

Direzione Tecnica

S.S.121 "Catanese"

Intervento S.S.121 - Tratto Palermo (A19) - rotatoria Bolognetta

STUDIO DI FATTIBILITA'

COD. UP62

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma A27296)

PROGETTISTA:

Responsabile Tracciato stradale: *Dott. Ing. Massimo Capasso.* (*Ord. Ing. Prov. Roma 26031*)
Responsabile Strutture: *Dott. Ing. Giovanni Piazza* (*Ord. Ing. Prov. Roma 27296*)
Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing. Sergia* (*Ord. Ing. Prov. Palermo 2872*)

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma 15138)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Luigi Mupo

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

IDROLOGIA E IDRAULICA RELAZIONE IDROLOGICA

CODICE PF	ROGETTO LIV. PROG. ANNO	Ŋ₽M€2<u>F</u>L€ ARTIGLIO Relazioni			REVISIONE	SCALA:
DPUP0062 D 23		CODICE TOO IDOO IDR REO 1		В	varie	
D						
С						
В	REVISIONE IN RISCONTRO A	I PARERI ANAS	NOV. 2023	D. DI LORENZO	M. CUCCARO	G. PIAZZA
А	EMISSIONE		FEB. 2023	D. DI LORENZO	M. CUCCARO	G.PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

UP62

Relazione Idrologica

INDICE

1	PREMESSA	2
2	RIFERIMENTI NORMATIVI	E
_	INTERNIT NORMATIVI	
3	INQUADRAMENTO TERRITORIALE	6
3.1	Identificazione dei bacini di intervento	7
4	IL PIANO DI ASSETTO IDROGEOLOGICO (PAI)	12
5	IL PIANO DI GESTIONE RISCHIO ALLUVIONI PGRA	16
6	ANALISI IDROLOGICA	19
6.1	Caratterizzazione fisica e idrografica dei bacini tributari	19
6.2	Analisi dati pluviometrici	 2 4
6.3	Analisi dati di pioggia aggiornamento metodologia VAPI	34
6.4	Conclusioni sulle massime precipitazioni di progetto	39
6.5	Uso del suolo e caratteristiche dei bacini nella stima della pioggia netta	41
6.6	Determinazione del tempo di corrivazione dei bacini	45
7	METODO DI STIMA DELLE PORTATE AL COLMO	51
7. 1	Criteri generali	52 55
8	APPENDICE — DATI DI PIOGGIA STAZIONI PLUVIOMETRICHE MISILMERI, RISALAIMI E MARINEO	64

UP62

Relazione Idrologica

1 PREMESSA

La presente relazione idrologica è stata redatta nell'ambito del progetto definitivo dei lavori per la realizzazione del collegamento tra la A19 Palermo-Catania (altezza Bagheria) e Bolognetta attraverso la S.S.121.

L'intervento ricade nei Comuni di Misilmeri, Marineo e Bolognetta. L'infrastruttura rappresenta un'opera strategica per il collegamento della Sicilia meridionale con la Sicilia settentrionale tra le province di Agrigento e Palermo.

Il tracciato della nuova viabilità di scorrimento si sviluppa per circa 17 km a Nord si ricollega mediante il primo svincolo all'autostrada A19, cammina per i primi 5 Km quasi parallelamente all'alveo del fiume Eleuterio e attraversa i territori dei comuni di Misilmeri e Bolognetta con una successione di rettifili e curve. Altimetricamente il tracciato prevede ampi tratti su rilevato che consentono la realizzazione delle opere di attraversamento idraulico ed una opportuna sopraelevazione del corpo stradale dalla piana alluvionale.

I tratti in rilevato sono intervallati da viadotti per il superamento delle incisioni più importanti. Tra le opere principali si segnalano quindici viadotti, tre gallerie naturali, e cinque gallerie artificiali. Sono anche previsti quattro svincoli in corrispondenza dei comuni principali attraversati e di collegamento con le viabilità principali interferenti.

Relazione Idrologica

Fig.1.1 – Inquadramento generale con indicazione dell'asse stradale

Nel presente studio idrologico è stata approfondita la soluzione progettuale prescelta che corrisponde a quella che garantisce le più opportune connessioni funzionali tra la viabilità esistente e consente allo stesso tempo la minimizzazione delle interferenze idrauliche.

Lo studio idrologico sviluppato nell'ambito del progetto definitivo in questione ha riguardato l'analisi e l'elaborazione critica dei dati di pioggia; la caratterizzazione idrologica dei bacini interessati dall'opera; la definizione dei rapporti opere-reticolo idrografico e la quantificazione delle portate da questo trasportate per differenti tempi di ritorno.

Da un punto di vista idraulico l'area d'interesse per lo studio ricade all'interno dell'area territoriale del Fiume Eleuterio (bacino 037 P.A.I.) e l'area territoriale del fiume Milicia e il bacino del Torrente Comunelli (bacino 035 P.A.I.).

L'inquadramento normativo connesso alle attività idrauliche ha consentito di poter delimitare i vincoli attorno ai quali costruire/inserire l'intervento. Nel quadro complessivo, si porrà particolare attenzione alle norme regionali definite dal Distretto Idrografico (PAI e Direttiva Alluvioni). Lo studio idrologico sviluppato è coerente con i più recenti approcci consolidati in Regione Sicilia e ha previsto la preliminare definizione del reticolo idrografico. Il reticolo è stato mappato mediante diversi livelli cartografici, che comprendono la carta IGM 25.000, la CTR 10.000, il rilievo DTM 2x2 m regionale.

UP62

Relazione Idrologica

Definito il reticolo, sono state individuate sia le interferenze con le nuove opere stradali che con quelle esistenti, oltre ai bacini ad esse sottesi, il tutto così come rappresentato per le quali nell'elaborato grafico UP62_T00ID00IDRCO01 che riporta la corografia dei bacini cui si rimanda.

UP62

Relazione Idrologica

2 RIFERIMENTI NORMATIVI

Le analisi sono state svolte nel rispetto della seguente normativa regionale e nazionale:

- R.D. n° 523 del 1904 e ss.mm.ii;
- Legge 18 maggio 1989, n. 183 "Norme per il riassetto organizzativo e funzionale della difesa del suolo" integrata dalla Legge 7 agosto 1990, n. 253 "Disposizioni integrative alla legge 18 maggio 1989;
- D.Lgs. n°152 del 2006;
- NTC2018 Norme Tecniche per le Costruzioni s.m.i.;
- Circolare 21/01/2019, n.7. C.S.LL.PP.;
- N.T.A. e Linee Guida del Piano Stralcio per l'Assetto Idrogeologico redatto ai sensi dell'art. 17, comma 6 ter, della L. 183/89, dell'art. 1, comma 1, del D.L. 180/98, convertito con modificazioni dalla L. 267/98, e dell'art. 1 bis del D.L. 279/2000, convertito con modificazioni dalla L. 365/2000, con valore di Piano Territoriale di Settore;
- Piano di Gestione del Rischio di alluvioni. Direttiva 2007/60/CE del 23 ottobre 2007;
- NTA del PGRA e Relazione Generale del PGRA 2015;
- DPR n.4 2019 -Passaggio di competenze da GC a AdB Regione Sicilia;
- DSG_55_07.08.2019 Autorizzazione Idraulica Unica;
- DSG.n.189 2020 Direttiva Alvei;
- DSG n.50 2021 Autorizzazione Idraulica Unica;
- DDG n.102 Aggiornamento criteri e metodi di applicazione del principio di invarianza idraulica e idrologica;
- DSG n.119 2022 "Direttive per la determinazione dell'ampiezza dell'alveo nel caso di sponde incerte (art. 94 del R.D. 523/1904) e per la determinazione della fascia di pertinenza fluviale da sottoporre alle limitazioni d'uso di cui all'art. 96, lettera f, del R.D. 523/1904.

UP62

Relazione Idrologica

3 INQUADRAMENTO TERRITORIALE

L'area in studio ricade nei Comuni di Villabate, Misilmeri e Bolognetta. In un'area geograficamente inquadrabile nel settore settentrionale tra il bacino del Fiume Eleuterio e, per la parte meridionale, nel bacino del Fiume Milicia all'interno della provincia di Palermo.

Il contesto territoriale su cui si sviluppa l'infrastruttura in progetto è caratterizzato da deboli rilievi, per lo più sede di attività agricole più o meno intensive, e tra gli elementi localmente caratterizzanti l'ambito paesaggistico è da citare l'invaso artificiale Scanzano, nel territorio del comune di Marineo, che interessa un'area a monte dell'infrastruttura ed abbastanza distante dall'infrastruttura in progetto. Nel tratto più a Nord compreso tra l'abitato di Misilmeri e Villabate, parallelamente all'opera in progetto, troviamo invece l'alveo del fiume Eleuterio. Questa fascia ha subito a partire dagli anni '70 uno sviluppo disordinato e poco rispettoso del contesto naturale. Questo fenomeno emerge dall'esame del reticolo idrografico che in molti casi è interessato da opere di regimazione e canalizzazione che non tengono conto delle vigenti normative e che risulta in molti casi del tutto disordinato e inadeguato a smaltire le portate di progetto imposte dalle normative che è stato necessario tenere conto nella progettazione delle opere idrauliche che interferiscono con la nuova infrastruttura stradale in progetto.

L'intervento in oggetto, anche alla luce delle vigenti normative, mira a rispettare il reticolo idrografico naturale nella sua interezza attraverso la verifica dei seguenti aspetti:

- Non incrementare il rischio idraulico delle aree limitrofe all'infrastrutture;
- Non deve essere un ostacolo al deflusso dei corsi d'acqua;
- Garantire condizioni di sicurezza idraulica dell'infrastruttura in caso di piena.

Tale aspetto è risultato particolarmente significativo nello svolgimento della progettazione idraulica. Infatti, a parte il caso dei due principali corsi d'acqua: Eleuterio e Milicia, il rimanente reticolo idraulico presenta altri due valloni importanti il Rigano e il

UP62

Relazione Idrologica

Sant'Antonio risolti attraverso viadotti. Le opere di risoluzione delle interferenze idrauliche con la strada sono state dimensionate e verificate per garantire il passaggio della portata calcolata con tempo di ritorno di 200 anni.

3.1 Identificazione dei bacini di intervento

Sulla base di altri studi di settore (Piano di Gestione del Distretto Idrografico Sicilia), comunque collegati e pertinenti alle attività previste nel presente studio, il territorio interessato dall'opera è stato suddiviso in ventotto sub-bacini, ognuno dei quali caratterizzato da discreta omogeneità geomorfologiche, geografiche, idrologiche. Tali sub-bacini sono rappresentati nella seguente figura 3.1.1; UP62_T00ID00IDRCO01.

Come può osservarsi dalla figura, percorrendo il tracciato stradale da Nord verso Sud, questo interferisce in generale con un bacino principale di "livello 0", che sfocia a mare, denominato Fiume Eleuterio di cui il PAI ha individuato le zone di pericolosità idraulica, come si dirà in avanti - ed in particolare con i reticoli di vario livello dei suddetti bacini.

Relazione Idrologica

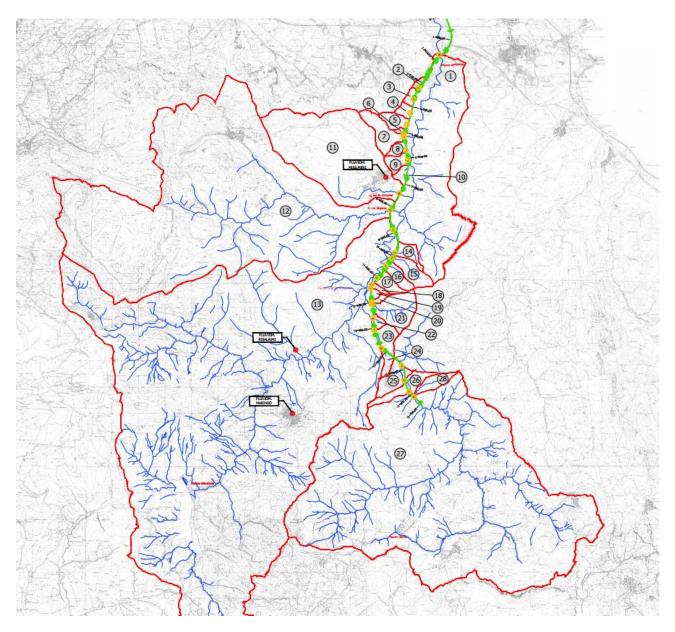


Figura 3.1-1 Corografia dei bacini.

La fase preliminare dello studio ha previsto la definizione del reticolo idrografico, mappato mediante diverse basi cartografiche quali la carta IGM 1:25000 (L.68 2 Febbraio 1960) la CTR 1:10000, il rilievo DTM 2x2 m regionale e il rilievo speditivo di campagna. Attraverso questi strumenti è stato possibile individuare i diversi livelli di reticolo che interferiscono con le opere in progetto.

Definito il reticolo, sono state individuate le interferenze con le opere stradali esistenti e in progetto, oltre ai limiti di bacino idrografico afferenti a ciascuno dei corsi d'acqua.

UP62

Relazione Idrologica

Può affermarsi che la zona dove si inserisce l'infrastruttura è caratterizzata da interferenze con corsi d'acqua di grandi dimensioni in termini di lunghezze, portate o dimensioni dell'alveo, sia anche da una serie di interferenze con corpi idrici minori, caratterizzati da deflusso a carattere stagionale, se non addirittura occasionale.

Tale reticolo idraulico è sostanzialmente costituito dai torrenti tributari in destra idraulica ed in sinistra idraulica del fiume Eleuterio. Tali torrenti si sviluppano in un'area che degrada rapidamente dai crinali spartiacque fino all'intersezione con l'infrastruttura di progetto e presentano linee di deflusso molto modeste che hanno uno sviluppo più contenuto, altre volte attraversano aree semi pianeggianti che, in particolare a ridosso dell'abitato di Misilmeri, sono caratterizzate da un forte insediamento urbano con prevedibili risvolti sul reticolo idrografico.

I principali corsi d'acqua interessati dal tracciato stradale sono (procedendo da Nord verso Sud): il fiume Eleuterio, il vallone Sant'Antonio, il vallone Rigano, il vallone Coda di Volpe e il fiume Milicia. Il fiume Eleuterio e il fiume Milicia vista la loro estensione intersecano in più punti l'asse viario.

Sono inoltre presenti numerosi corsi d'acqua minori, talvolta assimilabili a fossi. Qui di seguito si riporta una tabella riassuntiva delle maggiori interferenze idrauliche e delle opere in progetto necessarie per risolverle. Le portate indicate in seguito sono quelle di progetto valutate, come sarà illustrato in dettaglio nel seguito del presente studio.

