

Direzione Tecnica

STRADA STATALE 4 "VIA SALARIA" Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Stralcio 1 (pk 0+000 – 1+900)

PROGETTO ESECUTIVO

COD.

RM368

PROGETTAZIONE:

R.T.I.: PROGER S.p.A. (capogruppo mandataria)

PROGIN S.p.A.

S.I.N.A. S.p.A. – BRENG S.r.l.

CAPOGRUPPO MANDATARIA:

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Antonio GRIMALDI (Progin S.p.A.) Ordine degli Ingegneri della Provincia di Napoli n. 23799

IL GEOLOGO:

Dott. Geol. Gianluca PANDOLFI ELMI (Progin S.p.A.)

Ordine dei Geologi Regione Umbria n. 467

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Michele CURIALE (Progin S.p.A.)

VISTO: IL RESPONSABILE UNICO DEL PROGETTO

Dott. Ing. Paolo NARDOCCI

PROTOCOLLO

DATA

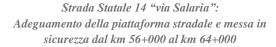
Direttore Tecnico: Dott. Ing. Lorenzo INFANTE

PROGETTO OPERE D'ARTE MINORI - TOMBINI

202

Relazione tecnica e di calcolo Tombino TM11

CODICE	E PROGETTO	NOME FILE T01TM11STRRE01D			REVISIONE	SCALA:
	D P R M 3 6 8 E 2 3	CODICE T 0 1	T M 1 1 S	T R R E 0 1	D	-
D	Emissione a seguito di validazior	ne e istruttoria ANAS	01-2024	M. Boccardi	P. Valente	L. Infante
С	Terza emissione a seguito i	struttoria ANAS	08-2023	M. Boccardi	P. Valente	L. Infante
В	Seconda emissione a seguito	07-2023	M. Boccardi	P. Valente	L. Infante	
А	Prima emissio	12-2022	M. Boccardi	P. Valente	L. Infante	
RFV	DESCRIZION	 IF	DATA	REDATTO	VERIFICATO	APPROVATO



Sommario

1	PR.	EMESSA	1
1.	1	DESCRIZIONE DELL'OPERA	2
2	NC	DRMATIVA DI RIFERIMENTO	3
2.	1	ELABORATI DI RIFERIMENTO	4
3	CA	RATTERISTICHE DEI MATERIALI	4
3.	1	CLASSE DI ESPOSIZIONE E COPRIFERRI	4
3	2	CALCESTRUZZO STRUTTURE (C32/40)	5
3.	3	ACCIAIO PER BARRE D'ARMATURA (B450C)	6
4	IN	QUADRAMENTO GEOTECNICO	6
4.	1	UNITÀ GEOTECNICHE	6
4.	2	PARAMETRI GEOTECNICI CARATTERISTICI DI PROGETTO	6
4.	3	STRATIGRAFIA DI PROGETTO	8
4.	4	INTERAZIONE TERRENO-FONDAZIONE	10
5	CA	RATTERIZZAZIONE SISMICA DEL SITO	11
6	CR.	ITERI GENERALI PER LE VERIFICHE STRUTTURALI	
6.	1	VERIFICHE ALLO SLU	13
	6.1.1	Pressoflessione	13
	6.1.2	Taglio	14
6	2	VERIFICA SLE	15
	6.2.1		
	6.2.2		
7	CR.	ITERI DI VERIFICA DELLE OPERE	
7.		METODOLOGIA DI CALCOLO	
8	AN	VALISI DEI CARICHI	17
8.	1	PESO PROPRIO (COND. DI CARICO 1)	18

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

8.2	PERMANENTI (COND. DI CARICO 2)	18
8.3	SPINTA DEL TERRENO (COND. DI CARICO 3/4)	19
8.4	SPINTA IN PRESENZA DI FALDA (COND. DI CARICO 5)	19
8.5	VARIAZIONI TERMICHE DELLA STRUTTURA (COND. DI CARICO 9)	19
8.6	RITIRO E VISCOSITÀ (COND. DI CARICO 8)	19
8.7	AZIONI VARIABILI DA TRAFFICO (COND. DI CARICO 10/11)	20
8.8	AZIONI AVVIAMENTO/FRENATURA (COND. DI CARICO 10)	23
8.9	AZIONI SISMICHE (COND. DI CARICO 6/7)	23
9 6	COMBINAZIONI DI CARICO	24
10	RISULTATI, ANALISI E VERIFICHE - SCATOLARE	25
10		
	GEOMETRIA DELLA STRUTTURA	25
10.1	GEOMETRIA DELLA STRUTTURA	25
10.1	GEOMETRIA DELLA STRUTTURA	25 26
10.1 10.2 10.3	GEOMETRIA DELLA STRUTTURA	25 26 27
10.1 10.2 10.3 10.4	GEOMETRIA DELLA STRUTTURA	25 26 27 30
10.1 10.2 10.3 10.4 10.5	GEOMETRIA DELLA STRUTTURA MODELLO DI CALCOLO SOLLECITAZIONI DI CALCOLO ARMATURE DI PROGETTO VERIFICHE DI RESISTENZA E FESSURAZIONE VERIFICHE DEL TIMPANO	25 26 30 31

1 PREMESSA

La presente relazione viene redatta nell'ambito della Progettazione Esecutiva dell'intervento "Strada Statale 4 via Salaria: adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000". Il progetto interessa lo stralcio n.1 (pk 0+000 – 1+900) del lotto funzionale denominato Lotto 1 (da km 56+000 a km 64+000) di un progetto più ampio che prevede l'adeguamento della S.S. 4 "Salaria" fino alla progressiva 70+800. L'intervento previsto consiste nel potenziamento della strada statale S.S.4 "Via Salaria" mediante l'adeguamento della piattaforma esistente ad una piattaforma assimilabile, per caratteristiche tecniche, alla cat. B.

La presente relazione di calcolo riguarda il dimensionamento e verifica del nuovo tombino scatolare TM11, da realizzarsi lungo la linea, in particolare situato al km 1+423.

L'opera oggetto della presente relazione è un tombino scatolare che ha l'obiettivo di regimentare le acque meteoriche e non interrompere il flusso della corrente naturale. Per realizzare lo scatolare si realizzano delle opere di tipo provvisorio che servono sia per sostenere gli scavi, sia per non interrompere il flusso veicolare. In particolare le fasi che caratterizzano tale costruzione prevedono:

- > Una prima fase in cui si realizza parte del solettone su micropali in sinistra del tombino scatolare. Questa operazione permette di gestire il traffico veicolare spostandolo provvisoriamente a destra
- > Una seconda fase in cui si realizza parte del solettone su micropali in destra. In questo modo è possibile spostare il flusso veicolare sul solettone in sinistra realizzato nella fase precedente
- ➤ La terza fase consiste nel terminare il collegamento del solettone su micropali nella parte centrale
- ➤ La quarta fase permette infine la realizzazione del tombino scatolare

Al paragrafo successivo si riportano alcune immagini esplicative del tombino scatolare oggetto della presente relazione di calcolo.

1.1 DESCRIZIONE DELL'OPERA

Di seguito si riportano alcune immagini significative dell'opera. Per ulteriori dettagli si rimanda agli elaborati grafici di riferimento:

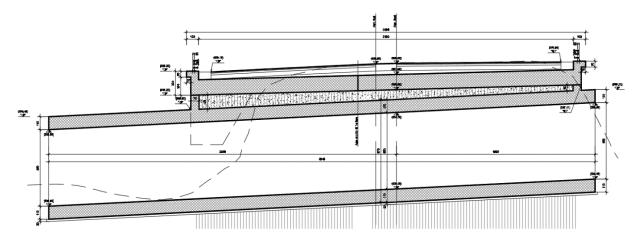


Figura 1- Profilo longitudinale

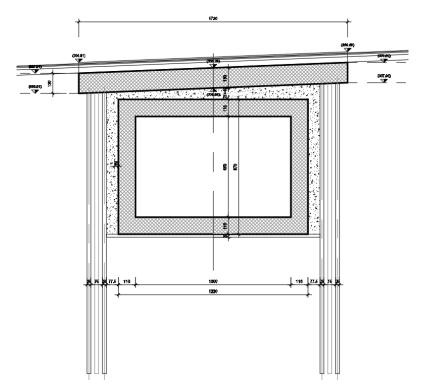


Figura 2- Sezione trasversale

2 NORMATIVA DI RIFERIMENTO

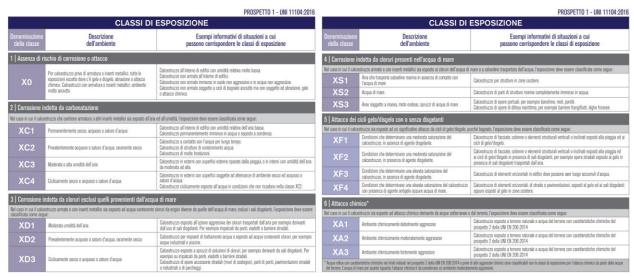
Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni (NTC);
- Circolare n.7 del 21 gennaio 2019 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018;
- UNI EN 1992-1-1 Progettazione delle strutture di calcestruzzo;
- UNI EN 206-1-2016 Calcestruzzo: specificazione, prestazione, produzione e conformità.
- UNI 11104_2016: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1
- Decreto Protezione Civile 21 ottobre 2003: Disposizioni attuative dell'art. 2, commi 2, 3 e 4, dell'ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003.
- *OPCM* 20 marzo 2003 n. 3274, Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica.
- OPCM 3 maggio 2005 n. 3431: Ulteriori modifiche ed integrazioni dell'ordinanza del Presidente del consiglio dei Ministri n. 3274 del 20/3/2003 recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica".
- OPCM 8 luglio 2004 n. 3362: Modalità di attivazione del Fondo per investimenti straordinari della Presidenza del Consiglio dei Ministri istituito ai sensi dell'art. 32-bis del decreto legge 30 settembre 2003 n. 269 convertito, con modificazioni, dalla legge 24 novembre 2003 n. 326.
- OPCM 28 aprile 2006: Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone.
- Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale e successive modificazioni del Ministero per i Beni e le Attività Culturali, come licenziate dal Consiglio Superiore dei Lavori Pubblici e ss. mm. ii..
- Raccomandazioni AGI (1977);
- Modalità Tecniche ANISG (1977).
- Quaderni tecnici ANAS

2.1 ELABORATI DI RIFERIMENTO

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati:

CODICE ELABORATI				ATI			ELABORATI	SCALA			
Т	0	1	TM	1	1	STR	DI	0	1	Tombino pk 1+423 - Disegno di insieme e carpenterie	Varie
Т	0	1	TM	1	1	STR	DI	0	2	Tombino pk 1+423 - Carpenterie Opere provvisionali	Varie
Т	0	1	TM	1	1	STR	PE	0	1	Tombino pk 1+423 - Fasi esecutive e scavi	Varie
Т	0	1	GE	0	2	GEO	RE	0	1	Relazione geotecnica generale	Varie
Т	0	1	GE	0	2	GEO	FG	0	1	Profilo geotecnico parte1	Varie
Т	0	1	GE	0	2	GEO	FG	0	2	Profilo geotecnico parte2	Varie
Т	0	1	TM	1	1	STR	AR	0	2	Tombino pk 1+423 - Armatura tombino scatolare	Varie


3 CARATTERISTICHE DEI MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 CLASSE DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI EN 2016, si definiscono di seguito le classi di esposizione del calcestruzzo delle diversi parti della struttura oggetto dei dimensionamenti di cui al presente documento:

• Tombini: XC4 - XF1;

Classi di esposizione secondo norma UNI – EN 206-2016

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

Valori limite per la composizione e le proprietà del calcestruzzo

T0 5		CLASSI DI ESPOSIZIONE																
PROSPET Uni 11104:	Nessun rischio di corrosione dell'armatura		Corrosione delle armature indotta dalla carbonatazione													Ambiente aggressivo per attacco chimico		
N P		XC1	XC2	XC3	XC4	XS1	XS2	XS3				XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,	60	0,55	0,50	0,50	0,	45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
Minima classe di resistenza	C12/15	C25	5/30	C30/37	C32/40	C32/40	C35	5/45	C30/37	C32/40	C35/45	C32/40	C25	/30	C30/37	C30/37	C32/40	C35/45
Minimo contenuto in cemento (Kg/m³) (ð)	-	3	00	320	340	340	31	60	320	340	360	320 340 360			360	320	340	360
Contenuto minimo in aria (%)												(b)		4,0 (a)				
Altri requisiti							l'utilizzo di i ill'acqua di r NI 9156					È richiesto alla UNI EI al gelo/dis	iesto l'utilizzo di aggregati conformi NI EN 12620 di adeguata resistenza o/disgelo		o acqua de solfati nei I della UNI E	esposizione a el terreno cor imiti del pros N 206:2014 li cementi re o	ntenente spetto 2 , è richiesto	

⁽a) Quando il calosstruzzo non contiene aria inglobata, le sue prestazioni devono essere verificate rispetto ad un calosstruzzo aerato per il quale è provata la resistenza al gela/disgele, da determinarsi secondo UNI CEN/TS 12390 -9. UNI CEN/TR 15177 o UNI 7087 per la rebilaro alsses di esposizione. Il valore minimo di ral ai inglobata, le sue prestazioni devono essere verificate rispetto ad un calosstruzza sevolitazion D_m > 20mm; per D_m inferiori il limito minimo andrà opportunamente aumentato (ad esemplo 596 per D_{ever} tra 12mm e 16 mm).

(b) Qualero si intera colosstruzza aerato accionato rispetto in consistenza construzza sevolita di sono defini dala UNI EH 197-1 e su base aucivane di tala UNI EH 197-1 e su base aucivane da tala UNI EH 197-6 classifica comenti resistenti ai soffati in tre classifica el construita al partici accionato di calossi di esposizioni del construita di calossi di esposizioni del construita del comento deve essere prescelta in relazione al accionato del calossificazo socioni oli cetteri di construita del comento deve essere prescelta in el calossi applica il concetto di valore & il rapporto massimo a/c e il contenuto minimo di cemento sono calcolati in conformità al punto 5.2.2.

Classi di resistenza minima del calcestruzzo secondo UNI – 11104

I copriferri di progetto adottati per le barre di armatura, tengono infine conto inoltre delle prescrizioni di cui alla Tabella C4.1.IV della circolare esplicativa alle NTC2018; si è in particolare previsto di adottare i seguenti Copriferri minimi (intesi come distanza tra il lembo più esterno di cls ed estremità del ferro staffe/ripartitori) espressi in mm

Cordoli e soletta: 60 mm

3.2 CALCESTRUZZO STRUTTURE (C32/40)

Resistenza caratteristica a compressione cubica a 28 gg:		$\mathbf{R}_{\mathbf{ck}} =$	40	MPa
Resistenza caratteristica a compressione cilindrica a 28 gg:	$(0.83*R_{ck})$	$\mathbf{f}_{\mathbf{ck}} =$	33,2	MPa
Resistenza a compressione cilindrica media:	(fck+8)	$\mathbf{f}_{\mathrm{cm}} =$	41,2	MPa
Valore medio resistenza a trazione assiale:		$\mathbf{f}_{\mathrm{ctm}} =$	3,10	MPa
Valore caratteristico frattile 5% resistenza a trazione assiale:		$\mathbf{f}_{\mathrm{ctk},0,05}\!\!=\!$	2,17	MPa
Valore medio resistenza a trazione per flessione:		$\mathbf{f}_{\mathrm{cfm}} =$	3,72	MPa
Valore caratteristico frattile 5% resistenza a trazione per flessione		$f_{cfk,0,05} =$	2,60	MPa
**Coefficiente parziale per le verifiche agli SLU:		γ e=	1,5	[-]
Resistenza di calcolo a compressione allo SLU:	(0,85*fck/gc)	$\mathbf{f}_{\mathrm{cd}} =$	18,8	MPa
Resistenza di calcolo a trazione diretta allo SLU:	$(f_{ctk\ 0,05}/\ gs)$	$\mathbf{f}_{\mathrm{ctd}} =$	1,45	MPa
*Resistenza di calcolo a trazione per flessione SLU:	(1,2*fctd)	$\mathbf{f}_{\mathrm{ctd}}$	1,74	MPa
Modulo di elasticità secante:		$\mathbf{E}_{\mathbf{cm}} =$	33643	MPa
Modulo di Poisson:		ν=	0-0,2	[-]
Coefficiente di dilatazione lineare		α=	0,00001	$^{\circ}C^{\text{-1}}$
*Tensione massima ammissibile nella comb. Quasi Permanente	$\sigma_{cmax\ QP}$ =	$(0,45 f_{cK}) =$	14,94	MPa
*Tensione massima ammissibile nella comb. Caratteristica -Rara	$\sigma_{cmax\ R}$ =	$(0,60 f_{cK}) =$	19,92	MPa

^{**}Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

^{*}Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.3 ACCIAIO PER BARRE D'ARMATURA (B450C)

Tipologia		B450C	
Resistenza caratteristica a snervamento	$\mathbf{f}_{\mathbf{y}\mathbf{k}}$	450	MPa
Coefficiente parziale di sicurezza per l'acciaio	$\gamma_{\rm c}$	1.15	
Resistenza di progetto a snervamento	\mathbf{f}_{yd}	391.3	MPa
Modulo elastico longitudinale	$\mathbf{E}_{\mathbf{cm}}$	210000	MPa
Tensione massima per la verifica agli SLE	$0.80 f_{yK} =$	360	MPa

Combinazione di Carico Caratteristica(Rara)

4 INQUADRAMENTO GEOTECNICO

Nel presente capitolo si riportano le principali unità geotecniche presenti lungo la linea ed a segure i parametri geotecnici di progetto secondo quanto riportato nella relazione geotecnica generale alla quale si rimanda per ulteriori approfondimenti.

4.1 UNITÀ GEOTECNICHE

Unità Ra - riporto antropico

Unità ec (limo sabbioso argilloso)

Unità AL (argilla limosa)

Unità GS (ghiaia sabbiosa)

Unità MS (conglomerati)

Unità SR / SB (calcari marnosi)

Unità SRa (calcari marnosi alterati litoidi)

Unità OB (calcareniti)

4.2 PARAMETRI GEOTECNICI CARATTERISTICI DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte tenendo conto di quanto risultante nel profilo geologico e di.

Unità Ra - riporto antropico

 $\gamma = 19.0 \div 20.0 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

Eo = 250 ÷400 MPa modulo di deformazione elastico a piccole deformazioni

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Unità ec (limo sabbioso argilloso)

 $\gamma = 18.0 \text{ kN/m}^3$ peso di volume naturale

 $c' = 5 \div 10 \text{ kPa}$ coesione drenata

 $\varphi' = 26 \div 30^{\circ}$ angolo di resistenza al taglio

 $c_u = 100 \div 175 \text{ kPa}$ resistenza al taglio in condizioni non drenate

Eo = 200 ÷400 MPa modulo di deformazione elastico a piccole deformazioni

Unità AL (argilla limosa)

 $\gamma = 19.0 \text{ kN/m}^3$ peso di volume naturale

 $c' = 5 \div 15 \text{ kPa}$ coesione drenata

 $\varphi' = 26 \div 30^{\circ}$ angolo di resistenza al taglio

 $c_u = 75 \div 200 \text{ kPa}$ resistenza al taglio in condizioni non drenate

Eo = 150 ÷400 MPa modulo di deformazione elastico a piccole deformazioni

Unità GS (ghiaia sabbiosa)

 $\gamma = 19.0 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi = 35 \div 40^{\circ}$ angolo di resistenza al taglio

Eo = 350 ÷600 MPa modulo di deformazione elastico a piccole deformazioni

Unità MS (conglomerati)

 $\gamma = 19.0 \div 20 \text{ kN/m}^3$ peso di volume naturale

 $c' = 5 \div 20 \text{ kPa}$ coesione drenata

 $\varphi' = 35 \div 42^{\circ}$ angolo di resistenza al taglio

Eo = 400 ÷800 MPa modulo di deformazione elastico a piccole deformazioni

Unità SR / SB (calcari marnosi)

 $\gamma = 25 \text{ kN/m}^3$ peso di volume naturale

 σ_c = 21÷93 MPa resistenza a compressione monoassiale

 $\sigma_{c,media}\!=\!49\;MPa \qquad \qquad resistenza\;a\;compressione\;monoassiale\;media$

 $\sigma_{c,10\%} = 30 \text{ MPa}$ resistenza a compressione monoassiale decimo percentile

Parametri di resistenza per le fondazioni dirette:

 $c' = 40 \div 60 \text{ kPa}$ coesione drenata

 $\varphi' = 40^{\circ}$ angolo di resistenza al taglio

Unità SRa (calcari marnosi alterati litoidi)

 $\gamma = 25 \text{ kN/m}^3$ peso di volume naturale

 $c' = 40 \div 50 \text{ kPa}$ coesione drenata

 $\varphi' = 40^{\circ}$ angolo di resistenza al taglio

E= 900 MPa modulo di deformazione

Unità OB (calcareniti)

 $\gamma = 21.0 \text{ kN/m}^3$ peso di volume naturale

c' = 20÷40 kPa coesione drenata

 $\varphi' = 24 \div 26^{\circ}$ angolo di resistenza al taglio

E= 75 MPa modulo di deformazione operativo

 σ_c = 4 MPa resistenza a compressione monoassiale

Il livello di falda di progetto per le opere è indicato nel profilo stratigrafico e nelle sezioni geotecniche. I moduli di deformabilità "operativi" da adottare per il calcolo delle deformazioni/cedimenti delle opere di sostegno e delle fondazioni (Eop1'), saranno assunti pari a 1/5 di quello iniziale (Eo): Eop1 '= Eo / 5.

4.3 STRATIGRAFIA DI PROGETTO

Le caratteristiche geotecniche del volume di terreno che interagisce con l'opera sono state desunte tenendo conto di quanto risultante nel profilo geologico e dalla caratterizzazione dei litotipi riportati nella relazione geotecnica generale. La stratigrafia di progetto è la seguente:

Unità Ra - riporto antropico – (da 0m a 3,00m)

 $\gamma = 19.0 \div 20.0 \text{ kN/m}^3 \text{ (assunto } 19 \text{ kN/m}^3\text{)}$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

Eo = 250 ÷400 MPa (assunto 250MPa) modulo di deformazione elastico a piccole deformazioni

Unità SRa (calcari marnosi alterati litoidi) – (da 3,30m a 5,20m)

 $\gamma = 25 \text{ kN/m}^3$ peso di volume naturale

 $c' = 40 \div 50 \text{ kPa}$ (assunto 45kPa) coesione drenata

 $\phi' = 40^{\circ}$ angolo di resistenza al taglio

E= 900 MPa modulo di deformazione

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Unità SR / SB (calcari marnosi) – (da 5,20m a 30,00m)

 $\gamma = 25 \text{ kN/m}^3$ peso di volume naturale

 $c' = 40 \div 60 \text{ kPa}$ (assunto 45kPa) coesione drenata

 $\phi' = 40^{\circ}$ angolo di resistenza al taglio

Eo = 600 MPa modulo di deformazione elastico a piccole deformazioni

In relazione all'ubicazione dell'opera, e alle quote di approfondimento delle stesse, è stato assunto cautelativamente come terreno in fondazione il litotipo:

Unità SR / SB (calcari marnosi)

 $\gamma = 25 \text{ kN/m}^3$ peso di volume naturale

 $c' = 40 \div 60 \text{ kPa}$ (assunto 45kPa) coesione drenata

 $\varphi' = 40^{\circ}$ angolo di resistenza al taglio

Eo = 600 MPa modulo di deformazione elastico a piccole deformazioni

Per il terreno di rinfianco e di ricoprimento si è considerato il terreno da rilevato, con le seguenti caratteristiche:

Terreno di rinfianco e ricoprimento

 $\gamma = 19.0 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

 $\phi' = 35^{\circ}$ angolo di resistenza al taglio

Eo = 150 MPa modulo di deformazione elastico a piccole deformazioni

La quota di falda rilevata è a circa 0,40 m dal piano di posa del tombino scatolare.

4.4 INTERAZIONE TERRENO-FONDAZIONE

Per le analisi d'interazione struttura-terreno in direzione verticale, il coefficiente di sottofondo alla Winkler può essere determinato con la seguente relazione:

$$k_{w} = \frac{E}{(1 - v^{2}) \cdot B \cdot c_{t}}$$

dove:

- E' = modulo di deformazione elastico del terreno;
- v = coefficiente di Poisson = 0.3;
- B = larghezza della fondazione.
- ct = fattore di forma, coefficiente adimensionale ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (vedasi tabella seguente).

