A1	42,3	26,3	16,0									
S05Pz A	CR3	19,60	19,75	SC			26,00				33,9	53,4	7,6	5,1	A1												
S05Pz A	CR2	16,60	16,75	SC			26,30				31,7	51,3	9,8	7,2	A7												
S05Pz A	CI1	23,30	23,80	AM	19,70	17,20	26,80	14,5	35,82	0,56	19,8	44,4	14,9	20,9	A7	34,7	26,4	8,3	33,1	46,7						0,3	160,5
S05Pz A	CR1	0,70	0,85	SC			26,00				10,7	23,7	12,0	53,6	A7	48,7	29,7	19,0									
S06Pz	CI1	30,00	30,30	AM	20,50	18,30	26,80	12,0	31,72	0,46	9,5	41,1	22,5	26,9	A7	45,9	24,1	21,8	27,6	29,1							
S06Pz	CR9	26,50	26,70	AM			26,40				22,1	38,1	17,6	22,2	A7	43,9	27,9	16,0									
S06Pz	CR5	9,70	9,85	ALG			26,50				47,6	37,1	7,5	7,8	A1												
S06Pz	CR3	5,80	6,00	ALG			26,10				46,0	36,4	7,6	10,0	A1												
S06Pz	CR4	7,20	7,35	ALG			26,30				50,7	34,5	8,1	6,7	A1												
S06Pz	CR7	16,30	16,50	ALG			26,20				55,8	31,6	5,7	6,9	A1												
S06Pz	CR2	4,30	4,45	ALG			26,10				53,2	31,3	6,9	8,6	A1												
S07Dh A	CR2	4,60	4,80	DTF			25,00				33,3	49,7	11,5	5,5													
S07Dh A	CR6	27,70	27,80	С	18,30	16,90	26,80	8,3	36,94	0,59	28,8	34,3	8,7	28,2		42,5	27,4	15,1									
S07Dh A	CR1	2,70	3,00	DTF	14,00	12,40	23,70	12,9	47,68	0,91	35,9	26,5	8,9	18,7		34,6	26,7	7,9									
S07Dh A	CR3	10,00	10,20	AM	15,80	14,00	26,80	12,9	47,76	0,91	45,7	18,9	10,7	24,7		35,5	25,6	9,9									
S07Dh A	CR4	12,30	12,50	CM	19,50	16,00	27,00	21,9	40,74	0,69	57,3	16,7	7,0	19,0		42,6	27,8	14,8									
S09Pz	CR2	15,80	16,00	R																							<u> </u>
S09Pz	CR3	20,00	20,20	R																							<u> </u>
S09Pz	CR4	24,80	25,00	R																							<u> </u>
S11Pz A	CI1	4,00	4,40	AM	15,60	14,00	27,30	11,4	48,72	0,95	38,7	41,2	9,6	10,5	A7	27,7	22,3	5,4	34,7	6,5					47,5		
S11Pz A	CR1	2,30	2,50	AM	16,70	15,00	25,00	11,3	40,00	0,67	30,9	41,1	12,4	15,6	A1	32,6	25,5	7,1									<u> </u>
S11Pz A	CR2	6,30	6,50	AM	15,70	13,90	26,20	12,9	46,95	0,88	24,8	37,3	15,5	22,4	A7	38,3	23,9	14,4									<u> </u>
S11Pz A	CR3	13,50	13,70	Cf	17,30	14,00	26,60	23,6	47,37	0,90	33,7	31,2	14,4	20,7	A7	42,6	27,1	15,5									<u> </u>
S11Pz A	CR4	25,40	25,50	Cf	19,50	16,90	26,50	15,4	36,23	0,57	55,8	21,9	5,3	17,0	A7												
S12Pz A	CR2	11,00	11,30	FN			26,40					60,3	22,2	17,5	A7	49,8	26,3	23,5									
S12Pz A	CR3	13,80	14,00	FN			26,40					48,9	23,6	27,5	A7	50,8	31,3	19,5								 	<u> </u>
S12Pz A	CR5	27,50	27,80	FN			26,70					46,9	27,9	25,2	A7	43,0	26,3	16,7									
S12Pz A	CR1	8,00	8,30	FN			26,50					36,8	30,0	33,2	A7	57,4	29,7	27,7									
S12Pz A	CR4	24,50	24,70	FN			26,20					34,3	33,3	32,4	A7	48,1	28,8	19,3									
S12Pz A	CI1	5,00	5,35	FNA	19,30	16,00	26,40	20,6	39,39	0,65		22,4	45,7	31,9	A7	52,3	27,5	24,8	23,2	24,8							
S13Pz	CR5	29,60	29,80	FN			26,10				29,5	42,2	17,3	11,0		45,8	25,3	20,5									
S13Pz	CR4	25,30	25,50	FN			23,90				8,8	38,7	25,0	27,5	A7	54,9	29,3	25,6								 	
S13Pz	CR3	18,80	19,20	FN			23,90				12,9	38,6	21,9	26,6	A7	62,7	29,7	33,0									
S13Pz	CR2	15,30	15,50	FN			25,40				11,6	36,0	25,7	26,7	A7	59,9	27,2	32,7									
S13Pz	CI2	5,50	6,00	DTF	19,70	16,00	25,70	23,1	37,74	0,61	11,9	35,4	17,9	34,8	A7	62,0	29,4	32,6					24,5	18,1		 	
S13Pz	CR1	9,30	9,50	FN			25,80				11,3	25,6	23,5	39,6	A7	52,4	30,8	21,6					<u> </u>			 	
S13Pz	CI1	3,70	4,10	DTF	20,00	16,80	26,50	19,0	36,60	0,58	4,6	20,3	35,8	39,3	A7	59,1	22,8	36,3	22,7	17,5			 			0,1	70,0
S14Dh A	CR2	15,80	16,00	FN	18,40	16,10	24,90	14,3	35,34	0,55	7,9	41,3	27,7	23,1	A7	39,8	24,7	15,1					1			L	<u> </u>

SS 121 "Catanese" Itinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta

UP62

Relazione Geotecnica

Indagini Geognostiche e Unità Geotecnica					Proprietà identificative							Compo	sizion	e granulo	metrica	Limiti di Atterberg				TD	TX CID		TX CIU		τχ υυ	E.I	L.L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	_{γa} [kN/m³]	γ₅ [kN/m³]	w [%]	n [%]	e₀ [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	cu [kPa]	र्ज[MPa]	c _u [kPa]
S14Dh A	CR4	25,30	25,50	FN	18,50	17,00	26,60	8,8	36,09	0,56	6,8	40,4	28,7	24,1	A7	42,1	25,5	16,6									
S14Dh A	CR3	20,80	21,00	FN	18,50		26,80				7,2	39,4	30,9	22,5	A7												
S14Dh A	CR1	9,50	9,70	FNA	17,70	15,80	26,70	12,0	40,82	0,69	20,4	30,5	21,2	27,9	A7	38,6	24,4	14,2									
S14Dh A	CI1	5,00	5,50	FNA	18,50	16,00	27,20	15,6	41,18	0,70	1,8	25,7	30,3	42,2	A7	50,4	28,8	21,6							242,5	0,5	252,0
S14Dh A	CR5	29,60	29,80	FN	18,10	15,90	25,50	13,8	37,65	0,60	32,4	25,1	21,9	20,6	A7	35,5	25,1	10,4									
S14Dh A	CI2	7,20	7,50	FNA	17,40	14,90	25,10	16,8	40,64	0,68		24,7	37,8	37,5		51,5	29,3	22,2	23,6	35,4							
S15Pz A	CR1	2,85	3,00	TR			26,20				23,5	53,4	11,9	11,2	A2	35,1	25,4	9,7									
S15Pz A	CI1	2,30	2,80	TR																						<u> </u>	
S15Pz A	CI2	5,50	6,00	Cf																							
S16Dh	CR3	10,20	10,40	TR			26,10					31,6	29,7	38,7	A7	64,9	25,4	39,5								<u> </u>	
S16Dh	CR2	5,20	5,40	TR			25,60				10,5	29,6	29,3	30,6	A7	60,7	29,8	30,9									
S16Dh	CR1	2,30	2,50	TR			25,30				15,2	25,7	27,8	31,3	A7	61,6	29,4	32,2								<u> </u>	
S16Dh	CR4	14,80	15,00	TR			26,40				23,4	20,2	25,3	31,1	A7	54,2	27,3	26,9									
S16Dh	CI1	11,50	12,00	TR	19,40	16,20	26,50	19,8	38,87	0,64		18,6	39,2	42,2	A7	66,9	31,9	35,0	25,2	23,1						<u> </u>	
S17Pz	CR4	25,70	26,00	FN			27,00					38,5	37,5	24,0		55,8	31,3	24,5								<u> </u>	
S17Pz	CR5	29,10	29,40	FN			23,80					36,3	40,4	23,3		51,3	27,4	23,9								<u> </u>	
S17Pz	CR3	17,10	17,30	FN			25,80					35,6	36,5	27,9		51,9	31,3	20,6									
S17Pz	CI1	2,30	2,80	FNA	19,40	16,40	27,30	18,3	39,93	0,66		26,4	40,5	33,1		47,7	25,4	22,3	25,6	21,1						0,2	106,0
S17Pz	CR2	9,80	10,00	FN			24,80					26,1	41,2	32,7		51,4	27,7	23,7								ļ	
S17Pz	CR1	4,20	4,40	FNA			26,30					24,2	39,1	36,7		46,1	24,3	21,8								<u> </u>	
S17Pz	CI2	5,50	6,00	FN	18,60	16,60	26,20	12,0	36,64	0,58		14,2	52,3	33,5		53,9	28,6	25,3					21,9	17,0		<u> </u>	
S18Dh A	CR3	14,80	15,00	FN			26,70					40,9	31,3	27,8		45,7	28,5	17,2								ļ	
S18Dh A	CR4	19,00	19,60	FN			26,80					38,8	35,9	25,3		47,6	30,5	17,1								<u> </u>	
S18Dh A	CI2	7,00	7,40	FNA	17,90	15,40	26,30	16,2	41,44	0,71		32,2	36,6	31,2		57,9	27,6	30,3	26,0	9,4						ļ	
S18Dh A	CR5	25,50	25,80	FN			26,40					29,0	31,0	40,0		50,6	29,4	21,2									
S18Dh A	CI3	9,00	9,40	FN	20,20	18,10	27,00	11,6	32,96	0,49		28,2	39,6	32,2		55,2	33,5	21,7	25,9	33,4						ļ	
S18Dh A	CR2	11,30	11,60	FN			26,80					25,6	38,3	36,1		51,1	30,5	20,6								ļ	
S18Dh A	CR1	1,40	1,60	DTF			26,50				3,2	20,1	22,0	54,7		59,1	30,3	28,8								ļ	
S18Dh A	CI1	4,80	5,20	DTF	18,50	14,80	26,60	25,0	44,36	0,80		12,8	23,5	63,7		61,4	27,4	34,0								0,1	43,0
S20Dh A	CR4	17,90	18,10	FN			26,60				6,1	59,1	23,7	11,1		40,1	28,2	11,9								ļ	
S20Dh A	CR3	13,50	13,75	FN			26,70				6,9	56,1	23,1	13,9		39,8	27,2	12,6								<u> </u>	
S20Dh A	CI1	5,00	5 <i>,</i> 50	FN	19,70	16,60	26,30	18,7	36,88	0,58		54,1	21,5	24,4		51,5	25,5	26,0	27,5	17,9					84,0	<u> </u>	
S20Dh A	CR2	9,80	10,10	FN			26,70					53,1	25,2	21,7		41,9	24,7	17,2								ļ	
S20Dh A	CR1	3,30	3,50	FNA			26,30				5,9	49,9	27,4	16,8		55,7	25,6	30,1									
S20Dh A	CR5	26,40	26,70	FN			26,90				6,8	49,5	30,1	13,6		43,5	30,5	13,0								ļ	
S21Dh A	CR3	19,60	19,80	FN			25,90					40,8	35,1	24,1		35,9	24,1	11,8								ļ	
S21Dh A	CR5	27,10	27,30	FN			25,50				3,1	39,6	35,3	22,0		37,5	27,1	10,4								ļ	
S21Dh A	CR4	23,00	23,20	FN			24,60				4,5	34,5	32,3	28,7		40,0	27,9	12,1								ļ	
S21Dh A	CR1	3,30	3,50	FNA			24,00					30,2	32,2	37,6		41,0	25,6	15,4								L	

UP62

Inda	gini Geogno	stiche e	e Unità (Geotecnica		Propriet	à identificat	ive				Compo	sizione	e granulo	ometrica	Limit	i di Atte	rberg		TD	ТХ	CID	T	(CIU	ΤΧ UU	E.L	L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	_{γd} [kN/m³]	γ₅ [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	र्ज[MPa]	cu [kPa]
S21Dh A	CI1	6,50	7,00	FNA	19,30	15,70	25,70	22,9	38,91	0,64		28,6	39,2	32,2		43,4	23,6	19,8								0,1	44,5
S21Dh A	CR2	12,80	13,20	FN			25,80				1,7	23,3	49,2	25,8		42,1	23,7	18,4									
S21Dh A	CI3	11,00	11,40	FN	17,90	15,80	26,40	13,3	40,15	0,67	3,1	19,0	51,4	26,5		45,9	24,2	21,7	26,3	18,7						0,2	90,0
S21Dh A	CI2	9,00	9,50	FN	19,10	16,00	25,00	19,4	36,00	0,56		6,5	45,5	48,0		60,1	27,6	32,5	25,8	18,6							
S22Pz	CI1	10,00	10,30	FN	21,40	19,00	27,10	12,6	29,89	0,43		4,3	65,5	30,2		38,7	18,8	19,9									
S22Pz	CR2	17,20	17,45	FN	17,70	15,60	26,70	13,5	41,57	0,71	0,6	4,2	65,3	29,9		42,9	20,0	22,9									
S22Pz	CR1	13,30	13,60	FN	18,30	16,10	27,00	13,7	40,37	0,68	0,4	4,0	65,6	30,0		33,7	19,9	13,8									
S22Pz	CI2	21,70	22,00	FN	20,30	17,20	27,70	18,0	37,91	0,61	1,0	2,9	54,2	41,9		43,8	19,8	24,0								0,1	55,0
S23Dh	CI2	7,80	8,20	FN	17,80	15,30	27,40	16,3	44,16	0,79		35,1	30,6	34,3		45,4	26,9	18,5	24,8	9,8							
S23Dh	CI1	5,00	5 <i>,</i> 35	FNA	18,30	15,50	27,20	18,1	43,01	0,75		28,9	29,4	41,7		48,8	28,1	20,7	24,2	18,9					113,0		
S23Dh	CI3	13,00	13,40	FN	18,70	15,50	23,60	20,6	34,32	0,52		22,5	37,5	40,0		63,6	30,5	33,1					20,5	12,5		0,2	119,5
S23Dh	CR2	9,30	9,50	FN																							
S23Dh	CR3	11,50	11,70	FN																							
S23Dh	CR4	19,00	19,20	FN																						 	
S23Dh	CR5	23,80	24,00	FN																						 	
S24Pz A	CI1	8,00	8,50	FN	19,10	16,70	27,30	14,4	38,83	0,63	2,1	41,9	28,9	27,1	A7	43,9	26,2	17,7	26,5	34,8						0,1	65,0
S25Pz A	CR4	22,80	23,00	FN	18,00	16,10	24,80	11,8	35,08	0,54	18,6	42,7	13,3	25,4	A7	38,7	24,8	13,9									
S25Pz A	CR1	5,30	5,50	FN	17,80	15,50	26,20	14,8	40,84	0,69	10,2	40,8	19,4	29,6	A2	42,2	26,4	15,8								 	
S25Pz A	CR2	10,80	11,00	FN	18,20	15,60	25,60	16,7	39,06	0,64	13,3	40,1	25,9	20,7	A6	44,0	26,8	17,2									
S25Pz A	CR3	13,50	13,70	FN	18,30	15,40	26,10	18,8	41,00	0,69	12,6	39,2	29,7	18,5	A7	45,1	27,3	17,8								 	
S25Pz A	CI1	4,00	4,50	FN	17,50	15,10	24,60	15,9	38,62	0,63	24,9	37,2	14,8	23,1	A6	38,4	24,8	13,6								0,0	21,5
S25Pz A	CR5	37,50	37,80	FN	18,50	15,10	26,00	22,5	41,92	0,72	35,5	29,3	16,9	18,3	A7	42,0	25,7	16,3									
S26Dh A	CI1	7,70	8,10	FN	17,30	15,60	26,60	10,9	41,35	0,71	37,6	34,9	13,1	14,4	A7	37,3	24,4	12,9	32,7	16,3					88,0	 	
S26Dh A	CR5	27,70	28,00	FN	17,10	15,00	24,70	14,0	39,27	0,65	21,9	33,3	22,1	22,7	A7	45,4	28,1	17,3									
S26Dh A	CI2	15,00	15,40	FN	17,40	14,80	26,50	17,6	44,15	0,79	31,7	32,2	14,3	21,8	A7	39,5	25,2	14,3								0,4	180,5
S26Dh A	CR3	14,00	14,20	FN	17,70	15,30	26,20	15,7	41,60	0,71	30,7	29,6	17,9	21,8	A7	42,8	26,1	16,7								 	
S26Dh A	CR4	20,50	20,70	FN	19,80		25,70				46,7	27,7	11,7	13,9	A7											 	
S26Dh A	CR1	4,10	4,30	AM	19,90	17,40	24,20	14,4	28,10	0,39	42,3	26,7	15,2	15,8	A7											 	
S26Dh A	CR2	10,50	10,70	FN																						 	
S28Pz A	CR2	11,20	11,50	FN	15,90	14,30	26,30	11,2	45,63	0,84	3,9	44,9	31,2	20,0	A7	46,5	28,3	18,2								 	
S28Pz A	CR4	19,80	20,00	FN	16,00	14,70	24,60	8,8	40,24	0,67	4,6	41,3	35,2	18,9	A7	48,6	28,6	20,0								 	
S28Pz A	CR3	16,50	16,80	FN	15,90	14,20	43,40	12,0	67,28	2,06	4,3	40,4	38,4	16,9	A7	49,4	29,3	20,1								 	
S28Pz A	CR5	27,00	27,30	FN	18,90		26,60				31,7	36,7	17,1	14,5	A7	31,5	22,2	9,3								 	
S28Pz A	CR1	5,80	6,00	ALG	22,50	20,70	24,90	8,7	16,87	0,20	57,5	27,2	7,2	8,1	A7											 	
S28Pz A	CI1	3,00	3,50	DTF	18,70	14,50	18,50	29,0	21,62	0,28		22,9	22,3	54,8		65,9	31,2	34,7	22,6	15,8						0,1	64,5
S29Dh	CI2	8,50	8,90	FNA	18,40	16,40	26,40	12,2	37,88	0,61	5,6	45,9	26,8	21,7	A7	42,3	25,9	16,4								 	<u> </u>
S29Dh	CI1	4,00	4,35	DTF	18,40	15,20	22,10	21,1	31,22	0,45	4,5	19,1	24,5	51,9	A7	55,9	29,3	26,6	23,1	20,7						 	<u> </u>
S29Dh	CR1	5,70	5,80	FNA																						 	<u> </u>
S29Dh	CR2	12,50	12,90	FN																						<u> </u>	

UP62

Inda	gini Geogno	stiche e	e Unità (Geotecnica		Propriet	à identificat	tive				Compo	sizione	e granulo	ometrica	Limit	i di Atte	rberg		TD	T	K CID	ТХ	CIU	τχ υυ	E./	L.L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	γ _d [kN/m³]	γ₅ [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	ர[MPa]	c _u [kPa]
S29Dh	CR3	15,80	16,00	FN																							
S29Dh	CR4	20,20	20,30	FN																							
S29Dh	CR5	29,80	30,00	FN																							
S30	CI1	2,00	2,25	FNA	21,20	18,10	27,00	17,1	32,96	0,49	0,9	9,8	50,2	39,1		50,3	20,6	29,7								1,0	483,0
S30	CI2	5,00	5,30	FNA	19,80	17,30	27,00	14,5	35,93	0,56	2,6	7,9	50,4	39,1		40,3	23,8	16,5									
S30	CI3	10,00	10,30	FN	20,10	16,60	27,30	21,1	39,19	0,64		6,9	58,3	34,8		34,8	19,1	15,7								0,1	59,0
S30	CR1	1,30	1,60	FNA	20,50	16,90	26,90	21,3	37,17	0,59	0,4	6,7	51,9	41,0		56,2	20,8	35,4									
S30	CR2	11,20	11,50	FN	17,10	15,30	27,10	11,8	43,54	0,77		5,3	60,1	34,6		31,8	19,6	12,2									
S32Dh	CI2	9,50	10,00	FNA	18,30	14,70	26,70	24,5	44,94	0,82	3,4	31,7	25,1	39,8		59,8	28,3	31,5	26,2	20,4			21,3	16,2			
S32Dh	CI3	18,00	18,35	FN	19,40	16,40	25,00	18,3	34,40	0,52	20,9	30,1	22,1	26,9		43,7	26,5	17,2	27,3	18,6					120,5		
S32Dh	CI1	2,50	2,90	DTF	17,60	14,00	27,90	25,7	49,82	0,99	3,0	23,8	15,5	57,7		63,6	30,1	33,5	24,7	24,9							
S32Dh	CR1	1,80	2,00	DTF																							
S32Dh	CR2	8,30	8,50	DTF																							
S32Dh	CR3	15,00	15,30	FNA																							
S32Dh	CR4	19,35	19,55	FN																							
S32Dh	CR5	26,00	26,30	FN																							
S33Pz A	CR3	20,80	21,10	FN	16,00	13,90	25,80	15,1	46,12	0,86	15,8	58,6	12,6	14,1	A7	36,1	23,9	12,2									
S33Pz A	CR4	26,10	26,30	FN	15,20	13,70	18,10	10,9	24,31	0,32	14,7	58,6	12,6	14,1	A7												
S33Pz A	CR2	17,80	18,20	FN	16,10	14,10	26,60	14,2	46,99	0,89	13,1	47,9	18,4	20,6	A7	35,2	23,7	11,5									
S33Pz A	CI2	9,30	9,80	FN	17,50	14,30	26,90	22,4	46,84	0,88	16,8	32,7	25,8	24,7	A7	44,6	26,9	17,7								0,2	87,5
S33Pz A	CI3	11,50	12,00	FN	17,40	14,50	24,90	20,0	41,77	0,72	21,4	31,5	22,7	24,4	A7	44,8	27,9	16,9					25,9	11,4			_
S33Pz A	CR5	29,60	26,30	FN	17,50		26,60				19,8	30,7	14,9	34,6	A7	39,4	25,3	14,1									_
S33Pz A	CR1	8,30	8,50	FN	16,20		23,90				5,8	27,1	30,8	36,3	A7	50,9	29,6	21,3									_
S33Pz A	CI1	4,50	5,00	FN	17,90	14,10	26,60	27,0	46,99	0,89	19,8	25,4	20,7	34,1	A7	45,4	27,3	18,1	26,4	17,5							_
S34Pz	CI1	3,00	3,30	FNA	19,80	16,20	26,90	22,2	39,78	0,66	27,1	13,1	30,5	29,3		55,9	19,0	36,9								0,1	61,0
S34Pz	CI2	15,00	15,30	FN	20,20	17,10	27,40	18,1	37,59	0,60	0,3	12,4	33,7	53,6		48,5	24,5	24,0								0,3	143,5
S34Pz	CI3	25,60	26,00	FN	19,10	16,50	27,10	15,8	39,11	0,64	5,2	8,6	47,3	38,9		54,6	23,8	30,8									
S35Pz A	CI1	5,50	5,90	FN	17,10	14,80	23,00	15,5	35,65	0,55	7,1	43,8	23,9	25,2	A7	42,7	26,3	16,4	26,7	32,8					166,0	ļ	_
S35Pz A	CI2	8,00	8,50	FN	18,40	16,30	26,90	12,9	39,41	0,65		39,5	28,9	31,6		46,8	27,5	19,3								0,2	115,5
S35Pz A	CR4	19,70	20,00	FN	15,70	13,90	26,30	12,9	47,15	0,89	4,5	23,2	47,6	24,7	A7	39,8	25,1	14,7									
S35Pz A	CR5	23,30	23,50	FN	15,80		25,60				6,6	21,5	28,1	43,8	A7	35,6	22,9	12,7								ļ	
S35Pz A	CR2	11,30	11,50	FN	16,90	15,10	27,30	11,9	44,69	0,81	5,7	18,3	41,3	34,7	A7	38,8	24,7	14,1								ļ	
S35Pz A	CR3	16,80	17,00	FN	16,60	14,80	26,70	12,2	44,57	0,80	6,1	16,7	31,4	45,8	A7	37,2	23,3	13,9								ļ	_
S35Pz A	CR1	4,20	4,50	FN	17,10		26,10									36,4		36,4								ļ	
S36Dh A	CI2	8,00	8,40	FN	18,70	15,90	26,60	17,6	40,23	0,67		28,3	33,3	38,4		43,7	27,1	16,6	23,9	28,8					165,5		_
S36Dh A	CI1	4,30	4,70	FNA	18,10	15,50	23,50	16,8	34,04	0,52	3,0	26,2	25,0	45,8	A7	48,7	28,2	20,5	24,6	23,3						0,2	94,0
S36Dh A	CR1	11,30	11,50	FN	16,40		25,80				8,2	23,3	43,7	24,8	A7	37,9	24,4	13,5								<u> </u>	1
S36Dh A	CR2	13,70	14,00	FN	18,70	17,10	25,90	9,4	33,98	0,51	1,6	9,7	41,1	47,6	A7	60,1	30,2	29,9								<u> </u>	1
S36Dh A	CR3	17,30	17,50	FN	18,10	16,40	25,60	10,4	35,94	0,56	2,2	9,1	39,3	49,4	A7	62,3	31,6	30,7								<u> </u>	

UP62

Inda	gini Geogno	stiche e	e Unità	Geotecnica		Propriet	à identificat	tive				Compo	sizion	e granulo	ometrica	Limiti	di Atte	berg		TD	ТХ	CID	ТХ	(CIU	ΤΧ UU	E.L	L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	^γ a [kN/m³]	γ _s [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	оf[MPa]	cu [kPa]
S36Dh A	CR5	29,50	29,70	FN	17,00	15,30	25,00	11,1	38,80	0,63		8,7	36,5	54,8		61,2	29,9	31,3									
S36Dh A	CR4	26,80	27,00	FN	14,80		24,70					7,7	42,5	49,8		63,4	30,9	32,5									
S37	CI2	6,35	6,70	FNA	20,60	17,80	27,40	15,7	35,04	0,54	0,3	7,5	58,9	33,3													
S37	CR2	14,45	14,70	FN	20,60	17,80	27,10	15,7	34,32	0,52		7,1	59,3	33,6													
S37	CI1	3,30	3,70	FNA	21,40	18,30	27,10	16,9	32,47	0,48	0,2	6,8	58,7	34,3												0,1	50,5
S37	CR1	2,45	2,80	FNA	20,70	17,70	27,00	16,9	34,44	0,53		3,3	55,5	41,2													
S38Pz A	CI3	11,50	12,00	FN	16,90	14,80	26,70	14,2	44,57	0,80	3,9	50,2	25,4	20,5		39,7	25,6	14,1			25,3	12,1			100,0		
S38Pz A	CR1	2,80	3,00	FNA	18,60	15,50	25,40	20,0	38,98	0,64	2,5	46,2	27,7	23,6	A7	42,8	26,2	16,6									
S38Pz A	CI2	7,50	7,80	FN	17,60	15,70	26,30	12,1	40,30	0,68	7,7	41,4	26,8	24,1	A6	39,3	24,7	14,6	27,4	23,3							
S38Pz A	CI1	4,00	4,50	FNA	17,70	14,90	23,70	18,8	37,13	0,59	3,1	39,7	28,4	28,8	A7	41,2	25,5	15,7	25,7	25,3						0,2	89,5
S38Pz A	CR4	17,50	17,70	FN	17,30		26,90				39,8	33,8	10,0	16,4													
S38Pz A	CR5	19,80	20,00	FN	17,80	15,30	26,60	16,3	42,48	0,74	25,2	29,2	18,5	27,1		38,2	23,8	14,4									
S38Pz A	CR2	9,50	9,80	FN	18,50		26,80				29,1	25,8	16,5	28,6	A6	44,8	27,3	17,5									
S38Pz A	CR3	16,80	17,00	FN	17,80		24,80				28,4	25,5	18,2	27,9		45,8	27,7	18,1									
S39Pz	CR1	14,10	14,40	FN	17,90	15,70	27,00	14,0	41,85	0,72		9,4	51,4	39,2		42,0	21,5	20,5									
S39Pz	CI1	3,30	3,70	FNA	18,60	15,60	26,70	19,2	41,57	0,71		2,4	59,8	37,8		46,5	25,2	21,3									
S40bis	CR2	61,50	61,70	FN	17,70	15,50	27,10	14,2	42,80	0,75	0,1	4,8	56,7	38,4		41,5	20,4	21,1									
S40bis	CR1	57,40	57,65	FN	18,10	16,40	27,20	10,4	39,71	0,66		4,5	57,1	38,4		36,4	20,3	16,1									
S40Pz A	CR1	10,20	10,40	FN	18,50	16,40	27,00	12,8	39,26	0,65	7,2	51,9	22,8	18,1	A2	33,5	22,7	10,8									
S40Pz A	CI3	13,00	13,35	FN	16,90	15,20	25,20	11,2	39,68	0,66	20,8	49,5	16,6	13,1		37,4	24,3	13,1	31,7	23,8						0,2	91,0
S40Pz A	CR3	32,00	32,30	FN	16,90	14,50	26,40	16,6	45,08	0,82	13,1	46,6	17,9	22,4		34,3	23,2	11,1									
S40Pz A	CR2	19,00	19,20	FN	18,20		26,00				26,2	44,2	13,4	16,2													
S40Pz A	CI1	1,70	2,00	FNA	16,00	13,80	26,50	15,9	47,92	0,92		43,5	26,3	30,2		44,2	28,4	15,8			24,6	10,4				0,2	105,5
S40Pz A	CR4	40,30	40,50	FN	17,70	14,90	24,00	18,8	37,92	0,61	13,4	41,1	18,8	26,7		44,1	27,2	16,9									
S40Pz A	CR5	44,30	44,40	FN	17,80	14,80	26,20	20,3	43,51	0,77	12,6	39,5	20,1	27,8		41,1	25,7	15,4									
S40Pz A	CI2	5,00	5,40	FNA	16,80	14,70	24,20	14,3	39,26	0,65	1,0	29,9	30,5	38,6	A7	42,4	25,1	17,3	24,6	35,2					176,5		
S41INCL	CR1	2,40	2,65	DTG	18,70	15,60	26,90	19,9	42,01	0,72	0,6	34,5	30,2	34,7													
S41INCL	CR2	11,10	11,40	FN	21,10	18,30	26,90	15,3	31,97	0,47	2,3	18,0	58,5	21,2													
S41INCL	CR3	19,60	20,00	FN	20,60	17,40	27,00	18,4	35,56	0,55	0,2	5,6	69,2	25,0												0,1	65,0
S42Pz A	CR3	19,30	19,50	FN	19,60	16,90	24,40	16,0	30,74	0,44	17,9	39,4	26,6	16,1		34,6	23,1	11,5									
S42Pz A	CR2	12,50	12,70	FN	17,70		26,90				12,9	37,4	31,8	17,9		34,7	21,9	12,8									
S42Pz A	CR4	27,30	27,50	FN	16,80	13,60	26,10	23,5	47,89	0,92	29,1	36,1	18,9	15,9		28,5	19,7	8,8									
S42Pz A	CI1	6,50	6,80	FNA	17,10	15,40	26,20	11,0	41,22	0,70	4,9	34,8	32,5	27,8	A7	43,1	26,9	16,2								0,1	
S42Pz A	CR1	9,30	9,50	FN	18,70	16,30	25,60	14,7	36,33	0,57	11,3	32,4	21,2	35,1		36,3	22,7	13,6									
S43INCL A	CI2	16,50	16,80	FN	20,00	17,90	24,90	11,7	28,11	0,39	13,2	51,4	12,7	22,7		33,0	24,6	8,4	30,8	18,5						0,2	88,5
S43INCL A	CR2	12,50	12,80	FN	18,80	16,10	26,20	16,8	38,55	0,63	15,1	43,4	19,6	21,9		39,8	24,2	15,6									<u> </u>
S43INCL A	CR1	6,50	6,80	FNA	17,70	14,90	24,60	18,8	39,43	0,65	7,1	41,7	22,3	28,9		45,9	28,1	17,8									
S43INCL A	CR3	20,70	21,00	FN	16,80	14,90	26,40	12,8	43,56	0,77	19,9	34,1	20,1	25,9		41,7	25,3	16,4									_
S43INCL A	CR4	26,00	26,30	FN	18,00	16,40	24,90	9,8	34,14	0,52	18,6	32,7	21,6	27,1		43,7	26,5	17,2									

UP62

Inda	gini Geogno	stiche e	Unità (Geotecnica		Propriet	à identificat	ive				Compo	sizion	e granulo	ometrica	Limiti	di Atte	rberg	· ·	TD	ТХ	CID	ТХ	CIU	ΤΧ UU	E.L	L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	^γ a [kN/m³]	^γ ₅ [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	of[MPa]	cu [kPa]
S43INCL A	CI1	7,00	7,40	FNA	17,40	14,70	24,30	18,4	39,51	0,65	5,2	31,9	23,0	39,9	A4	45,6	27,5	18,1	25,2	30,3							
S43INCL A	CR5	29,90	30,20	FN	15,30	14,10	26,20	8,5	46,18	0,86	17,7	31,6	22,3	28,4		44,2	27,4	16,8									
S44Pz	CR2	7,50	7,75	DTF	21,90	19,30		13,5			2,0	41,9	26,1	30,0													
S44Pz	CR1	3,65	3,85	DTF	21,50	18,60	27,10	15,6	31,37	0,46	14,5	15,5	47,5	22,5		29,5	15,0	14,5									
S44Pz	CR3	12,75	13,00	FN	21,80	19,30		13,0				7,0	71,6	21,4													
S44Pz	CR4	18,20	18,45	FN	22,10	19,90		11,1				5,1	73,2	21,7													
S44Pz	CI1	9,00	9,30	FNA	19,90	16,30		22,1				2,1	43,7	54,2												0,1	55,0
S46Pz	CI1	4,00	4,30	DTF	20,90	17,50		19,4			0,5	41,7	26,8	31,0													
S46Pz	CI2	6,65	7,00	FNA	20,20	16,70		21,0			1,3	39,1	27,3	32,3												0,3	172,5
S46Pz	CR1	1,35	1,60	DTF	20,60	17,30	26,30	19,1	34,22	0,52	4,5	32,4	34,3	28,8		40,7	20,8	19,9									
S46Pz	CI3	11,65	12,00	FN	21,00	18,00		16,7				16,9	43,5	39,6													
S46Pz	CR3	13,30	13,50	FN	21,00		26,80					5,0	60,3	34,7		37,7	16,1	21,6									
S46Pz	CR2	9,80	10,00	FN																							
S47Pz	CI3	10,15	10,40	FN	20,20	17,90	27,00	12,8	33,70	0,51	0,2	13,5	52,4	33,9		34,8	17,8	17,0									
S47Pz	CR3	21,70	22,00	FN	20,30	18,10	27,00	12,2	32,96	0,49	3,3	8,9	65,2	22,6		36,8	19,7	17,1									
S47Pz	CR2	12,50	12,80	FN	20,20	17,10	26,90	18,1	36,43	0,57	1,1	6,1	68,9	23,9		35,6	20,0	15,6									
S48Pz	CR1	4,30	4,60	FNA	20,50		27,00				16,9	27,9	35,3	19,9		34,9	19,8	15,1									
S48Pz	CI1	3,00	3,30	FNA	19,90	17,20	26,90	15,7	36,06	0,56	8,9	24,2	42,7	24,2		39,3	20,2	19,1								0,1	57,0
S48Pz	CI2	5,00	5,40	FNA	19,90	16,70	27,00	19,2	38,15	0,62	12,7	18,9	44,0	24,4		36,0	19,7	16,3									
S48Pz	CR3	12,65	12,80	FN	21,20	19,00	27,00	11,6	29,63	0,42		9,5	58,0	32,5		34,3	19,9	14,4									
S48Pz	CR2	8,20	8,45	FN	20,60		26,90				0,4	5,5	60,3	33,8		31,9	18,4	13,5									
S48Pz	CI3	10,30	10,60	FN	20,50	18,00	27,10	13,9	33,58	0,51	0,1	4,7	61,1	34,1		35,0	20,2	14,8								0,2	108,0
SN1Pz	CI1	2,70	3,00	SC	19,30	17,30	27,00	11,6	35,93	0,56	9,6	28,1	37,1	25,2		27,3	15,9	11,4								0,1	40,0
SN1Pz	CR1	1,80	2,00	LR	19,00	16,70	26,50	13,8	36,98	0,59	12,4	17,3	41,5	28,8		37,3	17,8	19,5									
SN1Pz	CI2	6,00	6,30	AS	20,60	17,60	27,00	17,0	34,81	0,53	0,9	7,7	54,4	37,0		36,4	20,3	16,1								0,1	69,0
SN1Pz	CR3	13,00	13,30	AS	20,40	17,80	26,90	14,6	33,83	0,51	0,5	7,7	71,7	20,1		36,1	20,0	16,1									
SN1Pz	CI3	10,00	10,30	AS	20,70	18,20	27,00	13,7	32,59	0,48	0,1	7,6	71,6	20,7		35,5	20,4	15,1									
SN1Pz	CR2	7,70	8,00	AS	19,00	16,60	27,30	14,5	39,19	0,64	0,6	4,8	56,6	38,0		36,2	20,2	16,0									
SN2	CR1	19,00	19,30	R	20,20	17,90	27,20	12,8	34,19	0,52	39,3	30,2	17,2	13,3		29,9	14,5	15,4									
SN2	CI1	5,75	6,00	R			27,10				20,7	27,7	33,4	18,2													
SN2	CR2	25,00	25,35	R	21,40	18,90	27,10	13,2	30,26	0,43	16,5	23,0	38,9	21,6		31,0	14,7	16,3									
SN3	CI1	3,00	3,25	ALG	19,50	18,20	26,60	7,1	31,58	0,46	63,9	16,2	14,2	5,7		44,5	18,7	25,8									
SN3	CR3	23,00	23,30	FN	19,90	17,80	26,90	11,8	33,83	0,51	2,3	8,7	72,8	16,2		35,8	20,9	14,9									
SN3	CI3	21,30	21,60	FN	20,20	18,20	26,60	11,0	31,58	0,46	0,3	8,3	75,7	15,7		36,9	21,4	15,5									
SN3	CR2	17,75	18,00	FN	20,00	17,90	27,00	11,7	33,70	0,51	0,9	7,4	62,7	29,0		31,7	21,1	10,6									ļ
SN3	CI2	6,00	6,25	FN	20,90		27,10				0,5	5,6	64,2	29,7		36,7	22,4	14,3									
SN3	CR1	7,40	7,65	FN	20,40	18,40	26,70	10,9	31,09	0,45	0,2	4,2	65,4	30,2		38,6	20,7	17,9									<u> </u>
SN4	CR2	19,00	19,30	FN	22,70	19,30	27,30	17,6	29,30	0,41	6,6	12,6	51,1	29,7		35,5	17,4	18,1									<u> </u>
SN4	CR3	24,10	24,45	FN	21,50	17,70	27,20	21,5	34,93	0,54	0,3	9,8	58,9	31,0		31,3	14,7	16,6									

UP62

Relazione Geotecnica

Indagini Geognostiche e Unità Geotecnica						Propriet	à identificat	tive				Compo	sizione	e granulo	ometrica	Limit	i di Atte	rberg		TD	Т	(CID	T)	k CIU	τχ υυ	E.L	. .L.
Sondaggio	Campione	da	а	Unità geotecnica	γ [kN/m³]	γ _d [kN/m³]	γs [kN/m³]	w [%]	n [%]	ео [-]	Ghiaia [%]	Sabbia [%]	Limo [%]	Argilla [%]	Class. UNI 10006	w∟ [%]	₩₽ [%]	IP [%]	φ[°]	c [kPa]	φ[°]	c [kPa]	φ[°]	c [kPa]	c _u [kPa]	र्ज[MPa]	cu [kPa]
SN4	CI2	10,00	10,30	FN	20,40	18,30	26,70	11,5	31,46	0,46	0,5	9,4	63,7	26,4		39,0	18,3	20,7									
SN4	CI3	20,00	20,30	FN	20,80	18,00	27,10	15,6	33,58	0,51	0,1	7,0	60,8	32,1		36,0	17,9	18,1									
SN4	CI1	3,00	3,35	FNA	20,70	17,60	26,90	17,6	34,57	0,53	1,7	4,1	43,2	51,0		41,2	21,4	19,8								0,1	33,0
SN4	CR1	5,45	5,65	FNA	18,00	15,00	26,80	20,0	44,03	0,79	0,5	3,9	48,7	46,9		44,5	22,4	22,1									

LEGENDA:

Prova TD: prova di taglio diretto;

Prova TX CIU: prova di compressione triassiale consolidata isotropicamente non drenata

Prova TX CID: prova di compressione triassiale consolidata isotropicamente drenata

Prova TX UU: prova di compressione triassiale non consolidata non drenata;

WL limite liquido

WP limite plastico

IP indice plastico

 ϕ ' angolo di attrito in termini di sforzi efficaci

c' coesione in termini di sforzi efficaci

cu coesione in termini di sforzi totali

E.L.L. prova di compressione ad espansione laterale libera

6.2 Terreni di copertura

6.2.1 Terreno vegetale – TV

Il terreno vegetale assume uno spessore generalmente modesto (40-50 cm) ed è costituito di limo sabbioso argilloso talora ghiaioso di colore bruno marrone, con elementi lapidei di varia natura.

6.2.2 Materiali di riporto – TR

Materiali di riporto di varia natura e granulometria si rinvengono localmente, per spessori massimi di circa 1,2 m. Solo lungo il tracciato della Galleria *GA02 Don Cola* il riporto assume spessori considerevoli, fino a un massimo di circa 16 m misurati lungo il sondaggio S16_DH eseguito nell'area di una cava dismessa.

Sei prove penetrometriche SPT effettuate lungo i sondaggi S15_Pz_Amb e S16_DH, entrambi nell'area della suddetta cava, forniscono i seguenti intervalli di variazione delle grandezze N_{30} (N_{SPT}), Dr (densità relativa), ϕ (angolo di resistenza a taglio), E'_{op SPT} (modulo elastico operativo).

 $N_{30} = 14-50;$ Dr = 78-90%; $\phi = 26-36^\circ;$ $E'_{op SPT} = 10-40$ MPa La granulometria è compresa tra il limo con argilla con sabbia e la sabbia ghiaiosa limosa argillosa (v. Figura 6-1).

Figura 6-1: Frazioni granulometriche dei materiali di riporto TR.

Il peso specifico dei grani γ_s ed i limiti di plasticità W_p e di liquidità W_L variano nei seguenti intervalli:

$$\gamma_{s} = 25,3 \div 26,4 \text{ kN/m}^{3}, \qquad W_{p} = 25,4 \div 29,4\%; \qquad W_{L} = 35,1 \div 61,6\%$$

Una prova di permeabilità tipo Lefranc eseguita lungo il sondaggio S16_DH fornisce un valore del coefficiente di permeabilità k dell'ordine di 10-9 cm/s.

6.2.3 Terre rosse – LR

Le "*Terre rosse*" sono costituite di limo sabbioso e sabbia limosa con ghiaia di natura calcarea, di colore rossastro e sono presenti lungo il tracciato fino al km 1+500 circa. Gli elementi lapidei hanno un diametro massimo $d_{max} \cong 6$ cm.

Si rinvengono lungo la prima parte del tracciato a copertura dei termini della formazione calcarenitica.

Il contenuto naturale d'acqua w_n varia tra il 10% ed il 21% ed è sempre minore del limite di plasticità w_p . I limiti di consistenza variano nei seguenti intervalli:

$$W_p = 18 \div 36\%;$$
 $W_L = 28 \div 52\%$

La composizione granulometrica dei terreni LR è compresa tra l'argilla sabbiosa limosa e la ghiaia con sabbia limosa argillosa (rif. Figura 6-2).

I risultati di due prove di taglio diretto consolidate drenate forniscono i seguenti valori di coesione effettiva c' e angolo d'attrito effettivo φ ' (v. Figura 6-3):

c' = 5 – 12 kPa; $\phi' = 24,2^{\circ} - 31,6^{\circ}$.

Dall'elaborazione dei risultati di una prova di compressione edometrica si ricavano i seguenti valori dei parametri di deformabilità:

- indice dei vuoti iniziale $e_0 = 0,73$;
- ✤ coefficiente di comprimibilità C_c = 0,21
- modulo di compressione edometrica E_{ed} = 5,1 MPa (*);
- ✤ coefficiente di compressibilità m_v = 2,0×10⁻⁰¹ MPa⁻¹ (*);
- coefficiente di consolidazione $c_v = 4.3 \times 10^{-04} \text{ cm}^2/\text{s}$ (*);
- coefficiente di permeabilità $k = 8 \times 10^{-09}$ cm/s (*).

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

Relazione Geotecnica

Figura 6-3: Terre rosse LR – Risultati delle prove di taglio diretto CD.

Una prova di permeabilità tipo Lefranc eseguita lungo il foro S1_PZ fornisce un valore del coefficiente di permeabilità $k = 4 \times 10^{-4}$ cm/s.

6.2.4 Detrito a grana fina DTF – Detrito a grana grossa DTG

I terreni detritici si rinvengono generalmente a copertura delle formazioni argillose e lapidee di base e sono originati dall'alterazione e rimaneggiamento dei sottostanti termini a causa di movimenti superficiali e profondi che hanno generato nel tempo i dissesti che si osservano lungo il tracciato.

Detrito a grana fina DTF

Il detrito a grana fina è costituito di argilla limosa sabbiosa, limo argilloso, limo sabbioso, con patine biancastre e ocracee, livelli sabbiosi ed elementi lapidei di varia natura e granulometria, a spigoli parzialmente arrotondati.

La colorazione è variabile dal grigio, al marrone, al rossastro. Il contenuto naturale d'acqua è generalmente prossimo al limite di plasticità.

Si rinviene lungo numerosi sondaggi a partire dal piano di campagna, per spessori compresi tra 3 m e 9 m.

Figura 6-4: Detrito a grana fina DTF lungo il sondaggio S06_PZ tra 0.00 m e 2 m.

Figura 6-5: Detrito a grana fina DTF lungo il sondaggio S07_DH_Amb a 7,00 m.

Relazione Geotecnica

Figura 6-6: Detrito a grana fina DTF lungo il sondaggio S32_DH_Amb a 9,00 m.

La composizione granulometrica è compresa tra l'argilla limosa sabbiosa e la sabbia con ghiaia argillosa limosa (v. Figura 6-7).

Figura 6-7: Frazioni granulometriche del detrito a grana fina DTF.

Il contenuto naturale d'acqua ed i limiti di consistenza variano nei seguenti intervalli:

 $W_{N} = 12,3 \div 28,8\%; \quad W_{p} = 22,8 \div 31,2\%; \quad W_{L} = 34,6 \div 65,9\%$

Da tre prove di taglio diretto CD si ottiene (v. Figura 6-8):

c' = 15,8 – 24,9 kPa;
$$\phi' = 22^{\circ} - 24^{\circ}$$
.

Figura 6-8: Detrito a grana fina DTF – Risultati delle prove di taglio diretto CD.

Da una prova di compressione edometrica si ricava:

- indice dei vuoti iniziale $e_0 = 0,61$;
- coefficiente di comprimibilità $C_c = 0,19;$
- modulo di compressione edometrica E_{ed} = 4,2 MPa (*);
- coefficiente di compressibilità $m_v = 2.4 \times 10^{-01} \text{ MPa}^{-1} (*);$
- coefficiente di consolidazione $c_v = 1.3 \times 10^{-03} \text{ cm}^2/\text{s}$ (*);
- coefficiente di permeabilità k = 3×10⁻⁰⁸ cm/s (*).

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

Dalle prove SPT si ricavano i seguenti intervalli di variazione dei principali parametri:

	N ₃₀ = 14-38;	Dr = 73-100%;	φ = 27-37°;	E' _{op SPT} = 12-45 MPa
--	--------------------------	---------------	-------------	----------------------------------

Il coefficiente di permeabilità k da prove Lefranc varia tra $1,6 \times 10^{-06}$ cm/s e $1,6 \times 10^{-04}$ cm/s (v. Figura 6-9).

SS 121 "Catanese"	
Itinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta	

Relazione Geotecnica

Figura 6-9: Detrito a grana fina DTF – Risultati delle prove di permeabilità tipo Lefranc.

Detrito a grana grossa DTG

Il detrito a grana grossa DTG è stato rinvenuto lungo le verticali S11_PZ_Amb e S22 per spessori modesti (1-2 m).

Si tratta di ghiaia di natura prevalentemente carbonatica variamente frammista a limo e sabbia.

Dalle due prove SPT si ricava:

$$N_{30} = 26 \ e \ 44$$
; $Dr = 89-92\%$; $\phi = 30-36^{\circ}$; $E'_{op \ SPT} = 20-40 \ MPa$.

Sui terreni DTG non sono state eseguite prove di laboratorio.

6.2.5 Alluvioni a grana fina ALF – Alluvioni a grana grossa ALG

Lungo gli alvei attraversati dal tracciato affiorano terreni alluvionali a grana fina (ALF) e a grana grossa (ALG), nel seguito descritti separatamente.

Alluvioni a grana fina ALF

I terreni ALF sono costituiti di limo sabbioso e limo argilloso sabbioso di colore variabile dal grigio al marrone, con livelli di sostanza organica. Sono presenti lungo i sondaggi S06, S09, S21, S23_DH_Amb, S24_PZ_Amb, S45_PZ_Amb e S SN3_PZ per spessori da 2 a 23 m, frequentemente alternate alle alluvioni a grana grossa ALG.