Tabella 3-1 Riepilogo delle maggiori interferenze idrauliche del nuovo asse viario

Pk	Asta	Bacino	Area	Opera	Opera	
Progetto	Asta	Bucino	[km²]	tipologica	Special Control of the Control of th	
1+760.00	Eleuterio foce	01	200.65	Viadotto	Ponte VI02	
3+225.00		02	0.12	Tombino	Scatolare 2x2	
3+710.00		03	0.21	Tombino	Scatolare 3x2	
4+240.00		04	0.26	Viadotto	Ponte VI03	
4+700.00		05	0.51	Viadotto	Ponte VI04	
5+065.00		06	0.07	Tombino	Scatolare 2x2	

UP62

Relazione Idrologica

Pk	Asta	Bacino	Area	Opera	Opera
5+160.00		07	1.08	Viadotto	Ponte VI05
5+695.00		08	0.25	Tombino	Scatolare 2x2
6+090.00		9	0.46	Tombino	Scatolare 2x2
6+430.00		10	0.24	Viadotto	Ponte VI06
7+420.00	Sant'Antonio	11	13.32	Viadotto	Ponte VI07
8+140.00	Rigano	12	53.18	Viadotto	Ponte VI08
8+900.00	Eleuterio Intermedio	13	117.19	Viadotto	Ponte VI09
9+825.00		14	0.49	Tombino	Scatolare 3.5x2
10+080.00		15	0.92	Viadotto	Ponte VI10
10+450.00		16	0.54	Viadotto	Ponte VI10
11+020.00		17	0.50	Tombino	Scatolare 2x2
11+350.00		18	0.12	Tombino	Scatolare 2x2
11+495.00		19	0.11	Tombino	Scatolare 2x2
11+985.00		20	0.13	Tombino	Scatolare 2x2
12+095.00	Coda di Volpe	21	1.69	Viadotto	Ponte VI12
12+620.00		22	0.18	Viadotto	Ponte VI13
13+140.00		23	0.97	Tombino	Scatolare 4x3
13+810.00		24	0.32	Tombino	Scatolare 4x3
14+820.00	Milicia	25	61.31	Viadotto	Ponte VI14
15+420.00	Milicia	26	60.36	Viadotto	Ponte VI15
15+860.00	Milicia	27	59.43	Ponte esistente	Ponte esistente
16+120.00		28	0.60	Tombino esistente	Scatolare 2x2

É' opportuno mettere in evidenza che nell'ambito del PAI è individuata una zona di pericolosità idraulica interferente con le opere in progetto ed è quella dovuta al fiume Eleuterio che ha un bacino di circa 200 km² alla foce.

Nella Figure 3.1.2 è riportato lo stralcio del PAI con indicazione delle aree di pericolosità relative al sopra citato fiume, nell'area interessata dalla strada in progetto.

Nelle tavole di progetto UP62_T00ID00IDRCT01A/06A sono riportate nel dettaglio, a scala maggiore, le planimetrie delle aree di pericolosità idraulica indicati nel PAI con riferimento alle opere in progetto.

Relazione Idrologica

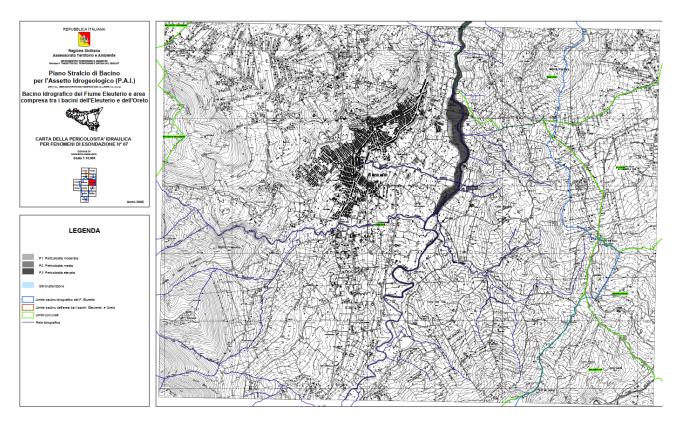


Figura 3.1-2 *Carta pericolosità idraulica Fiume Eleuterio.* Tabella 3-2 *Riepilogo delle maggiori*

Nello studio si è quindi proceduto alla caratterizzazione fisiografica dei suddetti 28 bacini e di questi sono state valutate le caratteristiche plano-altimetriche nonché fisiografiche. Tali informazioni verranno meglio esplicitate nei capitoli a seguire.

UP62

Relazione Idrologica

4 IL PIANO DI ASSETTO IDROGEOLOGICO (PAI)

Il Piano per l'Assetto Idrogeologico è stato redatto ai sensi della legge n. 183/1989 e del decreto-legge n. 180/1998, con le relative fonti normative di conversione, modifica e integrazione.

In particolare il Piano Stralcio per l'Assetto Idrogeologico, redatto ai sensi dell'art. 17, comma 6 ter, della L. 183/89, dell'art. 1, comma 1, del D.L. 180/98, convertito con modificazioni dalla L. 267/98, e dell'art. 1 bis del D.L. 279/2000, convertito con modificazioni dalla L. 365/2000, ha valore di Piano Territoriale di Settore ed è stato approvato, ai sensi dell'articolo 130 della legge regionale 7 maggio 2001, n. 6, su proposta dell'Assessore regionale per il territorio e l'ambiente, con decreto del Presidente della Regione, previa delibera della Giunta Regionale che si è espressa sulla proposta tenuto conto del parere della Conferenza Programmatica, alla quale partecipano i comuni e le province interessati.

Il PAI è lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni e le norme d'uso finalizzate alla conservazione, alla difesa ed alla valorizzazione del suolo, alla prevenzione del rischio idrogeologico, sulla base delle caratteristiche fisiche ed ambientali del territorio interessato. Il PAI ha definito pericolosità idraulica e rischio non a livello estensivo sul reticolo principale e secondario ma solo in tronchi potenzialmente critici ai fini dello smaltimento della portata di piena, individuati secondo le metodologie descritte nelle Linee Guida allegate alla Relazione generale di piano. In tali tratti sono state definite 4 classi di pericolosità idraulica corrispondenti a tempi di ritorno crescenti, come descritto nella tabella seguente.

UP62

Relazione Idrologica

Tabella 4-1 PAI classi di pericolosità idraulica

Pericolosità		Frequenza (1/T)	Periodo di ritorno (T anni)
\mathbf{H}_{il}	bassa	0.002	500
H _{i2}	moderata	0.005	200
H _{i3}	alta	0.010	100
H_{i4}	molto alta	0.020	50

In corrispondenza di tali tratti critici sono quindi stati definiti gli elementi soggetti a rischio (E) di essere colpiti da eventi calamitosi; tali elementi sono stati suddivisi in coerenza con la normativa vigente, secondo le seguenti classi.

Tabella 4-2 - PAI classi elementi a rischio

Classi	Elementi	Peso
E1	Aree escluse dalle definizioni E2, E3 ed E4. Zona boschiva. Zone di protezione ambientale con vincolo estensivo (p.e. vincolo Galasso). Zone falesie costiere con possibilità di frequentazione.	0,25
E2	Zona agricola generica. Infrastrutture puntuali per le telecomunicazioni. Zone di protezione ambientale con vincolo specifico ma non puntuale (p.e. parchi, riserve).	0,50
E3	Infrastrutture pubbliche (altre infrastrutture viarie e fondo artificiale, ferrovie, oleodotti, elettrodotti, acquedotti, bacini artificiali). Zone per impianti tecnologici e discariche di R.S.U. ed assimilabili, zone di cava e zone minerarie attive e non, discariche minerarie di residui di trattamento, zona discarica per inerti. Beni naturali protetti e non, beni archeologici. Zona agricola irrigua o ad alta produttività, colture strategiche e colture protette. Specchi d'acqua con aree d'acquacoltura intensiva ed estensiva. Zona di protezione ambientale puntuale (monumenti naturali e assimilabili).	0,75
E4	Centri urbani ed aree urbanizzate con continuità; nuclei rurali minori di particolare pregio; zone di completamento; zone di espansione; grandi insediamenti industriali e commerciali; servizi pubblici prevalentemente con fabbricati di rilevante interesse sociale; aree con limitata presenza di persone; aree extraurbane poco abitate; edifici sparsi; nuclei urbani non densamente popolati; aree sedi di significative attività produttive (insediamenti artigianali, industriali, commerciali minori); Zona discarica rifiuti speciali o tossico nocivi. Zona impianti industriali ad elevato rischio potenziale. Aree di intensa frequentazione turistica. Beni architettonici, storici e artistici. Infrastrutture pubbliche strategiche (strade statali). Porti vari, aeroporti, stazioni.	1

In questo modo, posta cautelativamente la Vulnerabilità pari a 1, è stato possibile definire le diverse classi di rischio secondo l'usuale formula:

$$R_i = H_i \cdot E \cdot V$$

UP62

Relazione Idrologica

Le classi di rischio adottate nel PAI conformi alla normativa in materia sono descritte nella seguente tabella.

Tabella 4-3 - PAI classi di rischio idraulico

Rischio idraulico		ico	Descriptions dealth (fig. 4)			
Classe	Intensità	Valore	Descrizione degli effetti			
Ril	Moderato	≤ 0,002	danni sociali, economici e al patrimonio ambientale marginali			
R _{i2}	Medio	≤ 0,005	sono possibili danni minori agli edifici, alle infrastrutture e al patrimonio ambientale che non pregiudicano l'incolumità del personale, l'agibilità degli edifici e la funzionalità delle attività economiche			
R _{i3}	Elevato	≤ 0,01	sono possibili problemi per l'incolumità delle persone, danni funzionali agli edifici e alle infrastrutture con conseguente inagibilità degli stessi, la interruzione di funzionalità delle attività socio- economiche e danni rilevanti al patrimonio ambientale			
R _{i4}	Molto elevato	≤ 0.02	sono possibili la perdita di vite umane e lesioni gravi alle persone, danni gravi agli edifici, alle infrastrutture e al patrimonio ambientale, la distruzione delle attività socio-economiche			

Dall'analisi del PAI della Regione Sicilia emergono come aree di pericolosità idraulica dei corsi d'acqua che interferiscono con la strada in progetto esclusivamente il Fiume Eleuterio.

Le planimetrie di pericolosità idraulica dedotte dal PAI in corrispondenza delle opere stradali interferenti, sono riportate nelle tavole di progetto UP62_T00ID00IDRCT01/06

In questa fase progettuale si è ritenuto necessario svolgere lo studio del rischio idraulico non solo per il fiume attenzionato nel PAI, ma anche per il fiume Milicia, per il Vallone Rigano e per il Vallone S.Antonio. Per questi, che sono i maggiori, si è fatto lo studio del rischio idraulico per tutti i torrenti poichè aventi portata con Tr=200 anni superiore a 40 mc/s.

La valutazione delle aree interessate dalle acque, in corrispondenza dei sopracitati tre torrenti nelle aree interferenti l'intervento in progetto, è stata sviluppata, in accordo alle prescrizioni di capitolato nelle condizioni ante e post operam, con riferimento alla portata calcolata per un tempo di ritorno (Tr) di 200 anni.

UP62

Relazione Idrologica

Per tali corsi d'acqua maggiori interferenti con l'opera, sono state sviluppate le modellazioni idrauliche per l'identificazione delle aree di esondazione, i cui risultati sono illustrati nella Relazione Idraulica e nelle correlate specifiche tavole di progetto.

Relazione Idrologica

5 IL PIANO DI GESTIONE RISCHIO ALLUVIONI PGRA

La progettazione della SS121 è stata realizzata tenendo in considerazione il Piano di Gestione del Rischio Alluvioni e le NTA ad esso allegate, come noto tale documento è caratterizzato da scenari di allagabilità e di rischio idraulico su tre differenti tempi di ritorno (fra 20 e 50, 100, 300 anni).

Come evidenziato negli stralci del PGRA, estratti dalle carte riportate nel Geoportale Nazionale qui di seguito presentate, dei corsi d'acqua attraversati dal nuovo asse viario, il torrente Eleuterio presenta delle aree allagabili in corrispondenza dell'attraversamento dell'opera riferite ad eventi di piena con tempi di ritorno 50 anni, 100 anni e 300 anni.

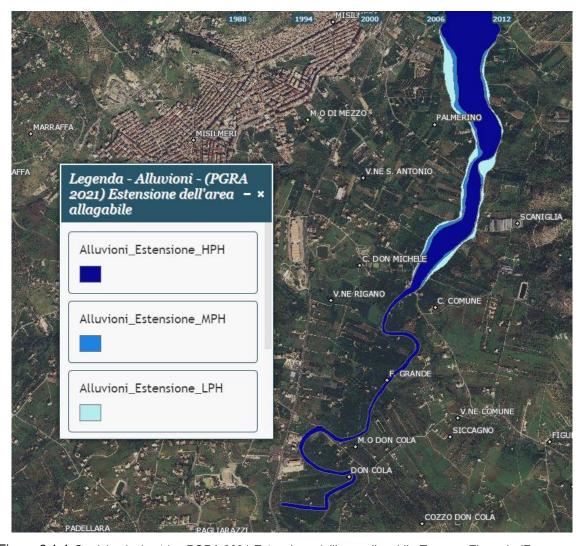


Figura 3.1-1 Stralcio planimetrico PGRA 2021 Estensione dell'area allagabile Torrente Eleuterio (Fonte: Geoportale Nazionale – Minambiente)

Relazione Idrologica

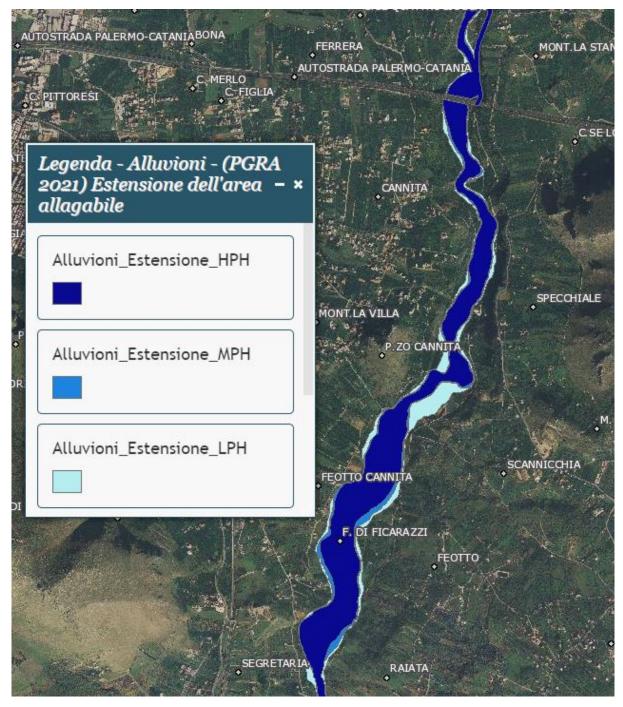


Figura 3.1-2 Stralcio planimetrico PGRA 2021 Estensione dell'area allagabile Torrente Eleuterio (Fonte: Geoportale Nazionale – Minambiente)

Nell'ambito dello studio idrologico e idraulico, la mappatura delle aree a pericolosità da alluvione è stata sviluppata sulla base di metodologie storico-inventariali (siti di attenzione idraulici provenienti dal PAI) e sulla base dei risultati di modellazioni idrauliche.

UP62

Relazione Idrologica

Nello specifico gli articoli delle NTA del PGRA attenzionati in fase di progettazione sono stati i seguenti:

ARTICOLO 10

Opere di attraversamento

1. Le nuove opere di attraversamento stradale o ferroviario, o comunque le infrastrutture interessanti il reticolo idrografico, le fasce fluviali, o le aree pericolosità devono essere progettate nel rispetto dei criteri e delle prescrizioni tecniche per la verifica idraulica di cui ad apposita direttiva come indicata all'art. 3, comma 1, lett.g.

ARTICOLO 11

Tombinature e coperture

2. Le opere di tombinatura e di copertura effettivamente ammesse devono, comunque, essere realizzate secondo gli indirizzi generali definiti nella direttiva di cui all'art. 3, comma 1, lett.q.

ARTICOLO 3

Strumenti di attuazione del Piano di Gestione del Rischio Alluvioni comma 1 lettera g che dice:

Il Piano di Gestione del Rischio Alluvioni è attuato attraverso l'azione coordinata di tutte le istituzioni competenti in materia mediante, nello specifico l'adozione da parte dell'Assessorato regionale del Territorio e dell'Ambiente, di concerto con la Presidenza della Regione – Dipartimento regionale della protezione civile, sentita la Giunta regionale, di specifiche direttive di indirizzo, settoriali o per ambiti territoriali.

