Comune di Monterenzio

Regione Emilia-Romagna

Città Metropolitana di Bologna

``om	mitte	nta.
	IIIIIII	me.

RWE RENEWABLES ITALIA S.R.L.

via Andrea Doria, 41/G - 00192 Roma

P.IVA/C.F. 06400370968

Titolo del Progetto:

PARCO LION STONE

PROGETTO DEFINITIVO		N° Documento: PELI-S08					
ID PROGETTO:	PELI-P	DISCIPLINA:		TIPOLOGIA:	R	FORMATO:	A4
Elaborato:			Studio Shad	ow Eliakarina			

Studio Shadow Flickering

FOGLIO: 1 di 1 SCALA: Nome file: PELI-S08-0

Progettazione:

Hydro Engineering s.s. di Damiano e Mariano Galbo

via Rossotti, 39 91011 Alcamo (TP) Italy

Dott. Geol. Gualtiero Bellomo Dott.ssa Maria Antonietta Marino Dott. Geol. Massimo Perniciaro Ing. Giacomo Pettinelli Dott.ssa Irene De Sapio Arch. Paesaggista Ermelinda Cosenza

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
00	Febbraio/2024	PRIMA EMISSIONE	VAMIRGEOIND	VAMIRGEOIND	RWE RENEWABLES ITALIA S.R.L

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

REGIONE EMILIA ROMAGNA

COMUNI DI MONTERENZIO (BO) E CASALFIUMANESE (BO)

REALIZZAZIONE DI UN IMPIANTO PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTE EOLICA NEL COMUNE DI MONTERENZIO (BO)CON OPERE DI ADEGUAMENTO DELLA VIABILITÀ ESISTENTE NEL COMUNE DI CASALFIUMANESE (BO)

Committente: RWE RENEWABLES ITALIA S.R.L.

STUDIO SHADOW FLICKERING

SOMMARIO

1 PR	REMESSA	2
2 CH	ENNI SUL FENOMENO DELLO SHADOW FLICKERING	3
3 CA	ALCOLO DELLO SHADOW FLICKERING	7
3.1	Descrizione del contesto territoriale	7
3.2	Configurazione di impianto	8
3.3	Definizione dell'ambito di studio	10
3.4	Individuazione dei recettori	11
3.5	Metodologia di calcolo e software utilizzato	14
3.6	Risultati	20
4 Co	ONCLUSIONI	27
5 AF	PPENDICE A	29

1 PREMESSA

Nel Comune di Monterenzio in provincia di Bologna (BO) è prevista la realizzazione di un campo eolico costituito da 7 aerogeneratori, ciascuno di potenza nominale pari a 7,2 MW e caratterizzato da un'altezza pari a 114 m.

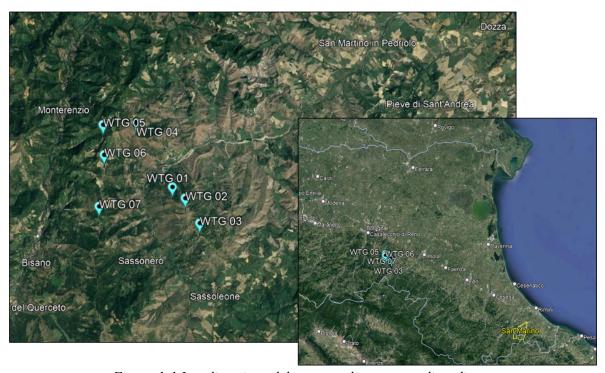


Figura 1-1 Localizzazione del campo eolico oggetto di studio

2 CENNI SUL FENOMENO DELLO SHADOW FLICKERING

Le turbine eoliche, come altre strutture fortemente sviluppate in altezza, proiettano un'ombra sulle aree adiacenti in presenza di luce solare diretta.

Il cosiddetto fenomeno del "flickering" indica l'effetto di lampeggiamento che si verifica quando le pale del rotore in movimento "tagliano" la luce solare in maniera intermittente.

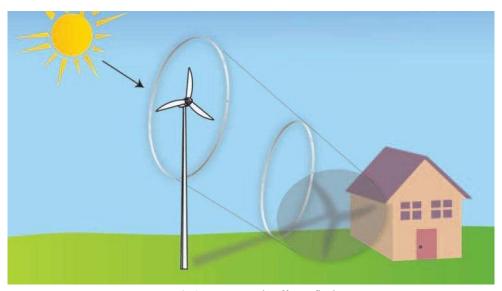


Figura 2-1 Esempio di effetto flickering

Questa variazione alternata di intensità luminosa, a lungo andare, può provocare fastidio agli occupanti delle abitazioni le cui finestre risultano esposte al fenomeno stesso.

Ovviamente, tale fenomeno risulta assente sia quando il sole è oscurato da nuvole o nebbia, sia quando, in specifiche condizioni di vento, le pale del generatore non sono in rotazione.