Fondazione Rigida	\mathbf{c}_{t}
- rettangolare con L/B≤10	$ct = 0.853 + 0.534 \ln(L/B)$
- rettangolare con L/B>10	ct = 2 + 0.0089 (L/B)
L é il lato maggio	ore della fondazione

Sulla base della geometria della fondazione e delle condizioni geotecniche locali verrà valutato il modulo di deformazione elastico per il calcolo del coefficienti di sottofondo.

In particolare il modulo di deformazione elastico potrà essere determinato dal modulo di deformazione elastico iniziale (E_0) come $E=E_0$ / (5).

Nel caso in esame:

Tombino Scatolare TM11									
Geor	metria Fondazi	ione	Costante di sottofondo						
L	В	L/B	Ct	Е	k _w				
[m]	[m]	[m]	[-]	[kPa]	[kN/m³]				
46.55	18.00	2.59	1.36	120000	5585				

5 CARATTERIZZAZIONE SISMICA DEL SITO

L'opera in oggetto è progettata per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso IV ("Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità.") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso CU = 2.0.

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T);
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;
- con riferimento a prefissate probabilità di eccedenza PVR

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- ag, accelerazione orizzontale massima del terreno
- F0, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- TC*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F_0 descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

L'area di studio è indicativamente ubicata alle coordinate (WGS84) Lat: 42,2893028° Long: 12,8518372° e ricade pertanto all'interno del reticolo di riferimento tra i 4 vertici indicati nella figura per i quali le NTC definiscono i parametri necessari per definire l'azione sismica.

Rappresentazione dei punti della maglia del reticolo di riferimento riportati nella Tab.1 allegata alle NTC 2018

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Vita nominale VN = 50 anni;

Classe d'uso = IV;

Coefficiente d'uso Cu = 2.0;

Periodo di riferimento VR = 100 anni;

TR,SLV = 949 anni;

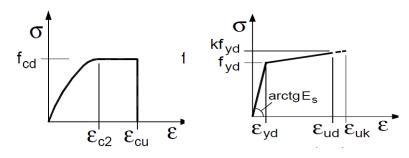
I parametri di progetto utilizzati per la valutazione degli spettri di risposta sono riepilogati di seguito..

ag,SLV = 0.207 g; F0,SLV = 2.481; T*c,SLV = 0.34 sec.

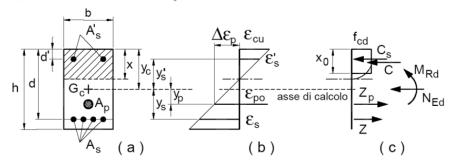
Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è infine costruito a partire dai parametri seguenti.

Categoria di suolo = B; Categoria topografica = T2; Ss, fattore stratigrafico = 1.19; ST, fattore topografico = 1.00; Cc, fattore correttivo del periodo TC* = 1.37.

Per le opere in progetto, in accordo con la tabella 3.2.III delle NTC2018, si assume categoria topografica T2. In accordo con quanto riportato al punto 3.2.3.2 delle NTC2018, ultimo capoverso, in ragione della morfologia dell'area e dell'ubicazione delle opere rispetto ad essa (situate di fatto in corrispondenza della base del versante), non sussistono condizioni tali da comportare un effetto di amplificazione topografica delle azioni sismiche, per cui il coefficiente topografico (Tab. 3.2.V), viene assunto unitario (ST=1.0).


6 CRITERI GENERALI PER LE VERIFICHE STRUTTURALI

I criteri generali di verifica utilizzati per la valutazione delle capacità resistenti delle sezioni, per la condizione SLU, e per le massime tensioni nei materiali nonché per il controllo della fessurazione, relativamente agli SLE, sono quelli definiti al p.to 4.1.2 delle NTC.


6.1 VERIFICHE ALLO SLU

6.1.1 Pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.3.2 delle NTC, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

Legami costitutivi Calcestruzzo ed Acciaio -

Schema di riferimento per la valutazione della capacità resistente a pressoflessione generica sezione -

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$
 [4.1.18a]

$$\mu_{b} = \mu_{b} (N_{Ed}) \ge \mu_{Ed}$$
 [4.1.18b]

dove

M_{Rd} è il valore di progetto del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di progetto dello sforzo normale sollecitante;

M_{Ed} è il valore di progetto del momento di domanda;

 μ_{ϕ} è il valore di progetto della duttilità di curvatura corrispondente a N_{Ed} ;

 μ_{Ed} è la domanda in termini di duttilità di curvatura.

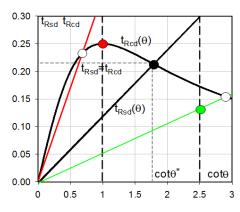
6.1.2 Taglio

La resistenza a taglio VRd della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

Dove:

•
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;


•
$$k = 1 + (200/d)^{1/2} \le 2$$
;

- $\rho_1 = A_{sw}/(b_w * d)$
- d = altezza utile per piedritti soletta superiore ed inferiore;
- b_w= 1000 mm larghezza utile della sezione ai fini del taglio.

In presenza di armatura, invece, la resistenza a taglio VRd è il minimo tra la resistenza a taglio trazione VRsd e la resistenza a taglio compressione VRcd :

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg\alpha + ctg\theta \right) \cdot \sin\alpha \qquad V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd} \cdot \frac{\left(ctg\alpha + ctg\theta \right)}{\left(1 + ctg^2\theta \right)}$$

Essendo: $1 \le \operatorname{ctg} \theta \le 2,5$

- Se la $\cot\theta^*$ è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasversale e il taglio resistente $V_{Rd}(=V_{Rsd})$ coincide con il massimo taglio sopportate dalle armature trasversali valutabile per una $\cot\theta=2.5$.
- Se la $\cot \theta^*$ è minore di 1.0 la crisi è da attribuirsi alle bielle compresse e taglio resistente $V_{Rd}(=V_{Rcd})$ coincide con il massimo taglio sopportato dalle bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.
- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare il taglic resistente $V_{Rd}(=V_{Rcd}=V_{Rsd})$

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.3.5.2 delle NTC, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione.

$$1 \le \text{ctg } \theta \le 2.5$$
 $45^{\circ} \ge \theta \ge 21.8^{\circ}$

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

(θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature) dove:

$$v = f'cd / fcd = 0.5$$

f 'cd = resistenza a compressione ridotta del calcestruzzo d'anima

f cd = resistenza a compressione di calcolo del calcestruzzo d'anima

 ω_{sw} : Percentuale meccanica di armatura trasversale.

$$\omega_{sw} = \frac{A_{sw} f_{yd}}{b s f_{cd}}$$

6.2 VERIFICA SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

6.2.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento quelli previsti dalle NTC e riepilogati ai par.3.2 (per il cls) e 3.3 (per l'acciaio).

6.2.2 Verifiche a fessurazione

La verifica a fessurazione consiste nel controllo dell'ampiezza massima delle fessure per le combinazioni di carico di esercizio i cui valori limite sono stabiliti dalle NTC. Nel caso in esame, adottando un'armatura poco sensibile alla corrosione, le verifiche sono le seguenti:

Combinazioni	Q.P.	Freq.	Rara
Cond. Aggressive	$w_1=0.20\;mm$	$w_2 = 0.3 \text{ mm}$	-

7 CRITERI DI VERIFICA DELLE OPERE

Le verifiche sono state condotte in accordo con le prescrizioni e le indicazioni del DM 17/01/2018 e della Circolare 21/02/2019.

7.1 METODOLOGIA DI CALCOLO

Le analisi finalizzate al dimensionamento delle strutture sono state condotte con il programma di calcolo "SCAT - Analisi Strutture Scatolari- Versione 14.0" della Aztec Informatica srl, Casole Bruzio (CS).

La struttura viene discretizzata in elementi tipo trave. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione.

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi. Il terreno di fondazione viene schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa. A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p. Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$K u = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

Il calcolo degli scatolari viene eseguito secondo le seguenti fasi:

- Calcolo delle pressioni in calotta (per gli scatolari ricoperti da terreno);
- Calcolo della spinta del terreno;
- Calcolo delle sollecitazioni sugli elementi strutturali (fondazione, piedritti e traverso);
- Progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente. La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

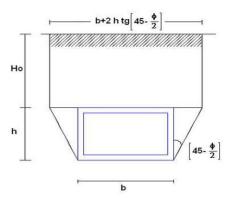
8 ANALISI DEI CARICHI

Si riporta di seguito la valutazione dei carichi elementari considerati nel dimensionamento della struttura in esame, riferiti generalmente ad una fascia di struttura di dimensione unitaria.

Le condizioni di carico considerate complessivamente, sono quelle riportate nell'elenco seguente:

	CONDZIONI DI CARICO ELEMENTARI
1	Peso Proprio
2	Permanenti
3	Spinta terreno sinistra
4	Spinta terreno destra
5	Spinta Falda
6	Sisma sinistra
7	Sisma destra
8	Ritiro e Viscosità
9	Termica
10	Qcentr+AVV
11	Qlat

Data la configurazione simmetrica, la condizione 7, proposte di default dal software di calcolo utilizzato, nel caso in esame non assume significato. Inoltre, per quanto riguarda i muri di imbocco, le condizioni relative ai carichi variabili da traffico sono assenti. Nel seguito si andranno ad esporre in dettaglio, le valutazioni di calcolo effettuare per ciascuna delle condizioni citate.



8.1 PESO PROPRIO (COND. DI CARICO 1)

Il peso proprio delle strutture è determinato automaticamente dal programma di calcolo, avendo considerato un peso dell'unita di volume del c.a. γ cls = 25 KN/m3.

8.2 PERMANENTI (COND. DI CARICO 2)

Per la valutazione del carico permanente in copertura, si è fatto riferimento al metodo di Terzaghi secondo il quale, il carico sul traverso si manifesta come semplice peso di una massa parabolica o ellittica di distacco.

Più in dettaglio Terzaghi fornisce due espressioni differenti della pressione a seconda della maggiore o minore altezza del ricoprimento, H0.

Facendo riferimento ai simboli della figura precedente, ed indicando con C la coesione, con ϕ l'angolo di attrito e con γ il peso di volume del terreno di ricoprimento, le due espressioni sono le seguenti:

$$p_{v} = \frac{\gamma B_{1} - C}{K tg\varphi} \left(1 - e^{-K \frac{H_{0}}{B_{1}} tg\varphi} \right)$$

nella quale K è un coefficiente sperimentale, che, secondo misure eseguite dallo stesso Terzaghi è circa uguale ad 1, mentre il coefficiente B1, si ricava attraverso la seguente espressione:

$$B_1 = \frac{b}{2} + h \, tg \left(45^\circ - \frac{\varphi}{2} \right)$$

nella quale ϕ è l'angolo di attrito dello strato di rinfianco.

8.3 SPINTA DEL TERRENO (COND. DI CARICO 3/4)

Per la valutazione delle Spinte del terreno sui piedritti, in considerazione della ridotta capacità deformativa dell'opera, si è assunto che sui piedritti agisca la spinta calcolata in condizioni di riposo. L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente) :

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0$$

Il coefficiente di spinta a riposo è espresso dalla relazione: $K_0 = 1 - sin\phi$

Dove ϕ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

$$\begin{split} & \sigma = \gamma \cdot z \cdot K_0 + p_V \cdot K_0 \\ & S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_0 + p_V \cdot K_0 \cdot H \end{split}$$

dove pv è la pressione verticale agente in corrispondenza della calotta.

8.4 SPINTA IN PRESENZA DI FALDA (COND. DI CARICO 5)

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento:

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ sat è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

8.5 VARIAZIONI TERMICHE DELLA STRUTTURA (COND. DI CARICO 9)

Si è tenuto conto di eventuali effetti termici dovuti a variazioni di temperatura sull'opera, applicando sul traverso superiore una variazione termica uniforme pari a \pm 15°C (tab 3.5.II - NTC2018);

8.6 RITIRO E VISCOSITÀ (COND. DI CARICO 8)

Gli effetti del ritiro del calcestruzzo e della viscosità sono assimilati ad una variazione termica uniforme della soletta superiore. Nello specifico, si è assunto di modellare la deformazione da ritiro totale comprensiva anche degli effetti da deformazione viscosa, attraverso l'introduzione di un carico termico uniforme nella soletta superiore di -10°C.

8.7 AZIONI VARIABILI DA TRAFFICO (COND. DI CARICO 10/11)

Per la determinazione dei carichi accidentali da traffico da considerare sul piano della pavimentazione, si è fatto riferimento agli schemi di carico stabilità al punto 5.1.3.3.3 del DM 17/01/18 di cui nel seguito:

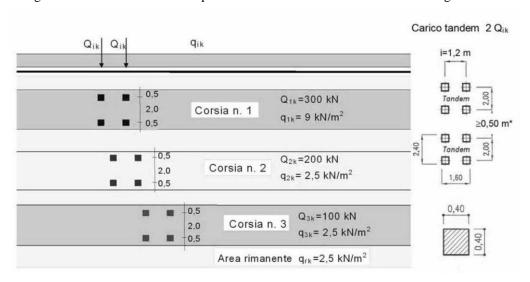
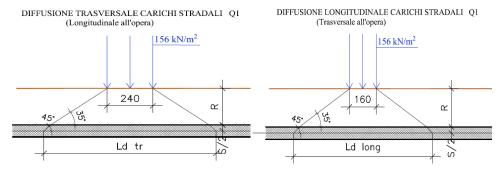
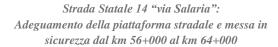



Figura 3 – Schema di carico 1


Lo schema di carico di Normativa, è in particolare costituito dalle seguenti colonne di carico:

- una colonna di carichi (ingombro = 3m) costituita da un automezzo convenzionale Q1k di 600kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k di 9 kN/m2 uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 400 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a 200 kN di Q1k e 2.5 kN/m2 di q1k e posta ad interasse di 3.00 m. da essa;
- un carico uniforme qrk = 2.5 kN/m2 nella zona di carreggiata non impegnata dai carichi precedenti.

Ai fini delle analisi, si è assunto di trasformare i carichi concentrati in un carico distribuito equivalente valutato nel modo seguente:

Schema di diffusione in soletta carichi Q1

Larghezza carreggiata: L_{carreggiata} [m]

12.20

Numero corsie convenzionali: n°

3

Larghezza zona rimanente carreggiata: L_r [m]

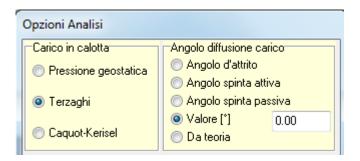
3.2

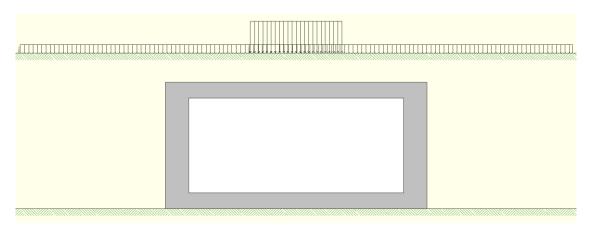
Posizione	Q [kN]	$q [kN/m^2]$
corsia 1	600	9
corsia 2	400	2.5
corsia 3	200	2.5
Altre corsie	0	2.5

	Sovraccarico Stradale SOPRAVIA											
	q1k	Q1k	assi	Interasse	Base	distr. Eq.	H _{Rilevato}	H _{traverso}	Diffusione	L _{trasv,diffusa}	L _{long,diffusa}	QvK
	[KN/m]	[KN]	[-]	[m]	[m]	[KN/m]	[m]	[m]	[°]	[m]	[m]	[KN/m]
corsia 1	9.0	300	2	1.60	2.40	156.25	2.00	1.10	35	6.30	5.50	17.31
corsia 2	2.5	200	2	1.60	2.40	104.17	2.00	1.10	35	6.30	5.50	11.54
corsia 3	2.5	100	2	1.60	2.40	52.08	2.00	1.10	35	6.30	5.50	5.77

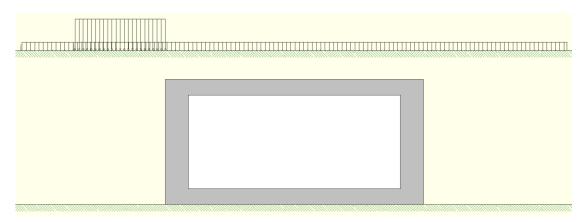
Sovrapposizione del carico:

34.62


Si assume quindi il valore relativo alla zona di sovrapposizione dei carichi di 34.62KN/m come carico da traffico. Si fa notare inoltre che per il carico stradale sono state considerate due condizioni di carico:


- > una prima condizione di carico (QCEN) finalizzata alla massimizzazione degli effetti flessionali su traverso ed a testa piedritti;
- una seconda condizione (QLAT) con finalità di massimizzare gli effetti flessionali in mezzeria piedritto.

Ulteriori combinazioni di carico, come ad esempio la condizione di carico massimo su metà soletta, risulterebbero meno gravose da un punto di vista di sollecitazioni sulla struttura, pertanto si considerano le due sole condizioni appena esplicitate.


Di seguito si riportano gli schemi grafici riferiti alle due condizioni di carico citate, specificando che per comodità di modellazione, i carichi precedentemente determinati sono stati applicati sul piano limite del modello (che li andrà a distribuire ortogonalmente sulla parte di terreno sottostante avendo specificato all'interno del software di calcolo un angolo di diffusione rispetto alla verticale pari a 0°), allo scopo di cogliere in automatico col software anche gli effetti delle spinte orizzontali (qxko).

Condizione di Carico QCEN

Condizione di Carico Q LAT

8.8 AZIONI AVVIAMENTO/FRENATURA (COND. DI CARICO 10)

Con riferimento al par. 5.1.3.5 del DM2018, l'azione di frenatura viene presa in conto col valore:

$$F = 0.6 * 2Qik + 0.1 * qik * w * L = 408.60$$
 L=lunghezza trasversale soletta

L'azione di cui sopra, viene distribuita sulla soletta superiore dello scatolare; il valore della frenatura equivalente da applicare alla soletta (τ), si ottiene distribuendo il valore del carico frenante, alla lunghezza della soletta e alla larghezza di diffusione del carico, con la seguente relazione:

$$\tau = F/(L_{d,long} \ x \ L_{d,trasv}) = 11.79 \ KN/mq$$

8.9 AZIONI SISMICHE (COND. DI CARICO 6/7)

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Forze d'inerzia

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale Fh = kh*WForza sismica verticale Fv = kv*W

I valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni:

kh= ama x/g

 $kv = \pm 0.5 \times kh$

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

amax = S * a = Ss *St*ag

Nel caso specifico, in accordo a quanto già riportato al paragrafo 5 risulta:

				SLU	SLE				
Accelerazione al suolo ag [m/s^2]				2.031	0.000				
Accelerazione al suolo ag [% di g]	Accelerazione al suolo ag [% di g]								
Massimo fattore amplificazione spettro orizzont	ale F0			2.481	0.000				
Periodo inizio tratto spettro a velocità costante	Te*			0.340	0.000				
Tipo di sottosuolo - Coefficiente stratigrafico S	▼	1.195	1.200						
Coefficiente di riduzione(β _m)	Coefficiente di riduzione(β_m)								
Coeff. amplificazione topografica S _T		T1	¥	1.000					
Kh = ag/g * Ss * S	St * β _m								
Coeff. di intensità sismica orizzontale l	(h [%]			24.733	0.000				
Intensità sismica Verticale/Orizzontale				0.50					
Forma diagramma incremento sismico									
C Triangolare	Retta	angolare							
Calcolo incremento sismico									
C Mononobe-Okabe	Woo	d							

Tombino Scatolare TM11

Spinta sismica terreno

Le spinte del terreno in fase sismica, sono state determinate per il tombino scatolare con la teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione: $\Delta S_E = Kh \cdot \gamma \cdot H^2$

Effetti dell'azione sismica sulla falda

Normalmente gli effetti idrodinamici considerati per il calcolo delle paratie sono calcolati con il metodo di Westergaard (1931) e sono applicate sempre come pressioni esterne. La pressione idrodinamica viene calcolata come in particolare come segue:

$$p_{\rm w} = \frac{7}{8} a_{\rm x} \gamma_{\rm w} \sqrt{z_{\rm w} H}$$

Hè l'altezza del livello di falda rispetto a fondo scavo

 \mathcal{Z}_w è la profondità del punto considerato dalla superficie libera della falda a $_x$ = kh coefficiente sismico orizzontale

Se l'acqua si trova al di sopra della superficie del terreno, le pressioni esterne idrodinamiche sono contenute all'interno dell'equazione sopra riportata. Nel caso si abbia una quota di falda al di sopra della quota di scavo le pressioni idrodinamiche sono incluse nel lato scavo, nella direzione dell'accelerazione orizzontale.

Dipendendo dalla permeabilità del terreno, l'acqua contenuta nel terreno stesso può muoversi indipendentemente o insieme allo scheletro solido; nello specifico si fa l'ipotesi di terreno impervio, condizione che corrisponde alla impossibilità dell'acqua di muoversi in maniera indipendente, per cui gli effetti idrodinamici sono trascurabili ed il cuneo di spinta viene valutato con un peso dato dal γ_{saturo} .

9 COMBINAZIONI DI CARICO

Sulla base della definizione dei carichi di cui sopra, in accordo a quanto prescritto dal DM 17/01/2018, sono state individuate le combinazioni di carico per le verifiche di stati limite ultimi e di esercizio in condizioni statiche e in condizioni sismiche.

- combinazione fondamentale (SLU)
- combinazione sismica (SLV): il coefficiente di combinazione per il carico variabile Q1 è pari a 0

I coefficienti di partecipazione Ψ per carichi di tipo variabile sono:

- Variabili da traffico: Ψ o = 0.80 Ψ 1=0.80 Ψ 2=0.00
- Azioni Termiche : Ψ o = 0.60 Ψ 1=0.60 Ψ 2=0.50

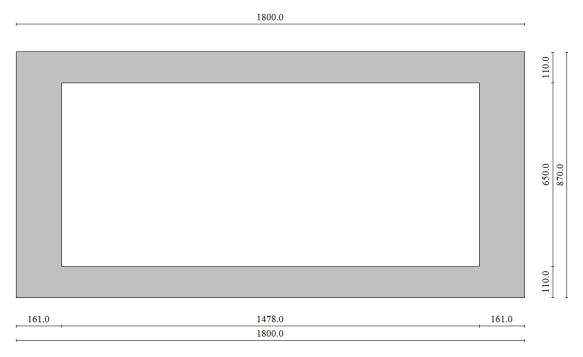
Per un riepilogo delle Combinazioni di Calcolo considerate nelle analisi si rimanda ai tabulati di calcolo in allegato.

10 RISULTATI, ANALISI E VERIFICHE - SCATOLARE

Di seguito di riporta una descrizione della modellazione effettuata mediante ausilio del software di calcolo SCAT v.14 prodotto dalla AZTEC Informativa, con una descrizione del modello strutturale implementato, sollecitazioni di calcolo ottenute e risultati delle verifiche effettuate.

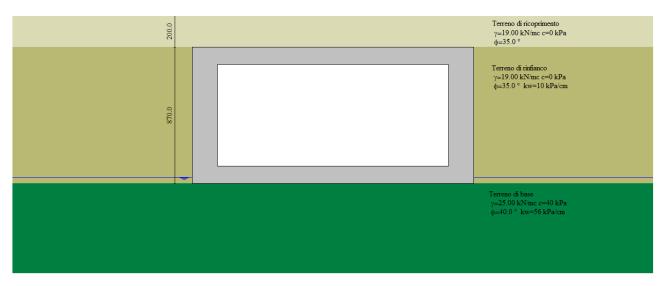
10.1 GEOMETRIA DELLA STRUTTURA

Le caratteristiche geometriche dell'opera sono riepilogate nella tabella seguente:


Pk	Tipo	Sp,eq	Sf	Ss	h _{int}	h _{est}	$\mathbf{b}_{\mathrm{int,eq}}$	$\mathbf{b}_{\mathrm{est,eq}}$	$*r_{medio}$
PK	11po	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
1+423	TM11	1,61	1,10	1,10	6,50	8,70	14,78	18,00	2.00

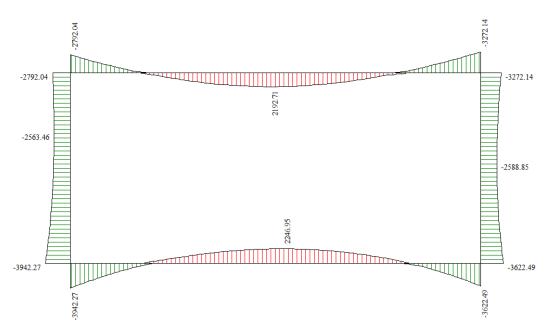
- Sp,eq: Spessore piedritti equivalente. Spessore dei piedtritti in direzione obliqua
- b_{int,eq}: larghezza interna equivalente. Larghezza della struttura interessata dal traffico in direzione obliqua
- b_{est,eq}: larghezza esterna equivalente. Larghezza della struttura interessata dal traffico in direzione obliqua
- *r_{medio}: spessore ricoprimento medio da estradosso solettone superiore scatolare fino a quota pavimentazione stradale

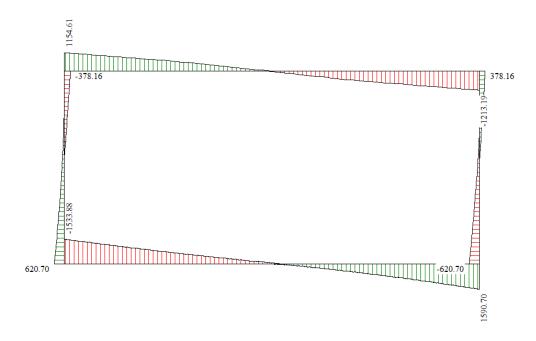
Sezione ortogonale allo sviluppo longitudinale dello scatolare							
Larghezza dello scatolare	12.20 m						
Altezza dello scatolare	8.70 m						
Spessore piedritti	1.10 m						
Spessore del traverso	1.10 m						
Spessore della fondazione	1.10 m						
Sezione ortogonale allo sviluppo longitudinale della strada							
Larghezza dello scatolare	18.00 m						
Altezza dello scatolare	8.70 m						
Spessore piedritti	1.61 m						
Spessore del traverso	1.10 m						
Spessore della fondazione	1.10 m						
Lunghezza longitudinale dello scatolare	34.10 m						
Unità geotecnica del terreno di base	SR						
Profondità di scavo	11.60 m						
Altezza del magrone	0.20 m						
Ricoprimento	2.00 m						


Nel seguito verrà esaminata una striscia di scatolare avente larghezza di 1,00 m. Nella figura sottostante si riportano schematicamente la geometria e la simbologia adottata.