Figura 6-10: Alluvioni a grana fina ALF lungo il sondaggio S06_PZ tra 20,0 m e 22,5 m. La granulometria è compresa tra l'argilla limosa e la sabbia limosa (v. Figura 6-11).

Figura 6-11: Frazioni granulometriche delle alluvioni a grana fina ALF.

Relazione Geotecnica

Il contenuto naturale d'acqua w_n varia tra 8% e 29% ed è generalmente minore del limite di plasticità W_p ; a tratti $W_n > W_p$.

I limiti di plasticità W_p e di liquidità W_L sono compresi nei seguenti intervalli:

 $W_p = 19\% \div 36\%;$ $W_L = 25\% \div 66\%$

II peso γ varia tra 18 kN/m³ e 20 kN/m³.

I risultati di quattro prove di taglio diretto consolidate drenate (v. Figura 6-12) forniscono valori di coesione effettiva c' e angolo d'attrito effettivo φ ' variabili nei seguenti intervalli:

c' = 16 - 39 kPa; $\phi' = 22^{\circ} - 34^{\circ}$.

Figura 6-12 Alluvioni a grana fina ALF – Risultati delle prove di taglio diretto CD.

Da una prova di compressione triassiale UU eseguita sul campione S45-Cl1 prelevato alla profondità di 6 m si ottiene un valore di coesione non drenata Cu pari a 114 kPa.

Dall'elaborazione dei risultati di due prove di compressione edometrica si ricavano i seguenti intervalli di variazione dei parametri di deformabilità:

✤
$$e_0 = 0,77 - 0,81$$

♦
$$C_c = 0,22 - 0,26$$

- modulo di compressione edometrica $E_{ed} = 4,3$ MPa 5,1 MPa (*);
- coefficiente di compressibilità $m_v = 2,0 \times 10^{-01} 2,.3 \times 10^{-01} \text{ MPa}^{-1}(*);$

- ♦ coefficiente di consolidazione $c_v \cong 5 \times 10^{-04} \text{ m}^2/\text{s}$ (*);
- coefficiente di permeabilità $k \approx 1 \times 10^{-08}$ cm/s (*).

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

Le principali grandezze geotecniche (valore N30, densità relativa Dr, angolo di resistenza a taglio ϕ , modulo elastico operativo E'_{op SPT}) ottenute dall''elaborazione di sette prove penetrometriche tipo SPT sono diagrammate in funzione della profondità nei grafici di Figura 6-13 e Figura 6-14.

La densità relativa varia tra il 60% e il 95%. l'angolo di resistenza a taglio ϕ ed il modulo elastico operativo E'_{op SPT} sono compresi nei seguenti intervalli:

$$\phi = 28^{\circ} - 37^{\circ};$$
 E'_{op SPT} = 14 - 46 MPa.

Figura 6-13: Alluvioni a grana fina ALF – Andamento con la profondità di N₃₀ e Dr ricavati dalle prove SPT.

Figura 6-14: Alluvioni a grana fina – Andamento con la profondità di ϕ e E'_{op SPT} ricavati dalle prove SPT.

20

La permeabilità ricavata da cinque prove Lefranc risulta dell'ordine di 10-4 cm/s. In un caso si è ottenuto 5×10^{-06} cm/s (v. Figura 6-15).

Figura 6-15: Alluvioni a grana fina – Risultati delle prove di permeabilità in sito tipo Lefranc.

20

Alluvioni a grana grossa ALG

Le alluvioni a grana grossa sono costituite di ghiaia e sabbia di varia natura, da sciolte a poco addensate, con livelli di limo sabbioso e con presenza di blocchi e trovanti. Gli elementi lapidei sono in genere sono a spigoli arrotondati. In alcuni casi parte della frazione fina è stata dilavata dalle operazioni di carotaggio (v. ad esempio il sondaggio S45_PZ_Amb in Figura 6-17).

Si rinvengono lungo i sondaggi S06_PZ, S24_PZ, S26_DH_Amb, S28_PZ_Amb, S45_PZ_Amb, S22, S47 e SN3_PZ spesso all'interno delle alluvioni fini ALF in livelli non sempre perfettamente identificabili.

Figura 6-16: Alluvioni a grana grossa ALG lungo il sondaggio S06_PZ tra 17 m e 20 m.

Figura 6-17: Alluvioni a grana grossa ALG lungo il sondaggio S45_PZ_Amb tra 10,7 m e 13,0 m.

La granulometria + quella di una ghiaia con sabbia limosa. Una prova di taglio diretto CD ha restituito i seguenti valori:

c' = 20 kPa;
$$\phi' = 23^{\circ}$$
.

Da due prove SPT si ricavano i seguenti valori:

N30 = 26-44%; Dr \approx 90%; ϕ = 30°-36°; E'_{op SPT}= 19-40 MPa.

6.3 Terreni delle formazioni di base

6.3.1 Sabbia calcarenitica - SC

Si tratta di sabbia, sabbia limosa e limo sabbioso di natura calcarenitica, di colore variabile dal giallastro, al biancastro al bruno, con frammenti e noduli di calcarenite di dimensioni anche decimetriche variamente sparsi nella massa.

I termini SC si rinvengono quasi sempre in alternanza alle calcareniti CL, in livelli spesso non facilmente distinguibili (v. ad esempio la foto della cassetta 3 del sondaggio S1_PZ mostrata in Figura 6-18).

Figura 6-18: Sondaggio S01_PZ da 15 m a 20 m. Alternanza di sabbia calcarenitica SC e calcarenite CL

Sono disponibili i risultati di prove di laboratorio eseguite su campioni indisturbati e rimaneggiati, estratti dalla verticali d'indagine S0_PZ, S2, S03_PZ ed S04_DH.

Il peso γ varia tra 15 kN/m³ e 18 kN/m³. La composizione granulometrica è quella di una ghiaia sabbiosa da limosa a debolmente limosa (v. Figura 6-19).

La Figura 6-20 mostra i risultati di una prova di taglio diretto CD dalla quale si ottiene:

Da una prova di compressione edometrica si sono ricavati i seguenti valori:

- ♦ $e_0 = 0,44 0,77$
- ♦ $C_c = 0,16 0,17$
- ✤ modulo di compressione edometrica E_{ed} = 3,6 MPa 4,9 MPa (*);
- coefficiente di compressibilità $m_v = 1.5 \times 10^{-01} 2..8 \times 10^{-01} \text{ MPa}^{-1} (*);$
- coefficiente di consolidazione $c_v \cong 7 \times 10^{-04} \text{ m}^2/\text{s}$ (*);
- ♦ coefficiente di permeabilità $k \approx 1 \times 10^{-08}$ cm/s (*).

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

Figura 6-19: Frazioni granulometriche della sabbia calcarenitica SC.

Figura 6-20 Sabbia calcarenitica SC – Risultati delle prove di taglio diretto.

I risultati di cinque prove penetrometriche SPT sono riportati nella Figura 6-21 e nella Figura 6-22 in funzione della profondità.

Figura 6-21: Sabbia calcarenitica Sc – Andamento con la profondità di N₃₀ e Dr ricavati dalle prove SPT.

Figura 6-22: Sabbia calcarenitica Sc – Andamento con la profondità di ϕ e E'_{op SPT} ricavati dalle prove SPT.

Dalle suddette prove si ricavano i seguenti intervalli di variazione delle principali grandezze geotecniche.

N30 = 23->50; Dr = 72-99%; $\phi = 31-37^{\circ}$; $E'_{op SPT} = 20-50$ MPa.

6.3.2 Limo argilloso – LA

I terreni LA sono costituiti di limo argilloso a tratti sabbioso di colore variabile dall'avana al grigiastro, da consistente a poco consistente, con venature grigie, noduli di sabbia e talora fossili anche in frammenti. Il contenuto naturale d'acqua W_n è generalmente prossimo al limite di plasticità W_p. Sono presenti nella prima parte del tracciato lungo i sondaggi S01_PZ e S02:DH all'interno della

formazione calcarenitica, a partire da una profondità di circa 12-13 m, in livelli di spessore compreso tra 2 m e 6 m.

Figura 6-23: Limo argillosa LA lungo il sondaggio S01_PZ tra 11 m e 13 m.

I limiti di Atterberg determinati su due campioni variano seguenti intervalli:

 $W_p = 21-29\%;$ $W_L = ..49-61\%.$

La composizione granulometrica è compresa tra l'argilla con limo sabbiosa e il limo con argilla sabbioso.

6.3.3 Argille del Flysch Numidico – FN, FNa

A partire all'incirca dal km 3+000 e fino al termine del tracciato sono presenti con continuità le argille del Flysch Numidico FN. Tali termini sono in genere ricoperti da terreni detritici (DTF) o da alluvioni a grana fina e grossa (ALF, ALG).

Si tratta di argilla, argilla marnosa e argillite, di colore grigio, generalmente molto consistente o dura, a tratti intensamente fratturata, con veli di sabbia fina. Nella parte superiore possono rinvenirsi patine di alterazione di colore ocraceo.

La struttura è a scaglie di forma prismatica, da minute a grosse, in quest'ultimo caso spesso variamente compenetrate, da debolmente a ben serrate, a spigoli vivi.

La componente marnosa, osservabile nella foto in Figura 6-26, è dura e presenta frequenti superfici di discontinuità piane e scabre. In altri casi le superfici sono lucide, di forma prismatica, da mediamente a debolmente serrate (v. ad esempio lungo la verticale S24_PZ_Amb).

Figura 6-24 Argilla scagliettata FN prelevata lungo i sondaggi S23_DH_Amb alla profondità di 8.5 m.

Figura 6-25 Argilla scagliettata FN prelevata lungo il sondaggi S35_PZ_Amb alla profondità di 15 m.

Relazione Geotecnica

Figura 6-26 Argilla marnosa FN prelevata lungo il sondaggio S14_DH_Amb.

A tratti si rinvengono livelli di quarzarenite di colore grigio-ocraceo e talora anche patine di dickite (v. Figura 6-27) e livelli arenacei, calcarei e di calcite.

Figura 6-27: Argilla scagliettata FN con spalmature di dickite (S23_DN_ Amb - profondità di 20,5 m).

In considerazione delle loro composizione e struttura, le argille FN del Flysch Numidico posso essere definite come "strutturalmente complesse" e comportano notevoli problematiche in fase di caratterizzazione e definizione dei parametri di resistenza.

Sono disponibili i risultati di prove di laboratorio eseguite su campioni indisturbati e rimaneggiati.

La composizione granulometrica dei terreni FN è compresa tra l'argilla con limo sabbiosa e il limo con argilla sabbioso (v. Figura 6-28).

Figura 6-28: Frazioni granulometriche dell'argilla FN.

In Figura 6-29 si riportano i grafici che illustrano l'andamento del peso dell'unità di volume γ , del contenuto naturale d'acqua W_N e dei limiti di Atterberg W_P e W_L in finzione della profondità.

Il contenuto naturale d'acqua Wn. compreso tra il 9% e il 28%, è sempre minore del limite di plasticità W_P .

I limiti di consistenza variano nei seguenti intervalli:

$$W_{p} = 19\% \div 32\%; \qquad W_{L} = 33\% \div 66\%.$$

Figura 6-29 Argilla FN – Andamento, del contenuto naturale d'acqua e dei limiti di consistenza con la profondità.

Si tratta di argille di plasticità da bassa a media e di attività da bassa a normale.

In Figura 6-30 si riportano i grafici che illustrano l'andamento del peso dell'unità di volume γ , dell'indice dei vuoti iniziale e₀ e del grado di saturazione S in funzione della profondità.

Tali grandezze sopradette variano nei seguenti intervalli:

$$\gamma = 17 \div 20 \text{ kN/m}^3;$$
 $e_0 = 0,39. \div 0,89$ $S = 54\% \div 94\%$

Figura 6-30 Argilla FN – Andamento del peso di volume, dell'indice dei vuoti e del grado di saturazione con la profondità.

Per la determinazione dei parametri meccanici e di deformabilità sono disponibili i risultati di prove di compressione triassiale consolidate non drenate, prove di taglio diretto consolidate drenate, prove di compressione ad espansione libera, prove penetrometriche in situ tipo SPT.

Dalle prove triassiali CIU si ricavano i seguenti intervalli di valiazione di coesione e angolo d'attrito:

c' = 18 - 25 kPa; $\phi' = 25^{\circ} - 29^{\circ}$.

Nel grafico di Figura 6-31 si riportano i risultati di 31 prove di taglio diretto CD e i limiti di variazione di valori, scartando punti non attendibili. Da tale elaborazione risultano i seguenti campi di variazione di c' e φ '.

c' = 15 - 36 kPa; $\phi' = 22^{\circ} - 29^{\circ}$.

Figura 6-31 Argilla FN – Risultati delle prove di taglio diretto CD.

La coesione non drenata determinata attraverso prove triassiali UU e prove di compressione a dilatazione trasversale libera varia tra 80 kPa e 160 kPa

Nel grafico di Figura 6-32 si riporta l'andamento della coesione non drenata Cu ricavata dalle prove SPT. Fino ad una profondità di 6 m si ottengono valori compresi tra 60 kPa e 130 kPa. Più in basso Cu è sempre maggiore di 130 kPa.

٠

٠

♦ $C_c = 0,16 - 0,23$

 $e_0 = 0,50 - 0,88$

*

- modulo di compressione edometrica $E_{ed} = 4 \text{ MPa} 8 \text{ MPa}(*);$
- ✤ coefficiente di compressibilità m_v = 0,1 0,3 MPa⁻¹ (*);
- ♦ coefficiente di consolidazione $c_v \cong 10^{-04} \text{ m}^2/\text{s}$ (*);
- ♦ coefficiente di permeabilità $k \cong 10^{-09} 10^{-08} \text{ cm/s}$ (*).

I risultati delle prove edometriche sono riassunti di seguito

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica.

In Figura 6-32 sono diagrammati le curve di compressione edometrica ed i valori del modulo edometrico per ciascun campione preso in esame. In Figura 6-33 si riportano i grafici con l'andamento del coefficiente di consolidazione e il coefficiente di permeabilità.

Figura 6-32: Argilla FN – Coesione non drenata da prove SPT in funzione della profondità.

Figura 6-33: Argilla FN – Curve edometriche e modulo di compressione edometrica.

Figura 6-34: Argilla FN – Curve edometriche e modulo di compressione edometrica.

Il coefficiente di permeabilità k determinato in sito tramite prove Lefranc è compreso tra 10-7 e 10-5 cm/s (v. Figura 6-35).

Figura 6-35: Argilla FN-FNA – Coefficiente di permeabilità da prove Lefranc.

Da nove prove pressiometriche in foro si ricavano i seguento intervalli di variazione del modulo pressiometrico M_{press} e del modulo di taglio M_{taglio}:

 $M_{press} = 19,3 - 38,2 \text{ MPa};$ $M_{taglio} = 7,2 - 14,4 \text{ MPa}.$

La parte superiore FNA delle argille del Flysch Numidico è stata rinvenuta a profondità comprese tra 1,0 e 5,50 m (sondaggi S12_PZ_Amb, S14_S14_DH_Amb, D17_PZ, D18_DH_Amb, D20_DH_Amb, D24_PZ_Amb, S26_DH_Amb, S30 S48), generalmente al di sotto della coltre detritica. Lo spessore massimo è pari a 7 m.

L'argilla si presenta alterata, di colore variabile dal marrone al grigio, con depositi carbonatici e di calcite, il contenuto naturale d'acqua W_N è generalmente minore del limite di plasticità W_P .

La struttura è scagliettata, con scaglie minute, a spigoli vivi, variamente orientate, da mediamente a ben serrate (v. ad esempio Figura 6-36 A), ovvero scaglie grosse di forma prismatica variamente disposte nella massa argillosa (v. Figura 6-36 B),

Relazione Geotecnica

Figura 6-36 Argilla FNA – A) sondaggi S33_PZ_Amb prof. di 10 m; B) sondaggi S33_PZ_ Amb prof. di 2,4 m.

La granulometria è compresa tra l'argilla con limo sabbiosa e il limo con sabbia con argilla (v. Figura 6-37).

Figura 6-37: Frazioni granulometriche dell'argilla FNA.

SS 121 "Ca Itinerario Pa	atanese" alermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta	Sanas
UP62	Relazione Geotecnica	GRUPPO FS ITALIANE

Il contenuto d'acuq e i limiti di Atterberg variano nei seguenti intervalli:

 $W_{N} = 14\% \div 27\%; \qquad W_{p} = 21\% \div 29\%; \qquad W_{L} = 36\% \div 60\%.$

Si tratta di argille di plasticità medio-bassa e di attività da bassa a normale.

Da 10 prove di taglio CD (v. Figura 6-38) si ricava.

 $\label{eq:constraint} c' = 10 - 34 \ \text{kPa}; \qquad \phi' \cong 24^\circ.$

Figura 6-38 Argilla FN – Risultati delle prove di taglio diretto CD.

La coesione non drenata ottenuta da prove triassiali UU e da prove di compressione semplice varia tra 100 kPa e 240 kPa. Dalle prove SPT si ricava Cu = 20-140 kPa (v. Figura 6-39).

Relazione Geotecnica

าลร

Figura 6-39: Argilla FNA – Coesione non drenata da prove SPT in funzione della profondità.

I risultati delle prove edometriche sono riassunti di seguito

- ✤ e₀ = 0,62 0,70
- ♦ $C_c = 0,13 0,23$
- ✤ modulo di compressione edometrica E_{ed} = 3,3 MPa 6,7 MPa (*);
- ✤ coefficiente di compressibilità m_v = 0,15 0,33¹ MPa⁻¹ (*);
- ♦ coefficiente di consolidazione $c_v \cong 1 \times 10^{-03} 3 \times 10^{-04} \text{ m}^2/\text{s}$ (*);
- ♦ coefficiente di permeabilità $k \approx 1 \times 10^{-08}$ cm/s (*).

(*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

6.3.4 Argilla e argilla marnosa – AM

I terreni AM sono stati rinvenuti lungo le verticali S05_PZ_Amb e S06_PZ a partire da una profondità di 21-23 m. Si tratta di argilla di colore grigio scuro a consistenza marnosa. A tratti la struttura è a scaglie di piccole dimensioni, di forma prismatica, con superfici debolmente lucide. Il contenuto naturale d'acqua ed i limiti di consistenza variano nei seguenti intervalli:

 $W_{N} = 12 - 14\%; \qquad \qquad W_{p} = 24 - 28,2\%; \qquad W_{L} = 34 - 46\%$

I risultati di due prove edometriche sono riassunti di seguito

- ♦ $e_0 \cong 0,45$
- ✤ C_c = 0,17 0,31
- ♦ modulo di compressione edometrica $E_{ed} \cong 7,5$ MPa (*);
- ✤ coefficiente di compressibilità m_v = 0,01 MPa⁻¹ (*);
- coefficiente di consolidazione $c_v = 1 \times 10^{-04} \text{ m}^2/\text{s} 1 \times 10^{-03} \text{ m}^2/\text{s}$ (*);
- coefficiente di permeabilità $k = 1 \times 10^{-09} \text{ cm/s } 1 \times 10^{-08} \text{ cm/s } (*).$
 - (*) valori determinati nell'intervallo di carico corrispondente alla pressione litostatica

6.3.5 Marna argillosa e marna calcarea – CM

I termini CM sono stati rinvenuti lungo il sondaggio S07_DH_ Amb, eseguito in corrispondenza della galleria GN1, s profondità compresa tra 6,5 m e 17,50 m, Sono anche presenti lungo la verticale S11_PZ_Amb fino ad una profondità di 6,5 m. In entrambi i casi sono ricoperti da modesti spessori di terreni detritici.

Figura 6-40: Marna argillosa CM lungo il sondaggio S7_DH_ Amb tra 7,50 m e 10,50 m.

Si tratta di marna argillosa, marna calcarea, calcare marnoso, spesso in alternanza, di consistenza lapidea, a frattura concoide. La colorazione è variabile dal grigio, al verse, al rossastro, al violaceo, con bande e venatura rosa. A tratti sono presenti discontinuità da sub-verticali a 45°, talora cementate da calcite secondaria.

Talora i termini CM hanno tessitura a scaglie grosse, variamente orientate, debolmente serrate, come si può osservare, ad esempio, in Figura 6-41.

Relazione Geotecnica

Figura 6-41: Sondaggio S7_DH_ Amb. Profondità a 9 m – Marna argillosa CM con tessitura scagliosa.

La granulometria è quella di una sabbia con limo o limosa ghiaiosa argillosa.

Figura 6-42: Frazioni granulometriche della marna argillosa CM.

Il contenuto naturale d'acqua ed i limiti di consistenza variano nei seguenti intervalli:

 $W_{N} = 11 \div 21\%; \qquad W_{p} = 22 \div 28\%; \qquad W_{L} = 28 \div 43\%.$

Si tratta di argille di plasticità da bassa a media.

6.3.6 Argilla sabbiosa - AS

L'argilla AS è presente solo lungo il sondaggio SN1 a partire da uina profondità di 5,5 m, fino a fondo foro. Si tratta di argilla sabbiosa di colore marrone da moderatamente consistente a consistente. Sono presenti livelli a spessore di radiolariti fratturate di colore rossastro.A tratti la struttura è scagliettata.

Il contenuto naturale d'acqua ed i limiti di consistenza variano nei seguenti intervalli:

 $W_{N} = 13 \div 16\%; \qquad W_{p} \cong 20\%; \qquad W_{L} \cong 35\%.$

Da 2 prove di taglio si ricava.

c' = 14 – 19 kPa; $\phi' \cong 20^{\circ} - 22^{\circ}$.

Da una prova pressiometrica in foro si ottiene:

 $M_{\text{press}} = 15,3 \text{ MPa};$ $M_{\text{taglio}} = 5,7 \text{ MPa}.$

6.4 Rocce lapidee

6.4.1 Calcarenite CL – CFC

Nel tratto iniziale del tracciato si rinvengono rocce calcarenitiche che si differenziano soprattutto per il grado di cementazione.

Fino a circa il km 1+000 è presente calcarenite a grana medio grossa, debolmente cementata, di colore variabile dal giallastro al biancastro, indicata con la sigla "CL".

La roccia è stata incontrata fino ad una profondità massima di 30 m lungo i sondaggi S01_PZ, S02_DH, S03_PZ e S04_DH, spesso alternata alla sabbia calcarenitica Sc in livelli non sempre facilmente distinguibili, ovvero ai termini calcarenitici CFC, sui quali si riferisce nel successivo paragrafo..

I termini CL sono stati spesso prelevati come ghiaia con sabbia a causa del basso grado di cementazione.

L'indice RQD è sempre risultato quasi sempre pari a zero (v. Tabella 6-3).

Relazione Geotecnica

Sondaggio	da m	a m	RQD [%]	SIGLA
S1	14.2	30	0	Sc+CL
S2	13.5	24	0	CL
S2	27	30	0	CL
S3	11	15	0	CL
S4	1.5	4.7	0	CL
S5	7.8	11	0	CL
S5	11	12	13	CL
S5	13	21	0	Sc+CL

Tabella 6-3: Calcarenite CL – Valori dell'indice di qualità della roccia RQD.

La resistenza a rottura per compressione monoassiale è estremamente variabile (σ_c = 2-27 MPa – v. Figura 6-43).

Figura 6-43: Calcarenite CL, CFC – Risultati delle prove di rottura per compressione monoassiale.

La permeabilità misurata in sito varia tra 10⁻³ cm/s e 10⁻² cm/s (v. Figura 6-44).

SS 121 "Ca Itinerario Pa	Sanas	
UP62	Relazione Geotecnica	GRUPPO FS ITALIANE

Figura 6-44: Calcarenite CL, CFC – Risultati delle prove di permeabilità in sito..

Calcarenite da mediamente a ben cementata - CFC

La calcarenite CFC si presenta da mediamente a ben cementata, di colore giallastro rossastro, molto porosa e vacuolare, con cavità di forma da circolare ad allungata, del $d_{max} \cong$ -1 cm, talora riempite di terreno residuale (v. Figura 6-45).

Figura 6-45: Calcarenite CFC lungo il sondaggio S5_PZ_ Amb tra 1,00 m e 6,50 m.

Relazione Geotecnica

L'indice RQD	è sempre risultat	o quasi sempre	pari a zero (v.	Tabella 6-3).
--------------	-------------------	----------------	-----------------	---------------

Sondaggio	da m	a m	RQD [%]	SIGLA
S2	9.8	11	0	CFC
S2	24	27	0	CFC
S3	4.5	5.6	0	CFC
S3	9	11.5	0	CFC

Tabella 6-4: Calcareniti CFC – Valori dell'indice di qualità della roccia RQD.

La resistenza a rottura per compressione monoassiale risulta pari a σ_c = 5-8 MPa (v- Figura 6-43) La permeabilità misurata in sito varia tra 10⁻⁵ cm/s e 10⁻³ cm/s (v. Figura 6-44).

6.4.2 Calcari– Cf

I calcari indicati con la sigla Cf appartengono alla Fm. Fanusi e sono stati rinvenuti lungo il sondaggio S11_PZ_ Amb a partire da una profondità di 6,5 m, al di sotto dei termini CM e lungo le perforazioni S15_PZ_Amb e S16_DH al di sotto di materiali di riporto (TR).

Si presentano di colore variabile dal grigio al biancastro, intensamente fratturati e dolomitizzati, con cavità di dimensioni anche decimetriche riempite di terreno residuale. Nel sondaggio S11_PZ_ Amb le cavità raggiungono un'altezza massima dell'ordine del metro. Nello stesso sondaggio, tra 7,0 m e 8,7 m circa sono presenti discontinuità aperte, inclinate di circa 20° rispetto all'asse della perforazione, con superfici scabre con depositi di calcite secondaria.

Laddove la roccia è molto fratturata, è stata carotata come ghiaia grossa con sabbia o sabbiosa a tratti limosa (v. ad esempio il sondaggio S11_PZ_ Amb tra 25,5-30,0 m in Figura 6-46), ovvero come sabbia grossa limosa.

Figura 6-46: Calcari Cf lungo il sondaggio S11_PZ_ Amb tra 25,50 m e 30,00 m.

L'indice RQD è estremamente variabile in dipendenza del grado di fratturazione, con valori compresi tra zero ed un massimo del 22% misurato nel sondaggio S11_PZ_ Amb a10,5 m (v. Tabella 6-1).

Sondaggio	da m	a m	SIGLA	RQD [%]
S11_PZ_Amb	6.5	9.2	Cf	4
S11_PZ_Amb	9.2	10.5	Cf	18
S11_PZ_Amb	10.5	12.5	Cf	22
S11_PZ_Amb	12.9	16	Cf	5
S11_PZ_Amb	16.8	18	Cf	0
S11_PZ_Amb	18	20	Cf	10
S11_PZ_Amb	20	30	Cf	0
S15_PZ_Amb	5	30	Cf	0
S16_DH	16.3	23.3	Cf	0
S16_DH	23.3	26	Cf	4
S16_DH	26	30	Cf	0

Tabella 6-5: Calcari Cf – Valori dell'indice di qualità della roccia RQD.

Il coefficiente di permeabilità da prove in sito varia tra 10⁻⁴ cm/s e 10⁻³ cm/s.

6.4.3 Calcari - C

Il calcare C è stato rinvenuto lungo numerosi sondaggi, spesso fino a fondo foro Si presenta di colore grigio chiaro, a grana molto fina, compatto e ben cementato, talora vacuolare, con patine di ossidazione rossastre e violacee.

Figura 6-47: Calcare C lungo il sondaggio S8_PZ_Amb tra 6,70 m e 12,00 m.

Relazione Geotecnica

Lungo numerose verticali la roccia è molto fratturata e interessata da discontinuità variamente orientate, chiuse ed aperte, con superfici scabre, da ondulate a irregolari, con patine di alterazione giallastre e rossastre. Alcune discontinuità sono cementate da materiali di varia natura (sabbia, calcite, etc.), come ad esempio mostrato nella foto in Figura 6-48.

Figura 6-48: Calcare C lungo il sondaggio S8_PZ_Amb a 12,80 m. Discontinuità riempite da materiali di varia natura

A causa dell'elevato grado di fratturazione il calcare C è stato spesso prelevato in elementi delle dimensioni della ghiaia grossa e dei blocchi (v. ad esempio il sondaggio S08_PZ_ Amb tra 2,50 m e 6,00 m in Figura 6-49), con valori dell'indice RQD bassi o addirittura pari a zero.

Figura 6-49: Calcare C lungo il sondaggio S8_PZ_ Amb tra 2,50 m e 6,00 m.

In corrispondenza dei sondaggi S3_PZ e S4_DH i termini C sono costituiti di breccia calcarea di colore grigio e sono stati prelevati come sabbia ghiaiosa a causa dell'azione meccanica del

Relazione Geotecnica

carotiere, con spezzoni di carota di consistenza lapidea (v. Figura 6-50). In questi casi l'indice di qualità della roccia RQD è sempre risultato pari a zero.

Figura 6-50: Breccia calcarea C lungo il sondaggio S3_PZ tra 21,0 m e 26,5 m.

Lungo la verticale S07_Amb, tra 22,7 m -27 m, il calcare è stato prelevato come sabbia ghiaiosa limosa di colore marrone (v. Figura 6-51).

Figura 6-51: Calcare C lungo il sondaggio S7_DH_ Amb tra 22,50 m e 27,00 m.

L'indice di qualità RQD è compreso tra 0% e 79% (v. .Tabella 6-6)-

Sondaggio	da m	a m	RQD [%]	SIGLA
S3	15	30	0	С
S4	8	28.7	0	С
67	19	20	22	С
31	20	21.3	58	С

Relazione Geotecnica

Sondaggio	da m	a m	RQD [%]	SIGLA
	21.3	22.8	18	С
	22.8	24	28	С
	24	27	3	С
	27	28.7	8	С
	28.7	30	50	С
	1	2.5	11	С
	2.5	4	8	С
	4	6	5	С
S8	6	8.5	31	С
	8.5	10	79	С
	10	12	66	С
	12	20	16	С

Tabella 6-6: Calcari C – Valori dell'indice di qualità della roccia RQD.

In Figura 6-52 sono riportati i risultati delle prove di compressione monoassiale.

Figura 6-52: Calcare C – Risultati delle prove di rottura per compressione monoassiale.

La resistenza a rottura σ_c ed i moduli di Young tangente Et e secante Es variano nei seguenti intervalli:

 σ_c = 25 – 103 MPa; Et = 20 – 40 GPa; Es = 19 – 38 GPa

La permeabilità misurata in sito varia tra 10⁻⁵ cm/s e 10⁻² cm/s (v. Figura 6-53)..

Figura 6-53: Calcare C – Risultati delle prove di permeabilità in sito..

6.4.4 Radiolariti – R

Le radiolariti sono state carotate lungo le verticali S08_PZ_Amb, al di sotto dei calcari C, e S09_PZ al di sotto della calcarenite CL. In entrambi i casi la roccia è presente fino a fondo foro (30 m). Sono state inoltre incontrate lungo la verticale SN2 fin dal piano di campagna.

La roccia è intensamente tettonizzata e alterata. Per tale motivo risulta prelevate nelle dimensioni della ghiaia fina e della sabbia grossa in matrice limosa, di colore prevalentemente nerastro.

Figura 6-54: Radiolariti R lungo il sondaggio S9_PZ tra 12,00 m e 17,00 m.

Lungo il sondaggio S9_PZ, a partire da una profondità di circa 17,50 m, la roccia è stata prelevata come ghiaia e sabbia in matrice limosa di colore grigio, ovvero come sabbia ghiaiosa limosa di colore grigio scuro.

Figura 6-55: Radiolariti R lungo il sondaggio S9_PZ tra 22,70 m e 29,00 m.

Talora si rinvengono elementi lapidei delle dimensioni della ghiaia grossa (v. ad esempio in Figura 6-54 e Figura 6-55; sondaggio S9_PZ prof. 16-17 m e prof. 27,5-28,0 m).

La percentuale di carotaggio è sempre risultata molto bassa; l'indice RQD pari a zero, tranne l'intervallo 12-15 m lungo il sondaggio S9_PZ, dove si è ottenuto RQD = 5%. L'elemento di consistenza lapidea presente in questo intervallo è di colore grigio, a grana fina.

Sondaggio	da m	a m	SIGLA	RQD [%]
S8	20	30	R	0
S9	12	15	R	5
S9	15	30	R	0
SN2	0,5	30	R	0

Tabella 6-7: Radiolariti R – Valori dell'indice di qualità della roccia RQD.

La permeabilità misurata in sito è risultata dell'ordine di 10-5 cm /s.

Da una prova pressiometrica in foro si ottiene:

$$M_{\text{press}} = 36,4 \text{MPa};$$
 $M_{\text{taglio}} = 13,7 \text{ MPa}.$

6.4.5 Quarzosiltiti - Q

Quarzosiltiti e quarzareniti di colore grigiastro, a grana fina, si rinvengono spesso intercalate alle argille FN del Flysch Numidico ed in alcuni casi costituiscono veri e propri livelli (v. ad esempio sondaggi S25_PZ_ Amb; S28_PZ_ Amb; S36_DH_ Amb).

Presentano discontinuità chiuse e aperte, variamente orientate, con superfici piane e poco scabre, ossidate nei livelli più superficiali, con patine ocracee di ossidazione (v. Figura 6-56). e altri sparsi in FN.

In Tabella 6-8 si riportano i valori dell'Indice RQD della roccia.

Sondaggio	da m	a m	SIGLA	RQD [%]
S25	17	18.5	Q	18
S25	20	21	Q	32
S28	14.5	15.5	Q	22
S36	4.8	6.1	Q	8

Tabella 6-8: Quarzosiltiti Q – Valori dell'indice di qualità della roccia RQD.

La resistenza a rottura è risultata estremamente variabile in dipendenza del grado di fratturazione della roccia, con valori di σ_c compresi tra pochi MPa e quasi 100 MPa.

Figura 6-56: Quarzosiltiti Q lungo il sondaggio S36_DH_Amb a 6,3 m.

6.5 Falda

Si allegano in Tabella 6-9 le letture ai piezometri installati lungo i fori di sondaggio eseguite nel corso della I fase di indagini del 2021.

Relazione Geotecnica

Sondaggio	Data	Quota da pc.	Sondaggio	Data	Quota da pc
S01	30.07.21	28.80	S03	28.07.21	28.50
	27.08.21	28.90		27.08.21	asciutto
	27.09.21	28.60			
	08.10.21	27.90			
	28.10.21	27.80			
S05	08.08.21	22.50	S06	09.08.21	4.62
	20.09.21	21.00		20.08.21	4.70
	27.09.21	20.80		09.10.21	3.20
	08.10.21	20.30		20.10.21	2.90
	28.10.21	20.70		20.10.21	
<u>S08</u>	15.09.21	29.60	S09	20.10.21	24.40
811	15.09.21	Asciutto	812	26.08.21	3.60
	08.10.21	Asciutto		07.09.21	3.90
				29.09.21	3.80
				07.10.21	2.90
				25.10	1.50
S13	27.08.21	12.20	S15	20.08.21	29.10
	07.09.21	13.50		08.10.21	28.90
	28.09.21	13.70			
	07.10.21	11.40			
	25.10.21	6.50			
S17	20.08.21	23.10	S25	04.10.21	9.40
	27.08.21	24.30		18.10.21	7.80
	29.09.21	24.35		28.10.21	7.20
	07.10.21	22.00			
	25.10.21	18.60			
S28	28.09.21	4.10	S33	21.09.21	16.60
	04.10.21	3.90		28.09.21	16.80
	18.10.21	3.80		04.10.21	16.50
	28.10.21	3.10		18.10.21	14.10
				28.10.21	13.50
S35	28.09.21	8.20	S40	04.10.21	13.40
	04.10.21	8.40		08.10.21	13.70
	08.10.21	7.60		18.10.21	12.80
	18.10.21	7.30		28.10.21	12.00
	28.10.21	7.10			
S42	15.09.21	8.10			
	27.09.21	8.15			
	08.10.21	7.20			
	18.10.21	6.80			
	25.10.21	6.00			

Tabella 6-9 Letture piezometriche eseguite nel corso della prima fase delle indagini svolte nel 2021.

6.6 Caratterizzazione geotecnica dei terreni

Di seguito sono riportati in sintesi i parametri geotecnici che è possibile attribuire ai terreni che costituiscono il volume significativo ai fini della progettazione delle opere e già ampiamente discussi nei paragrafi precedenti.

In Tabella 6-10 si riportano i valori minimi e-medi dei parametri fisico-meccanici dei terreni da utilizzare per il dimensionamento geotecnico e strutturale delle fondazioni delle opere d'arte. In particolare, sono indicati i valori delle seguenti grandezze:

- > peso dell'unità di volume γ ;
- coesione effettiva c';

- > angolo d'attrito effettivo φ' ;
- coesione non drenata C_u;
- modulo elastico operativo E'op.

Side	Ý	C'	φ'	Cu	E'op
Sigia	kN/m³]	[kPa]	[°]	[MPa]	[MPa]
LR	18,5-19,5	0-5	20-23	-	5-10
DTF	18,5-19,5	0	22	20-40	5-10
DTG	18,5-19,5	0	22-24	-	5-10
ALF	18-19	5-10	20-22	40-50	5-10
ALG	21-22	0	32-35	-	10-20
SC	18,5-19,5	0-5	30-32	-	30-40
LA	19-20	5-15	22-25	20-50	40-50
FNA	20-20,5	15-20	22-23	80-150	20-30
FN	20-20,5	15-30	22-28	150-250	30-50
AS	20-20,5	15-30	22-25	50-150	20-50
AM	20-20,5	15-30	22-28	150-250	30-50

Tabella 6-10 Parametrici fisico-meccanici dei terreni di fondazione LR.

I parametri indicati nella tabella per il detrito a grana fina DTF si riferiscono a zone non interessate da dissesti. I valori delle caratteristiche meccaniche da utilizzare per il progetto degli interventi di protezione delle opere che ricadono in aree soggette a dissesti sono stati stimati mediante backanalysis (v. paragrafo 6.6.1).

Ai fini della caratterizzazione geotecnica si è fatto riferimento ad un numero di verticali di indagine pari a 2 per i termini ALG, AM, Cf, CM, TR, pari a 3 per i termini CFC, pari a 5 per i termini DTF e LR, pari a 6 per i termini CL e SC, superiore a 10 per i termini FN e FN.

6.6.1 Caratterizzazione geotecnica dei terreni DTF

Per il dimensionamento degli interventi di protezione e salvaguardia delle opere in progetto che ricadono in aree coinvolte da dissesti, in particolare i viadotti, è stata effettuata una stima dei valori dei parametri di resistenza residui da attribuire ai terreni interessati dai movimenti. I rilevi geologici e i risultati delle indagini geognostiche hanno evidenziato che nelle citate aree sono presenti terreni detritici a grana fina, identificati con la sigla DTF, le cui caratteristiche geotecniche sono descritte nel paragrafo 6.2.4.

I dissesti presi in esame possono essere associati essenzialmente a meccanismi di rottura lungo superfici di rottura pseudo-circolari. Altri casi si riferiscono a pendii in cui il contatto tra i terreni

DTF, sede del movimento, e le sottostanti formazioni di base corre all'incirca parallelo rispetto al piano di campagna, facendo in questo caso riferimento al "**pendio indefinito**".

In considerazione dell'ampia variabilità delle forme di dissesto riconosciute, sono stati presi esame i fenomeni che si sono ritenuti rappresentativi delle condizioni più sfavorevoli sulla stabilità dei pendii in termini di geometria, posizione rispetto alle opere in progetto, posizione della falda e influenza post-operam del tracciato.

Ai fini del calcolo dei parametri meccanici residui (in particolare del valore dell'angolo d'attrito) si è proceduto ad effettuare le verifiche di stabilità delle aree in oggetto tramite *back analysis*, imponendo il pendio in condizioni di stabilità prossime all'equilibrio limite (coefficiente di sicurezza pari all'unità) ed ipotizzando un valore di coesione pari a zero per i terreni DTF. La falda è stata ipotizzata coincidente con il piano di campagna.

Gli schemi di calcolo per le verifiche svolte tramite modellazione software, riportati in Appendice B, sono le sezioni utilizzate nelle verifiche e maggiormente rappresentative del singolo dissesto.

I calcoli di stabilità per superfici circolari sono stati eseguiti seguendo le procedure descritte al Capitolo 13, al quale si rimanda per i dettagli.

Nella Tabella 6-11 sono indicati, per ciascun dissesto preso in esame, il meccanismo di rottura ipotizzato, lo spessore massimo della coltre e il valore dell'angolo d'attrito residuo determinato attraverso la back analysis.

- ID frana;
- il meccanismo di rottura (schema 1 *pendio indefinito*, schema 2 *superficie di scivolamento pseudo-circolare*);
- il tratto di carreggiata sinistra e destra interessato;
- la distanza in m dal tracciato;
- l'angolo di resistenza al taglio residuo ϕ_r ; determinato attraverso la back analysis.
- lo spessore massimo del terreno DTF.

In alcuni casi le analisi hanno restituito valori dell'angolo di resistenza al taglio residuo Φ ' che si ritengono poco cautelativi. Pertanto, sono stati stimati valori "di progetto Φ_{PR} " dell'angolo d'attrito, riportati nell'ultima colonna della Tabella 6-11.

ID DISSESTI	Meccanismo di rottura	Progr. dx iniziale	Progr. dx finale	Distanza della frana dal tracciato [m]	Spessori massimi coltre [m]	φ' [°] Back Analysis	φ' _{₽r} [°] Progetto
D_06	2	1+820	1+920	17	4-5	26	24
D_07	2	1+880	2+000	Il corpo di frana interseca il tracciato	5-6	26	24

UP62

Relazione Geotecnica

ID DISSESTI	ID Meccanismo DISSESTI di rottura		Progr. dx finale	Distanza della frana dal tracciato [m]	Spessori massimi coltre [m]	φ' [°] Back Analysis	φ' _{pr} [°] Progetto
D_08	2	1+820	2+040	Il corpo di frana interseca il tracciato	6-7	22	22
D_17	2	3+420	3+420	Il corpo di frana interseca il tracciato	5-7,5	18	18
D_20	1	4+220	4+420	Il corpo di frana interseca il tracciato	5-6	21	21
D_21	2	4+360	4+740	Corpo di frana intersecante il tracciato	4-5	20	20
D_27	2	4+820	4+980	Il corpo di frana interseca il tracciato	10-12,5	26	24
D_29	2	6+200	6+240	Il corpo di frana interseca il tracciato	3-4	16	16
D_29bis	2	6+360	6+380	Il corpo di frana interseca il tracciato	6-7	26	24
D_32	1	9+100	9+320	Il corpo di frana interseca il tracciato	5-6	17	17
D_34	1	10+440	10+540	30	4-5	24	22
D_35	1	10+820	10+920	Il corpo di frana interseca il tracciato	6-7	21	21
D_38	1	12+100	12+280	Il corpo di frana interseca il tracciato	3-4	26	24
D_39	2	14+600	14+800	Il corpo di frana interseca il tracciato	9-10	26	24
D_40	2	15+040	15+080	Il corpo di frana interseca il tracciato	4-4,5	26	24
D_42	1	15+510	15+880	Il corpo di frana interseca il tracciato	10-15	17	17
D_44	1	16+060	16+200	35	6-7	22	22

Tabella 6-11 Risultati dei calcoli mediante back analysis.

Nei confronti dei dissesti assimilabili allo schema di "Pendio indefinito", il valore dell'angolo d'attrito residuo è stato stimato considerando le condizioni di acqua in movimento in cui il coefficiente di sicurezza è calcolabile dalla seguente relazione:

$$FS = \frac{Tf}{T} = \frac{N' \cdot tan\varphi'}{\gamma sat \cdot z \cdot sin\beta} = \frac{\gamma'}{\gamma sat} \cdot \frac{tan\varphi'}{tan\beta}$$

Posto FS \leq 1 e noto il β medio lungo il pendio si desume i valori di φ '_R tramite formula inversa.

Relazione Geotecnica

ID DISSESTI	γsat	γ	β	FS falda movimento	ØR	FS assenza di falda
D_20	19	9	10	1,0	21	2,2
D_32	19	9	8	1,0	17	2,2
D_34	19	9	12	1,0	24	2,1
D_35	19	9	10	1,0	21	2,2
D_38	19	9	14	1,0	28	2,1
D_42	19	9	8	1,0	17	2,2
D_44	19	9	11	1,0	22	2,1

Tabella 6-12: Parametri di calcolo back analysis per schemi con pendio indefinito-

6.7 Caratterizzazione geo-meccanica delle rocce

Per la caratterizzazione geo-meccanica delle rocce si è fatto riferimento al criterio di rottura generalizzato di Hoek-Brown (1988, 2002), che può essere espresso con la relazione:

$$\boldsymbol{\sigma}_{_{1}} = \boldsymbol{\sigma}_{_{3}} + \boldsymbol{\sigma}_{_{\mathrm{ci}}} \cdot \left(\boldsymbol{m}_{_{\mathrm{b}}} \cdot \frac{\boldsymbol{\sigma}_{_{3}}}{\boldsymbol{\sigma}_{_{\mathrm{ci}}}} + s\right)^{\mathrm{a}}$$

dove:

- σ₁ e σ₃ sono gli sforzi principali efficaci massimi e minimi a rottura;
- σ_{ci} : è la resistenza a compressione monoassiale del materiale roccia intatto;
- m_b, s, a sono coefficienti che dipendono dalle caratteristiche dell'ammasso roccioso, che possono essere calcolati con le seguenti formule:

$$m_{b} = m_{i} \cdot \exp\left(\frac{\text{GSI} - 100}{28 - 14\text{D}}\right)$$
$$s = \exp\left(\frac{\text{GSI} - 100}{9 - 3\text{D}}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{-\frac{\text{GSI}}{15}} - e^{-\frac{20}{3}}\right)$$

dove;

- m_i è una costante della roccia intatta. In assenza di prove triassiali, i valori adottati si ricavano da dati di letteratura in funzione della composizione litologica;
- per il parametro "a", Hoek Brown suggerisce di assumere un valore pari a 0,5 per GSI < 25, mentre per roccia intatta s = 1.

Per applicare il criterio occorre stimare, le seguenti grandezze:

- > la resistenza a compressione monoassiale del materiale roccia intatto σ_{ci} ;
- > il valore della costante mi del materiale "roccia intatta";
- > il valore dell'indice GSI (Geological Strength Index) dell'ammasso roccioso;
- Io "stato di disturbo", in termini di grado di fratturazione e allentamento dell'ammasso, sia indotto dal metodo di scavo che dovuto alle deformazioni incassate.

Per la stima della resistenza a compressione monoassiale della roccia si è fatto riferimento ai risultati delle prove di compressione e di carico puntuale eseguite nel corso delle varie campagne di indagini. In assenza di prove si è fatto riferimento a dati ricavati dalla letteratura regionale

Il Geological Strength Index (GSI) introdotto da Hoek et al. (1995) mira a stimare la riduzione della resistenza degli ammassi rocciosi per diverse condizioni geologiche. Il valore del GSI è correlato alla struttura dell'ammasso roccioso e alle condizioni della superficie di discontinuità della roccia e può essere determinato dal valore della resistenza a compressione, dall'Indice di qualità RQD (Rock Quality Designation), oppure, quando possibile, dalle caratteristiche delle discontinuità dell'ammasso roccioso (spaziatura, apertura, etc.). L'indice GSI può anche essere correlato all'indice RME di Bieniawski. Nel presente caso sono stati utilizzati l'indice RQD e gli abachi forniti da Hoek, che si riportano nelle figure successive, validi per rocce tenere e per rocce fratturate.

Il coefficiente D è un fattore di disturbo che tiene conto del decadimento dei parametri in funzione dello stato deformativo, oppure artificialmente indotto per le modalità con cui si interviene sull'ammasso roccioso. Tale coefficiente viene valutato sulla base di considerazioni del tutto qualitative. Può variare tra 0 e 1 per le gallerie e tra 0,7 e 1 nel caso di pendii e fronti di scavo. Un valore uguale all'unità indica il massimo grado di disturbo. Il valore minimo di D per i pendii e i fronti di scavo pari a 0,7 tiene conto della riduzione di resistenza d'ammasso nel passaggio dalla scala dell'affioramento a quella del versante.

SS 121 "Catanese" Itinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta

UP62

Relazione Geotecnica

GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek. E, 2000) From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis. COMPOSITION AND STRUCTURE	VERY GOOD - Very rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or filings with angular fragments	VERY POOR - Very smooth slicken- sided or highly weathered surfaces with soft clay coatings or fillings
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with thin inter- layers of siltstone siltstone amounts B. Sand- stone and siltstone in similar amounts C. Sand- stone and siltstone amounts C. Sand- stone and siltstone amounts C. Sand- stone and siltstone amounts C. Sand- stone and siltstone amounts C. Sand- stone and siltstone stone layers stone layers stone layers	\square	50 B 40	C D	E	[]
C,D, E and G - may be more or less folded than Ilustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.		$\langle $	30	F 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers → Unit of the sandstone are transformed into small rock pieces.			G	н	10

: Means deformation after tectonic disturbance

Figura 6-57 Valutazione dell'indice GSI per rocce tenere.

Relazione Geotecnica

Figura 6-58 Determinazione dell'indice GSI per rocce dure fratturate.

In	Tabella	a 6-13	si	riportano	i valori	delle	grandezze	determinate	per	ciascun	termine la	apideo.
			-				9.0		P • •	0.0.0000		

Sialo	σ'_{Cl}	γ	mi	GSI
Siyia	[MPa]	[kN/m³]	[kPa]	[°]
CL	15-30	22	5-9	15-30
CFC	20-50	22	5-9	15-30
Cf	15-45	24-26	6-12	15-30
С	25-75	27	7-11	45-65
СМ	20-25	22	5-9	20-40
R	15-45	22	7-11	15-30
Q	25-75	22	7-11	10-30

Tabella 6-13 Parametrici meccanici delle rocce

7 CARATTERIZZAZIONE SISMICA DEI TERRENI

La caratterizzazione sismica dei terreni e i valori dei parametri sismici sono presenti nella Relazione Sismica T00GE00GE0RE02, alla quale si rimanda per i dettagli.