ARTICOLO 16

Coordinamento con i Piani per l'Assetto Idrogeologico

• Alle aree classificate come pericolose nei Piani Stralcio per l'Assetto Idrogeologico vigenti si applicano le norme riportate nei superiori articoli. A partire dall'entrata in vigore delle presenti norme o delle relative norme di salvaguardia l'art. 11 delle norme di attuazione del PAI allegate alla relazione Generale del Piano stralcio di bacino per l'Assetto idrogeologico della regione Siciliana è sostituito dall'art. 4 delle presenti norme.

UP62

Relazione Idrologica

6 ANALISI IDROLOGICA

In questa fase dello studio si è proceduto secondo i seguenti passi:

- Individuazione dei bacini tributari e loro caratterizzazione fisica e idrografica;
- Analisi e aggiornamento dei dati di pioggia (riportati in appendice)
- Individuazioni sezioni di controllo di particolare interesse;
- Valutazione dell'uso del suolo e caratteristiche dei bacini;
- Calcolo del Tempo di Corrivazione dei bacini e del CN.

6.1 Caratterizzazione fisica e idrografica dei bacini tributari

La caratterizzazione fisiografica dei bacini individuati è stata eseguita mediante le seguenti basi:

- DEM (maglia 2x2 m);
- CTR 1:10.000;
- Tavole IGM scala 1:25.000;
- Ortofoto.

Per ciascun bacino individuato, sono state valutate le seguenti grandezze:

- Superficie del bacino S [km²]: da elaborazione GIS; la superficie è calcolata sulla base del DEM, in relazione al poligono chiuso che individua ciascun singolo bacino idrografico;
- Perimetro del bacino P [km]: da elaborazione GIS; la linea è calcolata sulla base del DEM, in relazione al poligono chiuso che individua ciascun singolo bacino idrografico;
- Altitudine massima H_{max} [m.s.l.m.], altitudine minima (altitudine sezione di chiusura) H_{min} [m.s.l.m.]: da elaborazione GIS, direttamente dalla base del DEM, come risultato di un'analisi di tipo statistico (valore minimo e massimo) delle quote altimetriche delle celle del DEM interne a ciascun poligono rappresentante il bacino analizzato;

UP62

Relazione Idrologica

- Altitudine media H_{media} [m.s.l.m.]: elaborazione numerica direttamente dal DEM, relativa al bacino indagato e riferita alla sezione di chiusura posta in corrispondenza del punto di interferenza del corso d'acqua con l'asse stradale;
- Pendenza media del bacino i_v [%]: da elaborazione GIS direttamente dalla base del DEM, come risultato dell'analisi delle pendenze medie delle celle del DEM interne a ciascun poligono rappresentante il bacino idrografico analizzato;
- Lunghezza dell'asta L_{max} [km]: calcolo automatico in GIS della lunghezza dei segmenti rappresentanti i corsi d'acqua digitalizzati, intesa come percorso idraulico più lungo all'interno del bacino idrografico analizzato.

I bacini idrografici individuati sono ventotto, di seguito denominati secondo una progressione numerica e rappresentati nella Corografia dei bacini idrografici principali (UP62_T00ID00IDRCO01), cui si rimanda e rappresentata in figura 3.1.1.

Questi rappresentano la porzione di territorio che, in seguito alle precipitazioni, genera deflusso attraverso la sezione di chiusura coincidente con il punto di interferenza tra i corsi d'acqua individuati e l'infrastruttura stradale oggetto degli interventi. Per ogni bacino sono stati valutate le caratteristiche geomorfologiche elencate nel seguito.

In particolare sono state calcolate le grandezze che descrivono l'orografia e la planimetria del luogo e tutti i parametri altimetrici necessari alla definizione del bacino, quali:

- Pendenza media dell'asta principale i [%], data dal rapporto tra il dislivello tra sorgente e sezione di chiusura del bacino e la lunghezza dell'asta;
- Altezza massima e minima del bacino H_{max} e H_{min};
- Altezza massima e minima dell'alveo h_{max} e h_{min};
- Altezza media del bacino H_{media},

I valori delle grandezze elencate sono riportati nelle Tabella seguente.

UP62

Relazione Idrologica

Tabella 6-1 Caratteristiche dei bacini idrografici

			DATI	ASTA		DATI BACINO					
Bacin o	Denominazione	L	нмах	Hmin	i asta	Area	Perimetro	Hmin	нмах	Hmedia	i bacino
		[Km]	[m s.l.m.]	[m s.l.m.]	[m/m]	[km²]	[Km]	[m s.l.m.]	[m s.l.m.]	[m s.l.m.]	[m/m]
01	Eleuterio foce	45.80	529.00	21.00	0.011	200.65	106.04	21.00	1613.00	516.52	0.22
02		0.45	76.00	68.00	0.017	0.12	1.54	68.00	134.00	96.00	0.21
03		0.45	83.00	76.00	0.015	0.21	1.95	76.00	160.00	109.50	0.24
04		0.66	110.00	95.00	0.022	0.26	2.12	95.00	269.00	146.98	0.21
05		1.39	124.00	104.00	0.014	0.51	3.12	104.00	547.00	271.82	0.38
06		0.45	125.00	114.00	0.024	0.07	1.22	114.00	210.00	152.37	0.25
07		2.16	192.00	102.00	0.041	1.08	5.59	102.00	635.00	317.57	0.32
08		0.75	97.00	86.00	0.014	0.25	2.37	86.00	330.00	162.50	0.34
9		1.30	96.00	81.00	0.011	0.46	3.05	81.00	334.00	155.24	0.21
10		1.50	109.00	70.00	0.026	0.24	2.10	70.00	116.00	89.30	0.08
11	Sant'Antonio	14.50	239.00	86.00	0.010	13.32	16.40	88.00	674.00	307.67	0.13
12	Rigano	19.21	646.00	95.00	0.028	53.18	43.55	95.00	967.00	556.51	0.27
13	Eleuterio Intermedio	28.40	529.00	92.00	0.015	117.19	67.94	92.00	1613.00	577.19	0.21
14		1.43	200.00	120.00	0.055	0.49	3.55	120.00	295.00	178.75	0.16
15		1.74	214.00	117.00	0.055	0.92	4.54	117.00	435.00	254.40	0.22
16		1.07	233.00	117.00	0.108	0.54	3.41	117.00	383.00	241.38	0.23
17		1.18	230.00	139.00	0.077	0.50	3.34	139.00	373.00	227.09	0.22
18		0.76	227.00	152.00	0.098	0.12	1.76	152.00	304.00	216.20	0.23
19		0.51	200.00	152.00	0.094	0.11	1.46	152.00	252.00	195.87	0.23
20		0.73	227.00	172.00	0.075	0.13	2.22	172.00	332.00	245.18	0.23
21	Coda di Volpe	2.21	280.00	158.00	0.055	1.69	5.45	158.00	337.00	282.74	0.18
22		0.65	250.00	192.00	0.089	0.18	1.81	192.00	303.00	250.96	0.11
23		1.55	246.00	237.00	0.005	0.97	5.20	237.00	345.00	291.79	0.13
24		1.05	265.00	260.00	0.004	0.32	2.95	260.00	346.00	294.46	0.12
25	Milicia	15.10	618.00	258.00	0.023	61.31	39.69	258.00	697.00	520.64	0.14
26	Milicia	14.40	618.00	272.00	0.024	60.36	38.80	272.00	697.00	522.28	0.13
27	Milicia	14.20	618.00	276.00	0.024	59.43	38.63	276.00	697.00	432.57	0.12
28		1.80	351.00	287.00	0.035	0.60	4.21	287.00	615.00	525.41	0.15

UP62

Relazione Idrologica

Partendo dalle informazioni di carattere planimetrico è stata caratterizzata la forma del bacino attraverso i seguenti indici:

- **Fattore di circolarità:** esprime la somiglianza con un bacino di forma circolare avente lo stesso perimetro P.

$$R_c=4\pirac{A}{P^2};$$

 $R_c \rightarrow 1$ forma tondeggiante;

 $0.4 < R_c < 0.5$ forme ovali;

 $R_c < 0.4$ forme allungate.

- Fattore di uniformità: è dato dal rapporto tra il perimetro del bacino e quello di un cerchio di uguale area.

$$R_u = rac{P}{2\sqrt{\pi A}}$$

Fattore di allungamento: è il rapporto tra il diametro del cerchio di uguale area
 A e la lunghezza L dell'asta principale:

$$E=rac{2\sqrt{A}}{L\sqrt{\pi}}$$

Nella tabella seguente si riportano i risultati ottenuti:

UP62

Relazione Idrologica

Tabella 6-2 Parametri di forma dei bacini idrografici

			Lunghezza	na dei bacini		E
Bacino	Area	Perimetro	Asta Principale	Rcircolarità	Runiformità	allungamento
	[km²]	[Km]	[Km]	[-]	[-]	[-]
01	200.65	106.04	45.80	0.22	2.11	0.35
02	0.12	1.54	0.45	0.63	1.26	0.87
03	0.21	1.95	0.45	0.68	1.21	1.14
04	0.26	2.12	0.66	0.73	1.17	0.87
05	0.51	3.12	1.39	0.66	1.23	0.58
06	0.07	1.22	0.45	0.63	1.26	0.69
07	1.08	5.59	2.16	0.44	1.51	0.54
08	0.25	2.37	0.75	0.56	1.33	0.75
9	0.46	3.05	1.30	0.62	1.27	0.59
10	0.24	2.10	1.50	0.67	1.22	0.37
11	13.32	16.40	14.50	0.62	1.27	0.28
12	53.18	43.55	19.21	0.35	1.68	0.43
13	117.19	67.94	28.40	0.32	1.77	0.43
14	0.49	3.55	1.43	0.49	1.43	0.55
15	0.92	4.54	1.74	0.56	1.33	0.62
16	0.54	3.41	1.07	0.59	1.30	0.78
17	0.50	3.34	1.18	0.56	1.33	0.67
18	0.12	1.76	0.76	0.47	1.46	0.50
19	0.11	1.46	0.51	0.68	1.22	0.75
20	0.13	2.22	0.73	0.34	1.72	0.56
21	1.69	5.45	2.21	0.72	1.18	0.66
22	0.18	1.81	0.65	0.67	1.22	0.73
23	0.97	5.20	1.55	0.45	1.49	0.72
24	0.32	2.95	1.05	0.46	1.48	0.60
25	61.31	39.69	15.10	0.49	1.43	0.59
26	60.36	38.80	14.40	0.50	1.41	0.61
27	59.43	38.63	14.20	0.50	1.41	0.61
28	0.60	4.21	1.80	0.43	1.53	0.49

UP62

Relazione Idrologica

6.2 Analisi dati pluviometrici

La zona interessata dal bacino imbrifero è caratterizzata da un regime pluviometrico mediterraneo, con addensamento delle piogge nel semestre invernale-primaverile (da Ottobre a Marzo). Nell'area di influenza del bacino imbrifero delle sezioni considerate ricadono le stazioni pluviometriche di "Misilmeri", "Risalaimi" e "Marineo" come si evince nella corografia dei bacini UP62_T00ID00IDRCO01.

La valutazione delle altezze di pioggia è stata sviluppata mediante tre metodologie distinte:

- Analisi carte "a" "n" "cv" da PAI
- Analisi serie storiche dati di pioggia
- Aggiornamento regionalizzazione VAPI.

I dati di pioggia utilizzati nel PAI della regione Sicilia, redatto nel 2003 si fermano al 1998. Tali dati sono stati elaborati sotto forma di mappe dei parametri della curva di possibilità pluviometrica ottenuta dall'interpolazione spaziale (tipo kriging) dei dati di pioggia registrati dalle stazioni pluviografiche ricadenti nel territorio regionale siciliano ed aventi almeno dieci anni di funzionamento anche non consecutivo (relativi al periodo 1929-1998). con questi dati di pioggia le altezze di pioggia sono state ottenute mediante l'elaborazione delle carte iso-a iso-n del PAI tramite il software QGIS.

Relazione Idrologica

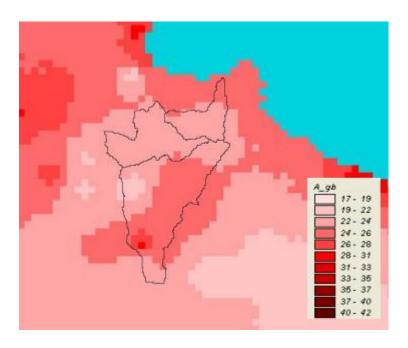


Figura 6.2-1 Carta dei valori di "a" da PAI

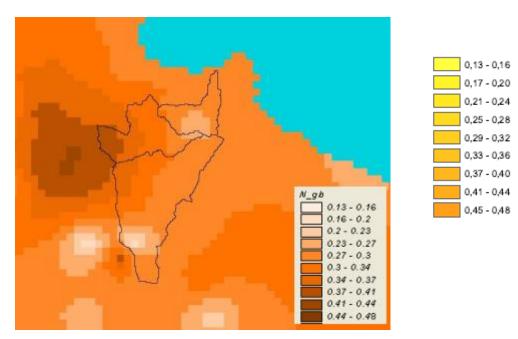


Figura 6.2-2 Carta dei valori di "n" da PAI.

Relazione Idrologica

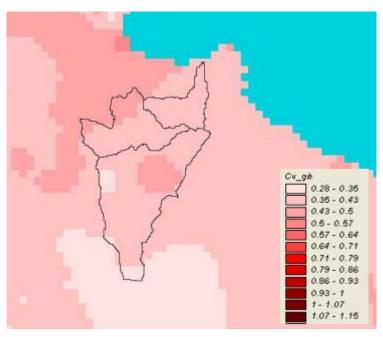


Figura 6.2-3 Carta dei valori di "CV" da PAI.