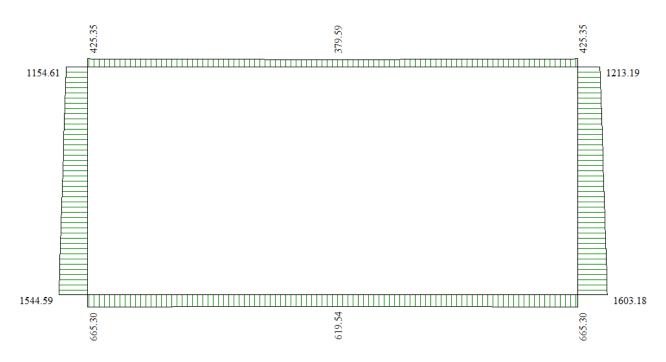
Modello Geometrico Geotecnico di Riferimento

10.2 MODELLO DI CALCOLO

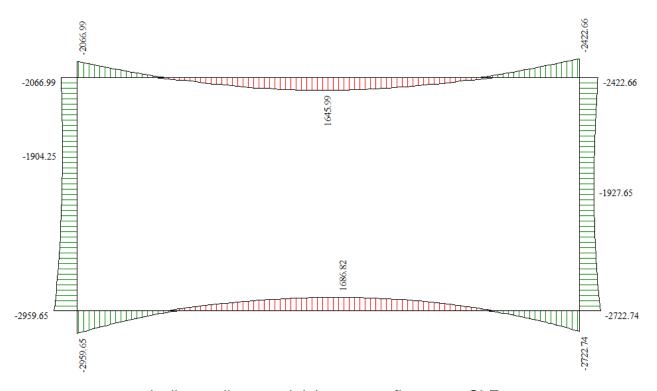

Di seguito di riporta una descrizione del modello geometrico/geotecnico considerato ai fini del dimensionamento:


Modello Geometrico Geotecnico di Riferimento

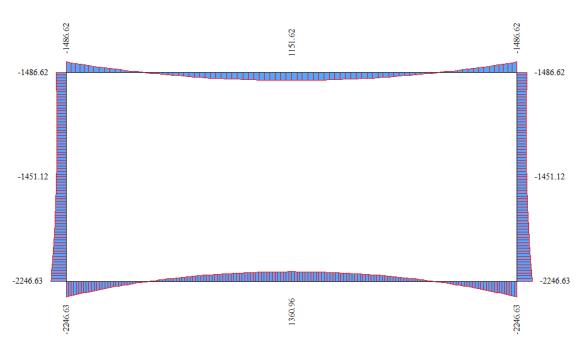
10.3 SOLLECITAZIONI DI CALCOLO



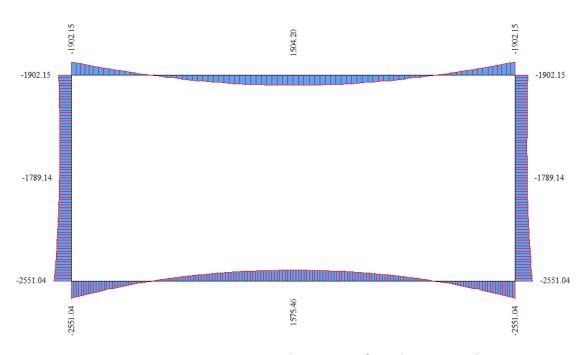
Inviluppo diagrammi del momento flettente - SLU statico e sismico



Inviluppo diagrammi del taglio – SLU statico e sismico



Inviluppo diagrammi dello sforzo normale – SLU statico e sismico



Inviluppo diagrammi del momento flettente - SLE

Diagrammi del momento flettente - SLE (Quasi Permanente)

Diagrammi del momento flettente - SLE (Frequente)

10.4 ARMATURE DI PROGETTO

Nella tabella seguente si riportano le armature di progetto previste per la sezione di calcolo in questione, come desumibili dagli elaborati grafici di armatura delle opere relative:

	Armat	Armatura a taglio		
Elemento	Af 1	Af 2	Af t	
TRAVERSO Sez. Estremità	I STRATO Φ30/20 cm II STRATO Φ30/10 cm	Ф30/20 ст	Spilli φ 12/20X20	
TRAVERSO Sez. Centrale	Ф30/20 ст	I STRATO Φ30/20 cm II STRATO Φ30/10 cm	Spilli φ 12/20X40	
PIEDRITTI Sez. Estremità	I STRATO Φ26/10 cm II STRATO Φ26/10 cm	Ф26/20 ст	Spilli φ 12/20X20	
PIEDRITTI Sez. Centrale	Ф26/10 cm	Ф26/20 ст	Spilli φ 12/20X40	
FONDAZIONE Sez. Estremità	Ф26/20 ст	I STRATO Φ30/10 cm II STRATO Φ26/10 cm	Spilli φ 12/20X20	
FONDAZIONE Sez. Centrale	I STRATO Φ30/20 cm II STRATO Φ30/10 cm	Ф30/20 ст	Spilli φ 12/20X40	

 ${\bf Af1: Armatura\ Superiore\ (fondazioni\ e\ traverso)\ / Lato\ terreno\ (piedritti)}$

Af2: Armatura Inferiore (fondazioni e traverso) /Lato interno (piedritti)

10.5 VERIFICHE DI RESISTENZA E FESSURAZIONE

Sulla base delle sollecitazioni riportate al paragrafo precedente si allegano le verifiche a pressoflessione effettuate nelle sezioni più sollecitate.

Le verifiche sono state condotte rispetto all'asse dell'elemento strutturale, dove le verifiche risultano troppo gravose si è deciso di spuntare i valori fino ad una riserva massima corrispondente al semispessore degli elementi strutturali. I valori spuntati sono individuati nelle tabelle con il simbolo "*".

	VERIFICA A PRESSOFLESSIONE								
Flows	Elemento		b h		A	С	d	M _{Rd}	FS
Eleme	ento	[mm]	[mm]	[kNm]	Armature	[mm]	i] [mm] [kNm]		
Piedritti	Lato Interno	1000	1600	2042	Ф26/20	60	1540	F00F	4.50
Estremità	Lato Terreno	1000	1600	3942	Ф26/(10+10)	60+60	1540	5905	1.50
Piedritti	Lato Interno	1000	1600		Ф26/20	60	1540	-	
Centrale	Lato Terreno	1000	1600	-	Ф26/10	60	1540		-
Fondazione	Superiore	1000	1100	3942	Ф26/20	60	1040	4772	1 21
Estremità	Inferiore				Ф30/10+ Ф26/10	60+60			1.21
Fondazione	Superiore	1000	1100	2247	Ф30/(20+10)	60+60	1040	4060	1.81
Centrale	Inferiore	1000	1100	2247	Ф30/20	60	1040	4060	1.81
Traverso	Superiore	1000	1100	2272	Ф30/(20+10)	60+60	1010	2074	4.24
Estremità	Inferiore	1000	1100	3272	Ф30/20	60	1040	3974	1.21
Traverso	Superiore	1000	1100	2193	Ф30/20	60	1040	3904	1.78
Centrale	Inferiore	1000	1100	2193	Ф30/(20+10)	60+60	1040	3304	1.70

Per quanto riguarda il taglio il programma prevede sia la verifica per elementi non armati a taglio e sia quella per elementi dotati di apposita armatura a taglio, disponendo tuttavia ferri sagomati resistenti a taglio e non staffe o tiranti. Per questo motivo le verifiche a taglio vengono eseguite manualmente attraverso l'ausilio di fogli di calcolo strutturati ad hoc sulla base del DM2018. Le sollecitazioni taglianti sono intese come inviluppo tra le sollecitazioni taglianti delle varie combinazioni di calcolo considerate

VERIFICA A TAGLIO (A metro lineare)									
Sezione	V_{Ed}	b	h	V_{Rd}	FS	Armatura a taglio			
[-]	[kN]	[cm]	[cm]	[kN]	[-]	[-]			
Traverso	1214	100	110	2589	2.13	Spilli φ 12/20x20cm			
Piedritti	621	100	160	3834	6.17	Spilli φ 12/20x20cm			
Fondazione	1591	100	110	2589	1.63	Spilli φ 12/20x20cm			

Ai fini delle verifiche agli stati limite di esercizio si è provveduto a verificare che le tensioni massime nel calcestruzzo e nell'acciaio siano inferiori ai valori massimi, nonché di verificare che l'apertura delle fessure sia inferiore al valore limite di w1=0,2mm (Classe di esposizione XC4 ed armature poco sensibili). Come si evince dai tabulati le verifiche risultano soddisfatte.

Verifica del	le tensioni			C32/40		ACCIAIO B450C			
Combination	Combinazione/Elemento M _{ed}			0,60 f _{ck}	FS	σ_{f}	0,8 f _{yk}	FS	
Combinazione	e/Elemento	[kNm]	[Mpa]	[Mpa]	[-]	[Mpa]	[Mpa]	[-]	
Comb.	Piedritti	2960.0	8.4	19.9	2.37	175.3	360.0	2.05	
Rara	Fondazione	2960.0	12.4	19.9	1.61	260.0	360.0	1.38	
Estremità	Traverso	2423.0	10.7	19.9	1.86	273.5	360.0	1.32	
Comb.	Piedritti	-		19.9	-		360.0	-	
Rara	Fondazione	1687.0	7.6	19.9	2.62	157.6	360.0	2.28	
Centrale	Traverso	1646.0	10.1	19.9	1.98	242.4	360.0	1.49	
Combinania	/El	\mathbf{M}_{ed}	σ_{c}	0,45 f _{ck}	FS	$\sigma_{\rm f}$	0,8 f _{yk}	FS	
Combinazio	ne/Elemento	[kNm]	[Mpa]	[Mpa]	[-]	[Mpa]	[Mpa]	[-]	
Comb. Q.	Paramento	2247.0	6.0	14.9	2.49	-	-	-	
Perm.	Fondazione	1531.0*	6.3	14.9	2.36	-	1	1	
Estremità	Traverso	994.0*	6.1	14.9	2.45	-	-	-	
Comb. Q.	Paramento	-		14.9	-	-	-	-	
Perm.	Fondazione	1361.0	7.2	14.9	2.09	-		-	
Centrale	Traverso	1152.0	5.2	14.9	2.85	-	-	-	

^{*}Il valore ridotto per fondazione e traverso tiene conto della spuntatura delle sollecitazioni

Verifiche a Fessurazione									
Combinazion	o/Elemente	\mathbf{M}_{ed}	Wf	W1	FS				
Combinazion	e/Elemento	[kNm]	[mm]	[mm]	[-]				
Comb. Q.	Paramento	2247.0	0.154	0.200	1.30				
Perm.	Fondazione	1531.0*	0.167	0.200	1.20				
Estremità	Traverso	994.0*	0.163	0.200	1.23				
Comb. Q.	Paramento	-	-	-	-				
Perm.	Fondazione	1361.0	0.172	0.200	1.16				
Centrale	Traverso	1152.0	0.164	0.200	1.22				
Comb.	Paramento	2551.0	0.183	0.300	1.64				
Freq.	Fondazione	1732.0*	0.199	0.300	1.50				
Estremità	Traverso	1902.0	0.272	0.300	1.10				
Comb.	Paramento	-	-	-	-				
Freq.	Fondazione	1576.0	0.214	0.300	1.40				
Centrale	Traverso	1505.0	0.249	0.300	1.20				

^{*}Il valore ridotto per fondazione e traverso tiene conto della spuntatura delle sollecitazioni

Combo Quasi Permanente

NB: il limite della Sollecitazioni [traverso] spuntatura corrisponde X = 160.00 cm N = 79.18 kNa 161cm T = 580.62 kNM = -993.77 kNmNB: il limite della Sollecitazioni [fondazione] X = 160.00 cm spuntatura corrisponde $N = 357.57 \, kN$ a 161cm. T = -840.79 kN

M = -1531.32 kNm

X = 160.00 cm

N = 354.39 kN

T = -962.37 kNM = -1732.01 kNm

Combo Frequente

NB: il limite della Sollecitazioni [fondazione] spuntatura corrisponde a 161cm

10.6 VERIFICHE DEL TIMPANO

Per le verifiche del cordolo superiore si è effettuato un calcolo mediante fogli excel ausiliari, calcolando la spinta a riposo e l'incremento di spinta sismico secondo la teoria di Wood. Si è inoltre considerato il sovraccarico accidentale di 20kPa. L'altezza del paramento considerata nei calcoli corrisponde all'altezza media tra il paramento sinistro e destro, mentre l'angolo d'attrito è quello terreno-muro pari a 2/3 dell'angolo di attrito del terreno.

Parametri Generali							
Н	1.88 m						
γ	20.00 kN/mc						
Φ	23.33						
K ₀	0.60						

Azioni Spinta Statica						
S	21.34	kN				
br	0.63	m				
Ms	13.38	kNm				
Vs	21.34	kN				

Azioni Spinta Falda						
Sw	-	kN				
br	-	m				
Mw	-	kNm				
Vw	-	kN				

Azioni Spinta Wood						
ag/g	0.2	1				
Ss	1.2	0				
St	1.00					
βm	1.00					
α	0.2	1				
ΔS	17.55	kN				
br	0.94	m				
$M_{\Delta S}$	16.50 kNm					
$V_{\Delta S}$	17.55	kN				

Azioni Spinta Sovraccarico							
q	20.00	kPa					
Q	37.60	kN					
br	0.94	m					
Mq	35.34	kNm					
Vq	37.60	kN					

Azioni di Progetto						
M _{SLU/SLV}	73.08	kNm				
V _{SLU/SLV}	88.42	kN				
M _{SLE,RA}	48.72	kNm				
$V_{SLE,RA}$	58.94	kN				
$M_{SLE,FR}$	39.88	kNm				
$V_{SLE,FR}$	49.54	kN				
$M_{SLE,QP}$	13.38	kNm				
$V_{SLE,QP}$	21.34	kN				
M_{SLU}	73.08	kNm				
M_{SLV}	29.87	kNm				
V_{SLU}	88.42	kN				
V_{SLV}	38.90	kN				

GEOMETRIA				VERIFICA A PRESSOFLESSIONE						
Elemento		b	h	M _{ed} ,	A	С	d	M_{Rd}	FS	
		[mm]	[mm]	[kNm]	Armature	[mm]	[mm]	[kNm]		
Candala	Lato Superiore	1000	660	72.1	Ф16/20	60	600	250.5	2.42	
Cordolo	Lato Inferiore	1000	660	73.1	Ф16/20	60	600	250.5	3.43	

VERIFICA A TAGLIO (A metro lineare)								
Sezione V _{Ed} b h V _{Rd} FS Armatura a taglio								
[-]	[kN]	[cm]	[cm]	[kN]	[-]	[-]		
Cordolo	88.4	100	66	253.9	2.87	Spilli φ 12/40x40cm		

Verifica del	C32/40			ACCIAIO B450C				
Combinazione/Elemento M _{ed} [kNm]			σ _c [Mpa]	0,60 f _{ck}	FS	$\sigma_{\rm f}$	0,8 f _{yk}	FS
	Compiliazione, Ziemento			[Mpa]	[-]	[Mpa]	[Mpa]	[-]
Comb. rara	Cordolo	48.7	1.4	19.9	14.23	74.5	360.0	4.83
G 1:			σ_{c}	0,45 f _{ck}	FS	σf	0,8 f _{yk}	FS
Combinazione/Elemento		[kNm]	[Mpa]	[Mpa]	[-]	[Mpa]	[Mpa]	[-]
Comb. Q. Perm.	Cordolo	13.4	0.4	14.9	37.35	-	-	-

Verifiche a Fessurazione								
Combinaciono/El	omanta	M_{ed}	Wf	\mathbf{w}_1	FS			
Combinazione/El	[kNm]	[mm]	[mm]	[•]				
Comb. Q. Perm.	Cordolo	13.4	-	0.200	N.F.			
Comb. Freq.	Cordolo	39.9	-	0.300	N.F.			

10.7 VERIFICHE GEOTECNICHE

La verifica a carico limite è stata eseguita in automatico dal software di calcolo attraverso l'utilizzo di della formula di Hansen,. Per i risultati delle verifiche si rimanda ai tabulati di calcolo in allegato.

11 TABULATI DI CALCOLO - SCATOLARE

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente.

Castalana samulias

Geometria scatolare

Dagaminiana

Descrizione:	Scatolare semplice	
Altezza esterna	8.70	[m]
Larghezza esterna	18.00	[m]
Lunghezza mensola di fondazione sinistra	0.00	[m]
Lunghezza mensola di fondazione destra	0.00	[m]
Spessore piedritto sinistro	1.61	[m]
Spessore piedritto destro	1.61	[m]
Spessore fondazione	1.10	[m]
Spessore traverso	1.10	[m]

Caratteristiche strati terreno

Strato di ricoprimento

Descrizione	Terreno di ricoprimento	
Spessore dello strato	2.00	[m]
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Coesione	0	[kPa]

Strato		

Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	23.10	[°]
Coesione	0	[kPa]
Costante di Winkler	10	[kPa/cm]

Strato di base

Descrizione	Terreno di base	
Peso di volume	25.0000	[kN/mc]
Peso di volume saturo	25.0000	[kN/mc]
Angolo di attrito	40.00	[°]
Angolo di attrito terreno struttura	40.00	[°]
Coesione	40	[kPa]
Costante di Winkler	56	[kPa/cm]
Tensione limite	1000	[kPa]

Falda

Quota falda (rispetto al piano di posa)	0.40	[m]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

R _{ck} calcestruzzo	40000	[kPa]
Peso specifico calcestruzzo	24.5170	[kN/mc]
Modulo elastico E	33149080	[kPa]
Tensione di snervamento acciaio	450000	[kPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Forze concentrate

X ascissa del punto di applicazione dei carichi verticali concentrati
Y ordinata del punto di applicazione dei carichi orizzontali concentrati

 $\begin{array}{ll} F_y & \text{componente } Y \text{ del carico concentrato} \\ F_x & \text{componente } X \text{ del carico concentrato} \end{array}$

M momento

Forze distribuite

 $X_i,\,X_f$ ascisse del punto iniziale e finale per carichi distribuiti verticali Y_i, Y_f ordinate del punto iniziale e finale per carichi distribuiti orizzontali componente normale del carico distribuito nel punto iniziale V_{ni} $V_{nf} \\$ componente normale del carico distribuito nel punto finale V_{ti} componente tangenziale del carico distribuito nel punto iniziale V_{tf} componente tangenziale del carico distribuito nel punto finale $D_{\text{te}} \\$ variazione termica lembo esterno espressa in gradi centigradi variazione termica lembo interno espressa in gradi centigradi D_{ti}

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione di carico nº 7 (Qcentrato)

Distr	Terreno	$X_i = 5.85$	$X_f = 12.15$	$V_{ni} = 34.62$	$V_{nf} = 34.62$
Distr	Terreno	$X_i = -10.00$	$X_f = 28.00$	$V_{ni} = 9.00$	$V_{nf}\!\!=9.00$

Condizione di carico nº 8 (Qlaterale)

Distr	Terreno	$X_i = -10.00$	$X_f = 28.00$	$V_{ni} = 9.00$	$V_{nf} = 9.00$
Distr	Terreno	$X_i = -6.30$	$X_f = 0.00$	$V_{ni} = 34.62$	$V_{nf} = 34.62$

Condizione di carico nº 9 (Pavimentazione+massetto)

Distr	Terreno	$X_i = -10.00$	$X_f = 28.00$	$V_{ni} = 15.50$	$V_{nf} = 15.50$

Condizione di carico nº 10 (Frenamento)

Distr Traverso $X_{i}=0.00$ $X_{f}=18.00$ $V_{ni}=0.00$ $V_{nf}=0.00$ $V_{ti}=11.80$	$V_{ti} = 11.80$	$V_{nf} = 0.00$ $V_{ti} = 11.80$	$V_{ni} = 0.00$	$X_f = 18.00$	$X_{i} = 0.00$	Traverso	Distr
--	------------------	----------------------------------	-----------------	---------------	----------------	----------	-------

Condizione di carico nº 11 (Variazione Termica)

Term	Traverso	$D_{te} = -2.50$	$D_{ti} = 2.50$
Term	Traverso	$D_{te} = -15.00$	$D_{ti} = -15.00$

Condizione di carico nº 12 (Ritiro)

Term Traverso D_{te} = -10.00 D_{ti} = -10.00

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd}\!\!=\!\![0.18*k*(100.0*\rho_{l}*fck)^{1/3}\!/\gamma_{c}\!+\!0.15*\sigma_{cp}]*bw*d\!\!>\!\!(vmin+0.15*\sigma_{cp})*b_{w}*d$

 $V_{\text{Rsd}}\!\!=\!\!0.9*d*A_{\text{sw}}\!/s*fyd*(ctg\alpha\!+\!ctg\theta)*sin\alpha$

 $V_{Rcd}\!\!=\!\!0.9*d*b_{\rm w}*\alpha_{c}*fcd'*(ctg(\theta)\!\!+\!\!ctg(\alpha)\!/(1.0\!\!+\!\!ctg\theta^{2})$

con:

 $\begin{array}{ll} d & & \text{altezza utile sezione [mm]} \\ b_w & & \text{larghezza minima sezione [mm]} \end{array}$

 $\sigma_{cp} \hspace{1cm} tensione \ media \ di \ compressione \ [N/mmq]$

 ρ_l rapporto geometrico di armatura $A_{sw} \hspace{1.5cm} \text{area armatuta trasversale [mmq]} \\$

s interasse tra due armature trasversali consecutive [mm] $\alpha_c \qquad \qquad \text{coefficiente maggiorativo, funzione di fcd e } \sigma_{cp}$

$$\label{eq:continuity} \begin{split} &fcd'\!=\!0.5*fcd\\ &k\!=\!1\!+\!(200/d)^{1/2}\\ &vmin\!=\!0.035*k^{3/2}*fck^{1/2} \end{split}$$

<u>Verifiche secondo</u>:

Norme Tecniche 2018 - Approccio 1

Copriferro sezioni 6.00 [cm]

Descrizione combinazioni di carico

Simbologia adottata

 γ Coefficiente di partecipazione della condizione Ψ Coefficiente di combinazione della condizione C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2018

$Simbologia\ adottata$

 $\begin{array}{lll} \gamma_{G1sfav} & Coefficiente parziale sfavorevole sulle azioni permanenti \\ \gamma_{G1fav} & Coefficiente parziale favorevole sulle azioni permanenti \\ \gamma_{G2sfav} & Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali \\ \gamma_{G2fav} & Coefficiente parziale favorevole sulle azioni permanenti non strutturali \\ \gamma_{Q} & Coefficiente parziale sulle azioni variabili \\ \gamma_{tunbj} & Coefficiente parziale di riduzione dell'angolo di attrito drenato \\ \gamma_{c} & Coefficiente parziale di riduzione della coesione drenata \\ \gamma_{cu} & Coefficiente parziale di riduzione della coesione non drenata \\ \gamma_{qu} & Coefficiente parziale di riduzione del carico ultimo \\ \end{array}$