Nella classificazione sismica del territorio per ciascun tratto omogeneo viene individuata la categoria di suolo e il valore della velocità equivalente delle onde di taglio V_{seq}.

8 RAPPORTI OPERE-TERRENI

8.1 Introduzione

Le conoscenze sui terreni di fondazione acquisite con i rilievi e le indagini hanno consentito di ricostruire con sufficiente dettaglio i rapporti tra le opere in progetto e i terreni di fondazione.

Con riferimento alla classificazione geotecnica riportata nel Capitolo 6, nelle tavole T00GE00GETFP_01-21 si illustrano i rapporti tra terreni di fondazione presenti lungo il profilo longitudinale in asse del tracciato e le opere in progetto.

Nelle stesse tavole sono riportate la posizione e la colonnina schematica dei sondaggi e dei pozzetti. Nelle singole colonnine sono indicati il simbolo dell'unità geotecnica, la posizione dei campioni indisturbati, il valore N_{30} ricavato dalle prove SPT, la profondità della falda se presente.

Nel seguito si illustrano i rapporti tra le opere ed i terreni con riferimento alle opere d'arte maggiori e minori.

8.2 Viadotti

I rapporti che intercorrono tra i viadotti in progetto ed i terreni di fondazione, illustrati nel seguito distinti per opera, sono stati ricostruiti sulla base dei sondaggi e dei rilievi di superficie.

Gli schemi di sintesi allegati sono da ritenersi puramente indicativi in termini di dimensioni geometriche delle opere e lunghezza dei pali di fondazione al di sotto delle pile, posizione della falda in caso di piezometrica a quota variabile.

8.2.1 Viadotto VI01 "Ferrovia"

Per lo studio dei terreni di fondazione sono stati eseguiti i sondaggi S01_PZ e S02_DH.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati nello stralcio del profilo geotecnico e nelle sezioni schematiche di Figura 8-1.

I pali di fondazione delle spalle e delle pile, dopo avere attraversato un livello di *Terre rosse* LR di spessore medio pari a 4 m, insistono sui terreni e le rocce di natura calcarenitica SC, CL, CFC. La calcarenite CFC è presente solo al di sotto della Pila 2 e della Spalla B in livelli di 3-4 m. All'interno dei termini calcarenitici si rinviene uno strato di 2-4 m di limo argilloso LA.

Gli scavi di imposta delle fondazioni interesseranno il riporto TR e le Terre rosse LR.

Nei calcoli delle sottostrutture del viadotto le stratigrafie della SPA e della SPB, se considerati non reagenti i primi 3 m di terreno al di sotto del piano di posa delle fondazioni, posso essere unificate.

La falda, molto profonda, si attesta a circa 28 m dal piano di campagna all'interno dei termini CL+SC.

Figura 8-1: Viadotto VI01 "Ferrovia". - Rapporti opere-terreni

8.2.2 Viadotto VI02 "Eleuterio 1"

I rapporti tra l'opera e i terreni sono illustrati in Figura 8-3 e negli schemi semplificati in Figura 8-3. Per lo studio dei terreni di fondazione si è fatto riferimento al sondaggio S06. A breve distanza dalle spalle del viadotto sono stati eseguiti i fori S05_PZ_Amb (sul lato PA) e S07_PZ_Amb (sul lato CT).

Figura 8-2: Viadotto VI02 "Eleuterio 1". - Rapporti opere-terreni.

Figura 8-3: Viadotto VI02 "Eleuterio 1"- Rapporti opere-terreni - Schemi semplificati.

Entrambe le spalle saranno fondate sulle rocce calcaree C.

Sulla base di quanto osservato con il sondaggio S5_PZ_Amb, in corrispondenza della spalla A i calcari potrebbero essere seguiti dall'argilla marnosa AMa/AM dopo alcuni metri.

Gli scavi per raggiungere il piano di imposta della spalla lato Palermo attraverseranno terreni detritici a grana fina (DTF) i calcari C; dalla parte opposta il detriti DTF e calcari marnosi (CM) e calcari (C). Le pile saranno fondate sulle alluvioni a grana fina (ALF), che si spingono fino ad una profondità di circa 24 m dal p.c. All'interno si rinvengono livelli di alluvioni a grana grossa (ALG). In dipendenza della lunghezza dei pali di fondazione, questi ultimi potranno localmente attestarsi nella marna AMa, AM. Gli scavi delle pile interesseranno prevalentemente le alluvioni ALF e, a tratti, i terreni detritici DTF. La falda si attesta ad una profondità di poco inferiore a 4 m dal piano di campagna all'interno delle alluvioni.

8.2.3 Viadotto VI03 "Fondo Villa"

I terreni di fondazione sono stati indagati con i sondaggi S12_PZ:MB, S13_PZ ed S14_DN_Amb, S15:PZ:Amb. In Figura 8-4 e in Figura 8-5 si riportano i rapporti opere- terreni di fondazione.

Figura 8-4: Viadotto VI03 "Fondo Villa".- Rapporti opere-terreni.

Figura 8-5: Viadotto VI03 "Fondo Villa".- Rapporti opere-terreni. - Schemi semplificati.

Le fondazioni della spalla A (lato Palermo) e di tutte le pile, ad eccezione dell'ultima, interesseranno le argille FN del Flysch Numidico, che si presentano alterate (FNA) nella parte più superficiale per spessori anche di 5 m. Gli scavi di imposta delle fondazioni interesseranno la coltre detritica DTF e l'argilla FNA.

Il plinto della Pila 17 ricade al passaggio tra l'argilla alterata FNA e i calcari Cf; i pali di fondazione dovrebbero insistere nell'argilla FNA/FN.

La spalla B lato Catania ricade all'interno dei calcari Cf, localmente ricoperti dalla coltre detritica DTF. In profondità i pali dovrebbero interessare i calcari Cf e le argille FNA/FN.

Nei calcoli delle sottostrutture del viadotto le stratigrafie della SPA e della SPB, se considerati non reagenti i primi 3 m di terreno al di sotto del piano di posa delle fondazioni, posso essere unificate.

Nei calcoli delle sottostrutture del viadotto sono state differenziate le stratigrafie a seconda dello spessore dello strato DTF.

La posizione della falda, all'interno dell'argilla FN intorno a 20 m di profondità dal p.c., è stata stimata sulla base dei risultati delle indagini e di riscontri di carattere geologico.

8.2.4 Viadotto VI04 " Segretaria"

I terreni di fondazione sono stati interessati dalle perforazioni S16_DH, S17_PZ ed S18_DH_Amb. I rapporti opere-terreni sono illustrati in Figura 8-6.

La spalla A lato Palermo insiste sui materiali di ripoto (TR) ivi posti a riempimento di una cava dismessa. Sulla base delle indicazioni fornite dal sondaggio S16_DH e dei risultati dei rilievi di carattere geologico, i sottostanti calcari di base Cf dovrebbero rinvenirsi dopo circa 1 m. I pali di

fondazione dovrebbero insistere nei suddetti calcari Cf e nella parte alterata FNA delle argille del Flysch Numidico.

Il plinto della Pila 1 dovrebbe ricadere al passaggio tra la coltre detritica DTF e l'argilla alterata FNA (v. sondaggio S17_PZ, eseguito in prossimità), mentre i pali di fondazione insisteranno nell'argilla FNA/FN. Gli scavi di imposta attraverseranno il detrito DTF.

Figura 8-6: Viadotto VI04 "Segretaria" - Rapporti opere-terreni.

I pali di fondazione delle rimanenti pile si attesteranno per la maggior parte della loro lunghezza all'interno dei termini FN. Gli scavi di imposta dei plinti interesseranno il detrito DTF e l'argilla FNA.

Nell'area in esame la falda è stata incontrata durante la perforazione del sondaggio S17_PZ a una profondità di circa 22,5 m da quota boccaforo.

8.2.5 Viadotto VI05 "Valanca"

Per lo studio dei terreni di fondazione del viadotto VI05 "Valanca" è disponibile la stratigrafia del sondaggio S20_DH_Amb eseguito poco oltre. I rapporti opere-terreni sono illustrati in Figura 8-7.

Figura 8-7: Viadotto VI05 "Valanca".- Rapporti opere-terreni.

I plinti della Spalla A e della pila ricadono nell'argilla del Flysch Numidico FNA/FN, ivi affiorante. Sulla base dei risultati dei rilievi geologici e della perforazione S20_DH_Amb si desume che gli scavi di imposta della spalla B interesseranno i terreni detritici DTF, mentre il plinto dovrebbe insistere nell'argilla alterata FNA.

I pali di fondazione delle spalle e della pila si attesteranno prevalentemente i termini FN. Nell'area in esame non è stata accertata presenza di falda.

8.2.6 Viadotto VI06 "Palmerino"

I terreni di fondazione sono stati indagati con i sondaggi S21_DH_Amb e S22_PZ. I rapporti che intercorrono tra l'opera e i terreni di fondazione sono illustrati in Figura 8-8.

Figura 8-8: Viadotto VI06 "Palmerino". - Rapporti opere-terreni.

I plinti delle pile e delle spalle interessano i terreni alluvionali ALF e ALG. I sondaggi mostrano che i termini più grossolani ALG sono presenti prevalentemente nel tratto centrale e finale del viadotto (v. foro S22_PZ). In corrispondenza della Spalla A e delle pile 5 e 6 le alluvioni sono ricoperte da detrito a grana fina (DTF) e/o materiali di riporto (TR).

Al momento delle indagini la falda si attestava lungo il sondaggio S22_PZ ad una profondità di circa 4,5 m dal piano di campagna, ma è probabile che raggiunga il piano di campagna in occasione di piogge

8.2.7 Viadotto VI07 "Sant'Antonio"

I terreni di fondazione sono stati indagati con il sondaggio S47_PZ. I rapporti opere-terreni sono mostrati In Figura 8-9.

Figura 8-9: Viadotto VI07 "S. Antonio". - Rapporti opere-terreni.

I terreni di fondazione delle spalle e delle pile sono costituiti con continuità di terreni alluvionali ALF e ALG, che si rinvengono fin dal piano di campagna e che assumono spessori massimi di circa 8 m. I termini a grana grossa ALG sono presenti generalmente in profondità e per spessori modesti (1 m circa). . Le alluvioni ricoprono le argille FN di base.

I pali di fondazione, dopo avere attraversato la coltre alluvionale, insisteranno nell'argilla FN. La falda, rilevata con il sondaggio S47_PZ, si attesta ad una profondità di circa 3 m dal piano di campagna.

8.2.8 Viadotto VI08 "Rigano"

Per lo studio dei terreni di fondazione del viadotto VI08 "Rigano" sono stati eseguiti rilievi geologici di superficie. I rapporti opere-terreni di fondazione sono illustrati in Figura 8-10.

Figura 8-10: Viadotto VI08 "Rigano". - Rapporti opere-terreni.

I plinti di fondazione delle spalle e della pila 1 interessano le alluvioni a grana fina ALF, mentre il plinto della Pila 2, posta in prossimità dell'alveo, ricade all'interno delle alluvioni a grana grossa ALG. I pali di fondazione si attesteranno nei terreni argillosi di base FN, dopo avere attraversato i terreni alluvionali per spessori presumibili di 6-8 m.

Nelle relazioni di calcolo del viadotto è stato trascurato in via cautelativa lo strato di ALG poiché al di sopra della testa pali. Sono state considerate diverse configurazioni stratigrafiche a seconda dello spessore dello strato di ALF

In mancanza di riscontri diretti, la falda è stata posta ad una quota coincidente con l'alveo.

Viadotto VI 09 "Eleuterio 2" 8.2.9

Per lo studio dei terreni di fondazione sono disponibili i risultati dei sondaggi S23_Amb e SN3_PZ. In Figura 8-11 si riportano i rapporti opere-terreni.

Figura 8-11: Viadotto VI09 "Eleuterio 2".- Rapporti opere-terreni.

I plinti di fondazione della spalla A e delle pile ricadono all'interno dei terreni alluvionali ALF e ALG, questi ultimi presenti in livelli di 1-2 m, che hai fini dei calcoli è possibile trascurare a favore di sicurezza. I pali di fondazione, dopo avere attraversato modesti spessori di alluvioni, insisteranno nell'argilla del Flysch Numidico FN.

Sulla base dei risultati dei rilievi geologici, la spalla B dovrebbe interessare prevalentemente le argille alterate FNA e solo parzialmente le sovrastanti alluvioni ALF. I pali di fondazione si attesteranno nelle argille FN, dopo avere attraversato la parte alterata FNA.

La falda è stata incontrata, all'interno del foro di sondaggio SN3 PZ, ad una profondità di 3,70 m da quota boccaforo.

8.2.10 Viadotto VI10 "Feotto"

I terreni di fondazione del viadotto VI10 "Feotto" sono stati indagati con i sondaggi S26_DH_Amb e S28_PZ_Amb. I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati in Figura 8-12.

FN

FN

Figura 8-12: Viadotto VI10 "Feotto".- Rapporti opere-terreni.

I plinti della Spalla A e delle pile 1-3 insistono nell'argilla alterata FNA ivi ricoperta da un modesto strato di terreni alluvionali. I pali di fondazione si attesteranno per gran parte del loro sviluppo nell'argilla di base FN.

I plinti delle successive pile P4-8 saranno realizzati all'interno delle alluvioni a grana grossa ALG. I pali di fondazione attraverseranno i terreni ALG per spessori via via crescenti procedendo in direzione Catania e l'argilla FN nel tratto finale.

Gli scavi dei plinti della Pila 9 e della Spalla B saranno aperti nel detrito DTF e parzialmente nelle alluvioni ALF/ALG. I pali di fondazione si attesteranno nell'argilla di base FBA/FN dopo avere attraversato i terreni alluvionali.

Per quanto riguarda la posizione della falda, lungo il sondaggio S28_PZ_Amb il pelo libero è stato misurato ad una profondità di circa 3,5 m da quota boccaforo.

8.2.11 Viadotto VI11 "Braschi"

Per l'esame delle caratteristiche dei terreni di fondazione del viadotto VI11 "Braschi" si è fatto riferimento al sondaggio S29_DH_Amb. In Figura 8-13 si riportano i rapporti opere-terreni.

Figura 8-13: Viadotto VI11 "Braschi".- Rapporti opere-terreni.

Sulla base della ricostruzione geologica, i plinti della spalla A e delle pile P1 e P2 dovrebbe ricadere interamente nel detrito a grana fina DTF e parzialmente nelle alluvioni ALF, mentre i pali di

fondazione, dopo avere superato i terreni detritici, dovrebbero attraversare i sottostanti terreni alluvionali ALG/ALG ed attestarsi presumibilmente nell'argilla di base FNA/FN.

I plinti della pila P3 e della spalla B insisteranno nei terreni alluvionali, mentre i pali di fondazione dovrebbero interessare per gran parte del loro sviluppo nelle sottostanti argilla FNA/FN.

Non si hanno informazioni dirette sulla posizione della falda nell'area del viadotto.

8.2.12 Viadotto VI12 "Coda di Volpe"

Nell'area del viadotto VI12 "Coda di Volpe" sono stati eseguiti due sondaggi (S34_Pz, S35_PZ_Amb), oltre a cinque prove di sismica passiva (HVSR 34, 35, 36, 37, 38). I rapporti tra il viadotto e i terreni di fondazione sono illustrati in Figura 8-14.

Figura 8-14: Viadotto VI12 "Coda di Volpe". - Rapporti opere-terreni.

I plinti della Spalla A e delle pile 1 e 2 ricadono all'interno dell'argilla alterata del Flysch Numidico ivi affiorante. I pali di fondazione si attesteranno nella sottostante formazione integra FN. I plinti della Pila 3 e della Spalla B interesseranno prevalentemente terreni detritici DTF e solo localmente l'argilla alterata FNA. I pali si svilupperanno nell'argilla FNA/FN del Flysch Numidico.

Nelle relazioni di calcolo del viadotto sono state considerate diverse configurazioni stratigrafiche a seconda dello spessore dello strato di DTF

Nell'area del viadotto VI12 "Coda di Volpe" non è stata rilevata presenza di falda.

8.2.13 Viadotto VI13 "Recupero"

Per lo studio dei terreni di fondazione del viadotto VI13 "Recupero" si è fatto riferimento alla stratigrafia del sondaggio S36_DH_Amb ed ai risultati dei rilievi geologici di superficie. In Figura 8-15 sono illustrati i rapporti opere-terreni.

Figura 8-15: Viadotto VI13 "Recupero". - Rapporti opere-terreni.

I plinti di fondazione delle spalle e delle pile interessano per la quasi totalità i terreni detritici DTF, che ivi assumono spessori compresi tra 4 e 9 m. I pali di fondazione, dopo avere attraversato il detrito, si attesteranno nell'argilla FNA/FN.

Nelle relazioni di calcolo del viadotto sono state considerate diverse configurazioni stratigrafiche a seconda dello spessore dello strato di DTF

Nell'area del viadotto non è stata riscontrata presenza di falda.

8.2.14 Viadotto VI14 "Milicia 1"

I terreni di fondazione sono stati indagati con i sondaggi S41_INCL e S42_PZ_Amb. I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati in Figura 8-16.

Figura 8-16: Viadotto VI14 "Milicia 1".- Rapporti opere-terreni.

Sulla base dei risultati dei rilievi geologici, il plinto della spalla A dovrebbe ricadere al passaggio tra i terreni detritici DTF e l'argilla FN del Flysch Numidico. I pali si svilupperanno nei termini FN.

I plinti delle pile e della spalla B saranno realizzati all'interno delle alluvioni a grana grossa ALG. Per le prime due pile gli scavi interesseranno superiormente il detrito DTF I pali di fondazione, dopo avere superato le alluvioni ALG, si attesteranno nell'argilla di base FN.

Nelle relazioni di calcolo del viadotto sono state considerate diverse configurazioni stratigrafiche a seconda dello spessore dello strato di ALG.

Non si hanno informazioni dirette sulla quota della falda, che dovrebbe attestarsi all'interno della subalvea del torrente Milicia.

8.2.15 Viadotto VI15 "Milicia 2"

I terreni di fondazione sono stati indagati con i sondaggi S43_Amb_INCL, S44_PZ, S45_PZ_Amb. In Figura 8-18 si riportano i rapporti opere-terreni.

Figura 8-17: Viadotto VI15 "Milicia 2".- Rapporti opere-terreni.

Figura 8-18: Viadotto VI15 "Milicia 2".- Rapporti opere-terreni.

I plinti della spalla A lato Palermo e delle pile 1, 2, 3, 4 e 6 saranno realizzati all'interno dell'argilla alterata FNA ivi affiorante. I pali di fondazione si svilupperanno prevalentemente nell'argilla FN. Gli scavi in corrispondenza della Pila 2 interesseranno superiormente i terreni detritici DTF.

Il plinto della Pila 5 insiste nelle alluvioni a grana grossa ALG, che assumono spessori fino a circa 12 m. I pali, dopo avere superato lo strato alluvionale, si attesteranno nell'argilla FN.

I plinti della Pila 7 e della Spalla B saranno realizzati all'interno del detrito a grana fina DTF, il cui spessore è mediamente pari a 5 m. I pali di fondazione attraverseranno dapprima i terreni DTF e le alluvioni ALG, per una lunghezza complessiva di 4-6 m circa, per attestarsi nell'argilla del Flysch Numidico FNA/FN.

La posizione della falda è stata stimata all'interno della subalvea del torrente Milicia.

8.3 Cavalcavia

8.3.1 Cavalcavia CV01

Nel presente paragrafo si illustrano i rapporti che intercorrono tra il cavalcavia CV01 e i terreni di fondazione.

L'opera è ubicata tra la pr. 0+259 km e la pr. 0+299; questa zona, caratteristica del primo tratto del tracciato, è caratterizzata dalla stratigrafica desumibile dal profilo geotecnico nelle tavole di progetto e nella seguente figura.

Figura 8-19: Cavalcavia CV01 - Rapporti opere-terreni.

I plinti di fondazioni ricadono, sia per spalle che pile, all'interno delle terre rosse (LR). I pali si sviluppano per i primi 4 m nelle stesse terre rosse (LR), poi in successione incontrano le sabbie (SC) (4-4,5 m di spessore), i calcari (CFC) (2-2,5 m di spessore) e i limi (LA), dove sarà presumibilmente ubicato il fondo palo.

In questa zona è presente un sistema "multi falda"; si riscontrano falde a 11-12 m sopra i limi (LA) e sotto nella formazione della calcarenite (CL) ad una profondità tra 20-21 m.

8.4 Rilevati

I rapporti che intercorrono tra i tratti stradali in rilevato e i terreni di fondazione sono stati schematizzati facendo riferimento a cinque casi tipici identificati lungo il tracciato.

Il Caso I si riferisce ai rilevati i cui terreni di fondazione sono costituiti di *Terre rosse* e dei sottostanti terreni e rocce della formazione calcarenitica.

Nel Caso II i rilevati poggiano su una coltre detritica a grana fina, che a sua volta ricopre terreni alluvionali, mentre nel Caso III i terreni di fondazione sono direttamente le alluvioni. Il detrito a grana

fina costituisce il terreno di fondazione nel Caso IV. Nei casi II, III e IV i terreni di base sono sempre le argille FNa/FN del Flysch Numidico.

Nel Caso V i rilevati poggiano direttamente sulle argille di base FNa/FN, che si rinvengono fin dal piano di campagna o a di sotto di una modesta coltre di terreno vegetale.

Localmente possono rinvenirsi altri termini oltre a quelli sopra indicati, ma che tuttavia non sono rilevanti ai fini della schematizzazione dei rapporti opere-terreni in termini di estensione areale e spessore.

Si fa presente che sia i terreni e le rocce della formazione calcarenitica (Caso I), sia le argille del Flysch Numidico (Casi II-V) si spingono ben oltre la profondità significativa ai fini delle problematiche geotecniche legate alla stabilità dei rilevati.

Gli schemi, più avanti riportati, che illustrano ciascun caso sono da ritenersi puramente indicativi dal punto di vista geometrico in termini di dimensione delle opere, spessore dei terreni di fondazione, posizione della falda. Dal momento che è prevista l'asportazione del terreno vegetale e/o dei materiali di riporto presenti a partire dal piano limite, nelle schematizzazioni viene trascurata la presenza di questi terreni.

Per ulteriori dettagli si rimanda alle tavole dove è illustrato il profilo geotecnico dei terreni presenti lungo il tracciato.

<u>Caso I</u>

Lungo il tratto iniziale del tracciato, fino al km 1+040 circa le indagini in sito hanno evidenziato che i rilevati, di altezza massima pari a 10 m, poggeranno sulle *Terre rosse* LR il cui spessore è compreso tra 5 e 9 m e che sono a copertura dei terreni e delle rocce calcarenitiche indicati con le sigle SC, CFC, CL (v. Figura 8-20).

Tra i livelli di calcarenite CFC e CL si rinviene uno strato di limo argilloso sabbioso LA di spessore pari a 3-4 m.

La falda si riviene all'interno delle rocce CL.

da progr. km	a progr. km
0+000	0+480
0+550	1+040

Tabella 8-1 Tratti in rilevato- Rapporti-opere terreni - Caso I.

Figura 8-20: Tratti in rilevato- Rapporti-opere terreni - Caso I.

-

Caso II

Tra il km 6+580 e il km 8+660 il tracciato corre in rilevato in corrispondenza di tre tratti, raggiungendo un'altezza massima di 8 m. Le opere poggiano sui terreni alluvionali ALF e ALG all'interno dei quali è presente la falda (v. Figura 8-21). Lo spessore complessivo dei terreni ALF+ALG è pari a circa 8 m. I termini a grana grossa ALG sono localmente assenti.

da progr. km	a progr. km
6+580	7+180
7+480	8+08
8+200	8+660

Tabella 8-2 Tratti in rilevato- Rapporti-opere terreni - Caso II.

Figura 8-21: Tratti in rilevato- Rapporti-opere terreni - Caso II.

La formazione di base è l'argilla FN del Flysch Numidico, che raggiunge spessori anche maggiori di 50 m.

Relazione Geotecnica

Caso III

Tra il km 15+640 e il km 15+780, subito dopo il Viadotto VI15, il tracciato corre in rilevato raggiungendo un'altezza massima di circa 7 m. L'opera poggia sul detrtito a grana fina DTF (v. Figura 8-22), che assume spessori di 4-6 m e che ricopre le alluvioni a grana fina ALF (spessore 4-6 m).

da progr. km	a progr. km
15+800	16+580

Tabella 8-3 Tratti in rilevato- Rapporti-opere terreni - Caso III.

I terreni di base sono le argille FNA/FN del Flysch Numidico, come evidenziato dalle stratigrafie dei sondaggi S44 PZ e S45 PZ Amb eseguiti nell'area.

Figura 8-22: Tratti in rilevato- Rapporti-opere terreni - Caso III.

Sulla base dei dati disponibili si desume la possibile presenza di falda nelle argille di base.

Caso IV

Il Caso IV si riferisce al tratto in progetto tra il km 3+000 e il km 13+900 dove i rilevati, di altezza massima pari a circa 9 m, poggiano sul detrito a grana fina DTF, sede di falda ed il cui spessore è compreso tra 1 m e 4 m.

Relazione Geotecnica

da progr. km	a progr. km
3+000	3+690
4+830	5+040
5+220	5+400
9+140	9+180
12+480	12+600
13+060	13+900

Tabella 8-4 Tratti in rilevato- Rapporti-opere terreni - Caso IV.

Anche in questo caso il detrito poggia sulle argille di base FNA/FN.

<u>Caso V</u>

Il caso V comprende la maggior parte del tracciato in rilevato tra il km 5+040 e il km 12+860, laddove le opere raggiungono un'altezza massima di circa 6 m e poggiano sulle argille FN del Flysch Numidico (v. Figura 8-24). Le argille sono alterate nella parte più superficiale (FNA) per spessori variabili fino ad un massimo di circa 10 m.

Figura 8-24: Tratti in rilevato- Rapporti-opere terreni - Caso V.

da progr. km	a progr. km
5+040	5+140
5+540	5+770
5+900	5+980
9+040	9+140
9+780	9+840
9+980	10+040

Tabella 8-5 Tratti in rilevato- Rapporti-opere terreni - Caso V.

I dati disponibili mostrano che l'argilla è sede di falda, generalmente molto profonda.

8.5 Gallerie naturali

8.5.1 Galleria naturale 01 – Cannita

I rapporti che intercorrono tra la galleria e i terreni di fondazione sono illustrati in modo schematico in Figura 8-25. I terreni sono stati indagati con i sondaggi S07_DH_Amb, S08_PZ_Amb, S11_PZ ed SN2 e con diversi stendimenti sismici

Gli scavi interesseranno inizialmente i Calcari Marnosi CM e i Calcari C, in un secondo tratto le Radiolariti R ed infine i Calcari Cf della Fm. Fanusi.

La falda misurata in corrispondenza del sondaggio S08_PZ si attesta ad una profondità di 29,7 m. Sulla base della ricostruzione geologica risulta che gli scavi saranno parzialmente sotto falda.

Figura 8-25: Galleria Naturale GN01 "Pizzo Cannita" – Rapporti-opere terreni.

8.5.2 Galleria Naturale 02 "Don Cola"

I terreni che saranno interessati dagli scavi sono stati indagati con i sondaggi S24_PZ_Amb, S25_PZ_Amb ed SN4.

I rapporti che intercorrono tra la galleria e i terreni di fondazione sono illustrati nello stralcio del profilo geotecnico riportato in Figura 8-26.

GN02-SX GALLERIA DON COLA Ltot.=540.00m SAGOMA TIPO 2 (<u>SAGOMA ALLARGAMENTO 2.50m</u>)

Figura 8-26: Galleria Naturale GN02 "Don Cola" – Rapporti-opere terreni.

Dopo un breve tratto iniziale in artificiale scavato nel detrito DTF, la galleria attraverserà le argille FN del Flysch Numidico. Nella seconda parte dell'opera è probabile che al tetto dello scavo si incontrino le quarzareniti Q appartenenti alla medesima formazione di base.

8.5.3 Galleria naturale 03

I terreni sono stati indagati con i sondaggi S39, S40bis. I rapporti opere-terreni sono illustrati in Figura 8-27).

Figura 8-27: Galleria Naturale GN03 – Rapporti-opere terreni.

La galleria attraverserà per l'intera lunghezza le argille FN del Flysch Numidico, che potranno presentarsi alterate negli strati più superficiali (FNA). Non sono presenti dati sulla falda.

8.6 Tratti in trincea

Lungo numerosi tratti di viabilità in trincea è prevista la realizzazione di paratie di pali di c.a. ϕ 1200 mm disposti ad interasse i = 1,40 m per garantire la stabilità a breve termine e lungo termine delle opere. In presenza dei terreni a grana fina l'interasse tra i pali si riduce a 1,2 m. In Tabella 8-6 si riportano i terreni interessati dagli scavi.

Da [km]	a [km]	Terreni interessati dagli scavi	Prondità scavo [m]
0+000	0+090	LR	3,0
5+100	5+140	DTF	2,5
5+390	5+560	DTF	2,8
6+000	6+200	ALF	2,8
11+030	11+110	FNA	1,8
12+880	12+920	FNA	5,0

8.7 Tratti in trincea tra paratie di pali

Lungo numerosi tratti di viabilità in trincea riportati è prevista la realizzazione di paratie di pali di c.a. ϕ 1200 mm disposti ad interasse i = 1,40 m per garantire la stabilità a breve termine e lungo termine delle opere. In presenza dei terreni a grana fina l'interasse tra i pali si riduce a 1,2 m. In Tabella 8-6 si riportano i terreni interessati dagli scavi.

Da [km]	a [km]	Terreni interessati dagli scavi	Lunghezza pali [m]
3+049	3+190	DTG - DTF FNA	14
3+238	3+686	DTG - DTF- FNA	14
4+850	5+060	DTF	14-18
5+396	5+520	DTF - FNA	14-20
5+754	5+780	FNA - FN	20
5+935	6+140	ALF – FNA - FN	14-18
11+080	11+460	FNA	14
11+740	11+936	FNA	18
12+870	13+040	FNA	14-20
13+397	13+450	FNA	14-20
13+939	14+005	DTF - FNA	14
15+020	15+119	DTF	14

Tabella 8-6 Terreni presenti lungo i tratti in trincea tra paratie

9 QUESTIONI GEOTECNICHE

Le principali questioni di carattere geotecnico connesse con la progettazione delle opere riguardano la scelta del tipo di fondazione delle pile e delle spalle dei viadotti, la scelta del piano di posa dei tratti in rilevato e gli interventi per limitare i cedimenti nel tempo, la stabilità dei rilevati e degli scavi a breve e lungo termine.

In relazione alle caratteristiche geotecniche dei terreni di fondazione, ai rapporti tra questi ultimi e le opere ed ai cariche trasmessi dalle strutture, la scelta delle fondazioni delle pile e delle spalle dei viadotti ricade su fondazioni profonde, costituite da pali di c.a. di grosso diametro (\u00f41200 mm).

Per il dimensionamento delle strutture di fondazione si è fatto riferimento ai rapporti tra le opere e i terreni descritti in un precedente paragrafo. I risultati dei calcoli strutturali e geotecnici, corredati da particolari costruttivi, sono riportati per ciascun viadotto in specifici elaborati.

La bonifica dei terreni di fondazione dei rilevati per sostituzione con materiali di idonee caratteristiche, laddove necessaria, è stata determinata facendo riferimento al Manuale di Progettazione ANAS e ai risultati delle verifiche dei cedimenti.

L'apertura degli scavi per i tratti in trincea procederà con pendenza 1/1 nei terreni argillosi del Flysch Numidico FNa, FN, nelle alluvioni ALF, ALG e nelle *Terre rosse* LR. Per profondità di scavo maggiori di 4,5 m si interporranno banchine larghe 1 m ogni 4 m di altezza di scavo. In analogia si procederà per l'apertura degli scavi per raggiungere i piani di posa dei plinti di fondazione.

In merito alle interferenze tra i dissesti e il tracciato, i cui dettagli sono ampiamente descritti nella relazione geologica allegata al progetto, sono state svolte back-analysis per la stima dei parametri di resistenza residui dei terreni interessati dai movimenti, valutando l'effetto delle opere stradali sulla stabilità globale.

I risultati dei calcoli sono stati posti alla base del dimensionamento degli interventi di stabilizzazione, consistenti in trincee drenanti da eseguire a cavallo del tracciato stradale.

Inoltre, a protezione del corpo stradale si prevedono paratie di pali a monte e muri di sostegno a valle generalmente fondati su pali, per i cui dettagli si rimanda alla relazione sulle strutture e nei quali si è tenuto conto dei parametri di resistenza residui (quindi proveniente dalle back analysis e non dalle prove di laboratorio).

Quanto descritto e altre informazioni sono riassunti nella Tabella 9-1, dove si riportano le principali caratteristiche di ciascun dissesto e degli interventi di stabilizzazione e si riassumono i risultati dei calcoli di stabilità in termini di coefficiente di sicurezza FS.

Relazione Geotecnica

ID DISSESTO	TIPO DI DISSESTO	Progr. DX iniziale	Progr. DX finale	Distanza dal tracciato [m]	Profondità max scavi [m]	Opere interagenti	INTERVENTI PREVISTI IN PROGETTO	FS (pre-intervento)	FS (post-intervento)
D_06	Colamento	1+820	1+920	17			Nessuno, in quanto il dissesto non interessa il tracciato.	<1,1	
D_07	Scorrimento	1+880	2+000	Il corpo di frana interseca il tracciato	6-8	VI02	Paratie provvisionali a protezione degli scavi d'imposta Viadotto.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_08	Scorrimento	1+820	2+040	Corpo di frana intersecante il tracciato	8-10	GN01	Paratie provvisionali a protezione degli scavi d'imposta Galleria.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_17	Franosità diffusa	3+420	3+420	Corpo di frana intersecante il tracciato	1-2	Rilevato/Scavo	Paratie a protezione del corpo stradale e trincee drenanti	<1,1	1,78
D_20	Frana complessa	4+220	4+420	Corpo di frana intersecante il tracciato	7-8	VI03	Paratie provvisionali a protezione degli scavi d'imposta Viadotto.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_21	Espansione laterale	4+360	4+740	Corpo di frana intersecante il tracciato	4-5	VI04	Paratie a protezione del corpo stradale dal lato del pendio di monte e muro di sostegno dal lato del pendio di valle.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_27	Colamento	4+820	4+980	Corpo di frana intersecante il tracciato	1-2	Rilevato/Scavo	Paratie a protezione del corpo stradale dal lato del pendio di monte e muro di sostegno dal lato del pendio di valle e trincee drenanti	<1,1	con trincee a monte 1,75
D_29	Scorrimento	6+200	6+240	Corpo di frana intersecante il tracciato	1-3	Rilevato/Scavo	Paratie provvisionali a protezione degli scavi d'imposta Viadotto.	<1,1	1,4
D_29bis	Scorrimento	6+360	6+380	Corpo di frana intersecante il tracciato	4-6	V106	Paratie provvisionali a protezione degli scavi d'imposta Viadotto.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_32	Scorrimento	9+100	9+320	Corpo di frana intersecante il tracciato	6-7	GN02	Paratie provvisionali a protezione degli scavi d'imposta Galleria.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_34	Scorrimento	10+440	10+540	30			Nessuno, in quanto il dissesto non interessa il tracciato.	<1,1	
D_35	Franosità diffusa	10+820	10+920	Corpo di frana intersecante il tracciato	4-5	VI11	Paratie provvisionali a protezione degli scavi d'imposta Viadotto.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_38	Franosità diffusa	12+100	12+280	Corpo di frana intersecante il tracciato	4-5	VI12	Paratie a protezione del corpo stradale dal lato del pendio di monte e trincee drenanti	<1,1	1,82
D_39	Franosità diffusa	14+600	14+800	Corpo di frana intersecante il tracciato	3-5	VI14-GN03	Paratie provvisionali a protezione degli scavi d'imposta Viadotto e Galleria.	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_40	Frana complessa	15+040	15+080	Corpo di frana intersecante il tracciato	3-4	Rilevato/Scavo	Paratie provvisionali a protezione degli scavi e trincee drenanti	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_42	Frana complessa	15+510	15+880	Corpo di frana intersecante il tracciato	3-4	VI14 Rilevato/Scavo	Paratie provvisionali a protezione degli scavi d'imposta Viadotto e muro di sostegno a protezione del tracciato dove si presenta sia in scavo che rilevato	<1,1	(v. Relazione Carpenterie e Opere provvisionali)
D_44	Scorrimento	16+060	16+200	35			Nessuno, in quanto il dissesto non interessa il tracciato.	<1,1	

Tabella 9-1 Frane oggetto di studio geotecnico.

10 BONIFICA DEI TERRENI DI FONDAZIONE

10.1 Introduzione

I terreni di fondazione sui quali insiste la maggior parte dei rilevati sono costituiti da:

- terre rosse LR;
- coltre rimaneggiata a grana fine DTF;
- alluvioni a grana fine ALF;
- parte alterata del Flysch Numidico FNa.

Il Manuale di Progettazione ANAS – Parte Il Sez. 8 Geotecnica indica uno spessore di scotico pari a 20 cm al di sotto del piano campagna per tutta l'area di impronta dei rilevati.

Si prevede, inoltre, la bonifica dello strato più superficiale dei terreni di fondazione al di sotto dello scotico, laddove necessario, con materiali di idonee caratteristiche fisico-meccaniche, i cui spessori sono stati determinati sulla base dei calcoli di seguito esposti.

La scelta degli interventi di bonifica verte fondamentalmente sulle seguenti considerazioni:

- Semplificare al massimo le lavorazioni compatibilmente con le condizioni dei luoghi.
- Limitare gli effetti dei cedimenti dei rilevati dovuti al peso proprio e alla deformabilità dei terreni di fondazione.
- Garantire la stabilità dei rilevati, soprattutto quelli fondati su terreni caratterizzati da mediocri proprietà meccaniche (ad esempio il detrito a grana fine DTF, caratterizzato da coesione nulla e angolo di attrito residuo φ'_R pari a 20°).

10.2 Bonifica del piano di posa

10.2.1 Verifica preliminare dell'idoneità del piano di posa

Secondo le indicazioni del Manuale ANAS, in fase progettuale il piano di posa di un rilevato risulta idoneo quando sono verificati contemporaneamente i seguenti requisiti:

- ➤ terreni appartenenti ai gruppi A1, A2, A3 (UNI 13242 UNI 14688 UNI 13285);
- valore del modulo di deformazione Md, al primo ciclo, determinato con prova di carico su piastra (diametro 30 cm) (rif. CNR 146/92), non inferiore a quello riportato in Tabella 10 (v.

Relazione Geotecnica

sotto) e conforme al documento "Capitolato speciale d'appalto (CSA) Norme tecniche-Movimenti terre - IT.PRL.05.13 – Rev. 2.0".

M _d (MPa) (sul piano di posa del rilevato)	Intervallo di riferimento (kPa)	Altezza Rilevato (m)
15	50÷150 kPa (0.05 - 0.15 N/mm²)	≥ 2,0
20	50÷150 kPa (0.05 - 0.15 N/mm²)	1,0 ≤H<2,0
50	150÷250 kPa (0,15 - 0.25 N/mm²)	< 1,0

Tabella 10. Valori del modulo Md sul piano di posa del rilevato

Considerando le due variabili sopra dette (classificazione UNI, modulo di deformazione Md), nella Tabella 11 dello stesso Manuale (v. sotto) sono riportati i possibili casi:

Tabella 11

Caso	Esito Classificazione	Esito Prova di carico su Piastra (modulo di deformazione al primo ciclo M _d)	Azione
1	sì	sì	Bonifica non necessaria
2	no	sì	Bonifica (stima con metodi analitici)
3	si	no	Bonifica non necessaria se il valore del modulo M _d al secondo ciclo è superiore ai valori richiesti dal CSA al primo ciclo; altrimenti vedi azione del caso 2 o 4.
4	no	no	Bonifica (stima con metodi analitici)

Nella Tabella 10-1 che segue sono indicate le sigle dei terreni del piano di posa dei rilevati interessati dalle prove su piastra e la loro la classificazione CNR UNI. Si riportano, inoltre, i valori del modulo di deformazione determinati per gli intervalli di carico 0,05-0,15 N/mm² (Md1 – I ciclo) e 0,15-0,25 N/mm² (Md2 – II ciclo). Non è stata presa in esame la prova PZ14 in quanto al di fuori dell'area di impronta dei rilevati.

Relazione Geotecnica

Prova di carico	Profondità dal p.c. [m]	Progressiva prova [km]	Terreno	Classificazione CNR UNI	Md1 (I ciclo) 0,05-0,15 N/mm ² [MPa]	Md1 (II ciclo) 0,15-0,25 N/mm ² [MPa]
PZ1	0,3	0+160	LR	A7	35	17
PZ2	0,3	1+000	CL	A1	1000	750
PZ3	0,3	3+500	DTF	A7	91	20
PZ4	0,3	5+740	FNa	A7	54	18
PZ5	0,3	6+720	ALF	A7	63	27
PZ6	0,3	6+960	ALF	A7	57	34
PZ7	0,3	7+580	ALF	A7	51	13
PZ8	0,3	8+060	ALF	A7	59	25
PZ9	0,3	8+520	ALF	A7	54	22
PZ10	0,3	11+060	FNa	A7	26	20
PZ11	0,3	11+540	FNa	A7	8	12
PZ12	0,3	12+980	FNa	A7	9	10
PZ13	0,3	13+840	DTF	A7	12	11

Tabella 10-1: Classificazione dei terreni del piano di posa e valori del modulo di deformazione.

Nei casi in esame i terreni di posa dei rilevati appartengono alla classe A-7, ad eccezione del rilevato dove è stata eseguita la prova PZ2.

In corrispondenza delle progressive dove sono state eseguite le prove di carico i rilevati hanno sempre altezza maggiore di 2 m (v. Tabella 10-2), tranne tratti iniziali e salvo quanto specificato in tabella.

Prog. Rilevato	Altezza max [m]	Prova di carico
0+000 a 0+480	H>2	PZ1
0+550 a 1+040	H>2	PZ1
3+000 a 3+690	H>2	PZ3
5+540 a 5+770	H>2	PZ4
6+580 a 7+180°°	H>2	PZ5/PZ6
7+480 a 8+080°°	H>2	PZ7/PZ8
8+200 a 8+600°°	H>2	PZ9
10+920 a 11+040	H>2	PZ10
11+440 a 11+720**	H>2	PZ11
13+000 a 13+800	H>2	PZ12/PZ13

Tabella 10-2: Rilevati in corrispondenza delle prove di carico su piastra (°° H sempre > 2 m;** H sempre > 1 m).

Dal confronto risulta che in tutti i casi in esame, ad eccezione del rilevato riferibile alla prova eseguita alla Prog. 1+000 km, si rientra nel *Caso 2* o nel *Caso 4* della Tabella 11 del CSA ed è pertanto necessario effettuare la bonifica da stimare con metodi analitici (v. Tabella 10-3).

Relazione Geotecnica

Prova	Progressiva [km]	Esito classificazione	Esito carico piastra I ciclo	Bonifica SI/NO
PZ1	0+160	NO	SI	SI
PZ2	1+000	SI	SI	NO
PZ3	3+500	NO	SI	SI
PZ4	5+740	NO	SI	SI
PZ5	6+720	NO	SI	SI
PZ6	6+960	NO	SI	SI
PZ7	7+580	NO	SI	SI
PZ8	8+060	NO	SI	SI
PZ9	8+520	NO	SI	SI
PZ10	11+060	NO	SI	SI
PZ11	11+540	NO	NO	SI
PZ12	12+980	NO	NO	SI
PZ13	13+840	NO	NO	SI

Tabella 10-3: Verifica della necessità di bonifica del piano di posa dei rilevati.

10.2.2 Criterio per la definizione degli spessori di bonifica al di sotto dei rilevati

Il metodo analitico utilizzato per la stima dello spessore di bonifica è quello di Burmister (1943) basato sullo studio dell'equilibrio di due solidi elastici di diversa natura sovrapposti.

Tale metodo correla i risultati in termini di modulo di deformazione di una prova di carico su piastra con le caratteristiche di deformazione dello strato di bonifica e del sottofondo.

Lo schema fisico di riferimento è riportato in Figura 10-1, dove il primo solido, detto anche strato superficiale (di bonifica), è caratterizzato da uno spessore finito "s" e da un modulo di elastico E_1 ; il secondo solido (terreno di sottofondo) è caratterizzato da un modulo elastico E_0 .

Figura 10-1 Schema stratigrafico secondo il metodo di Burmister

Il carico uniforme "p" esercitato dalla piastra si considera superficiale e distribuito su un'area circolare di raggio "a"; il cedimento al centro della piastra considerata rigida, da utilizzarsi per la definizione del modulo di deformazione teorico, risulta dalla relazione:

$$f = 1.18 \cdot \frac{p \cdot a}{E_0} \cdot F_1$$

essendo F1 funzione dei due rapporti E1/E0 ed s/a, il cui valore può ottenersi dalla seguente formula ottenuta analiticamente da N. Odemark:

$$F_1 = \left[1 - \frac{1}{\sqrt{1 + \left(0.9 \cdot \frac{s}{a}\right)^2}}\right] \cdot \frac{E_0}{E_1} + \frac{1}{\sqrt{1 + \left(0.9 \cdot \frac{s}{a} \cdot \sqrt[3]{\frac{E_1}{E_0}}\right)^2}}$$

Fissato lo spessore "s" e variando il modulo elastico "E₁" dello strato superficiale (strato di bonifica) per un determinato E_0 del terreno di sottofondo (che si prende pari a quello ricavato dalle prove di carico per l'intervallo di interesse), si può stimare il cedimento f per un dato carico e quindi si può mettere in relazione il modulo su piastra M_d con lo spessore e le caratteristiche dello strato di bonifica e del sottofondo, passando attraverso il calcolo del cedimento per un carico pari a p = 100 kPa agente su una piastra di raggio a = 15 cm tramite la relazione:

$$\mathbf{M}_{d} = \frac{\Delta \mathbf{p} \cdot 2\mathbf{a}}{\Delta w} = \frac{\Delta \mathbf{p} \cdot 2\mathbf{a}}{f}$$

Per quanto riguarda le caratteristiche del materiale utilizzato per lo strato di bonifica si è ipotizzato un valore del modulo elastico pari a $E_1 = 60$ ÷70 MPa.

10.2.3 Effetti della variazione dello spessore di bonifica e del relativo modulo elastico

In base al criterio di Burmister, al variare dello spessore di bonifica "s" e del relativo modulo elastico E₁ sono state ricavate le curve corrispondenti al valore del modulo su piastra equivalente M_d misurato all'estradosso della bonifica, ovvero al piano di posa del rilevato. Imponendo il valore del modulo Md richiesto in funzione dell'altezza del rilevato (v. Tabella 10 ANAS), si ricava il valore dello spessore minimo di bonifica in corrispondenza del valore del modulo E1 della stessa bonifica.

Nei grafici illustrati di seguito per ciascun rilevato in esame si riportano le curve ricostruite per spessori di bonifica di 30 cm, 40 cm e 50 cm e le rette rappresentative dei valori del modulo di deformazione richiesti da ANAS in funzione dell'altezza del rilevato. Lo spessore della bonifica è individuato dalla prima curva al di sopra di del valore di Md richiesto da ANAS e compresa all'interno del range di variazione fissato per il modulo E1 della stessa bonifica (60 – 70 MPa).

Rilevati da pk 0+000 a pk 0+480 e da pk 0+550 a pk 1+040

Figura 10-3 Rilevati da 0+000 a 0+480 e da 0+550 a 1+040. Spessori di bonifica per 1 < $H < 2 m e H \ge 2 m$ Risultano spessori di bonifica di 30 cm per qualsiasi altezza del rilevato.

Rilevato da pk 3+000 a pk 3+690

Risultano spessori di bonifica di 30 cm per H < 1 m; di 50 cm per H > 1 m.

Rilevato da pk 5+540 a pk 5+770

Relazione Geotecnica

Rilevato da pk 6+580 a pk 7+180

Figura 10-8 Rilevato da 6+580 a 7+180. Spessori di bonifica per $H \ge 2 m$

Risultano spessori di bonifica di 30 cm per H > 2 m..

<u>Rilevato da pk 7+480 a pk 8+080</u>

Relazione Geotecnica

Risultano spessori di bonifica di 30 cm per H > 2 m..

Rilevato da pk 8+200 a pk 8+600

Figura 10-10 Rilevato da 8+200 a 8+600. Spessori di bonifica per $H \ge 2 m$

Risultano spessori di bonifica di 30 cm per H > 2 m.

Rilevato da pk 10+920 a pk 11+040

Figura 10-11 Rilevato da 10+920 a 11+040. Spessori di bonifica per 1 < H < 2 m e H \ge 2 m

Risultano spessori di bonifica di 30 cm per qualsiasi altezza del rilevato.

Figura 10-13 Rilevato da 11+440 a 11+720. Spessori di bonifica per H \ge 1 m

Risultano spessori di bonifica di 30 cm per H > 1 m.

Rilevato da pk 13+000 a pk 13+800

Figura 10-15 Rilevato da 13+000 a 13+800. Spessori di bonifica per H < 1 m

Risultano spessori di bonifica di 40 cm per H < 1 m; di 30 cm per H > 1 m.

10.2.4 Risultati e conclusioni

I risultati delle elaborazioni sono sintetizzati in Tabella 10-4. Per ciascun rilevato preso in esame si riportano l'indicazione della prova di carico su piastra di riferimento e la relativa progressiva, la sigla del terreno di posa e gli spessori di bonifica determinati con il metodo di Burmister, laddove necessari, per le altezze H prese in esame.