Qui di seguito si riportano i valori di a, n e CV per ciascun bacino idrografico:

Tabella 6-3 Parametri di pioggia dei bacini idrografici

ID Bacino	PK DX	Denominazione	a PAI	n PAI	CV PAI	K _{T200 anni}
[-]	[-]	[-]	[-]	[-]	[-]	[-]
01	1+760.00	Eleuterio foce	24.51	0.31	0.410	2.507
02	3+230.00		24.44	0.28	0.409	2.503
03	3+710.00		24.47	0.29	0.409	2.503
04	4+240.00		24.27	0.28	0.397	2.459
05	4+700.00		24.19	0.28	0.397	2.459
06	5+065.00		23.99	0.27	0.386	2.419
07	5+160.00		24.08	0.28	0.386	2.419
08	5+695.00		23.93	0.27	0.386	2.419
09	6+090.00		23.77	0.27	0.377	2.386
10	6+430.00		23.77	0.27	0.375	2.378
11	7+420.00	Sant'Antonio	24.15	0.28	0.381	2.400
12	8+140.00	Rigano	23.96	0.34	0.415	2.525
13	8+900.00	Eleuterio Intermedio	24.88	0.30	0.410	2.507
14	9+825.00		24.26	0.28	0.402	2.478
15	10+080.00		24.40	0.29	0.408	2.500
16	10+450.00		24.42	0.29	0.406	2.492
17	11+020.00		24.47	0.29	0.411	2.511
18	11+350.00		24.53	0.29	0.414	2.522

Relazione Idrologica

ID Bacino	PK DX	Denominazione	a PAI	n PAI	CV PAI	K _{T200 anni}
[-]	[-]	[-]	[-]	[-]	[-]	[-]
19	11+495.00		24.65	0.29	0.416	2.529
20	11+985.00		24.74	0.29	0.421	2.547
21	12+095.00	Coda di Volpe	24.72	0.29	0.414	2.522
22	12+620.00		25.05	0.30	0.431	2.584
23	13+080.00		25.03	0.30	0.423	2.555
24	13+810.00		25.22	0.30	0.425	2.562
25	14+820.00	Milicia completo	24.08	0.30	0.394	2.448
26	15+420.00	Milicia	24.06	0.30	0.394	2.448
27	15+860.00	Milicia	24.82	0.30	0.394	2.448
28	16+120.00		24.02	0.30	0.412	2.514

L'altezza di pioggia hTr(t) di durata t con assegnato tempo di ritorno Tr in anni si ottiene moltiplicando la pioggia indice $\mu(t)$ per un coefficiente di crescita $K_{Tr}(t)$ dato da:

$$K_{Tr}(t) = a t^n$$

Per cui:

$$h_{Tr}(t) = \mu(t) K_{Tr}(t)$$

dove il coefficiente $K_{Tr}(t)$ si determina con la seguente relazione, per differenti tempi di ritorno Tr e durate di pioggia t.

$$K_T = 1 - CV \left\{ 0.45 + 0.779 \ln \left(\ln \left(\frac{T}{T - 1} \right) \right) \right\}$$

La pioggia ottenuta viene quindi ragguagliata all'area tramite il parametro r, secondo la formulazione utilizzata nel VAPI, che fa riferimento al Flood Studies Report:

$$r = 1 - (0.0394 \cdot S^0.354) \cdot \Theta_C^{(-0.40 + 0.0208 \ln(4.6 - \ln(S)))}$$
 per S≤20 Km²

UP62

Relazione Idrologica

$$r = 1 - (0.0394 \cdot S^0.354) \cdot \Theta_c^{(-0.40 + 0.003832 \ln(4.6 - \ln(S)))}$$
 per S>20 Km²

Dove: θ_C = durata della pioggia critica;

S = superficie del bacino in Km²

Da cui si ottiene l'altezza di pioggia ragguagliata all'area del bacino:

$$h_r = h_{Tr}(t) \cdot r$$

Assumendo che l'invaso per infiltrazione nel suolo in ogni istante sia proporzionale al valore massimo dello stesso e che la precipitazione efficace sia proporzionale all'afflusso meteorico, si ha la seguente equazione (USDA SCS, 1986) per la definizione del volume netto di pioggia per unità di superficie RO, che coincide con la pioggia netta hn:

$$R_0 = \frac{(h_r - I_a)^2}{h - I_a + S_{POT}} = h_n$$

Dove:

h_r = precipitazione meteorica ragguagliata [mm]

la = perdita iniziale [mm]

 $S_{POT} = 25.4 ((1000/CN) - 10) = capacità di ritenzione potenziale [mm].$

Altra metodologia adoperata ha interessato le serie storiche delle precipitazioni. Nello specifico, a partire dagli annali in questa sede si è effettuato l'aggiornamento dei dati di pioggia partendo dalle analisi statistiche sui dati fino al 2016.

In particolare gli aggiornamenti apportati alle tre stazioni pluviometriche sono i seguenti:

- Stazione pluviometrica "Misilmeri" gli anni di osservazione sono 42 fino al 2016.
- Stazione pluviometrica "Risalaimi" i dati disponibili fino al 2006 sono 29.
- Stazione pluviometrica "Marineo" fino al 2016 gli anni osservati sono 36.

Le CPP (Curve di Possibilità Pluviometrica), caratteristiche per ogni stazione pluviometrica permettono di determinare, per ogni durata dell'evento, l'altezza di pioggia temibile. Esse sono state costruite sia sulla base dati di pioggia attualmente disponibili

UP62

Relazione Idrologica

(sino al 2016), per tempi di ritorno T di piena ordinaria, pari a 5, 10 e 25 anni, e tempi di ritorno T più elevati, pari a 50, 100, 200, 300 e 500 anni, per poter sviluppare la progettazione secondo le indicazioni delle norme tecniche e anche per poter effettuare dei confronti con i risultati riportati nel PAI. La distribuzione di probabilità di Gumbel, adattata ai dati di pioggia, trova vasta applicazione nel caso di serie di dati estremi. Secondo Gumbel la funzione di distribuzione limite, ossia di distribuzione cumulata, CDF, definita per x>0, è:

$$F_x(x) = \exp[-e^{-(x-v)/\alpha}]$$

La distribuzione Gumbel è una distribuzione biparametrica, dove il parametro di locazione v coincide con la moda della distribuzione, poiché df(x)/dx=0, mentre il parametro di scala α rappresenta una misura di dispersione. Entrambi i parametri si possono stimare con il metodo dei momenti, ossia eguagliando i momenti della popolazione a quelli del campione; in tal caso, essendo due i parametri da stimare, si sono eguagliati solo i momenti del primo (media) e del secondo ordine (varianza).

Per la distribuzione di Gumbel, applicando il metodo dei momenti, si sono calcolati α e v con le sequenti relazioni:

$$\alpha = \frac{1.283}{s} \qquad v = \overline{x} - \frac{0.5772}{\alpha}$$

Dove x e s sono rispettivamente pari a media e scarto quadratico medio della distribuzione per ogni durata, determinati con le seguenti formule:

$$\overline{x} = \frac{\sum_{\nu=1}^{N} x_{\nu}}{N} \qquad s = \frac{\sum_{\nu=1}^{N} (x_{n} - \overline{x})}{N - 1}$$

Nell'applicare il metodo descritto, si sono considerati per le stazioni pluviometriche di Misilmeri, Risalaimi e Marineo le piogge di massima intensità, per durate di 1, 3, 6, 12, 24 ore, nel periodo fino al 2016 (vedi Tabelle in Appendice). Si sono determinati i valori di media, scarto quadratico medio, α e v per ciascuna durata di pioggia.

UP62

Relazione Idrologica

Fissati i tempi di ritorno per determinare la CPP, ovvero le altezze di precipitazione per le varie durate di pioggia ed in riferimento ai tempi di ritorno sono usate delle leggi teoriche (con espressione analitica nota) che ben si sono adattate alla curva empirica di distribuzione di probabilità costruita con i dati campionari qui usati. L'espressione analitica della legge di Gumbel in forma esplicita è:

$$h_{d,T} = v_d - (1/\alpha_d) \cdot \ln [\ln (T/(T-1))]$$

Calcolati, α e v si sono ricavate le altezze di precipitazione per ogni tempo di ritorno (T = 5, 10, 25, 50, 100, 200, 300 e 500 anni).

Noti i quantili per le varie durate di pioggia si sono disposti questi valori su un diagramma (h, d). Si sono calcolati, allora, una serie di punti interpolabili da una curva con equazione del tipo:

$$h = a*d^n$$

che rappresenta la Curva di Probabilità Pluviometrica, per fissato tempo di ritorno. Questa curva fornisce, per fissato tempo di ritorno e per fissata durata, la massima altezza di pioggia complessiva dell'evento. Tuttavia in genere la CPP si costruisce su scala logaritmica, ovvero i quantili sono regolarizzati tramite diagrammi del tipo (log h, log d), poiché dal grafico ottenuto si estrapolano la pendenza della retta che corrisponde al valore di n_T ed il valore dell'intercetta di cui si è fatto l'esponenziale, corrispondente ad a_T. Qui di seguito si è scelto di riportare nel grafico le CPP solo per i tempi di ritorno di 50, 100, 200 e 300 in quanto questi sono i dati di maggior interesse per effettuare il raffronto col PAI.

Relazione Idrologica

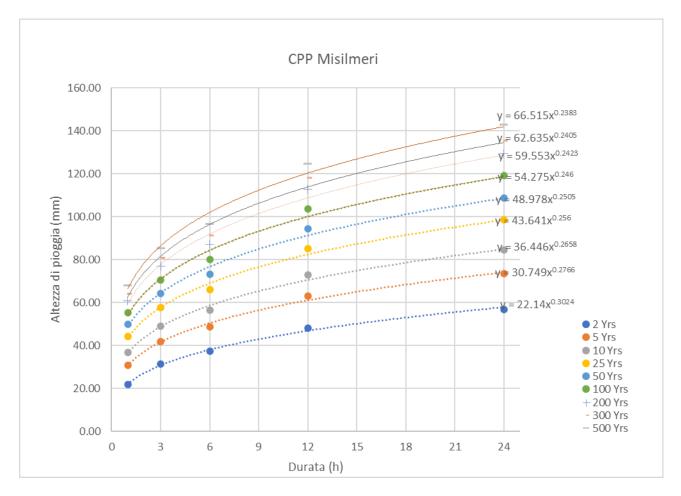


Figura 6.2-4 CPP stazione Misilmeri dati fino al 2016

Relazione Idrologica

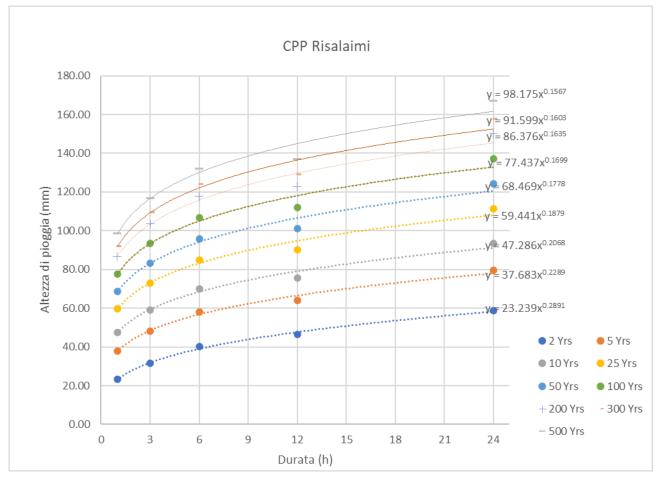


Figura 6.2-5 CPP stazione Risalaimi dati fino al 2006

Relazione Idrologica

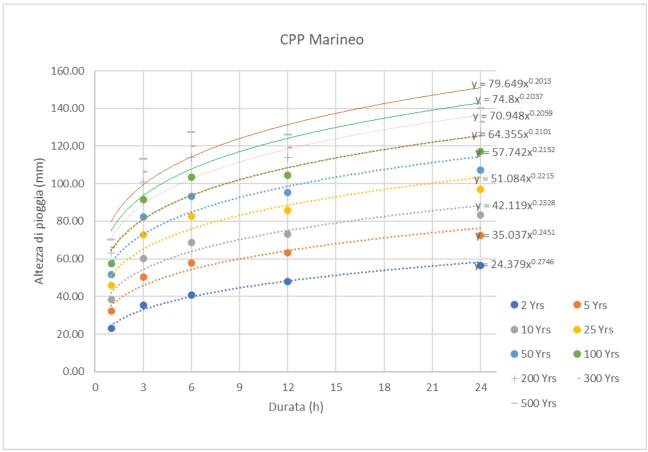


Figura 6.2-6 CPP stazione Marineo dati fino al 2016

Di seguito si riportano i parametri calcolati per tutti i tempi di ritorno

Tabella 6-4 - Parametri CPP

	Misi	Misilmeri		Risalaimi		ineo
Tr	а	n	а	n	а	n
5	30.749	0.2766	37.683	0.2289	35.037	0.2451
25	43.641	0.256	59.441	0.1879	51.084	0.2215
50	48.978	0.2505	68.469	0.1778	57.742	0.2152
100	54.275	0.246	77.437	0.1699	64.355	0.2102
200	59.553	0.2423	83.376	0.1635	70.948	0.2059
300	62.635	0.2405	91.599	0.1603	74.801	0.2037
500	66.515	0.2383	98.175	0.1567	79.649	0.2013

L'analisi idrologica e idraulica si è quindi svolta a partire sia da i dati derivanti dal PAI sia a partire dalle informazioni delle stazioni pluviometriche. Una volta ottenute le portate

UP62

Relazione Idrologica

di progetto con tutte le metodologie si sono scelte le portate a cui corrispondevano le condizioni più cautelative per un Tr= 200 anni.

6.3 Analisi dati di pioggia aggiornamento metodologia VAPI

Oltre alle valutazioni già esposte, per la ricostruzione della pioggia di progetto, si è scelto di procedere attraverso il metodo di regionalizzazione proposto dal progetto VAPI, basato sul modello TCEV.

Tale modello TCEV permette di determinare le altezze di pioggia h e le relative intensità i, seguendo una tecnica di regionalizzazione dei dati pluviometrici messa a punto dal progetto VAPI e nell'ambito dell'aggiornamento del progetto VAPI Sicilia (Ferro e Cannarozzo, 1993) aggiornata utilizzando la modellazione introdotta da Conti et al., 2007.

Si è scelto di ricorrere a tale tecnica per sopperire alla scarsa o inadeguata disponibilità di dati aggiornati. Questa eventualità viene spesso riscontrata poiché le leggi di distribuzione di probabilità che normalmente vengono scelte nella modellistica necessitano di campioni statistici numerosi. In genere le serie storiche di dati pluviometrici disponibili non risultano adeguate per tale stima per cui si rende necessaria un'analisi di tipo regionale, che consiste nella ricerca di modelli per la cui taratura è possibile utilizzare congiuntamente i dati disponibili in una regione tenendo conto della loro variabilità nello spazio.

La procedura gerarchica di regionalizzazione si articola su tre livelli successivi in ognuno dei quali è possibile ritenere costanti alcuni statistici.

Nel primo livello di regionalizzazione si ipotizza che il coefficiente di asimmetria teorico G_t delle serie dei massimi annuali delle piogge di assegnata durata t sia costante per la regione Sicilia. La Sicilia si può pertanto ritenere una zona pluviometrica omogenea ed i valori dei parametri: $\Theta^* = 2,24$ e $\Lambda^* = 0,71$ sono costanti ed indipendenti dalla durata t del fenomeno.

UP62

Relazione Idrologica

Il secondo livello di regionalizzazione riguarda l'individuazione di sottozone omogenee, interne a quella individuata al primo livello, nelle quali risulti costante, oltre al coefficiente di asimmetria, anche il coefficiente di variazione della legge teorica.

Al secondo livello di regionalizzazione la Sicilia è suddivisa in cinque sottozone pluviometriche omogenee: Z_0 – Z_5 , Z_1 , Z_2 , Z_3 , Z_4 come riportato nella seguente figura.

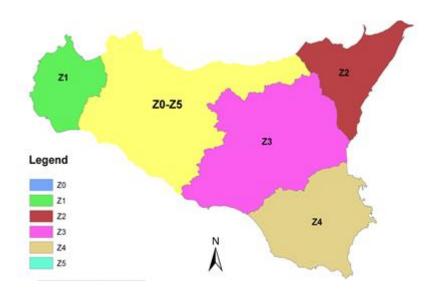


Figura 6.3-1 Sottozone pluviometriche omogenee per la regione Sicilia (Lo Conti et al, 2007)

A ciascuna di esse è stato attribuito un valore costante del parametro λ_1 (parametro della TCEV che rappresenta il numero medio di eventi della componente base) indicato con il simbolo Λ_1 (tabella 6.4), che risulta indipendente dalla durata.

Sottozona Parametro	Z_0	Z_{l}	Z_2	Z_3	Z_4	Z_5
Λ_1	24,429	19,58	17,669	14,517	15,397	24,402

Tabella 6-5 – Valore del parametro Λ₁ per ogni sottozona in cui è stata suddivisa la regione Sicilia (Lo Conti et al, 2007).

Le sottozone Z_0 e Z_5 , possono anche essere "unite" e considerate come una sottozona unica, visti i valori pressoché identici del parametro Λ_1 .