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

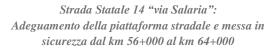
Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{\rm G1fav}$	1.00	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.30	1.00
Permanenti non strutturali	Favorevole	γ_{G2fav}	0.80	0.80
Permanenti non strutturali	Sfavorevole	γ_{G2sfav}	1.50	1.30
Variabili	Favorevole	γ_{Qifav}	0.00	0.00
Variabili	Sfavorevole	γ_{Qisfav}	1.50	1.30
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γ_{Qsfav}	1.35	1.15
Ritiro	Favorevole	$\gamma_{\epsilon fav}$	0.00	0.00
Ritiro	Sfavorevole	$\gamma_{\epsilon s fav}$	1.20	1.20

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25
Coesione efficace	$\gamma_{c'}$	1.00	1.25
Resistenza non drenata	$\gamma_{ m cu}$	1.00	1.40
Resistenza a compressione uniassiale	$\gamma_{ m qu}$	1.00	1.60
Peso dell'unità di volume	$\gamma_{\scriptscriptstyle m V}$	1.00	1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:



Carichi	Effetto		A1	A2
Permanenti	Favorevole	$\gamma_{ m Glfav}$	1.00	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.00	1.00
Permanenti	Favorevole	γ_{G2fav}	0.00	0.00
Permanenti	Sfavorevole	γ_{G2sfav}	1.00	1.00
Variabili	Favorevole	$\gamma_{ m Qifav}$	0.00	0.00
Variabili	Sfavorevole	γ_{Qisfav}	1.00	1.00
Variabili da traffico	Favorevole	γ_{Qfav}	0.00	0.00
Variabili da traffico	Sfavorevole	γ_{Qsfav}	1.00	1.00
Ritiro	Favorevole	$\gamma_{ m efav}$	0.00	0.00
Ritiro	Sfavorevole	γεsfav	1.00	1.00
Coefficienti parziali per i parametri ge	eotecnici del terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		γ _{tanφ'}	1.00	1.00
Coesione efficace		γ _{c'}	1.00	1.00
Resistenza non drenata		γ _{cu}	1.00	1.00
Resistenza a compressione uniassiale		$\gamma_{ m qu}$	1.00	1.00
Peso dell'unità di volume		γ_{γ}	1.00	1.00
Combinazione nº 1 SLU (Caso A1-M	(1) Effetto	γ	Ψ	C
Combinazione nº 1 SLU (Caso A1-M Peso Proprio		γ 1.30	Ψ 1.00	C 1.30
	Effetto	·	_	
Peso Proprio	Effetto Sfavorevole	1.30	1.00	1.30
Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole	1.30 1.30	1.00 1.00	1.30 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30	1.00 1.00 1.00	1.30 1.30 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30	1.00 1.00 1.00	1.30 1.30 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole	1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole	1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50 C 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.50 7 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50 C 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.50 7 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.50 C 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 3 SLU (Caso A1-M Peso Proprio	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.30 1.50 C 1.00 1.00 1.30 C 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 3 SLU (Caso A1-M Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.30 1.50 C 1.00 1.00 1.30 C 1.30 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 3 SLU (Caso A1-M Peso Proprio Spinta terreno sinistra Spinta terreno sinistra Spinta terreno sinistra Spinta terreno destra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole	1.30 1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.30 1.50 C 1.00 1.00 1.30 C 1.30 1.30 1.30
Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 2 SLU (Caso A2-M Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto Combinazione n° 3 SLU (Caso A1-M Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole 2) Effetto Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole Sfavorevole	1.30 1.30 1.30 1.30 1.50	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.30 1.30 1.30 1.30 1.50 C 1.00 1.00 1.30 C 1.30 1.30

Qcentrato	Sfavorevole	1.35	0.75	1.01
Frenamento	Sfavorevole	1.35	0.75	1.01
Variazione Termica	Sfavorevole	1.50	0.60	0.90
Ritiro	Sfavorevole	1.20	1.00	1.20
Combinazione n° 4 SLU (Caso A2-N	M2) Effetto	N.	Ψ	C
Peso Proprio	Sfavorevole	γ 1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.00	1.00	1.00
_	Sfavorevole	1.15	0.75	0.86
Qcentrato Frenamento	Sfavorevole	1.15	0.75	0.86
Variazione Termica	Sfavorevole	1.13	0.73	0.86
Ritiro	Sfavorevole	1.00	1.00	1.00
Kitilo	Stavorevole	1.00	1.00	1.00
Combinazione n° 5 SLU (Caso A1-N	M1)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Pavimentazione+massetto	Sfavorevole	1.50	1.00	1.50
Spinta falda	Sfavorevole	1.30	1.00	1.30
Qcentrato	Sfavorevole	1.35	1.00	1.35
Qlaterale	Sfavorevole	1.35	0.75	1.01
Frenamento	Sfavorevole	1.35	0.75	1.01
Variazione Termica	Sfavorevole	1.50	0.60	0.90
Ritiro	Sfavorevole	1.20	1.00	1.20
Combinazione n° 6 SLU (Caso A2-N	M2) Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato Qcentrato	Sfavorevole	1.15	1.00	1.00
Qlaterale	Sfavorevole	1.15	0.75	0.86
Frenamento	Sfavorevole	1.15	0.75	0.86
Variazione Termica	Sfavorevole	1.30	0.73	0.80
Ritiro	Sfavorevole	1.00	1.00	1.00
KillU	Siavolevole	1.00	1.00	1.00

Combinazione nº 7 SLU (Caso A1-M1)

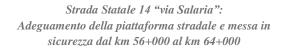
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Pavimentazione+massetto	Sfavorevole	1.50	1.00	1.50
Spinta falda	Sfavorevole	1.30	1.00	1.30
Qcentrato	Sfavorevole	1.35	0.75	1.01
Qlaterale	Sfavorevole	1.35	1.00	1.35
Frenamento	Sfavorevole	1.35	0.75	1.01
Variazione Termica	Sfavorevole	1.50	0.60	0.90
Ritiro	Sfavorevole	1.20	1.00	1.20
Combinazione n° 8 SLU (Caso A2-N	<u>42)</u>			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.15	0.75	0.86
Qlaterale	Sfavorevole	1.15	1.00	1.15
Frenamento	Sfavorevole	1.15	0.75	0.86
Variazione Termica	Sfavorevole	1.30	0.60	0.78
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 9 SLU (Caso A1-N	<u>//1)</u>			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Pavimentazione+massetto	Sfavorevole	1.50	1.00	1.50
Spinta falda	Sfavorevole	1.30	1.00	1.30
Qcentrato	Sfavorevole	1.35	0.75	1.01
Frenamento	Sfavorevole	1.35	1.00	1.35
Variazione Termica	Sfavorevole	1.50	0.60	0.90
Ritiro	Sfavorevole	1.20	1.00	1.20
Combinazione n° 10 SLU (Caso A2-	·M2)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Spina terreno destra				
Pavimentazione+massetto	Sfavorevole	1.30	1.00	1.30
_	Sfavorevole Sfavorevole	1.30 1.00	1.00 1.00	1.30 1.00

Frenamento	Sfavorevole	1.15	1.00	1.15
Variazione Termica	Sfavorevole	1.30	0.60	0.78
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 11 SLU (Caso A1-J	M1)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.30	1.00	1.30
Spinta terreno sinistra	Sfavorevole	1.30	1.00	1.30
Spinta terreno destra	Sfavorevole	1.30	1.00	1.30
Pavimentazione+massetto	Sfavorevole	1.50	1.00	1.50
Spinta falda	Sfavorevole	1.30	1.00	1.30
Qcentrato	Sfavorevole	1.35	0.75	1.01
Frenamento	Sfavorevole	1.35	0.75	1.01
Variazione Termica	Sfavorevole	1.50	1.00	1.50
Ritiro	Sfavorevole	1.20	1.00	1.20
Combinazione n° 12 SLU (Caso A2-J	M2)			
Commence in 12 520 (CMSO 112 1	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.30	1.00	1.30
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.15	0.75	0.86
Frenamento	Sfavorevole	1.15	0.75	0.86
Variazione Termica	Sfavorevole	1.30	1.00	1.30
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 13 SLU (Caso A1-	M1) - Sisma Vert negativo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione = 0 14 SLU (C 11)	M1) Sigma Vout magiti			
Combinazione n° 14 SLU (Caso A1-1		~	Ψ	C
	Effetto	γ 1.00	Ψ 1.00	C
Peso Proprio	Effetto Sfavorevole	1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	Effetto Sfavorevole Sfavorevole	1.00 1.00	1.00 1.00	1.00 1.00
Combinazione n° 14 SLU (Caso A1-1) Peso Proprio Spinta terreno sinistra Spinta terreno destra Pavimentazione+massetto	Effetto Sfavorevole	1.00	1.00	1.00

Combinazione n° 15 SLU (Caso A2	2-M2) - Sisma Vert. positivo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 16 SLU (Caso A2	2-M2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
C1::	M1) Cione Vert manadina			
Combinazione n° 17 SLU (Caso A1	Effetto	.,	Ψ	C
Dana Danasia		γ		
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 18 SLU (Caso A1	-M1) - Sisma Vert. positivo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 19 SLU (Caso A2				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00

nu.		1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 20 SLU (Caso A2-	M2) - Sisma Vert, negativo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da sinistra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 21 SLU (Caso A1-	_		.	_
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 22 SLU (Caso A1-	_		Ψ	C
n n '	Effetto	γ	_	
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 23 SLU (Caso A2-	M2) - Sisma Vert. positivo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 24 SLU (Caso A2-				~
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00

Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 25 SLU (Caso A1-				~
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 26 SLU (Caso A1-	M1) - Sisma Vert positivo			
Comonazione ii 20 BBC (Cuso III	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 27 SLU (Caso A2-	_			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00
Combinazione n° 28 SLU (Caso A2-	M2) - Sisma Vert. negativo			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Sisma da destra	Sfavorevole	1.00	1.00	1.00


	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 30 SLE (Frequente	2)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 31 SLE (Frequente	<u>e)</u>			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	0.75	0.75
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 32 SLE (Frequente	2)			
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	0.75	0.75
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 33 SLE (Frequente	2)			
· •	Effetto	γ	Ψ	c
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Frenamento	Sfavorevole	1.00	0.75	0.75

0.1011		1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 34 SLE (Frequent	re)			
<u></u>	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Variazione Termica	Sfavorevole	1.00	0.50	0.50
Spinta falda	Sfavorevole	1.00	1.00	1.00
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 35 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	0.75	0.75
Frenamento	Sfavorevole	1.00	0.75	0.75
Variazione Termica	Sfavorevole	1.00	0.60	0.60
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 36 SLE (Rara)				
	Effetto	γ	Ψ	С
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qlaterale	Sfavorevole	1.00	0.75	0.75
Frenamento	Sfavorevole	1.00	0.75	0.75
Variazione Termica	Sfavorevole	1.00	0.60	0.60
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 37 SLE (Rara)				
(Kuta)	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Internation / Internation	514.516.016	1.00	1.00	1.00

Qlaterale	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	0.75	0.75
Frenamento	Sfavorevole	1.00	0.75	0.75
Variazione Termica	Sfavorevole	1.00	0.60	0.60
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 38 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Frenamento	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	0.75	0.75
Variazione Termica	Sfavorevole	1.00	0.60	0.60
Ritiro	Sfavorevole	1.00	1.00	1.00
Combinazione n° 39 SLE (Rara)				
	Effetto	γ	Ψ	C
Peso Proprio	Sfavorevole	1.00	1.00	1.00
Spinta terreno sinistra	Sfavorevole	1.00	1.00	1.00
Spinta terreno destra	Sfavorevole	1.00	1.00	1.00
Pavimentazione+massetto	Sfavorevole	1.00	1.00	1.00
Variazione Termica	Sfavorevole	1.00	1.00	1.00
Spinta falda	Sfavorevole	1.00	1.00	1.00
Qcentrato	Sfavorevole	1.00	0.75	0.75
Frenamento	Sfavorevole	1.00	0.75	0.75
Ritiro	Sfavorevole	1.00	1.00	1.00

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Le forze orizzontali sono considerate positive se agenti verso destra

Le forze verticali sono considerate positive se agenti verso il basso

X ascisse (espresse in m) positive verso destra

Y ordinate (espresse in m) positive verso l'alto

M momento espresso in kNm V taglio espresso in kN

SN sforzo normale espresso in kN

ux spostamento direzione X espresso in cm

uy spostamento direzione Y espresso in cm

σ_t pressione sul terreno espressa in kPa

Tipo di analisi

Pressione in calotta

I carichi applicati sul terreno sono stati diffusi secondo valore 0.00

Metodo di calcolo della portanza

Spinta sui piedritti

Teoria di Terzaghi

Hansen

- a Riposo [combinazione 1]
- a Riposo [combinazione 2]
- a Riposo [combinazione 3]
- a Riposo [combinazione 4]
- a Riposo [combinazione 5]
- a Riposo [combinazione 6]
- a Riposo [combinazione 7]
- a Riposo [combinazione 8]
- a Riposo [combinazione 9]
- a Riposo [combinazione 10]
- a Riposo [combinazione 11]
- a Riposo [combinazione 12]
- a Riposo [combinazione 13]
- a Riposo [combinazione 14]
- a Riposo [combinazione 15]
- a Riposo [combinazione 16]
- a Riposo [combinazione 17]
- a Riposo [combinazione 18]
- a Riposo [combinazione 19]
- a Riposo [combinazione 20]
- a Riposo [combinazione 21]
- a Riposo [combinazione 22]
- a Riposo [combinazione 23]
- a Riposo [combinazione 24]
- a raposo (comomazione 2)
- a Riposo [combinazione 25] a Riposo [combinazione 26]
- a Riposo [combinazione 27]
- a Riposo [combinazione 28]
- a Riposo [combinazione 29]

a Riposo	[combinazione 30]
a Riposo	[combinazione 31]
a Riposo	[combinazione 32]
a Riposo	[combinazione 33]
a Riposo	[combinazione 34]
a Riposo	[combinazione 35]
a Riposo	[combinazione 36]
a Riposo	[combinazione 37]
a Riposo	[combinazione 38]
a Riposo	[combinazione 39]

Sisma

Combinazioni SLU

Accelerazione al suolo $a_g =$	2.03 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.00
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	1.00
Rapporto intensità sismica verticale/orizzontale	0.50

 $\label{eq:coefficiente} Coefficiente di intensità sismica orizzontale (percento) & k_h = (a_g/g^*\beta_m^*St^*Ss) = 20.71$ $\label{eq:coefficiente} Coefficiente di intensità sismica verticale (percento) & k_v = 0.50 * k_h = 10.35$

Combinazioni SLE

Accelerazione al suolo a _g =	0.00 [m/s^2]
Coefficiente di amplificazione per tipo di sottosuolo (S)	1.00
Coefficiente di amplificazione topografica (St)	1.00
Coefficiente riduzione (β_m)	1.00
Rapporto intensità sismica verticale/orizzontale	0.50

$$\begin{split} \text{Coefficiente di intensità sismica orizzontale (percento)} & k_h \!\!=\!\! (a_g/g^*\beta_m^*St^*Ss) = 0.00 \\ \text{Coefficiente di intensità sismica verticale (percento)} & k_v \!\!=\!\! 0.50 * k_h = 0.00 \\ \text{Forma diagramma incremento sismico} & \text{Rettangolare} \end{split}$$

Spinta sismica Wood

Angolo diffusione sovraccarico 0.00 [°]

Coefficienti di spinta

Coefficient of Spina		
$N^{\circ} combinazione \\$	Statico	Sismico
1	0.426	0.000
2	0.511	0.000
3	0.426	0.000
4	0.511	0.000
5	0.426	0.000
6	0.511	0.000
7	0.426	0.000
8	0.511	0.000
9	0.426	0.000

10	0.511	0.000
11	0.426	0.000
12	0.511	0.000
13	0.426	0.685
14	0.426	0.685
15	0.426	0.685
16	0.426	0.685
17	0.426	0.685
18	0.426	0.685
19	0.426	0.685
20	0.426	0.685
21	0.426	0.685
22	0.426	0.685
23	0.426	0.685
24	0.426	0.685
25	0.426	0.685
26	0.426	0.685
27	0.426	0.685
28	0.426	0.685
29	0.426	0.000
30	0.426	0.000
31	0.426	0.000
32	0.426	0.000
33	0.426	0.000
34	0.426	0.000
35	0.426	0.000
36	0.426	0.000
37	0.426	0.000
38	0.426	0.000
39	0.426	0.000

$\underline{Discretizzazione\ strutturale}$

Numero elementi fondazione	166
Numero elementi traverso	86
Numero elementi piedritto sinistro	76
Numero elementi piedritto destro	76
Numero molle fondazione	167
Numero molle piedritto sinistro	77
Numero molle piedritto destro	77

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno)	46.9292 [kPa]
---	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]	
-20.00	-10.00	46.9292	
-10.00	28.00	70.1792	
28.00	38.00	46.9292	

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 29.9261 [kPa]	Pressione inf. 121.5602 [kPa]
Piedritto destro	Pressione sup. 29.9261 [kPa]	Pressione inf. 121.5602 [kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 36.5294 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	28.00	56.6794
28.00	38.00	36.5294

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 28.9794 [kPa]	Pressione inf. 113.4950 [kPa]
Piedritto destro	Pressione sup. 28.9794 [kPa]	Pressione inf. 113.4950 [kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 46.9292 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	46 9292

-10.00	5.85	79.2917
5.85	12.15	114.3445
12.15	28.00	79.2917
28.00	38.00	46,9292

Spinte sui piedritti

Piedritto sinistro Pressione sup. 33.8119 [kPa] Pressione inf. 123.2715 [kPa]
Piedritto destro Pressione sup. 33.8119 [kPa] Pressione inf. 123.2715 [kPa]

<u>Falda</u>

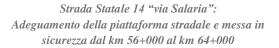
Spinta 1.02[kN]
Sottospinta 5.10[kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 36.5294 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	5.85	64.4419
5.85	12.15	94.3016
12.15	28.00	64.4419
28.00	38.00	36.5294


Spinte sui piedritti

Piedritto sinistro Pressione sup. 32.9483 [kPa] Pressione inf. 115.4583 [kPa]
Piedritto destro Pressione sup. 32.9483 [kPa] Pressione inf. 115.4583 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 5

Pressione in ca	ılotta(solo	peso terreno)	46.9292 [kPa]
-----------------	-------------	---------------	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	46.9292
-10.00	-6.30	91.4417
-6.30	0.00	126.4945
0.00	5.85	91.4417
5.85	12.15	138.1787
12.15	28.00	91.4417
28.00	38.00	46.9292

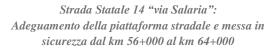
Spinte sui piedritti

Piedritto sinistro	Pressione sup. 53.9402 [kPa]	Pressione inf. 143.3998 [kPa]
Piedritto destro	Pressione sup. 38.9929 [kPa]	Pressione inf. 128.4525 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & 1.02 [kN] \\ Sottospinta & 5.10 [kPa] \end{array}$

Analisi della combinazione n° 6


Pressione in calotta(solo peso terreno) 36.5294 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	-6.30	74.7919
-6.30	0.00	104.6516
0.00	5.85	74.7919
5.85	12.15	114.6049
12.15	28.00	74.7919
28.00	38.00	36.5294

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 53.5070 [kPa]	Pressione inf. 136.0170 [kPa]
Piedritto destro	Pressione sup. 38.2401 [kPa]	Pressione inf. 120.7501 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 46.9292 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	46.9292
-10.00	-6.30	91.4417
-6.30	0.00	138.1787
0.00	5.85	91.4417
5.85	12.15	126.4945
12.15	28.00	91.4417
28.00	38.00	46.9292

Spinte sui piedritti

Piedritto sinistro Pressione sup. 58.9227 [kPa] Pressione inf. 148.3823 [kPa]
Piedritto destro Pressione sup. 38.9929 [kPa] Pressione inf. 128.4525 [kPa]

<u>Falda</u>

Spinta 1.02[kN]
Sottospinta 5.10[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 36.5294 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	-6.30	74.7919
-6.30	0.00	114.6049
0.00	5.85	74.7919

5.85	12.15	104.6516
12.15	28.00	74.7919
28.00	38.00	36.5294

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 58.5959 [kPa]	Pressione inf. 141.1059 [kPa]
Piedritto destro	Pressione sup. 38.2401 [kPa]	Pressione inf. 120.7501 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 46.9292 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	46.9292
-10.00	5.85	79.2917
5.85	12.15	114.3445
12.15	28.00	79.2917
28.00	38.00	46.9292

Spinte sui piedritti

Piedritto sinistro Pressione sup. 33.8119 [kPa] Pressione inf. 123.2715 [kPa]
Piedritto destro Pressione sup. 33.8119 [kPa] Pressione inf. 123.2715 [kPa]

<u>Falda</u>

Spinta 1.02[kN]
Sottospinta 5.10[kPa]

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 36.5294 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	5.85	64.4419
5.85	12.15	94.3016
12.15	28.00	64.4419
28.00	38.00	36,5294

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 32.9483 [kPa]	Pressione inf. 115.4583 [kPa]
Piedritto destro	Pressione sup. 32.9483 [kPa]	Pressione inf. 115.4583 [kPa]

<u>Falda</u>

Spinta	0.78[kN]
Sottospinta	3.92[kPa]

Analisi della combinazione n° 11

Pressione in calotta(solo peso terreno) 46.9292 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	46.9292
-10.00	5.85	79.2917
5.85	12.15	114.3445
12.15	28.00	79.2917
28.00	38.00	46.9292

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 33.8119 [kPa]	Pressione inf. 123.2715 [kPa]
Piedritto destro	Pressione sup. 33.8119 [kPa]	Pressione inf. 123.2715 [kPa]

<u>Falda</u>

Spinta	1.02[kN]
Sottospinta	5.10[kPa]

Analisi della combinazione nº 12

Pressione in calotta(solo peso terreno)	36.5294 [kPa]
---	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.5294
-10.00	5.85	64.4419
5.85	12.15	94.3016
12.15	28.00	64.4419
28.00	38.00	36.5294

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 32.9483 [kPa]	Pressione inf. 115.4583 [kPa]
Piedritto destro	Pressione sup. 32.9483 [kPa]	Pressione inf. 115.4583 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]	
-20.00	-10.00	36.0994	
-10.00	28.00	51.5994	
28.00	38.00	36.0994	

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno)	36.0994 [kPa]
---	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]	
-20.00	-10.00	36.0994	
-10.00	28.00	51.5994	
28.00	38.00	36.0994	

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 15

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione nº 16

Pressione in cal	lotta(solo 1	peso terreno) 36.0994	[kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 17

Pressione in calotta(solo peso terreno)	36.0994 [kPa]
---	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 18

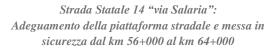
Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36 0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]


Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 19

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]

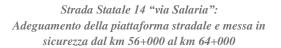
Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 20


Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 21

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 22

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 23

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36 0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 24

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 92.4910 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5943 [kPa] Pressione inf. 55.5943 [kPa]

Analisi della combinazione n° 25

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

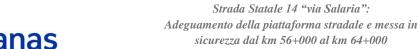
Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]

Spinte sismiche sui piedritti


Piedritto destro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 26

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36 0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

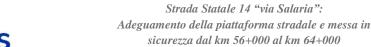
<u>Falda</u>

Spinta 0.78[kN]Sottospinta 3.92[kPa]

Analisi della combinazione n° 27

36.0994 [kPa] Pressione in calotta(solo peso terreno)

Carichi verticali in calotta


Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90 8183 [kPa]

Spinte sismiche sui piedritti

Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa] Piedritto destro

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 28

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]

Spinte sismiche sui piedritti

Piedritto destro Pressione sup. 55.5430 [kPa] Pressione inf. 55.5430 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 29

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 30

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]
Piedritto destro Pressione sup. 22.0032 [kPa] Pressione inf. 90.8183 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} \text{Spinta} & 0.78 \text{[kN]} \\ \text{Sottospinta} & 3.92 \text{[kPa]} \end{array}$

Analisi della combinazione n° 31

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi Xj Q[kPa] -20.00 -10.00 36.0994

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

-10.00	5.85	58.3494
5.85	12.15	84.3144
12.15	28.00	58.3494
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]
Piedritto destro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 32

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	-6.30	58.3494
-6.30	0.00	84.3144
0.00	28.00	58.3494
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 35.9536 [kPa] Pressione inf. 104.7687 [kPa]
Piedritto destro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 33

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

Pressione in calotta(solo peso terreno)	36.0994 [kPa]
---	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]