Rilevato di	Prova di	Progressiva		Spessori di bonifica (cm)		
riferimento	carico	prova [km]		H < 1 m	1 m < H < 2 m	H≥2 m
0+000 a 0+480 e da 0+550 a 1+040	PZ1	0+160	LR	30	30	30
3+000 a 3+690	PZ3	3+500	DTF	30	50	50
5+540 a 5+770	PZ4	5+740	FNa	-	-	30
6+580 a 7+180	PZ5	6+720	ALF	-	-	30
6+580 a 7+180	PZ6	6+960	ALF	-	-	30
7+480 a 8+080	PZ7	7+580	ALF	-	-	30
7+480 a 8+080	PZ8	8+060	ALF	-	-	30
8+200 a 8+600	PZ9	8+520	ALF	-	-	30
10+920 a 11+040	PZ10	11+060	FNa	30	30	30
11+440 a 11+720	PZ11	11+540	FNa	-	30	30
13+000 a 13+800	PZ12	12+980	FNa	40	30	30
13+000 a 13+800	PZ13	13+840	DTF	40	30	30

Tabella 10-4: Spessori di bonifica determinati con il metodo di Burmister.

La determinazione degli spessori di bonifica dei terreni di fondazione dei rilevati è stata effettuata utilizzando la suddetta tabella. Per le opere dove non sono disponibili prove di carico, gli spessori sono stati stimati riferendosi ai rilevati più vicini poggianti sui medesimi terreni di fondazione.

Laddove i calcoli mostrano che la bonifica non è necessaria, si è prevista comunque l'asportazione di 30 cm di terreno al di sotto dello scotico.

Nella valutazione degli spessori si è anche fatto riferimento ai risultati delle verifiche dei cedimenti esposti nel successivo capitolo 12.

Gli spessori di scotico e bonifica sono riportati di seguito tratto per tratto. Per i rilevati i valori indicati si riferiscono alla massima altezza Hmax delle opere.

Relazione Geotecnica

_

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
0+000	0+092		-	80
0+092	0+485	8,6	20	80
0+555	1+043	8,8	20	80
1+043	1+213		-	50
1+277	1+546		-	50
3+110	3+180		-	50
3+180	3+271	1,0	20	30
3+271	3+469		-	30
3+469	3+512	1,0	20	30
3+512	3+634		-	60
3+634	3+765	4,5	20	60
3+387	3+397		-	50
4+608	4+636		-	50
4+636	4+650	3,1	20	40
4+834	4+860	2,5	20	50
4+860	4+916		-	50
4+916	4+948	1,2	20	50
4+948	5+040		-	50
5+040	5+047		-	50
5+047	5+098	2,4	20	30
5+098	5+140		-	50
5+222	5+254		-	60
5+254	5+393	4,0	20	60
5+393	5+560		-	60
5+560	5+700	1,8	20	30
5+700	5+795		-	50
5+936	6+000		-	50
6+000	6+203		-	100
6+203	6+278	7,5	20	180
6+578	6+860	4,5	20	60
6+860	7+040	5,0	20	60

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
9+140	9+195	2,8	20	30
9+195	9+340		-	50
9+710	9+772		-	50
9+772	9+824	2,7	20	30
9+824	9+888		-	50
9+950	9+990	6,0	20	60
10+612	10+640	2,5	20	30
10+640	10+690		-	50
10+690	10+711	1,5	20	30
10+931	10+980	2,6	20	30
10+980	11+027	2,8	20	30
11+027	11+105		-	50
11+105	11+376	5,0	20	60
11+376	11+405		-	50
11+405	11+700	5,5	20	60
11+700	11+730	3,7	20	60
11+730	11+887		-	60
11+887	12+020	5,0	20	60
12+200	12+234	3,6	20	60
12+234	12+307		-	60
12+457	12+500	3,3	20	60
12+500	12+580		20	60
12+787	12+840	5,5	20	130
12+840	12,883	2,7	20	30
12+883	12+923		-	50
12+923	13+361	8,9	20	100
13+361	13+446		-	50
13+446	13+540	4,2	20	30
13+540	13+907	5,2	20	130
13+907	14+045		-	100
14+955	15+019	4,5	20	60

SS 121 "Catanese" Itinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta

UP62

Relazione Geotecnica

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
7+040	7+167	8,6	20	130
7+470	8+068	8,9	20	180
8+210	8+670	8,0	20	130
9+052	9+140	4,0	20	30

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
15+019	15+116		-	60
15+116	15+125	1,2	20	30
15+645	15+780	6,0	20	130
15+780	fine	1,0	20	30

Tabella 10-5: Carreggiata dx – Spessori di scotico e bonifica.

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
0+000	0+092,62		-	80
0+092	0+485	8,60	20	80
0+555	1+048	8,80	20	80
1+048	1+213		-	50
1+277	1+546		-	50
3+051	3+109		-	60
3+109	3+600	3,0	20	60
3+600	3+690	2,8	20	130
3+387	3+397		-	50
4+608	4+642		-	50
4+642	4+650	3,0	20	60
4+834	4+867	3,1	20	60
4+867	4+909		-	50
4+909	4+991	1,7	20	50
4+991	5+040		-	50
5+040	5+140	5,9	20	60
5+222	5+235		-	60
5+235	5+401	4,5	20	60
5+401	5+507		-	60
5+507	5+533	1,0	20	30
5+533	5+547		-	60
5+547	5+560		20	100
5+560	5+705	2,2	20	30
5+705	5+795		-	50

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
9+140	9+188	2,8	20	30
9+188	9+340		-	50
9+340	9+785		-	50
9+785	9+836	2,4	20	30
9+836	9+888		-	50
9+959	9+988		-	50
9+988	10+037	6,4	20	60
10+660	10+680		-	60
10+680	10+722		-	60
10+722	10+780	3,2	20	60
10+918	11+054	6,0	20	130
11+054	11+186	2,0	20	30
11+186	11+273	0,9	20	30
11+273	11+295		-	50
11+295	11+389	4,4	20	30
11+389	11+743	4,5	20	30
11+743	11+921		-	30
11+921	12+020	4,7	20	30
12+220	12+277	4,0	20	60
12+277	12+307		-	60
12+457	12+484		-	50
12+484	12+580	7,2	20	130
12+787	12+840	5,5	20	60
12+840	12+890	5,5	20	30

Relazione Geotecnica

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
5+936	6+000		-	50
6+000	6+069		-	50
6+069	6+097	1,0	20	30
6+097	6+188		-	60
6+200	6+240	3,5	20	60
6+578	6+860	4,5	20	60
6+860	7+040	5,0	20	60
7+040	7+167	8,7	20	130
7+470	8+068	9,1	20	180
8+208	8+670	8,3	20	130
9+052	9+140	3,6	20	30

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)
12+890	12+949		-	50
12+949	13+422	8,5	20	100
13+450	13+465		-	50
13+465	13+520	3,0	20	30
13+520	13+907	5,0	20	60
13+907	14+045		-	100
14+955	15+019	4,5	20	60
15+019	15+116		-	60
15+116	15+125	1,2	20	30
15+645	15+780	6	20	130

Tabella 10-6: Carreggiata sx – Spessori di scotico e bonifica.

11 TRINCEE DRENANTI

11.1 Introduzione

Le trincee drenanti sono utilizzate per la stabilizzazione di frane superficiali di carattere traslazionale, frequenti in genere in pendii poco acclivi in terreni coesivi, e per le quali spesso altri interventi risultano impossibili o economicamente non convenienti. Il loro impiego è in genere limitato a quei fenomeni che si sviluppano principalmente per imbibimento degli strati superficiali.

Il materiale di riempimento delle trincee è costituito da ghiaia e sabbia, che grazie al gradiente di permeabilità instaurano i fenomeni di drenaggio. Le pareti e la base sono rivestite con geotessile non tessuto con funzione di filtro, per evitare trascinamento di materiale fine all'interno del dreno. La parte superiore è protetta da uno strato di argilla costipata di spessore compreso tra 0.5 e 1.0 m. Tale strato impedisce l'infiltrazione diretta delle acque superficiali nella trincea, nonché il trasporto di materiale fine al suo interno.

Figura 11-1: Sezione tipo Trincee Drenanti in progetto.

Nel presente progetto si prevede la realizzazione di trincee in corrispondenza dei dissesti D17, D27 e D40, poste ad interasse di 25, 15 e 15 m, rispettivamente. Le opere saranno eseguite a monte ed

Relazione Geotecnica

a valle del tracciato, in prossimità dello stesso per tutta l'estensione del dissesto con una fascia di rispetto di almeno 50 m dagli edifici esistenti.

Figura 11-2: Planimetria ubicazione trincee drenanti, D17.

Relazione Geotecnica

Figura 11-3: Planimetria ubicazione trincee drenanti, D27.

Figura 11-4: Planimetria ubicazione trincee drenanti, D40.

11.2 Modello geotecnico

Nei sistemi di drenaggio a gravità si produce l'annullamento delle pressioni interstiziali all'interfaccia tra il sistema drenante e il terreno in posto e si innesca un processo di filtrazione a superficie libera in regime vario sino al raggiungimento delle condizioni stazionarie, che rispettano le nuove condizioni al contorno.

Il processo di drenaggio è influenzato dal regime delle piogge, dai livelli di infiltrazione e di evapotraspirazione, dalla presenza di superfici di discontinuità e dalla disomogeneità e anisotropia dei terreni nei riguardi della permeabilità. Una modellazione accurata del problema è di conseguenza caratterizzata da notevoli difficoltà e incertezze. È tuttavia possibile pervenire ad una progettazione razionale di un intervento di drenaggio se si introducono alcune ipotesi semplificative sulle condizioni di flusso e sulla geometria del problema.

Le analisi per il dimensionamento delle trincee drenanti possono essere condotte avvalendosi degli studi di *Desideri et al. (1997)* le cui ipotesi sono le seguenti:

- Trincee disposte secondo linee di massima pendenza e pseudo-parallele;
- Forma della sezione pseudo-rettangolare,
- Sviluppo longitudinale della frana L molto maggiore dell'interasse S (condizioni di flusso bidimensionale);
- Il terreno all'interno del quale vengono realizzate è omogeneo ed isotropo;

Il termine è il DTF, le cui caratteristiche geotecniche sono ampiamente descritte nei capitoli precedenti, Di seguito si riporta una tabella con riassunti i valori dei principali parametri utilizzati nelle analisi.

Dissesto	Termine	Granulometria	c' [kPa]	φ' [°]	k _x =k _y [cm/s]*	E [MPa]
D17	DTF	argilla limosa sabbiosa	0	18	10 ⁻⁷	4,2
D27	DTF	argilla limosa sabbiosa	0	22	10 ⁻⁷	4,2
D40	DTF	argilla limosa sabbiosa	0	22	10 ⁻⁷	4,2

Tabella 11-1: Principali proprietà geotecniche usate nel dimensionamento delle trincee drenanti.

*Considerando che le prove edometriche di laboratorio restituiscono risultati compresi tra 10⁻⁹ -10⁻⁸ e quelle in da prove *Lefranc* in situ tra 10⁻⁶ cm/s e 10⁻⁴, si è scelto di utilizzare un valore di 10⁻⁷, sovrastimando leggermente, a favore di sicurezza, i tempi di efficacia dell'intervento.

Lo studio di Desideri et al. si avvale dell'impiego della grandezza definita come efficienza idraulica E(t), intesa come il rapporto tra la riduzione di pressione interstiziale ottenuta nel punto in esame (- Δu) e la massima riduzione possibile (- $\Delta u_{max} = u_0$).

Relazione Geotecnica

Poiché l'unico miglioramento delle condizioni di sicurezza a seguito dell'installazione delle trincee è dovuto all'abbassamento della linea di falda, è possibile correlare l'efficienza con il rapporto tra l'incremento del coefficiente di sicurezza al tempo t – $\Delta F(t)$ – e quello massimo ottenibile annullando le pressioni interstiziali ΔF_{max} (F_{max} - F_0).

$$\overline{E}(t) = E(t) = \frac{u_0 - u(t)}{u_0} = \frac{\Delta F(t)}{\Delta F_{\text{max}}}$$

Lo schema fisico di riferimento per la valutazione dell'efficienza è il seguente:

Figura 11-5: Schema di riferimento progettazione e verifica Trincee Drenanti.

in cui:

- > D è la generica profondità in cui verrà calcolata l'efficienza idraulica,
- B è larghezza della trincea
- H_0 è la profondità della trincea, \geq
- S l'interasse tra una trincea e la successiva,
- $H = n H_0 \dot{e}$ la profondità dello strato impermeabile, \geq
- n è un fattore di correlazione tra H ed H₀, che varia col variare dello spessore. \geq

11.3 Modello di calcolo

Desideri et al. (1997) propongono abachi esplicativi che mettono in relazione S, B, H e H₀ con l'efficienza idraulica $E(\infty)$.

Note le quantità rappresentate in Figura 11-5, è possibile calcolare l'efficienza idraulica a tempo infinito $E(\infty)$ e quindi il coefficiente di sicurezza post-intervento a tempi infinito $F(\infty)$, essendo:

$$\mathsf{F}(\infty) = \mathsf{F}_0 + \mathsf{E}(\infty) \, \Delta \mathsf{F}_{\max}$$

in cui F₀ è il coefficiente di sicurezza nelle condizioni iniziali (tempo t=0).

Figura 11-6: Abachi per la verifica e progettazione trincee drenanti – calcolo interasse (Desideri et al., 1997).

Una volta verificata l'efficacia dell'intervento è importante valutare il tempo necessario affinché si raggiungano le condizioni di progetto. A tale scopo, *Desideri et al.* forniscono abachi che mettono in relazione le caratteristiche geometriche delle trincee con il fattore tempo T e, in particolare, in funzione di T_{50} e T_{90} , rispettivamente il tempo necessario al raggiungimento di un'efficienza idraulica media pari a 50% e 90% (v. Figura 11-7).

Il fattore tempo T può essere espresso con la seguente formula (Terzaghi, 1943):

$$T = \frac{k_{\rm v}}{\gamma_{\rm w} H_0^2} \frac{E'}{2(1+\nu') \cdot (1-2\nu')} \cdot t$$

Noti i valori di T_{50} e T_{90} , si ottengono t_{50} e t_{90} , ovvero I tempi espressi in secondi per il raggiungimento del 50% e 90% dell'efficienza idraulica.

È possibile desumere anche il coefficiente di sicurezza F(t) in corrispondenza dei tempi t₅₀ e t₉₀:

$$F (t_{50}) = F(t=0) + E (t_{50}) \Delta F_{max} = F(t=0) + 0.5 E(\infty) \Delta F_{max}$$
$$F (t_{90}) = F(t=0) + E (t_{90}) \Delta F_{max} = F(t=0) + 0.9 E(\infty) \Delta F_{max}$$

Relazione Geotecnica

Figura 11-7: Abachi per la verifica e progettazione trincee drenanti – calcolo fattore tempo (Desideri et al., 1997).

11.4 Risultati dei calcoli

I calcoli sono stati sviluppati con le seguenti ipotesi:

- ◆ per il rapporto H/H₀ si fa riferimento sempre alla profondità massima del dissesto;
- rapporto S/H0 variabili tra 3 e 6 per il calcolo dell'interasse S;
- efficienza idraulica media valutata su tre piani orizzontali posti a diverse profondità dal piano campagna D (D/H₀= 0.5-1-1.5).

Nella Tabella 11-2 si riportano i risultati dei calcoli per ciascun intervento preso in esame. In particolare, oltre ai valori delle grandezze geometriche (H, H₀, B ed S), vengono indicati i valori dei coefficienti di sicurezza ottenuti:

- tramite back-analysis in condizioni di pendio saturo (F₀);
- in assenza di pressioni interstiziali, cioè in condizioni di pendio asciutto (F_{max});
- in presenza delle trincee drenanti (F_∞);

SS 121 "Ca Itinerario Pa	Sanas			
UP62	UP62 Relazione Geotecnica			

Nella stessa tabella si riporta il tempo necessario affinché si raggiunga il 50% ($t_{50\%}$) e il 90% ($t_{90\%}$) dell'efficienza idraulica del sistema. In Figura 11-8 sono graficizzati tali risultati, sintetizzati per la valutazione dell'interesse S.

Figura 11-8: Risultati verifica e progettazione trincee drenanti – calcolo interasse S [m].

ID	da pr.	a pr.	D [m]	H [m]	Н [m]	H₀ [m]	B (solitamente 0,16H ₀) [m]	S [m]	F ₀	F _{max}	F∞	t _{50%} [mesi]	t _{90%} [mesi]
D_17	3+040	3+820	0,5-1-1,5	7,5	7,5	5	0,8	25	1,0	1,78	1,23	7,3	18,6
D_27	4+820	4+980	0,5-1-1,5	12,5	12,5	3	0,5	15	1,0	1,75	1,22	0,3	1,6
D_40	15+040	15+080	0,5-1-1,5	4,5	4,5	3	0,5	15	1,4	2,27	1,67	0,3	1,6

Tabella 11-2: Dimensionamento delle trincee drenanti. Risultati dei calcoli.

Gli interventi raggiungono il 90% della loro efficacia massima prima della fine della costruzione, tale valore è stato valutato come **media delle efficienze calcolate per D = 0,5-1-1,5 m.**

Per i dettagli riguardanti il posizionamento plano-altimetrico delle trincee e la sezione tipo da utilizzare si rimanda agli elaborati grafici dedicati.

12 CEDIMENTI DEI RILEVATI

12.1 Introduzione

Nel presente capitolo si riportano i risultati delle verifiche dei cedimenti dei rilevati in condizioni di esercizio (SLE), dovuti alla deformazione dei terreni di fondazione e delle opere. Le verifiche sono finalizzate a valutare l'entità del cedimento totale del nuovo rilevato a fine costruzione (ipotizzando una durata dei lavori pari a 48 mesi) e a lungo termine.

In dipendenza dei risultati dei calcoli, in alcuni casi gli spessori di bonifica sono stati aumentati rispetto ai valori determinati nel capitolo 10, al fine di rispettare le prescrizioni di Capitolato.

12.2 Schemi fisici di riferimento

Nella Tabella 12-1 e nella Tabella 12-2 sono riportati, per ciascun rilevato, l'altezza massima H_{max} e i terreni di fondazione per i quali sono differenziati i vari strati e i relativi spessori medi desunti dall'esame del profilo geotecnico di progetto.

Nelle stesse tabelle sono indicati gli spessori di scotico (pari a 0,2 m) e di bonifica (per H_{max}) determinati sulla base del calcolo dei cedimenti più avanti esposto e dai calcoli sviluppati con il metodo di Burmister i cui risultati sono riportati nel Capitolo 10.

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)	l strato / spessore	II strato / spessore	III strato / spessore	Terreni di base
0+092	0+485	8,6	20	80	LR 5 m	SC 4 m	LA 4 m	CL+SC
0+555	1+043	8,8	20	80	LR 5 m	SC+CL 3 m	LA 2,5 m	CL
3+180	3+271	1,0	20	30	DTF 0,7m	FNa 3 m		FN
3+469	3+512	1,0	20	30	DTF 0,7m	FNa 3 m		FN
3+634	3+765	4,5	20	60	DTF 2 m	FNa 4 m		FN
4+636	4+650	3,1	20	40	Cf			Cf
4+834	4+860	2,5	20	50	DTF 3,5	FNa 8 m		FN
4+916	4+948	1,2	20	50	DTF 3,5	FNa 3,5 m		FN
5+047	5+098	2,4	20	30	FNa 2,5 m			FN
5+254	5+393	4,0	20	60	DTF 4,5 m	FNa 3 m		FN
5+560	5+700	1,8	20	30	FNa 4,3 m			FN
6+203	6+278	7,5	20	180	DTF 3,5 m	ALF 5m	FNa 5 m	FN
6+578	6+860	4,5	20	60	ALF 5 m	ALG 1,7		FN

Relazione Geotecnica

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)	I strato / spessore	II strato / spessore	III strato / spessore	Terreni di base
6+860	7+040	5,0	20	60	ALF 5 m	ALG 1,7		FN
7+040	7+167	8,6	20	130	ALF 5 m	ALG 1,7		FN
7+470	8+068	8,9	20	180	ALF 6 m			FN
8+210	8+670	8,0	20	130	ALF 3,3 m	ALG 2 m		FN
9+052	9+140	4,0	20	30				FN
9+140	9+195	2,8	20	30	DTF 2,4 m			FN
9+772	9+824	2,7	20	30				FN
9+950	9+990	6,0	20	60	FNa 2,7 m			FN
10+612	10+640	2,5	20	30	DTF 2,0 m	ALF 5,0 m	ALG 5 m	FN
10+690	10+711	1,5	20	30	DTF 6,0 m	ALF 3,0 m	ALG 1 m	FN
10+931	10+980	2,6	20	30	ALF 3,7 m	FNa 4,50 m		FN
10+980	11+027	2,8	20	30	FNa 4,5 m			FN
11+105	11+376	5,0	20	60	FNa 5 m			FN
11+405	11+700	5,5	20	60	FNa 4,20 m			FN
11+700	11+730	3,7	20	60	DTF 2,70 m	FNa 6 m		FN
11+887	12+020	5,0	20	60	FNa 8 m			FN
12+200	12+234	3,6	20	60	DTF 4,8 m	FNa 7,40 m		FN
12+457	12+500	3,3	20	60	DTF 2,8 m	FNa 2,8 m		FN
12+787	12+840	5,5	20	130	DTF 4 m	FNa 4 m		FN
12+840	12,883	2,7	20	30	FNa 4 m			FN
12+923	13+361	8,9	20	100	FNa 4,6 m			FN
13+446	13+540	4,2	20	30	FNa 3 m			FN
13+540	13+907	5,2	20	130	DTF 2,5 m	FNa 4,5 m		FN
14+955	15+019	4,5	20	60	ALG 3,0 m			FN
15+116	15+125	1,2	20	30	FNa 5 m			FN
15+645	15+780	6,0	20	130	DTF 5,3 m	ALF 3,2 m	ALG 2,5 m	FN
15+780	fine	1,0	20	30	ALF 10 m			FN

Tabella 12-1: Rilevati in carreggiata destra. Terreni di fondazione e spessori di scotico e di bonifica per Hmax

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)	l strato	II strato	III strato	Terreni di base
0+092	0+485	8,60	20	80	LR 5 m	SC 4 m	LA 4 m	CL+SC
0+555	1+048	8,80	20	80	LR 5 m	SC+CL 3 m	LA 2,5 m	CL
3+109	3+600	3,0	20	60	DTF 1,6 m	FNa 4 m		FN
3+600	3+690	2,8	20	130	DTF 2,2 m	FNa 5 m		FN
4+642	4+650	3,0	20	60	DTF 2,2 m	TR 3,4 m		Cf
4+834	4+867	3,1	20	60	DTF 4 m	FNa 5 m		FN
4+909	4+991	1,7	20	50	DTF 4 m	FNa 4 m		FN
5+040	5+140	5,9	20	60	FNa 4,5 m			FN
5+235	5+401	4,5	20	60	DTF 3,2 m	FNa 1,6 m		FN
5+507	5+533	1,0	20	30	FNa 3 m			FN
5+560	5+705	2,2	20	30	FNa 3 m			FN
6+069	6+097	1,0	20	30	ALF 3 m			FN
6+200	6+240	3,5	20	60	DTF 3 m	ALF 5,5 m		FN
6+578	6+860	4,5	20	60	ALF 5,8 m	ALG 2,2 m		FN
6+860	7+040	5,0	20	60	ALF 5,8 m	ALG 2,2 m		FN
7+040	7+167	8,7	20	130	ALF 5,8 m	ALG 2,2 m		FN
7+470	8+068	9,1	20	180	ALF 6 m			FN
8+208	8+670	8,3	20	130	ALF 4 m	ALG 2 m	ALF 2 m	FN
9+052	9+140	3,6	20	30	FNa 5 m			FN
9+140	9+188	2,8	20	30	DTF 3 m	FNa 5 m		FN
9+785	9+836	2,4	20	30	FNa 2,5 m			FN
9+988	10+037	6,4	20	60	FNa 3,7 m			FN
10+722	10+780	3,2	20	60	DTF 6,3 m	ALF 3,7 m	ALG 3 m	FN
10+918	11+054	6,0	20	130	ALF 2,3 m	FNa 5 m		FN
11+054	11+186	2,0	20	30	FNa 5 m			FN
11+186	11+273	0,9	20	30	FNa 4,9 m			FN
11+295	11+389	4,4	20	30	FNa 6,5 m			FN
11+389	11+743	4,5	20	30	FNa 5,8 m			FN
11+921	12+020	4,7	20	30	FNa 11 m			FN
12+220	12+277	4,0	20	60	DTF 4 m	FNa 2,5 m		FN
12+484	12+580	7,2	20	130	DTF 5 m	FNa 8 m		FN
12+787	12+840	5,5	20	60	DTF 7 m	FNa 7 m		FN

Relazione Geotecnica

da km	a km	Hmax (m)	Scotico (cm)	Bonifica (cm)	l strato	II strato	III strato	Terreni di base
12+840	12+890	5,5	20	30	FNa 7 m		·	FN
12+949	13+422	8,5	20	100	FNa 6,5 m			FN
13+465	13+520	3,0	20	30	FNa 3 m			FN
13+520	13+907	5,0	20	60	DTF 3 m	FNa 3 m		FN
14+955	15+019	4,5	20	60	ALG 3,0 m			FN
15+116	15+125	1,2	20	30	FNa 5 m			FN
15+645	15+780	6	20	130	DTF 5,3 m	ALF 3,2 m	ALG 2,5 m	FN

Tabella 12-2: Rilevati in carreggiata sinistra. Terreni di fondazione e spessori di scotico e di bonifica per Hmax.

Dall'analisi dei dati raccolti nelle tabelle, sono stati individuati, in corrispondenza dei rilevati di maggiore altezza, sei schemi per il calcolo dei cedimenti che si ritengono i più critici ai fini della stabilità delle opere.

Di seguito si riportano, per ciascuno schema in esame, le sigle dei terreni di fondazione che si rinvengono dall'alto verso il basso e i relativi spessori. Viene inoltre indicata la profondità della falda, se presente.

I Schema

SI è fatto riferimento al rilevato tra pk 6+570 e pk 7+167 in carreggiata destra.

- Alluvioni a grana fina ALF spessore 5 m
 Alluvioni a grana grossa ALG spessore 2 m
- Argilla del Flysch Numidico FN
 terreno di base

La falda è ipotizzata a una profondità di 6 m dal piano di campagna.

Lo schema fisico di riferimento è riportato in fig. Figura 12-1.

Figura 12-1: I Schema. Rilevato tra pk 6+570 e pk 7+167 – Schema fisico di riferimento per il calcolo dei cedimenti.

II Schema

SI è fatto riferimento al rilevato tra pk 12+484 e pk 12+580.

- Detrito a grana fina DTF spessore 5 m
- Argilla alterata del Flysch Numidico FNa spessore 8 m
- Argilla del Flysch Numidico FN
 terreno di base

La falda è ipotizzata a una profondità di 6 m dal piano di campagna.

Lo schema fisico di riferimento è riportato in fig. Figura 12-2.

Figura 12-2: Il Schema. Rilevato tra pk 12+484 e pk 12+580 – Schema fisico di riferimento per il calcolo dei cedimenti.

III Schema

SI è fatto riferimento al rilevato tra pk 7+470 e pk 8+068 in carreggiata sinistra.

- Alluvioni a grana fina ALF spessore 6 m
- Argilla del Flysch Numidico FN
 terreno di base

La falda è ipotizzata a una profondità di 3 m dal piano di campagna.

Lo schema fisico di riferimento è riportato in fig. Figura 12-3.

Figura 12-3: III Schema. Rilevato tra pk 7+470 e pk 8+068 – Schema fisico di riferimento per il calcolo dei cedimenti.

IV Schema

SI è fatto riferimento al rilevato tra pk 12+923 e pk 13+446 in carreggiata destra.

- Argilla alterata del Flysch Numidico FNa spessore 4,6 m
- Argilla del Flysch Numidico FN
 terreno di base

Lo schema fisico di riferimento è riportato in fig. Figura 12-4.

Figura 12-4: IV Schema. Rilevato tra pk 12+923 e pk 13+446 – Schema fisico di riferimento per il calcolo dei cedimenti.

V Schema

SI è fatto riferimento al rilevato tra pk 6+203 e pk 6+278 in carreggiata sinistra.

Detrito a grana fina DTF spessore 3,5 m
Alluvioni a grana fina ALF spessore 5 m
Argilla alterata del Flysch Numidico FNa terreno di base

La falda è ipotizzata a una profondità di 3 m dal piano di campagna.

Lo schema fisico di riferimento è riportato in fig. Figura 12-5.

Figura 12-5: V Schema. Rilevato tra pk 6+203 e pk 6+278 – Schema fisico di riferimento per il calcolo dei cedimenti.

VI Schema

SI è fatto riferimento al rilevato tra pk 0+555 e pk 1+043 in carreggiata sinistra.

Terre rosse LR spessore 8 m
Sabbia calcarenitica SC spessore 7 m
Calcarenire CL terreno di base

La falda è ipotizzata a una profondità di 3 m dal piano di campagna.

Lo schema fisico di riferimento è riportato in fig. Figura 12-6.

Figura 12-6: VI Schema. Rilevato tra pk 0+555 e pk 1+043 – Schema fisico di riferimento per il calcolo dei cedimenti.

Gli spessori di bonifica sono stati correttamente calcolati nel Capitolo 10; tuttavia, in considerazione delle caratteristiche scadenti di alcuni terreni di fondazione e delle altezze dei rilevati piuttosto importanti, si aumentano tali spessori, dove necessario, per contenere i cedimenti poiché eventuali altri interventi richiederebbero tempi e lavorazioni molto più onerose.

Ciascuno schema sopra definito è stato analizzato considerando i seguenti range di altezza, per ciascuno dei quali è stata assunta l'altezza media di calcolo H_{calcolo} di seguito indicata:

- ✤ range di altezza 3 5 m $H_{calcolo} 4 m;$
- $\label{eq:range} \bullet \mbox{ range di altezza 5 7 m } H_{\mbox{calcolo} \ 6 \ m;}$
- range di altezza 7 − 9 m H_{calcolo} 8 m.

Il caso IV è stato sviluppato solo per altezze di 6 m e 8 m. Per il caso VI è stato considerato solo il rilevato di maggiore altezza.

In una prima fase è stata presa in esame la configurazione in assenza di interventi di bonifica. Alla luce dei risultati ottenuti, i calcoli sono stati ripetuti imponendo la sostituzione della porzione più superficiale dei terreni di fondazione con materiale di caratteristiche fisico-meccaniche analoghe a quello del rilevato.

12.3 Caratteristiche geotecniche dei terreni di fondazione

I parametri fisico-meccanici utilizzati nei calcoli sono sintetizzati nella tabella successiva. I valori sono stati desunti dai risultati delle prove in sito e di laboratorio.

Sigla	e ₀	E' v [MPa] v		C _v [m²/giorno]	k _h [m/s]
LR	0,7	6 0,25		0,00509	10 ⁻⁶
SC	0,6	20	20 0,3 0,452		10-4
ALF	0,7	5	0,25	0,04147	10 ⁻⁷
DTF	0,8	5	0,25	0,04147	10 ⁻⁷
FNa	0,7	25	0,3	0,00302	10 ⁻¹¹
FN	0,7	25	0,3	0,00302	10 ⁻¹¹
CL	-	150	0,3	-	10 ⁻⁶

Tabella 12-3 Parametri geotecnici utilizzati per il calcolo dei cedimenti.

Indice dei vuoti iniziale e₀ Coefficiente di Poisson v

Coefficiente di permeabilità orizzontale kh

Coefficiente di consolidazione C_v

Modulo di Young E'

Coefficiente di permeabilità

E' stata assunta l'ipotesi di comportamento omogeneo e isotropo dei terreni nei confronti della permeabilità, pertanto il coefficiente di permeabilità verticale k_v coincide con quello orizzontale k_h .

12.4 Calcolo dei cedimenti

Il calcolo dei cedimenti è stato sviluppato per le diverse altezze di rilevato e degli spessori dei terreni di fondazione esposti nel paragrafo 12.2.

Dal punto di vista teorico si può schematizzare il cedimento di un deposito coesivo saturo sottoposto all'azione di un carico di dimensioni finite secondo le seguenti componenti:

- a) <u>cedimento immediato</u>: data la bassa permeabilità del terreno, la fase di carico avviene in condizioni non drenate con generazione di sovrappressioni interstiziali; i materiali argillosi si deformano allora a volume costante;
- b) <u>cedimento di consolidazione primaria</u>: il trasferimento del carico dall'acqua allo scheletro solido comporta ulteriori cedimenti, la cui velocità nel tempo è legata principalmente alle caratteristiche di permeabilità dell'argilla alle condizioni di drenaggio;
- c) <u>cedimento secondario</u>: ultimato il processo di consolidazione primaria, anche quando le sovrappressioni nell'acqua risultano nulle, continuano a svilupparsi assestamenti dovuti a fenomeni di natura plastico viscosa in condizioni non drenate.

Il calcolo del tempo di consolidazione dei terreni, caratterizzati da permeabilità bassa, è stato svolto sulla base della soluzione data da Terzaghi (1923).

Per prevedere l'andamento del cedimento nel tempo, viene utilizzata la teoria della consolidazione, con la quale, noto il cedimento totale δ_{tot} , è possibile risalire al valore cedimento δ_t al tempo t attraverso la relazione:

$$\delta_t = Um \cdot \delta_{tot}$$

con U_m grado di consolidazione medio funzione del fattore tempo T_v . Quest'ultimo si ricava dall'espressione:

$$Tv = \frac{cv \cdot t}{H^2}$$

in funzione del tempo t al quale si sta valutando, del coefficiente di consolidazione c_v e del massimo percorso di drenaggio H, quest'ultimo funzione delle condizioni al contorno. Nei casi in esame il banco di terreno interessato dal processo di consolidazione può drenare solo dal piano limite superiore, in considerazione dei valori molto bassi di permeabilità dei terreni sottostanti.

Le correlazioni tra U_m e T_v sono state ricavate attraverso le relazioni (Sivaram e Swamee, 1977):

$$Tv = \frac{(\pi/4) \cdot Um^2}{(1 - Um^{5.6})^{0.357}}$$
$$Um = \frac{(4 \cdot Tv/\pi)^{0.5}}{\left[1 + \left(\frac{4Tv}{\pi}\right)^{2.8}\right]^{0.179}}$$

12.5 Software di calcolo

I calcoli sono stati eseguiti tramite il software di calcolo bidimensionale Plaxis 2d.

Il software utilizza un metodo agli elementi finiti con una maglia triangolare a sei nodi, computando singolarmente le diverse fasi della costruzione in relazione ai tempi impostati dall'operatore e utilizzando modelli costitutivi differenti per le singole unità geotecniche. Il software permette di sviluppare un'analisi di consolidazione tenendo conto delle pressioni interstiziali che si generano nel terreno e considerandone la dissipazione nel tempo sulla base dei coefficienti di permeabilità.

Prendendo in considerazione le assunzioni fatte sulle sezioni tipo di rilevato ritenute più critiche per il tracciato, è stato trovato un valore di spessore di bonifica minimo per ogni caso imponendo un cedimento residuo a fine costruzione massimo pari ai limiti imposti da capitolato e comunque non oltre i 5 cm.

La costruzione è simulata tramite la creazione di 4 fasi successive:

1) Condizione lito-statica iniziale.

In questa fase il modello viene lasciato libero di sviluppare i cedimenti dovuti al peso proprio. Tali cedimenti vengono resettati durante le fasi di calcolo successive e sono necessari a garantire che le sole deformazioni indotte nel terreno siano dovute all'applicazione del carico del rilevato.

Figura 12-7: Modello di calcolo - Condizione litostatica iniziale

2) Bonifica (se presente) e costruzione del rilevato.

Viene bonificato lo strato di terreno superiore e costruito il rilevato. La costruzione può essere considerata come istantanea e non è permesso lo svilupparsi di cedimenti.

3) Fine costruzione.

Si considera il tempo di ultimazione dei lavori (48 mesi) e si valuta il cedimento ancora da scontare.

4) Tempo di consolidazione.

Tempo necessario alla fine del processo di consolidazione, individuato come momento di raggiungimento della dissipazione del 95% delle sovrappressioni interstiziali.

I terreni sono stati caratterizzati secondo quanto descritto in Tabella 12-3.

12.6 Risultati dei calcoli

Gli spessori di bonifica determinati con i calcoli sono riportati in Tabella 12-4. I valori indicati sono al lordo degli spessori di scotico (20 cm) che sono stati considerati nei calcoli.

		Schemi esaminati						
		I	=	Ξ	IV	V	VI	
Range di altezza	H _{calcolo} [m]	Spessori di bonifica [cm]						
3 – 5 m	4	80	80	80	-	80	-	
5 – 7 m	6	100	150	150	80	150	-	
7 – 9 m	8	150	200	200	120	200	100	

Tabella 12-4: Spessori di bonifica determinati con il calcolo dei cedimenti.

In Tabella 12-5 si riportano, per ciascuno schema analizzato e per le diverse altezze di calcolo i valori del cedimento iniziale Wi, del cedimento a fine costruzione W_{48} , del cedimento complessivo W_{tot} e della differenza $\Delta_{(tot-48)}$.

Si osserva che in presenza di bonifica dei piani di fondazione si ottengono cedimenti residui compatibili con le prescrizioni di Capitolato.

			In assenza di bonifica				In presenza di bonifica				
Schema	H _{calcolo} [m]	Wi [mm]	W ₄₈ [mm]	W _{tot} [mm]	$\Delta_{(tot-48)}$ [mm]	Wi-B [mm]	W ₄₈ -B [mm]	W _{tot} -B [mm]	∆ _{tot-48} -B [mm]		
	4	54	99	114	15	53	95	104	9		
1	6	107	142	163	21	107	139	152	13		
	8	143	208	232	24	139	189	207	18		
	4	89	110	124	14	40	107	112	5		
2	6	140	164	187	23	125	148	162	14		
	8	186	215	241	26	158	182	200	18		
	4	44	105	119	14	43	101	111	10		
3	6	74	157	180	23	71	147	160	13		
	8	146	225	251	26	146	196	221	25		
4	6	52	79	99	20	51	77	85	8		
4	8	78	108	129	21	77	105	115	10		
	4	95	140	159	19	89	133	146	13		
5	6	151	212	229	17	133	187	204	17		
Ŭ	8	204	276	296	20	173	235	255	20		
6	8	229	432	514	82	164	389	412	23		

Tabella 12-5 – Risultati del calcolo dei cedimenti.

Nei grafici che seguono si illustra per ciascun caso preso in esame l'andamento dei cedimenti nel tempo in assenza e in presenza della bonifica.

Figura 12-8: I Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-9: I Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-10: I Schema. H_{calcolo} = 8 m – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-11: I Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-12: I Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-13: I Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-14: Il Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-15: Il Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-16: Il Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-17: II Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-18: Il Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-19: Il Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-20: III Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-21: III Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-22: III Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-23: III Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-24: III Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-25: III Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-26: IV Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-27: IV Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-28: IV Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-29: IV Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-30: V Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-31: V Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-32: V Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-33: V Schema. $H_{calcolo} = 4 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-34: V Schema. $H_{calcolo} = 6 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

Figura 12-35: V Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

SS 121 "Ca	SS 121 "Catanese"	
Itinerario Pa	tinerario Palermo – Agrigento – S.S. 121 Tratto A19 – Bolognetta	
UP62	Relazione Geotecnica	GRUPPO FS ITALIANE

Figura 12-36: VI Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in assenza di bonifica

Figura 12-37: VI Schema. $H_{calcolo} = 8 m$ – Andamento dei cedimenti nel tempo in presenza di bonifica

12.7 Piano di monitoraggio dei cedimenti

In correlazione ai risultati delle analisi svolte, si ritiene opportuno installare un sistema di monitoraggio dei cedimenti composto da assestimetri a piastra nei rilevati di altezza maggiore di 5 m. Gli assestimetri dovranno essere posizionati al centro del corpo del rilevato, a partire dal piano di posa del medesimo. Le misure dovranno essere effettuate con cadenza bisettimanale per tutto il periodo di costruzione dell'opera.

Nei rilevati di altezza inferiore si prevede un monitoraggio dei cedimenti di tipo topografico tramite caposaldi da posizionare ogni 200 m. Le misure saranno effettuate con cadenza mensile per tutto il periodo di costruzione delle opere.

Allo scopo di valutare i cedimenti del corpo del rilevato rispetto a dei punti ritenuti "fissi" si prevede l'installazione di capisaldi lungo tutte le sezioni strumentate. Si prescrive, in particolare, che da ogni assestimetro siano visibili almeno 2 capisaldi, in posizioni facilmente accessibili e a distanze adeguate dal corpo stradale per assicurare che la costruzione non induca interferenze alla strumentazione. L'ubicazione potrà essere decisa durante l'esecuzione delle opere in accordo alla morfologia delle aree prossime al cantiere.

Si prevedono inoltre due capisaldi al piede del rilevato e due in testa per ogni sezione strumentata.

Si riporta di seguito una sezione tipo strumentata. L'esatto posizionamento degli strumenti verrà definito durante le operazioni di costruzione in concordanza con le necessità tecnologiche del cantiere.

Figura 12-38 Sezione tipo del rilevato strumentata

13 VERIFICHE DI STABILITÀ GLOBALE

13.1 Introduzione

Le verifiche di stabilità globale hanno riguardato i tratti in rilevato, i tratti in trincea non sostenuti da opere di sostegno e gli scavi provvisionali per raggiungere il piano di posa dei plinti dei viadotti. Sono stati presi in esame:

- per i rilevati tre casi, coincidenti con le medesime configurazioni considerate le più gravose in termini di altezza dell'opera e terreni di fondazione;
- i tratti in trincea e gli scavi provvisionali non stabilizzati da paratie di pali.

13.1.1 Azioni e combinazioni di carico

Le verifiche di stabilità in condizioni statiche dei tratti in rilevato e in trincea sono state eseguite secondo l'Approccio 1 – Combinazione 2: (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I del D.M. 17.01.2018.

Per gli scavi provvisionali si è tenuto conto della combinazione A2+M2+R2.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Damaananti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	YG1	1,1	1,3	1,0
Dormononti non strutturali (1)	Favorevole		0,0	0,0	0,0
Permanenti non suuturan	Sfavorevole	YG2	1,5	1,5	1,3
Variabili	Favorevole	~	0,0	0,0	0,0
v ariabili	Sfavorevole	YQi	1,5	1,5	1,3

Tabella 13-1 Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018)

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	γм		
Tangente dell'angolo di	$\tan \phi'_k$	Ŷφ΄	1,0	1,25
resistenza al taglio				
Coesione efficace	c' _k	Ϋ́c	1,0	1,25
Resistenza non drenata	C _{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γ	γ _r	1,0	1,0

Tabella 13-2 Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018)

Coefficiente	R2
γ _R	1.1

Tabella 13-3 Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018)

Le verifiche di stabilità in condizioni sismiche dei tratti in rilevato sono state eseguite secondo l'Approccio 1 – Combinazione 1: (A1+M1+R3), tenendo conto dei coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I del D.M. 17.01.2018.

Nel caso di fronti di scavo R3 può essere assunto pari a 1,2.

In particolare, l'effetto sismico è stato simulato con il metodo pseudo-statico, in cui gli effetti di un evento sismico in un pendio sono rappresentati da un'azione statica equivalente.

L'analisi consiste nel valutare il coefficiente di sicurezza introducendo le componenti orizzontale e verticale del coefficiente sismico equivalente: la componente orizzontale è generalmente scelta come aliquota della componente orizzontale della massima accelerazione sismica attesa in sito, mentre la componente verticale è invece assunta pari a una frazione di quella orizzontale.

In accordo al D.M. 17.01.2018, le forze di inerzia dovute all'azione sismica sono state calcolate con le seguenti espressioni:

$$F_{h} = k_{h} \times W$$
$$F_{v} = k_{v} \times W$$

dove:

- F_h ed F_v sono, rispettivamente, la risultante verticale ed orizzontale delle forze di inerzia applicate al baricentro della massa potenzialmente instabile;
- W è il peso della massa stessa;
- k_h e k_v sono i coefficienti sismici orizzontale e verticale.

 $k_{\rm h} = \beta_{\rm s} \; x \; (a_{\rm max}/g)$

 $k_v = \pm 0.5 \text{ x } k_h$

con a_{max} accelerazione orizzontale massima attesa al sito, g accelerazione di gravità e β_s coefficiente di riduzione dell'accelerazione massima attesa al sito (v. tabella sotto).

	Categoria di sottosuolo		
	A B, C, D, E		
	β _s	β_s	
$0,2 < a_g(g) \le 0,4$	0,30	0,28	
$0,1 \le a_g(g) \le 0,2$	0,27	0,24	
$a_{g}(g) \leq 0,1$	0,20	0,20	

Coeff. di riduzione β_s per verifiche di Stabilità Globale Tabella 13-4 Coefficiente di riduzione βs

Considerando quanto riportato in relazione sismica in corrispondenza delle strutture in progetto sia hanno diversi valori di coefficienti sismici, sia in relazione ai terreni di fondazione che alle categorie

Relazione Geotecnica

topografiche; per le verifiche oggetto del presente paragrafo verranno usati i valori più cautelativi, ovvero quelli relativi alla maglia 1 con categoria topografica T2.

 $k_h = 0,106 e$ $k_v = \pm 0,053$

13.2 Software di calcolo

Le verifiche sono state sviluppate utilizzando il codice di calcolo SLOPE/W della Geo-Slope International Ltd e facendo ricorso al metodo di Morgenstern-Price.

Serial: 31374;

Name: Slope/W - Core subscription;

Type: Subscription

Expiry: May 16, 2024 (UTC)

Il programma svolge l'analisi all'equilibrio limite esaminando, per varie superfici di scorrimento, il relativo coefficiente di sicurezza e individuando quella critica, cioè quella con il fattore di sicurezza minore.

All'interno del programma sono implementati diversi metodi per definire le superfici di scivolamento. Nel caso in esame, le analisi sono state eseguite attraverso la modalità chiamata "Entry and exit", in cui vengono fissate dall'operatore le zone di attivazione in testa ed al piede delle potenziali superfici di scorrimento.

13.3 Modelli geotecnici di calcolo

13.3.1 Rilevati

Per le verifiche dei rilevati, al seguito descritte, sono in comune le seguenti caratteristiche:

- Pendenza delle scarpate 3 su 2;
- Banche di 1÷2 m per i rilevati con altezza massima superiore a 5 m.

Il primo caso si riferisce al tratto tra il km 0+550 e il km 1+040, che poggia sui terreni LR di spessore pari a 8 m, che a loro volta ricoprono la sabbia SC e la calcarenite CFC+CL. Nello schema di calcolo si è tenuto conto solo della presenza dei terreni LR e SC. Non è stata considerata la presenza della falda vista la notevole profondità alla quale è stata rivenuta.

Nelle verifiche è stato considerato il rilevato di maggiore altezza (10 m). Lo schema fisico di riferimento è mostrato in Figura 13-1.

Distance Figura 13-1: Verifiche di stabilità globale – Caso 1 – Schema fisico di riferimento.

20

30

sc

19

10

Il secondo caso si riferisce al tratto tra il km 7+480 e il km 8+080, dove i rilevati sono fondati sui terreni alluvionali ALF, che poggiano sulle argille di base FN. La falda è posta a una profondità di 5,50 m dal piano di campagna all'interno dei terreni ALF. A vantaggio di sicurezza si trascura la presenza dei livelli di alluvioni a grana grossa ALG. Nelle verifiche è stato considerato il rilevato di maggiore altezza (8 m). Lo schema fisico di riferimento è mostrato in Figura 13-2.

Figura 13-2: Verifiche di stabilità globale – Caso 2 – Schema fisico di riferimento.

Relazione Geotecnica

Il terzo caso si riferisce al rilevato tra il km 12+480 e il km 12+600. Lo schema di Figura 13-6 mostra che l'opera, alta 9 m, poggia sul detrito a grana fina DTF di spessore 5 m, che a sua volta poggia sulle argille di base del Flysch Numidico. In questo caso la formazione presenta uno strato superiore alterato (FNA) per uno spessore di 8 m. La falda è poco al di sotto del contatto tra i terreni DTF e FNA, ad una profondità di 6 m dal p.c.

Lo schema fisico di riferimento è mostrato in Figura 13-3.

I carichi stradali indicati negli schemi sono stati scelti in accordo a quanto suggerito nel Manuale di Progettazione ANAS – Parte II – Sezione 8 – Geotecnica al capitolo 8.4.2.1.3 Azioni. Secondo tali indicazioni il carico è stato assunto pari a:

- 20 kPa, uniformemente distribuito e applicato a tutta la piattaforma stradale, per le condizioni statiche;
- 4 kPa (ovvero il 20% del carico in condizioni statiche), uniformemente distribuito e applicato a tutta la piattaforma stradale, per le condizioni sismiche.

13.3.2 Trincee e scavi provvisionali

Le verifiche di trincee e scavi, di seguito descritte, hanno in comune la pendenza delle scarpate pari a 1 su 1.

Le verifiche hanno riguardato i tratti in trincea e in scavo provvisionale non provvisti di opere di contenimento (paratie di pali). Le verifiche sono state eseguite in condizioni statiche e sismiche, prendendo in considerazione la massima profondità di scavo riportata in corrispondenza del capitolo 8.6.

Relazione Geotecnica

I tratti in esame interessano principalmente i terreni LR, ALF, DTF ed FNa.

I casi verificati sono i seguenti:

 Scavo a lungo e breve termine con profondità di 5 m, che interessa l'argilla alterata FNa del Flysch Numidico;

Figura 13-4 Modello di calcolo verifiche di stabilità scavi a lungo e breve termine che interessano l'argilla alterata FNa del Flysch Numidico.