In ogni sottozona la variabile adimensional

UP62

Relazione Idrologica

$$h'_{t,T} = \frac{h_t}{u}$$

che sarebbe l'altezza di pioggia di fissata durata t e tempo di ritorno T rapportata alla media µ della legge TCEV assume la seguente espressione:

$$h'_{t,T} = K_T = a \cdot \ln(T) + b$$

In tale relazione i coefficienti a e b sono stati tarati in funzione della particolare sottozona (tabella 6-5).

Sottozona Parametro	Z_0 - Z_5	Z_{I}	Z_2	Z_3	Z_4
а	0.4485	0.4695	0.4799	0.5011	0.4946
b	0.5117	0.4889	0.4776	0.4545	0.4616

Tabella 6-6 – Valore per la regione Sicilia, dei coefficienti a e b per la definizione del fattore di crescita (Lo Conti et al, 2007).

Il terzo livello di regionalizzazione prevede, infine, la ricerca di relazioni regionali tra il parametro centrale della distribuzione di probabilità μ e le grandezze geografiche relative al sito di misura.

Pertanto, l'espressione della curva di probabilità pluviometrica sarà:

$$h_{\tau\tau} = K_{\tau} \cdot \mu(t)$$

in cui $h_{t,T}$ è l'altezza di pioggia di assegnata durata t e fissato tempo di ritorno T.

Per le stazioni pluviografiche siciliane la media teorica μ risulta coincidente con quella campionaria; per ciascuna delle 172 stazioni siciliane che vantano almeno 10 anni di funzionamento è stato riconosciuto il seguente legame di tipo potenza tra la media campionaria e la durata t:

$$\mu(t) = a \cdot t^n$$

Relazione Idrologica

Per ogni stazione pluviografica i valori dei coefficienti a ed n sono tabellati. Nelle figure a seguire è possibile vedere la variazione dei coefficienti a ed n per la regione Sicilia (Lo Conti et al, 2007).

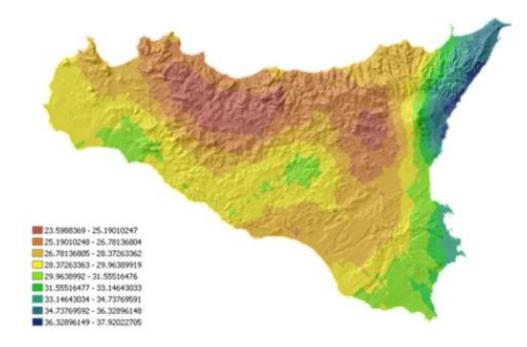


Figura 6.3-2 – Valori dei coefficienti a per la regione Sicilia (Lo Conti et al, 2007)

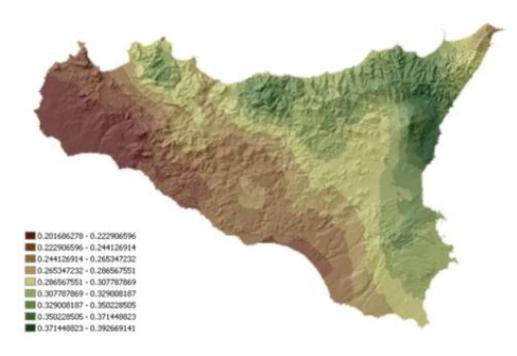


Figura 6.3-3 – Valori dei coefficienti n per la regione Sicilia (Lo Conti et al, 2007)

UP62

Relazione Idrologica

Sono quindi stati calcolati, per i tempi di ritorno di interesse i valori delle altezze di pioggia massima di assegnata durata e la legge di probabilità pluviometrica.

Nello specifico i bacini oggetto del presente studio si trovano nella sottozona pluviometrica omogenea Z₀: il fattore di crescita è calcolato attraverso la seguente espressione,

utilizzando gli appropriati valori dei coefficienti a e b in base alle tabelle presentate:

$$K_T=0.4485*In(T) + 0.5117$$

Fissato il tempo di ritorno della sollecitazione meteorica di progetto ed individuate le stazioni pluviometriche più vicine al sito in esame, è stato quindi possibile calcolare le altezze di pioggia di data frequenza di accadimento e di fissata durata.

Le stazioni pluviometriche di riferimento sono le seguenti:

- Misilmeri;
- Risalaimi;
- Marineo.

Per queste i valori di a ed n risultano tabellati.

	Stazione			
Coefficienti	Misilmeri	Risalaimi	Marineo	
а	23.32083	26.09056	26.4932	
n	0.297398	0.276596	0.281959	

É quindi possibile individuare i parametri delle curve di probabilità pluviometrica per il sito in esame, corrispondente ad un determinato tempo di ritorno.

UP62

Relazione Idrologica

Tabella 6-7 – Parametri curve CPP derivanti da Aggiornamento VAPI

	Misilmeri		Risala	aimi	Marineo	
Tr	а	a n		n	а	n
5	28.767011	0.297398	32.183568	0.276596	32.680233	0.281959
25	45.600754	0.297398	51.016595	0.276596	51.803895	0.281959
50	52.850652	0.297398	59.127538	0.276596	60.040009	0.281959
100	60.10055	0.297398	67.238481	0.276596	68.276122	0.281959
200	67.350448	0.297398	75.349424	0.276596	76.512235	0.281959
300	71.591367	0.297398	80.094022	0.276596	81.330053	0.281959
500	76.934293	0.297398	86.071508	0.276596	87.399785	0.281959

6.4 Conclusioni sulle massime precipitazioni di progetto

Secondo le analisi svolte nei paragrafi precedenti in merito ai diversi approcci utilizzati per il calcolo delle massime precipitazioni da utilizzare nell'area di interesse, si riportano a seguire i risultati ottenuti per il tempo di ritorno pari a 200 anni per gli input di pioggia.

Nello specifico nella tabella a seguire sono riportati per ciascuna stazione le superfici ricadenti nell'area d'influenza di ciascuna stazione pluviometrica individuata mediante il metodo dei topoieti.

Tabella 6-8 – Percentuali aree per topoieti

Pk Progetto	Bacino	Area	Stazione Misilmeri		Stazione Ri	isalaimi	Stazione M	larineo
		[1/2]	Area	Perc	Area	Perc	Area	Perc
		[Km2]	[Km2]	[%]	[Km2]	[%]	[Km2]	[%]
1+760.00	01	200.65	89.7	44.7	45.1	22.5	65.9	32.8
3+230.00	02	0.12	0.1	100.0	0.0	0.0	0.0	0.0
3+710.00	03	0.21	0.2	100.0	0.0	0.0	0.0	0.0
4+240.00	04	0.26	0.3	100.0	0.0	0.0	0.0	0.0
4+700.00	05	0.51	0.5	100.0	0.0	0.0	0.0	0.0
5+065.00	06	0.07	0.1	100.0	0.0	0.0	0.0	0.0
5+160.00	07	1.08	1.1	100.0	0.0	0.0	0.0	0.0
5+695.00	08	0.25	0.3	100.0	0.0	0.0	0.0	0.0

UP62

Pk Progetto Bacino		Area	Stazione Misilmeri		Stazione Risalaimi		Stazione Marineo	
		[Km2]	Area	Perc	Area	Perc	Area	Perc
		[KIII2]	[Km2]	[%]	[Km2]	[%]	[Km2]	[%]
6+090.00	9	0.46	0.5	100.0	0.0	0.0	0.0	0.0
6+430.00	10	0.24	0.2	100.0	0.0	0.0	0.0	0.0
7+420.00	11	13.32	13.3	100.0	0.0	0.0	0.0	0.0
8+140.00	12	53.18	24.6	46.2	28.6	53.8	0.0	0.0
8+900.00	13	117.19	6.2	4.9	45.1	38.5	65.9	56.2
9+825.00	14	0.49	0.5	100.0	0.0	0.0	0.0	0.0
10+080.00	15	0.92	0.9	100.0	0.0	0.0	0.0	0.0
10+450.00	16	0.54	0.5	100.0	0.0	0.0	0.0	0.0
11+020.00	17	0.5	0.0	0.0	0.2	46.2	0.3	53.8
11+350.00	18	0.12	0.0	0.0	0.1	100.0	0.0	0.0
11+495.00	19	0.11	0.0	0.0	0.1	100.0	0.0	0.0
11+985.00	20	0.13	0.0	0.0	0.1	100.0	0.0	0.0
12+095.00	21	1.69	0.2	9.5	1.5	90.5	0.0	0.0
12+620.00	22	0.18	0.0	0.0	0.2	100.0	0.0	0.0
13+080.00	23	0.97	0.0	0.0	1.0	100.0	0.0	0.0
13+810.00	24	0.32	0.0	0.0	0.3	100.0	0.0	0.0
14+820.00	25	61.31	0.0	0.0	0.0	0.0	61.3	100.0
15+420.00	26	60.36	0.0	0.0	0.0	0.0	60.4	100.0
15+860.00	27	59.43	0.0	0.0	0.0	0.0	59.4	100.0
16+120.00	28	0.6	0.0	0.0	0.2	31.4	0.4	68.6

Tabella 6-9 – Altezze di Pioggia nette ricavate con le tre metodologie

Pk	Pasino	VAPI	PAI	СРР
Duogotto	Bacino	h200	h200	h200
Progetto		[mm]	[mm]	[mm]
1+760.00	01	61.2	42.6	46.6
3+230.00	02	12.3	6.0	10.0
3+710.00	03	13.6	5.2	11.7
4+240.00	04	17.3	9.6	14.4
4+700.00	05	13.9	6.4	10.5
5+065.00	06	16.5	8.9	14.2

Relazione Idrologica

Pk		VAPI	PAI	СРР
	Bacino	h200	h200	h200
Progetto		[mm]	[mm]	[mm]
5+160.00	07	19.0	10.6	14.3
5+695.00	08	12.0	4.7	9.6
6+090.00	9	14.7	4.4	10.4
6+430.00	10	27.9	18.8	20.1
7+420.00	11	40.3	14.1	24.2
8+140.00	12	41.5	30.1	34.7
8+900.00	13	52.2	32.3	40.7
9+825.00	14	21.6	14.8	16.3
10+080.00	15	20.1	13.4	15.2
10+450.00	16	16.8	10.2	13.1
11+020.00	17	16.1	4.2	16.7
11+350.00	18	19.0	8.4	26.3
11+495.00	19	16.2	7.0	24.2
11+985.00	20	17.2	7.6	24.1
12+095.00	21	20.8	9.4	22.9
12+620.00	22	22.9	13.0	30.1
13+080.00	23	24.3	11.2	28.7
13+810.00	24	23.6	14.4	29.0
14+820.00	25	46.8	21.2	32.9
15+420.00	26	46.2	20.6	32.7
15+860.00	27	47.2	21.6	33.1
16+120.00	28	22.8	8.1	20.0

6.5 Uso del suolo e caratteristiche dei bacini nella stima della pioggia netta

Per quanto attiene l'uso del suolo, l'area territoriale del bacino del Fiume Eleuterio e il bacino del fiume Milicia sono state analizzate nel complesso, utilizzando la carta realizzata dalla Regione Siciliana, Assessorato Territorio ed Ambiente, in scala 1:250.000 nel 1994 riportata nella Figura 6.4.1.

Relazione Idrologica

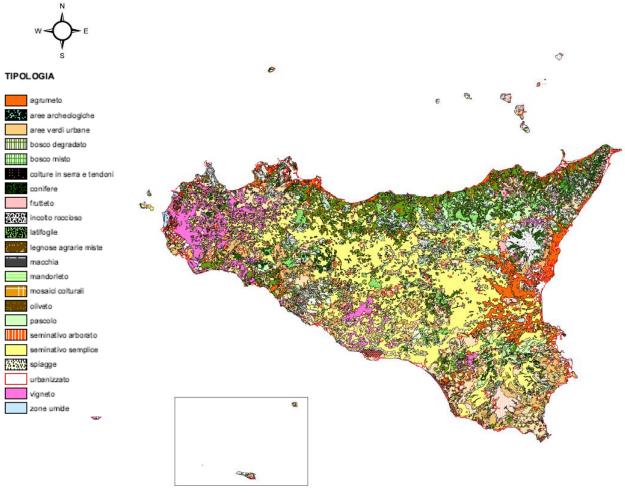


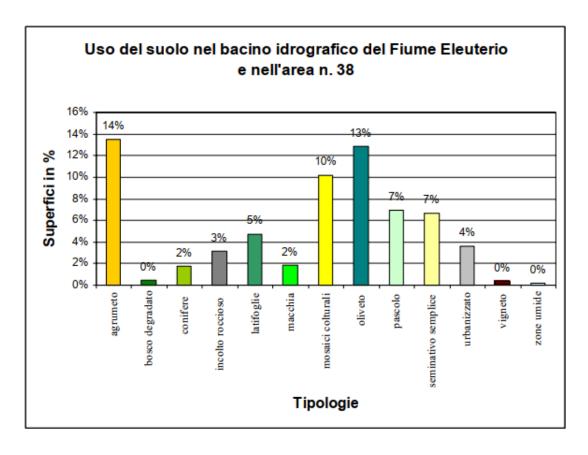
Figura 6.5-1 Carta Uso Suolo PAI

Come evidenziato nella carta, ad eccezione di alcune aree, quali quelle urbanizzate e delle aree rocciose incolte, la maggior parte del territorio viene sfruttata per coltivazioni di vario genere. Prevalgono le aree adibite a colture miste (mosaici colturali), che comprendono circa il 50% delle aree coltivate; seguono, in termine di diffusione areale, le zone adibite a vigneto e quelle ad oliveto; le restanti aree del territorio sono destinate a seminativo semplice e, localmente, a colture legnose agrarie miste. Sono presenti i pascoli e la copertura boschiva caratterizza una notevole porzione del versante settentrionale della Rocca Busambra. Nel seguente grafico (Fig. 1) sono riportate le superfici territoriali attribuibili ai diversi usi con riferimento all'intero bacino e all'area n.38.

UP62

Relazione Idrologica

Il quadro vegetazionale dell'area in esame si presenta abbastanza vario, ma caratteristico di un'area a prevalente vocazione agricola. Infatti circa il 90% del territorio è dedicato a colture agricole, prevalentemente al seminativo semplice, ai mosaici colturali e a colture specializzate quali legnose agrarie miste, mandorleti, vigneti, colture in serra, frutteti e oliveti. Una piccola parte del territorio è dedicata al pascolo (6,42%), mentre soltanto il 3,63% risulta urbanizzato. Nella tabella e nel grafico a seguire viene riassunto il quadro vegetazionale dell'intera area.


Tabella 6-10 – Caratteristiche suolo dei bacini idrografici da P.A.I.

COLTURA	Superficie in kmq
Agrumeto	31,79
Bosco degradato	1,83
Bosco a conifere	6,68
Incolto roccioso	11,98
Bosco a latifoglie	18,24
Macchia	7,07
Mosaico colturale	39,14
Oliveto	49,40
Pascolo	26,54
Seminativo semplice	25,71
Zona urbanizzata	13,97
Vigneto	1,53
Zone umide	0,86
TOTALE	235

Relazione Idrologica

Tabella 6-11 - Caratteristiche dei bacini idrografici

Per quanto riguarda il bacino del fiume Milicia la carta dell'auso suolo ha invece evidenziato queste componti riepilogate nella tabella e nel grafico a seguire

Tabella 6-12 – Caratteristiche suolo dei bacini idrografici da P.A.I.fiume Milicia

COLTURA	96
Agrumeto	10,50
Bosco degradato	0,62
Bosco a latifoglie	0,25
Incolto roccioso	3,26
Legnose agrarie miste	3,21
Macchia mediterranea	4,54
Mosaici colturali	12,53
Oliveto	31,04
Pascolo	10,40
Seminativo semplice	17,94
Zone urbanizzate	5,71
TOTALE	100%

Relazione Idrologica

Tabella 6-13 - Caratteristiche dei bacini idrografici fiume Milicia

6.6 Determinazione del tempo di corrivazione dei bacini

Ai fini di un confronto critico si è scelto di utilizzare una formulazione unica per valutare il tempo di corrivazione di ogni bacino idrografico indagato.