<u>Falda</u>

Spinta	0.78[kN]
Sottospinta	3.92[kPa]

Analisi della combinazione n° 34

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	28.00	51.5994
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]
Piedritto destro	Pressione sup. 22.0032 [kPa]	Pressione inf. 90.8183 [kPa]

<u>Falda</u>

Spinta	0.78[kN]	
Sottospinta	3.92[kPa]	

Analisi della combinazione n° 35

Pressione in calotta(solo	peso terreno)	36.0994 [kPa]
---------------------------	---------------	---------------

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	5.85	58.3494
5.85	12.15	84.3144
12.15	28.00	58.3494
28.00	38.00	36.0994

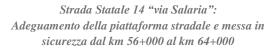
Spinte sui piedritti

Piedritto sinistro	Pressione sup. 24.8816 [kPa]	Pressione inf. 93.6966 [kPa]
Piedritto destro	Pressione sup. 24.8816 [kPa]	Pressione inf. 93.6966 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 36


Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	-6.30	67.3494
-6.30	0.00	93.3144
0.00	5.85	67.3494
5.85	12.15	101.9694
12.15	28.00	67.3494
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro	Pressione sup. 39.7915 [kPa]	Pressione inf. 108.6065 [kPa]
Piedritto destro	Pressione sup. 28.7194 [kPa]	Pressione inf. 97.5344 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Analisi della combinazione n° 37

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	-6.30	67.3494
-6.30	0.00	101.9694
0.00	5.85	67.3494
5.85	12.15	93.3144
12.15	28.00	67.3494
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 43.4822 [kPa] Pressione inf. 112.2972 [kPa]
Piedritto destro Pressione sup. 28.7194 [kPa] Pressione inf. 97.5344 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 38

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	5.85	58.3494
5.85	12.15	84.3144
12.15	28.00	58.3494

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

28.00 38.00 36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]
Piedritto destro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]

<u>Falda</u>

 $\begin{array}{ccc} Spinta & & 0.78 [kN] \\ Sottospinta & & 3.92 [kPa] \end{array}$

Analisi della combinazione n° 39

Pressione in calotta(solo peso terreno) 36.0994 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	36.0994
-10.00	5.85	58.3494
5.85	12.15	84.3144
12.15	28.00	58.3494
28.00	38.00	36.0994

Spinte sui piedritti

Piedritto sinistro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]
Piedritto destro Pressione sup. 24.8816 [kPa] Pressione inf. 93.6966 [kPa]

<u>Falda</u>

Spinta 0.78[kN]
Sottospinta 3.92[kPa]

Sollecitazioni

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 1)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2898.0574	-1242.5445	450.8883
2.61	-935.4530	-917.4432	450.8883
4.41	462.7302	-623.7336	450.8883
6.30	1395.9713	-347.0571	450.8883
8.10	1817.4675	-107.6677	450.8883
9.90	1817.4675	124.1220	450.8883
11.70	1395.9713	364.3873	450.8883
13.59	462.7302	642.7053	450.8883
15.39	-935.4530	938.1920	450.8883
17.20	-2898.0574	1242.5445	450.8883

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 1)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2066.2367	862.4299	130.6807
2.57	-705.5088	676.3012	130.6807
4.50	402.4601	473.4778	130.6807
6.24	1067.8258	290.0638	130.6807
8.02	1416.5822	103.5942	130.6807
9.98	1416.5822	-103.5942	130.6807
11.76	1067.8258	-290.0638	130.6807
13.50	402.4601	-473.4778	130.6807
15.43	-705.5088	-676.3012	130.6807
17.20	-2066.2367	-862.4299	130.6807

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 1)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2898.0574	450.9491	1252.4172
1.35	-2573.4701	361.5398	1211.3659
2.25	-2290.4818	268.6008	1165.1832
3.05	-2106.2725	192.9012	1124.1319
3.95	-1968.0008	115.6419	1077.9492
4.75	-1900.5028	54.0914	1036.8979
5.65	-1879.9149	-7.0270	990.7152
6.45	-1904.7589	-54.0386	949.6639
7.35	-1974.0711	-98.5872	903.4812
8.15	-2066.2367	-130.6807	862.4299

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 1)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2898.0574	-450.9491	1252.4172
1.35	-2573.4701	-361.5398	1211.3659
2.25	-2290.4818	-268.6008	1165.1832
3.05	-2106.2725	-192.9012	1124.1319
3.95	-1968.0008	-115.6419	1077.9492
4.75	-1900.5028	-54.0914	1036.8979
5.65	-1879.9149	7.0270	990.7152
6.45	-1904.7589	54.0386	949.6639
7.35	-1974.0711	98.5872	903.4812
8.15	-2066.2367	130.6807	862.4299

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 2)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2287.7866	-977.7550	403.5442
2.61	-743.2066	-722.2026	403.5442
4.41	357.5300	-491.1510	403.5442
6.30	1092.4271	-273.3609	403.5442
8.10	1424.3983	-84.8365	403.5442
9.90	1424.3983	97.7319	403.5442
11.70	1092.4271	286.9428	403.5442
13.59	357.5300	506.0183	403.5442
15.39	-743.2066	738.4590	403.5442
17.20	-2287.7866	977.7550	403.5442

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 2)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1650.0206	685.4962	142.2754
2.57	-568.4558	537.5531	142.2754
4.50	312.2052	376.3404	142.2754
6.24	841.0664	230.5551	142.2754
8.02	1118.2729	82.3411	142.2754
9.98	1118.2729	-82.3411	142.2754
11.76	841.0664	-230.5551	142.2754
13.50	312.2052	-376.3404	142.2754
15.43	-568.4558	-537.5531	142.2754
17.20	-1650.0206	-685.4962	142.2754

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 2)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2287.7866	403.5987	985.4864

1.35	-1998.7029	320.0677	953.9085
2.25	-1750.2657	233.2152	918.3833
3.05	-1592.3776	162.4295	886.8054
3.95	-1479.2732	90.1101	851.2803
4.75	-1430.6407	32.4028	819.7023
5.65	-1427.8775	-25.0354	784.1772
6.45	-1466.0293	-69.3703	752.5993
7.35	-1548.0491	-111.6023	717.0741
8.15	-1650.0206	-142.2754	685.4962

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 2)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2287.7866	-403.5987	985.4864
1.35	-1998.7029	-320.0677	953.9085
2.25	-1750.2657	-233.2152	918.3833
3.05	-1592.3776	-162.4295	886.8054
3.95	-1479.2732	-90.1101	851.2803
4.75	-1430.6407	-32.4028	819.7023
5.65	-1427.8775	25.0354	784.1772
6.45	-1466.0293	69.3703	752.5993
7.35	-1548.0491	111.6023	717.0741
8.15	-1650.0206	142.2754	685.4962

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 3)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3618.4382	-1399.0439	499.1144
2.61	-1384.4272	-1059.8666	499.1144
4.41	251.2526	-743.7243	499.1144
6.30	1385.8726	-437.4095	499.1144
8.10	1942.2106	-165.2693	499.1144
9.90	2014.0340	104.3485	499.1144
11.70	1591.0867	388.9573	499.1144
13.59	562.2011	723.0598	499.1144
15.39	-1032.6261	1081.2475	499.1144
17.20	-3314.1531	1454.5906	499.1144

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 3)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2421.6679	1018.8989	94.4318
2.57	-798.4556	816.6535	115.5625
4.50	563.0868	596.2678	138.5886
6.24	1425.8992	383.1701	159.4112
8.02	1870.2991	118.4453	180.5807
9.98	1813.9454	-175.6935	204.1023

11.76	1268.1088	-440.4183	225.2718
13.50	305.5219	-653.5160	246.0944
15.43	-1166.3534	-873.9017	269.1205
17.20	-2890.8170	-1076.1471	290.2513

Sollecitazioni piedritto sinistro (Combinazione n° 3)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3618.4382	510.7482	1408.8862
1.35	-3247.2228	418.3962	1367.8349
2.25	-2914.4256	322.5577	1321.6522
3.05	-2688.0328	244.5301	1280.6009
3.95	-2504.4633	164.8066	1234.4182
4.75	-2398.5416	101.1034	1193.3669
5.65	-2336.8044	37.4949	1147.1842
6.45	-2327.0023	-11.8839	1106.1329
7.35	-2359.7019	-59.3774	1059.9502
8.15	-2421.6679	-94.4318	1018.8989

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 3)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3314.1531	-487.6153	1466.1344
1.35	-2966.9036	-379.5393	1425.0831
2.25	-2676.3885	-265.2994	1378.9004
3.05	-2501.6741	-170.4201	1337.8491
3.95	-2392.5236	-71.3298	1291.6664
4.75	-2367.4824	9.8314	1250.6151
5.65	-2413.4917	93.2170	1204.4324
6.45	-2514.4170	160.1792	1163.3811
7.35	-2688.4562	227.3166	1117.1984
8.15	-2890.8170	277.4474	1076.1471

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 4)}$

M [kNm]	V [kN]	N [kN]
-2901.7627	-1111.0493	447.0499
-1125.9729	-843.5183	447.0499
177.1049	-593.3628	447.0499
1083.5819	-350.3243	447.0499
1530.4463	-133.8962	447.0499
1591.6467	80.9026	447.0499
1258.4448	307.8940	447.0499
442.0675	574.4946	447.0499
-826.1914	860.3482	447.0499
	-2901.7627 -1125.9729 177.1049 1083.5819 1530.4463 1591.6467 1258.4448 442.0675	-2901.7627 -1111.0493 -1125.9729 -843.5183 177.1049 -593.3628 1083.5819 -350.3243 1530.4463 -133.8962 1591.6467 80.9026 1258.4448 307.8940 442.0675 574.4946

17.20	-2642.4543	1158.3700	447.0499

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 4)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1955.7919	818.7829	114.5625
2.57	-650.6323	657.1107	132.5628
4.50	446.0324	480.9376	152.1776
6.24	1143.0858	309.8662	169.9154
8.02	1501.7633	94.9903	187.9486
9.98	1453.7548	-143.7608	207.9856
11.76	1008.6621	-358.6367	226.0188
13.50	226.6095	-529.7081	243.7566
15.43	-964.0492	-705.8812	263.3714
17.20	-2355.4661	-867.5534	281.3717

Sollecitazioni piedritto sinistro (Combinazione n° 4)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2901.7627	457.0037	1118.7730
1.35	-2571.2030	370.4155	1087.1951
2.25	-2278.9029	280.4354	1051.6700
3.05	-2084.3132	207.0589	1020.0921
3.95	-1932.3457	131.9419	984.5669
4.75	-1851.2661	71.7771	952.9890
5.65	-1814.3639	11.5231	917.4638
6.45	-1824.3347	-35.4301	885.8859
7.35	-1877.2305	-80.8209	850.3608
8.15	-1955.7919	-114.5625	818.7829

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 4)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2642.4543	-437.2167	1167.5435
1.35	-2332.3875	-337.2049	1135.9656
2.25	-2076.2055	-231.5542	1100.4405
3.05	-1925.7141	-143.8501	1068.8626
3.95	-1837.1934	-52.2810	1033.3374
4.75	-1825.0227	22.7122	1001.7595
5.65	-1879.8775	99.7723	966.2343
6.45	-1984.1218	161.6837	934.6564
7.35	-2157.3526	223.8129	899.1313
8.15	-2355.4661	270.4269	867.5534

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 5)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3942.2692	-1533.8765	562.2274
2.61	-1494.7685	-1160.3440	562.2274
4.41	294.4735	-812.8957	562.2274
6.30	1533.1487	-476.8723	562.2274
8.10	2138.2215	-178.8368	562.2274
9.90	2213.0287	116.0380	562.2274
11.70	1746.9804	427.0132	562.2274
13.59	618.8326	791.8649	562.2274
15.39	-1127.0030	1182.9112	562.2274
17.20	-3622.4905	1590.7001	562.2274

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^\circ\ 5)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2792.0391	1154.6052	177.0432
2.57	-947.8146	930.8709	198.1740
4.50	611.2909	687.0688	221.2001
6.24	1612.9964	448.1949	242.0227
8.02	2135.1978	141.2388	263.1922
9.98	2077.5283	-199.8237	286.7138
11.76	1451.5218	-506.7798	307.8833
13.50	347.7122	-745.6537	328.7059
15.43	-1324.3024	-989.4558	351.7320
17.20	-3272.1422	-1213.1901	372.8628

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 5)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3942.2692	581.1123	1544.5925
1.35	-3521.2037	472.6576	1503.5412
2.25	-3147.7231	358.7035	1457.3585
3.05	-2898.8548	264.5733	1416.3072
3.95	-2705.3983	166.7342	1370.1245
4.75	-2604.3757	86.9284	1329.0732
5.65	-2563.5479	5.2043	1282.8905
6.45	-2586.0194	-60.2771	1241.8392
7.35	-2670.4249	-125.8862	1195.6565
8.15	-2792.0391	-177.0432	1154.6052

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 5)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3622.4905	-543.4941	1603.1774
1 35	-3235 5801	-421 5935	1562 1261

2.25	-2913.6909	-291.7390	1515.9434
3.05	-2722.9027	-182.9373	1474.8921
3.95	-2608.9965	-68.1497	1428.7094
4.75	-2591.5965	26.9850	1387.6581
5.65	-2659.5690	126.1008	1341.4754
6.45	-2791.9021	207.0428	1300.4241
7.35	-3014.6373	289.8892	1254.2414
8.15	-3272.1422	352.7311	1213.1901

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^\circ\ 6)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3181.1821	-1225.8006	512.8733
2.61	-1223.4886	-929.2539	512.8733
4.41	210.7874	-652.5631	512.8733
6.30	1206.4841	-384.2649	512.8733
8.10	1695.4395	-145.7618	512.8733
9.90	1759.6930	90.6077	512.8733
11.70	1390.1648	340.1390	512.8733
13.59	489.4727	633.0311	512.8733
15.39	-907.3703	946.9726	512.8733
17.20	-2906.0170	1274.4268	512.8733

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 6)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2272.3127	934.2706	197.5673
2.57	-779.0852	754.2931	215.5676
4.50	485.6545	558.1726	235.1824
6.24	1300.8257	365.1437	252.9202
8.02	1725.5766	114.2930	270.9534
9.98	1676.2230	-164.4300	290.9904
11.76	1162.6354	-415.2808	309.0237
13.50	260.0834	-608.3097	326.7614
15.43	-1101.2840	-804.4301	346.3762
17.20	-2683.1858	-984.4076	364.3765

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 6)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3181.1821	530.2450	1234.2608
1.35	-2798.6082	427.2099	1202.6828
2.25	-2463.5195	318.7269	1167.1577
3.05	-2244.8754	228.9035	1135.5798
3.95	-2081.5740	135.2836	1100.0546

4.75	-2004.3999	58.6718	1068.4767
5.65	-1987.6186	-20.0849	1032.9516
6.45	-2029.4547	-83.4851	1001.3736
7.35	-2133.9263	-147.3788	965.8485
8.15	-2272.3127	-197.5673	934.2706

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 6)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2906.0170	-495.6400	1284.3978
1.35	-2554.3652	-381.4990	1252.8199
2.25	-2264.9323	-259.9003	1217.2947
3.05	-2096.9481	-157.9835	1185.7168
3.95	-2002.3514	-50.3943	1150.1917
4.75	-1996.8916	38.8583	1118.6137
5.65	-2072.9370	131.9722	1083.0886
6.45	-2208.1481	208.1553	1051.5107
7.35	-2429.8610	286.3298	1015.9855
8.15	-2683.1858	345.9355	984.4076

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 7)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3867.6766	-1497.1104	585.4444
2.61	-1477.6388	-1133.7427	585.4444
4.41	271.5418	-795.2166	585.4444
6.30	1484.2073	-467.3794	585.4444
8.10	2078.1831	-176.2727	585.4444
9.90	2154.0045	111.9857	585.4444
11.70	1700.9686	416.1308	585.4444
13.59	600.4613	773.0334	585.4444
15.39	-1104.4411	1155.5563	585.4444
17.20	-3542.6195	1554.3638	585.4444

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 7)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2666.2066	1117.5749	189.2344
2.57	-887.4754	893.8405	210.3652
4.50	600.2625	650.0385	233.3913
6.24	1538.3357	415.7652	254.2139
8.02	2021.4173	129.5121	275.3834
9.98	1963.3049	-188.5470	298.9050
11.76	1375.6209	-474.8001	320.0745
13.50	334.6592	-709.0733	340.8971
15.43	-1266.8550	-952.8754	363.9232
17.20	-3149.9973	-1176.6097	385.0539

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 7)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3867.6766	606.7876	1507.5621
1.35	-3427.6652	494.3470	1466.5108
2.25	-3036.6820	375.9088	1420.3281
3.05	-2775.6439	277.7925	1379.2768
3.95	-2572.3080	175.4693	1333.0941
4.75	-2465.8917	91.6775	1292.0428
5.65	-2422.8076	5.4692	1245.8601
6.45	-2446.6616	-63.9982	1204.8088
7.35	-2536.4338	-134.0915	1158.6261
8.15	-2666.2066	-189.2344	1117.5749

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 7)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3542.6195	-564.2590	1566.5970
1.35	-3140.2391	-439.0989	1525.5457
2.25	-2804.0559	-305.5952	1479.3630
3.05	-2603.3148	-193.5604	1438.3117
3.95	-2481.3008	-75.1406	1392.1290
4.75	-2459.4383	23.2239	1351.0777
5.65	-2525.4819	125.9824	1304.8950
6.45	-2658.8575	210.1770	1263.8437
7.35	-2885.8847	296.7067	1217.6610
8.15	-3149.9973	362.4361	1176.6097

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 8)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3118.6226	-1194.4458	535.5556
2.61	-1209.8724	-906.6341	535.5556
4.41	190.3905	-637.5862	535.5556
6.30	1164.1085	-376.2797	535.5556
8.10	1643.7941	-143.6778	535.5556
9.90	1709.0818	87.0690	535.5556
11.70	1350.7763	330.8043	535.5556
13.59	473.7257	616.9556	535.5556
15.39	-888.2155	923.6706	535.5556
17.20	-2838.0762	1243.5106	535.5556

Sollecitazioni traverso (Combinazione nº 8)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2165.2818	902.6882	211.0539
2.57	-727.9119	722.7107	229.0542
4.50	475.9600	526.5903	248.6690
6.24	1236.8597	337.4805	266.4067
8.02	1628.2192	104.2657	284.4400
9.98	1578.4136	-154.8619	304.4770
11.76	1097.4039	-388.0767	322.5102
13.50	248.3229	-577.1865	340.2480
15.43	-1053.0617	-773.3070	359.8628
17.20	-2579.9179	-953.2845	377.8631

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 8)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3118.6226	555.4345	1202.6784
1.35	-2717.5255	448.3282	1171.1005
2.25	-2365.4913	335.2652	1135.5754
3.05	-2135.2450	241.3706	1103.9974
3.95	-1962.7842	143.1707	1068.4723
4.75	-1880.9289	62.4877	1036.8944
5.65	-1862.7744	-20.8491	1001.3692
6.45	-1906.8502	-88.3204	969.7913
7.35	-2017.7346	-156.7942	934.2662
8.15	-2165.2818	-211.0539	902.6882

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 8)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2838.0762	-515.8212	1253.2747
1.35	-2471.4447	-398.3539	1221.6967
2.25	-2168.3342	-273.0279	1186.1716
3.05	-1991.0049	-167.8065	1154.5937
3.95	-1889.0530	-56.5037	1119.0685
4.75	-1879.8615	36.0518	1087.4906
5.65	-1954.8700	132.8903	1051.9655
6.45	-2091.9782	212.3978	1020.3875
7.35	-2319.0121	294.3342	984.8624
8.15	-2579.9179	356.8864	953.2845

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^\circ\ 9)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3670.4775	-1389.9916	511.9439
2.61	-1444 1263	-1060.3752	511.9439

4.41	198.3875	-750.7248	511.9439
6.30	1350.4157	-448.5563	511.9439
8.10	1928.5847	-178.1858	511.9439
9.90	2023.8057	91.5441	511.9439
11.70	1622.4803	378.1355	511.9439
13.59	610.6249	716.5697	511.9439
15.39	-977.7409	1081.3563	511.9439
17.20	-3267.1103	1463.6494	511.9439

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 9)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2347.3396	1009.5662	77.8044
2.57	-740.6335	807.3208	105.9788
4.50	602.9222	586.9351	136.6803
6.24	1449.4690	373.8374	164.4437
8.02	1877.3324	109.1125	192.6697
9.98	1802.6049	-185.0262	224.0319
11.76	1240.2319	-449.7511	252.2578
13.50	261.3795	-662.8488	280.0213
15.43	-1228.4826	-883.2345	310.7228
17.20	-2969.4525	-1085.4799	338.8971

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 9)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3670.4775	527.3755	1399.5534
1.35	-3285.9603	435.0235	1358.5021
2.25	-2938.1984	339.1850	1312.3194
3.05	-2698.5038	261.1574	1271.2682
3.95	-2499.9697	181.4339	1225.0855
4.75	-2380.7462	117.7307	1184.0342
5.65	-2304.0443	54.1222	1137.8515
6.45	-2280.9405	4.7435	1096.8002
7.35	-2298.6754	-42.7501	1050.6175
8.15	-2347.3396	-77.8044	1009.5662

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 9)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3267.1103	-496.6504	1475.4671
1.35	-2914.4191	-383.4482	1434.4159
2.25	-2622.7391	-263.2969	1388.2332
3.05	-2451.5035	-163.0321	1347.1819
3.95	-2351.4739	-57.7328	1300.9992
4.75	-2339.2811	29.0833	1259.9479

5.65	-2405.2116	118.9855	1213.7652
6.45	-2528.8189	191.8786	1172.7139
7.35	-2734.1064	265.8436	1126.5312
8.15	-2969.4525	321.3974	1085.4799

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 10)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2946.0925	-1103.3380	457.9787
2.61	-1176.8277	-843.9515	457.9787
4.41	132.0716	-599.3262	457.9787
6.30	1053.3780	-359.8197	457.9787
8.10	1518.8391	-144.8991	457.9787
9.90	1599.9708	69.9952	457.9787
11.70	1285.1876	298.6755	457.9787
13.59	483.3175	568.9660	457.9787
15.39	-779.4373	860.4409	457.9787
17.20	-2602.3807	1166.0867	457.9787

Sollecitazioni traverso (Combinazione nº 10)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1892.4751	810.8327	100.3985
2.57	-601.3764	649.1606	124.3989
4.50	479.9662	472.9875	150.5520
6.24	1163.1638	301.9160	174.2023
8.02	1507.7547	87.0401	198.2467
9.98	1444.0944	-151.7109	224.9626
11.76	984.9151	-366.5868	249.0069
13.50	189.0067	-537.6582	272.6573
15.43	-1016.9741	-713.8314	298.8104
17.20	-2422.4518	-875.5035	322.8108

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 10)}$

M [kNm]	V [kN]	N [kN]
-2946.0925	471.1677	1110.8229
-2604.2016	384.5796	1079.2450
-2299.1539	294.5994	1043.7199
-2093.2329	221.2229	1012.1419
-1928.5178	146.1059	976.6168
-1836.1070	85.9411	945.0389
-1786.4572	25.6872	909.5137
-1785.0968	-21.2661	877.9358
-1825.2450	-66.6569	842.4107
	-2946.0925 -2604.2016 -2299.1539 -2093.2329 -1928.5178 -1836.1070 -1786.4572 -1785.0968	-2946.0925 471.1677 -2604.2016 384.5796 -2299.1539 294.5994 -2093.2329 221.2229 -1928.5178 146.1059 -1836.1070 85.9411 -1786.4572 25.6872 -1785.0968 -21.2661

8.15	-1892.4751	-100.3985	810.8327

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 10)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2602.3807	-444.9132	1175.4937
1.35	-2287.6784	-340.5347	1143.9158
2.25	-2030.5042	-229.8484	1108.3906
3.05	-1882.9761	-137.5565	1076.8127
3.95	-1802.2251	-40.6983	1041.2875
4.75	-1800.9994	39.1120	1009.7096
5.65	-1872.8240	121.7232	974.1845
6.45	-1996.3900	188.6869	942.6065
7.35	-2196.2398	256.6322	907.0814
8.15	-2422.4518	307.8658	875.5035

Sollecitazioni fondazione (Combinazione nº 11)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-3670.5981	-1398.8872	498.1487
2.61	-1434.9056	-1061.7163	498.1487
4.41	204.7655	-746.1491	498.1487
6.30	1343.7139	-439.3802	498.1487
8.10	1902.7814	-166.2139	498.1487
9.90	1975.2573	104.6424	498.1487
11.70	1550.7979	390.3564	498.1487
13.59	518.5684	725.0939	498.1487
15.39	-1079.8278	1082.9902	498.1487
17.20	-3363.3785	1454.8771	498.1487