 Scavi a breve termine con profondità massima di 3 m interamente eseguiti nelle coltri LR-ALF-DTF, per semplicità, avendo i terreni proprietà meccaniche simili tra loro, sono stati accorpati ad un'unica unità geotecnica, con i valori minimi comuni ai termini in questione (peso per unità di volume γ'= 19 kN/m³; coesione non drenata c_u=20kPa).

Figura 13-5 Modello di calcolo verifiche di stabilità scavi a breve termine eseguiti nelle coltri LR-ALF-DTF.

13.3.3 Caratteristiche geotecniche dei terreni

Per lo sviluppo delle verifiche sono stati utilizzati i parametri geotecnici derivanti dai risultati delle indagini (v. paragrafo 6.6), che si riassumono nel seguito.

I materiali che costituiscono il rilevato sono stati caratterizzati cautelativamente con i seguenti valori, desunti da sperimentazioni effettuate per altri lavori stradali su campioni di tout-venant di cava (classificazione HRB A1a, A1b, A2-4, A2-5) costipati con tecnica AASHO Standard:

Sigla	γ	C'	φ'	Cu
	kN/m³]	[kPa]	[°]	[MPa]
LR	18,5-19,5	0	20	20
DTF	18,5-19,5	0	22	20
ALF	18-19	5	20	40
FNA	20-20,5	17	22	80-150
Rilevato	19	0	35	-

Tabella 13-5 Parametrici fisico-meccanici dei terreni di fondazione LR.

13.4 Risultati

Nella Tabella 13-6 si riportano i valori del coefficiente di sicurezza minimo F_{min}, in condizioni statiche e sismiche, ottenuti con i calcoli di stabilità.

Opera	F _{min}		
Opera	Condizione statica	Condizione sismica	
Caso 1 - Rilevato H=10 m	1,125	1,123	
Caso 2 - Rilevato H=8 m	1,117	1,494	
Caso 3 - Rilevato H=9 m	1,139	1,376	
Trincee in Argilla FNA – Prof. 5 m	1,181	1,1445	
Scavo provvisionale nelle coltri LR-ALF-DTF - Prof 3 m	1,345	-	

Tabella 13-6 Risultati delle verifiche di stabilità globale

Si osserva che i valori più bassi del coefficiente di sicurezza risultano sempre maggiori dei valori minimi di normativa (1,1 per le condizioni statiche; 1,2 per la condizione sismiche).

Nelle figure che seguono si riportano le tracce delle superfici di scorrimento per le quali si è ottenuto il coefficiente di sicurezza minimo.

Figura 13-6 Verifica di stabilità in condizioni statiche - Rilevati Caso I – Superficie di scorrimento critica 1.123 (ODF)

Figura 13-7 Verifica di stabilità in condizioni sismiche - Rilevati Caso I – Superficie di scorrimento critica.

Figura 13-8 Verifica di stabilità in condizioni statiche - Rilevati Caso II – Superficie di scorrimento critica

Figura 13-9 Verifica di stabilità in condizioni sismiche - Rilevati Caso II – Superficie di scorrimento critica.

Figura 13-10 Verifica di stabilità in condizioni statiche - Rilevati Caso III – Superficie di scorrimento critica

Figura 13-11 Verifica di stabilità in condizioni sismiche – Rilevati Caso III – Superficie di scorrimento critica.

Figura 13-13 Verifica di stabilità in trincea in condizioni sismiche – Superficie di scorrimento critica.

Distance

Figura 13-14 Verifica di stabilità a breve termine degli scavi provvisionali – Superficie di scorrimento critica.

UP62

Appendice A

Colonne stratigrafiche dei sondaggi

Sondaggi S04, S05, S06.

Sondaggi S17, S18, S20.

CR5

<u>30.00</u> m

CR5

<u>30.00</u> m

CR4

CR5 30.00 m

2.00 m

4.00 m

4.00 m

<u>12.00</u> m

UP62

Sondaggi S21, S23, S24.

UP62

Sondaggi S25, S26.

CR1

CI4

CI6

CR7

CR8

_ 30.00 m

0R3 9.00 m

15.80 m

UP62

Relazione Geotecnica

CR7 30.00 m

Sondaggi S33, S35, S36.

N30=86

CI5

CR6

21.00 m

FN

CR3

CR5

FN

12.98 m

CR3

CR4

CR5

CR6 _____30.00 m

FN

N30=R

Sondaggi S43, S45.

Sondaggi SN1, SN2, SN3, SN4

UP62

Appendice B

Sezioni di verifica pendi in frana utilizzate nelle Back Analysis e Risultati

Dissesto D_06 - Sezioni di verifica

tive on e (°)	

Dissesto D_07 - Sezioni di verifica

Dissesto D_08 - Sezioni di verifica

Dissesto D_17 - Sezioni di verifica ante-operam

Dissesto D_17 - Sezioni di verifica post-operam

Dissesto D_27 - Sezioni di verifica ante-operam.

Dissesto D_27 - Sezioni di verifica post--operam.

Dissesto D_27 - Sezioni di verifica post-operam - pendio asciutto.

Sanas GRUPPO FS ITALIANE

T10

Dissesto D_29 - Sezioni di verifica post-operam - pendio asciutto.

Dissesto D_29 - Sezioni di verifica post-operam - pendio asciutto.

Dissesto D_39 - Sezioni di verifica post-operam - pendio asciutto.

UP62

Relazione Geotecnica

Appendice C

Report di calcolo – Stabilità dei rilevati e Back Analysis

Caso I (statica)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:40:53

Project Settings

Unit System: International System of Units (SI)

Analysis Settings

```
Caso I (statica)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: (none)
     Limit State Design Approach: A2+M2
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
          Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
          Tolerable difference between starting and converged ODF: 3
          Maximum iterations to calculate converged lambda: 20
```

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 °

LR

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 3 kPa Effective Friction Angle: 22 ° Phi-B: 0 °

SC

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 31 ° Phi-B: 0 °

CL

Slope Stability Material Model: Bedrock (Impenetrable)

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 °

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,556574; 30) m Left-Zone Right Coordinate: (12,911623; 29,515586) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (28,16054; 20,813428) m Right-Zone Right Coordinate: (40; 20) m Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 30) m Right Coordinate: (40; 20) m

Seismic Coefficients Horz Seismic Coef.: 0

Surcharge Loads

Surcharge Load 1 Surcharge (Unit Weight): 20 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
-0,008725 m	30,99631 m
10,054709 m	31,003577 m

Design Factor Set: A2+M2

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.3 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1,25 Effective Coefficient of Friction: 1,25 Undrained Strength: 1,4 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Primo caso (statica)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	0 m	0 m
Point 2	0 m	30 m
Point 3	12,165444 m	30 m
Point 4	19,665444 m	25,131051 m
Point 5	21,65044 m	25,131051 m
Point 6	29,387025 m	20 m
Point 7	0 m	20 m
Point 8	40 m	20 m
Point 9	40 m	0 m
Point 10	0 m	12,036667 m
Point 11	40 m	12,036667 m
Point 12	0 m	4,986667 m
Point 13	40 m	4.936667 m

Point 14	0 m	18,5 m
Point 15	30,920772 m	20 m
Point 16	30,920772 m	18,5 m

Regions

	Material	Points	Area
Region 1	Rilevato	2;7;6;5;4;3	208,43 m ²
Region 2	Bonifica	7;14;16;15;6	46,381 m ²
Region 3	CL	9;1;12;13	198,47 m²
Region 4	SC	10;11;13;12	283 m ²
Region 5	LR	8;11;10;14;16;15	272,15 m ²

Slip Results

Slip Surfaces Analysed: 6936 of 9261 converged

Current Slip Surface

Slip Surface: 8.009 Overdesign Factor: 1,125 Degree of Utilization: 0,889 Volume: 31,101551 m³ Weight: 622,03103 kN Resisting Moment: 7.951,9628 kN·m Activating Moment: 7.069,5491 kN·m Resisting Force: 279,28326 kN Activating Force: 248,32032 kN Slip Rank: 1 of 9.261 slip surfaces Exit: (29,330056; 20,037783) m Entry: (11,805223; 30) m Radius: 25,04042 m Center: (31,895699; 44,946418) m

Slip Columns

	x	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	11,985334 m	29,763805 m	0 kPa	2,8011081 kPa	1,5690856 kPa	0 kPa	0 kPa	Rilevato
Column 2	12,453906 m	29,172082 m	0 kPa	7,4998197 kPa	4,2011443 kPa	0 kPa	0 kPa	Rilevato
Column 3	13,030829 m	28,485957 m	0 kPa	11,00316 kPa	6,1635963 kPa	0 kPa	0 kPa	Rilevato
Column 4	13,607752 m	27,846850 m	0 kPa	13,977353 kPa	7,8296385 kPa	0 kPa	0 kPa	Rilevato
Column 5	14,184675 m	27,249647 m	0 kPa	16,548344 kPa	9,2698201 kPa	0 kPa	0 kPa	Rilevato
Column 6	14,761598 m	26,690222 m	0 kPa	18,807868 kPa	10,535529 kPa	0 kPa	0 kPa	Rilevato
Column 7	15,338521 m	26,165188 m	0 kPa	20,819995 kPa	11,662654 kPa	0 kPa	0 kPa	Rilevato
Column 8	15,915444 m	25,671728 m	0 kPa	22,627327 kPa	12,67506 kPa	0 kPa	0 kPa	Rilevato
Column 9	16,492367 m	25,207469 m	0 kPa	24,256178 kPa	13,587487 kPa	0 kPa	0 kPa	Rilevato

						1		
Column 10	17,069290 m	24,770391 m	0 kPa	25,720387 kPa	14,407687 kPa	0 kPa	0 kPa	Rilevato
Column 11	17,646213 m	24,358759 m	0 kPa	27,023706 kPa	15,137762 kPa	0 kPa	0 kPa	Rilevato
Column 12	18,223136 m	23,971073 m	0 kPa	28,160934 kPa	15,774799 kPa	0 kPa	0 kPa	Rilevato
Column	18,800059	23,606027	0 kPa	29,118178 kPa	16,311014 kPa	0 kPa	0 kPa	Rilevato
Column	19,376982	23,262474	0 kPa	29,87272	16,733683	0 kPa	0 kPa	Rilevato
Column	19,996277	22,917233	0 kPa	33,724219	18,891162	0 kPa	0 kPa	Rilevato
Column	20,657942	22,572362	0 kPa	40,927201	22,926028	0 kPa	0 kPa	Rilevato
Column	21,319607 m	22,252020 m	0 kPa	48,157744 kPa	26,976332 kPa	0 kPa	0 kPa	Rilevato
Column	21,945810	21,969936	0 kPa	51,618766	28,915079 kPa	0 kPa	0 kPa	Rilevato
Column	22,536549	21,722992	0 kPa	50,926027	28,527031	0 kPa	0 kPa	Rilevato
Column	23,127289	21,493525		49,642566	27,808079	0 kPa	0 kPa	Rilevato
Column	23,718029	21,281028		47,706801	26,72373	0 kPa	0 kPa	Rilevato
Column	24,308768	21,085047	0 kPa	45,076883 kPa	25,250539 kPa	0 kPa	0 kPa	Rilevato
Column	24,899508	20,905176	0 kPa	41,736752 kPa	23,379511 kPa	0 kPa	0 kPa	Rilevato
Column 24	25,490248 m	20,741058	0 kPa	37,700349 kPa	21,118455 kPa	0 kPa	0 kPa	Rilevato
Column 25	26,080987 m	20,592373 m	0 kPa	33,013264 kPa	18,492909 kPa	0 kPa	0 kPa	Rilevato
Column 26	26,671727 m	20,458839 m	0 kPa	27,751359 kPa	15,545369 kPa	0 kPa	0 kPa	Rilevato
Column 27	27,262467	20,340211 m	0 kPa	22,016188 kPa	12,332721 kPa	0 kPa	0 kPa	Rilevato
Column 28	27,853206 m	20,236273 m	0 kPa	15,927422 kPa	8,9220007 kPa	0 kPa	0 kPa	Rilevato
Column 29	28,443946	20,146840 m	0 kPa	9,6128597 kPa	5,3847975 kPa	0 kPa	0 kPa	Rilevato
Column 30	29,034686 m	20,071756 m	0 kPa	3,1969236 kPa	1,790808 kPa	0 kPa	0 kPa	Rilevato
						1	1	

Caso I (sisma)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\

Project Settings

Unit System: International System of Units (SI)

Analysis Settings

Caso I (sisma)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
Side Function
Intercolumn force function option: Half-Sine
PWP Conditions from: (none)
Staged Pseudo Static Analysis Option: Effective Stress Strengths
Limit State Design Approach: A1+M1
Unit Weight of Water: 9,807 kN/m ³
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack Option: (none)
Distribution
ODF Calculation Option: Constant
Convergence
Geometry Settings
Minimum Slip Surface Depth: 3 m
Minimum Slip Surface Volume: 5 m ³
Number of Columns: 30
Overdesign Factor Convergence Settings
Maximum Number of Iterations: 100
Tolerable difference in ODF: 0,01
Solution Settings
Search Method: Root Finder
Tolerable difference between starting and converged ODF: 3
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 °

LR

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 3 kPa Effective Friction Angle: 22 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 °

SC

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 31 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 °

CL

Slope Stability Material Model: Bedrock (Impenetrable)

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 °

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,556574; 30) m Left-Zone Right Coordinate: (12,911623; 29,515586) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (28,16054; 20,813428) m Right-Zone Right Coordinate: (40; 20) m Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 30) m

Seismic Coefficients

Horz Seismic Coef.: 0,106 Vert Seismic Coef.: 0,053

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 4 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
-0,008725 m	30,99631 m
10,054709 m	31,003577 m

Design Factor Set: A1+M1

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1.3 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.5 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Primo caso (sisma)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	0 m	0 m
Point 2	0 m	30 m
Point 3	12,165444 m	30 m
Point 4	19,665444 m	25,131051 m
Point 5	21,65044 m	25,131051 m
Point 6	29,387025 m	20 m
Point 7	0 m	20 m
Point 8	40 m	20 m
Point 9	40 m	0 m
----------	-------------	-------------
Point 10	0 m	12,036667 m
Point 11	40 m	12,036667 m
Point 12	0 m	4,986667 m
Point 13	40 m	4,936667 m
Point 14	0 m	18,554133 m
Point 15	30,920772 m	18,5 m
Point 16	30,845219 m	20 m

Regions

	Material	Points	Area
Region 1	Rilevato	2;7;6;5;4;3	208,43 m ²
Region 2	Bonifica	7;14;15;16;6	45,488 m ²
Region 3	CL	9;1;12;13	198,47 m ²
Region 4	SC	10;11;13;12	283 m ²
Region 5	LR	8;11;10;14;15;16	273,05 m ²

Caso II (statica)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:40:52

Project Settings Unit System: International System of Units (SI)

```
Caso II (statica)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: A2+M2
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
          Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
```

Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

ALF

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 18,5 kN/m³ Effective Cohesion: 7 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,944314; 28) m Left-Zone Right Coordinate: (9,739297; 26,974612) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (20,808744; 20,963795) m Right-Zone Right Coordinate: (31,078347; 20) m Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 28) m Right Coordinate: (40; 20) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	14,5 m
Coordinate 2	40 m	14,5 m

Seismic Coefficients

Horz Seismic Coef.: 0,014 Vert Seismic Coef.: 0,007

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 20 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
0,058644 m	28,987584 m
6,155827 m	29,04613 m

Design Factor Set: A2+M2

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.3 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1,25 Effective Coefficient of Friction: 1,25 Undrained Strength: 1,4 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Secondo caso (statica)

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	0 m	0 m
Point 2	0 m	28 m
Point 3	8,187198 m	28 m
Point 4	15,687198 m	23,045156 m
Point 5	17,706458 m	23,045156 m
Point 6	22,245289 m	20 m
Point 7	0 m	20 m
Point 8	40 m	20 m
Point 9	40 m	0 m
Point 10	0 m	12,058889 m
Point 11	40 m	12,017222 m
Point 12	0 m	5,024167 m
Point 13	40 m	5,024167 m
Point 14	40 m	14,5 m
Point 15	0 m	14,5 m
Point 16	21,352871 m	18,5 m
Point 17	0 m	18,424503 m
Point 18	23,635536 m	18,5 m
Point 19	23,635536 m	20 m

Regions

	Material	Points	Area
Region 1	Rilevato	2;7;6;5;4;3	119,98 m ²
Region 2	Bonifica	7;17;16;18;19;6	36,259 m ²
Region 3	FNalt/FN	11;10;12;1;9;13	481,52 m²
Region 4	ALF	8;11;10;17;16;18;19	282,22 m ²

Slip Results

Slip Surfaces Analysed: 5525 of 9261 converged

Current Slip Surface

Slip Surface: 3.155 Overdesign Factor: 1,177 Degree of Utilization: 0,850 Volume: 33,618806 m³ Weight: 672,37612 kN Resisting Moment: 12.543,89 kN·m Activating Moment: 10.660,739 kN·m Resisting Force: 336,6718 kN Activating Force: 286,03466 kN Slip Rank: 1 of 9.261 slip surfaces Exit: (22,124498; 20,08104) m Entry: (4,1304017; 28) m Radius: 33,488676 m Center: (26,022665; 53,342064) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	4,467973 m	27,716060 m	-129,6099 kPa	22,792134 kPa	12,767379 kPa	0 kPa	0 kPa	Rilevato
Column 2	5,143114 m	27,162887 m	-124,18493 kPa	30,310956 kPa	16,979168 kPa	0 kPa	0 kPa	Rilevato
Column 3	5,818256 m	26,638243 m	-119,03975 kPa	37,504113 kPa	21,00853 kPa	0 kPa	0 kPa	Rilevato
Column 4	6,494389 m	26,139782 m	-114,15134 kPa	25,147697 kPa	14,086886 kPa	0 kPa	0 kPa	Rilevato
Column 5	7,171513 m	25,666124 m	-109,50618 kPa	32,00691 kPa	17,929184 kPa	0 kPa	0 kPa	Rilevato
Column 6	7,848636 m	25,216745 m	-105,09911 kPa	38,79784 kPa	21,733232 kPa	0 kPa	0 kPa	Rilevato
Column 7	8,475660 m	24,820506 m	-101,2132 kPa	42,291594 kPa	23,690314 kPa	0 kPa	0 kPa	Rilevato
Column 8	9,052583 m	24,473470 m	-97,809817 kPa	42,401505 kPa	23,751882 kPa	0 kPa	0 kPa	Rilevato
Column 9	9,629506 m	24,141956 m	-94,558665 kPa	42,427655 kPa	23,766531 kPa	0 kPa	0 kPa	Rilevato
Column 10	10,206429 m	23,825442 m	-91,45461 kPa	42,351334 kPa	23,723779 kPa	0 kPa	0 kPa	Rilevato
Column 11	10,783352 m	23,523449 m	-88,492966 kPa	42,149109 kPa	23,610499 kPa	0 kPa	0 kPa	Rilevato
Column 12	11,360275 m	23,235540 m	-85,669443 kPa	41,792896 kPa	23,410961 kPa	0 kPa	0 kPa	Rilevato
Column 13	11,937198 m	22,961315 m	-82,980114 kPa	41,25025 kPa	23,106989 kPa	0 kPa	0 kPa	Rilevato
Column	12,514121 m	22,700405 m	-80,421373 kPa	40,485045 kPa	22,678347 kPa	0 kPa	0 kPa	Rilevato
Column	13,091044 m	22,452474	-77,98991 kPa	39,458639 kPa	22,103389 kPa	0 kPa	0 kPa	Rilevato
Column	13,667967 m	22,217210 m	-75,682681 kPa	38,131577 kPa	21,360014 kPa	0 kPa	0 kPa	Rilevato
Column	14,244890	21,994329	-73,496888 kPa	36,465774 kPa	20,426888 kPa	0 kPa	0 kPa	Rilevato
Column	14,821813 m	21,783569	-71,429957 kPa	34,427055 kPa	19,284867 kPa	0 kPa	0 kPa	Rilevato
Column 19	15,398736 m	21,584687 m	-69,479521 kPa	31,987873 kPa	17,91852 kPa	0 kPa	0 kPa	Rilevato
Column 20	16,023741 m	21,382894 m	-67,500537 kPa	33,016657 kPa	18,49481 kPa	0 kPa	0 kPa	Rilevato
Column 21	16,696828 m	21,180015 m	-65,51091 kPa	37,575585 kPa	21,048566 kPa	0 kPa	0 kPa	Rilevato
Column	17,369915 m	20,992413	-63,67109 kPa	41,681566 kPa	23,348598 kPa	0 kPa	0 kPa	Rilevato
Column 23	18,022032 m	20,824751 m	-62,026831 kPa	41,054325 kPa	22,997238 kPa	0 kPa	0 kPa	Rilevato
Column	18,653181 m	20,675913 m	-60,567175 kPa	35,650504 kPa	19,970202 kPa	0 kPa	0 kPa	Rilevato
Column	19,284329	20,539893	-59,233228	29,76537 kPa	16,673549 kPa	0 kPa	0 kPa	Rilevato
Column 26	19,915478 m	20,416532 m	-58,023431 kPa	23,491136 kPa	13,158937 kPa	0 kPa	0 kPa	Rilevato

Column 27	20,546626 m	20,305689 m	-56,936392 kPa	16,932286 kPa	9,4848916 kPa	0 kPa	0 kPa	Rilevato
Column 28	21,177775 m	20,207238 m	-55,970879 kPa	10,197366 kPa	5,7122183 kPa	0 kPa	0 kPa	Rilevato
Column 29	21,808923 m	20,121068 m	-55,125812 kPa	3,3900034 kPa	1,8989647 kPa	0 kPa	0 kPa	Rilevato

Caso II (sisma)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:40:59

Project Settings Unit System: International System of Units (SI)

Caso II (sisma)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
Side Function
Intercolumn force function option: Half-Sine
PWP Conditions from: Piezometric Surfaces
Apply Phreatic Correction: No
Use Staged Rapid Drawdown: No
Staged Pseudo Static Analysis Option: Effective Stress Strengths
Limit State Design Approach: A1+M1
Unit Weight of Water: 9,807 kN/m ³
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack Option: (none)
Distribution
ODF Calculation Option: Constant
Convergence
Geometry Settings
Minimum Slip Surface Depth: 3 m
Minimum Slip Surface Volume: 5 m ³
Number of Columns: 30
Overdesign Factor Convergence Settings
Maximum Number of Iterations: 100
Tolerable difference in ODF: 0,01
Solution Settings

Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

ALF

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 18,5 kN/m³ Effective Cohesion: 7 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,944314; 28) m Left-Zone Right Coordinate: (9,739297; 26,974612) m Left-Zone Increment: 20 Right Type: Range Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 28) m Right Coordinate: (40; 20) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	14,5 m
Coordinate 2	40 m	14,5 m

Seismic Coefficients

Horz Seismic Coef.: 0,015 Vert Seismic Coef.: 0,008

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 4 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
0,058644 m	28,987584 m
6,155827 m	29,04613 m

Design Factor Set: A1+M1

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1.3 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.5 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	0 m	0 m
Point 2	0 m	28 m
Point 3	8,187198 m	28 m
Point 4	15,687198 m	23,045156 m
Point 5	17,706458 m	23,045156 m
Point 6	22,245289 m	20 m
Point 7	0 m	20 m
Point 8	40 m	20 m
Point 9	40 m	0 m
Point 10	0 m	12,058889 m
Point 11	40 m	12,017222 m
Point 12	0 m	5,024167 m
Point 13	40 m	5,024167 m
Point 14	40 m	14,5 m
Point 15	0 m	14,5 m
Point 16	0 m	18,5 m
Point 17	23,635536 m	20 m
Point 18	23,635536 m	18,5 m

Regions

	Material	Points	Area
Region 1	Rilevato	2;7;6;5;4;3	119,98 m²
Region 2	Bonifica	7;16;18;17;6	35,453 m²
Region 3	FNalt/FN	11;10;12;1;9;13	481,52 m ²
Region 4	ALF	8;11;10;16;18;17	283,02 m ²

Slip Results

Slip Surfaces Analysed: 5572 of 9261 converged

Current Slip Surface

Slip Surface: 4.502 Overdesign Factor: 1,494 Degree of Utilization: 0,669 Volume: 35,439054 m³ Weight: 708,78108 kN Resisting Moment: 9.989,5996 kN·m Activating Moment: 6.668,4571 kN·m Resisting Force: 415,19898 kN Activating Force: 278,7876 kN Slip Rank: 1 of 9.261 slip surfaces Exit: (22,627979; 20) m Entry: (5,4958678; 28) m Radius: 21,438939 m Center: (22,203235; 41,434731) m

Column 1	5,825847 m	27,609117 m	-128,56111 kPa	8,8150166 kPa	0 kPa	6,2168863 kPa	0 kPa	Rileva
Column 2	6,409748 m	26,941531 m	-122,01409 kPa	13,263089 kPa	0 kPa	9,2277503 kPa	0 kPa	Rileva
Column 3	6,917591 m	26,406557 m	-116,7676 kPa	20,048684 kPa	0 kPa	13,898108 kPa	0 kPa	Rileva
Column	7,425434	25,906633	-111,86485	26,485579	0 kPa	18,315021	0 kPa	Rileva
Column	7,933277	25,438462	-107,2735	32,676832	0 kPa	22,568131	0 kPa	Rileva
Column	8,475660	24,971417	-102,69318	36,550413	0 kPa	25,226047	0 kPa	Rileva
Column	9,052583	24,506795	-98,136636	38,085716	0 kPa	26,28396	0 kPa	Rileva
Column	9,629506	24,073781	-93,89007	39,43629	0 kPa	27,238524	0 kPa	Rileva
Column	10,206429	23,670058	-89,930763	40,620948	0 kPa	28,095221	0 kPa	Rileva
Column	m 10,783352	m 23,293667	-86,239494	41,644977	0 kPa	28,851177	0 kPa	Rileva
10 Column	m 11,360275	m 22,942935	кРа -82,799867	кРа 42,500639	0 kPa	кРа 29,496057	0 kPa	Rileva
11 Column	m 11,937198	m 22,616426	kPa -79,597785	kPa 43,167109	0 kPa	kPa 30,012063	0 kPa	Rileva
12 Column	m 12,514121	m 22,312895	kPa -76,621063	kPa 43,610503	0 kPa	kPa 30,373569	0 kPa	Rileva
13 Column	m 13,091044	m 22,031264	kPa -73,859108	kPa 43,784459	0 kPa	kPa 30,546904	0 kPa	Rileva
14 Column	m 13,667967	m 21,770590	kPa -71,30268	kPa 43,63151		kPa 30,490768		Rilova
15 Column	m 14,244890	m 21,530050	kPa -68,943696	kPa 43,085444		kPa 30,157611		
16 Column	m	m	kPa	kPa	0 kPa	kPa	0 kPa	Rileva
17	14,821813 m	m	kPa	42,074818 kPa	0 kPa	kPa	0 kPa	Rileva
Column 18	15,398736 m	21,106564 m	-64,790573 kPa	40,527731 kPa	0 kPa	28,454999 kPa	0 kPa	Rileva
Column 19	15,939606 m	20,932892 m	-63,087374 kPa	41,682426 kPa	0 kPa	29,299227 kPa	0 kPa	Rileva
Column 20	16,444420 m	20,785385 m	-61,640769 kPa	45,770043 kPa	0 kPa	32,191958 kPa	0 kPa	Rileva
Column 21	16,949236 m	20,651184 m	-60,324664 kPa	49,538213 kPa	0 kPa	34,857308 kPa	0 kPa	Rileva
Column 22	17,454051 m	20,530034 m	-59,136544 kPa	52,911352 kPa	0 kPa	37,241265 kPa	0 kPa	Rileva
Column 23	17,997317 m	20,414494 m	-58,00344 kPa	52,056407 kPa	0 kPa	36,659219 kPa	0 kPa	Rileva
Column 24	18,579036 m	20,306404 m	-56,943405 kPa	46,695284 kPa	0 kPa	32,915313 kPa	0 kPa	Rileva
Column 25	19,160755 m	20,214809 m	-56,045134 kPa	40,546321 kPa	0 kPa	28,610651 kPa	0 kPa	Rileva
Column 26	19,742474 m	20,139496 m	-55,306538 kPa	33,714583 kPa	0 kPa	23,816507 kPa	0 kPa	Rileva
Column 27	20,324193 m	20,080292 m	-54,725927 kPa	26,337196 kPa	0 kPa	18,627347 kPa	0 kPa	Rileva
Column 28	20,905912 m	20,037064 m	-54,301989 kPa	18,571094 kPa	0 kPa	13,153831 kPa	0 kPa	Rileva
Column	21,487631	20,009715	-54,033773	10,578063	∩ k₽₂	7,5136342	0 kPa	Rileva

Column 30	22,011890 m	19,997917 m	-53,918069 kPa	3,3115086 kPa	0 kPa	2,3863728 kPa	0 kPa	Bonif
Column 31	22,436634 m	19,997917 m	-53,918069 kPa	0,043839348 kPa	0 kPa	0,057241119 kPa	0 kPa	Bonif

Caso III (statica)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:01

Project Settings Unit System: International System of Units (SI)

```
Caso III (statica)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: A2+M2
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
          Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
```

Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

DTF

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 18,5 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 20 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,554658; 28,998322) m Left-Zone Right Coordinate: (11,670287; 27,064667) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (23,075232; 20,858953) m Right-Zone Right Coordinate: (33,066667; 20) m Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 29) m Right Coordinate: (34,983334; 20) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	14 m
Coordinate 2	35 m	14 m

Seismic Coefficients

Horz Seismic Coef.: 0 Vert Seismic Coef.: 0

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 50 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
0,197346 m	29,966012 m
6,725929 m	29,973279 m

Design Factor Set: A2+M2

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.3 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1,25 Effective Coefficient of Friction: 1,25 Undrained Strength: 1,4 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Terzo caso (statica)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	0 m	0 m
Point 2	14,648778 m	25,131051 m
Point 3	16,633774 m	25,131051 m
Point 4	24,370359 m	20 m
Point 5	0 m	20 m
Point 6	34,983334 m	20 m
Point 7	34,983334 m	0 m
Point 8	0 m	15 m
Point 9	34,983334 m	15 m
Point 10	0 m	4,986667 m
Point 11	34,983334 m	4,936667 m
Point 12	0 m	29 m
Point 13	8,729843 m	28,973583 m
Point 14	26,370359 m	18 m
Point 15	0 m	18 m
Point 16	26,339368 m	20 m
Point 17	35 m	14 m
Point 18	0 m	14 m
Point 19	0 m	18,990046 m

Regions

	Material	Points	Area
Region 1	Bonifica	16;4;5;19;15;14	52,71 m²
Region 2	FNalt/FN	9;8;10;1;7;11	524,75 m ²
Region 3	Rilevato	5;4;3;2;13;12	150,23 m ²
Region 4	DTF	6;9;8;15;14;16	122,21 m ²

Slip Results

Slip Surfaces Analysed: 6398 of 9261 converged

Current Slip Surface

Slip Surface: 3.596 Overdesign Factor: 1,139 Degree of Utilization: 0,878 Volume: 39,024145 m³ Weight: 780,48291 kN Resisting Moment: 16.475,797 kN·m Activating Moment: 14.469,327 kN·m Resisting Force: 396,08118 kN Activating Force: 347,77423 kN Slip Rank: 1 of 9.261 slip surfaces Exit: (24,356593; 20,00913) m Entry: (5,2270192; 28,984183) m Radius: 36,917878 m Center: (29,816719; 56,521002) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	5,601747 m	28,658511 m	-143,75602 kPa	48,586217 kPa	27,216349 kPa	0 kPa	0 kPa	Rilevato
Column 2	6,351202 m	28,024272 m	-137,53604 kPa	56,384775 kPa	31,584835 kPa	0 kPa	0 kPa	Rilevato
Column 3	7,059915 m	27,454222 m	-131,94556 kPa	19,040911 kPa	10,666072 kPa	0 kPa	0 kPa	Rilevato
Column 4	7,727886 m	26,943317 m	-126,93511 kPa	26,054461 kPa	14,594824 kPa	0 kPa	0 kPa	Rilevato
Column 5	8,395857 m	26,455935 m	-122,15535 kPa	32,929369 kPa	18,445914 kPa	0 kPa	0 kPa	Rilevato
Column 6	9,058673 m	25,994372 m	-117,62881 kPa	36,696473 kPa	20,556117 kPa	0 kPa	0 kPa	Rilevato
Column 7	9,716332 m	25,557305 m	-113,34249 kPa	37,323046 kPa	20,907102 kPa	0 kPa	0 kPa	Rilevato
Column 8	10,373992 m	25,140109 m	-109,25104 kPa	37,862037 kPa	21,209027 kPa	0 kPa	0 kPa	Rilevato
Column 9	11,031651 m	24,741998 m	-105,34678 kPa	38,300764 kPa	21,454787 kPa	0 kPa	0 kPa	Rilevato
Column 10	11,689310 m	24,362266 m	-101,62274 kPa	38,619978 kPa	21,6336 kPa	0 kPa	0 kPa	Rilevato
Column 11	12,346970 m	24,000266 m	-98,072605 kPa	38,793844 kPa	21,730994 kPa	0 kPa	0 kPa	Rilevato
Column 12	13,004629 m	23,655412 m	-94,69063 kPa	38,7899 kPa	21,728784 kPa	0 kPa	0 kPa	Rilevato
Column 13	13,662289 m	23,327171 m	-91,471568 kPa	38,56933 kPa	21,605229 kPa	0 kPa	0 kPa	Rilevato
Column 14	14,319948 m	23,015053 m	-88,410628 kPa	38,087838 kPa	21,335513 kPa	0 kPa	0 kPa	Rilevato
Column	14,979611 m	22,717756 m	-85,495033 kPa	40,921347 kPa	22,922749 kPa	0 kPa	0 kPa	Rilevato
Column	15,641276 m	22,434961 m	-82,721662 kPa	47,251103 kPa	26,468463 kPa	0 kPa	0 kPa	Rilevato
Column	16,302941 m	22,167237 m	-80,096091 kPa	53,459713 kPa	29,946315 kPa	0 kPa	0 kPa	Rilevato
Column	16,955558 m	21,917499 m	-77,646908 kPa	55,552841 kPa	31,118815 kPa	0 kPa	0 kPa	Rilevato
Column 19	17,599126 m	21,685045 m	-75,367235 kPa	53,258694 kPa	29,833711 kPa	0 kPa	0 kPa	Rilevato
Column 20	18,242695 m	21,465947 m	-73,218541 kPa	50,393175 kPa	28,228545 kPa	0 kPa	0 kPa	Rilevato
Column 21	18,886263 m	21,259956 m	-71,198385 kPa	46,940895 kPa	26,294695 kPa	0 kPa	0 kPa	Rilevato
Column	19,529831 m	21,066842	-69,304523 kPa	42,907673 kPa	24,035421 kPa	0 kPa	0 kPa	Rilevato
Column	20,173399 m	20,886398 m	-67,534903 kPa	38,321919 kPa	21,466637 kPa	0 kPa	0 kPa	Rilevato
Column	20,816967	20,718430	-65,887645 kPa	33,234226	18,616685 kPa	0 kPa	0 kPa	Rilevato
Column	21,460536	20,562765	-64,361034	27,715018	15,525011 kPa	0 kPa	0 kPa	Rilevato
Column 26	22,104104 m	20,419242 m	-62,953508 kPa	21,850311 kPa	12,239802 kPa	0 kPa	0 kPa	Rilevato

Column 27	22,747672 m	20,287718 m	-61,663653 kPa	15,735848 kPa	8,8146877 kPa	0 kPa	0 kPa	Rilevato
Column 28	23,391240 m	20,168063 m	-60,490189 kPa	9,470044 kPa	5,304797 kPa	0 kPa	0 kPa	Rilevato
Column 29	24,034808 m	20,060158 m	-59,431972 kPa	3,1463533 kPa	1,7624802 kPa	0 kPa	0 kPa	Rilevato

Caso III (sisma)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:04

Project Settings Unit System: International System of Units (SI)

Caso III (sisma)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
Side Function
Intercolumn force function option: Half-Sine
PWP Conditions from: Piezometric Surfaces
Apply Phreatic Correction: No
Use Staged Rapid Drawdown: No
Staged Pseudo Static Analysis Option: Effective Stress Strengths
Limit State Design Approach: A1+M1
Unit Weight of Water: 9,807 kN/m ³
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Optimize Critical Slip Surface Location: No
Tension Crack Option: (none)
Distribution
ODF Calculation Option: Constant
Convergence
Geometry Settings
Minimum Slip Surface Depth: 3 m
Minimum Slip Surface Volume: 5 m ³
Number of Columns: 30
Overdesign Factor Convergence Settings
Maximum Number of Iterations: 100
Tolerable difference in ODF: 0,01
Solution Settings

Search Method: Root Finder Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

Rilevato

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

DTF

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 18,5 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 20 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

Bonifica

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 ° Pore Water Pressure Piezometric Surface: 1

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,554658; 28,998322) m Left-Zone Right Coordinate: (11,670287; 27,064667) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (23,075232; 20,858953) m Right-Zone Right Coordinate: (33,066667; 20) m Right-Zone Increment: 20 Radius Increments: 20

Slip Surface Limits

Left Coordinate: (0; 29) m Right Coordinate: (34,983334; 20) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	14 m
Coordinate 2	35 m	14 m

Seismic Coefficients

Horz Seismic Coef.: 0,015 Vert Seismic Coef.: 0,008

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 4 kN/m³ Direction: Vertical Mode: Variable

Coordinates

Х	Y
0,197346 m	29,966012 m
6,725929 m	29,973279 m

Design Factor Set: A1+M1

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1.3 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.5 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1

Geometry

Name: Terzo caso (sisma)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	0 m	0 m
Point 2	14,648778 m	25,131051 m
Point 3	16,633774 m	25,131051 m
Point 4	24,370359 m	20 m
Point 5	0 m	20 m
Point 6	34,983334 m	20 m
Point 7	34,983334 m	0 m
Point 8	0 m	15 m
Point 9	34,983334 m	15 m
Point 10	0 m	4,986667 m
Point 11	34,983334 m	4,936667 m
Point 12	0 m	29 m
Point 13	8,729843 m	28,973583 m
Point 14	26,370359 m	18 m
Point 15	0 m	18 m
Point 16	26,339368 m	20 m
Point 17	35 m	14 m
Point 18	0 m	14 m

Regions

	Material	Points	Area
Region 1	Bonifica	4;16;14;15;5	52,71 m ²
Region 2	FNalt/FN	9;8;10;1;7;11	524,75 m ²
Region 3	Rilevato	5;4;3;2;13;12	150,23 m ²
Region 4	DTF	6;9;8;15;14;16	122,21 m ²

Slip Results

Slip Surfaces Analysed: 6371 of 9261 converged

Current Slip Surface

Slip Surface: 5.362 Overdesign Factor: 1,376 Degree of Utilization: 0,727 Volume: 30,117538 m³ Weight: 602,35076 kN Resisting Moment: 9.895,6814 kN·m Activating Moment: 7.173,2532 kN·m Resisting Force: 340,33554 kN Activating Force: 248,12185 kN Slip Rank: 1 of 9.261 slip surfaces Exit: (24,356593; 20,00913) m Entry: (7,5631998; 28,977113) m Radius: 25,717229 m Center: (27,213816; 45,567145) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	7,854861 m	28,643483 m	-143,60864 kPa	4,1326257 kPa	0 kPa	2,9027208 kPa	0 kPa	Rilevato
Column 2	8,438182 m	27,998160 m	-137,27996 kPa	12,104591 kPa	0 kPa	8,4383461 kPa	0 kPa	Rilevato
Column 3	8,998886 m	27,416473 m	-131,57535 kPa	17,080767 kPa	0 kPa	11,83494 kPa	0 kPa	Rilevato
Column 4	9,536971 m	26,891820 m	-126,43008 kPa	19,199059 kPa	0 kPa	13,244097 kPa	0 kPa	Rilevato
Column 5	10,075055 m	26,396633 m	-121,57378 kPa	21,046422 kPa	0 kPa	14,482771 kPa	0 kPa	Rilevato
Column 6	10,613141 m	25,928679 m	-116,98456 kPa	22,669091 kPa	0 kPa	15,584456 kPa	0 kPa	Rilevato
Column 7	11,151226 m	25,486051 m	-112,6437 kPa	24,100563 kPa	0 kPa	16,571684 kPa	0 kPa	Rilevato
Column 8	11,689310 m	25,067104 m	-108,53509 kPa	25,364002 kPa	0 kPa	17,458413 kPa	0 kPa	Rilevato
Column 9	12,227396 m	24,670412 m	-104,64473 kPa	26,474265 kPa	0 kPa	18,251882 kPa	0 kPa	Rilevato
Column 10	12,765481 m	24,294729 m	-100,96041 kPa	27,438988 kPa	0 kPa	18,953872 kPa	0 kPa	Rilevato
Column 11	13,303565 m	23,938958 m	-97,471363 kPa	28,258769 kPa	0 kPa	19,561397 kPa	0 kPa	Rilevato
Column 12	13,841651 m	23,602131 m	-94,168099 kPa	28,92687 kPa	0 kPa	20,066974 kPa	0 kPa	Rilevato
Column 13	14,379736 m	23,283388 m	-91,042183 kPa	29,428926 kPa	0 kPa	20,458634 kPa	0 kPa	Rilevato
Column 14	14,896902 m	22,993054 m	-88,194876 kPa	32,219882 kPa	0 kPa	22,44818 kPa	0 kPa	Rilevato
Column 15	15,393152 m	22,729245 m	-85,607703 kPa	37,462422 kPa	0 kPa	26,152064 kPa	0 kPa	Rilevato
Column 16	15,889401 m	22,479116 m	-83,154689 kPa	42,737488 kPa	0 kPa	29,882914 kPa	0 kPa	Rilevato
Column 17	16,385649 m	22,242226 m	-80,831513 kPa	48,019595 kPa	0 kPa	33,622222 kPa	0 kPa	Rilevato
Column 18	16,909589 m	22,006412 m	-78,518883 kPa	50,460638 kPa	0 kPa	35,377829 kPa	0 kPa	Rilevato
Column 19	17,461219 m	21,772737 m	-76,227232 kPa	49,779404 kPa	0 kPa	34,9489 kPa	0 kPa	Rilevato
Column 20	18,012849 m	21,554007 m	-74,082143 kPa	48,630975 kPa	0 kPa	34,189624 kPa	0 kPa	Rilevato
Column 21	18,564479 m	21,349816 m	-72,079643 kPa	46,96236 kPa	0 kPa	33,061804 kPa	0 kPa	Rilevato
Column 22	19,116109 m	21,159799 m	-70,216149 kPa	44,733371 kPa	0 kPa	31,536047 kPa	0 kPa	Rilevato
Column 23	19,667738 m	20,983628 m	-68,488437 kPa	41,921561 kPa	0 kPa	29,595114 kPa	0 kPa	Rilevato
Column 24	20,219368 m	20,821006 m	-66,893605 kPa	38,526198 kPa	0 kPa	27,236598 kPa	0 kPa	Rilevato

Column 25	20,770998 m	20,671668 m	-65,429047 kPa	34,57057 kPa	0 kPa	24,474549 kPa	0 kPa	Rilevato
Column 26	21,322628 m	20,535376 m	-64,092431 kPa	30,102003 kPa	0 kPa	21,339775 kPa	0 kPa	Rilevato
Column 27	21,874258 m	20,411918 m	-62,881675 kPa	25,189273 kPa	0 kPa	17,878627 kPa	0 kPa	Rilevato
Column 28	22,425888 m	20,301105 m	-61,794935 kPa	19,917484 kPa	0 kPa	14,150258 kPa	0 kPa	Rilevato
Column 29	22,977518 m	20,202772 m	-60,830583 kPa	14,380932 kPa	0 kPa	10,222497 kPa	0 kPa	Rilevato
Column 30	23,529148 m	20,116774 m	-59,9872 kPa	8,6748779 kPa	0 kPa	6,1666411 kPa	0 kPa	Rilevato
Column 31	24,080778 m	20,042986 m	-59,263563 kPa	2,8874296 kPa	0 kPa	2,0516128 kPa	0 kPa	Rilevato

Scavo 3 m (statica)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:04

Project Settings Unit System: International System of Units (SI)

```
Scavo 3 m (statica)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: (none)
     Limit State Design Approach: A2+M2
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
          Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
          Tolerable difference between starting and converged ODF: 3
          Maximum iterations to calculate converged lambda: 20
```

Materials

LR-ALF-DTF

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 19 kN/m³ Total Cohesion: 20 kPa

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (1,838982; 12,1) m Left-Zone Right Coordinate: (6,764398; 11,386527) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (8,425277; 9,725648) m Right-Zone Right Coordinate: (12,475556; 9,1) m Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0,079722; 0) m Right Coordinate: (14,501019; 9,1) m

Seismic Coefficients

Horz Seismic Coef.: 0,106 Vert Seismic Coef.: 0,053

Design Factor Set: A2+M2

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.3 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1,25 Effective Coefficient of Friction: 1,25 Undrained Strength: 1,4 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Trincee e scavi (LR-ALF-DTF)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	9,050925 m	9,1 m
Point 2	6,050925 m	12,1 m
Point 3	0,114444 m	12,1 m
Point 4	0,079722 m	0 m
Point 5	14,501019 m	9,1 m
Point 6	14,501019 m	0 m

Regions

	Material	Points	Area	
Region 1	LR-ALF-DTF	1;2;3;4;6;5	153,44 m²	

Slip Results

Slip Surfaces Analysed: 192 of 2541 converged

Current Slip Surface

Slip Surface: 119 Overdesign Factor: 1,110 Degree of Utilization: 0,901 Volume: 26,401539 m³ Weight: 501,62925 kN Resisting Moment: 1.214,7164 kN·m Activating Moment: 1.096,4145 kN·m Resisting Force: 151,95106 kN Activating Force: 136,65991 kN Slip Rank: 1 of 2.541 slip surfaces Exit: (12,475556; 9,1) m Entry: (1,838982; 12,1) m Radius: 6,3505708 m Center: (8,0068662; 13,612268) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	2,014480 m	11,582011 m	0 kPa	-26,758653 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 2	2,365475 m	10,721532 m	0 kPa	3,4084422 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 3	2,716470 m	10,113663 m	0 kPa	20,499711 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 4	3,067465 m	9,630576 m	0 kPa	32,776846 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 5	3,418461 m	9,229149 m	0 kPa	42,439506 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 6	3,769456 m	8,888019 m	0 kPa	50,435853 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 7	4,120451 m	8,594674 m	0 kPa	57,270477 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 8	4,471446 m	8,341034 m	0 kPa	63,245435 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF

Column 9	4,822442 m	8,121546 m	0 kPa	68,554398 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 10	5,173437 m	7,932218 m	0 kPa	73,326057 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 11	5,524432 m	7,770101 m	0 kPa	77,646561 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 12	5,875427 m	7,632970 m	0 kPa	81,572152 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 13	6,238425 m	7,516019 m	0 kPa	81,633248 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 14	6,613425 m	7,419439 m	0 kPa	77,766304 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column	6,988425 m	7,346772	0 kPa	73,41846 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 16	7,363425 m	7,297190 m	0 kPa	68,566028 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 17	7,738425 m	7,270149 m	0 kPa	63,182168 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 18	8,113425 m	7,265361 m	0 kPa	57,239845 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column	8,488425	7,282774	0 kPa	50,714522 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 20	8,863425 m	7,322574 m	0 kPa	43,586586 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 21	9,222157 m	7,381507 m	0 kPa	39,654292 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column	9,564620	7,458248	0 kPa	39,006127 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 23	9,907083 m	7,555311 m	0 kPa	37,873228 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 24	10,249546 m	7,673696 m	0 kPa	36,238933 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 25	10,592009 m	7,814713 m	0 kPa	34,08869 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 26	10,934472 m	7,980072 m	0 kPa	31,410523 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 27	11,276935 m	8,172003 m	0 kPa	28,195313 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 28	11,619398 m	8,393456 m	0 kPa	24,437006 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF
Column 29	11,961861 m	8,648416 m	0 kPa	20,133068 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF-
Column 30	12,304324 m	8,942423 m	0 kPa	15,286176 kPa	0 kPa	14,285714 kPa	0 kPa	LR-ALF- DTF

Scavi 3 m (sisma)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:05

Project Settings Unit System: International System of Units (SI)

```
Scavi 3 m (sisma)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: (none)
     Staged Pseudo Static Analysis Option: Effective Stress Strengths
     Limit State Design Approach: A1+M1
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
          Tolerable difference between starting and converged ODF: 3
```

Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

LR-ALF-DTF

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 19 kN/m³ Total Cohesion: 20 kPa

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0,369075; 12,1) m Left-Zone Right Coordinate: (6,677593; 11,473332) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (8,622037; 9,528888) m Right-Zone Right Coordinate: (14,501019; 9,1) m Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0,079722; 0) m Right Coordinate: (14,501019; 9,1) m

Seismic Coefficients

Horz Seismic Coef.: 0,106 Vert Seismic Coef.: 0,053

Design Factor Set: A1+M1

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1.3 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.5 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Trincee e scavi (LR-ALF-DTF)

Settings View: 2D

Points

	Х	Y
Point 1	9,050925 m	9,1 m
Point 2	6,050925 m	12,1 m
Point 3	0,114444 m	12,1 m
Point 4	0,079722 m	0 m
Point 5	14,501019 m	9,1 m
Point 6	14,501019 m	0 m