In particolare, le frequenze che possono provocare un senso di fastidio sono comprese tra i 2,5 ed i 20 Hz (Verkuijlen and Westra, 1984), e, l'effetto sugli individui è simile a quello che si sperimenterebbe in seguito alle

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

variazioni di intensità luminosa di una lampada ad incandescenza sottoposta a continui sbalzi della tensione della rete di alimentazione elettrica.

Tuttavia, i più recenti aerogeneratori tripala operano ad una velocità di rotazione massima di 25 giri al minuto, corrispondente ad una frequenza di passaggio delle pale sulla verticale inferiore a 0,5 Hz, minore, quindi, della frequenza critica di 2,5 Hz.

Inoltre, i generatori di grande potenza (dal MW in su, come nel caso in oggetto) mediamente non superano la velocità di rotazione di 15 giri al minuto, corrispondente a frequenze di passaggio delle pale (0,25 Hz) ampiamente minori di quelle ritenute fastidiose per la maggioranza degli individui.

Studi condotti sui possibili effetti dello shadow flickering sulla salute umana raccomandano, al fine di ridurre al minimo i fastidi, una velocità di flickering non superiore a 3 tagli al secondo (Harding, 4 Aprile 2008).

Nel caso di aerogeneratori tripala, tale frequenza si traduce in una velocità massima di rotazione del rotore di 60 rpm (rotazioni per minuto).

Le relazioni spaziali tra un aerogeneratore ed un recettore sensibile, così come la direzione del vento, l'intensità del medesimo, la copertura del cielo, la posizione del sole (variabile nell'arco dell'anno) risultano essere fattori chiave per la esistenza e durata del fenomeno di shadow flickering.

Per distanze dell'ordine dei 500 m, il fenomeno in esame potrebbe verificarsi all'alba oppure al tramonto, ossia in quelle ore in cui le ombre risultano molto lunghe per effetto della piccola elevazione solare.

Al di là di una certa distanza, in realtà l'ombra smette di essere un problema perché il rapporto tra lo spessore della pala ed il diametro del sole diventa molto piccolo.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

Come è facile immaginare, la condizione più penalizzante corrisponde al caso in cui il piano del rotore risulta ortogonale alla congiungente recettore – sole; infatti, in tali condizioni, l'ombra proiettata darà origine ad un cerchio di diametro pari al rotore del generatore eolico.

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti con finestrature rivolte verso le ombre.

In un'ottica generale e in relazione alle condizioni meteoclimatiche medie della penisola italiana, è possibile affermare che le aree soggette al fenomeno di shadow flickering non si estendono mai oltre i 500-1000 m dall'aerogeneratore e le zone a maggiore impatto ricadono solitamente entro i 300 m di distanza dalle macchine con durata del fenomeno dell'ordine delle 200 ore all'anno e non superiore in genere ai 20/30 minuti di durata nell'arco di una giornata.

L'intensità del fenomeno è definita come la differenza di luminosità che si percepisce in presenza ed in assenza di flickering in una data posizione. In generale, si può affermare che:

- ✓ avendo le pale una forma rastremata con lo spessore che cresce verso il mozzo; il fenomeno risulterà tanto più intenso quanto maggiore sarà la porzione di disco solare coperta dalla pala stessa e quanto minore la distanza dal recettore;
- ✓ l'intensità del flickering sarà minima quando l'ombra prodotta è generata all'estremità delle pale;
- ✓ maggiori distanze tra generatore e recettore determinano ombre meno nette; in tal caso l'effetto flickering risulterà meno intenso e distinto.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

La tipologia di aerogeneratore prevista per l'installazione ha una velocità di rotazione massima di 12,1 rpm che corrisponde ad una velocità massima di flickering di 0,45 tagli al secondo, inferiore alla frequenza massima raccomandata per la tutela della salute umana.

Tuttavia, una progettazione attenta è fondamentale per evitare questo fenomeno.

In relazione a ciò, si fa presente che, quale misura di prevenzione, già in fase di scelta delle aree sulle quali ubicare l'impianto si è cercato di localizzare gli aerogeneratori il più possibile distanti dall'area urbana oltreché dagli edifici abitativi e lavorativi.

3 CALCOLO DELLO SHADOW FLICKERING

3.1 Descrizione del contesto territoriale

Il comune di Monterenzio è situato nel territorio della provincia di Bologna (BO) in Emilia-Romagna.

Il comune di Monterenzio estende per 105,26 km² e ha una densità abitativa di 57,47 abitanti/km² (scarsamente popolato). Il comune si trova ad una altitudine di 207 metri. s.l.m.

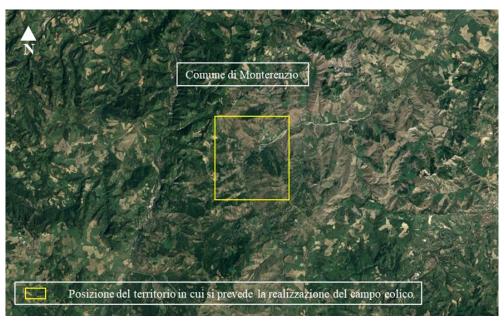


Figura 3-1 Contesto territoriale in cui si prevede l'inserimento del campo eolico

Nello specifico, il contesto in cui il progetto si inserisce è delimitato:

- > a Ovest dal centro abitato del comune di Monterenzio;
- > ad Est dal comune di Casalfiumanese.