A tal proposito, sulla base di quanto indicato dalle Linee Guida regionali, si è calcolato avvalendosi della formulazione SCS [h], secondo cui:

$$T_{C} = 0.571 \cdot \frac{L^{0.8} \left(\frac{1000}{CN} - 9\right)^{0.7}}{\sqrt{i_{v}}}$$

Dove: L=lunghezza dell'asta principale [Km]

i_v = pendenza media del bacino [%]

UP62

Relazione Idrologica

La stima del tempo di crescita dell'onda di piena, il T_{lag}, pari a 0,6 volte il tempo di corrivazione, ossia dopo un tempo pari a 2/3 del T_c a partire dall'inizio della pioggia.

è stato invece ricavata con la seguente formula:

$$T_P = \frac{D}{2} + T_{lag}$$

Dove: D = durata della pioggia che genera deflusso [h] = 0.133 Tc

 T_{lag} = intervallo tra il centroide della pioggia ed il colmo = 0.6 T_{C}

I valori del parametro di assorbimento CN sono stati ricavati secondo la metodologia elaborata dal CIMA (Centro di Ricerca Interuniversitario in Monitoraggio Ambientale, Savona) per conto e in coordinamento con la Protezione Civile Nazionale.

La carta del CN della regione Sicilia è costruita sulla base delle informazioni sull'uso del suolo, la litologia e la permeabilità a disposizione. La procedura prevede inizialmente l'associazione a ogni tipologia di copertura del territorio di un valore di CN secondo la classificazione riportata nella seguente tabella.

Tabella 6-14 CN per tipologie di uso suolo

DESCRIZIONE	CN	DESCRIZIONE	CN
1111 - TESSUTO RESIDENZIALE COMPATTO E DENSO	95	3111 - BOSCHI DI LATIFOGLIE	50
1112 - TESSUTO RESIDENZIALE RADO	95	31121 - PIOPPETI SALICETI EUCALITTETI	50
1121 - TESSUTO RESIDENZIALE RADO E NUCLEIFORME	95	31122 – SUGHERETE	65
1122 - FABBRICATI RURALI	95	31123 - CASTAGNETI DA FRUTTO	50
1211 - INSEDIAMENTO INDUSTRIALI/ARTIG. E COMM. E SPAZI ANNESSI	95	31124 – ALTRO	50
1212 - INSEDIAMENTO DI GRANDI IMPIANTI DI SERVIZI	95	3121 - BOSCHI DI CONIFERE	70
1221 - RETI STRADALI E SPAZI ACCESSORI	95	3122 - CONIFERE A RAPIDO ACCRESCIMENTO	70
1222 - RETI FERROVIARIE E SPAZI ANNESSI	95	313 - BOSCHI MISTI DI CONIFERE E LATIFOGLIE	60
1223 - GRANDI IMPIANTI DI CONCENTRAMENTO E SMISTAMENTO MERCI	99	321 - AREE A PASCOLO NATURALE	75
1224 - IMPIANTI A SERVIZIO DELLE RETI DI DISTRIBUZIONE	95	3221 - CESPUGLIETI ED ARBUSTETI	65
123 - AREE PORTUALI	95	3222 - FORMAZIONI DI RIPA NON ARBOREE	65
124 - AREE AEROPORTUALI ED ELIPORTI	95	3231 - MACCHIA MEDITERRANEA	65
131 - AREE ESTRATTIVE	75	3232 – GARIGA	65
1321 – DISCARICHE	75	3241 - AREE A RICOLONIZZAZIONE NATURALE	70
1322 - DEPOSITI DI ROTTAMI A CIELO APERTO, CIMITERI DI AUTOVEICOLI	75	3242 - AREE A RICOLONIZZAZIONE ARTIFICIALE	70

UP62

Relazione Idrologica

DESCRIZIONE	CN	DESCRIZIONE	CN
133 – CANTIERI	95	3311 - SPIAGGE DI AMPIEZZA SUPERIORE A 25M	40
141 - AREE VERDI URBANE		3312 - AREE DUNALI NON COPERTE DA VEGETAZIONE DI AMPIEZZA SUPERIORE A 25M	40
1421 - AREE RICREATIVE E SPORTIVE	95	3313 - AREE DUNALI COPERTE DA VEGETAZIONE DI AMPIEZZA SUPERIORE A 25M	40
1422 - AREE ARCHEOLOGICHE	75	3315 - LETTI DI TORRENTI DI AMPIEZZA SUPERIORE A 25M	99
143 – CIMITERI	95	332 - PARETI ROCCIOSE E FALESIE	75
2111 - SEMINATIVI IN AREE NON IRRIGUE	60	333 - AREE CON VEGETAZIONE RADA > 5% E<40%	75
2112 - PRATI ARTIFICIALI	75	411 - PALUDI INTERNE	99
2121 - SEMINATIVI SEMPLICI E COLTURE ORTICOLE A PIENO CAMPO	60	421 - PALUDI SALMASTRE	99
2122 – RISAIE	99	422 – SALINE	75
2123 – VIVAI	70	423 - ZONE INTERTIDALI	99
2124 - COLTURE IN SERRA	75	5111 - FIUMI, TORRENTI E FOSSI	99
221 – VIGNETI	60	5112 - CANALI E IDROVIE	99
222 - FRUTTETI E FRUTTI MINORI	60	5121 - BACINI NATURALI	99
223 – OLIVETI	60	5122 - BACINI ARTIFICIALI	99
231 - PRATI STABILI	75	5211 - LAGUNE, LAGHI E STAGNI COSTIERI A PRODUZIONE ITTICA NATURALE	99
2411 - COLTURE TEMPORANEE ASSOCIATE ALL'OLIVO	60	5212 - ACQUACOLTURE IN LAGUNE, LAGHI E STAGNI COSTIERI	99
2412 - COLTURE TEMPORANEE ASSOCIATE AL VIGNETO	99	522 - ESTUARI E DELTA	99
2413 - COLTURE TERMPORANEE ASSOCIATE AD ALTRE COLTURE PERMANENTI	60	5231 - AREE MARINE A PRODUZ. ITTICA NATURALE	99
242 - SISTEMI COLTURALI E PARTICELLARI COMPLESSI	60	5232 - ACQUACOLTURE IN MARE LIBERO	99
243 - AREE PREV. OCCUPATE DA COLTURE AGRARIE CON PRESENZA DI SPAZI NATURALI IMPORTANTI	70		
244 - AREE AGROFORESTALI	70		

Come indicato dalla metodologia CIMA - Protezione Civile Nazionale, si è proceduto ad analizzare le informazioni presenti nella Carta geologica, al fine di ottenere fattori correttivi per il calcolo definitivo dei valori di CN a scala regionale.

Ogni classe è stata indagata e, in considerazione degli aspetti geologici preminenti e delle caratteristiche di permeabilità proprie, sono stati stimati i coefficienti di variazione del CN da attribuire a ogni tipo litologico.

Infine, un ulteriore incremento del CN avviene per ogni sottobacino nel valutare elevate le condizioni di umidità antecedenti l'evento. Per ogni sottobacino viene quindi incrociato in ambiente GIS il tematismo della carta dei CN con quello della perimetrazione dell'area in esame e definito il valore di CN da utilizzare. Per quanto riguarda, invece, il metodo SCS il

UP62

Relazione Idrologica

parametro Curve Number è stato calcolato come valore medio sull'intera superficie del generico bacino riferito alle condizioni di umidità del terreno relative alla classe AMC III, utilizzando le informazioni contenute nella Carta del Curve Number della Regione Sicilia disponibile in formato digitale sul GeoPortale della Regione.

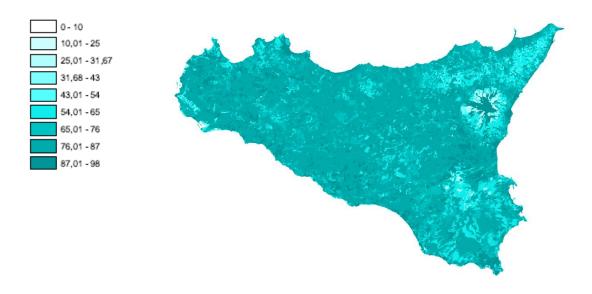


Figura 6.6-1- Carta Valori di CN da PAI

Nella tabella sottostante si riassumono i parametri ottenuti dall'elaborazione in ambiente GIS ed utilizzati per ogni bacino nella metodologia SCS.

Tabella 6-15 – Valori di CN per ciascun bacino

Pk Progetto	Asta	Bacino	Area	CNIII PAI
Trogetto			[km2]	[-]
1+760.00	Eleuterio foce	01	200.65	85.8
3+230.00		02	0.12	88.4
3+710.00		03	0.21	90.6
4+240.00		04	0.26	91.3
4+700.00		05	0.51	84.9
5+065.00		06	0.07	93.1
5+160.00		07	1.08	86.2
5+695.00		08	0.25	86.6
6+090.00		9	0.46	83.0
6+430.00		10	0.24	88.8

Relazione Idrologica

Pk Progetto	Asta	Bacino	Area	CNIII PAI
Progetto			[km2]	[-]
7+420.00	Sant'Antonio	11	13.32	78.0
8+140.00	Rigano	12	53.18	82.2
8+900.00	Eleuterio Intermedio	13	117.19	81.2
9+825.00		14	0.49	88.3
10+080.00		15	0.92	87.1
10+450.00		16	0.54	87.7
11+020.00		17	0.50	80.2
11+350.00		18	0.12	87.3
11+495.00		19	0.11	87.3
11+985.00		20	0.13	85.8
12+095.00	Coda di Volpe	21	1.69	79.6
12+620.00		22	0.18	88.8
13+080.00		23	0.97	84.1
13+810.00		24	0.32	86.0
14+820.00	Milicia	25	61.31	80.0
15+420.00	Milicia	26	60.36	79.9
15+860.00	Milicia	27	59.43	79.9
16+120.00		28	0.60	81.0

Sulla scorta di quanto sopra esposto il tempo di corrivazione è stato calcolato con la formula dello SCS, riportati nella tabella che segue.

Tabella 6-16 - Tempi di corrivazione bacini idrografici

Pk	Asta	Bacino	Area	T corr SCS
Progetto			[km2]	[h]
1+760.00	Eleuterio foce	01	200.65	5.1
3+230.00		02	0.12	0.1
3+710.00		03	0.21	0.1
4+240.00		04	0.26	0.1
4+700.00		05	0.51	0.2
5+065.00		06	0.07	0.1
5+160.00		07	1.08	0.4

Pk Progetto	Asta	Bacino	Area	T corr SCS
Progetto			[km2]	[h]
5+695.00		08	0.25	0.2
6+090.00		9	0.46	0.3
6+430.00		10	0.24	0.5
7+420.00	Sant'Antonio	11	13.32	3.5
8+140.00	Rigano	12	53.18	2.6
8+900.00	Eleuterio Intermedio	13	117.19	4.2
9+825.00		14	0.49	0.3
10+080.00		15	0.92	0.4
10+450.00		16	0.54	0.2
11+020.00		17	0.50	0.3
11+350.00		18	0.12	0.2
11+495.00		19	0.11	0.1
11+985.00		20	0.13	0.2
12+095.00	Coda di Volpe	21	1.69	0.6
12+620.00		22	0.18	0.2
13+080.00		23	0.97	0.5
13+810.00		24	0.32	0.3
14+820.00	Milicia	25	61.31	3.3
15+420.00	Milicia	26	60.36	3.2
15+860.00	Milicia	27	59.43	3.3
16+120.00		28	0.60	0.6

UP62

Relazione Idrologica

7 METODO DI STIMA DELLE PORTATE AL COLMO

7.1 Criteri generali

Ai fini della modellazione idrologica, per poter fare un modello di trasformazione delle piogge in portate nelle sezioni di attraversamento del rilevato stradale delle aste principali, per differenti tempi di ritorno, sono state utilizzate due metodologie di trasformazione degli input di pioggia in deflussi.

Per calcolare le portate dei corsi d'acqua in corrispondenza delle sezioni interessate dal nuovo asse stradale, sono stati seguiti i seguenti due metodi.

<u>Il primo metodo</u> è quello del Soil Conservation Service (CN) che consiste, in breve, nelle seguenti fasi:

- calcolo del tempo di corrivazione;
- calcolo dell'altezza di precipitazione in corrispondenza dalla curva di possibilità pluviometrica per dato tempo di corrivazione e tempo di ritorno;
- calcolo del K_T coefficiente di crescita della pioggia che cresce al crescere dei tempi di ritorno;
- calcolo della Perdita di Volume di pioggia iniziale e Calcolo della capacità di ritenzione potenziale (entrambi funzione del Curve Number);
- calcolo della pioggia netta e della portata di piena defluita.

<u>Il secondo metodo</u> è il Metodo Razionale che può essere brevemente sintetizzato nei seguenti passaggi:

- Calcolo del tempo di corrivazione del bacino;
- Calcolo dell'intensità di precipitazione i [mm/h] per dato tempo di corrivazione sulla curva di possibilità pluviometrica della zona omogenea d'interesse
- Calcolo del K_T e moltiplico per l'intensità di precipitazione;

UP62

Relazione Idrologica

- Calcolo della portata defluita mediante la formula razionale.

Per ciascuna di queste metodologie sono stati usati come input le tre differenti altezze di pioggia ottenute con le metodologie precedentemente presentate.

Per ciascuna intersezione idraulica sono state valutate le portate al colmo per i tempi di ritorno di 5, 25, 50, 100, 200, 300 e 500 anni. Qui di seguito si presentano i risultati solo riferite al tempo di ritorno duecentennale, valore necessario per le valutazioni idrauliche degli attraversamenti.

7.1.1 Metodo Razionale

La valutazione della portata massima per la verifica del dimensionamento delle opere idrauliche in progetto, è stata eseguita utilizzando il Metodo Razionale. Il metodo considera il bacino idrografico come una singola unità e stima il valore al colmo della portata con le seguenti assunzioni:

- la precipitazione è uniformemente distribuita sul bacino;
- la portata stimata ha lo stesso tempo di ritorno T di quello dell'intensità di pioggia;
- il tempo di formazione del colmo di piena è pari a quello della fase di riduzione; l'intensità di pioggia ha una durata pari a quella del tempo di corrivazione tc.

Alla relazione di cui sopra, per corsi d'acqua aventi bacini imbriferi con superfici superiori ai 10 Kmq, viene associato un fattore di riduzione areale (ARF), così come prescritto dal VAPI e precedentemente descritto.

Tale metodo considera i fattori morfologici, pluviometrici e principalmente del tempo di corrivazione del bacino (Tc).

La formula è la seguente:

$$Q = 0.278 C A \langle h|T_c \rangle$$

dove:

UP62

Relazione Idrologica

Q = portata massima in m^3/s

C = coefficiente di deflusso (adimensionale)

A = superficie del bacino idrografico in km²

h = altezza di pioggia critica (mm)

tc = tempo di concentrazione o corrivazione (h).

Le altezze di pioggia sono state desunte sia dalla metodologia VAPI che dalle CPP aggiornate al 2022.

Qui di seguito vengono riportati nelle tabelle i parametri utilizzati per valutare le portate al colmo sia per la metodologia VAPI che per la metodologia CPP.