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 11)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2479.4529	1018.6699	95.1719
2.57	-856.6456	816.4245	116.3027
4.50	504.4554	596.0388	139.3288
6.24	1366.8686	382.9411	160.1514
8.02	1810.8627	118.2162	181.3208
9.98	1754.0581	-175.9225	204.8425
11.76	1207.8158	-440.6474	226.0120
13.50	244.8298	-653.7451	246.8345
15.43	-1227.4869	-874.1307	269.8606
17.20	-2952.3556	-1076.3762	290.9914

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 11)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3670.5981	510.0080	1408.6572
1.35	-3299.9749	417.6560	1367.6059
2.25	-2967.8437	321.8175	1321.4232
3.05	-2742.0431	243.7900	1280.3719
3.95	-2559.1397	164.0664	1234.1892
4.75	-2453.8102	100.3633	1193.1379
5.65	-2392.7390	36.7547	1146.9552
6.45	-2383.5291	-12.6240	1105.9039
7.35	-2416.8948	-60.1176	1059.7212
8.15	-2479.4529	-95.1719	1018.6699

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 11)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-3363.3785	-486.4237	1466.3634
1.35	-3017.1798	-378.0807	1425.3121
2.25	-2728.0737	-263.6150	1379.1294
3.05	-2554.7573	-168.6037	1338.0781
3.95	-2447.2752	-69.4455	1291.8954
4.75	-2423.7414	11.7021	1250.8441
5.65	-2471.4004	94.9857	1204.6614
6.45	-2573.6860	161.7775	1163.6101
7.35	-2749.0572	228.6301	1117.4274
8.15	-2952.3556	278.4688	1076.3762

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 12)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2946.9680	-1110.9134	446.2129
2.61	-1169.7208	-845.1214	446.2129
4.41	136.8161	-595.4643	446.2129
6.30	1047.0444	-352.0322	446.2129
8.10	1496.2744	-134.7149	446.2129
9.90	1558.0403	81.1573	446.2129
11.70	1223.5279	309.1066	446.2129
13.59	404.2526	576.2575	446.2129
15.39	-867.0995	861.8586	446.2129
17.20	-2685.1163	1158.6183	446.2129

Sollecitazioni traverso (Combinazione nº 12)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2005.8722	818.5844	115.2039
2.57	-701.0637	656.9123	133.2042
4.50	395.2185	480.7391	152.8191

6.24	1091.9260	309.6677	170.5568
8.02	1450.2518	94.7918	188.5901
9.98	1401.8526	-143.9592	208.6270
11.76	956.4082	-358.8351	226.6603
13.50	174.0097	-529.9066	244.3981
15.43	-1017.0316	-706.0797	264.0129
17.20	-2408.7995	-867.7518	282.0132

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 12)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2946.9680	456.3622	1118.5746
1.35	-2616.9214	369.7741	1086.9967
2.25	-2325.1987	279.7940	1051.4715
3.05	-2131.1221	206.4175	1019.8936
3.95	-1979.7319	131.3005	984.3684
4.75	-1899.1655	71.1356	952.7905
5.65	-1862.8406	10.8817	917.2654
6.45	-1873.3245	-36.0715	885.6874
7.35	-1926.7976	-81.4624	850.1623
8.15	-2005.8722	-115.2039	818.5844

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 12)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2685.1163	-436.1839	1167.7420
1.35	-2375.9602	-335.9408	1136.1641
2.25	-2120.9994	-230.0944	1100.6390
3.05	-1971.7195	-142.2759	1069.0610
3.95	-1884.6447	-50.6479	1033.5359
4.75	-1873.7805	24.3334	1001.9580
5.65	-1930.0650	101.3052	966.4328
6.45	-2035.4883	163.0689	934.8549
7.35	-2209.8735	224.9512	899.3297
8.15	-2408.7995	271.3121	867.7518

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 13)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2139.6056	-876.7020	539.1712
2.61	-748.8550	-653.7694	549.2429
4.41	252.4077	-449.8340	559.2806
6.30	930.4931	-255.5298	569.8759
8.10	1246.3935	-85.6424	579.9136
9.90	1261.9084	80.2720	589.9513

11.70	974.7694	253.3100	599.9890
13.59	319.2942	454.4867	610.5843
15.39	-673.6357	668.4819	620.6220
17.20	-2075.5139	889.2929	630.6936

Sollecitazioni traverso (Combinazione nº 13)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1478.1401	614.5027	333.8289
2.57	-509.8248	480.4824	343.7050
4.50	275.4651	334.4412	354.4670
6.24	743.2581	202.3755	364.1990
8.02	982.8911	68.1097	374.0933
9.98	970.1289	-81.0745	385.0868
11.76	707.5240	-215.3403	394.9811
13.50	217.1354	-347.4059	404.7132
15.43	-593.1412	-493.4471	415.4751
17.20	-1584.3864	-627.4675	425.3513

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 13)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2139.6056	585.8809	883.4355
1.35	-1718.7808	467.0318	855.1268
2.25	-1356.3165	339.5246	823.2795
3.05	-1128.1692	231.6943	794.9708
3.95	-971.9305	116.5832	763.1235
4.75	-917.7289	19.7716	734.8148
5.65	-946.6422	-82.9433	702.9675
6.45	-1047.6543	-168.7361	674.6588
7.35	-1240.6463	-259.0549	642.8114
8.15	-1478.1401	-333.8289	614.5027

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 13)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2075.5139	-584.1417	896.4003
1.35	-1654.8284	-460.5898	868.0916
2.25	-1297.1489	-327.4666	836.2443
3.05	-1077.5824	-214.4263	807.9356
3.95	-936.0513	-93.2766	776.0883
4.75	-899.5288	9.0114	747.7795
5.65	-953.5984	117.9569	715.9322
6.45	-1081.6883	209.3042	687.6235
7.35	-1310.4433	305.8311	655.7762
8.15	-1584.3864	378.1630	627.4675

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 14)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2387.8354	-983.6128	558.2967
2.61	-828.0879	-732.6133	568.3683
4.41	293.4976	-503.3657	578.4060
6.30	1051.8517	-285.2432	589.0013
8.10	1403.9858	-94.7639	599.0390
9.90	1419.4845	91.0829	609.0767
11.70	1096.0810	284.7872	619.1144
13.59	360.3097	509.9207	629.7097
15.39	-752.9601	749.3767	639.7474
17.20	-2323.8382	996.2006	649.8191

Sollecitazioni traverso (Combinazione nº 14)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1581.2697	660.2656	314.7367
2.57	-540.7501	516.3691	324.6129
4.50	303.3328	359.5660	335.3748
6.24	806.4336	217.7682	345.1069
8.02	1064.5749	73.6082	355.0011
9.98	1051.8160	-86.5696	365.9947
11.76	770.7088	-230.7296	375.8889
13.50	245.0184	-372.5273	385.6210
15.43	-624.0446	-529.3305	396.3830
17.20	-1687.4880	-673.2270	406.2591

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 14)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2387.8354	604.9731	991.3132
1.35	-1951.7369	486.1239	956.4661
2.25	-1572.0897	358.6168	917.2631
3.05	-1328.6688	250.7864	882.4160
3.95	-1155.2471	135.6753	843.2130
4.75	-1085.7717	38.8638	808.3659
5.65	-1097.5022	-63.8512	769.1629
6.45	-1183.2405	-149.6439	734.3158
7.35	-1359.0496	-239.9627	695.1128
8.15	-1581.2697	-314.7367	660.2656

Sollecitazioni piedritto destro (Combinazione nº 14)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2323.8382	-603.3056	1004.2746
1.35	-1887.8088	-479.7831	969.4275
2.25	-1512.8546	-346.6557	930.2245
3.05	-1277.9448	-233.5897	895.3774
3.95	-1119.1829	-112.3981	856.1744
4.75	-1067.3771	-10.0707	821.3272
5.65	-1104.2884	98.9114	782.1242
6.45	-1217.1493	190.2766	747.2771
7.35	-1428.7798	286.7991	708.0741
8.15	-1687.4880	359.1046	673.2270

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 15)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2387.8354	-983.6128	558.2967
2.61	-828.0879	-732.6133	568.3683
4.41	293.4976	-503.3657	578.4060
6.30	1051.8517	-285.2432	589.0013
8.10	1403.9858	-94.7639	599.0390
9.90	1419.4845	91.0829	609.0767
11.70	1096.0810	284.7872	619.1144
13.59	360.3097	509.9207	629.7097
15.39	-752.9601	749.3767	639.7474
17.20	-2323.8382	996.2006	649.8191

Sollecitazioni traverso (Combinazione nº 15)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1581.2697	660.2656	314.7367
2.57	-540.7501	516.3691	324.6129
4.50	303.3328	359.5660	335.3748
6.24	806.4336	217.7682	345.1069
8.02	1064.5749	73.6082	355.0011
9.98	1051.8160	-86.5696	365.9947
11.76	770.7088	-230.7296	375.8889
13.50	245.0184	-372.5273	385.6210
15.43	-624.0446	-529.3305	396.3830
17.20	-1687.4880	-673.2270	406.2591

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 15)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2387.8354	604.9731	991.3132
1.35	-1951.7369	486.1239	956.4661

2.25	-1572.0897	358.6168	917.2631
3.05	-1328.6688	250.7864	882.4160
3.95	-1155.2471	135.6753	843.2130
4.75	-1085.7717	38.8638	808.3659
5.65	-1097.5022	-63.8512	769.1629
6.45	-1183.2405	-149.6439	734.3158
7.35	-1359.0496	-239.9627	695.1128
8.15	-1581.2697	-314.7367	660.2656

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 15)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2323.8382	-603.3056	1004.2746
1.35	-1887.8088	-479.7831	969.4275
2.25	-1512.8546	-346.6557	930.2245
3.05	-1277.9448	-233.5897	895.3774
3.95	-1119.1829	-112.3981	856.1744
4.75	-1067.3771	-10.0707	821.3272
5.65	-1104.2884	98.9114	782.1242
6.45	-1217.1493	190.2766	747.2771
7.35	-1428.7798	286.7991	708.0741
8.15	-1687.4880	359.1046	673.2270

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 16)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2139.6056	-876.7020	539.1712
2.61	-748.8550	-653.7694	549.2429
4.41	252.4077	-449.8340	559.2806
6.30	930.4931	-255.5298	569.8759
8.10	1246.3935	-85.6424	579.9136
9.90	1261.9084	80.2720	589.9513
11.70	974.7694	253.3100	599.9890
13.59	319.2942	454.4867	610.5843
15.39	-673.6357	668.4819	620.6220
17.20	-2075.5139	889.2929	630.6936

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 16)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1478.1401	614.5027	333.8289
2.57	-509.8248	480.4824	343.7050
4.50	275.4651	334.4412	354.4670
6.24	743.2581	202.3755	364.1990
8.02	982.8911	68.1097	374.0933
9.98	970.1289	-81.0745	385.0868
11.76	707.5240	-215.3403	394.9811

13.50	217.1354	-347.4059	404.7132
15.43	-593.1412	-493.4471	415.4751
17.20	-1584.3864	-627.4675	425.3513

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 16)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2139.6056	585.8809	883.4355
1.35	-1718.7808	467.0318	855.1268
2.25	-1356.3165	339.5246	823.2795
3.05	-1128.1692	231.6943	794.9708
3.95	-971.9305	116.5832	763.1235
4.75	-917.7289	19.7716	734.8148
5.65	-946.6422	-82.9433	702.9675
6.45	-1047.6543	-168.7361	674.6588
7.35	-1240.6463	-259.0549	642.8114
8.15	-1478.1401	-333.8289	614.5027

Sollecitazioni piedritto destro (Combinazione nº 16)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2075.5139	-584.1417	896.4003
1.35	-1654.8284	-460.5898	868.0916
2.25	-1297.1489	-327.4666	836.2443
3.05	-1077.5824	-214.4263	807.9356
3.95	-936.0513	-93.2766	776.0883
4.75	-899.5288	9.0114	747.7795
5.65	-953.5984	117.9569	715.9322
6.45	-1081.6883	209.3042	687.6235
7.35	-1310.4433	305.8311	655.7762
8.15	-1584.3864	378.1630	627.4675

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 17)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2203.2196	-876.7119	554.6554
2.61	-810.3924	-656.2236	564.7270
4.41	195.7261	-452.9712	574.7647
6.30	879.0464	-258.0988	585.3600
8.10	1198.2129	-86.9511	595.3977
9.90	1214.4487	80.4778	605.4354
11.70	925.3889	254.8614	615.4731
13.59	265.7665	456.8011	626.0684
15.39	-731.5527	670.4193	636.1061
17.20	-2135.8854	889.7924	646.1778

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 17)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1420.7720	614.2497	317.7150
2.57	-452.9042	480.2294	327.5912
4.50	331.8981	334.1882	338.3531
6.24	799.2502	202.1225	348.0852
8.02	1038.4348	67.8567	357.9795
9.98	1025.1745	-81.3275	368.9730
11.76	762.1213	-215.5933	378.8672
13.50	271.2918	-347.6590	388.5993
15.43	-539.4724	-493.7002	399.3613
17.20	-1531.1651	-627.7205	409.2374

Sollecitazioni piedritto sinistro (Combinazione nº 17)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2203.2196	601.6045	883.1825
1.35	-1769.7995	482.7965	854.8738
2.25	-1393.1262	355.3355	823.0265
3.05	-1152.3138	247.5462	794.7178
3.95	-981.7875	132.4814	762.8705
4.75	-914.8509	35.7109	734.5618
5.65	-929.3982	-66.9578	702.7145
6.45	-1017.6054	-152.7095	674.4057
7.35	-1196.1528	-242.9821	642.5584
8.15	-1420.7720	-317.7150	614.2497

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 17)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2135.8854	-599.3905	896.6533
1.35	-1703.1007	-475.5670	868.3446
2.25	-1332.0348	-342.2292	836.4973
3.05	-1100.7012	-229.0813	808.1886
3.95	-945.9985	-107.9055	776.3413
4.75	-897.7564	-5.6796	748.0326
5.65	-938.5452	103.1000	716.1852
6.45	-1054.6734	194.2148	687.8765
7.35	-1269.7128	290.3857	656.0292
8.15	-1531.1651	362.3730	627.7205

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 18)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2451.4494	-983.6227	573.7808
2.61	-889.6254	-735.0675	583.8525
4.41	236.8160	-506.5029	593.8901
6.30	1000.4050	-287.8122	604.4855
8.10	1355.8051	-96.0725	614.5232
9.90	1372.0248	91.2886	624.5609
11.70	1046.7004	286.3385	634.5985
13.59	306.7820	512.2351	645.1939
15.39	-810.8771	751.3141	655.2316
17.20	-2384.2097	996.7001	665.3032

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 18)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1523.9016	660.0126	298.6229
2.57	-483.8295	516.1161	308.4990
4.50	359.7658	359.3130	319.2610
6.24	862.4256	217.5152	328.9931
8.02	1120.1186	73.3552	338.8873
9.98	1106.8617	-86.8226	349.8809
11.76	825.3062	-230.9826	359.7751
13.50	299.1748	-372.7803	369.5072
15.43	-570.3758	-529.5835	380.2692
17.20	-1634.2668	-673.4800	390.1453

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 18)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2451.4494	620.6967	991.0602
1.35	-2002.7556	501.8886	956.2131
2.25	-1608.8994	374.4276	917.0101
3.05	-1352.8133	266.6384	882.1630
3.95	-1165.1041	151.5735	842.9600
4.75	-1082.8938	54.8030	808.1129
5.65	-1080.2581	-47.8657	768.9099
6.45	-1153.1917	-133.6174	734.0628
7.35	-1314.5561	-223.8900	694.8597
8.15	-1523.9016	-298.6229	660.0126

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 18)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2384.2097	-618.5545	1004.5276
1.35	-1936.0812	-494.7603	969.6805
2.25	-1547.7406	-361.4183	930.4775

3.05	-1301.0636	-248.2447	895.6304
3.95	-1129.1301	-127.0270	856.4274
4.75	-1065.6047	-24.7617	821.5803
5.65	-1089.2352	84.0544	782.3773
6.45	-1190.1344	175.1872	747.5301
7.35	-1388.0494	271.3537	708.3271
8.15	-1634.2668	343.3147	673.4800

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 19)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2451.4494	-983.6227	573.7808
2.61	-889.6254	-735.0675	583.8525
4.41	236.8160	-506.5029	593.8901
6.30	1000.4050	-287.8122	604.4855
8.10	1355.8051	-96.0725	614.5232
9.90	1372.0248	91.2886	624.5609
11.70	1046.7004	286.3385	634.5985
13.59	306.7820	512.2351	645.1939
15.39	-810.8771	751.3141	655.2316
17.20	-2384.2097	996.7001	665.3032

Sollecitazioni traverso (Combinazione nº 19)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1523.9016	660.0126	298.6229
2.57	-483.8295	516.1161	308.4990
4.50	359.7658	359.3130	319.2610
6.24	862.4256	217.5152	328.9931
8.02	1120.1186	73.3552	338.8873
9.98	1106.8617	-86.8226	349.8809
11.76	825.3062	-230.9826	359.7751
13.50	299.1748	-372.7803	369.5072
15.43	-570.3758	-529.5835	380.2692
17.20	-1634.2668	-673.4800	390.1453

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 19)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2451.4494	620.6967	991.0602
1.35	-2002.7556	501.8886	956.2131
2.25	-1608.8994	374.4276	917.0101
3.05	-1352.8133	266.6384	882.1630
3.95	-1165.1041	151.5735	842.9600
4.75	-1082.8938	54.8030	808.1129

5.65	-1080.2581	-47.8657	768.9099
6.45	-1153.1917	-133.6174	734.0628
7.35	-1314.5561	-223.8900	694.8597
8.15	-1523.9016	-298.6229	660.0126

Sollecitazioni piedritto destro (Combinazione nº 19)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2384.2097	-618.5545	1004.5276
1.35	-1936.0812	-494.7603	969.6805
2.25	-1547.7406	-361.4183	930.4775
3.05	-1301.0636	-248.2447	895.6304
3.95	-1129.1301	-127.0270	856.4274
4.75	-1065.6047	-24.7617	821.5803
5.65	-1089.2352	84.0544	782.3773
6.45	-1190.1344	175.1872	747.5301
7.35	-1388.0494	271.3537	708.3271
8.15	-1634.2668	343.3147	673.4800

Sollecitazioni fondazione (Combinazione n° 20)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2203.2196	-876.7119	554.6554
2.61	-810.3924	-656.2236	564.7270
4.41	195.7261	-452.9712	574.7647
6.30	879.0464	-258.0988	585.3600
8.10	1198.2129	-86.9511	595.3977
9.90	1214.4487	80.4778	605.4354
11.70	925.3889	254.8614	615.4731
13.59	265.7665	456.8011	626.0684
15.39	-731.5527	670.4193	636.1061
17.20	-2135.8854	889.7924	646.1778

Sollecitazioni traverso (Combinazione nº 20)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1420.7720	614.2497	317.7150
2.57	-452.9042	480.2294	327.5912
4.50	331.8981	334.1882	338.3531
6.24	799.2502	202.1225	348.0852
8.02	1038.4348	67.8567	357.9795
9.98	1025.1745	-81.3275	368.9730
11.76	762.1213	-215.5933	378.8672
13.50	271.2918	-347.6590	388.5993
15.43	-539.4724	-493.7002	399.3613
17.20	-1531.1651	-627.7205	409.2374

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 20)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2203.2196	601.6045	883.1825
1.35	-1769.7995	482.7965	854.8738
2.25	-1393.1262	355.3355	823.0265
3.05	-1152.3138	247.5462	794.7178
3.95	-981.7875	132.4814	762.8705
4.75	-914.8509	35.7109	734.5618
5.65	-929.3982	-66.9578	702.7145
6.45	-1017.6054	-152.7095	674.4057
7.35	-1196.1528	-242.9821	642.5584
8.15	-1420.7720	-317.7150	614.2497

Sollecitazioni piedritto destro (Combinazione nº 20)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2135.8854	-599.3905	896.6533
1.35	-1703.1007	-475.5670	868.3446
2.25	-1332.0348	-342.2292	836.4973
3.05	-1100.7012	-229.0813	808.1886
3.95	-945.9985	-107.9055	776.3413
4.75	-897.7564	-5.6796	748.0326
5.65	-938.5452	103.1000	716.1852
6.45	-1054.6734	194.2148	687.8765
7.35	-1269.7128	290.3857	656.0292
8.15	-1531.1651	362.3730	627.7205

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 21)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2075.5139	-889.2929	630.6936
2.61	-673.6357	-653.5690	620.6220
4.41	319.2942	-440.8774	610.5843
6.30	974.7694	-240.9157	599.9890
8.10	1261.9084	-68.5549	589.9513
9.90	1246.3935	97.2901	579.9136
11.70	930.4931	267.7083	569.8759
13.59	252.4077	463.0492	559.2806
15.39	-748.8550	668.0864	549.2429
17.20	-2139.6056	876.7020	539.1712

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 21)}$

X [m]	M [kNm]	V [kN]	N [kN]

0.81	-1584.3864	627.4675	425.3513
2.57	-593.1412	493.4471	415.4751
4.50	217.1354	347.4059	404.7132
6.24	707.5240	215.3403	394.9811
8.02	970.1289	81.0745	385.0868
9.98	982.8911	-68.1097	374.0933
11.76	743.2581	-202.3755	364.1990
13.50	275.4651	-334.4412	354.4670
15.43	-509.8248	-480.4824	343.7050
17.20	-1478.1401	-614.5027	333.8289

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 21)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2075.5139	584.1417	896.4003
1.35	-1654.8284	460.5898	868.0916
2.25	-1297.1489	327.4666	836.2443
3.05	-1077.5824	214.4263	807.9356
3.95	-936.0513	93.2766	776.0883
4.75	-899.5288	-9.0114	747.7795
5.65	-953.5984	-117.9569	715.9322
6.45	-1081.6883	-209.3042	687.6235
7.35	-1310.4433	-305.8311	655.7762
8.15	-1584.3864	-378.1630	627.4675

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 21)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2139.6056	-585.8809	883.4355
1.35	-1718.7808	-467.0318	855.1268
2.25	-1356.3165	-339.5246	823.2795
3.05	-1128.1692	-231.6943	794.9708
3.95	-971.9305	-116.5832	763.1235
4.75	-917.7289	-19.7716	734.8148
5.65	-946.6422	82.9433	702.9675
6.45	-1047.6543	168.7361	674.6588
7.35	-1240.6463	259.0549	642.8114
8.15	-1478.1401	333.8289	614.5027

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 22)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2323.8382	-996.2006	649.8191
2.61	-752.9601	-732.4192	639.7474
4.41	360.3097	-494.4215	629.7097

6.30	1096.0810	-270.6453	619.1144
8.10	1419.4845	-77.6942	609.0767
9.90	1403.9858	108.0831	599.0390
11.70	1051.8517	299.1693	589.0013
13.59	293.4976	518.4711	578.4060
15.39	-828.0879	748.9753	568.3683
17.20	-2387.8354	983.6128	558.2967

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 22)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1687.4880	673.2270	406.2591
2.57	-624.0446	529.3305	396.3830
4.50	245.0184	372.5273	385.6210
6.24	770.7088	230.7296	375.8889
8.02	1051.8160	86.5696	365.9947
9.98	1064.5749	-73.6082	355.0011
11.76	806.4336	-217.7682	345.1069
13.50	303.3328	-359.5660	335.3748
15.43	-540.7501	-516.3691	324.6129
17.20	-1581.2697	-660.2656	314.7367

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 22)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2323.8382	603.3056	1004.2746
1.35	-1887.8088	479.7831	969.4275
2.25	-1512.8546	346.6557	930.2245
3.05	-1277.9448	233.5897	895.3774
3.95	-1119.1829	112.3981	856.1744
4.75	-1067.3771	10.0707	821.3272
5.65	-1104.2884	-98.9114	782.1242
6.45	-1217.1493	-190.2766	747.2771
7.35	-1428.7798	-286.7991	708.0741
8.15	-1687.4880	-359.1046	673.2270

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 22)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2387.8354	-604.9731	991.3132
1.35	-1951.7369	-486.1240	956.4661
2.25	-1572.0897	-358.6168	917.2631
3.05	-1328.6688	-250.7864	882.4160
3.95	-1155.2471	-135.6753	843.2130
4.75	-1085.7717	-38.8638	808.3659
5.65	-1097.5022	63.8512	769.1629

6.45	-1183.2405	149.6439	734.3158
7.35	-1359.0496	239.9627	695.1128
8.15	-1581.2697	314.7367	660.2656