Dalle indagini effettuate, la presenza antropica in questa porzione di territorio è molto ridotta se non per la presenza di alcuni agglomerati urbani posti, comunque, a distanza notevole dal campo eolico di progetto.

In generale, l'area interessata dalla realizzazione del parco eolico è omogenea per conformazione e caratteristiche meteo climatiche in quanto

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

tutto l'ambito di studio ricade su territori collinari con elevazione compresa tra i 485 m e 561 m s.l.m.

3.2 Configurazione di impianto

In Tabella 3-1 e Figura 3-2 vengono geolocalizzati gli aerogeneratori previsti per il parco eolico in progetto.

Aerogei	neratore	- Comune	Coordinate UT	TM WGS84 32T
Numero	Codifica	Comune	Est [m]	Nord [m]
WTG01	PELI01	Monterenzio	696354	4907612
WTG02	PELI02	Monterenzio	696900	4907182
WTG03	PELI03	Monterenzio	697525	4906205
WTG04	PELI04	Monterenzio	694814	4910190
WTG05	PELI05	Monterenzio	693483	4910059
WTG06	PELI06	Monterenzio	693560	4908844
WTG07	PELI07	Monterenzio	693427	4906754

Tabella 3-1 Coordinate geografiche puntuali turbine d'impianto

Figura 3-2 Posizione delle turbine di progetto sul territorio

Nella seguente tabella è riportata una scheda riassuntiva delle principali caratteristiche delle turbine che si intendono installare.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

Potenza nominale	7,2 MW
N° pale	3
Diametro rotore	172 m
Altezza mozzo rotore	114 m
Tipologia torre	tubolare

Tabella 3-2 Estratto delle specifiche tecniche delle turbine che si intendono installare

3.3 Definizione dell'ambito di studio

In generale, come ambito di studio si intende la porzione di territorio che si ritiene potenzialmente interferita dalle opere in progetto nelle loro modalità di funzionamento.

Di conseguenza, a ciascun aerogeneratore è stata associata un'area di potenziale interferenza dovuta al fenomeno di shadow flickering delimitata da una circonferenza avente centro nel singolo aerogeneratore e raggio pari a 1000 m.

L'ambito di studio complessivo (cfr. Figura 3-3) del parco eolico in progetto è quindi definito dall'inviluppo delle 7 singole aree, ciascuna definita per ogni aerogeneratore secondo il suddetto criterio.

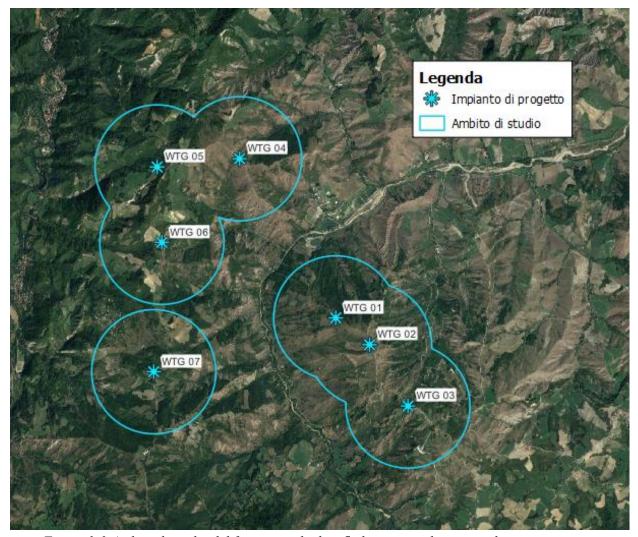


Figura 3-3 Ambito di studio del fenomeno shadow flickering per il campo eolico in progetto

3.4 Individuazione dei recettori

Ai fini della previsione degli impatti indotti sulle abitazioni dall'impianto eolico in progetto, sono stati censiti i recettori presenti nel raggio di 1 km dagli aerogeneratori, distanza oltre la quale si può ipotizzare essere nullo il fenomeno di shadow flickering.

I recettori sono stati individuati calcolando l'inviluppo delle circonferenze di raggio pari a 1 km con centro geometrico corrispondente alle coordinate geografiche degli aerogeneratori, precedentemente indicate (vedi Tabella 3-1).

Per snellire il modello di calcolo, considerato che il software di analisi WindFarm R5 non è in grado di tenere conto delle zone d'ombra prodotte reciprocamente da edifici ravvicinati, le quali di fatto annullano il fenomeno di shadow flickering dovuto alle turbine, si prendono in considerazione i soli recettori perimetrali.

Sono stati quindi censiti un totale di 73 edifici, di cui 48 di tipo residenziale e 25 ruderi, box o depositi agricoli censiti come "Altri recettori".