Regions

	Material	Points	Area	
Region 1	LR-ALF-DTF	1;2;3;4;6;5	153,44 m²	

Slip Results

Slip Surfaces Analysed: 425 of 2541 converged

Current Slip Surface

Slip Surface: 119 Overdesign Factor: 1,445 Degree of Utilization: 0,692 Volume: 46,85302 m³ Weight: 890,20738 kN Resisting Moment: 2.882,5249 kN·m Activating Moment: 1.997,8927 kN·m Resisting Force: 282,63888 kN Activating Force: 195,41947 kN Slip Rank: 1 of 2.541 slip surfaces Exit: (14,501019; 9,1) m Entry: (0,369075; 12,1) m Radius: 8,0434207 m Center: (8,1697749; 14,061045) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	0,605819 m	11,421564 m	0 kPa	-25,261657 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 2	1,079306 m	10,297147 m	0 kPa	10,628051 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 3	1,552794 m	9,507168 m	0 kPa	31,341606 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 4	2,026281 m	8,882321 m	0 kPa	46,350748 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 5	2,499769 m	8,365779 m	0 kPa	58,216758 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 6	2,973256 m	7,929446 m	0 kPa	68,057826 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 7	3,446744 m	7,556893 m	0 kPa	76,474167 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 8	3,920231 m	7,237541 m	0 kPa	83,826484 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF

Column 9	4,393719 m	6,964137 m	0 kPa	90,345641 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 10	4,867206 m	6,731500 m	0 kPa	96,183572 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column 11	5,340694 m	6,535824 m	0 kPa	101,43977 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF
Column	5,814181 m	6,374271	0 kPa	106,17627 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	6,300925 m	6,241969	0 kPa	105,69192 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	6,800925	6,139018	0 kPa	99,889521 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	7,300925	6,068644	0 kPa	93,422151	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	7,800925	6,029984	0 kPa	86,250299 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	8,300925 m	6,022581 m	0 kPa	78,331661 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	8,800925 m	6,046347	0 kPa	69,624963 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	9,278012	6,097637	0 kPa	65,122661	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 20	9,732187 m	6,174227	0 kPa	64,945868 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	10,186361 m	6,278053	0 kPa	64,120197 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	10,640536	6,410227	0 kPa	62,609484	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 23	11,094710 m	6,572258 m	0 kPa	60,377895 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 24	11,548885 m	6,766142 m	0 kPa	57,390815 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	12,003059 m	6,994518 m	0 kPa	53,615384 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 26	12,457234 m	7,260880	0 kPa	49,020604 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 27	12,911408 m	7,569940 m	0 kPa	43,577035 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	13,365583 m	7,928214	0 kPa	37,256414 kPa	0 kPa	20 kPa	0 kPa	LR-ALF-
Column	13,819757	8,345070	0 kPa	30,032469	0 kPa	20 kPa	0 kPa	LR-ALF-
Column 30	14,273932 m	8,834768 m	0 kPa	21,88757 kPa	0 kPa	20 kPa	0 kPa	LR-ALF- DTF

Scavo 5 m (statica)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:05

Project Settings Unit System: International System of Units (SI)

```
Scavo 5 m (statica)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: (none)
     Limit State Design Approach: A2+M2
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
          Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
          Tolerable difference between starting and converged ODF: 3
          Maximum iterations to calculate converged lambda: 20
```

Materials

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 °

Slip Surface Entry and Exit

Left Type: Range Left-Zone Left Coordinate: (0; 14,1) m Left-Zone Right Coordinate: (5,48029; 12,680067) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (8,426103; 9,726472) m Right-Zone Right Coordinate: (12,475556; 9,1) m Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0; 14,1) m Right Coordinate: (14,501019; 9,1) m

Seismic Coefficients

Horz Seismic Coef.: 0,106 Vert Seismic Coef.: 0,053

Design Factor Set: A2+M2

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.3 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1,25 Effective Coefficient of Friction: 1,25 Undrained Strength: 1,4 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Trincee e scavi (FNa-FN)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y						
Point 1	9,050925 m	9,1 m						
Point 2	0 m	14,1 m						
Point 3	0 m	0 m						
Point 4	14,501019 m	9,1 m						
Point 5	14,501019 m	0 m						
Point 6	4,064098 m	14,1 m						

Regions

	Material	Points	Area
Region 1	FNalt/FN	3;5;4;1;6;2	164,75 m²

Slip Results

Slip Surfaces Analysed: 614 of 2541 converged

Current Slip Surface

Slip Surface: 634 Overdesign Factor: 1,181 Degree of Utilization: 0,847 Volume: 15,090872 m³ Weight: 301,81744 kN Resisting Moment: 1.659,0894 kN·m Activating Moment: 1.405,5133 kN·m Resisting Force: 173,00059 kN Activating Force: 146,51305 kN Slip Rank: 1 of 2.541 slip surfaces Exit: (9,0347443; 9,1162234) m Entry: (1,5173857; 14,1) m Radius: 7,8332477 m Center: (8,8151809; 16,946393) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	1,644721 m	13,808979 m	0 kPa	-11,114877 kPa	-3,4132812 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 2	1,899393 m	13,277906 m	0 kPa	-0,24026481 kPa	-0,073783216 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 3	2,154064 m	12,831715 m	0 kPa	7,6398559 kPa	2,3461327 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 4	2,408735 m	12,444375 m	0 kPa	13,734197 kPa	4,2176513 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 5	2,663406 m	12,101491 m	0 kPa	18,785019 kPa	5,7687146 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 6	2,918077 m	11,794065 m	0 kPa	23,259297 kPa	7,142726 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 7	3,172749 m	11,516015 m	0 kPa	27,447203 kPa	8,4287953 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 8	3,427420 m	11,262995 m	0 kPa	31,524337 kPa	9,6808474 kPa	13,6 kPa	0 kPa	FNalt/FN
--------------	---------------	----------------	----------	------------------	------------------	----------	-------	----------
Column 9	3,682091 m	11,031773 m	0 kPa	35,595389 kPa	10,931032 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 10	3,936762 m	10,819868 m	0 kPa	39,725433 kPa	12,199332 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 11	4,188364 m	10,627484 m	0 kPa	42,269646 kPa	12,980637 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 12	4,436896 m	10,452709 m	0 kPa	43,134088 kPa	13,2461 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 13	4,685429 m	10,291806 m	0 kPa	43,977518 kPa	13,50511 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 14	4,933961 m	10,143788 m	0 kPa	44,782249 kPa	13,752236 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 15	5,182493 m	10,007829 m	0 kPa	45,522892 kPa	13,979681 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 16	5,431026 m	9,883230 m	0 kPa	46,160049 kPa	14,175346 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 17	5,679558 m	9,769399 m	0 kPa	46,636071 kPa	14,321528 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 18	5,928090 m	9,665830 m	0 kPa	46,873854 kPa	14,394549 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	6,176623 m	9,572089 m	0 kPa	46,77913 kPa	14,365461 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 20	6,425155 m	9,487807	0 kPa	46,246179 kPa	14,201796 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	6,673687 m	9,412664	0 kPa	45,166365 kPa	13,870195 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	6,922220 m	9,346389 m	0 kPa	43,438561 kPa	13,339601 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 23	7,170752 m	9,288752 m	0 kPa	40,980207 kPa	12,584662 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 24	7,419284	9,239559 m	0 kPa	37,737645 kPa	11,5889 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	7,667817	9,198649	0 kPa	33,694413 kPa	10,347259 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 26	7,916349 m	9,165891 m	0 kPa	28,876374 kPa	8,867681 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	8,164881	9,141182 m	0 kPa	23,352868 kPa	7,1714609 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	8,413414 m	9,124445	0 kPa	17,233541 kPa	5,2922693 kPa	13,6 kPa	0 kPa	FNalt/FN
Column	8,661946	9,115631	0 kPa	10,660934	3,2738793 kPa	13,6 kPa	0 kPa	FNalt/FN
Column 30	8,910478 m	9,114711 m	0 kPa	3,7994585 kPa	1,1667804 kPa	13,6 kPa	0 kPa	FNalt/FN

Scavo 5 m (sisma)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Verifiche di stabilità Last Edited By: Salvator Giuliano Narsete Revision Number: 86 Date: 05/04/2024 Time: 12:40:46 Tool Version: 23.1.0.520 File Name: UP62_Rilevato.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\stabilità rilevati\Rilevati_3su2\ Last Solved Date: 05/04/2024 Last Solved Time: 12:41:05

Project Settings Unit System: International System of Units (SI)

```
Scavo 5 m (sisma)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
          Intercolumn force function option: Half-Sine
     PWP Conditions from: (none)
     Staged Pseudo Static Analysis Option: Effective Stress Strengths
     Limit State Design Approach: A1+M1
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Entry and Exit
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
          Minimum Slip Surface Depth: 3 m
          Minimum Slip Surface Volume: 5 m<sup>3</sup>
          Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
          Tolerable difference in ODF: 0,01
     Solution Settings
          Search Method: Root Finder
          Tolerable difference between starting and converged ODF: 3
```

Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

FNalt/FN

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 17 kPa Effective Friction Angle: 21 ° Phi-B: 0 ° Cohesion R: 0 kPa Phi R: 0 °

Slip Surface Entry and Exit

Left Type: Range

Left-Zone Left Coordinate: (0,119; 14,1) m Left-Zone Right Coordinate: (5,249432; 12,911535) m Left-Zone Increment: 20 Right Type: Range Right-Zone Left Coordinate: (8,520708; 9,631618) m Right-Zone Right Coordinate: (14,501019; 9,1) m Right-Zone Increment: 10 Radius Increments: 10

Slip Surface Limits

Left Coordinate: (0; 14,1) m Right Coordinate: (14,501019; 9,1) m

Seismic Coefficients

Horz Seismic Coef.: 0,106 Vert Seismic Coef.: 0,053

Design Factor Set: A1+M1

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1.3 Variable Point Loads & Surcharge Loads: Favorable = 0, Unfavorable = 1.5 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: Trincee e scavi (FNa-FN)

Settings

View: 2D Element Thickness: 1 m

Points

	Х	Y
Point 1	9,050925 m	9,1 m
Point 2	0 m	14,1 m
Point 3	0 m	0 m
Point 4	14,501019 m	9,1 m
Point 5	14,501019 m	0 m
Point 6	4,064098 m	14,1 m

Regions

	Material	Points	Area
Region 1	FNalt/FN	3;5;4;1;6;2	164,75 m²

Slip Results

Slip Surfaces Analysed: 397 of 2541 converged

Current Slip Surface

Slip Surface: 512 Overdesign Factor: 1,477 Degree of Utilization: 0,677 Volume: 14,792007 m³ Weight: 295,84013 kN Resisting Moment: 2.444,0911 kN·m Activating Moment: 1.649,5696 kN·m Resisting Force: 217,81393 kN Activating Force: 147,88605 kN Slip Rank: 1 of 2.541 slip surfaces Exit: (9,0415959; 9,1093537) m Entry: (1,2437258; 14,1) m Radius: 9,257835 m Center: (9,4644916; 18,357525) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	1,371925 m	13,868871 m	0 kPa	-10,213368 kPa	0 kPa	13,77637 kPa	0 kPa	FNalt/FN
Column 2	1,628322 m	13,433716 m	0 kPa	-1,0561808 kPa	0 kPa	16,945261 kPa	0 kPa	FNalt/FN
Column 3	1,884719 m	13,046720 m	0 kPa	6,0768915 kPa	0 kPa	19,604275 kPa	0 kPa	FNalt/FN
Column 4	2,141117 m	12,697866 m	0 kPa	11,948015 kPa	0 kPa	21,905946 kPa	0 kPa	FNalt/FN
Column 5	2,397514 m	12,380407 m	0 kPa	16,994468 kPa	0 kPa	23,951856 kPa	0 kPa	FNalt/FN

Column 6	2,653912 m	12,089537 m	0 kPa	21,496126 kPa	0 kPa	25,813699 kPa	0 kPa	FNalt/FN
Column 7	2,910309 m	11,821682 m	0 kPa	25,646319 kPa	0 kPa	27,544215 kPa	0 kPa	FNalt/FN
Column 8	3,166707 m	11,574103 m	0 kPa	29,585853 kPa	0 kPa	29,183349 kPa	0 kPa	FNalt/FN
Column 9	3,423104 m	11,344643 m	0 kPa	33,420728 kPa	0 kPa	30,761921 kPa	0 kPa	FNalt/FN
Column 10	3,679502 m	11,131569 m	0 kPa	37,232067 kPa	0 kPa	32,303853 kPa	0 kPa	FNalt/FN
Column 11	3,935899 m	10,933468 m	0 kPa	41,082171 kPa	0 kPa	33,827535 kPa	0 kPa	FNalt/FN
Column 12	4,195085 m	10,747303 m	0 kPa	43,228151 kPa	0 kPa	34,597919 kPa	0 kPa	FNalt/FN
Column 13	4,457058 m	10,572355 m	0 kPa	43,593317 kPa	0 kPa	34,587047 kPa	0 kPa	FNalt/FN
Column 14	4,719032 m	10,409893 m	0 kPa	43,917895 kPa	0 kPa	34,527685 kPa	0 kPa	FNalt/FN
Column 15	4,981006 m	10,259164 m	0 kPa	44,160872 kPa	0 kPa	34,409397 kPa	0 kPa	FNalt/FN
Column 16	5,242979 m	10,119523 m	0 kPa	44,273971 kPa	0 kPa	34,219704 kPa	0 kPa	FNalt/FN
Column 17	5,504953 m	9,990413 m	0 kPa	44,201911 kPa	0 kPa	33,944529 kPa	0 kPa	FNalt/FN
Column 18	5,766926 m	9,871353 m	0 kPa	43,883132 kPa	0 kPa	33,568761 kPa	0 kPa	FNalt/FN
Column 19	6,028900 m	9,761926 m	0 kPa	43,251241 kPa	0 kPa	33,076925 kPa	0 kPa	FNalt/FN
Column 20	6,290873 m	9,661766 m	0 kPa	42,237372 kPa	0 kPa	32,454004 kPa	0 kPa	FNalt/FN
Column 21	6,552847 m	9,570558 m	0 kPa	40,773551 kPa	0 kPa	31,686377 kPa	0 kPa	FNalt/FN
Column 22	6,814821 m	9,488023 m	0 kPa	38,797053 kPa	0 kPa	30,762841 kPa	0 kPa	FNalt/FN
Column 23	7,076794 m	9,413922 m	0 kPa	36,255529 kPa	0 kPa	29,675644 kPa	0 kPa	FNalt/FN
Column 24	7,338768 m	9,348047 m	0 kPa	33,112528 kPa	0 kPa	28,421437 kPa	0 kPa	FNalt/FN
Column 25	7,600741 m	9,290218 m	0 kPa	29,352784 kPa	0 kPa	27,002018 kPa	0 kPa	FNalt/FN
Column 26	7,862715 m	9,240281 m	0 kPa	24,986513 kPa	0 kPa	25,424766 kPa	0 kPa	FNalt/FN
Column 27	8,124688 m	9,198108 m	0 kPa	20,05188 kPa	0 kPa	23,70264 kPa	0 kPa	FNalt/FN
Column 28	8,386662 m	9,163592 m	0 kPa	14,614931 kPa	0 kPa	21,853722 kPa	0 kPa	FNalt/FN
Column 29	8,648636 m	9,136647 m	0 kPa	8,76656 kPa	0 kPa	19,900259 kPa	0 kPa	FNalt/FN
Column 30	8,910609 m	9,117205 m	0 kPa	2,6165366 kPa	0 kPa	17,867302 kPa	0 kPa	FNalt/FN

D_06 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 06 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
26,73427 m	73,697235 m
28,46363 m	70,499381 m
31,16888 m	68,161727 m
38,43145 m	64,709726 m
55,2939 m	57,777421 m
70,37476 m	46,795045 m
84,5092 m	35,707332 m
96,67922 m	31,175534 m
109,02972 m	26,596619 m
114,7739 m	24,478162 m
123,13738 m	21,371267 m
129,16036 m	20,053938 m
130,74359 m	19,791943 m
137,74359 m	20,988426 m

Slip Surface Limits

Left Coordinate: (0; 75,016023) m Right Coordinate: (225,73103; 21,059998) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	60,54972 m
Coordinate 2	14,32658 m	60,223309 m
Coordinate 3	45,63073 m	57,102001 m
Coordinate 4	73,91065 m	41,818472 m

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	1,24359 m	75,016023 m
Point 2	8,61291 m	70,412982 m
Point 3	22,10156 m	66,684673 m
Point 4	30,42437 m	63,673336 m
Point 5	36,62233 m	59,658247 m
Point 6	43,78958 m	55,75678 m
Point 7	52,69426 m	51,563838 m
Point 8	69,35049 m	39,986471 m
Point 9	78,82588 m	33,014415 m
Point 10	90,61478 m	27,611222 m
Point 11	102,24597 m	24,032756 m
Point 12	115,80439 m	20,790821 m
Point 13	125,64174 m	15,924572 m
Point 14	135,47808 m	7,94912 m
Point 15	153,13132 m	1,082877 m
Point 16	208,38955 m	10,456624 m
Point 17	195,36823 m	10,605611 m
Point 18	185,86932 m	10,740575 m
Point 19	171,82354 m	11,730289 m
Point 20	158,01636 m	10,729998 m
Point 21	141,56116 m	14,184297 m
Point 22	130,74359 m	19,791943 m
Point 23	129,16036 m	20,053938 m
Point 24	123,13738 m	21,371267 m
Point 25	114,7739 m	24,478162 m
Point 26	109,02972 m	26,596619 m
Point 27	96,67922 m	31,175534 m
Point 28	84,5092 m	35,707332 m
Point 29	70,6426 m	46,599998 m
Point 30	55,2939 m	57,777421 m
Point 31	38,43145 m	64,709726 m
Point 32	31,16888 m	68,161727 m
Point 33	28,46363 m	70,499381 m
Point 34	24,77138 m	73,849998 m
Point 35	22,58703 m	74,029999 m
Point 36	18,21834 m	74,089996 m
Point 37	16,034 m	74,049995 m
Point 38	14,31887 m	74,057849 m
Point 39	13,57962 m	74,064943 m
Point 40	11,66531 m	74,099998 m
Point 41	9,48097 m	74,239998 m
Point 42	7,29662 m	74,419998 m
Point 43	5,11228 m	74,709999 m
Point 44	2,92794 m	75,07 m
Point 45	26,73427 m	73,697235 m
Point 46	26,95572 m	73,68 m
Point 47	29,14006 m	73,259995 m

Point 74	90,3017 m	36,809998 m
Point 75	92,48604 m	36,789997 m
Point 76	94,67039 m	36,019997 m
Point 77	99,03907 m	35,489998 m
Point 78	101,22342 m	34,329998 m
Point 79	103,40776 m	33,669998 m
Point 80	105,59211 m	32,559998 m
Point 81	107,77645 m	31,799997 m
Point 82	112,14514 m	29,339998 m
Point 83	114,32948 m	28,129997 m
Point 84	116,51383 m	27,209997 m
Point 85	118,69817 m	26,739998 m
Point 86	120,88251 m	26,229998 m
Point 87	123,06686 m	25,539997 m
Point 88	125,2512 m	24,919998 m
Point 89	127,43555 m	24,509998 m
Point 90	129,61989 m	24,459997 m
Point 91	133,98858 m	21,809998 m
Point 92	136,17292 m	21,009998 m
Point 93	137,74359 m	20,988426 m
Point 94	138,35727 m	20,979998 m
Point 95	142,72595 m	20,789997 m
Point 96	147,09464 m	20,649998 m
Point 97	151,46333 m	20,649998 m
Point 98	158,01636 m	20,729998 m
Point 99	160,20071 m	20,749998 m
Point 100	164,5694 m	20,979998 m
Point 101	168,93808 m	21,649998 m
Point 102	171,12243 m	21,749998 m
Point 103	173,30677 m	21,959997 m
Point 104	175,49112 m	21,859999 m
Point 105	177,67546 m	21,919998 m
Point 106	179,8598 m	21,439999 m
Point 107	182,04415 m	21,429998 m
Point 108	186,41284 m	21,369997 m
Point 109	188,59718 m	21,169998 m
Point 110	190,78152 m	20,929998 m
Point 111	192,96587 m	20,739998 m
Point 112	195,15021 m	20,849999 m
Point 113	197,33456 m	20,759998 m
Point 114	199,5189 m	20,959997 m
Point 115	203,88759 m	20,979998 m
Point 116	206,07193 m	21,079998 m
Point 117	208,25628 m	21,099999 m
Point 118	212,62496 m	21,209997 m
Point 119	214,80931 m	21,289997 m
Point 120	216,99365 m	21,219997 m
Point 121	219,178 m	21,289997 m
Point 122	221,36234 m	20,979998 m
Point 123	223,54668 m	20,849999 m
Point 124	225,73103 m	21,059998 m
Point 125	0 m	75,016023 m
Point 126	0 m	0 m

Activating Moment: 192.542,81 kN·m Resisting Force: 3.160,5513 kN Activating Force: 3.228,6055 kN Slip Rank: 1 of 1 slip surfaces Exit: (137,74359; 20,988426) m Entry: (26,73427; 73,697235) m Radius: 67,900748 m Center: (101,0091; 86,874437) m

	X	Y	PWP	Base Normal Stress	Frictional Strength	Coh
Column 1	26,84500 m	73,492487 m	-142,37193 kPa	1,9343403 kPa	0,94344081 kPa	0 kP
Column 2	27,70968 m	71,893560 m	-127,53677 kPa	15,89642 kPa	7,7532021 kPa	0 kP
Column 3	28,80185 m	70,207123 m	-112,06586 kPa	40,590023 kPa	19,797077 kPa	0 kP
Column 4	30,15447 m	69,038296 m	-101,92584 kPa	46,274821 kPa	22,569738 kPa	0 kP
Column 5	31,24665 m	68,124764 m	-94,034805 kPa	57,760556 kPa	28,171705 kPa	0 kP
Column 6	32,41658 m	67,568678 m	-89,725283 kPa	58,69586 kPa	28,627884 kPa	0 kP
Column 7	34,60092 m	66,530428 m	-81,679123 kPa	52,521675 kPa	25,616532 kPa	0 kP
Column 8	36,78527 m	65,492178 m	-73,632963 kPa	48,341266 kPa	23,577611 kPa	0 kP
Column 9	38,15445 m	64,841390 m	-68,589529 kPa	50,911629 kPa	24,83126 kPa	0 kP
Column 10	39,24661 m	64,374604 m	-65,079733 kPa	49,847077 kPa	24,312044 kPa	0 kP
Column 11	41,15396 m	63,590480 m	-59,25491 kPa	48,825712 kPa	23,813891 kPa	0 kP
Column 12	43,33830 m	62,692476 m	-52,584141 kPa	50,103911 kPa	24,43731 kPa	0 kP
Column 13	45,03060 m	61,996756 m	-47,416027 kPa	47,869022 kPa	23,347282 kPa	0 kP
Column 14	46,12277 m	61,547753 m	-46,207364 kPa	44,01977 kPa	21,469877 kPa	0 kP
Column 15	47,70699 m	60,896468 m	-48,216662 kPa	41,722689 kPa	20,349515 kPa	0 kP
Column 16	49,89133 m	59,998466 m	-50,987114 kPa	38,40473 kPa	18,731238 kPa	0 kP
Column 17	52,07567 m	59,100462 m	-53,757572 kPa	36,272736 kPa	17,691396 kPa	0 kP
Column 18	54,23087 m	58,214440 m	-56,491065 kPa	36,80543 kPa	17,951208 kPa	0 kP
Column 19	55,32305 m	57,756197 m	-57,785649 kPa	29,378874 kPa	14,329034 kPa	0 kP
Column 20	56,44436 m	56,939615 m	-55,720505 kPa	39,663561 kPa	19,345211 kPa	0 kP
Column 21	58,62871 m	55,348903 m	-51,69758 kPa	44,861991 kPa	28,032883 kPa	0 kP
Column 22	61,90523 m	52,962838 m	-45,663196 kPa	52,147194 kPa	32,585183 kPa	0 kP
Column 23	65,18174 m	50,576772 m	-39,628812 kPa	63,577231 kPa	39,727463 kPa	0 kP
Column 24	67,36608 m	48,986061 m	-35,605886 kPa	62,564701 kPa	39,094764 kPa	0 kP
Column 25	69,41651 m	47,492874 m	-31,829602 kPa	61,629889 kPa	38,510629 kPa	0 kP
Column 26	70,50868 m	46,689992 m	-29,744315 kPa	59,669067 kPa	37,285371 kPa	0 kP
Column 27	71,73477 m	45,728190 m	-26,810285 kPa	65,636925 kPa	41,014503 kPa	0 kP
Column 28	73,36880 m	44,446385 m	-22,900068 kPa	72,741146 kPa	45,453712 kPa	0 kP
Column 29	74,46097 m	43,589632 m	-19,59252 kPa	75,37613 kPa	47,100233 kPa	0 kP
Column 30	76,10346 m	42,301186 m	-13,590796 kPa	84,142646 kPa	52,578161 kPa	0 kP
Column 31	78,28780 m	40,587684 m	-5,6091117 kPa	89,648323 kPa	56,018489 kPa	0 kP
Column 32	79,60141 m	39,557228 m	-0,80913029 kPa	87,15438 kPa	54,460101 kPa	0 kP
Column 33	80,69358 m	38,700479 m	3,1817025 kPa	84,582526 kPa	50,86488 kPa	0 kP
Column 34	82,65650 m	37,160680 m	10,354256 kPa	79,691506 kPa	43,326722 kPa	0 kP
Column 35	84,12894 m	36,005630 m	15,734611 kPa	74,350758 kPa	36,627434 kPa	0 kP
Column 36	85,22110 m	35,442237 m	16,848495 kPa	87,518429 kPa	34,46803 kPa	0 kP
Column 37	87,02518 m	34,770447 m	16,150036 kPa	71,484653 kPa	26,988496 kPa	0 kP
Column 38	89,20952 m	33,957054 m	15,304352 kPa	61,272405 kPa	22,420117 kPa	0 kP
Column 39	91,31539 m	33,172883 m	14,489051 kPa	61,674295 kPa	23,013781 kPa	0 kP
Column 40	92,40757 m	32,766187 m	14,104138 kPa	68,60365 kPa	26,581188 kPa	0 kP
Column 41	93,57822 m	32,330267 m	14,216706 kPa	69,563609 kPa	26,994488 kPa	0 kP
Column 42	95,67480 m	31,549552 m	14,41831 kPa	74,403083 kPa	29,256529 kPa	0 kP
Column 43	97.85914 m	30.738080 m	14.609531 kPa	83.962543 kPa	33.825724 kPa	0 kP

D_07 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 07 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Left to Right
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```

Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

С

Slope Stability Material Model: Bedrock (Impenetrable) Pore Water Pressure Piezometric Surface: 1

DTF (T02)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 26 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
30,89905 m	73,27634 m
47,10941 m	65,441769 m
60,07128 m	60,453962 m
68,95324 m	57,229592 m
101,39647 m	45,451915 m
121,37236 m	39,560112 m
127,97681 m	38,523884 m
207,7 m	40,616761 m

Slip Surface Limits

Left Coordinate: (0; 86,86634) m Right Coordinate: (214,08631; 40,506339) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
--	---	---

Coordinate 6	11,03538 m	80,88634 m
Coordinate 7	13,24245 m	80,02634 m
Coordinate 8	15,44953 m	78,196338 m
Coordinate 9	17,6566 m	77,566341 m
Coordinate 10	19,86368 m	76,126338 m
Coordinate 11	22,07075 m	75,576339 m
Coordinate 12	24,27783 m	74,986339 m
Coordinate 13	26,4849 m	74,54634 m
Coordinate 14	28,69198 m	73,556339 m
Coordinate 15	30,89905 m	73,27634 m
Coordinate 16	33,10613 m	72,816341 m
Coordinate 17	35,31321 m	71,626338 m
Coordinate 18	41,93443 m	69,876338 m
Coordinate 19	50,76273 m	65,63634 m
Coordinate 20	52,96981 m	64,61634 m
Coordinate 21	59,59103 m	62,536338 m
Coordinate 22	61,79811 m	61,286338 m
Coordinate 23	64,00518 m	60,816341 m
Coordinate 24	66,21226 m	60,236339 m
Coordinate 25	68,41934 m	58,826339 m
Coordinate 26	75,04056 m	57,486339 m
Coordinate 27	83,86886 m	55,066341 m
Coordinate 28	86,07594 m	53,966338 m
Coordinate 29	92,69716 m	52,946338 m
Coordinate 30	99,31839 m	50,566339 m
Coordinate 31	101,52547 m	49,09634 m
Coordinate 32	108,14669 m	47,87634 m
Coordinate 33	128,01037 m	40,44634 m
Coordinate 34	130,21744 m	40,586339 m
Coordinate 35	139,04575 m	40,68634 m
Coordinate 36	145,66697 m	41,04634 m
Coordinate 37	154,49527 m	40,84634 m
Coordinate 38	163,32357 m	40,886339 m
Coordinate 39	200,84385 m	40,736339 m
Coordinate 40	207,7 m	40,616761 m
Coordinate 41	214,08631 m	40,506339 m

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Points

	Х	Y
Point 1	87,63264 m	47,120041 m
Point 2	68,95324 m	57,229592 m
Point 3	60,07128 m	60,453962 m
Point 4	47,10941 m	65,441769 m
Point 5	30,89905 m	73,27634 m
Point 6	28,69198 m	73,556339 m
Point 7	26,4849 m	74,54634 m
Point 8	24,27783 m	74,986339 m
Point 9	22,07075 m	75,576339 m
Point 10	19,86368 m	76,126338 m
Point 11	17,6566 m	77,566341 m
Point 12	15,44953 m	78,196338 m
Point 13	13,24245 m	80,02634 m
Point 14	11,03538 m	80,88634 m
Point 15	8,8283 m	83,336341 m
Point 16	6,62123 m	83,216338 m
Point 17	4,41415 m	84,286338 m
Point 18	2,20708 m	84,806342 m
Point 19	0 m	86,86634 m
Point 20	0 m	0,86634 m
Point 21	214,08631 m	0,86634 m
Point 22	214,08631 m	16,730652 m
Point 23	188,70494 m	18,82134 m
Point 24	125,94359 m	31,334346 m
Point 25	214,08631 m	40,506339 m
Point 26	207,7 m	40,616761 m
Point 27	127,97681 m	38,523884 m
Point 28	121,37236 m	39,560112 m
Point 29	101,39647 m	45,451915 m
Point 30	108,14669 m	47,87634 m
Point 31	101,52547 m	49,09634 m
Point 32	99,31839 m	50,566339 m
Point 33	92,69716 m	52,946338 m
Point 34	86,07594 m	53,966338 m
Point 35	83,86886 m	55,066341 m
Point 36	75,04056 m	57,486339 m
Point 37	68,41934 m	58,826339 m
Point 38	66,21226 m	60,236339 m
Point 39	64,00518 m	60,816341 m
Point 40	61,79811 m	61,286338 m
Point 41	59,59103 m	62,536338 m
Point 42	52,96981 m	64,61634 m
Point 43	50,76273 m	65,63634 m
Point 44	41,93443 m	69,876338 m
Point 45	35,31321 m	71,020338 M
Point 46	33,10613 m	72,816341 m
Point 47	200,84385 M	40,730339 [1]
Point 40	154 40527 m	40,000000000000000000000000000000000000
Point 49	134,49527 m	40,04034 [[]
Point 50	120.04575 m	41,04034 m
POINT 51	1391/4575 m	uunxnx4 m

Region 1	С	1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24
Region 2	ALG	25;26;27;28;29;2;1;24;23;22
Region 3	DTF (T02)	30;31;32;33;34;35;36;37;38;39;40;41;42;43;44;45;46;5;4;3;29;28;27;26;47;48;49;50;51;52;5

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 0,99 Degree of Utilization: 1,01 Volume: 356,37948 m³ Weight: 6.771,2101 kN Resisting Moment: 63.538,632 kN·m Activating Moment: 63.869,146 kN·m Resisting Force: 1.449,2539 kN Activating Force: 1.457,0067 kN Slip Rank: 1 of 1 slip surfaces Exit: (207,7; 40,616761) m Entry: (30,89905; 73,27634) m Radius: 76,027868 m Center: (123,82431; 81,441235) m

	X	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength
Column 1	32,00259 m	72,742992 m	2,9749384 kPa	5,2193955 kPa	1,0946949 kPa	0 kPa	0 kPa
Column 2	34,20967 m	71,676296 m	5,3452405 kPa	9,3494841 kPa	1,9530001 kPa	0 kPa	0 kPa
Column 3	38,62382 m	69,542909 m	11,851062 kPa	20,60248 kPa	4,2683518 kPa	0 kPa	0 kPa
Column 4	44,52192 m	66,692320 m	19,038484 kPa	32,847958 kPa	6,7353307 kPa	0 kPa	0 kPa
Column 5	48,93607 m	64,738859 m	17,40524 kPa	30,482039 kPa	6,3779809 kPa	0 kPa	0 kPa
Column 6	51,86627 m	63,611300 m	14,857996 kPa	25,888835 kPa	5,3800999 kPa	0 kPa	0 kPa
Column 7	56,28042 m	61,912708 m	16,315228 kPa	28,342771 kPa	5,8662248 kPa	0 kPa	0 kPa
Column 8	59,83116 m	60,546364 m	18,181957 kPa	31,534261 kPa	6,5123537 kPa	0 kPa	0 kPa
Column 9	60,93469 m	60,140521 m	16,032676 kPa	27,892639 kPa	5,7844907 kPa	0 kPa	0 kPa
Column 10	62,90165 m	59,426471 m	15,935087 kPa	27,680754 kPa	5,7287444 kPa	0 kPa	0 kPa
Column 11	65,10872 m	58,625249 m	18,643999 kPa	32,422965 kPa	6,7204504 kPa	0 kPa	0 kPa
Column 12	67,31580 m	57,824025 m	16,743624 kPa	29,02306 kPa	5,9890807 kPa	0 kPa	0 kPa
Column 13	68,68629 m	57,326504 m	14,179054 kPa	24,475579 kPa	5,0219511 kPa	0 kPa	0 kPa

Column 17	89,38655 m	49,811807 m	35,741911 kPa	61,991733 kPa	12,802894 kPa	0 kPa	0 kPa
Column 18	96,00777 m	47,408142 m	42,642763 kPa	73,987364 kPa	15,287783 kPa	0 kPa	0 kPa
Column 19	100,35743 m	45,829112 m	39,671152 kPa	68,775864 kPa	14,195316 kPa	0 kPa	0 kPa
Column 20	101,46097 m	45,432891 m	36,348748 kPa	64,618372 kPa	13,788017 kPa	0 kPa	0 kPa
Column 21	104,83608 m	44,437417 m	39,70779 kPa	70,705145 kPa	15,11842 kPa	0 kPa	0 kPa
Column 22	111,45311 m	42,485753 m	40,736544 kPa	72,711239 kPa	15,595101 kPa	0 kPa	0 kPa
Column 23	118,06594 m	40,535326 m	35,606498 kPa	63,736369 kPa	13,719855 kPa	0 kPa	0 kPa
Column 24	124,67458 m	39,041998 m	26,009054 kPa	49,647053 kPa	11,529022 kPa	0 kPa	0 kPa
Column 25	127,99359 m	38,524325 m	18,91076 kPa	39,773227 kPa	10,175305 kPa	0 kPa	0 kPa
Column 26	129,11390 m	38,553735 m	19,247264 kPa	40,504243 kPa	10,367721 kPa	0 kPa	0 kPa
Column 27	134,63160 m	38,698584 m	19,003568 kPa	40,088316 kPa	10,283719 kPa	0 kPa	0 kPa
Column 28	142,35636 m	38,901373 m	19,270431 kPa	40,637625 kPa	10,421477 kPa	0 kPa	0 kPa
Column 29	150,08112 m	39,104162 m	18,066241 kPa	37,983581 kPa	9,7143357 kPa	0 kPa	0 kPa
Column 30	158,90942 m	39,335921 m	15,008818 kPa	31,399059 kPa	7,9940547 kPa	0 kPa	0 kPa
Column 31	166,45026 m	39,533881 m	13,140966 kPa	27,282663 kPa	6,8973666 kPa	0 kPa	0 kPa
Column 32	172,70364 m	39,698044 m	11,28585 kPa	23,257756 kPa	5,8390889 kPa	0 kPa	0 kPa
Column 33	178,95702 m	39,862206 m	9,4307336 kPa	19,270218 kPa	4,7990371 kPa	0 kPa	0 kPa
Column 34	185,21040 m	40,026369 m	7,5756173 kPa	15,335517 kPa	3,7847562 kPa	0 kPa	0 kPa
Column 35	191,46378 m	40,190531 m	5,7205011 kPa	11,465136 kPa	2,8018456 kPa	0 kPa	0 kPa
Column 36	197,71716 m	40,354694 m	3,8653848 kPa	7,6665263 kPa	1,8539406 kPa	0 kPa	0 kPa
Column 37	204,27193 m	40,526768 m	1,4689133 kPa	2,8852744 kPa	0,69080545 kPa	0 kPa	0 kPa

D_08 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 08 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Right to Left
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```

DTF (T03)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 22 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
8,09266 m	17,9447 m
42,05489 m	16,90816 m
68,45982 m	18,68799 m
79,16532 m	23,03775 m
89,92425 m	26,34559 m
120,34031 m	37,65343 m
143,04217 m	47,24235 m
145,04359 m	48,08772 m
174,46945 m	60,60711 m
197,47166 m	73,76898 m
214,58957 m	78,12907 m
230,23266 m	82,57754 m

Slip Surface Limits

Left Coordinate: (0,00585; 17,15497) m Right Coordinate: (271,45921; 82,7705) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0,01422 m	16,992216 m
Coordinate 2	8,10103 m	17,781946 m
Coordinate 3	29,07312 m	19,142476 m
Coordinate 4	30,77338 m	19,514656 m
Coordinate 5	50,18338 m	20,309776 m
Coordinate 6	61,77773 m	20,799836 m
Coordinate 7	67,02782 m	21,701061 m
Coordinate 8	78,21522 m	24,776157 m
Coordinate 9	110,2224 m	34,98008 m
Coordinate 10	137,44798 m	46,73058 m
Coordinate 11	156,2323 m	52,681701 m
Coordinate 12	187,93269 m	58,191235 m
Coordinate 13	234,8466 m	60,179472 m
Coordinate 14	271,45921 m	60,01026 m

Points

Point 1 120,34031 m 37,65343 r Point 2 145,04359 m 48,08772 r Point 3 174,46945 m 60,60711 r Point 4 197,47166 m 73,76898 r Point 5 214,58957 m 78,12907 r Point 6 230,23266 m 82,57754 r Point 7 225,69048 m 82,54212 r Point 8 222,45252 m 82,99015 r Point 9 222,10376 m 82,98961 r Point 10 221,88733 m 83,06835 r Point 11 212,96304 m 81,18302 r Point 12 212,3445 m 81,18302 r Point 13 211,96583 m 80,96965 r Point 14 197,47421 m 79,02484 r Point 15 197,28568 m 79,02487 r Point 16 197,18478 m 79,02484 r Point 17 197,04723 m 78,96965 r Point 20 172,01729 m 64,96965 r Point 21 168,5484 m 63,34763 r Point 22 162,5972 m 60,96965 r	
Point 2 145,04359 m 48,08772 n Point 3 174,46945 m 60,60711 n Point 4 197,47166 m 73,76898 n Point 5 214,58957 m 78,12907 n Point 6 230,23266 m 82,57754 n Point 7 225,69048 m 82,54212 n Point 8 222,45252 m 82,99015 n Point 9 222,10376 m 82,98961 n Point 10 221,88733 m 83,06835 n Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 n Point 13 211,96583 m 80,96965 n Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02484 n Point 16 197,18478 m 79,02484 n Point 17 197,04723 m 78,96965 n Point 18 181,54873 m 68,30538 n Point 20 172,01729 m 64,96965 n Point 21 168,5484 m 63,34763 n Point 22 162,5972 m 60,96965 n	n
Point 3 174,46945 m 60,60711 m Point 4 197,47166 m 73,76898 m Point 5 214,58957 m 78,12907 m Point 6 230,23266 m 82,57754 m Point 7 225,69048 m 82,54212 m Point 8 222,10376 m 82,98961 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,18302 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,3605 m Point 20 172,01729 m 66,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m	n
Point 4 197,47166 m 73,76898 m Point 5 214,58957 m 78,12907 m Point 6 230,23266 m 82,57754 m Point 7 225,69048 m 82,54212 m Point 8 222,45252 m 82,99015 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,18302 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02484 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m	n
Point 5 214,58957 m 78,12907 m Point 6 230,23266 m 82,57754 m Point 7 225,69048 m 82,54212 m Point 8 222,45252 m 82,99015 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02447 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,96965 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m	n
Point 6 230,23266 m 82,57754 m Point 7 225,69048 m 82,54212 m Point 8 222,45252 m 82,99015 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02484 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,3605 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 60,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m	n
Point 7 225,69048 m 82,54212 m Point 8 222,45252 m 82,99015 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,96965 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 27 133,38547 m 48,96965 m	n
Point 8 222,45252 m 82,99015 m Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02484 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,3053 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m	n
Point 9 222,10376 m 82,98961 m Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 30 104,91671 m 36,1867 m	n
Point 10 221,88733 m 83,06835 m Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m	n
Point 11 212,96304 m 81,1877 m Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m	n
Point 12 212,3445 m 81,18302 m Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m	í .
Point 13 211,96583 m 80,96965 m Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 29 114,34484 m 40,46752 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m Point 33 87,39146 m 28,96965 m	n
Point 14 197,47421 m 79,0385 m Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 66,96965 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 29 114,34484 m 40,46752 m Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m Point 33 87,39146 m 28,96965 m	n
Point 15 197,28568 m 79,02047 m Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 29 114,34484 m 40,46752 m Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m Point 33 87,39146 m 28,96965 m Point 34 81,95319 m 27,30874 m	í .
Point 16 197,18478 m 79,02484 m Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 29 114,34484 m 40,46752 m Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m Point 33 87,39146 m 28,96965 m Point 34 81,95319 m 27,30874 m Point 35 76,39774 m 25,12249 m	n
Point 17 197,04723 m 78,96965 m Point 18 181,54873 m 68,30538 m Point 19 178,75499 m 66,96965 m Point 20 172,01729 m 64,96965 m Point 21 168,5484 m 63,34763 m Point 22 162,5972 m 60,96965 m Point 23 161,25488 m 60,40951 m Point 24 154,59169 m 58,02554 m Point 25 147,2859 m 54,96965 m Point 26 142,35676 m 52,96965 m Point 27 133,38547 m 48,96965 m Point 28 122,05614 m 43,99509 m Point 29 114,34484 m 40,46752 m Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 m Point 32 97,80513 m 33,31101 m Point 33 87,39146 m 28,96965 m Point 34 81,95319 m 27,30874 m Point 35 76,39774 m 25,12249 m Point 36 67,01945 m 20,96259 m	n
Point 18 181,54873 m 68,30538 r Point 19 178,75499 m 66,96965 r Point 20 172,01729 m 64,96965 r Point 21 168,5484 m 63,34763 r Point 22 162,5972 m 60,96965 r Point 23 161,25488 m 60,40951 r Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r	n
Point 19178,75499 m66,96965 mPoint 20172,01729 m64,96965 mPoint 21168,5484 m63,34763 mPoint 22162,5972 m60,96965 mPoint 23161,25488 m60,40951 mPoint 24154,59169 m58,02554 mPoint 25147,2859 m54,96965 mPoint 26142,35676 m52,96965 mPoint 27133,38547 m48,96965 mPoint 28122,05614 m43,99509 mPoint 29114,34484 m40,46752 mPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 mPoint 3297,80513 m33,31101 mPoint 3387,39146 m28,96965 mPoint 3481,95319 m27,30874 mPoint 3576,39774 m25,12249 mPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 mPoint 3850,17501 m20,47253 mPoint 4029,06475 m19,30523 mPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 m	n
Point 20 172,01729 m 64,96965 r Point 21 168,5484 m 63,34763 r Point 22 162,5972 m 60,96965 r Point 23 161,25488 m 60,40951 r Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r	n
Point 21 168,5484 m 63,34763 r Point 22 162,5972 m 60,96965 r Point 23 161,25488 m 60,40951 r Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m Point 42	n
Point 22 162,5972 m 60,96965 r Point 23 161,25488 m 60,40951 r Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m <td< td=""><td>n</td></td<>	n
Point 23 161,25488 m 60,40951 r Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m <td< td=""><td>n</td></td<>	n
Point 24 154,59169 m 58,02554 r Point 25 147,2859 m 54,96965 r Point 26 142,35676 m 52,96965 r Point 27 133,38547 m 48,96965 r Point 28 122,05614 m 43,99509 r Point 29 114,34484 m 40,46752 r Point 30 104,91671 m 36,1867 m Point 31 104,36548 m 35,94357 r Point 32 97,80513 m 33,31101 r Point 33 87,39146 m 28,96965 r Point 34 81,95319 m 27,30874 r Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 r	n
Point 25147,2859 m54,96965 rPoint 26142,35676 m52,96965 rPoint 27133,38547 m48,96965 rPoint 28122,05614 m43,99509 rPoint 29114,34484 m40,46752 rPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 rPoint 3297,80513 m33,31101 rPoint 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 rPoint 3850,17501 m20,47253 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 26142,35676 m52,96965 rPoint 27133,38547 m48,96965 rPoint 28122,05614 m43,99509 rPoint 29114,34484 m40,46752 rPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 rPoint 3297,80513 m33,31101 rPoint 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 rPoint 3930,76501 m19,67741 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 27133,38547 m48,96965 rPoint 28122,05614 m43,99509 rPoint 29114,34484 m40,46752 rPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 rPoint 3297,80513 m33,31101 rPoint 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 rPoint 3850,17501 m20,47253 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 28122,05614 m43,99509 rPoint 29114,34484 m40,46752 rPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 rPoint 3297,80513 m33,31101 rPoint 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 rPoint 3930,76501 m19,67741 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 29114,34484 m40,46752 rPoint 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 rPoint 3297,80513 m33,31101 rPoint 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,8638155Point 3761,76936 m20,96259 rPoint 3850,17501 m20,47253 rPoint 3930,76501 m19,67741 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 30104,91671 m36,1867 mPoint 31104,36548 m35,94357 mPoint 3297,80513 m33,31101 mPoint 3387,39146 m28,96965 mPoint 3481,95319 m27,30874 mPoint 3576,39774 m25,12249 mPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 mPoint 3850,17501 m20,47253 mPoint 4029,06475 m19,30523 mPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 m	n
Point 31104,36548 m35,94357 mPoint 3297,80513 m33,31101 mPoint 3387,39146 m28,96965 mPoint 3481,95319 m27,30874 mPoint 3576,39774 m25,12249 mPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 mPoint 3850,17501 m20,47253 mPoint 3930,76501 m19,67741 mPoint 4029,06475 m19,30523 mPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 m	
Point 3297,80513 m33,31101 mPoint 3387,39146 m28,96965 mPoint 3481,95319 m27,30874 mPoint 3576,39774 m25,12249 mPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 mPoint 3850,17501 m20,47253 mPoint 3930,76501 m19,67741 mPoint 4029,06475 m19,30523 mPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 m	n
Point 3387,39146 m28,96965 rPoint 3481,95319 m27,30874 rPoint 3576,39774 m25,12249 rPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 rPoint 3850,17501 m20,47253 rPoint 3930,76501 m19,67741 rPoint 4029,06475 m19,30523 rPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 r	n
Point 3481,95319 m27,30874 mPoint 3576,39774 m25,12249 mPoint 3667,01945 m21,863815Point 3761,76936 m20,96259 mPoint 3850,17501 m20,47253 mPoint 3930,76501 m19,67741 mPoint 4029,06475 m19,30523 mPoint 418,09266 m17,9447 mPoint 4242,05489 m16,90816 m	n
Point 35 76,39774 m 25,12249 r Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 r	n
Point 36 67,01945 m 21,863815 Point 37 61,76936 m 20,96259 r Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 r	11
Point 37 81,76936 m 20,96259 m Point 38 50,17501 m 20,47253 m Point 39 30,76501 m 19,67741 m Point 40 29,06475 m 19,30523 m Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 m	- 111
Point 38 50,17501 m 20,47253 r Point 39 30,76501 m 19,67741 r Point 40 29,06475 m 19,30523 r Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 r	11 22
Point 39 30,76501 m 19,67741 m Point 40 29,06475 m 19,30523 m Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 m	11 22
Point 40 23,00473 m 19,30323 m Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 m	<u>n</u>
Point 41 8,09266 m 17,9447 m Point 42 42,05489 m 16,90816 m	
Foline 42,03469 III 10,90810 I	<u> </u>
Doint 12 68 15082 m 18 68700 r	<u>n</u>
Point 43 08,45982 m 18,08795 m	<u>n</u>
Point 45 80 02/25 m 26 2/250	<u>n</u>
Point 46 69 74563 m 0 60221 m	
Point 47 110 99656 m 20 76643	n
Point 48 131.34269 m 33.8238 m	
Point 49 143.04217 m 47.24235 r	n
Point 50 0.00585 m 17 15497	<u>n</u>
Point 51 0 00585 m / 11847 m	

Region 2	ALG	46;47;54;48;49;1;45;44;43;42;41;50;65;52;53
Region 3	С	61;62;63;55;56;57;58;59;60;6;5;4;3;2;49;48;54;47;46;53;52;65;66;67;68

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 0,99 Degree of Utilization: 1,01 Volume: 861,25185 m³ Weight: 16.363,785 kN Resisting Moment: 325.964,95 kN·m Activating Moment: 328.289,35 kN·m Resisting Force: 4.832,0308 kN Activating Force: 4.867,2109 kN Slip Rank: 1 of 1 slip surfaces Exit: (230,23266; 82,57754) m Entry: (8,09266; 17,9447) m Radius: 105,18042 m Center: (105,0587; 98,73575) m