Sollecitazioni fondazione (Combinazione n° 23)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2323.8382	-996.2006	649.8191
2.61	-752.9601	-732.4192	639.7474
4.41	360.3097	-494.4215	629.7097
6.30	1096.0810	-270.6453	619.1144
8.10	1419.4845	-77.6942	609.0767
9.90	1403.9858	108.0831	599.0390
11.70	1051.8517	299.1693	589.0013
13.59	293.4976	518.4711	578.4060
15.39	-828.0879	748.9753	568.3683
17.20	-2387.8354	983.6128	558.2967

Sollecitazioni traverso (Combinazione n° 23)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1687.4880	673.2270	406.2591
2.57	-624.0446	529.3305	396.3830
4.50	245.0184	372.5273	385.6210
6.24	770.7088	230.7296	375.8889
8.02	1051.8160	86.5696	365.9947
9.98	1064.5749	-73.6082	355.0011
11.76	806.4336	-217.7682	345.1069
13.50	303.3328	-359.5660	335.3748
15.43	-540.7501	-516.3691	324.6129
17.20	-1581.2697	-660.2656	314.7367

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 23)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2323.8382	603.3056	1004.2746
1.35	-1887.8088	479.7831	969.4275
2.25	-1512.8546	346.6557	930.2245
3.05	-1277.9448	233.5897	895.3774
3.95	-1119.1829	112.3981	856.1744
4.75	-1067.3771	10.0707	821.3272
5.65	-1104.2884	-98.9114	782.1242
6.45	-1217.1493	-190.2766	747.2771
7.35	-1428.7798	-286.7991	708.0741
8.15	-1687.4880	-359.1046	673.2270

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 23)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2387.8354	-604.9731	991.3132
1.35	-1951.7369	-486.1240	956.4661
2.25	-1572.0897	-358.6168	917.2631
3.05	-1328.6688	-250.7864	882.4160
3.95	-1155.2471	-135.6753	843.2130
4.75	-1085.7717	-38.8638	808.3659
5.65	-1097.5022	63.8512	769.1629
6.45	-1183.2405	149.6439	734.3158
7.35	-1359.0496	239.9627	695.1128
8.15	-1581.2697	314.7367	660.2656

Sollecitazioni fondazione (Combinazione n° 24)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2075.5139	-889.2929	630.6936
2.61	-673.6357	-653.5690	620.6220
4.41	319.2942	-440.8774	610.5843
6.30	974.7694	-240.9157	599.9890
8.10	1261.9084	-68.5549	589.9513
9.90	1246.3935	97.2901	579.9136
11.70	930.4931	267.7083	569.8759
13.59	252.4077	463.0492	559.2806
15.39	-748.8550	668.0864	549.2429
17.20	-2139.6056	876.7020	539.1712

Sollecitazioni traverso (Combinazione n° 24)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1584.3864	627.4675	425.3513
2.57	-593.1412	493.4471	415.4751
4.50	217.1354	347.4059	404.7132
6.24	707.5240	215.3403	394.9811
8.02	970.1289	81.0745	385.0868
9.98	982.8911	-68.1097	374.0933
11.76	743.2581	-202.3755	364.1990
13.50	275.4651	-334.4412	354.4670
15.43	-509.8248	-480.4824	343.7050
17.20	-1478.1401	-614.5027	333.8289

Sollecitazioni piedritto sinistro (Combinazione n° 24)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2075.5139	584.1417	896.4003
1.35	-1654.8284	460.5898	868.0916
2.25	-1297.1489	327.4666	836.2443
3.05	-1077.5824	214.4263	807.9356
3.95	-936.0513	93.2766	776.0883
4.75	-899.5288	-9.0114	747.7795
5.65	-953.5984	-117.9569	715.9322
6.45	-1081.6883	-209.3042	687.6235
7.35	-1310.4433	-305.8311	655.7762
8.15	-1584.3864	-378.1630	627.4675

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 24)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2139.6056	-585.8809	883.4355
1.35	-1718.7808	-467.0318	855.1268
2.25	-1356.3165	-339.5246	823.2795
3.05	-1128.1692	-231.6943	794.9708
3.95	-971.9305	-116.5832	763.1235
4.75	-917.7289	-19.7716	734.8148
5.65	-946.6422	82.9433	702.9675
6.45	-1047.6543	168.7361	674.6588
7.35	-1240.6463	259.0549	642.8114
8.15	-1478.1401	333.8289	614.5027

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 25)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2135.8854	-889.7924	646.1778
2.61	-731.5527	-655.9556	636.1061
4.41	265.7665	-443.5685	626.0684
6.30	925.3889	-242.7956	615.4731
8.10	1214.4487	-69.0688	605.4354
9.90	1198.2129	98.2876	595.3977
11.70	879.0464	269.9394	585.3600
13.59	195.7261	465.7928	574.7647
15.39	-810.3924	670.0655	564.7270
17.20	-2203.2196	876.7119	554.6554

Sollecitazioni traverso (Combinazione nº 25)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1531.1651	627.7205	409.2374
2.57	-539.4724	493.7002	399.3613
4.50	271.2918	347.6590	388.5993
6.24	762.1213	215.5933	378.8672

8.02	1025.1745	81.3275	368.9730
9.98	1038.4348	-67.8567	357.9795
11.76	799.2502	-202.1225	348.0852
13.50	331.8981	-334.1882	338.3531
15.43	-452.9042	-480.2294	327.5912
17.20	-1420.7720	-614.2497	317.7150

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 25)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2135.8854	599.3905	896.6533
1.35	-1703.1007	475.5670	868.3446
2.25	-1332.0348	342.2292	836.4973
3.05	-1100.7012	229.0813	808.1886
3.95	-945.9985	107.9055	776.3413
4.75	-897.7564	5.6796	748.0326
5.65	-938.5452	-103.1000	716.1852
6.45	-1054.6734	-194.2148	687.8765
7.35	-1269.7128	-290.3857	656.0292
8.15	-1531.1651	-362.3730	627.7205

Sollecitazioni piedritto destro (Combinazione nº 25)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2203.2196	-601.6045	883.1825
1.35	-1769.7995	-482.7965	854.8738
2.25	-1393.1262	-355.3355	823.0265
3.05	-1152.3138	-247.5462	794.7178
3.95	-981.7875	-132.4814	762.8705
4.75	-914.8509	-35.7109	734.5618
5.65	-929.3982	66.9578	702.7145
6.45	-1017.6054	152.7095	674.4057
7.35	-1196.1528	242.9821	642.5584
8.15	-1420.7720	317.7150	614.2497

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 26)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2384.2097	-996.7001	665.3032
2.61	-810.8771	-734.8058	655.2316
4.41	306.7820	-497.1126	645.1939
6.30	1046.7004	-272.5253	634.5985
8.10	1372.0248	-78.2081	624.5609
9.90	1355.8051	109.0806	614.5232
11.70	1000.4050	301.4004	604.4855

13.59	236.8160	521.2146	593.8901
15.39	-889.6254	750.9544	583.8525
17.20	-2451.4494	983.6227	573.7808

Sollecitazioni traverso (Combinazione n° 26)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1634.2668	673.4800	390.1453
2.57	-570.3758	529.5835	380.2692
4.50	299.1748	372.7803	369.5072
6.24	825.3062	230.9826	359.7751
8.02	1106.8617	86.8226	349.8809
9.98	1120.1186	-73.3552	338.8873
11.76	862.4256	-217.5152	328.9931
13.50	359.7658	-359.3130	319.2610
15.43	-483.8295	-516.1161	308.4990
17.20	-1523.9016	-660.0126	298.6229

Sollecitazioni piedritto sinistro (Combinazione nº 26)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2384.2097	618.5545	1004.5276
1.35	-1936.0812	494.7603	969.6805
2.25	-1547.7406	361.4183	930.4775
3.05	-1301.0636	248.2447	895.6304
3.95	-1129.1301	127.0270	856.4274
4.75	-1065.6047	24.7617	821.5803
5.65	-1089.2352	-84.0544	782.3773
6.45	-1190.1344	-175.1872	747.5301
7.35	-1388.0494	-271.3537	708.3271
8.15	-1634.2668	-343.3147	673.4800

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 26)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2451.4494	-620.6967	991.0602
1.35	-2002.7556	-501.8886	956.2131
2.25	-1608.8994	-374.4276	917.0101
3.05	-1352.8133	-266.6384	882.1630
3.95	-1165.1041	-151.5735	842.9600
4.75	-1082.8938	-54.8030	808.1129
5.65	-1080.2581	47.8657	768.9099
6.45	-1153.1917	133.6174	734.0628
7.35	-1314.5561	223.8900	694.8597
8.15	-1523.9016	298.6229	660.0126

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 27)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2384.2097	-996.7001	665.3032
2.61	-810.8771	-734.8058	655.2316
4.41	306.7820	-497.1126	645.1939
6.30	1046.7004	-272.5253	634.5985
8.10	1372.0248	-78.2081	624.5609
9.90	1355.8051	109.0806	614.5232
11.70	1000.4050	301.4004	604.4855
13.59	236.8160	521.2146	593.8901
15.39	-889.6254	750.9544	583.8525
17.20	-2451.4494	983.6227	573.7808

Sollecitazioni traverso (Combinazione nº 27)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1634.2668	673.4800	390.1453
2.57	-570.3758	529.5835	380.2692
4.50	299.1748	372.7803	369.5072
6.24	825.3062	230.9826	359.7751
8.02	1106.8617	86.8226	349.8809
9.98	1120.1186	-73.3552	338.8873
11.76	862.4256	-217.5152	328.9931
13.50	359.7658	-359.3130	319.2610
15.43	-483.8295	-516.1161	308.4990
17.20	-1523.9016	-660.0126	298.6229

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 27)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2384.2097	618.5545	1004.5276
1.35	-1936.0812	494.7603	969.6805
2.25	-1547.7406	361.4183	930.4775
3.05	-1301.0636	248.2447	895.6304
3.95	-1129.1301	127.0270	856.4274
4.75	-1065.6047	24.7617	821.5803
5.65	-1089.2352	-84.0544	782.3773
6.45	-1190.1344	-175.1872	747.5301
7.35	-1388.0494	-271.3537	708.3271
8.15	-1634.2668	-343.3147	673.4800

Sollecitazioni piedritto destro (Combinazione nº 27)

Y [m]	M [kNm]	V [kN]	N [kN]

0.55	-2451.4494	-620.6967	991.0602
1.35	-2002.7556	-501.8886	956.2131
2.25	-1608.8994	-374.4276	917.0101
3.05	-1352.8133	-266.6384	882.1630
3.95	-1165.1041	-151.5735	842.9600
4.75	-1082.8938	-54.8030	808.1129
5.65	-1080.2581	47.8657	768.9099
6.45	-1153.1917	133.6174	734.0628
7.35	-1314.5561	223.8900	694.8597
8.15	-1523.9016	298.6229	660.0126

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 28)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2135.8854	-889.7924	646.1778
2.61	-731.5527	-655.9556	636.1061
4.41	265.7665	-443.5685	626.0684
6.30	925.3889	-242.7956	615.4731
8.10	1214.4487	-69.0688	605.4354
9.90	1198.2129	98.2876	595.3977
11.70	879.0464	269.9394	585.3600
13.59	195.7261	465.7928	574.7647
15.39	-810.3924	670.0655	564.7270
17.20	-2203.2196	876.7119	554.6554

Sollecitazioni traverso (Combinazione n° 28)

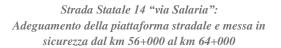
X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1531.1651	627.7205	409.2374
2.57	-539.4724	493.7002	399.3613
4.50	271.2918	347.6590	388.5993
6.24	762.1213	215.5933	378.8672
8.02	1025.1745	81.3275	368.9730
9.98	1038.4348	-67.8567	357.9795
11.76	799.2502	-202.1225	348.0852
13.50	331.8981	-334.1882	338.3531
15.43	-452.9042	-480.2294	327.5912
17.20	-1420.7720	-614.2497	317.7150

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 28)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2135.8854	599.3905	896.6533
1.35	-1703.1007	475.5670	868.3446
2.25	-1332.0348	342.2292	836.4973

808.1886	229.0813	-1100.7012	3.05
776.3413	107.9055	-945.9985	3.95
748.0326	5.6796	-897.7564	4.75
716.1852	-103.1000	-938.5452	5.65
687.8765	-194.2148	-1054.6734	6.45
656.0292	-290.3857	-1269.7128	7.35
627.7205	-362.3730	-1531.1651	8.15

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 28)}$


Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2203.2196	-601.6045	883.1825
1.35	-1769.7995	-482.7965	854.8738
2.25	-1393.1262	-355.3355	823.0265
3.05	-1152.3138	-247.5462	794.7178
3.95	-981.7875	-132.4814	762.8705
4.75	-914.8509	-35.7109	734.5618
5.65	-929.3982	66.9578	702.7145
6.45	-1017.6054	152.7095	674.4057
7.35	-1196.1528	242.9821	642.5584
8.15	-1420.7720	317.7150	614.2497

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 29)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2246.6260	-936.6466	357.5720
2.61	-765.2670	-693.8242	357.5720
4.41	293.1079	-472.9749	357.5720
6.30	1001.1588	-263.7678	357.5720
8.10	1321.4275	-82.0320	357.5720
9.90	1321.4275	94.1782	357.5720
11.70	1001.1588	276.5503	357.5720
13.59	293.1079	486.9421	357.5720
15.39	-765.2670	709.0528	357.5720
17.20	-2246.6260	936.6466	357.5720

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 29)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1486.6233	643.8657	79.1828
2.57	-470.7424	504.9073	79.1828
4.50	356.4357	353.4851	79.1828
6.24	853.1789	216.5534	79.1828
8.02	1113.5505	77.3405	79.1828
9.98	1113.5505	-77.3405	79.1828
11.76	853.1789	-216.5534	79.1828
13.50	356.4357	-353.4851	79.1828

15.43	-470.7424	-504.9073	79.1828
17.20	-1486.6233	-643.8657	79.1828

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 29)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2246.6260	357.6202	943.8559
1.35	-1988.0182	289.7059	912.2780
2.25	-1759.4289	219.2889	876.7528
3.05	-1607.1898	162.1052	845.1749
3.95	-1487.9295	103.9551	809.6498
4.75	-1423.5432	57.8365	778.0719
5.65	-1392.4708	12.3035	742.5467
6.45	-1396.8920	-22.4945	710.9688
7.35	-1432.4408	-55.4227	675.4436
8.15	-1486.6233	-79.1828	643.8657

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 29)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2246.6260	-357.6202	943.8559
1.35	-1988.0182	-289.7059	912.2780
2.25	-1759.4289	-219.2889	876.7528
3.05	-1607.1898	-162.1052	845.1749
3.95	-1487.9295	-103.9551	809.6498
4.75	-1423.5432	-57.8365	778.0719
5.65	-1392.4708	-12.3035	742.5467
6.45	-1396.8920	22.4945	710.9688
7.35	-1432.4408	55.4227	675.4436
8.15	-1486.6233	79.1828	643.8657

Sollecitazioni fondazione (Combinazione n° 30)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2246.6260	-936.6466	357.5720
2.61	-765.2670	-693.8242	357.5720
4.41	293.1079	-472.9749	357.5720
6.30	1001.1588	-263.7678	357.5720
8.10	1321.4275	-82.0320	357.5720
9.90	1321.4275	94.1782	357.5720
11.70	1001.1588	276.5503	357.5720
13.59	293.1079	486.9421	357.5720
15.39	-765.2670	709.0528	357.5720
17.20	-2246.6260	936.6466	357.5720

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 30)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1486.6233	643.8657	79.1828
2.57	-470.7424	504.9073	79.1828
4.50	356.4357	353.4851	79.1828
6.24	853.1789	216.5534	79.1828
8.02	1113.5505	77.3405	79.1828
9.98	1113.5505	-77.3405	79.1828
11.76	853.1789	-216.5534	79.1828
13.50	356.4357	-353.4851	79.1828
15.43	-470.7424	-504.9073	79.1828
17.20	-1486.6233	-643.8657	79.1828

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 30)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2246.6260	357.6202	943.8559
1.35	-1988.0182	289.7059	912.2780
2.25	-1759.4289	219.2889	876.7528
3.05	-1607.1898	162.1052	845.1749
3.95	-1487.9295	103.9551	809.6498
4.75	-1423.5432	57.8365	778.0719
5.65	-1392.4708	12.3035	742.5467
6.45	-1396.8920	-22.4945	710.9688
7.35	-1432.4408	-55.4227	675.4436
8.15	-1486.6233	-79.1828	643.8657

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 30)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2246.6260	-357.6202	943.8559
1.35	-1988.0182	-289.7059	912.2780
2.25	-1759.4289	-219.2889	876.7528
3.05	-1607.1898	-162.1052	845.1749
3.95	-1487.9295	-103.9551	809.6498
4.75	-1423.5432	-57.8365	778.0719
5.65	-1392.4708	-12.3035	742.5467
6.45	-1396.8920	22.4945	710.9688
7.35	-1432.4408	55.4227	675.4436
8.15	-1486.6233	79.1828	643.8657

Sollecitazioni fondazione (Combinazione n° 31)

X [m]	M [kNm]	V [kN]	N [kN]

0.81	-2551.0365	-1072.8270	354.3927
2.61	-855.2947	-793.9899	354.3927
4.41	355.1852	-540.8851	354.3927
6.30	1164.4284	-301.5323	354.3927
8.10	1530.3018	-93.8620	354.3927
9.90	1530.3018	107.4092	354.3927
11.70	1164.4284	315.8165	354.3927
13.59	355.1852	556.5444	354.3927
15.39	-855.2947	811.1214	354.3927
17.20	-2551.0365	1072.8270	354.3927

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^\circ\ 31)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1902.1506	780.9717	105.1377
2.57	-654.3363	630.0750	105.1377
4.50	401.5381	465.6437	105.1377
6.24	1081.4915	306.7241	105.1377
8.02	1450.2793	109.5443	105.1377
9.98	1450.2793	-109.5443	105.1377
11.76	1081.4915	-306.7241	105.1377
13.50	401.5381	-465.6437	105.1377
15.43	-654.3363	-630.0750	105.1377
17.20	-1902.1506	-780.9717	105.1377

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 31)}$

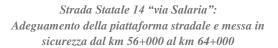
Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2551.0365	354.4405	1080.9619
1.35	-2295.9014	284.1883	1049.3840
2.25	-2073.4813	211.0761	1013.8588
3.05	-1928.7784	151.4552	982.2809
3.95	-1820.3390	90.5351	946.7558
4.75	-1767.6688	41.9453	915.1779
5.65	-1752.1379	-6.3586	879.6527
6.45	-1772.4552	-43.5561	848.0748
7.35	-1828.1253	-79.0749	812.5496
8.15	-1902.1506	-105.1377	780.9717

Sollecitazioni piedritto destro (Combinazione nº 31)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2551.0365	-354.4405	1080.9619
1.35	-2295.9014	-284.1883	1049.3840
2.25	-2073.4813	-211.0761	1013.8588
3.05	-1928.7784	-151.4552	982.2809

3.95	-1820.3390	-90.5351	946.7558
4.75	-1767.6688	-41.9453	915.1779
5.65	-1752.1379	6.3586	879.6527
6.45	-1772.4552	43.5561	848.0748
7.35	-1828.1253	79.0749	812.5496
8.15	-1902.1506	105.1377	780.9717

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 32)}$


X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2386.2064	-990.8939	404.8884
2.61	-818.3731	-734.8700	404.8884
4.41	303.2137	-501.7500	404.8884
6.30	1055.0495	-280.6943	404.8884
8.10	1396.7745	-88.4711	404.8884
9.90	1399.5907	98.0929	404.8884
11.70	1063.1639	291.3652	404.8884
13.59	315.7699	514.5326	404.8884
15.39	-803.5818	750.3336	404.8884
17.20	-2372.1668	992.3098	404.8884

Sollecitazioni traverso (Combinazione nº 32)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1620.3989	698.4447	130.7955
2.57	-518.5449	547.5480	130.7955
4.50	378.2774	383.1167	130.7955
6.24	916.4122	234.4208	130.7955
8.02	1197.8467	83.2477	130.7955
9.98	1196.3951	-84.7223	130.7955
11.76	912.3480	-235.8953	130.7955
13.50	371.6433	-384.5912	130.7955
15.43	-528.0209	-549.0225	130.7955
17.20	-1632.4828	-699.9192	130.7955

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 32)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2386.2064	410.3060	998.4349
1.35	-2089.9002	331.3104	966.8570
2.25	-1829.4094	248.6384	931.3318
3.05	-1658.0297	180.6615	899.7539
3.95	-1527.5446	110.3857	864.2288
4.75	-1462.3596	53.4276	832.6508
5.65	-1440.8068	-4.4521	797.1257

6.45	-1463.0844	-50.3914	765.5478
7.35	-1529.3904	-95.8750	730.0226
8.15	-1620.3989	-130.7955	698.4447

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^{\circ}\ 32)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2372.1668	-399.5799	999.9094
1.35	-2083.4131	-322.2092	968.3315
2.25	-1829.9669	-241.1209	932.8064
3.05	-1663.7035	-174.4303	901.2285
3.95	-1537.7649	-105.5644	865.7033
4.75	-1475.5446	-49.9053	834.1254
5.65	-1456.0380	6.3755	798.6002
6.45	-1478.8604	50.6992	767.0223
7.35	-1544.1239	94.0621	731.4972
8.15	-1632.4828	125.9453	699.9192

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 33)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2363.3836	-916.2962	385.4372
2.61	-899.2536	-694.9580	385.4372
4.41	174.4638	-488.6997	385.4372
6.30	921.6262	-288.8151	385.4372
8.10	1290.9545	-111.0615	385.4372
9.90	1343.5443	65.3959	385.4372
11.70	1071.8821	252.2205	385.4372
13.59	402.1228	472.3470	385.4372
15.39	-641.7174	709.2927	385.4372
17.20	-2140.7014	957.0108	385.4372

Sollecitazioni traverso (Combinazione n° 33)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1319.3700	622.8853	41.1777
2.57	-340.5959	483.9269	56.8301
4.50	446.1472	332.5047	73.8865
6.24	906.3249	195.5729	89.3106
8.02	1129.5218	56.3601	104.9917
9.98	1088.2166	-98.3209	122.4152
11.76	790.6703	-237.5338	138.0963
13.50	257.3615	-374.4655	153.5204
15.43	-610.2516	-525.8877	170.5768
17.20	-1663.2392	-664.8461	186.2292

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 33)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2363.3836	393.9003	922.8755
1.35	-2075.7377	326.0651	891.2976
2.25	-1814.3177	255.9485	855.7724
3.05	-1632.6258	199.1320	824.1945
3.95	-1479.8674	141.4115	788.6693
4.75	-1385.3975	95.6138	757.0914
5.65	-1320.2271	50.2895	721.5663
6.45	-1294.2473	15.5106	689.9884
7.35	-1295.5916	-17.4176	654.4632
8.15	-1319.3700	-41.1777	622.8853

Sollecitazioni piedritto destro (Combinazione nº 33)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2140.7014	-377.0780	964.8363
1.35	-1870.4833	-297.8068	933.2584
2.25	-1639.8196	-214.2843	897.7333
3.05	-1495.7461	-145.1567	866.1554
3.95	-1397.2226	-73.2317	830.6302
4.75	-1361.7884	-14.5635	799.0523
5.65	-1375.4209	45.4358	763.5271
6.45	-1430.6199	93.3657	731.9492
7.35	-1535.8864	141.1277	696.4241
8.15	-1663.2392	176.3960	664.8461

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 34)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2288.7479	-936.7005	356.0101
2.61	-805.8495	-695.3357	356.0101
4.41	255.6665	-474.8220	356.0101
6.30	966.9049	-265.1462	356.0101
8.10	1288.9358	-82.5181	356.0101
9.90	1288.9358	94.7201	356.0101
11.70	966.9049	277.9685	356.0101
13.59	255.6665	488.7936	356.0101
15.39	-805.8495	710.5166	356.0101
17.20	-2288.7479	936.7005	356.0101

Sollecitazioni traverso (Combinazione n° 34)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1536.2401	643.8657	79.7343

2.57	-520.3593	504.9073	79.7343
4.50	306.8189	353.4851	79.7343
6.24	803.5620	216.5534	79.7343
8.02	1063.9336	77.3405	79.7343
9.98	1063.9336	-77.3405	79.7343
11.76	803.5620	-216.5534	79.7343
13.50	306.8189	-353.4851	79.7343
15.43	-520.3593	-504.9073	79.7343
17.20	-1536.2401	-643.8657	79.7343