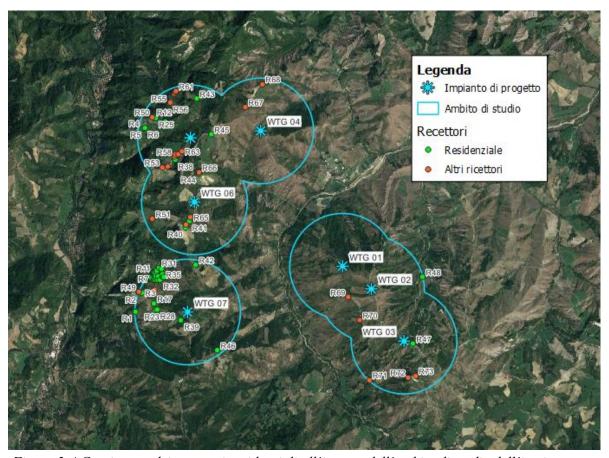


Figura 3-4 Censimento dei recettori residenziali all'interno dell'ambito di studio dell'impianto di progetto

Sebbene il fenomeno possa essere percepito anche all'esterno, esso risulta evidente e fastidioso in quegli ambienti abitativi o lavorativi con finestrature che si trovano sul prolungamento della direttrice sole-turbina,

per questo motivo, si è considerato nella simulazione la presenza di finestre di altezza 1 metro e larghezza 1 metro posizionate ad altezza dal suolo di 2 metri e disposte su tutte le facciate degli edifici.

Per lo stesso motivo, seppur censiti per completezza, sono stati esclusi dall'analisi box, depositi agricoli e ruderi, classificati come "Altri recettori", in quanto non sensibili al fenomeno indagato.

In appendice A sono riportati i riferimenti geografici, l'uso in atto dei fabbricati, la distanza dall'aerogeneratore più vicino e l'orientamento delle finestre ipotizzato. Le celle evidenziate in tabella rappresentano i recettori per i quali è stata eseguita l'analisi dell'interferenza da shadow flickering in quanto a destinazione d'uso residenziale.

Figura 3-5 Esempio di identificazione dell'orientamento delle finestre dei recettori

Data l'entità dei recettori in studio è stata ipotizzata una disposizione fissa delle finestre rispetto al nord pari a 0, 90, 180 e 270 gradi. In questo

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

modo sono state prese in considerazioni tutte le possibili esposizioni delle finestrature al fenomeno di shadow flickering, rendendo i risultati dell'analisi ancor più cautelativi e completi.

3.5 Metodologia di calcolo e software utilizzato

L'analisi dell'impatto da shadow flickering prodotto da un campo eolico è realizzata, generalmente, attraverso l'impiego di specifici applicativi che modellano il fenomeno in esame. I pacchetti software impiegati per la progettazione di impianti eolici contengono moduli specifici per il calcolo e l'analisi del fenomeno di flickering.

L'analisi si basa sull'impiego di un modello digitale del terreno dell'area oggetto di progettazione, sulle posizioni (E, N, quota) degli aerogeneratori e dei recettori sensibili, nonché sui dati che correlano la posizione del sole nell'arco dell'anno con le condizioni operative delle turbine nello stesso arco di tempo.

Al fine di calcolare la posizione relativa del sole nell'arco di un anno rispetto al parco eolico ed ai recettori è necessario definire la longitudine, la latitudine ed il fuso orario dell'area interessata dal progetto.

Nello specifico, la valutazione tecnica è stata eseguita con l'ausilio del software WindFarm 5 della ReSoft Ltd, software di simulazione specifico per la progettazione di impianti eolici.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

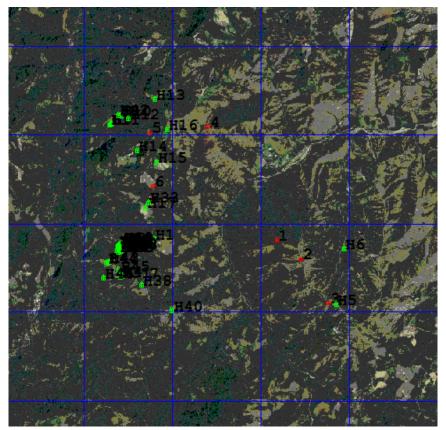


Figura 3-6 Stralcio dell'area di studio in Windfarm: recettori (verde) e aerogeneratori (rosso)

Il software consente di analizzare la posizione del sole nell'arco di un anno per identificare i tempi in cui ogni turbina può proiettare ombre sulle finestre delle abitazioni vicine. In particolare, il modello permette di:

- calcolare il potenziale per le ombre intermittenti alle finestre delle abitazioni;
- creare mappe di impatto potenziale che mostrano le ore d'ombra intermittente per l'intero parco eolico o per le singole macchine (curve di isodurata) nell'arco dell'anno.

Il software utilizza una serie di dati di input caratterizzanti quali:

- ⇒ l'altimetria della zona simulata (formato GTH, vedi Figura 3-7);
- ⇒ la disposizione geografica delle turbine e dimensione geometrica dei loro componenti (torre e pale);

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

- ⇒ la disposizione geografica dei "recettori sensibili" (abitazioni/edifici lavorativi e relative finestre);
- ⇒ la latitudine e longitudine dell'area interessata.