	X	Y	PWP	Base Normal Stress	Frictional Strength	Coh
Column 1	227,96157 m	81,931704 m	-216,18573 kPa	10,716248 kPa	4,3296452 kPa	0 kl
Column 2	224,07150 m	80,825473 m	-206,95375 kPa	33,170426 kPa	13,401722 kPa	0 kl
Column 3	222,27814 m	80,315491 m	-202,69771 kPa	45,752761 kPa	18,485315 kPa	0 kl
Column 4	221,99554 m	80,235128 m	-202,02705 kPa	47,804063 kPa	19,314095 kPa	0 kl
Column 5	218,23845 m	79,166712 m	-193,11065 kPa	53,750099 kPa	21,71645 kPa	0 kl
Column 6	213,77631 m	77,921924 m	-182,75759 kPa	59,905767 kPa	24,203501 kPa	0 kl
Column 7	212,65377 m	77,636004 m	-180,42012 kPa	61,918776 kPa	25,016809 kPa	0 kl
Column 8	212,15517 m	77,509005 m	-179,38188 kPa	62,260396 kPa	25,154833 kPa	0 kl
Column 9	208,34293 m	76,537992 m	-171,44362 kPa	69,133454 kPa	27,931729 kPa	0 kl
Column 10	201,09712 m	74,692417 m	-156,35561 kPa	84,975252 kPa	34,332231 kPa	0 kl
Column 11	197,47294 m	73,769305 m	-148,80896 kPa	92,939682 kPa	37,550069 kPa	0 kl
Column 12	197,37867 m	73,715771 m	-148,32313 kPa	81,33865 kPa	32,862948 kPa	0 kl
Column 13	197,23523 m	73,633695 m	-147,57782 kPa	82,472082 kPa	33,320884 kPa	0 kl
Column 14	197,11601 m	73,565474 m	-146,95834 kPa	83,112961 kPa	33,579816 kPa	0 kl
Column 15	192,48996 m	70,918450 m	-122,92168 kPa	74,967557 kPa	30,288859 kPa	0 kl
Column 16	184,74071 m	66,484327 m	-86,770955 kPa	60,937073 kPa	24,620176 kPa	0 kl
Column 17	180,15186 m	63,858586 m	-68,841817 kPa	57,126059 kPa	23,080426 kPa	0 kl
Column 18	176,61222 m	61,833204 m	-55,012057 kPa	67,83683 kPa	27,407858 kPa	0 kl
Column 19	173,24337 m	60,085468 m	-43,614077 kPa	84,765817 kPa	34,247613 kPa	0 kl
Column 20	170,28285 m	58,825896 m	-36,307554 kPa	86,112475 kPa	34,791698 kPa	0 kl
Column 21	165,57280 m	56,821983 m	-24,683246 kPa	86,146944 kPa	34,805625 kPa	0 kl
Column 22	161,92604 m	55,270449 m	-15,683107 kPa	87,458238 kPa	35,335422 kPa	0 kl
Column 23	158,74359 m	53,916458 m	-7,8288771 kPa	90,274206 kPa	36,473147 kPa	0 kl
Column 24	155,46687 m	52,522361 m	-0,81552901 kPa	93,838272 kPa	37,913123 kPa	0 kl
Column 25	154,64657 m	52,173358 m	0,058467796 kPa	94,734797 kPa	38,25172 kPa	0 kl
Column 26	150,93879 m	50,595867 m	4,0089252 kPa	95,464308 kPa	36,950373 kPa	0 kl
Column 27	116 1617E m	10 E C 1771 m	0.0054533 605	06 E41001 LD2	2E 220610 kpg	

Column 50	61,77354 m	18,237300 m	25,129054 kPa	53,598402 kPa	11,502363 kPa	0 kF
Column 51	58,87286 m	18,041779 m	25,844156 kPa	54,900611 kPa	11,73957 kPa	0 kF
Column 52	53,07988 m	17,651301 m	27,272297 kPa	57,488521 kPa	12,208147 kPa	0 kF
Column 53	50,17919 m	17,455781 m	27,987452 kPa	58,767738 kPa	12,436043 kPa	0 kF
Column 54	46,11495 m	17,181829 m	29,04133 kPa	60,634271 kPa	12,764377 kPa	0 kF
Column 55	39,23451 m	16,994239 m	28,116891 kPa	60,391494 kPa	13,039786 kPa	0 kF
Column 56	33,59376 m	17,166397 m	24,16243 kPa	51,96991 kPa	11,234951 kPa	0 kF
Column 57	30,76919 m	17,252604 m	22,174963 kPa	47,78433 kPa	10,346856 kPa	0 kF
Column 58	29,91906 m	17,278550 m	20,095524 kPa	43,602835 kPa	9,4975702 kPa	0 kF
Column 59	29,06893 m	17,304496 m	18,022405 kPa	39,411965 kPa	8,6419433 kPa	0 kF
Column 60	25,85471 m	17,402596 m	15,015408 kPa	33,239673 kPa	7,3630809 kPa	0 kF
Column 61	19,43462 m	17,598539 m	9,009245 kPa	21,063636 kPa	4,8702902 kPa	0 kF
Column 62	13,01453 m	17,794483 m	3,0030817 kPa	9,0811153 kPa	2,455685 kPa	0 kF
Column 63	8,95276 m	17,918450 m	-0,79681161 kPa	1,582832 kPa	0,63950564 kPa	0 kF
Column 64	8,09685 m	17,944572 m	-1,5988839 kPa	0,0076806865 kPa	0,0031031988 kPa	0 kF

D_17 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 17 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Right to Left
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```

Solution Settings

Search Method: Root Finder Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

Strada

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

DTF (T05)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 18 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Cf

Slope Stability Material Model: Bedrock (Impenetrable) Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

X	Y
30,61553 m	32,15088 m
62,6045 m	32,34048 m
90,85073 m	32,51458 m
129,36355 m	33,27698 m

322,82678 m	55,79598 m
361,779 m	66,88318 m
421,773 m	77,29808 m
423,88215 m	77,66428 m
480,73276 m	89,78068 m
507,781 m	110,70488 m

Slip Surface Limits

Left Coordinate: (0; 30,17857) m Right Coordinate: (548,86667; 126,13447) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	X	Y
Coordinate 1	0 m	30,17216 m
Coordinate 2	29,833 m	32,00806 m
Coordinate 3	85,1684 m	35,286 m
Coordinate 4	240,85471 m	46,0437 m
Coordinate 5	320,87081 m	59,74324 m
Coordinate 6	331,75402 m	64,06989 m
Coordinate 7	344,71767 m	66,31698 m
Coordinate 8	361,779 m	66,42594 m
Coordinate 9	385,07467 m	66,41035 m
Coordinate 10	388,74375 m	75,41706 m
Coordinate 11	390,74383 m	75,49686 m
Coordinate 12	392,32187 m	76,54866 m
Coordinate 13	445,575 m	86,17216 m
Coordinate 14	479,273 m	96,17216 m
Coordinate 15	501,053 m	106,17216 m
Coordinate 16	507,781 m	110,56206 m
Coordinate 17	516,379 m	116,17216 m
Coordinate 18	530,806 m	126,22826 m

Surcharge Loads

Surcharge Load 1

Surcharge (Unit Weight): 10 kN/m³ Direction: Vertical Mode: Permanent

Coordinates

Х	Y
348,34567 m	70,15487 m
381,18451 m	71,53422 m

Design Factor Set: Back Analisvs

Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: D_17 (con falda)

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	530,806 m	126,23467 m
Point 2	516,379 m	116,17857 m
Point 3	507,781 m	110,56847 m
Point 4	480,73276 m	89,64427 m
Point 5	423,88215 m	77,52787 m
Point 6	421,773 m	77,16167 m
Point 7	270,57252 m	4,49237 m
Point 8	322,82678 m	55,65957 m
Point 9	254,98469 m	41,93507 m
Point 10	203,29888 m	36,25387 m
Point 11	62,6045 m	32,20407 m
Point 12	45,61248 m	21,42747 m
Point 13	33,36961 m	17,87097 m
Point 14	5,18254 m	14,31447 m
Point 15	0 m	14,17857 m
Point 16	29,833 m	32,01447 m
Point 17	0 m	30,17857 m
Point 18	348,328 m	68,92907 m
Point 19	350,328 m	69,00907 m
Point 20	501,053 m	106,17857 m
Point 21	479,273 m	96,17857 m
Point 22	445,575 m	86,17857 m
Point 23	392,32187 m	76,55507 m
Point 24	390,74383 m	75,50327 m
Point 25	388,74375 m	75,42347 m
Point 26	381,24345 m	70,42427 m
Point 27	380,0924 m	70,38337 m
Point 28	374,36517 m	69,96027 m
Point 29	344,53681 m	66,40307 m
Point 30	340,62696 m	65,74867 m
Point 31	331,779 m	64,17857 m
Point 32	320,83112 m	59,96507 m

Point 36	90,85073 m	32,37817 m
Point 37	129,36372 m	33,14057 m
Point 38	363,98644 m	69,44477 m
Point 39	343,13682 m	66,10017 m
Point 40	385,04803 m	66,40307 m
Point 41	360,57149 m	66,40307 m
Point 42	381,48602 m	70,16789 m
Point 43	0 m	0,63424 m
Point 44	256,71847 m	0,47467 m
Point 45	548,86667 m	126,13447 m
Point 46	548,86667 m	0,29308 m

Regions

	Material	Points	Area
Region 1	ALG	11;16;17;15;14;13;12	756,31 m²
Region 2	Strada	19;18;29;41;40;42;26;27;28;38	116,57 m²
Region 3	DTF (T05)	3;20;21;22;23;24;25;26;42;6;5;4	548,71 m²
Region 4	DTF (T05)	39;30;31;32;33;34;35;16;11;36;37;10;9;8;41;29	1.606,1 m ²
Region 5	AM	7;6;42;40;41;8;9;10;37;36;11;12;13;14;15;43;44	11.598 m ²
Region 6	Cf	1;2;3;4;5;6;7;44;46;45	18.720 m ²

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 1,11 Degree of Utilization: 0,90 Volume: 2.159,0836 m³ Weight: 41.221,418 kN Resisting Moment: 639.123,11 kN·m Activating Moment: 577.247,99 kN·m Resisting Force: 7.016,2762 kN Activating Force: 6.337,5866 kN Slip Rank: 1 of 1 slip surfaces Exit: (506,65463; 109,83353) m Entry: (32,202631; 32,160287) m Radius: 193,28269 m Center: (259,89163; 129,25185) m

	Х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	B Ma
Column 1	506,62817 m	109,81306 m	-0,031431435 kPa	0,049634958 kPa	0,016127376 kPa	0 kPa	0 kPa	DTF (TO
Column 2	503,82735 m	107,64638 m	3,2950617 kPa	5,8873563 kPa	0,84228758 kPa	0 kPa	0 kPa	DTF (TO
Column 3	490,89288 m	97,64043 m	37,922155 kPa	65,694718 kPa	9,0238529 kPa	0 kPa	0 kPa	DTF (TO
Column 4	480,00288 m	89,62512 m	67,493264 kPa	125,62744 kPa	18,88894 kPa	0 kPa	0 kPa	DTF (TO
Column 5	470,84850 m	87,67408 m	58,823197 kPa	109,16324 kPa	16,356473 kPa	0 kPa	0 kPa	DTI (TO

Column 7	434,72857 m	79,97595 m	41,543733 kPa	76,295065 kPa	11,291392 kPa	0 kPa	0 kPa	DTF (TO
Column 8	422,82758 m	77,48118 m	44,9184 kPa	83,268051 kPa	12,460557 kPa	0 kPa	0 kPa	DTF (T0
Column 9	414,41022 m	76,01991 m	44,331463 kPa	82,157164 kPa	12,290315 kPa	0 kPa	0 kPa	DTI (TO
Column	399,68465	73,46356	43,304197 kPa	80,232297 kPa	11,998667 kPa	0 kPa	0 kPa	DTI (TO
Column	391,53285 m	72,04842	38,976358 kPa	72,101867 kPa	10,76313 kPa	0 kPa	0 kPa	DTF (TO
Column	389,74379	71,73784	36,473407	67,396652	10,047572	0 kPa	0 kPa	DTI
Column	387,89926	71,41763	18,892331	62,102318	14,039776	0 kPa	0 kPa	DTI
Column	386,06472	71,09916	-22,148794	45,382924 kPa	14,745806	0 kPa	0 kPa	DTF
Column	383,15906	70,59474	-41,023717	19,06639	6,1950455	0 kPa	0 kPa	DTI
Column	381,21398	70,25707	-37,69948	2,2515602	1,5765594	0 kPa	0 kPa	Stra
Column	380,63846	70,15716	-36,71588	14,648023	10,256656	0 kPa	0 kPa	Stra
Column	377,22879	69,56525	-30,888588	23,275515	16,297691	0 kPa	0 kPa	Stra
Column	369,17581	68,16726	-17,125653	44,597065	31,227201	0 kPa	0 kPa	Stra
Column	362,88272	67,07478	-6,3704639	62,227732	43,572327	0 kPa	0 kPa	Stra
Column	360,95736	66,64931	-2,2420763	64,313723	45,032954	0 kPa	0 kPa	Stra
Column	359,16683	66,13966	2,6439135	74,870863	23,467958	0 kPa	0 kPa	DTF
Column	354,26297	64,74385	16,025542	96,158781	26,036868	0 kPa	0 kPa	DTI
Column	349,33684	63,34169	29,467941	117,41163	28,574635	0 kPa	0 kPa	DTI
Column	348,33684	63,05706	32,196734	110,31568	25,382385	0 kPa	0 kPa	DTF
Column	346,52283	62,54073	37,146765	95,039993	18,81065	0 kPa	0 kPa	DTI
Column	344,62724	62,00117	42,171391	78,952339	11,950855	0 kPa	0 kPa	DTI
Column	343,83682	61,77619	43,03414 kPa	79,035637	11,697595	0 kPa	0 kPa	DTI
Column	341,88189	61,21975	45,167943	83,103563	12,32603	0 kPa	0 kPa	DTI
Column	336,20298	59,60333	51,366478	94,734629	14,091166	0 kPa	0 kPa	DTI
Column	331,76651	58,34055	56,208889	103,12881	15,245208	0 kPa	0 kPa	DTI
Column	327,29040	57,06649	51,279618 kPa	95,114061 kPa	14,242674	0 kPa	0 kPa	DTI
Column	321,84879	55,59813	44,464032	86,216299	13,566134	0 kPa	0 kPa	DTI
Column	320,85096	55,39627	42,597401	82,898162	13,094511	0 kPa	0 kPa	DTI
Column	312,60032	53,72716	45,113091	87,380866	13,733633	0 kPa	0 kPa	DTI

Column 37	279,67710 m	47,06677 m	55,151649 kPa	105,66017 kPa	16,411212 kPa	0 kPa	0 kPa	DTF (TO
Column 38	263,21549 m	43,73658 m	60,170928 kPa	114,86664 kPa	17,771714 kPa	0 kPa	0 kPa	DTF (TO
Column 39	247,93734 m	41,29685 m	58,444487 kPa	115,22177 kPa	18,448057 kPa	0 kPa	0 kPa	DTF (TO
Column 40	240,87235 m	40,52028 m	54,197801 kPa	107,0375 kPa	17,16866 kPa	0 kPa	0 kPa	DTF (TO
Column 41	231,46575 m	39,48633 m	57,945745 kPa	114,27826 kPa	18,303543 kPa	0 kPa	0 kPa	DTF (TO
Column 42	212,68784 m	37,42230 m	65,462847 kPa	128,69185 kPa	20,544348 kPa	0 kPa	0 kPa	DTF (TO
Column 43	195,90535 m	36,07895 m	67,264386 kPa	135,13411 kPa	22,05221 kPa	0 kPa	0 kPa	DTF (TO
Column 44	181,11828 m	35,45629 m	63,350363 kPa	127,13184 kPa	20,723859 kPa	0 kPa	0 kPa	DTF (TO
Column 45	166,33121 m	34,83363 m	59,436341 kPa	119,0795 kPa	19,379237 kPa	0 kPa	0 kPa	DTI (TO
Column 46	151,54415 m	34,21097 m	55,522318 kPa	110,99158 kPa	18,023057 kPa	0 kPa	0 kPa	DTF (TO
Column 47	136,75708 m	33,58831 m	51,608296 kPa	102,88248 kPa	16,659992 kPa	0 kPa	0 kPa	DTF (TO
Column 48	118,29927 m	33,05795 m	44,301593 kPa	88,540073 kPa	14,373954 kPa	0 kPa	0 kPa	DTF (TO
Column 49	99,04286 m	32,67675 m	34,990923 kPa	70,35018 kPa	11,488919 kPa	0 kPa	0 kPa	DTF (TO
Column 50	88,00957 m	32,49707 m	29,27637 kPa	59,982935 kPa	9,9771679 kPa	0 kPa	0 kPa	DTF (TO
Column 51	73,88645 m	32,41002 m	21,650576 kPa	44,52428 kPa	7,4321169 kPa	0 kPa	0 kPa	DTF (TO
Column 52	55,05963 m	32,29576 m	11,833768 kPa	24,305533 kPa	4,0523222 kPa	0 kPa	0 kPa	DTF (TO
Column 53	39,96989 m	32,20632 m	3,9445892 kPa	8,2255307 kPa	1,3909622 kPa	0 kPa	0 kPa	DTI (TO
Column 54	32,31382 m	32,16095 m	-0,05813286 kPa	0,1172878 kPa	0,038109118 kPa	0 kPa	0 kPa	DTI (TO

D_27 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 27 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Right to Left
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```

Minimum Rate: 0,1 Rate Reduction Factor: 0,65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

С

Slope Stability Material Model: Bedrock (Impenetrable) Pore Water Pressure Piezometric Surface: 1

Strada

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

DTF (T09)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 26 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
32,619 m	71,9259 m

41,14872 m	72,7942 m
144,10077 m	83,2742 m
236,59889 m	95,8742 m
341,9999 m	113,8885 m
418,163 m	131,446 m
550,31902 m	145,9403 m
773,849 m	185,7428 m
835,46131 m	196,2822 m
880,60088 m	209,5728 m
902,19675 m	221,0615 m
915,94655 m	231,8872 m
936,108 m	256,8809 m

Slip Surface Limits

Left Coordinate: (0; 65,2841) m Right Coordinate: (976,69; 267,2016) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	X	Y
Coordinate 1	0 m	65,2841 m
Coordinate 2	32,619 m	71,9259 m
Coordinate 3	44,2 m	74,2841 m
Coordinate 4	116,9 m	85,2841 m
Coordinate 5	164,9 m	93,2841 m
Coordinate 6	232,6 m	104,2841 m
Coordinate 7	306,37 m	114,2841 m
Coordinate 8	372,86 m	124,2841 m
Coordinate 9	385,21647 m	131,4417 m
Coordinate 10	417,90278 m	131,45924 m
Coordinate 11	437,96846 m	133,61822 m
Coordinate 12	438,33843 m	139,131 m
Coordinate 13	449,11038 m	140,7961 m
Coordinate 14	450,11 m	141,0139 m
Coordinate 15	491,11 m	144,2841 m
Coordinate 16	606,11 m	161,2841 m
Coordinate 17	647,11 m	170,2841 m
Coordinate 18	679,41 m	179,2841 m
Coordinate 19	778,41 m	196,2841 m
Coordinate 20	820,61 m	212,2841 m
Coordinate 21	863,61 m	222,2841 m
Coordinate 22	884,21 m	232,2841 m
Coordinate 23	905,65 m	242,2841 m
Coordinate 24	926,85 m	252,2841 m
Coordinate 25	936,108 m	256,8809 m
Coordinate 26	946,99 m	262,2841 m
Coordinate 27	971,332 m	267,2016 m
Coordinate 28	976 69 m	267 2016 m

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: D_27 (con falda)

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y		
Point 1	976,69 m	267,2016 m		
Point 2	971,332 m	267,2016 m		
Point 3	946,99 m	262,2841 m		
Point 4	936,108 m	256,8809 m		
Point 5	915,94655 m	231,8872 m		
Point 6	902,19675 m	221,0615 m		
Point 7	880,60088 m	209,5728 m		
Point 8	835,46131 m	196,2822 m		
Point 9	773,849 m	185,7428 m		
Point 10	418,163 m	106,646 m		
Point 11	251,79559 m	60,4396 m		
Point 12	117,78345 m	33,7344 m		
Point 13	0 m	10,6971 m		
Point 14	0 m	-94,4275 m		
Point 15	976,69 m	10,6971 m		
Point 16	0 m	54,2841 m		
Point 17	550,31902 m	145,9403 m		
Point 18	418,163 m	131,446 m		
Point 19	341,9999 m	113,8885 m		
Point 20	236,59889 m	95,8742 m		
Point 21	144,10077 m	83,2742 m		
Point 22	41,14872 m	72,7942 m		
Point 23	29,83282 m	62,9915 m		
Point 24	18,85865 m	57,0089 m		
Point 25	32,619 m	71,9259 m		
Point 26	0 m	65,2841 m		
Point 27	398,39392 m	134,99768 m		
Point 28	390,11 m	134,3654 m		
Point 29	372,86 m	124,2841 m		

Regions

	Material	Points	Area
Region 1	С	1;2;3;4;5;6;7;8;9;10;11;12;13;55;56;15	1,1867e+05 m ²
Region 2	AM	16;13;12;11;10;9;17;53;18;19;20;21;22;23;24	19.767 m ²
Region 3	ALG	23;22;25;26;16;24	378,9 m²
Region 4	Strada	48;52;51;50;49;27;28;54;18;53	246,26 m ²
Region 5	DTF (T09)	17;9;8;7;6;5;4;35;36;37;38;39;40;41;42;43;44;45;46;47;48;53	5.102,3 m ²
Region 6	DTF (T09)	29;30;31;32;33;34;25;22;21;20;19;18;54	2.190,2 m ²

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 1,03 Degree of Utilization: 0,97 Volume: 7.538,8297 m³ Weight: 143.976,82 kN Resisting Moment: 6.365.814,3 kN·m Activating Moment: 6.184.738,6 kN·m Resisting Force: 32.603,1 kN Activating Force: 31.702,408 kN Slip Rank: 1 of 1 slip surfaces Exit: (936,108; 256,8809) m Entry: (32,619; 71,9259) m Radius: 377,19091 m Center: (455,96663; 303,11965) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column 1	931,47900 m	251,14243 m	33,736748 kPa	53,337997 kPa	9,5601682 kPa	0 kPa	0 kPa	DTF (T09)
Column 2	921,39828 m	238,64558 m	108,53358 kPa	170,04815 kPa	30,002662 kPa	0 kPa	0 kPa	DTF (T09)
Column 3	910,79827 m	227,83378 m	165,52989 kPa	273,19786 kPa	52,513178 kPa	0 kPa	0 kPa	DTF (T09)
Column 4	903,92337 m	222,42093 m	186,90022 kPa	307,05703 kPa	58,604389 kPa	0 kPa	0 kPa	DTF (T09)
Column 5	893,20338 m	216,27715 m	198,11729 kPa	338,10858 kPa	68,278313 kPa	0 kPa	0 kPa	DTF (T09)
Column 6	882,40544 m	210,53280 m	204,72406 kPa	347,63488 kPa	69,702263 kPa	0 kPa	0 kPa	DTF (T09)
Column 7	872,10544 m	207,07146 m	189,63445 kPa	337,69548 kPa	72,214189 kPa	0 kPa	0 kPa	DTF (T09)
Column 8	849,53566 m	200,42616 m	182,26151 kPa	323,37799 kPa	68,827105 kPa	0 kPa	0 kPa	DTF (T09)
Column 9	828,03566 m	195,01197 m	186,32348 kPa	342,19506 kPa	76,023651 kPa	0 kPa	0 kPa	DTF (T09)
Column 10	799,51000 m	190,13237 m	138,78602 kPa	253,89015 kPa	56,140037 kPa	0 kPa	0 kPa	DTF (T09)
Column 11	776,12950 m	186,13290 m	95,712365 kPa	173,61752 kPa	37,996884 kPa	0 kPa	0 kPa	DTF (T09)
Column 12	758,10917 m	182,94011 m	96,677268 kPa	175,43621 kPa	38,413303 kPa	0 kPa	0 kPa	DTF (T09)
Column 13	726,62950 m	177,33474 m	98,636472 kPa	179,90441 kPa	39,63702 kPa	0 kPa	0 kPa	DTF (T09)
Column 14	695,14983 m	171,72936 m	100,59567 kPa	184,4215 kPa	40,884584 kPa	0 kPa	0 kPa	DTF (T09)
Column 15	663,26000 m	166,05095 m	85,645995 kPa	157,1451 kPa	34,872445 kPa	0 kPa	0 kPa	DTF (T09)
Column 16	626,61000 m	159,52493 m	61,383695 kPa	112,38943 kPa	24,877157 kPa	0 kPa	0 kPa	DTF (T09)
Column 17	592,16225 m	153,39105 m	57,186699 kPa	105,32855 kPa	23,48035 kPa	0 kPa	0 kPa	DTF (T09)
Column 18	564,26677 m	148,42388 m	65,458743 kPa	121,61072 kPa	27,387149 kPa	0 kPa	0 kPa	DTF (T09)
Column 19	535,51677 m	144,31685 m	64,056632 kPa	123,9662 kPa	29,219849 kPa	0 kPa	0 kPa	DTF (T09)
Column 20	505,91226 m	141,06996 m	52,980367 kPa	103,08727 kPa	24,438769 kPa	0 kPa	0 kPa	DTF (T09)
Column 21	470,61000 m	137,19816 m	53,456389 kPa	104,76913 kPa	25,026896 kPa	0 kPa	0 kPa	DTF (T09)
Column 22	449,61019 m	134,89499 m	58,940152 kPa	115,86437 kPa	27,763795 kPa	0 kPa	0 kPa	DTF (T09)
Column 23	443,72440 m	134,24946 m	56,038039 kPa	110,28203 kPa	26,456561 kPa	0 kPa	0 kPa	DTF (T09)
Column 24	438,15344 m	133,63847 m	26,83337 kPa	107,98074 kPa	39,578216 kPa	0 kPa	0 kPa	DTF (T09)

Column 25	435,76259 m	133,37625 m	0,045417797 kPa	123,19512 kPa	86,230348 kPa	0 kPa	0 kPa	Strada
Column 26	431,52704 m	132,91171 m	0,13181749 kPa	130,68012 kPa	91,410903 kPa	0 kPa	0 kPa	Strada
Column 27	423,83018 m	132,06755 m	0,2888233 kPa	142,11585 kPa	99,308355 kPa	0 kPa	0 kPa	Strada
Column 28	418,03289 m	131,41601 m	0,56128286 kPa	136,94036 kPa	66,516521 kPa	0 kPa	0 kPa	DTF (T09)
Column 29	417,29248 m	131,24532 m	2,0946574 kPa	139,78478 kPa	67,155962 kPa	0 kPa	0 kPa	DTF (T09)
Column 30	410,39312 m	129,65485 m	17,656149 kPa	163,3918 kPa	71,080026 kPa	0 kPa	0 kPa	DTF (T09)
Column 31	402,25673 m	127,77921 m	36,007735 kPa	166,3529 kPa	63,573583 kPa	0 kPa	0 kPa	DTF (T09)
Column 32	399,40167 m	127,12104 m	42,447324 kPa	152,99227 kPa	53,916372 kPa	0 kPa	0 kPa	DTF (T09)
Column 33	395,81178 m	126,29349 m	50,544299 kPa	164,50565 kPa	55,582664 kPa	0 kPa	0 kPa	DTF (T09)
Column 34	391,66982 m	125,33866 m	59,886474 kPa	175,06267 kPa	56,175185 kPa	0 kPa	0 kPa	DTF (T09)
Column 35	387,66323 m	124,41504 m	68,92332 kPa	158,47798 kPa	43,678729 kPa	0 kPa	0 kPa	DTF (T09)
Column 36	385,21537 m	123,85075 m	74,438244 kPa	137,91876 kPa	30,961517 kPa	0 kPa	0 kPa	DTF (T09)
Column 37	379,03714 m	122,42651 m	53,308452 kPa	99,071818 kPa	22,320285 kPa	0 kPa	0 kPa	DTF (T09)
Column 38	357,42995 m	117,44551 m	44,307342 kPa	82,674539 kPa	18,712933 kPa	0 kPa	0 kPa	DTF (T09)
Column 39	324,18495 m	110,84371 m	60,016211 kPa	114,85084 kPa	26,744637 kPa	0 kPa	0 kPa	DTF (T09)
Column 40	288,92722 m	104,81774 m	69,648114 kPa	133,02834 kPa	30,912602 kPa	0 kPa	0 kPa	DTF (T09)
Column 41	254,04167 m	98,85538 m	81,744053 kPa	155,69283 kPa	36,067231 kPa	0 kPa	0 kPa	DTF (T09)
Column 42	234,59945 m	95,60184 m	87,805014 kPa	169,31798 kPa	39,75653 kPa	0 kPa	0 kPa	DTF (T09)
Column 43	215,67500 m	93,02397 m	83,458855 kPa	160,6586 kPa	37,652832 kPa	0 kPa	0 kPa	DTF (T09)
Column 44	181,82500 m	88,41296 m	74,740556 kPa	143,37985 kPa	33,47762 kPa	0 kPa	0 kPa	DTF (T09)
Column 45	154,50038 m	84,69082 m	67,276077 kPa	128,65589 kPa	29,936936 kPa	0 kPa	0 kPa	DTF (T09)
Column 46	130,50038 m	81,88975 m	55,518226 kPa	107,0262 kPa	25,122116 kPa	0 kPa	0 kPa	DTF (T09)
Column 47	98,72500 m	78,65518 m	38,040615 kPa	72,953911 kPa	17,028352 kPa	0 kPa	0 kPa	DTF (T09)
Column 48	62,37500 m	74,95493 m	20,390436 kPa	38,856878 kPa	9,0066854 kPa	0 kPa	0 kPa	DTF (T09)
Column 49	42,67436 m	72,94950 m	10,041746 kPa	19,055424 kPa	4,3962642 kPa	0 kPa	0 kPa	DTF (T09)
Column 50	36,88386 m	72,36005 m	4,2590729 kPa	8,0758567 kPa	1,8615698 kPa	0 kPa	0 kPa	DTF (T09)

D_29 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

```
D 29 (con falda)
Kind: SLOPE/W
Analysis Type: Morgenstern-Price
Settings
     Side Function
           Intercolumn force function option: Half-Sine
     PWP Conditions from: Piezometric Surfaces
     Apply Phreatic Correction: No
     Use Staged Rapid Drawdown: No
     Limit State Design Approach: Back Analisys
     Unit Weight of Water: 9,807 kN/m<sup>3</sup>
Slip Surface
     Direction of movement: Right to Left
     Use Passive Mode: No
     Slip Surface Option: Fully-Specified
     Critical slip surfaces saved: 1
     Optimize Critical Slip Surface Location: No
     Tension Crack Option: (none)
Distribution
     ODF Calculation Option: Constant
Convergence
     Geometry Settings
           Minimum Slip Surface Depth: 0,1 m
           Minimum Slip Surface Volume: 1 m<sup>3</sup>
           Number of Columns: 30
     Overdesign Factor Convergence Settings
           Maximum Number of Iterations: 100
           Tolerable difference in ODF: 0,001
     Under-Relaxation Criteria
           Initial Rate: 1
```
Minimum Rate: 0,1 Rate Reduction Factor: 0,65 Reduction Frequency (iterations): 50 Solution Settings Search Method: Root Finder Tolerable difference between starting and converged ODF: 3 Maximum iterations to calculate converged lambda: 20 Max Absolute Lambda: 2

Materials

ALF

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 18 kN/m³ Effective Cohesion: 5 kPa Effective Friction Angle: 22 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

Strada

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 °

DTF (T10)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 16 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

уз	pecified Slip	Junale I
	Х	Y
	5,782 m	21,3201 m
	17,891 m	20,80362 m
	18,61 m	20,81857 m
	30 m	21,05554 m
	64,44 m	26,30801 m
	70,83 m	26,78428 m
	86,36094 m	27,94186 m
	120,531 m	31,50254 m
	154,26668 m	37,02998 m
	166,29601 m	40,6728 m
	176,622 m	45,29765 m

Fully Specified Slip Surface 1

Slip Surface Limits

Left Coordinate: (0; 21) m Right Coordinate: (187,83; 48) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	21 m
Coordinate 2	5,782 m	21,3201 m
Coordinate 3	7,39947 m	21,40483 m
Coordinate 4	11,91686 m	22,00716 m
Coordinate 5	13,73172 m	22,00716 m
Coordinate 6	16,89843 m	22,57846 m
Coordinate 7	30,56994 m	25,15504 m
Coordinate 8	35,56082 m	26,00716 m
Coordinate 9	45,33207 m	27,76614 m
Coordinate 10	46,74058 m	28,00716 m
Coordinate 11	47,32386 m	28,0484 m
Coordinate 12	55,37676 m	28,91147 m
Coordinate 13	60 m	29,39031 m
Coordinate 14	83 m	30 m
Coordinate 15	154,65 m	40 m
Coordinate 16	176,622 m	45,29765 m
Coordinate 17	187,83 m	48 m

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: D_29 (con falda)

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	187,83 m	48 m
Point 2	176,622 m	45,29765 m
Point 3	166,29601 m	40,6728 m
Point 4	154,26668 m	37,02998 m
Point 5	120,531 m	31,50254 m
Point 6	86,36094 m	27,94186 m
Point 7	70,83 m	26,78428 m
Point 8	64,44 m	21,00801 m
Point 9	51,87264 m	15,6473 m
Point 10	31,3461 m	9,99599 m
Point 11	0 m	7,22583 m
Point 12	64,44 m	26,30801 m
Point 13	30 m	21,05554 m
Point 14	18,61 m	20,81857 m
Point 15	12,56736 m	16,25633 m
Point 16	7,24204 m	14,22903 m
Point 17	0 m	13 m
Point 18	17,891 m	20,80362 m
Point 19	5,782 m	21,3201 m
Point 20	0 m	21 m
Point 21	154,65 m	40 m
Point 22	83 m	30 m
Point 23	60 m	29,39031 m
Point 24	55,37676 m	28,91147 m
Point 25	47,32386 m	28,0484 m
Point 26	46,74058 m	28,00716 m
Point 27	45,33207 m	27,76614 m
Point 28	7,39947 m	21,40483 m
Point 29	9,249 m	23,00813 m
Point 30	11,249 m	23,08813 m
Point 31	18,749 m	28,08813 m
Point 32	20,749 m	28,16813 m
Point 33	20,75025 m	28,11813 m
Point 34	30,5 m	28,36188 m
Point 35	33,20571 m	28,36696 m

Point 36	43,07521 m	28,0191 m
Point 37	43,07912 m	28,07919 m
Point 38	44,83904 m	28,00885 m
Point 39	50,1566 m	24,129638 m
Point 40	0 m	-0,009772 m
Point 41	187,83 m	-0,009772 m
Point 42	46,53002 m	26,863182 m
Point 43	38,75203 m	26,863182 m
Point 44	36,28458 m	25,075366 m
Point 45	18,56383 m	25,075366 m
Point 46	13,08602 m	21,418447 m

Regions

	Material	Points	Area
Region 1	AM	1;2;3;4;5;6;7;8;9;10;11;40;41	4.948,6 m ²
Region 2	ALF	11;10;9;8;7;12;39;13;14;15;16;17	599,36 m²
Region 3	ALG	14;18;19;20;17;16;15	100,56 m²
Region 4	DTF (T10)	28;19;18;13;39;12;6;5;4;3;2;21;22;23;24;25;26;27;42;43;44;45;46	514,36 m ²
Region 5	Strada	27;38;37;36;35;34;33;32;31;30;29;28;46;45;44;43;42	95,162 m ²

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 1,40 Degree of Utilization: 0,71 Volume: 609,5256 m³ Weight: 11.866,472 kN Resisting Moment: 50.084,447 kN·m Activating Moment: 35.796,109 kN·m Resisting Force: 1.938,7313 kN Activating Force: 1.385,7886 kN Slip Rank: 1 of 1 slip surfaces Exit: (176,622; 45,29765) m Entry: (5,782; 21,3201) m Radius: 66,426911 m Center: (88,678047; 51,292037) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Suction Strength	Base Material
Column	174,04050	44,141437	5,2348772	9,6794333	1,274456	0 kPa	0 kPa	DTF
1	m	m	кра	кра	кра			(110)
Column 2	168,87751 m	41,829012 m	15,704631 kPa	28,84115 kPa	3,766836 kPa	0 kPa	0 kPa	DTF (T10)
Column 3	163,38451 m	39,791115 m	22,701779 kPa	42,132196 kPa	5,5715826 kPa	0 kPa	0 kPa	DTF (T10)
Column 4	157,56150 m	38,027745 m	26,226319 kPa	48,410798 kPa	6,3612971 kPa	0 kPa	0 kPa	DTF (T10)
Column 5	154,45834 m	37,088020 m	28,295455 kPa	52,095722 kPa	6,8246167 kPa	0 kPa	0 kPa	DTF (T10)

Column 145,83276 35,648120 80,61005 57,483117 7,705261 0 kPa 0 kPa 0 TF Column 140,2105 34,726880 31,99128 S9,55962 8,0293969 kPa 0 kPa 0 kPa 0 LPa 0 LPa Solumn 134,58753 33,80564 33,28755 62,4125 3,56729 0 kPa 0 kPa 0 kPa 0 LPa 0 LP	Column 6	151,45537 m	36,569360 m	29,271683 kPa	55,024739 kPa	7,3845701 kPa	0 kPa	0 kPa	DTF (T10)
Column 8 140,21015 34,726880 31,949128 \$9,950962 8,0293969 0 0 DTF Column 134,58753 33,805640 33,26756 62,43125 8,365738 0 kPa 0 <td>Column 7</td> <td>145,83276 m</td> <td>35,648120 m</td> <td>30,610405 kPa</td> <td>57,483117 kPa</td> <td>7,7056261 kPa</td> <td>0 kPa</td> <td>0 kPa</td> <td>DTF (T10)</td>	Column 7	145,83276 m	35,648120 m	30,610405 kPa	57,483117 kPa	7,7056261 kPa	0 kPa	0 kPa	DTF (T10)
Column 134,58753 33,805640 33,28785 62,2431259 8,3567383 O kPa O kPa O FF 10 m m kPa kPa kPa kPa O kPa O kPa O kPa O kPa O FF 10 m m kPa kPa kPa VA O kPa O kPa DTF 11 m m kPa kPa kPa VA O kPa DTF 12 m m kPa kPa kPa VA O kPa DTF 13 m m kPa kPa kPa VA VA <td>Column 8</td> <td>140,21015 m</td> <td>34,726880 m</td> <td>31,949128 kPa</td> <td>59,950962 kPa</td> <td>8,0293969 kPa</td> <td>0 kPa</td> <td>0 kPa</td> <td>DTF (T10)</td>	Column 8	140,21015 m	34,726880 m	31,949128 kPa	59,950962 kPa	8,0293969 kPa	0 kPa	0 kPa	DTF (T10)
2 m m kPa	Column	134,58753	33,805640	33,28785	62,431259	8,3567383	0 kPa	0 kPa	DTF
Lot Im Res	Column	128,96492	32,884400	34,626572	64,926938	8,6884902	0 kPa	0 kPa	DTF (T10)
11 m m krad krad <td>Column</td> <td>123,34231</td> <td>31,963160</td> <td>35,965294</td> <td>67,440809</td> <td>9,0254585</td> <td>0 kPa</td> <td>0 kPa</td> <td>DTF (T10)</td>	Column	123,34231	31,963160	35,965294	67,440809	9,0254585	0 kPa	0 kPa	DTF (T10)
12 11<	Column	117,68349	31,205817	35,647136	67,831764	9,2287935	0 kPa	0 kPa	DTF (T10)
L3 III III Kra	Column	111,98848	30,612370	33,672097	64,136664	8,7355739	0 kPa	0 kPa	DTF
14 m m KPa	Column	106,29348	30,018923	31,697058	60,448598	8,2443714	0 kPa	0 kPa	DTF
15 m m kPa kPa kPa kPa (110) Column 94,90346 28,332030 27,74698 53,088149 7,2664632 0 kPa 0 k	Column	m 100,59847	m 29,425477	кРа 29,722019	кра 56,766237	кра 7,7548048	0 kPa	0 kPa	DTF
16 m m kPa kPa kPa kPa c C <thc< td=""><td>15 Column</td><td>m 94,90346</td><td>m 28,832030</td><td>kPa 27,74698</td><td>kPa 53,088149</td><td>kPa 7,2664632</td><td>0 kPa</td><td>0 kPa</td><td>(T10) DTF</td></thc<>	15 Column	m 94,90346	m 28,832030	kPa 27,74698	kPa 53,088149	kPa 7,2664632	0 kPa	0 kPa	(T10) DTF
17 m m kPa kPa kPa kPa kPa kPa kPa (T10) Column 84,68047 27,816608 23,712645 45,914941 6,366406 0 kPa 0 kPa DTF (T10) Column 79,95750 27,464587 24,073844 46,695854 6,4867569 0 kPa 0 kPa DTF (T10) Column 73,87250 27,011049 26,939794 52,327476 7,2798008 0 kPa 0 kPa DTF 20 m m kPa kPa kPa kPa 0 kPa 0 kPa DTF 20 m 67,63500 26,546145 29,877567 58,085195 8,0884073 0 kPa 0 kPa DTF 21 m m kPa kPa kPa kPa kPa 0 kPa 0 kPa DTF 22 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 kPa<	16 Column	m 89,20844	m 28,238583	kPa 25,771941	kPa 49,412817	kPa 6,7789121	0 kPa	0 kPa	(T10) DTF
18 m m kPa kPa kPa kPa kPa kPa OK A	17 Column	m 84,68047	m 27,816608	kPa 23,712645	kPa 45,914941	kPa 6,366406			(T10) DTF
19 m m kPa kPa kPa kPa orka orka orka (T10) Column 73,87250 27,011049 26,939794 kPa 0 kPa 0 kPa 0 kPa 0 train(T10) Column 67,63500 25,969436 34,125636 65,128275 8,8898638 0 kPa 0 kPa DTF (T10) Column 57,68838 25,278315 37,978339 72,552322 9,9140764 0 kPa 0 kPa DTF 23 m m kPa kPa kPa 0 kPa 0 kPa 0 train(T10) Column 52,76668 24,527703 40,248235 77,004753 10,539762 0 kPa 0 kPa 0 train(T10) Column 48,74023 23,53137 42,038423 80,529911 11,03757 0 kPa 0 kPa	18 Column	m 79,95750	m 27,464587	kPa 24,073844	kPa 46,695854	kPa 6,4867569			(T10) DTF
Column 73,87250 27,911049 26,939794 52,327476 7,2798008 0 kPa 0 kPa DTF 20 m m kPa kPa kPa kPa 0 kP	19	m	m	kPa	kPa	kPa	UKFd	UKFd	(T10)
Column 21 67,63500 m 26,546145 kPa 29,877567 kPa 58,0881958 kPa 8,0884073 kPa 0 kPa 0 kPa DTF (T10) Column 22 62,22000 25,969436 34,125636 34,125636 65,128275 8,8898638 kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 TF (T10) Column 23 57,68838 m 25,278315 37,978339 kPa 72,552832 kPa 9,9140764 kPa 0 kPa 0 kPa 0 kPa 0 TF (T10) Column 23 52,76668 24,527703 40,248235 77,004753 10,539762 kPa 0 kPa 0 kPa 0 PTF (T10) Column 24 48,74023 23,913626 42,038423 42,0038423 80,529911 kPa 11,037257 kPa 0 kPa	20	73,87250 m	27,011049 m	26,939794 kPa	52,327476 kPa	7,2798008 kPa	0 kPa	0 kPa	(T10)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Column 21	67,63500 m	26,546145 m	29,877567 kPa	58,085195 kPa	8,0884073 kPa	0 kPa	0 kPa	DTF (T10)
Column 23 57,68838 m 25,278315 m 37,978339 kPa 72,552832 kPa 9,9140764 kPa 0 kPa 0 kPa DTF (T10) Column 24 52,76668 24,527703 40,248235 kPa 77,004753 10,539762 kPa 0 kPa 0 kPa 0 kPa 0 r 0	Column 22	62,22000 m	25,969436 m	34,125636 kPa	65,128275 kPa	8,8898638 kPa	0 kPa	0 kPa	DTF (T10)
Column 24 52,76668 m 24,527703 m 40,248235 kPa 77,004753 kPa 10,539762 kPa 0 kPa 0 kPa DTF (T10) Column 25 48,74023 m 23,913626 m 42,038423 kPa 80,529911 kPa 11,037257 kPa 0 kPa 0 kPa DTF (T10) Column 25 47,03222 23,653137 m 42,902128 kPa 82,225866 kPa 11,2759 kPa 0 kPa 0 kPa DTF (T10) Column 26 46,63530 23,592602 23,592602 43,116896 kPa 82,646922 kPa 11,335053 kPa 0 kPa 0 kPa DTF (T10) Column 27 45,93104 23,485196 m 42,988389 kPa 83,748273 kPa 11,687709 kPa 0 kPa 0 kPa DTF (T10) Column 28 45,08555 23,356249 m 42,812598 kPa 88,190286 13,011843 kPa 0 kPa 0 kPa DTF (T10) Column 29 43,07717 23,049948 42,270849 97,39191 14,984202 kPa 0 kPa 0 kPa DTF (T10) Column 30 43,07717 23,049948 42,270849 97,39191 15,80571 kPa	Column 23	57,68838 m	25,278315 m	37,978339 kPa	72,552832 kPa	9,9140764 kPa	0 kPa	0 kPa	DTF (T10)
Column 48,74023 23,913626 42,038423 80,529911 11,037257 0 kPa 0 kPa DTF 25 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa DTF 26 m m m kPa kPa kPa kPa 0 kPa 0 kPa DTF 26 m m kPa kPa kPa kPa 0 kPa 0 kPa DTF 26 m 46,63530 23,592602 43,116896 82,646922 11,335053 0 kPa 0 kPa DTF 27 m m m kPa kPa 0 kPa 0 kPa DTF 28 m 42,988389 83,748273 11,687709 0 kPa 0 kPa DTF 29 m m kPa kPa kPa 0 kPa 0 kPa DTF 29 m m kPa kPa 13,011843 0 kPa 0 kPa DTF	Column 24	52,76668 m	24,527703 m	40,248235 kPa	77,004753 kPa	10,539762 kPa	0 kPa	0 kPa	DTF (T10)
Column 47,03222 23,653137 42,902128 82,225866 11,2759 0 kPa 0 kPa DTF 26 m m kPa kPa kPa 0 kPa 0 kPa 0 kPa DTF 26 m 46,63530 23,592602 43,116896 82,646922 11,335053 0 kPa 0 kPa DTF 27 m m kPa kPa kPa kPa 0 kPa 0 kPa DTF 27 m 23,485196 42,988389 83,748273 11,687709 0 kPa 0 kPa DTF 28 m kPa kPa kPa 0 kPa 0 kPa DTF 29 m kPa kPa kPa 0 kPa 0 kPa DTF 29 m m kPa kPa kPa 0 kPa 0 kPa DTF 29 m m kPa kPa 0 kPa	Column 25	48,74023 m	23,913626 m	42,038423 kPa	80,529911 kPa	11,037257 kPa	0 kPa	0 kPa	DTF (T10)
Column 46,63530 23,592602 43,116896 82,646922 11,335053 0 kPa 0 kPa DTF (T10) Column 45,93104 23,485196 42,988389 83,748273 11,687709 0 kPa 0 kPa DTF (T10) Column 45,93104 23,485196 42,988389 83,748273 11,687709 0 kPa 0 kPa DTF (T10) Column 45,08555 23,356249 42,812598 88,190286 13,011843 0 kPa 0 kPa DTF (T10) Column 43,95908 23,184450 42,508739 94,764861 14,984202 0 kPa 0 kPa DTF (T10) Column 43,07717 23,049948 42,270849 97,39191 15,80571 0 kPa 0 kPa DTF (T10) Column 43,07717 23,049948 42,270849 97,39191 15,80571 0 kPa 0 kPa DTF (T10) Column 41,69564 22,839251 41,898194 101,73043 17,156617 0 kPa 0 kPa DTF (T10) Column 39,	Column 26	47,03222 m	23,653137 m	42,902128 kPa	82,225866 kPa	11,2759 kPa	0 kPa	0 kPa	DTF (T10)
Column 45,93104 m 23,485196 m 42,988389 kPa 83,748273 kPa 11,687709 kPa 0 kPa 0 kPa DTF (T10) Column 45,08555 23,356249 m 42,812598 kPa 88,190286 kPa 13,011843 kPa 0 kPa 0 kPa DTF (T10) Column 43,95908 23,184450 42,508739 kPa 94,764861 14,984202 kPa 0 kPa 0 kPa DTF (T10) Column 43,07717 23,049948 42,270849 kPa 97,39191 15,80571 kPa 0 kPa 0 kPa DTF (T10) Column 41,69564 22,839251 41,898194 kPa 101,73043 17,156617 kPa 0 kPa 0 kPa DTF (T10) Column 39,53405 22,509586 41,315121 109,52383 19,558532 kPa 0 kPa 0 kPa DTF (T10)	Column 27	46,63530 m	23,592602 m	43,116896 kPa	82,646922 kPa	11,335053 kPa	0 kPa	0 kPa	DTF (T10)
Column 29 45,08555 m 23,356249 m 42,812598 kPa 88,190286 kPa 13,011843 kPa 0 kPa 0 kPa DTF (T10) Column 30 43,95908 m 23,184450 42,508739 kPa 94,764861 14,984202 kPa 0 kPa 0 kPa DTF (T10) Column 30 m m kPa 42,270849 97,39191 15,80571 kPa 0 kPa 0 kPa DTF (T10) Column 31 m m kPa kPa 0 kPa 0 kPa DTF (T10) Column 31 41,69564 22,839251 41,898194 kPa 101,73043 17,156617 kPa 0 kPa 0 kPa DTF (T10) Column 32 39,53405 22,509586 41,315121 109,52383 19,558532 kPa 0 kPa 0 kPa DTF (T10)	Column 28	45,93104 m	23,485196 m	42,988389 kPa	83,748273 kPa	11,687709 kPa	0 kPa	0 kPa	DTF (T10)
Column 30 43,95908 m 23,184450 m 42,508739 kPa 94,764861 kPa 14,984202 kPa 0 kPa 0 kPa DTF (T10) Column 31 43,07717 m 23,049948 m 42,270849 kPa 97,39191 kPa 15,80571 kPa 0 kPa 0 kPa DTF (T10) Column 31 41,69564 m 22,839251 m 41,898194 kPa 101,73043 kPa 17,156617 kPa 0 kPa 0 kPa DTF (T10) Column 32 39,53405 m 22,509586 m 41,315121 kPa 109,52383 kPa 19,558532 kPa 0 kPa 0 kPa DTF (T10)	Column 29	45,08555 m	23,356249 m	42,812598 kPa	88,190286 kPa	13,011843 kPa	0 kPa	0 kPa	DTF (T10)
Column 43,07717 23,049948 42,270849 97,39191 15,80571 0 kPa 0 kPa DTF 31 m m kPa kPa kPa 0 kPa 0 kPa DTF Column 41,69564 22,839251 41,898194 101,73043 17,156617 0 kPa 0 kPa DTF 32 m m kPa kPa 101,73043 17,156617 0 kPa 0 kPa DTF 32 m m kPa kPa kPa 0 kPa DTF 33 m kPa kPa 0 kPa 0 kPa DTF	Column 30	43,95908 m	23,184450 m	42,508739 kPa	94,764861 kPa	14,984202 kPa	0 kPa	0 kPa	DTF (T10)
Column 41,69564 22,839251 41,898194 101,73043 17,156617 0 kPa 0 kPa DTF 32 m m kPa kPa kPa 0 kPa 0 kPa DTF Column 39,53405 22,509586 41,315121 109,52383 19,558532 0 kPa 0 kPa DTF 33 m m kPa kPa kPa 10	Column 31	43,07717 m	23,049948 m	42,270849 kPa	97,39191 kPa	15,80571 kPa	0 kPa	0 kPa	DTF (T10)
Column 39,53405 22,509586 41,315121 109,52383 19,558532 0 kPa 0 kPa DTF 33 m m kPa kPa kPa Value 0 kPa 0	Column 32	41,69564 m	22,839251 m	41,898194 kPa	101,73043 kPa	17,156617 kPa	0 kPa	0 kPa	DTF (T10)
	Column 33	39,53405 m	22,509586 m	41,315121 kPa	109,52383 kPa	19,558532 kPa	0 kPa	0 kPa	DTF (T10)