Tabella 7-1 – Parametri per il calcolo delle portate al colmo col metodo razionale e risultati per il Tr 200

ID Bacino	PK	Tcorr	h CPP 200	Qraz CPP aggiornate	h VAPI 200	ARF	Q _{raz} VAPI	h PAI 200	Qraz PAI aggiornate
[-]	[-]	[h]	[mm]	[m³/sec]	[mm]	[-]	[m³/sec]	[mm]	[m³/sec]
1	1+760.00	5.1	46.6	587.0	61.2	0.9	771.3	42.6	536.7
2	3+230.00	0.1	10.0	3.3	12.3	1.0	3.6	6.0	1.8
3	3+710.00	0.1	11.7	7.5	13.6	0.9	8.1	5.2	3.1
4	4+240.00	0.1	14.4	8.5	17.3	0.9	9.3	9.6	5.2
5	4+700.00	0.2	10.5	6.9	13.9	0.9	8.4	6.4	3.9
6	5+065.00	0.1	14.2	3.8	16.5	1.0	4.0	8.9	2.2
7	5+160.00	0.4	14.3	13.5	19.0	0.9	16.6	10.6	9.3
8	5+695.00	0.2	9.6	5.1	12.0	0.9	5.9	4.7	2.3
9	6+090.00	0.3	10.4	4.6	14.7	1.0	5.8	4.4	1.7
10	6+430.00	0.5	20.1	3.0	27.9	1.0	3.7	18.8	2.5
11	7+420.00	3.5	24.2	29.6	40.3	0.9	45.4	14.1	16.0
12	8+140.00	2.6	34.7	228.9	41.5	0.9	265.6	30.1	192.9
13	8+900.00	4.2	40.7	367.8	52.2	0.9	463.9	32.3	287.0
14	9+825.00	0.3	16.3	7.6	21.6	1.0	9.1	14.8	6.2
15	10+080.00	0.4	15.2	12.5	20.1	0.9	15.2	13.4	10.1
16	10+450.00	0.2	13.1	9.8	16.8	0.9	11.5	10.2	6.9
17	11+020.00	0.3	16.7	8.0	16.1	1.0	7.0	4.2	1.8
18	11+350.00	0.2	26.3	5.5	19.0	1.0	3.6	8.4	1.6
19	11+495.00	0.1	24.2	6.8	16.2	1.0	4.1	7.0	1.8
20	11+985.00	0.2	24.1	5.6	17.2	1.0	3.6	7.6	1.6
21	12+095.00	0.6	22.9	19.9	20.8	0.9	16.6	9.4	7.5

UP62

ID Bacino	PK	Tcorr	h CPP 200	Qraz CPP aggiornate	h VAPI 200	ARF	Q _{raz} VAPI	h PAI 200	Qraz PAI aggiornate
[-]	[-]	[h]	[mm]	[m³/sec]	[mm]	[-]	[m³/sec]	[mm]	[m³/sec]
22	12+620.00	0.2	30.1	7.9	22.9	1.0	5.4	13.0	3.1
23	13+080.00	0.5	28.7	19.2	24.3	0.9	14.8	11.2	6.8
24	13+810.00	0.3	29.0	8.8	23.6	1.0	6.4	14.4	3.9
25	14+820.00	3.3	32.9	205.1	46.8	0.9	274.1	21.2	127.5
26	15+420.00	3.2	32.7	201.7	46.2	0.9	271.1	20.6	123.2
27	15+860.00	3.3	33.1	193.9	47.2	0.9	262.0	21.6	122.1
28	16+120.00	0.6	20.0	7.0	22.8	1.0	7.2	8.1	2.6

UP62

Relazione Idrologica

7.1.2 Metodo SCS-CN per le portate al colmo

La stima delle portate al colmo con il metodo SCS, si è basata sui seguenti criteri:

- le precipitazioni intense sono state desunte in due differenti modi:
 - 1. dalla regionalizzazione VAPI;
 - 2. da carte PAI a n e CNII;
 - 3. dalle CPP aggiornate.

A partire da questi tre diversi input del sistema si è effettuato un calcolo delle portate al colmo con il metodo del CN. Il bacino scolante è stato modellato alla stessa maniera attraverso i seguenti parametri:

- i tempi di corrivazione vengono valutati a partire dai parametri morfometrici definiti come specificato, secondo le espressioni empiriche più rispondenti alle tipologie dei bacini in esame, come indicato nella tabella sopra riportata;
- I coefficienti di deflusso derivano dall'analisi secondo il metodo SCS Curve Number, raffrontato con i dati disponibili da studi pregressi e da eventuali misure idrologiche relative a eventi di piena storici. Nell'utilizzazione del metodo si è assunta una pioggia di durata pari a quella della pioggia critica, che è stata assunta coincidente con il tempo di corrivazione calcolato come detto. Inoltre è stato utilizzato il CNIII perché maggiormente cautelativo.

In queste condizioni il valore al colmo della portata risulta:

$$Q_c = 0.278 * R_0 * S/T_c$$

dove:

Ro = volume netto di pioggia per unità di superficie (mm);

 $S = \text{superficie del bacino (km}^2);$

 T_C = tempo di corrivazione (h).

Assumendo che l'invaso per infiltrazione nel suolo in ogni istante sia proporzionale al valore massimo dello stesso e che la precipitazione efficace sia proporzionale all'afflusso meteorico, si ha la seguente equazione (USDA SCS, 1986) per la

UP62

Relazione Idrologica

definizione del volume netto di pioggia per unità di superficie R_0 , che coincide con la pioggia netta h_n :

$$R_0 = \frac{(h_r - I_a)^2}{h - I_a + S} = h_n$$

dove:

h_r = precipitazione meteorica ragguagliata [mm]

la = perdita iniziale [mm]

S = 25.4 ((1000/CNIII) - 10) = capacità di ritenzione potenziale [mm].

Qui di seguito vengono riportati nelle tabelle i parametri utilizzati per valutare le portate al colmo sia per la metodologia VAPI che per la metodologia CPP.

Tabella 7-2 – Parametri per il calcolo delle portate al colmo col metodo SCS CN e risultati per il Tr 200

Pk	Barina	Area	CNIII PAI	Altezza di pioggia PAI	FORMULA SCS PAI	Altezza di pioggia CPP	FORMULA SCS CPP	Altezza di pioggia VAPI	FORMULA SCS VAPI
Dunantta	Bacino	[12]	PAI	h200	Q _{200anni}	h200	Q _{200anni}	h200	Q _{200anni}
Progetto		[km²]	[-]	[mm]	[m³/s]	[mm]	[m³/s]	[mm]	[m³/s]
1+760.00	01	200.65	85.8	42.6	315.8	46.6	345.4	61.2	453.8
3+230.00	02	0.12	88.4	6.0	1.2	10.0	1.9	12.3	2.4
3+710.00	03	0.21	90.6	5.2	2.0	11.7	4.4	13.6	5.2
4+240.00	04	0.26	91.3	9.6	3.3	14.4	5.0	17.3	6.0
4+700.00	05	0.51	84.9	6.4	2.5	10.5	4.1	13.9	5.4
5+065.00	06	0.07	93.1	8.9	1.4	14.2	2.3	16.5	2.6
5+160.00	07	1.08	86.2	10.6	5.9	14.3	8.0	19.0	10.6
5+695.00	08	0.25	86.6	4.7	1.5	9.6	3.0	12.0	3.8
6+090.00	9	0.46	83.0	4.4	1.1	10.4	1.7	14.7	3.8
6+430.00	10	0.24	88.8	18.8	1.7	20.1	1.8	27.9	2.5
7+420.00	11	13.32	78.0	14.1	10.2	24.2	17.4	40.3	29.1
8+140.00	12	53.18	82.2	30.1	116.8	34.7	134.7	41.5	160.8
8+900.00	13	117.19	81.2	32.3	171.6	40.7	216.4	52.2	277.4
9+825.00	14	0.49	88.3	14.8	4.0	16.3	4.4	21.6	5.9
10+080.00	15	0.92	87.1	13.4	6.5	15.2	7.4	20.1	9.8
10+450.00	16	0.54	87.7	10.2	4.5	13.1	0.0	16.8	7.4
11+020.00	17	0.50	80.2	4.2	1.2	16.7	4.7	16.1	4.5
11+350.00	18	0.12	87.3	8.4	1.0	26.3	3.2	19.0	2.3
11+495.00	19	0.11	87.3	7.0	1.2	24.2	4.0	16.2	2.7

Relazione Idrologica

Pk	Danima	Area	CNIII PAI	Altezza di pioggia PAI	FORMULA SCS PAI	Altezza di pioggia CPP	FORMULA SCS CPP	Altezza di pioggia VAPI	FORMULA SCS VAPI
	Bacino	rı 21	PAI	h200	Q _{200anni}	h200	Q _{200anni}	h200	Q _{200anni}
Progetto		[km²]	[-]	[mm]	[m³/s]	[mm]	[m³/s]	[mm]	[m³/s]
11+985.00	20	0.13	85.8	7.6	1.0	24.1	3.3	17.2	2.4
12+095.00	21	1.69	79.6	9.4	4.8	22.9	11.7	20.8	10.7
12+620.00	22	0.18	88.8	13.0	2.0	30.1	4.6	22.9	3.5
13+080.00	23	0.97	84.1	11.2	4.4	28.7	11.3	24.3	9.5
13+810.00	24	0.32	86.0	14.4	2.6	29.0	5.2	23.6	4.2
14+820.00	25	61.31	80.0	21.2	77.5	32.9	120.7	46.8	168.7
15+420.00	26	60.36	79.9	20.6	74.8	32.7	118.7	46.2	166.1
15+860.00	27	59.43	79.9	21.6	74.3	33.1	114.1	47.2	160.9
16+120.00	28	0.60	81.0	8.1	1.7	20.0	4.1	22.8	4.7

7.1.3 Verifica bacini contribuenti minori

Vista la presenza di numerosi bacini di limitata estensione e di relativa rapidità dei deflussi, come si può notare dagli stralci delle corografie dei bacini minori riportate qui a seguire:

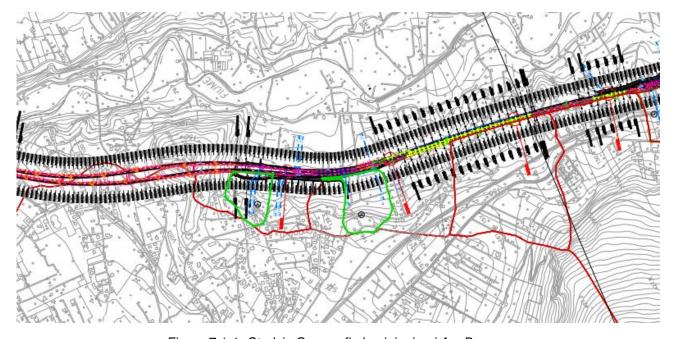


Figura 7.1-1—Stralcio Corografia bacini minori A e B

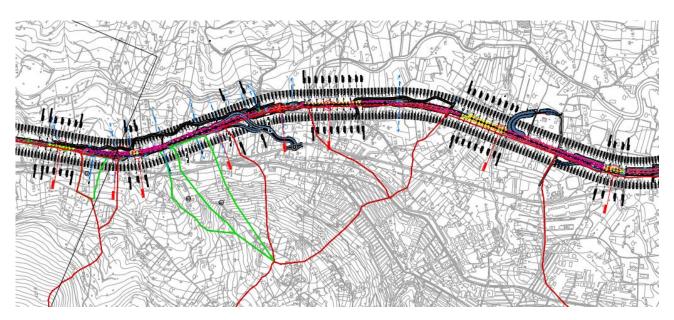


Figura 7.1-2-Stralcio Corografia bacini minori C, D e E

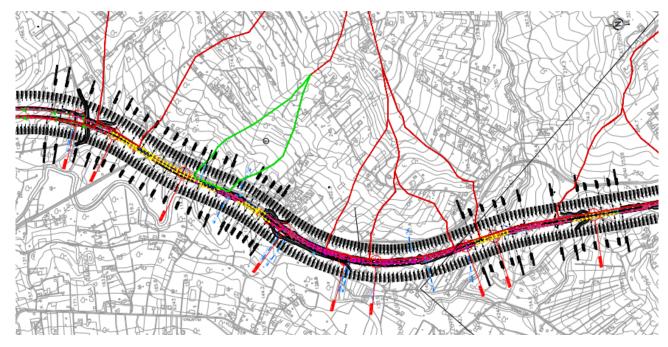


Figura 7.1-3-Stralcio Corografia bacini minori F.

Relazione Idrologica

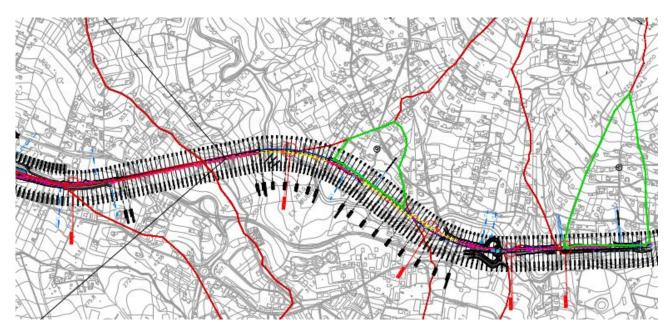


Figura 7.1-4-Stralcio Corografia bacini minori G e H.

Per ottenere uno studio più accurato e valutare correttamente il dimensionamento delle opere previste per la risoluzione delle interferenze si è proceduto allo studio delle precipitazioni intense di durata breve con tempi inferiori all'ora.

Nel caso oggetto della presente relazione per il calcolo delle curve di probabilità pluviometrica, per tempi inferiori ad un'ora, è stata utilizzata la formula di Bell (GeneralizedRainfallDurationFrequencyRelationship" – Journal of the HydraulicsDivision – Proceedings of american Society of CivilEngineers – volume 95, issue 1 – gennaio 1969).

Tale formula evidenzia come il rapporto $r\delta$ tra le altezze di durata τ (tempo di corrivazione del bacino) molto breve ed inferiori alle due ore e l'altezza oraria sono praticamente indipendenti dalla località in cui si verificano e dal tempo di ritorno dell'evento.

Lo U.S. Water Bureau raccomanda per tempi di pioggia inferiore a mezz'ora l'adozione di una relazione empirica, derivata interamente da dati di breve durata; tale relazione mostra che il tempo in minuti in pioggia ha un rapporto costante con la pioggia della durata di 1 ora per lo stesso tempo di ritorno così come segue:

UP62

Relazione Idrologica

Tabella 7-3 - Rapporto tra altezza di pioggia di durata inferiore ad un'ora (fonte: U.S. Water Bureau)

τ (minuti)	5	10	15	30
$r_{\delta}=h_{\delta}/h_{60}$	0.29	0.45	0.57	0.79

Bell partendo da osservazioni provenienti da oltre 150 stazioni con oltre 40 anni di osservazione, ha dimostrato che tale correlazione si può estendere fino a valori di durata sino alle due ore. In relazione alla modesta variazione dei rapporti di intensità durata correlata al tempo di ritorno, ha proposto la seguente relazione che ben si adatta ai dati osservati:

$$\frac{h_{\tau,Tr}}{h_{60\,Tr}} = (0.54\ \tau^{0.25} - 0.5)$$

applicabile per durate 5<τ<120 min dove:

- $h_{\tau,Tr}$ indica l'altezza di pioggia relativa ad un evento pari al tempo τ riferita al periodo di ritorno Tr;
- $h_{60,Tr}$ è l'altezza di pioggia relativa ad un evento di durata pari ad un'ora, con periodo di ritorno Tr
- τ è il tempo di pioggia espresso in minuti.