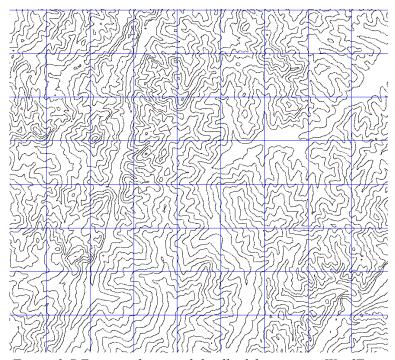


Figura 3-7 Esempio di curve di livello del terreno in WindFarm

Sulla base di questi dati il software calcola il numero di ore annue di esposizione allo "Shadow flickering" per ciascun nodo del grigliato che copre l'intera area, nonché il numero di ore di esposizione per gli ambienti abitativi/lavorativi attraverso le finestre.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

SUMMARY	OF MERGEI	SHADOW :	TIMES ON	EACH H	OUSE FR	OM ALL TURBIN	IES
House	Easting	Northing	Days	Max	Mean	Total	
			per	hours	hours	hours	
			year	per	per		
				day	day		
1	693584	4907654	0	0.00	0.00	0.00	
2	692867	4907371	114	0.82	0.60	68.87	
3	692938	4907576	65	0.68	0.57	36.90	
4	692857	4906806	100	1.13	0.87	87.47	
5	697692	4906161	169	3.14	2.57	434.47	
6	697874	4907424	84	0.67	0.40	33.29	
7	692608	4910239	58	0.76	0.60	34.65	
8	692790	4910438	74	0.87	0.67	49.77	
9	692625	4910246	58	0.77	0.62	35.71	
10	692831	4910434	78	0.91	0.71	55.15	
11	692583	4910235	58	0.74	0.57	33.16	
12	693012	4910363	104	1.19	0.91	94.90	
13	693606	4910803	45	0.52	0.32	14.62	
14	693197	4909645	0	0.00	0.00	0.00	

Figura 3-8 Esempio di output elaborato tramite WindFarm5

Per l'esecuzione della simulazione sono stati fissati i seguenti parametri:

- ✓ coordinate geografiche baricentriche (UTM): 695087 m Est, 4908517 m Nord;
- ✓ coordinate geografiche delle turbine considerate (vedi Tabella 3-1);
- ✓ coordinate geografiche dei recettori considerati e disposizione delle finestre (vedi APPENDICE A);
- ✓ risoluzione di calcolo: 50 m;
- √ raggio d'influenza massimo: 1 km dal punto di installazione dell'aerogeneratore;
- ✓ altezza del punto di vista dell'osservatore: 2 m;
- ✓ parametri turbina:
 - diametro rotore: 172 m;
 - > altezza torre: 114 m.

Il modello numerico utilizzato, produce in output una mappa di impatto, e prende in considerazione un caso molto cautelativo relativo, ad

una configurazione puramente teorica che vede la costante e contemporanea presenza dei fattori di attivazione del fenomeno, ossia sole scevro da nubi (potenzialità di generare ombre) e velocità del vento superiore a quella di cut-in (rotore in moto).

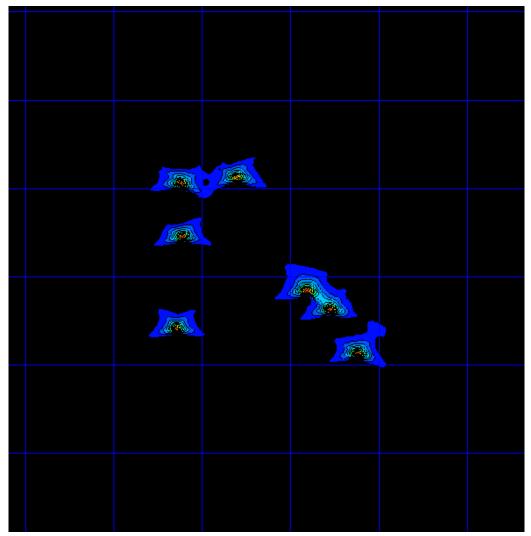


Figura 3-9 Stralcio di output restituito dal software WindFarm

Di seguito vengono riportate tutte le ipotesi utilizzate per il calcolo del fenomeno di shadow flickering (vedi "caso peggiore" in Tabella 3-3) effettuato tramite il software WindFarm:

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

- il sole splende per tutta la giornata, dall'alba al tramonto (cioè, si è sempre in assenza di copertura nuvolosa);
- il piano di rotazione delle pale è sempre perpendicolare alla direttrice sole - aerogeneratore (ovvero l'aerogeneratore "insegue" il sole);
- gli aerogeneratori sono sempre operativi;
- non sono presenti alberi o altri ostacoli che, intercettando l'ombra degli aerogeneratori, riducano o annullino l'effetto di flickering.

Ciò considerato, si evince che i risultati ai quali si perverrà sono estremamente cautelativi, trattandosi di una stima puramente teorica. Allo scopo di pervenire a valori più realistici, prossimi al caso reale, è stato corretto il dato di output prendendo in considerazione l'eliofania locale e le ore stimate di funzionamento dell'impianto eolico nell'arco dell'anno.