34 m kPa kPa kPa kPa kPa kPa (T10) Column 37,25978 22,162735 40,701653 120,87326 22,988838 0 kPa 0 kPa 0 kPa (T10) Column 35,92270 21,958815 40,340984 127,74728 25,063353 0 kPa 0 kPa 0 kPa 0 TF 36 m m kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 train (T10) Column 34,38327 21,724035 40,032906 133,27962 26,738066 0 kPa 0 kPa 0 train (T10) Column 31,88782 21,343454 39,586898 141,19086 29,134467 0 kPa 0 kPa 0 train (T10) Column 30,53497 21,137129 39,339023 144,96779 30,288562 0 kPa 0 kPa 0 kPa 0 train (T10) Column 30,32359 21,104891 39,264493 145,46961 30,453828 0 kPa 0 kPa 0 train (T10) Column 30,07359 21,066764 39,176346 146,04256 30,643393 <t< th=""></t<>	
S4 In In<	
Column 37,25978 22,162735 40,701653 120,87326 22,988388 0 kPa 0 kPa 0 kPa 0 IF 35 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 IF 36 m m kPa kPa kPa 25,063353 0 kPa 0 kPa 0 kPa 0 TF 36 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 TF 37 m m kPa 40,032906 133,27962 26,738066 0 kPa 0 kPa 0 KPa 0 TF 37 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 tr Column 31,88782 21,343454 39,586898 141,19086 29,134467 0 kPa 0 kPa 0 kPa 0 TF 38 m m m kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 TF 39 m m kPa kPa 144,96779 30	
35 m m kPa	
Column 36 35,92270 m 21,958815 m 40,340984 kPa 127,74728 kPa 25,063353 kPa 0 kPa 0 kPa DTF (T10) Column 37 34,38327 m 21,724035 m 40,032906 kPa 133,27962 kPa 26,738066 kPa 0 kPa 0 kPa 0 kPa DTF (T10) Column 37 31,88782 m 21,343454 m 39,586898 kPa 141,19086 kPa 29,134467 kPa 0 kPa 0 kPa DTF (T10) Column 38 30,53497 m 21,137129 m 39,339023 kPa 144,96779 kPa 30,288562 kPa 0 kPa 0 kPa DTF (T10) Column 39 30,32359 m 21,104891 m 39,264493 kPa 145,46961 kPa 30,453828 kPa 0 kPa 0 kPa DTF (T10) Column 40 30,07359 m 21,066764 m 39,176346 kPa 146,04256 kPa 30,643393 kPa 0 kPa 0 kPa DTF (T10) Column 41 30,07359 m 21,007431 m 35,348213 kPa 149,96863 kPa 32,866877 kPa 0 kPa 0 kPa DTF (T10) Column 42 20,74963 20,911214 m 27,743842 kPa 148,	
36 m m kPa kPa kPa CNPA ONPA	
Column 34,38327 21,724035 40,032906 133,27962 26,738066 0 kPa 0 kPa DTF 37 m m kPa kPa kPa kPa 0 kP	
37 m m kPa kPa kPa kPa kPa o kPa 0 kPa <	
Sy In In<	
Column 51,88782 21,343434 55,588898 141,19086 29,134467 0 kPa 0 kPa 0 kPa 0 (T10) 38 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 (T10) Column 30,53497 21,137129 39,339023 144,96779 30,288562 0 kPa 0 kPa DTF 39 m m kPa kPa kPa 0 kPa 0 kPa DTF 40 m m kPa stpace kPa 0 kPa 0 kPa DTF 40 m m kPa 39,264493 145,46961 30,453828 0 kPa 0 kPa DTF 40 m m kPa kPa 146,04256 30,453828 0 kPa 0 kPa DTF 41 m m stpace kPa 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m kPa kPa 146,04256 30,643393 0 kPa 0 kPa DTF 42 m	
38 m m kPa state 0 kPa 0 kPa DTF (T10) Column 39 30,32359 m 21,104891 m 39,264493 kPa 145,46961 kPa 30,453828 kPa 0 kPa 0 kPa DTF (T10) Column 40 30,07359 m 21,066764 m 39,176346 kPa 146,04256 kPa 30,643393 kPa 0 kPa 0 kPa DTF (T10) Column 41 30,07359 m 21,007431 35,348213 kPa 149,96863 kPa 32,866877 kPa 0 kPa 0 kPa DTF (T10) Column 42 27,68756 21,007431 35,348213 kPa 149,96863 32,866877 kPa 0 kPa 0 kPa DTF (T10) Column 43 23,06269 20,911214 m 27,743842 m 148,7717 kPa 34,704181 kPa 0 kPa 0 kPa DTF (T10) Column 43 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF	
Column 30,53497 21,137129 39,339023 144,96779 30,288562 0 kPa 0 kPa DTF 39 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 triangle 40 m 30,32359 21,104891 39,264493 145,46961 30,453828 0 kPa 0 kPa 0 kPa 0 TF 40 m m kPa kPa 146,04256 30,453828 0 kPa 0 kPa 0 kPa 0 triangle 40 m m ga 39,176346 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m kPa kPa kPa 0 kPa 0 kPa DTF 41 m m kPa 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m kPa kPa 146,04256 30,643393 0 kPa 0 kPa DTF 42 m m kPa kPa 35,348213 149,96863 32,866877 kPa 0 kP	
39 m m kPa kPa kPa kPa contraction contraction <thcontent< th=""> <thcontraction< th=""> <th co<="" td=""></th></thcontraction<></thcontent<>	
Column 40 30,32359 m 21,104891 m 39,264493 kPa 145,46961 kPa 30,453828 kPa 0 kPa 0 kPa DTF (T10) Column 41 30,07359 m 21,066764 m 39,176346 kPa 146,04256 kPa 30,643393 kPa 0 kPa 0 kPa DTF (T10) Column 41 30,07359 m 21,066764 m 39,176346 kPa 146,04256 kPa 30,643393 kPa 0 kPa 0 kPa DTF (T10) Column 42 27,68756 m 21,007431 m 35,348213 kPa 149,96863 kPa 32,866877 kPa 0 kPa 0 kPa DTF (T10) Column 43 23,06269 m 20,911214 m 27,743842 kPa 148,7717 kPa 34,704181 kPa 0 kPa 0 kPa DTF (T10) Column 43 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF (T10)	
40 m m kPa kPa kPa kPa kPa kPa (T10) Column 30,07359 21,066764 39,176346 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m m kPa 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m kPa kPa 30,643393 0 kPa 0 kPa DTF 42 m m kPa kPa 149,96863 32,866877 0 kPa 0 kPa DTF 42 m m kPa 27,743842 148,7717 34,704181 0 kPa 0 kPa DTF 43 m m kPa 23,06269 20,911214 27,743842 148,7717 34,704181 0 kPa 0 kPa DTF 43 m m kPa kPa 0 kPa 0 kPa DTF (T10) Column 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa 0 KPa 44 m <	
Column 30,07359 21,066764 39,176346 146,04256 30,643393 0 kPa 0 kPa DTF 41 m m kPa kPa skpa skpa 0 kPa 0 kPa DTF 41 m m state kPa state state 0 kPa 0 kPa DTF 41 m m state kPa state state state 0 kPa	
Column 30,07333 21,000704 35,170340 140,04230 30,0433333 0 kPa 0 kPa 0 kPa 0 TF 41 m m kPa kPa kPa 0 kPa 0 kPa 0 kPa 0 kPa 0 trained tra	
41 III IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIIII IIIIII IIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Column 27,68756 21,007431 35,348213 149,96863 32,866877 0 kPa 0 kPa DTF 42 m m kPa kPa kPa 0 kPa 0 kPa DTF 42 m 23,06269 20,911214 27,743842 148,7717 34,704181 0 kPa 0 kPa DTF 43 m m kPa kPa kPa 0 kPa 0 kPa DTF Column 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF 44 m m kPa kPa kPa kPa 0 kPa 0 kPa 0 kPa	
42 m m kPa kPa kPa kPa china china china china (T10) Column 23,06269 20,911214 27,743842 148,7717 34,704181 0 kPa 0 kPa DTF 43 m m kPa kPa kPa 0 kPa 0 kPa DTF Column 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF 44 m m kPa kPa kPa kPa (T10)	
Column 23,06269 20,911214 27,743842 148,7717 34,704181 0 kPa 0 kPa DTF (T10) 43 m 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF (T10) 44 m m kPa kPa kPa (T10)	
43 m m kPa kPa kPa o kPa o kPa o kPa (T10) Column 20,74963 20,863092 23,940629 148,69675 35,773242 o kPa o kPa DTF 44 m m kPa kPa kPa o kPa 0 kPa (T10)	
Column 20,74963 20,863092 23,940629 148,69675 35,773242 0 kPa 0 kPa DTF 44 m m kPa kPa (T10)	
44 m kP2	
44 III III Kra Kra Kra (110) Column 40.74000 20.042275 22.205200 26.227005 27.027005 DTF	
Column 19,74900 20,842275 22,295369 148,63709 36,227905 0 kPa 0 kPa 0 kPa	
45 m m kPa kPa kPa in (110)	
Column 18,67950 20,820024 20,536862 147,01891 36,268144 Okpa DTF	
46 m m kPa kPa kPa OKPa OKPa (T10)	
Column 18,58692 20,818098 20,384631 145,68168 35,92835	
47 m m kPa kPa kPa 0 kPa 0 kPa (T10)	
Column 19.22742 20.910610 10.702520 141.16692 24.902249 DTE	
Column 16,22742 20,810619 19,795529 141,16688 54,605248 0 kPa 0 kPa (T10)	
40 III III KPA KPA KPA (III)	
Column 17,39472 20,824788 18,115527 131,99675 32,654916 0 kPa 0 kPa	
49 m m kPa kPa kPa kPa Onica (T10)	
Column 15,47688 20,906589 13,88094 105,47964 26,265506 o kpc o kpc DTF	
50 m m kPa kPa kPa 0 kPa 0 kPa (T10)	
Column 13 89352 20 974123 10 417263 83 645474 20 997852 DTE	
51 m m kPa kPa kPa kPa 0 kPa 0 kPa (T10)	
SI III IIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
Column 13,40887 20,994794 9,9282697 76,971104 19,224224 0 kPa 0 kPa (T40)	
52 m m KPa KPa KPa (110)	
Column 12,50144 21,033499 9,5486974 63,304142 15,414126 DTF	
53 m m kPa kPa kPa OKFa OKFa (T10)	
Column 11.58293 21.072675 8.7278353 48.840641 11.502162 and DTF	
54 m m kPa kPa kPa 0 kPa 0 kPa (T10)	
Column 10.24000 21.120571 6.425581 41.952461 10.158404	
$\begin{bmatrix} column \\ 10,24500 \\ m \end{bmatrix} \begin{bmatrix} 21,125571 \\ 0,425501 \\ kD_2 \end{bmatrix} \begin{bmatrix} 41,052401 \\ 10,150454 \\ kD_2 \end{bmatrix} \begin{bmatrix} 0 & kPa \\ 0 & kPa \end{bmatrix} \begin{bmatrix} 0 & kPa \\ 710 \end{bmatrix}$	
JJ III IIII IIIII IIIII IIII IIIIII	
Column 8,32423 21,21166/ 3,1035937 21,51203 5,2785342 0 kPa 0 kPa DTF	
56 m m kPa kPa kPa on (T10)	
Column 6,59073 21,285605 0,75376237 1,4676199 0,20469534 Okpa	
57 m m kPa kPa kPa OKPA OKPA (T10)	

D_29bis (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

Analysis Settings

```
D 29bis (con falda)
     Kind: SLOPE/W
     Analysis Type: Morgenstern-Price
     Settings
          Side Function
               Intercolumn force function option: Half-Sine
          PWP Conditions from: Piezometric Surfaces
          Apply Phreatic Correction: No
          Use Staged Rapid Drawdown: No
          Limit State Design Approach: Back Analisys
          Unit Weight of Water: 9,807 kN/m<sup>3</sup>
     Slip Surface
          Direction of movement: Left to Right
          Use Passive Mode: No
          Slip Surface Option: Fully-Specified
          Critical slip surfaces saved: 1
          Optimize Critical Slip Surface Location: No
          Tension Crack Option: (none)
     Distribution
          ODF Calculation Option: Constant
     Convergence
          Geometry Settings
               Minimum Slip Surface Depth: 0,1 m
               Minimum Slip Surface Volume: 1 m<sup>3</sup>
               Number of Columns: 30
          Overdesign Factor Convergence Settings
               Maximum Number of Iterations: 100
                Tolerable difference in ODF: 0,001
          Under-Relaxation Criteria
               Initial Rate: 1
```

Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

DTF (T10bis)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 26 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
20 m	45,737552 m
34,8723 m	39,206288 m
45,91922 m	34,586065 m
54,87887 m	32,057178 m
60,7431 m	31,565702 m
74,74621 m	30,277172 m
86 m	30,382798 m

Slip Surface Limits

Left Coordinate: (0; 50) m Right Coordinate: (120,03332; 27,07) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	50 m
Coordinate 2	2,14345 m	49,600006 m
Coordinate 3	4,2869 m	49,510002 m
Coordinate 4	6,43036 m	48,850006 m
Coordinate 5	8,57381 m	48,110001 m
Coordinate 6	10,71726 m	47,25 m
Coordinate 7	12.86071 m	46.760002 m

Coordinate 20	38,58214 m	41,779999 m
Coordinate 21	40,72559 m	41,620003 m
Coordinate 22	42,86904 m	41,520004 m
Coordinate 23	45,01249 m	41,360001 m
Coordinate 24	47,15595 m	41,310005 m
Coordinate 25	49,2994 m	41,310005 m
Coordinate 26	51,44285 m	40,450005 m
Coordinate 27	53,5863 m	39,490005 m
Coordinate 28	55,72975 m	38,980003 m
Coordinate 29	57,87321 m	37,790001 m
Coordinate 30	60,01666 m	37,610001 m
Coordinate 31	62,16011 m	37,440002 m
Coordinate 32	64,30356 m	36,82 m
Coordinate 33	66,44702 m	35,75 m
Coordinate 34	68,59047 m	35,450005 m
Coordinate 35	70,73392 m	34 m
Coordinate 36	72,87737 m	33,260002 m
Coordinate 37	75,02082 m	32,82 m
Coordinate 38	77,16428 m	32,090004 m
Coordinate 39	79,30773 m	31,730003 m
Coordinate 40	81,45118 m	31,190002 m
Coordinate 41	83,59463 m	30,889999 m
Coordinate 42	86 m	30,382798 m
Coordinate 43	87,88154 m	29,900002 m
Coordinate 44	92,16844 m	29,279999 m
Coordinate 45	96,45534 m	28,190002 m
Coordinate 46	98,5988 m	27,740005 m
Coordinate 47	102,8857 m	27,470001 m
Coordinate 48	105,02915 m	27,220001 m
Coordinate 49	120,03332 m	27,07 m

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: D_29bis (con falda)

Settings

View: 2D Element Thickness: 1 m

Point 11	15,00416 m	46,550003 m
Point 12	12,86071 m	46,760002 m
Point 13	10,71726 m	47,25 m
Point 14	8,57381 m	48,110001 m
Point 15	6,43036 m	48,850006 m
Point 16	4,2869 m	49,510002 m
Point 17	2,14345 m	49,600006 m
Point 18	0 m	50 m
Point 19	0 m	0 m
Point 20	120,03332 m	0 m
Point 21	64,30356 m	36,82 m
Point 22	62,16011 m	37,440002 m
Point 23	60,01666 m	37,610001 m
Point 24	57,87321 m	37,790001 m
Point 25	55,72975 m	38,9 <mark>80003 m</mark>
Point 26	53,5863 m	39,490005 m
Point 27	51,44285 m	40,450005 m
Point 28	49,2994 m	41,310005 m
Point 29	47,15595 m	41,310005 m
Point 30	45,01249 m	41,360001 m
Point 31	42,86904 m	41,520004 m
Point 32	40,72559 m	41,620003 m
Point 33	38,58214 m	41,779999 m
Point 34	36,43869 m	42,130005 m
Point 35	34,29523 m	42,520004 m
Point 36	32,15178 m	43,120003 m
Point 37	30,00833 m	43,709999 m
Point 38	27,86488 m	44,360001 m
Point 39	25,72143 m	44,360001 m
Point 40	23,57797 m	44,800003 m
Point 41	21,43452 m	45,510002 m
Point 42	74,74621 m	30,277172 m
Point 43	86 m	30,382798 m
Point 44	83,59463 m	30,889999 m
Point 45	81,45118 m	31,190002 m
Point 46	79,30773 m	31,730003 m
Point 47	77,16428 m	32,090004 m
Point 48	75,02082 m	32,82 m
Point 49	72,87737 m	33,260002 m
Point 50	70,73392 m	34 m
Point 51	68,59047 m	35,450005 m
Point 52	66,44702 m	35,75 m
Point 53	120,03332 m	27,07 m
Point 54	105,02915 m	27,220001 m
Point 55	102,8857 m	27,470001 m
Point 56	98,5988 m	27,740005 m
Point 57	96,45534 m	28,190002 m
Point 58	92,16844 m	29,279999 m
Point 59	87,88154 m	29,900002 m

Regions

	Material	Points
Region	A N A	1.7.7.4.5.2.7.0.0.10.11.17.17.17.17.17.10.10.70

Overdesign Factor: 0,99 Degree of Utilization: 1,01 Volume: 256,07896 m³ Weight: 4.865,5002 kN Resisting Moment: 18.855,313 kN·m Activating Moment: 18.976,444 kN·m Resisting Force: 1.039,4939 kN Activating Force: 1.046,254 kN Slip Rank: 1 of 1 slip surfaces Exit: (86; 30,382798) m Entry: (20; 45,737552) m Radius: 29,656298 m Center: (55,679187; 49,57624) m

	х	Y	PWP	Base Normal Stress	Frictional Strength	Cohesive Strength	Τ
Column 1	20,71726 m	45,422563 m	1,973308 kPa	3,4833265 kPa	0,73648522 kPa	0 kPa	(
Column 2	22,50624 m	44,636919 m	5,0808472 kPa	8,9116051 kPa	1,8683854 kPa	0 kPa	(
Column 3	24,64970 m	43,695607 m	8,6732615 kPa	15,100008 kPa	3,1345338 kPa	0 kPa	(
Column 4	26,79315 m	42,754295 m	15,747156 kPa	27,253573 kPa	5,6120545 kPa	0 kPa	(
Column 5	28,93661 m	41,812986 m	21,791294 kPa	37,458692 kPa	7,6415009 kPa	0 kPa	(
Column 6	31,08006 m	40,871676 m	24,942386 kPa	42,557951 kPa	8,5916851 kPa	0 kPa	(
Column 7	33,22351 m	39,930367 m	28,338668 kPa	48,043047 kPa	9,6104679 kPa	0 kPa	(
Column 8	34,58376 m	39,333000 m	30,740096 kPa	51,933308 kPa	10,33662 kPa	0 kPa	(
Column 9	35,65550 m	38,878727 m	33,282787 kPa	56,486534 kPa	11,317223 kPa	0 kPa	(
Column 10	37,51042 m	38,102933 m	37,777245 kPa	63,932892 kPa	12,756961 kPa	0 kPa	(
Column 11	39,65387 m	37,206464 m	44,068118 kPa	74,409266 kPa	14,798367 kPa	0 kPa	(
Column 12	41,79731 m	36,309995 m	51,5849 kPa	86,984188 kPa	17,265386 kPa	0 kPa	(
Column 13	43,94076 m	35,413527 m	59,101648 kPa	99,588536 kPa	19,746775 kPa	0 kPa	(
Column 14	45,46585 m	34,775679 m	64,468743 kPa	108,626 kPa	21,536932 kPa	0 kPa	(
Column 15	46,53758 m	34,411530 m	67,794797 kPa	120,79945 kPa	25,852095 kPa	0 kPa	(
Column 16	48,22767 m	33,934497 m	72,331608 kPa	129,14338 kPa	27,708951 kPa	0 kPa	(
Column 17	50,37112 m	33,329502 m	74,047783 kPa	132,52791 kPa	28,522662 kPa	0 kPa	(
Column 18	52,51458 m	32,724507 m	71,056598 kPa	127,52821 kPa	27,543046 kPa	0 kPa	(
Column 19	54,23259 m	32,239594 m	69,596722 kPa	125,2513 kPa	27,14455 kPa	0 kPa	(
Column 20	55,30431 m	32,021522 m	69,234555 kPa	137,69021 kPa	33,388052 kPa	0 kPa	(
				+			+-

Column 28	69,66219 m	30,744990 m	39,031983 kPa	77,112802 kPa	18,573256 kPa	0 kPa	(
Column 29	71,80564 m	30,547755 m	30,227585 kPa	59,645881 kPa	14,348262 kPa	0 kPa	(
Column 30	73,81179 m	30,363155 m	26,528246 kPa	52,178875 kPa	12,510648 kPa	0 kPa	(
Column 31	74,88352 m	30,278461 m	25,201292 kPa	51,4798 kPa	12,816885 kPa	0 kPa	(
Column 32	76,09255 m	30,289808 m	21,234053 kPa	43,188499 kPa	10,707899 kPa	0 kPa	(
Column 33	78,23601 m	30,309927 m	15,691954 kPa	31,629767 kPa	7,7733905 kPa	0 kPa	(
Column 34	80,37946 m	30,330045 m	11,081497 kPa	22,118868 kPa	5,3832853 kPa	0 kPa	(
Column 35	82,52290 m	30,350163 m	6,76524 kPa	13,369666 kPa	3,221194 kPa	0 kPa	(
Column 36	84,79731 m	30,371510 m	2,5977633 kPa	5,0831495 kPa	1,2122039 kPa	0 kPa	(

D_39 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

Analysis Settings

```
D 39 (con falda)
     Kind: SLOPE/W
     Analysis Type: Morgenstern-Price
     Settings
          Side Function
                Intercolumn force function option: Half-Sine
          PWP Conditions from: Piezometric Surfaces
          Apply Phreatic Correction: No
          Use Staged Rapid Drawdown: No
          Limit State Design Approach: Back Analisys
          Unit Weight of Water: 9,807 kN/m<sup>3</sup>
     Slip Surface
          Direction of movement: Right to Left
          Use Passive Mode: No
          Slip Surface Option: Fully-Specified
          Critical slip surfaces saved: 1
          Optimize Critical Slip Surface Location: No
          Tension Crack Option: (none)
     Distribution
          ODF Calculation Option: Constant
     Convergence
          Geometry Settings
                Minimum Slip Surface Depth: 0,1 m
                Minimum Slip Surface Volume: 1 m<sup>3</sup>
                Number of Columns: 30
          Overdesign Factor Convergence Settings
                Maximum Number of Iterations: 100
                Tolerable difference in ODF: 0,001
          Under-Relaxation Criteria
                Initial Rate: 1
```

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

Frn (T15)

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 26 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
22,64256 m	15,00999 m
40,77985 m	14,508 m
65,64461 m	13,8198 m
148,47284 m	24,19366 m
191,85178 m	31,57204 m
225,79685 m	41,29608 m
260,64712 m	52,82923 m
294,64484 m	64,67773 m
328,64256 m	76,52622 m

Slip Surface Limits

Left Coordinate: (0; 19,4116) m Right Coordinate: (342,70633; 77,32667) m

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	Х	Y
Coordinate 1	0 m	19,4116 m
Coordinate 2	7,96237 m	18,37384 m
Coordinate 3	13,68879 m	17,48417 m
Coordinate 4	14,67785 m	17,59883 m
Coordinate 5	15,58313 m	17,99853 m
Coordinate 6	18,71533 m	14,86418 m
Coordinate 7	22,29892 m	14,86695 m
Coordinate 8	22,8121 m	15,00999 m
Coordinate 9	26,15483 m	16,15806 m

Coordinate 36	180,12045 m	35,16345 m
Coordinate 37	181,23181 m	35,16459 m
Coordinate 38	190,43247 m	35,37466 m
Coordinate 39	192,57811 m	35,48417 m
Coordinate 40	193,19184 m	35,61503 m
Coordinate 41	201,43889 m	37,48417 m
Coordinate 42	208,55616 m	39,48417 m
Coordinate 43	214,95988 m	41,76875 m
Coordinate 44	221,40258 m	45,48417 m
Coordinate 45	225,14736 m	47,48417 m
Coordinate 46	229,64914 m	49,48417 m
Coordinate 47	232,96123 m	51,48417 m
Coordinate 48	235,25433 m	53,14894 m
Coordinate 49	238,25067 m	55,05417 m
Coordinate 50	241,7594 m	56,41512 m
Coordinate 51	244,93796 m	57,48417 m
Coordinate 52	248,58185 m	58,59531 m
Coordinate 53	251,31752 m	59,48417 m
Coordinate 54	256,84101 m	61,48417 m
Coordinate 55	264,61824 m	63,48417 m
Coordinate 56	272,5302 m	65,48417 m
Coordinate 57	281,42485 m	67,48417 m
Coordinate 58	288,03736 m	69,48417 m
Coordinate 59	295,31526 m	71,31769 m
Coordinate 60	304,204 m	73,81436 m
Coordinate 61	308,71203 m	74,5922 m
Coordinate 62	313,4763 m	74,67398 m
Coordinate 63	316,088 m	76,46784 m
Coordinate 64	328,64256 m	76,52622 m
Coordinate 65	330,50382 m	76,51345 m
Coordinate 66	334,48448 m	75,7541 m
Coordinate 67	338,40666 m	75,81088 m
Coordinate 68	340,34182 m	75,78534 m
Coordinate 69	342,70633 m	77,32667 m

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry Name: D_39 (con falda)

Point 20	272,5302 m	65,48417 m
Point 21	264,61824 m	63,48417 m
Point 22	256,84101 m	61,48417 m
Point 23	251,31752 m	59,48417 m
Point 24	248,58185 m	58,59531 m
Point 25	244,93796 m	57,48417 m
Point 26	241,7594 m	56,41512 m
Point 27	238,25067 m	55,05417 m
Point 28	235,25433 m	53,14894 m
Point 29	232,96123 m	51,48417 m
Point 30	229,64914 m	49,48417 m
Point 31	225,14736 m	47,48417 m
Point 32	221,40258 m	45,48417 m
Point 33	214,95988 m	41,76875 m
Point 34	208,55616 m	39,48417 m
Point 35	201,43889 m	37,48417 m
Point 36	193,19184 m	35,61503 m
Point 37	192,57811 m	35,48417 m
Point 38	190,43247 m	35,37466 m
Point 39	181,23181 m	35,16459 m
Point 40	180,12045 m	35,16345 m
Point 41	168,70616 m	33,7318 m
Point 42	164,83377 m	33,02811 m
Point 43	158,41924 m	31,48417 m
Point 44	150,85815 m	29,48417 m
Point 45	139,377 m	27,48417 m
Point 46	127,89475 m	25,48417 m
Point 47	124,76446 m	25,01525 m
Point 48	115,85187 m	23,48417 m
Point 49	114,81927 m	23,48417 m
Point 50	103,55154 m	21,8557 m
Point 51	100,33998 m	21,48417 m
Point 52	95,4101 m	20,68791 m
Point 53	84,99267 m	18,93094 m
Point 54	76,64264 m	17,48417 m
Point 55	72,2413 m	17,45991 m
Point 56	62,55019 m	17,12017 m
Point 57	60,32372 m	17,16263 m
Point 58	52,90325 m	17,13509 m
Point 59	45,11664 m	17,41496 m
Point 60	42,51612 m	17,45761 m
Point 61	41,04174 m	17,48417 m
Point 62	39,10623 m	17,48417 m
Point 63	37,53189 m	17,43286 m
Point 64	32,83675 m	17,20263 m
Point 65	28,83424 m	16,84621 m
Point 66	27,89495 m	16,5465 m
Point 67	26,15483 m	16,15806 m
Point 68	22,8121 m	15,00999 m
Point 69	22,29892 m	14,86695 m
Point 70	18,71533 m	14,86418 m
Point 71	15,58313 m	17,99853 m
Point 72	14,67785 m	17,59883 m

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 0,96 Degree of Utilization: 1,04 Volume: 1.493,2923 m³ Weight: 28.372,638 kN Resisting Moment: 421.211,37 kN·m Activating Moment: 438.000,16 kN·m Resisting Force: 6.056,0976 kN Activating Force: 6.301,8198 kN Slip Rank: 1 of 1 slip surfaces Exit: (328,64256; 76,52622) m Entry: (22,796786; 15,005721) m Radius: 129,87346 m Center: (166,43859; 91,906345) m

			1	1	1	
	X	Y	PWP	Base Normal Stress	Frictional Strength	Coh
Column 1	322,36528 m	74,338535 m	21,168357 kPa	37,899674 kPa	8,1604088 kPa	0 kF
Column 2	314,78215 m	71,695751 m	38,003683 kPa	67,858519 kPa	14,561176 kPa	0 kF
Column 3	311,09416 m	70,410457 m	41,411357 kPa	73,807468 kPa	15,800639 kPa	0 kF
Column 4	306,45801 m	68,794720 m	53,041744 kPa	94,372124 kPa	20,158173 kPa	0 kF
Column 5	299,75963 m	66,460277 m	59,879069 kPa	106,19951 kPa	22,59199 kPa	0 kF
Column 6	294,98005 m	64,794553 m	63,144205 kPa	111,73913 kPa	23,701329 kPa	0 kF
Column 7	291,34110 m	63,526348 m	66,590831 kPa	117,65079 kPa	24,903605 kPa	0 kF
Column 8	284,73111 m	61,222707 m	71,213163 kPa	125,45578 kPa	26,455891 kPa	0 kF
Column 9	276,97753 m	58,520518 m	78,099539 kPa	137,17821 kPa	28,814593 kPa	0 kF
Column 10	268,57422 m	55,591893 m	87,20656 kPa	152,75446 kPa	31,969847 kPa	0 kF
Column 11	262,63268 m	53,521215 m	92,699163 kPa	162,07631 kPa	33,837497 kPa	0 kF
Column 12	258,74406 m	52,199444 m	95,854772 kPa	168,41167 kPa	35,388364 kPa	0 kF
Column 13	254,07926 m	50,655701 m	96,387791 kPa	169,12783 kPa	35,477688 kPa	0 kF
Column 14	249,94968 m	49,289082 m	95,624705 kPa	167,59084 kPa	35,100231 kPa	0 kF
Column 15	246,75991 m	48,233474 m	96,17005 kPa	168,42883 kPa	35,242962 kPa	0 kF
Column 16	243,34868 m	47,104583 m	96,550526 kPa	168,97761 kPa	35,325049 kPa	0 kF
Column 17	240,00503 m	45,998056 m	95,48673 kPa	166,98833 kPa	34,873659 kPa	0 kF
Column 18	236,75250 m	44,921680 m	90,02703 kPa	157,24928 kPa	32,786481 kPa	0 kF
Column 19	234,10778 m	44,046452 m	81,104901 kPa	141,43084 kPa	29,422926 kPa	0 kF
Column 20	231,30518 m	43,118977 m	72,230447 kPa	125,72319 kPa	26,090155 kPa	0 kF
Column 21	227,72299 m	41,933507 m	65,657243 kPa	114,10328 kPa	23,628712 kPa	0 kF
Column 22	225,47210 m	41,203052 m	63,013817 kPa	111,40001 kPa	23,599524 kPa	0 kF
Column 23	223,27497 m	40,573652 m	57,964448 kPa	102,36688 kPa	21,656515 kPa	0 kF
Column 24	218,18123 m	39,114479 m	44,248996 kPa	77,844264 kPa	16,385507 kPa	0 kF
Column 25	211,75802 m	37,274461 m	32,873056 kPa	57,596832 kPa	12,058591 kPa	0 kF
Column 26	204,99752 m	35,337822 m	30,85623 kPa	54,194722 kPa	11,382943 kPa	0 kF
Column 27	197,31537 m	33,137160 m	33,465796 kPa	59,147512 kPa	12,52581 kPa	0 kF
Column 28	192,88497 m	31,868013 m	36,105322 kPa	64,046892 kPa	13,628014 kPa	0 kF
Column 29	192,21495 m	31,676074 m	37,164224 kPa	65,971892 kPa	14,050439 kPa	0 kF
Column 30	191,14212 m	31,451334 m	38,831265 kPa	72,837261 kPa	16,585832 kPa	0 kF
Column 31	185,83214 m	30,548152 m	46,303489 kPa	87,249179 kPa	19,970547 kPa	0 kF
Column 32	180,67613 m	29,671159 m	53,868485 kPa	101,82404 kPa	23,389487 kPa	0 kF
Column 33	174,41331 m	28,605907 m	57,289726 kPa	108,57999 kPa	25,015933 kPa	0 kF
Column 34	166,76997 m	27,305842 m	59,56883 kPa	113,20635 kPa	26,160769 kPa	0 kF
Column 35	161,62651 m	26,430984 m	57,127306 kPa	108,76484 kPa	25,185306 kPa	0 kF
Column 36	154,63870 m	25,242418 m	51,405859 kPa	98,152697 kPa	22,799956 kPa	0 kF

Column 63	24,48346 m	14,959039 m	6,1292392 kPa	12,02641 kPa	3,6849616 kPa	0 kF
Column 64	22,80444 m	15,005510 m	0,023009174 kPa	0,04975144 kPa	0,016710423 kPa	0 kF

D_40 (con falda)

Report generated using GeoStudio 2023.1.0. Copyright © 2023 Bentley Systems, Incorporated.

File Information

File Version: 11.05 Title: Back analisys_PABOL Created By: Salvator Giuliano Narsete Last Edited By: Salvator Giuliano Narsete Revision Number: 198 Date: 25/03/2024 Time: 17:03:08 Tool Version: 23.1.0.520 File Name: UP62_BackAnalysisDISSESTI(nopendiiindefiniti)_25mar24.gsz Directory: \\dc1\Documenti\Lavori\AQ28_UP62_SS121_PABOL\Lavorazione\02B_GEOTECNICA\frane\Geoslope\ Last Solved Date: 25/03/2024 Last Solved Time: 17:03:13

Project Settings

Unit System: International System of Units (SI)

Analysis Settings

```
D 40 (con falda)
     Kind: SLOPE/W
     Analysis Type: Morgenstern-Price
     Settings
          Side Function
                Intercolumn force function option: Half-Sine
          PWP Conditions from: Piezometric Surfaces
          Apply Phreatic Correction: No
          Use Staged Rapid Drawdown: No
          Limit State Design Approach: Back Analisys
          Unit Weight of Water: 9,807 kN/m<sup>3</sup>
     Slip Surface
          Direction of movement: Right to Left
          Use Passive Mode: No
          Slip Surface Option: Fully-Specified
          Critical slip surfaces saved: 1
          Optimize Critical Slip Surface Location: No
          Tension Crack Option: (none)
     Distribution
          ODF Calculation Option: Constant
     Convergence
          Geometry Settings
                Minimum Slip Surface Depth: 0,1 m
                Minimum Slip Surface Volume: 1 m<sup>3</sup>
                Number of Columns: 30
          Overdesign Factor Convergence Settings
                Maximum Number of Iterations: 100
                Tolerable difference in ODF: 0,001
          Under-Relaxation Criteria
                Initial Rate: 1
```

Materials

ALG

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 21 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 32 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

AM

Slope Stability Material Model: Undrained (Phi=0) Unit Weight: 20 kN/m³ Total Cohesion: 150 kPa Pore Water Pressure Piezometric Surface: 1

Strada

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 20 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 35 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Frn (T15)BIS

Slope Stability Material Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Effective Cohesion: 0 kPa Effective Friction Angle: 26 ° Phi-B: 0 ° Pore Water Pressure Piezometric Surface: 1

Fully Specified Slip Surfaces

Fully Specified Slip Surface 1

Х	Y
25,37728 m	20,673162 m
26,67158 m	20,60219 m
31,99103 m	20,71745 m
36,45741 m	20,81423 m
40,62837 m	21,49562 m
46,13209 m	21,49562 m
47,14896 m	22,631687 m
56,96174 m	24,669351 m
99,4156 m	38,54824 m

Slip Surface Limits

Piezometric Surfaces

Piezometric Surface 1

Coordinates

	X	Y
Coordinate 1	0 m	15,04759 m
Coordinate 2	2,01742 m	15,6576 m
Coordinate 3	4,03484 m	16,04759 m
Coordinate 4	6,05226 m	16,2776 m
Coordinate 5	8,06968 m	16,59761 m
Coordinate 6	10,08709 m	17,13758 m
Coordinate 7	12,10451 m	17,66758 m
Coordinate 8	14,12193 m	17,98759 m
Coordinate 9	16,13935 m	18,0576 m
Coordinate 10	18,15677 m	18,39759 m
Coordinate 11	19,82054 m	18,785199 m
Coordinate 12	20,17419 m	18,86759 m
Coordinate 13	22,19161 m	19,3776 m
Coordinate 14	24,20903 m	19,94758 m
Coordinate 15	26,22644 m	20,4676 m
Coordinate 16	26,67158 m	20,60219 m
Coordinate 17	28,24386 m	21,07759 m
Coordinate 18	30,26128 m	21,35758 m
Coordinate 19	45,98884 m	21,576544 m
Coordinate 20	46,01875 m	25,214158 m
Coordinate 21	48,41805 m	26,2776 m
Coordinate 22	52,45289 m	27,45759 m
Coordinate 23	54,47031 m	28,00761 m
Coordinate 24	58,50515 m	29,09761 m
Coordinate 25	62,53998 m	30,0276 m
Coordinate 26	66,57482 m	30,88758 m
Coordinate 27	72,62708 m	31,91758 m
Coordinate 28	74,6445 m	32,41758 m
Coordinate 29	76,66192 m	32,9676 m
Coordinate 30	78,67933 m	32,9676 m
Coordinate 31	80,69675 m	33,50761 m
Coordinate 32	84,73159 m	34,7176 m
Coordinate 33	86,74901 m	35,14759 m
Coordinate 34	90,78385 m	36,39759 m
Coordinate 35	94,81869 m	37,6276 m
Coordinate 36	98,85352 m	38,51759 m
Coordinate 37	99,4156 m	38,54824 m
Coordinate 38	105,27158 m	40,46266 m
Coordinate 39	111,92054 m	40,46266 m

Surcharge Loads

Surcharge Load 1 Surcharge (Unit Weight): 10 kN/m³ Direction: Vertical

Design Factor Set: Back_Analisys

Permanent Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Variable Point Loads & Surcharge Loads: Favorable = 1, Unfavorable = 1 Soil Unit Weight: Favorable = 1, Unfavorable = 1 Effective Cohesion: 1 Effective Coefficient of Friction: 1 Undrained Strength: 1 Shear Strength (Other Models): 1 Pullout Resistance: 1 Shear Force: 1 Tensile Strength: 1 Compressive Strength: 1 Seismic Coefficients: 1 Earth Resistance: 1

Geometry

Name: D_40 (con falda)

Settings

View: 2D Element Thickness: 1 m

Points

	X	Y
Point 1	31,99103 m	20,71745 m
Point 2	26,67158 m	20,60219 m
Point 3	26,22644 m	20,4676 m
Point 4	24,20903 m	19,94758 m
Point 5	22,19161 m	19,3776 m
Point 6	20,17419 m	18,86759 m
Point 7	18,15677 m	18,39759 m
Point 8	16,13935 m	18,0576 m
Point 9	14,12193 m	17,98759 m
Point 10	12,10451 m	17,66758 m
Point 11	10,08709 m	17,13758 m
Point 12	8,06968 m	16,59761 m
Point 13	6,05226 m	16,2776 m
Point 14	4,03484 m	16,04759 m
Point 15	2,01742 m	15,6576 m
Point 16	0 m	15,04759 m
Point 17	0 m	6,04759 m
Point 18	17,90161 m	11,9561 m
Point 19	24,33339 m	14,89775 m
Point 20	105,27158 m	40,46266 m
Point 21	98,85352 m	38,51759 m
Point 22	94,81869 m	37,6276 m
Point 23	90,78385 m	36,39759 m
Point 24	86,74901 m	35,14759 m
Point 25	84,73159 m	34,7176 m
Point 26	80,69675 m	33,50761 m
Point 27	78,67933 m	32,9676 m
Point 28	76,66192 m	32,9676 m
Point 29	74,6445 m	32,41758 m

Point 36	48,41805 m	26,2776 m		
Point 37	30,26128 m	21,35758 m		
Point 38	28,24386 m	21,07759 m		
Point 39	36,45741 m	20,81423 m		
Point 40	111,92054 m	40,46266 m		
Point 41	99,4156 m	38,54824 m		
Point 42	56,96174 m	24,669351 m		
Point 43	17,60683 m	11,803563 m		
Point 44	45,87054 m	25,343154 m		
Point 45	45,87054 m	21,692366 m		
Point 46	45,87054 m	22,366218 m		
Point 47	41,8327 m	21,692366 m		
Point 48	33,19763 m	21,692366 m		
Point 49	44,85344 m	25,343154 m		
Point 50	44,85344 m	23,148232 m		
Point 51	29,36237 m	23,148232 m		
Point 52	40,62837 m	21,49562 m		
Point 53	46,13209 m	21,49562 m		
Point 54	47,14896 m	22,631687 m		
Point 55	0 m	0,0256 m		
Point 56	111,92054 m	0,0256 m		

Regions

	Material	Points
Region 1	ALG	1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;43;18;19
Region 2	Frn (T15)BIS	53;54;42;41;21;22;23;24;25;26;27;28;29;30;31;32;33;34;35;36;44;46;45;47;48;37;38;2;1;39
Region 3	AM	20;41;42;54;53;52;39;1;19;18;43;17;55;56;40
Region 4	Strada	44;49;50;51;4;3;2;38;37;48;47;45;46

Slip Results

Slip Surfaces Analysed: 1 of 1 converged

Current Slip Surface

Slip Surface: 1 Overdesign Factor: 1,40 Degree of Utilization: 0,71 Volume: 158,37246 m³ Weight: 3.102,9498 kN Resisting Moment: 18.329,004 kN·m Activating Moment: 13.096,26 kN·m Resisting Force: 944,82806 kN Activating Force: 675,20907 kN Slip Rank: 1 of 1 slip surfaces Exit: (99,4156; 38,54824) m Entry: (25,37728; 20,673162) m Radius: 32,630117 m Center: (59,159754; 43,017009) m

Column 3	95,82740 m	37,375196 m	4,6573633 kPa	8,4858065 kPa	1,8672565 kPa	0 kPa	0 kPa
Column 4	93,80998 m	36,715667 m	5,9276453 kPa	10,735205 kPa	2,3448036 kPa	0 kPa	0 kPa
Column 5	91,79256 m	36,056139 m	6,3642914 kPa	11,450873 kPa	2,4808916 kPa	0 kPa	0 kPa
Column 6	89,77514 m	35,396610 m	6,7519269 kPa	12,073745 kPa	2,5956242 kPa	0 kPa	0 kPa
Column 7	87,75772 m	34,737081 m	7,090552 kPa	12,606763 kPa	2,6904358 kPa	0 kPa	0 kPa
Column 8	85,74030 m	34,077552 m	8,3854086 kPa	14,857053 kPa	3,1564318 kPa	0 kPa	0 kPa
Column 9	83,72288 m	33,418023 m	9,7783597 kPa	17,270201 kPa	3,6540153 kPa	0 kPa	0 kPa
Column 10	81,70546 m	32,758494 m	10,313174 kPa	18,142023 kPa	3,818385 kPa	0 kPa	0 kPa
Column 11	79,68804 m	32,098965 m	11,166642 kPa	19,587379 kPa	4,107068 kPa	0 kPa	0 kPa
Column 12	77,67063 m	31,439438 m	14,986687 kPa	26,305199 kPa	5,5204072 kPa	0 kPa	0 kPa
Column 13	75,65321 m	30,779910 m	18,757648 kPa	32,912016 kPa	6,9035465 kPa	0 kPa	0 kPa
Column 14	73,63579 m	30,120382 m	20,076875 kPa	35,171565 kPa	7,362172 kPa	0 kPa	0 kPa
Column 15	71,11402 m	29,295970 m	23,184822 kPa	40,603716 kPa	8,4957618 kPa	0 kPa	0 kPa
Column 16	68,08788 m	28,306677 m	27,836218 kPa	48,794119 kPa	10,221851 kPa	0 kPa	0 kPa
Column 17	65,56611 m	27,482266 m	31,287459 kPa	54,926544 kPa	11,529552 kPa	0 kPa	0 kPa
Column 18	63,54869 m	26,822737 m	33,538547 kPa	58,989943 kPa	12,413475 kPa	0 kPa	0 kPa
Column 19	61,53127 m	26,163209 m	35,61798 kPa	62,808706 kPa	13,261803 kPa	0 kPa	0 kPa
Column 20	59,51386 m	25,503682 m	37,525759 kPa	66,389062 kPa	14,077574 kPa	0 kPa	0 kPa
Column 21	57,73345 m	24,921634 m	38,909289 kPa	69,075294 kPa	14,712944 kPa	0 kPa	0 kPa
Column 22	55,71603 m	24,410673 m	38,575472 kPa	72,205532 kPa	16,402477 kPa	0 kPa	0 kPa
Column 23	53,46160 m	23,942533 m	37,169191 kPa	69,913223 kPa	15,970331 kPa	0 kPa	0 kPa
Column 24	51,44418 m	23,523607 m	35,68753 kPa	67,454742 kPa	15,493904 kPa	0 kPa	0 kPa
Column 25	49,42676 m	23,104682 m	34,009852 kPa	64,633608 kPa	14,936204 kPa	0 kPa	0 kPa
Column 26	47,78351 m	22,763453 m	31,705028 kPa	61,477923 kPa	14,521211 kPa	0 kPa	0 kPa
Column 27	46,64052 m	22,063654 m	33,599703 kPa	51,392774 kPa	8,6782606 kPa	0 kPa	0 kPa
Column 28	46,07542 m	21,495620 m	36,714033 kPa	80,334605 kPa	21,275175 kPa	0 kPa	0 kPa
Column 29	46,00379 m	21,495620 m	18,630662 kPa	81,289518 kPa	30,560766 kPa	0 kPa	0 kPa
Column 30	45,92969 m	21,495620 m	0,78554556 kPa	82,190576 kPa	39,703886 kPa	0 kPa	0 kPa
Column	45,36199	21,495620	0 708034 kPa	93,369904	45,194213	∩ k₽a	0 kP2

Column 35	39,58563 m	21,325273 m	1,5899502 kPa	49,571005 kPa	23,401924 kPa	0 kPa	0 kPa
Column 36	37,50015 m	20,984578 m	4,6464027 kPa	55,613633 kPa	24,858379 kPa	0 kPa	0 kPa
Column 37	34,82752 m	20,778913 m	6,2984475 kPa	62,48427 kPa	27,403657 kPa	0 kPa	0 kPa
Column 38	32,59433 m	20,730523 m	6,4680971 kPa	62,729509 kPa	27,440524 kPa	0 kPa	0 kPa
Column 39	31,12616 m	20,698710 m	6,5796229 kPa	63,22643 kPa	27,628494 kPa	0 kPa	0 kPa
Column 40	30,00361 m	20,674387 m	6,3493626 kPa	63,614054 kPa	27,929856 kPa	0 kPa	0 kPa
Column 41	29,55416 m	20,664649 m	5,833127 kPa	53,751101 kPa	23,371157 kPa	0 kPa	0 kPa
Column 42	28,80311 m	20,648375 m	4,9704965 kPa	46,427344 kPa	20,219856 kPa	0 kPa	0 kPa
Column 43	27,45772 m	20,619224 m	2,1640733 kPa	29,141788 kPa	13,157911 kPa	0 kPa	0 kPa
Column 44	26,44901 m	20,614394 m	-0,77965125 kPa	16,574682 kPa	11,605718 kPa	0 kPa	0 kPa
Column 45	25,80186 m	20,649880 m	-2,8609256 kPa	6,5303561 kPa	4,5726046 kPa	0 kPa	0 kPa