In questo studio si è scelto di applicare la formula di Bell per bacini aventi tempo di corrivazione inferiore all'ora.

Il calcolo del tempo di corrivazione è stato effettuato mediante la empirica di Kirpich, valida per baini aventi superficie comprese tra 0.1 e 1 Km².

$$t_c = 0.945*(L^3/DH)^{0.385}$$

dove:

- t_c è il tempo di corrivazione [h];
- L è la lunghezza dell'asta fluviale [Km];
- DH, è il dislivelloaltimetrico tra gli estremi dell'asta [m].

Qui di seguito si riportano gli elementi che hanno portato al calcolo dei tempi di corrivazione per ciascun bacino.

UP62

Relazione Idrologica

Tabella 7-4 – Tempi di corrivazione bacini minori

ID Opera	Progressiva	Macro Bacino	А	Hmax	Hmin	DH	L	T Corrivazione	T Corrivazione
			[Km²]	[m]	[m]	[m]	[m]	[h]	[min]
TM_01	3+105.00	Α	0.039	125.6	74.92	50.68	191	0.031	1.848
TM_03	3+490.00	В	0.053	146.5	76.9	69.6	260	0.039	2.336
TM_05	4+940.00	С	0.026	170.1	115	55.1	260	0.043	2.556
TM_07	5+355.00	D	0.064	137.2	100	37.2	148	0.026	1.551
TM_08	5+560.00	E	0.114	338	94	244	300	0.028	1.700
VI_10	10+530.00	F	0.113	390	124	266	342	0.032	1.913
VI_15	15+190.00	G	0.066	325	270	55	230	0.037	2.220
TM_19	16+370.00	Н	0.113	319	292	27	288	0.063	3.785

Individuati i tempi di corrivazione si sono calcolate le altezze di pioggia per i bacini "minori".

Tabella 7-5 – Altezze di pioggia di durata inferiore ad un'ora.

ID Opera	Progressiva	Micro Bacino	А	T Corr	T Corr	VAPI h_oraria_200	PAI h_oraria_200	CPP h_oraria_200	VAPI h	PAI h	CPP h
[-]	[-]		[Km2]	[h]	[min]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TM_01	3+105.00	Α	0.039	0.031	1.848	12.3	6.0	10.0	3.567	1.740	2.900
TM_03	3+490.00	В	0.053	0.039	2.336	13.6	5.2	11.7	3.944	1.508	3.393
TM_05	4+940.00	С	0.026	0.043	2.556	16.5	8.9	14.2	4.785	2.581	4.118
TM_07	5+355.00	D	0.064	0.026	1.551	19.0	10.6	14.3	5.510	3.074	4.147
TM_08	5+560.00	E	0.114	0.028	1.700	12.0	4.7	9.6	3.480	1.363	2.784
VI_10	10+530.00	F	0.113	0.032	1.913	16.8	10.2	13.1	4.872	2.958	3.799
VI_15	15+190.00	G	0.066	0.037	2.220	46.8	21.2	32.9	13.572	6.148	9.541
TM_19	16+370.00	Н	0.113	0.063	3.785	22.8	8.1	20.0	6.612	2.349	5.800

Per il calcolo delle portate si è scelto di adoperare la formula Razionale inquanto sufficientemente affidabile per bacini urbanizzati aventi estensioni inferiori a 300 ha. Le ipotesi su cui si basa la formula sono:

- Intensità di pioggia costante nell'intervallo di tempo considerato;
- Coefficiente di deflusso medio costante e pari al valore cautelativo di 0.8;

UP62

Relazione Idrologica

 La portata massima alla sezione di chiusura si verifica dopo un intervallo di tempo pari al tempo di corrivazione.

•

Tabella 7-6 – Portate calcolate col Metodo Razionale

ID Opera	Progressiva	Micro Bacino	А	T Corr	VAPI h	PAI h	CPP h	Q200 Metodo Razionale VAPI	Q200 Metodo Razionale PAI	Q200 Metodo Razionale CPP
[-]	[-]		[Km2]	[h]	[mm]	[mm]	[mm]	(mc/s)	(mc/s)	(mc/s)
TM_01	3+105.00	А	0.039	0.031	3.567	1.740	2.900	1.008	0.492	0.819
TM_03	3+490.00	В	0.053	0.039	3.944	1.508	3.393	1.202	0.460	1.034
TM_05	4+940.00	С	0.026	0.043	4.785	2.581	4.118	0.652	0.352	0.561
TM_07	5+355.00	D	0.064	0.026	5.510	3.074	4.147	3.033	1.692	2.283
TM_08	5+560.00	Е	0.114	0.028	3.480	1.363	2.784	3.104	1.216	2.483
VI_10	10+530.00	F	0.113	0.032	4.872	2.958	3.799	3.852	2.339	3.004
VI_15	15+190.00	G	0.066	0.037	13.572	6.148	9.541	5.405	2.448	3.800
TM_19	16+370.00	Н	0.115	0.040	6.612	2.349	5.800	2.645	0.940	2.320

Le portate adoperate per il dimensionamento delle opere in progetto sono quelle più gravose ottenute con il metodo razionale.

UP62

Relazione Idrologica

Sintesi dei risultati

Nella tabella che segue si riporta la sintesi dei valori di calcolo delle portate Tr 200 anni, con i diversi metodi sopra enunciati e tra queste viene individuata la portata di progetto come quella più gravosa.

Pk		Area	FORMULA RAZIONALE PAI	FORMULA SCS PAI	FORMULA RAZIONALE CPP	FORMULA SCS CPP	FORMULA RAZIONALE VAPI	FORMULA SCS VAPI	QDESIGN
	Bacino	F1 22	Q _{200anni}	Q _{200anni}	Q _{200anni}	Q _{200anni}	Q _{200anni}	Q _{200anni}	
Progetto		[km²]	[m³/s]	[m³/s]	[m³/s]	[m³/s]	[m³/s]	[m³/s]	[m³/s]
1+760.00	01	200.65	536.7	315.8	587.0	345.4	771.3	453.8	771.3
3+230.00	02	0.12	1.8	1.2	3.3	1.9	3.6	2.4	3.6
3+710.00	03	0.21	3.1	2.0	7.5	4.4	8.1	5.2	8.1
4+240.00	04	0.26	5.2	3.3	8.5	5.0	9.3	6.0	9.3
4+700.00	05	0.51	3.9	2.5	6.9	4.1	8.4	5.4	8.4
5+065.00	06	0.07	2.2	1.4	3.8	2.3	4.0	2.6	4.0
5+160.00	07	1.08	9.3	5.9	13.5	8.0	16.6	10.6	16.6
5+695.00	08	0.25	2.3	1.5	5.1	3.0	5.9	3.8	5.9
6+090.00	9	0.46	1.7	1.1	4.6	1.7	5.8	3.8	5.8
6+430.00	10	0.24	2.5	1.7	3.0	1.8	3.7	2.5	3.7
7+420.00	11	13.32	16.0	10.2	29.6	17.4	45.4	29.1	45.4
8+140.00	12	53.18	192.9	116.8	228.9	134.7	265.6	160.8	265.6
8+900.00	13	117.19	287.0	171.6	367.8	216.4	463.9	277.4	463.9
9+825.00	14	0.49	6.2	4.0	7.6	4.4	9.1	5.9	9.1
10+080.00	15	0.92	10.1	6.5	12.5	7.4	15.2	9.8	15.2
10+450.00	16	0.54	6.9	4.5	9.8	0.0	11.5	7.4	11.5
11+020.00	17	0.50	1.8	1.2	8.0	4.7	7.0	4.5	8.0
11+350.00	18	0.12	1.6	1.0	5.5	3.2	3.6	2.3	5.5
11+495.00	19	0.11	1.8	1.2	6.8	4.0	4.1	2.7	6.8
11+985.00	20	0.13	1.6	1.0	5.6	3.3	3.6	2.4	5.6
12+095.00	21	1.69	7.5	4.8	19.9	11.7	16.6	10.7	19.9
12+620.00	22	0.18	3.1	2.0	7.9	4.6	5.4	3.5	7.9
13+080.00	23	0.97	6.8	4.4	19.2	11.3	14.8	9.5	19.2
13+810.00	24	0.32	3.9	2.6	8.8	5.2	6.4	4.2	8.8
14+820.00	25	61.31	127.5	77.5	205.1	120.7	274.1	168.7	274.1
15+420.00	26	60.36	123.2	74.8	201.7	118.7	271.1	166.1	271.1
15+860.00	27	59.43	122.1	74.3	193.9	114.1	262.0	160.9	262.0
16+120.00	28	0.60	2.6	1.7	7.0	4.1	7.2	4.7	7.2

Relazione Idrologica

8 APPENDICE - DATI DI PIOGGIA STAZIONI PLUVIOMETRICHE MISILMERI, RISALAIMI E MARINEO

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Misilmeri"					
_	1 ora	3 ore	6 ore	12 ore	24 ore
Anno	[mm]	[mm]	[mm]	[mm]	[mm]
1953	11	18.2	24.6	33.4	41.1
1954	22.4	36.2	54.8	62.8	87.8
1956	16.2	23	30.8	35.6	36.6
1957	18.6	23	23	26.8	37.6
1958	13.8	22.4	36.4	53	74.6
1959	33	47.4	59.2	59.2	59.2
1960	26.6	49	51	53.6	56.6
1962	17.6	18.4	18.4	28.2	44.4
1964	29.4	30.6	34.4	43.6	59.4
1966	10	22.8	33.2	42.4	52
1967	27.6	36.2	36.4	36.4	37.2
1969	15	21	25.6	26.4	45
1970	25	25	25	30.2	30.4
1971	18	18.4	33.2	58.2	73.8
1972	11.2	26.8	28.2	41	43
1973	24	41	50.6	89.6	92.8
1974	29	34.8	49	59.2	59.4
1976	27	39.8	39.8	53	64.8
1979	21.8	26.6	33.6	34.4	43.8
1986	21.2	24.8	25.4	30.6	31.2
1988	25.6	30.8	36	53.4	63.6
1989	64.4	67	67	67	67
1990	37.4	43.2	43.2	43.2	43.8
1991	12.2	18.2	30	53.8	75
1992	20.4	38.2	45.2	53.8	64.2
1993	14.4	32.8	41	54.8	56
1994	13.2	26.6	40.6	52.8	65.2
1995	39	39.2	56.4	89	110
1996	30.6	32	41.6	73.4	89.8
1997	42.8	59.2	60.8	62	65.6
2000	16.2	28.8	32.6	34	63.2
2001	16.4	27	43.6	63	74

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Misilmeri"						
A	1 ora	3 ore	6 ore	12 ore	24 ore	
Anno	[mm]	[mm]	[mm]	[mm]	[mm]	
2003	30.8	58.4	66.8	77.4	81.2	
2004	21.2	40.4	46	68.2	68.2	
2005	24.4	28.6	41	77.6	92.4	
2006	26.4	28.4	31.2	32.4	35.6	
2008	19.4	25.8	29	33.2	48.8	
2009	29.6	51.8	54.8	65.8	74	
2010	16	34.6	47.4	55.4	64.8	
2014	28.2	39.6	41	47.2	49.4	
2015	24.2	45.6	46.2	52.2	61.2	
2016	16	27.2	8.2	29.6	33	

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Risalaimi"						
	1 ora	3 ore	6 ore	12 ore	24 ore	
Anno	[mm]	[mm]	[mm]	[mm]	[mm]	
1962	19.6	40.6	52.2	54	103.6	
1963	19	23.8	39.6	43.6	53.8	
1964	38.6	53.2	53.6	53.8	59.2	
1965	43.6	60.6	69.6	69.6	69.6	
1966	23.2	23.6	32.8	40.6	59.6	
1968	38	53.8	61	61.2	89.8	
1969	12	16	19.2	24	44.4	
1971	20.4	33.4	56.2	71.8	76	
1973	21.8	32.8	56.2	72.8	98.8	
1975	19.2	23	39.8	43	47.8	
1976	37	59	79.4	82	93.6	
1977	7.2	10.6	17.6	24.8	30	
1978	27.2	54	76	76	76	
1980	16.4	25.2	31.4	35.4	58.4	
1985	22.2	33.2	38.4	57.4	81.8	
1986	13.4	15.4	26.8	33	43.4	
1987	32	42.4	45.6	50.2	59.8	
1988	88.2	88.4	88.4	88.4	90.8	
1989	11.4	14.6	16.8	18.6	19.8	
1990	15.2	15.2	17	23	24.6	

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Risalaimi"						
	1 ora	3 ore	6 ore	12 ore	24 ore	
Anno	[mm]	[mm]	[mm]	[mm]	[mm]	
1992	21.8	50.4	64.6	66.8	84.6	
1993	19.2	27.8	35.8	39.8	51.8	
1994	15.4	19.8	26.2	34.8	41.4	
1995	59.4	61.8	61.8	76.6	103.4	
1996	21.6	27.4	45	62.8	65	
1998	37	39	39	39	61.2	
2000	17.4	17.4	26	38.6	52.8	
2004	17.2	22.6	25	28.8	36.2	
2006	16.6	22	22.4	30.4	35.4	

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Marineo"						
Anno	1 ora	3 ore	6 ore	12 ore	24 ore	
Allilo	[mm]	[mm]	[mm]	[mm]	[mm]	
1953	15.80	27.40	37.80	39.40	64.00	
1956	13.20	23.80	29.00	41.20	41.40	
1957	27.20	65.20	96.60	96.80	99.80	
1958	15.00	20.00	33.20	52.60	63.20	
1962	14.80	20.00	25.40	33.40	58.80	
1963	19.60	22.20	30.00	43.40	50.80	
1964	23.60	49.60	56.40	70.40	70.60	
1965	49.20	60.40	73.60	74.00	74.00	
1967	17.20	25.60	32.00	34.40	35.80	
1968	22.80	31.20	45.20	51.20	56.00	
1971	19.40	24.40	32.20	42.40	52.20	
1972	19.20	22.20	26.80	30.40	63.20	
1973	36.00	54.80	68.80	84.20	108.80	
1974	30.00	66.00	74.00	74.00	74.00	
1975	19.00	34.60	43.20	48.00	49.20	
1976	37.20	52.20	52.20	52.80	70.80	
1977	8.60	11.40	17.00	27.60	34.20	
1978	50.00	66.80	67.00	67.00	67.00	
1979	38.00	78.80	85.80	87.40	104.80	

Osservazioni delle altezze di pioggia da tabella III degli Annali Idrologici della stazione pluviometrica "Marineo"					
A	1 ora	3 ore	6 ore	12 ore	24 ore
Anno	[mm]	[mm]	[mm]	[mm]	[mm]
1984	22.80	43.20	43.20	44.20	44.20
1985	18.80	35.00	35.40	56.80	78.20
1986	15.40	16.00	20.00	27.80	37.40
1988	22.60	47.00	49.20	49.20	54.20
1997	41.40	47.20	47.80	48.60	48.60
2001	20.00	24.60	24.60	31.80	43.00
2002	26.40	37.80	41.00	43.20	45.40
2003	31.40	62.20	63.60	63.60	69.20
2004	23.60	34.00	36.00	39.60	44.00
2006	12.00	21.40	28.20	35.80	39.20
2007	16.20	35.40	51.80	53.40	54.00
2008	36.60	37.20	37.20	47.20	57.40
2009	37.20	53.00	53.20	61.00	67.80
2012	14.80	16.00	21.40	35.80	48.60
2013	30.80	33.20	33.40	51.40	62.00
2014	19.00	32.00	33.00	54.00	67.80
2016	28.40	37.60	38.40	38.40	38.40