Nel caso in analisi, sapendo che il tempo in cui il sole permane al di sopra dell'orizzonte nell'arco dell'anno è di circa 4380 ore; tenendo conto dell'eliofania media locale (3669 h/anno), ovvero il numero di ore in cui il cielo è libero da nubi durante il giorno e a partire dalle registrazioni anemometriche relative alla stazione meteorologica più vicina all'area di studio e climaticamente compatibile, ovvero quella di Bologna, si è stimato che l'impianto eolico sarà in funzione per circa il 60% del tempo nell'arco dell'anno, corrispondente a 2633 ore.

In definitiva, i valori calcolati dal modello numerico (ore di ombreggiamento intermittente all'anno) sono desunti in funzione della probabilità composta di avere contemporaneamente l'occorrenza di rotore in moto (vento) e sole libero da nubi (ombre), fenomeni, questi ultimi, stocasticamente indipendenti.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

3.6 Risultati

La seguente tabella riassume i risultati dell'analisi eseguita considerando il parco eolico di progetto, sui 48 recettori residenziali, secondo la metodologia di calcolo descritta nel paragrafo precedente.

D 44	Caso pe	eggiore	Caso reale
Recettore	Giorni /anno	Ore /anno	[ore/anno]
R1	61	33	20
R2	54	29	17
R3	56	31	19
R4	58	33	20
R5	58	35	21
R6	58	36	21
R7	78	44	26
R8	100	55	33
R9	100	56	34
R10	96	55	33
R11	99	56	34
R12	74	50	30
R13	82	48	29
R14	74	50	30
R15	95	56	33
R16	87	50	30
R17	78	59	35
R18	98	58	35
R19	94	56	34
R20	96	57	34
R21	96	54	32
R22	110	63	38
R23	97	81	49
R24	104	62	37
R25	78	55	33
R26	90	57	34
R27	84	51	31
R28	100	87	52
R29	114	69	41
R30	100	66	40

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

Dagattawa	Caso p	eggiore	Caso reale
Recettore	Giorni /anno	Ore /anno	[ore/anno]
R31	68	38	23
R32	110	76	45
R33	65	37	22
R34	92	66	40
R35	82	56	34
R36	90	67	40
R37	104	95	57
R38	0	0	0
R39	0	0	0
R40	0	0	0
R41	0	0	0
R42	0	0	0
R43	45	15	9
R44	29	3	2
R45	131	184	110
R46	0	0	0
R47	169	434	261
R48	84	33	20

Tabella 3-3 Risultati di calcolo

In particolare, nella Tabella 3-3 sono stati riportati il numero di giorni e di ore in cui è fisicamente possibile che il fenomeno si presenti (caso peggiore) e il valore reale atteso di ore l'anno in cui il fenomeno potrebbe presentarsi (caso reale).

A tal proposito è importante sottolineare che anche il caso reale, calcolato tenendo conto dell'eliofania locale e delle ore di funzionamento dell'impianto, è comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra.

Dalla Tabella 3-3 si evince che dei 48 recettori analizzati quelli interessati dal fenomeno di shadow flickering sono 42, in particolare, su 2 di questi (evidenziati in tabella) si verifica il superamento delle 100 ore annue.

Per tali recettori è stato elaborato un calendario dell'ombra che riporta in maniera grafica i periodi dell'anno in cui è possibile il verificarsi del fenomeno (condizioni del caso peggiore).

Al fine di garantire una più chiara compensione di tali grafici, prima di effettuarne la disamina, si riporta una guida alla lettura degli stessi:

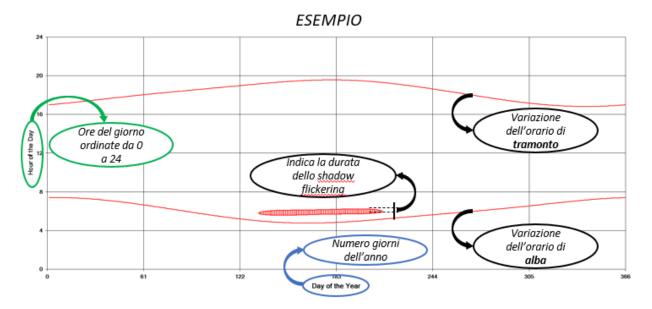


Figura 3-10 Esempio di output grafico dei risultati di simulazione del fenomeno di shadow flickering

Le curve di colore rosso indicano l'ora dell'alba e del tramonto mentre le aree campite il periodo in cui è possibile che il fenomeno si verifichi.

Inoltre, sull'asse delle ordinate sono riportati i giorni dell'anno e su quello delle ascisse l'ora del giorno (ora solare).

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

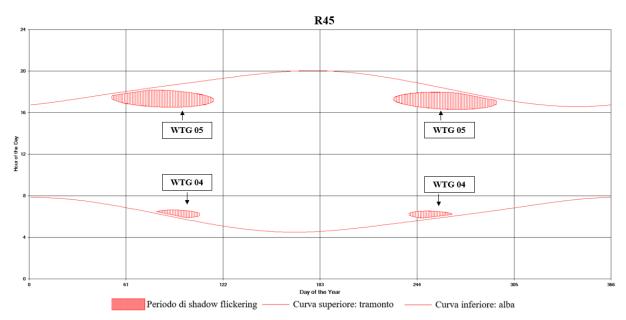


Figura 3-11 Periodi di shadow flickering per il recettore R45

Per quanto riguarda il recettore R45, si riportano gli aerogeneratori (WTG xx) che generano potenziale interferenza in relazione al fenomeno dello shadow flickering ed i relativi periodi temporali di riferimento:

- ⇒ WTG 04 dal 20 marzo al 16 aprile tra le 6:30 e le 6:30 e dal 26 agosto al 22 settembre tra le 6:00 e le 6:30;
- ⇒ WTG 05 dal 21 febbraio al 25 aprile tra le 16:30 e le 18:00 e dal 16 agosto al 20 ottobre tra le 16:30 e le 18:00.

Da un'analisi più dettagliata si evince che il fenomeno, per quanto riguarda la WTG 04, si verifica dalle 6,00 alle 6,30, periodo in cui la stragrande maggioranza delle persone dorme.

Se si tolgono dal calcolo queste ore, il fenomeno si manifesta per un periodo inferiore a 100 ore.

Inoltre, per approfondire ulteriormente il recettore R45, in Figura 3-12 è mostrata la sua localizzazione rispetto agli aerogeneratori più vicini, che causano l'effetto dello shadow flickering (WTG04 e WTG05).

Come si può osservare, esso è circondato da alberi che possono limitare e/o mitigare l'effetto dello shadow flickering già nella condizione attuale.

Non si ritiene, quindi, di prevedere opere di mitigazione.

Figura 3-12 Recettore R45 esposto all'effetto dello shadow flickering

Per quanto riguarda il recettore R47, di seguito si mostra l'aerogeneratore che genera potenziale interferenza in relazione al fenomeno dello shadow flickering ed il relativo periodo temporale di riferimento (cfr. Figura 3-13):

• WTG 03 dal 29 marzo al 13 settembre tra le 16:00 e le 18:30.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

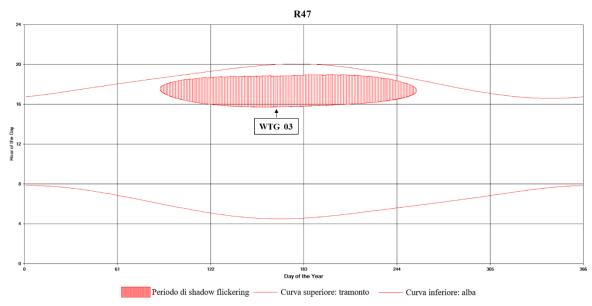


Figura 3-13 Periodi di shadow flickering per il recettore R47

In Figura 3-14 è mostrata la sua localizzazione rispetto all'aerogeneratore più vicino, che causa l'effetto dello shadow flickering (WTG03).

Figura 3-14 Recettore R47 esposto all'effetto dello shadow flickering

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

Si ricorda che il calcolo del superamento reale del numero di ore è comunque un valore cautelativo in quanto nella stima non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra.

Al fine di limitare l'esposizione all'effetto di shadow flickering sui recettori, sono comunque praticabili opere di mitigazione quali:

- ✓ realizzazione di barriere sempreverdi prospicienti alle aperture finestrate degli edifici,
- ✓ installazione di oscuranti, quali tende o tapparelle, alle aperture della facciata rivolta verso l'aerogeneratore.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

4 Conclusioni

A seguito di quanto descritto nei paragrafi precedenti si può concludere che, pur considerando una stima cautelativa, in quanto non si è tenuto conto degli effetti mitigativi dovuti al piano di rotazione delle pale non sempre ortogonale alla direttrice sole-finestra e all'eventuale presenza di ostacoli e/o vegetazione interposti tra il sole e la finestra, il fenomeno dello shadow flickering si può verificare su 42 dei 48 recettori considerati ai fini dell'analisi (vedi Tabella 3-3).

In particolare, su 2 recettori si verifica il superamento delle 100 ore annue.

L'incidenza di tale fenomeno sulla qualità della vita può ritenersi trascurabile in quanto, il valore di durata simulato ed atteso del fenomeno è nella maggior parte dei casi (46 su 48 recettori) inferiore al valore di riferimento pari a 100 ore l'anno.

Se si rapporta tale valore a quello di eliofania media locale dell'area (3669 ore/anno) si avrebbe un'incidenza percentuale del fenomeno mediamente inferiore all'1% ed al più pari al 7%.

A tali considerazioni va altresì sottolineato che:

- ➤ la velocità di rotazione della turbina è 12,1 rotazioni al minuto, quindi nettamente inferiore a 60 rpm, frequenza massima raccomandata al fine di ridurre al minimo i fastidi e soddisfare le condizioni di benessere;
- ➤ le turbine in progetto sono lontane dai recettori residenziali analizzati, essendo le distanze comprese tra circa 160 m e 1000 m, con la maggioranza di essi localizzati a più di 500 m dalle turbine. In tali circostanze l'effetto dell'ombra è trascurabile poiché il

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

rapporto tra lo spessore della pala e la distanza dal recettore è molto ridotto.

Inoltre, si ricorda che, allo scopo di limitare l'esposizione all'effetto di shadow flickering, sui recettori sono comunque praticabili opere di mitigazione quali:

- realizzazione di barriere sempreverdi prospicienti alle aperture finestrate degli edifici,
- installazione di oscuranti, quali tende o tapparelle, alle aperture della facciata rivolta verso l'aerogeneratore.

Stante tutto quanto sopra riportato è possibile concludere come l'interferenza della componente in esame, relativa allo shadow flickering, sui recettori presi in considerazione possa considerarsi trascurabile, in considerazione delle misure di mitigazione che si adotteranno per il recettore R47.

Studio Shadow Flickering - Progetto per la realizzazione di un impianto per la produzione di energia elettrica da fonte eolica nel comune di Monterenzio (BO), con opere di adeguamento della viabilità esistente nel comune di Casalfiumanese (BO).

5 APPENDICE A

D: 44	Tr. 1 .	Distanza da	Coordina	ite UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R1	Residenziale	972	692446	4906765
R2	Residenziale	969	692519	4907115
R3	Residenziale	924	692569	4907125
R4	Residenziale	922	692583	4910235
R5	Residenziale	885	692608	4910239
R6	Residenziale	871	692625	4910246
R7	Residenziale	732	692750	4907393
R8	Residenziale	725	692767	4907495
R9	Residenziale	717	692775	4907494
R10	Residenziale	714	692779	4907511
R11	Residenziale	708	692783	4907495
R11	Residenziale	792	692792	4910456
R13	Residenziale	698	692787	4907362
R14	Residenziale	789	692790	4910438
R15	Residenziale	702	692790	4907509
R16	Residenziale	691	692792	4907382
R17	Residenziale	646	692793	4906920
R18	Residenziale	684	692808	4907491
R19	Residenziale	684	692809	4907507
R20	Residenziale	684	692809	4907499
R21	Residenziale	668	692816	4907375
R22	Residenziale	653	692826	4907415
R23	Residenziale	596	692826	4906795
R24	Residenziale	655	692830	4907450
R25	Residenziale	753	692831	4910434
R26	Residenziale	643	692847	4907504
R27	Residenziale	647	692850	4907541
R28	Residenziale	567	692857	4906806
R29	Residenziale	617	692867	4907371

D: 44	7D* 1 •	Distanza da	Coordina	te UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R30	Residenziale	603	692879	4907435
R31	Residenziale	623	692889	4907593
R32	Residenziale	573	692910	4907370
R33	Residenziale	573	692938	4907576
R34	Residenziale	527	692955	4907429
R35	Residenziale	529	692958	4907474
R36	Residenziale	504	692981	4907423
R37	Residenziale	558	693012	4910363
R38	Residenziale	467	693197	4909645
R39	Residenziale	188	693302	4906603
R40	Residenziale	445	693394	4908356
R41	Residenziale	309	693463	4908480
R42	Residenziale	259	693584	4907654
R43	Residenziale	768	693606	4910803
R44	Residenziale	598	693643	4909386
R45	Residenziale	392	693882	4910125
R46	Residenziale	907	693992	4906036
R47	Residenziale	161	697692	4906161
R48	Residenziale	942	697874	4907424
R49	Altri ricettori	987	692510	4907142
R50	Altri ricettori	811	692766	4910448
R51	Altri ricettori	830	692763	4908525
R52	Altri ricettori	706	692808	4907179
R53	Altri ricettori	748	692954	4909494
R54	Altri ricettori	614	693060	4909517
R55	Altri ricettori	774	693092	4910716
R56	Altri ricettori	778	693104	4910727
R57	Altri ricettori	891	693180	4910891
R58	Altri ricettori	433	693186	4909704
R59	Altri ricettori	912	693199	4910919

Dia ettema	Tinalogia	Distanza da	Coordina	te UTM
Ricettore	Tipologia	aerogeneratore [m]	Long E [m]	Lat N [m]
R60	Altri ricettori	395	693203	4909747
R61	Altri ricettori	929	693212	4910944
R62	Altri ricettori	319	693258	4909749
R63	Altri ricettori	256	693326	4909802
R64	Altri ricettori	391	693401	4908414
R65	Altri ricettori	230	693483	4908555
R66	Altri ricettori	620	693650	4909406
R67	Altri ricettori	334	694524	4910640
R68	Altri ricettori	754	694849	4911070
R69	Altri ricettori	436	696470	4907045
R70	Altri ricettori	565	696687	4906607
R71	Altri ricettori	977	696872	4905467
R72	Altri ricettori	689	697604	4905516
R73	Altri ricettori	675	697747	4905547