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 34)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2288.7479	356.0581	943.8559
1.35	-2031.3843	288.1714	912.2780
2.25	-1804.1418	217.8531	876.7528
3.05	-1653.0033	160.8173	845.1749
3.95	-1534.8129	102.9041	809.6498
4.75	-1471.1751	57.0572	778.0719
5.65	-1440.7057	11.7329	742.5467
6.45	-1445.5712	-23.0460	710.9688
7.35	-1481.6164	-55.9742	675.4436
8.15	-1536.2401	-79.7343	643.8657

Sollecitazioni piedritto destro (Combinazione nº 34)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2288.7479	-356.0581	943.8559
1.35	-2031.3843	-288.1714	912.2780
2.25	-1804.1418	-217.8531	876.7528
3.05	-1653.0033	-160.8173	845.1749
3.95	-1534.8129	-102.9041	809.6498
4.75	-1471.1751	-57.0572	778.0719
5.65	-1440.7057	-11.7329	742.5467
6.45	-1445.5712	23.0460	710.9688
7.35	-1481.6164	55.9742	675.4436
8.15	-1536.2401	79.7343	643.8657

Sollecitazioni fondazione (Combinazione n° 35)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2719.7705	-1052.3232	380.8392
2.61	-1039.5822	-796.9641	380.8392
4.41	190.2080	-559.0182	380.8392
6.30	1042.8566	-328.5309	380.8392

8.10	1460.4843	-123.8171	380.8392
9.90	1513.6939	78.9377	380.8392
11.70	1194.8873	292.8992	380.8392
13.59	420.5709	543.9919	380.8392
15.39	-778.9538	813.1067	380.8392
17.20	-2494.3436	1093.4741	380.8392

Sollecitazioni traverso (Combinazione n° 35)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1792.6375	759.7660	67.4945
2.57	-582.3286	608.8692	83.1469
4.50	432.6766	444.4380	100.2033
6.24	1075.6718	285.5183	115.6274
8.02	1406.8856	88.3386	131.3085
9.98	1365.1368	-130.7501	148.7320
11.76	958.7750	-327.9299	164.4130
13.50	241.8633	-486.8495	179.8372
15.43	-854.8804	-651.2808	196.8936
17.20	-2140.1999	-802.1775	212.5460

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 35)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2719.7705	389.4591	1059.7562
1.35	-2436.5988	319.3211	1028.1782
2.25	-2182.4141	246.6140	992.6531
3.05	-2009.1108	187.4948	961.0752
3.95	-1867.9915	127.1839	925.5500
4.75	-1785.8249	79.0835	893.9721
5.65	-1736.6976	31.1686	858.4469
6.45	-1726.9356	-5.9130	826.8690
7.35	-1748.7268	-41.4317	791.3439
8.15	-1792.6375	-67.4945	759.7660

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 35)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2494.3436	-372.3220	1102.1677
1.35	-2228.9258	-290.5358	1070.5898
2.25	-2006.0646	-204.1949	1035.0646
3.05	-1871.0473	-132.5893	1003.4867
3.95	-1785.0630	-57.9290	967.9615
4.75	-1762.8189	3.1055	936.3836
5.65	-1793.5178	65.6706	900.8585
6.45	-1865.7882	115.7756	869.2805

7.35	-1992.2868	165.8412	833.7554
8.15	-2140.1999	203.0668	802.1775

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 36)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2959.6454	-1152.1991	427.5895
2.61	-1121.3165	-871.3918	427.5895
4.41	222.2235	-610.2563	427.5895
6.30	1151.9500	-357.7626	427.5895
8.10	1605.6776	-133.8671	427.5895
9.90	1661.0974	87.5966	427.5895
11.70	1310.3641	321.0888	427.5895
13.59	462.5202	594.9586	427.5895
15.39	-848.8626	888.4131	427.5895
17.20	-2722.7417	1194.2960	427.5895

Sollecitazioni traverso (Combinazione nº 36)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2066.9865	860.2891	128.6882
2.57	-692.9649	693.4747	144.3406
4.50	468.3833	511.6980	161.3970
6.24	1214.2623	333.6849	176.8211
8.02	1603.1069	105.2226	192.5022
9.98	1560.3834	-148.6243	209.9256
11.76	1094.6365	-377.0865	225.6067
13.50	273.1153	-555.0996	241.0309
15.43	-971.8797	-736.8763	258.0872
17.20	-2422.6631	-903.6908	273.7397

Sollecitazioni piedritto sinistro (Combinazione nº 36)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2959.6454	441.5806	1160.2793
1.35	-2639.5475	359.5147	1128.7014
2.25	-2355.2271	273.3887	1093.1763
3.05	-2165.2752	202.3416	1061.5984
3.95	-2016.8323	128.6117	1026.0732
4.75	-1938.2945	68.5834	994.4953
5.65	-1904.6557	7.2497	958.9701
6.45	-1918.8001	-41.7598	927.3922
7.35	-1978.8920	-90.6975	891.8671
8.15	-2066.9865	-128.6882	860.2891

Sollecitazioni piedritto destro (Combinazione nº 36)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2722.7417	-413.7137	1203.6810
1.35	-2427.9453	-321.6870	1172.1031
2.25	-2181.8441	-223.7797	1136.5779
3.05	-2034.9203	-141.8614	1105.0000
3.95	-1945.4133	-55.5733	1069.4749
4.75	-1928.8294	15.8119	1037.8969
5.65	-1975.7973	90.0290	1002.3718
6.45	-2071.3327	150.4894	970.7939
7.35	-2233.9025	212.1913	935.2687
8.15	-2422.6631	258.8325	903.6908

Sollecitazioni fondazione (Combinazione n° 37)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2904.3916	-1124.9650	444.7873
2.61	-1108.6278	-851.6871	444.7873
4.41	205.2370	-597.1607	444.7873
6.30	1115.6972	-350.7309	444.7873
8.10	1561.2047	-131.9678	444.7873
9.90	1617.3758	84.5949	444.7873
11.70	1276.2813	313.0277	444.7873
13.59	448.9118	581.0094	444.7873
15.39	-832.1501	868.1502	444.7873
17.20	-2663.5780	1167.3802	444.7873

Sollecitazioni traverso (Combinazione n° 37)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1973.7773	832.8592	137.7187
2.57	-648.2692	666.0448	153.3711
4.50	460.2141	484.2680	170.4275
6.24	1158.9581	309.6629	185.8516
8.02	1518.8251	96.5362	201.5327
9.98	1475.7735	-140.2712	218.9561
11.76	1038.4136	-353.3978	234.6372
13.50	263.4465	-528.0030	250.0614
15.43	-929.3260	-709.7798	267.1177
17.20	-2332.1853	-876.5942	282.7702

Sollecitazioni piedritto sinistro (Combinazione n° 37)

V [m]	M [kNm]	V [kN]	N [kN]

0.55	-2904.3916	460.5994	1132.8494
1.35	-2570.2597	375.5810	1101.2715
2.25	-2272.9744	286.1333	1065.7464
3.05	-2074.0079	212.1337	1034.1684
3.95	-1918.2469	135.0822	998.6433
4.75	-1835.7138	72.1013	967.0654
5.65	-1800.4037	7.4459	931.5402
6.45	-1815.5720	-44.5161	899.9623
7.35	-1879.6393	-96.7754	864.4372
8.15	-1973.7773	-137.7187	832.8592

$\underline{Sollecitazioni\ piedritto\ destro\ (Combinazione\ n^\circ\ 37)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2663.5780	-429.0951	1176.5844
1.35	-2357.3224	-334.6540	1145.0065
2.25	-2100.6330	-234.0435	1109.4813
3.05	-1946.3367	-149.7303	1077.9034
3.95	-1850.8239	-60.7518	1042.3783
4.75	-1830.9344	13.0259	1010.8003
5.65	-1876.4735	89.9413	975.2752
6.45	-1972.7812	152.8110	943.6973
7.35	-2138.5302	217.2413	908.1721
8.15	-2332.1853	266.0213	876.5942

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 38)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2758.3182	-1045.6177	390.3425
2.61	-1083.8037	-797.3408	390.3425
4.41	151.0486	-564.2038	390.3425
6.30	1016.5923	-336.7878	390.3425
8.10	1450.3911	-133.3848	390.3425
9.90	1520.9322	69.4530	390.3425
11.70	1218.1419	284.8831	390.3425
13.59	456.4405	539.1844	390.3425
15.39	-738.2981	813.1873	390.3425
17.20	-2459.4971	1100.1843	390.3425

$\underline{Sollecitazioni\ traverso\ (Combinazione\ n^{\circ}\ 38)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1737.5795	752.8528	55.1779
2.57	-539.4974	601.9561	76.0479
4.50	462.1842	437.5248	98.7897
6.24	1093.1309	278.6052	119.3552
8.02	1412.0955	81.4254	140.2633

9.98	1356.7364	-137.6632	163.4946
11.76	938.1254	-334.8430	184.4027
13.50	209.1652	-493.7626	204.9682
15.43	-900.9020	-658.1939	227.7100
17.20	-2198.4484	-809.0906	248.5799

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^{\circ}\ 38)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2758.3182	401.7756	1052.8430
1.35	-2465.2932	331.6377	1021.2651
2.25	-2200.0236	258.9305	985.7399
3.05	-2016.8671	199.8114	954.1620
3.95	-1864.6630	139.5004	918.6369
4.75	-1772.6431	91.4000	887.0590
5.65	-1712.4309	43.4852	851.5338
6.45	-1692.8157	6.4036	819.9559
7.35	-1703.5220	-29.1151	784.4307
8.15	-1737.5795	-55.1779	752.8528

Sollecitazioni piedritto destro (Combinazione nº 38)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2459.4971	-379.0146	1109.0808
1.35	-2190.0483	-293.4313	1077.5029
2.25	-1966.3243	-202.7115	1041.9778
3.05	-1833.8839	-127.1167	1010.3998
3.95	-1754.6558	-47.8571	974.8747
4.75	-1741.9291	17.3662	943.2968
5.65	-1787.3844	84.7584	907.7716
6.45	-1876.4563	139.2566	876.1937
7.35	-2026.1018	194.3798	840.6685
8.15	-2198.4484	235.6223	809.0906

$\underline{Sollecitazioni\ fondazione\ (Combinazione\ n^{\circ}\ 39)}$

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-2754.5438	-1052.2187	380.1953
2.61	-1073.2344	-798.1972	380.1953
4.41	159.2166	-560.6347	380.1953
6.30	1014.7508	-329.8447	380.1953
8.10	1434.1982	-124.4468	380.1953
9.90	1487.8428	79.1336	380.1953
11.70	1168.0281	293.8319	380.1953
13.59	391.4825	545.3479	380.1953

15.39	-810.4216	814.2685	380.1953
17.20	-2527.1605	1093.6651	380.1953

Sollecitazioni traverso (Combinazione n° 39)

X [m]	M [kNm]	V [kN]	N [kN]
0.81	-1831.1609	759.6133	67.9879
2.57	-621.1219	608.7166	83.6403
4.50	393.5890	444.2853	100.6967
6.24	1036.3181	285.3657	116.1208
8.02	1367.2614	88.1859	131.8019
9.98	1325.2120	-130.9028	149.2254
11.76	918.5797	-328.0825	164.9065
13.50	201.4019	-487.0022	180.3306
15.43	-895.6361	-651.4334	197.3870
17.20	-2181.2256	-802.3302	213.0394

$\underline{Sollecitazioni\ piedritto\ sinistro\ (Combinazione\ n^\circ\ 39)}$

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2754.5438	388.9656	1059.6035
1.35	-2471.7668	318.8277	1028.0256
2.25	-2218.0262	246.1206	992.5004
3.05	-2045.1177	187.0014	960.9225
3.95	-1904.4425	126.6904	925.3973
4.75	-1822.6706	78.5901	893.8194
5.65	-1773.9873	30.6752	858.2943
6.45	-1764.6201	-6.4064	826.7164
7.35	-1786.8554	-41.9251	791.1912
8.15	-1831.1609	-67.9879	759.6133

Sollecitazioni piedritto destro (Combinazione nº 39)

Y [m]	M [kNm]	V [kN]	N [kN]
0.55	-2527.1605	-371.5276	1102.3204
1.35	-2262.4432	-289.5634	1070.7424
2.25	-2040.5213	-203.0719	1035.2173
3.05	-1906.4361	-131.3784	1003.6394
3.95	-1821.5641	-56.6727	968.1142
4.75	-1800.3249	4.3526	936.5363
5.65	-1832.1236	66.8497	901.0111
6.45	-1905.3009	116.8411	869.4332
7.35	-2032.6875	166.7169	833.9081
8.15	-2181.2256	203.7477	802.3302

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n° 1)

X [m]	σ _t [kPa]
0.81	221
2.61	208
4.41	190
6.30	174
8.10	165
9.90	165
11.70	174
13.59	190
15.39	208
17.20	221

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 2)}$

X [m]	$\sigma_{t} [kPa]$
0.81	173
2.61	163
4.41	149
6.30	136
8.10	129
9.90	129
11.70	136
13.59	149
15.39	163
17.20	173

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 3)}$

X [m]	$\sigma_{t} [kPa]$
0.81	220
2.61	213
4.41	199
6.30	185
8.10	179
9.90	182
11.70	195
13.59	217
15.39	240
17.20	258

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 4)}$

$\sigma_t [kPa]$	X [m]
173	0.81

2.61	168
4.41	157
6.30	146
8.10	142
9.90	144
11.70	155
13.59	172
15.39	191
17.20	205

Pressioni sul terreno di fondazione (Combinazione n° 5)

X [m]	$\sigma_{t} [kPa]$
0.81	240
2.61	231
4.41	216
6.30	200
8.10	193
9.90	196
11.70	210
13.59	234
15.39	259
17.20	279

Pressioni sul terreno di fondazione (Combinazione n° 6)

X [m]	$\sigma_t [kPa]$
0.81	189
2.61	183
4.41	171
6.30	159
8.10	154
9.90	157
11.70	168
13.59	187
15.39	207
17.20	223

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 7)}$

X [m]	$\sigma_t [kPa]$
0.81	234
2.61	226
4.41	211
6.30	196
8.10	189
9.90	193
11.70	206

13.59	230
15.39	254
17.20	274

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 8)}$

X [m]	$\sigma_t [kPa]$
0.81	184
2.61	179
4.41	167
6.30	156
8.10	151
9.90	153
11.70	165
13.59	183
15.39	203
17.20	218

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^\circ\ 9)}$

X [m]	$\sigma_t [kPa]$
0.81	214
2.61	209
4.41	196
6.30	184
8.10	179
9.90	183
11.70	197
13.59	220
15.39	245
17.20	264

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 10)}$

X [m]	$\sigma_t \left[kPa \right]$
0.81	167
2.61	164
4.41	154
6.30	145
8.10	141
9.90	145
11.70	156
13.59	175
15.39	195
17.20	210

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 11)}$

X [m]	$\sigma_{t} [kPa]$
0.81	218
2.61	212
4.41	199
6.30	186
8.10	180
9.90	183
11.70	196
13.59	217
15.39	240
17.20	257

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 12)}$

X [m]	$\sigma_t [kPa]$
0.81	171
2.61	167
4.41	157
6.30	147
8.10	142
9.90	145
11.70	155
13.59	172
15.39	190
17.20	204

Pressioni sul terreno di fondazione (Combinazione n° 13)

X [m]	$\sigma_t [kPa]$
0.81	151
2.61	143
4.41	132
6.30	122
8.10	117
9.90	117
11.70	124
13.59	136
15.39	149
17.20	159

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^\circ\ 14)}$

X [m]	$\sigma_t [kPa]$
0.81	172
2.61	164
4.41	151
6.30	139
8.10	133

9.90	134
11.70	142
13.59	155
15.39	170
17.20	181

Pressioni sul terreno di fondazione (Combinazione n° 15)

X [m]	σ _t [kPa]
0.81	172
2.61	164
4.41	151
6.30	139
8.10	133
9.90	134
11.70	142
13.59	155
15.39	170
17.20	181

Pressioni sul terreno di fondazione (Combinazione n° 16)

X [m]	$\sigma_t [kPa]$
0.81	151
2.61	143
4.41	132
6.30	122
8.10	117
9.90	117
11.70	124
13.59	136
15.39	149
17.20	159

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 17)}$

X [m]	$\sigma_t [kPa]$
0.81	145
2.61	139
4.41	128
6.30	119
8.10	114
9.90	114
11.70	121
13.59	133
15.39	145
17.20	153

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 18)}$

X [m]	$\sigma_t \left[kPa \right]$
0.81	166
2.61	159
4.41	147
6.30	136
8.10	130
9.90	131
11.70	138
13.59	151
15.39	165
17.20	175

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 19)}$

X [m]	σ_{t} [kPa]
0.81	166
2.61	159
4.41	147
6.30	136
8.10	130
9.90	131
11.70	138
13.59	151
15.39	165
17.20	175

Pressioni sul terreno di fondazione (Combinazione n° 20)

X [m]	$\sigma_{t} \left[kPa \right]$
0.81	145
2.61	139
4.41	128
6.30	119
8.10	114
9.90	114
11.70	121
13.59	133
15.39	145
17.20	153

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 21)}$

σ _t [kPa]	X [m]
159	0.81
149	2.61
136	4.41

6.30	124
8.10	117
9.90	117
11.70	122
13.59	132
15.39	143
17.20	151

Pressioni sul terreno di fondazione (Combinazione n° 22)

X [m]	$\sigma_t [kPa]$
0.81	181
2.61	170
4.41	155
6.30	142
8.10	134
9.90	133
11.70	139
13.59	151
15.39	164
17.20	172

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 23)}$

X [m]	$\sigma_t [kPa]$
0.81	181
2.61	170
4.41	155
6.30	142
8.10	134
9.90	133
11.70	139
13.59	151
15.39	164
17.20	172

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 24)}$

X [m]	σ _t [kPa]
0.81	159
2.61	149
4.41	136
6.30	124
8.10	117
9.90	117
11.70	122
13.59	132
15.39	143

17.20 151

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 25)}$

X [m]	$\sigma_t [kPa]$
0.81	153
2.61	145
4.41	133
6.30	121
8.10	114
9.90	114
11.70	119
13.59	128
15.39	139
17.20	145

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 26)}$

X [m]	$\sigma_{t}\left[kPa\right]$
0.81	175
2.61	165
4.41	151
6.30	138
8.10	131
9.90	130
11.70	136
13.59	147
15.39	159
17.20	166

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 27)}$

X [m]	$\sigma_t [kPa]$
0.81	175
2.61	165
4.41	151
6.30	138
8.10	131
9.90	130
11.70	136
13.59	147
15.39	159
17.20	166

Pressioni sul terreno di fondazione (Combinazione n° 28)

$\sigma_t [kPa]$	X [m]
153	0.81

2.61	145
4.41	133
6.30	121
8.10	114
9.90	114
11.70	119
13.59	128
15.39	139
17.20	145

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 29)}$

X [m]	$\sigma_t [kPa]$
0.81	161
2.61	152
4.41	140
6.30	128
8.10	122
9.90	122
11.70	128
13.59	140
15.39	152
17.20	161

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 30)}$

X [m]	$\sigma_t \left[kPa \right]$
0.81	161
2.61	152
4.41	140
6.30	128
8.10	122
9.90	122
11.70	128
13.59	140
15.39	152
17.20	161

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 31)}$

X [m]	$\sigma_t [kPa]$
0.81	182
2.61	172
4.41	157
6.30	143
8.10	136
9.90	136
11.70	143

13.59	157
15.39	172
17.20	182

Pressioni sul terreno di fondazione (Combinazione n° 32)

X [m]	$\sigma_t [kPa]$
0.81	169
2.61	160
4.41	146
6.30	134
8.10	127
9.90	127
11.70	134
13.59	147
15.39	161
17.20	170

Pressioni sul terreno di fondazione (Combinazione n° 33)

X [m]	σ_t [kPa]
0.81	147
2.61	143
4.41	133
6.30	124
8.10	121
9.90	123
11.70	132
13.59	146
15.39	162
17.20	175

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 34)}$

X [m]	$\sigma_t \left[kPa \right]$
0.81	160
2.61	152
4.41	140
6.30	128
8.10	122
9.90	122
11.70	128
13.59	140
15.39	152
17.20	160

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 35)}$

X [m]	$\sigma_{t}\left[kPa\right]$
0.81	166
2.61	161
4.41	150
6.30	140
8.10	135
9.90	138
11.70	147
13.59	163
15.39	181
17.20	194

Pressioni sul terreno di fondazione (Combinazione n° 36)

X [m]	$\sigma_{t} [kPa]$
0.81	181
2.61	174
4.41	163
6.30	151
8.10	146
9.90	148
11.70	158
13.59	176
15.39	195
17.20	210

$\underline{Pressioni\ sul\ terreno\ di\ fondazione\ (Combinazione\ n^{\circ}\ 37)}$

X [m]	$\sigma_t [kPa]$
0.81	176
2.61	171
4.41	159
6.30	148
8.10	143
9.90	145
11.70	156
13.59	173
15.39	192
17.20	206

Pressioni sul terreno di fondazione (Combinazione n° 38)

X [m]	$\sigma_t [kPa]$
0.81	162
2.61	158
4.41	148
6.30	139
8.10	135

Strada Statale 14 "via Salaria": Adeguamento della piattaforma stradale e messa in sicurezza dal km 56+000 al km 64+000

9.90	138
11.70	148
13.59	166
15.39	184
17.20	199

Pressioni sul terreno di fondazione (Combinazione n° 39)

X [m]	$\sigma_t [kPa]$
0.81	165
2.61	160
4.41	150
6.30	140
8.10	136
9.90	138
11.70	148
13.59	164
15.39	181
17.20	194

Inviluppo sollecitazioni nodali

Inviluppo sollecitazioni fondazione

X [m]	M _{min} [kNm]	M _{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N _{min} [kN]	N_{max} [kN]
0.81	-3942.27	-2075.51	-1533.88	-876.70	354.39	665.30
2.61	-1494.77	-673.64	-1160.34	-653.57	354.39	655.23
4.41	132.07	462.73	-812.90	-440.88	354.39	645.19
6.30	879.05	1533.15	-476.87	-240.92	354.39	634.60
8.10	1198.21	2138.22	-178.84	-68.55	354.39	624.56
9.90	1198.21	2213.03	65.40	124.12	354.39	624.56
11.70	879.05	1746.98	252.22	427.01	354.39	634.60
13.59	195.73	618.83	454.49	791.86	354.39	645.19
15.39	-1127.00	-641.72	668.09	1182.91	354.39	655.23
17.20	-3622.49	-2075.51	876.70	1590.70	354.39	665.30

Inviluppo sollecitazioni traverso

X [m]	M _{min} [kNm]	M _{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N _{min} [kN]	$N_{max}\left[kN\right]$
0.81	-2792.04	-1319.37	614.25	1154.61	41.18	425.35
2.57	-947.81	-340.60	480.23	930.87	56.83	415.48
4.50	217.14	611.29	332.50	687.07	73.89	404.71
6.24	707.52	1613.00	195.57	448.19	79.18	394.98
8.02	970.13	2135.20	56.36	141.24	79.18	385.09
9.98	970.13	2077.53	-199.82	-67.86	79.18	385.09
11.76	707.52	1451.52	-506.78	-202.12	79.18	394.98
13.50	174.01	402.46	-745.65	-334.19	79.18	404.71
15.43	-1324.30	-452.90	-989.46	-480.23	79.18	415.48
17.20	-3272.14	-1420.77	-1213.19	-614.25	79.18	425.35

Inviluppo sollecitazioni piedritto sinistro

Y [m]	M _{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.55	-3942.27	-2075.51	354.44	620.70	883.18	1544.59
1.35	-3521.20	-1654.83	284.19	501.89	854.87	1503.54
2.25	-3147.72	-1297.15	211.08	375.91	823.03	1457.36
3.05	-2898.85	-1077.58	151.46	277.79	794.72	1416.31
3.95	-2705.40	-936.05	90.11	181.43	762.87	1370.12
4.75	-2604.38	-897.76	-9.01	117.73	734.56	1329.07
5.65	-2563.55	-929.40	-117.96	54.12	702.71	1282.89
6.45	-2586.02	-1017.61	-209.30	15.51	674.41	1241.84
7.35	-2670.42	-1196.15	-305.83	-17.42	642.56	1195.66
8.15	-2792.04	-1319.37	-378.16	-41.18	614.25	1154.61

Inviluppo sollecitazioni piedritto destro

Y [m]	M_{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	$N_{max}\left[kN\right]$
0.55	-3622.49	-2075.51	-620.70	-354.44	883.18	1603.18
1.35	-3235.58	-1654.83	-501.89	-284.19	854.87	1562.13
2.25	-2913.69	-1297.15	-374.43	-202.71	823.03	1515.94
3.05	-2722.90	-1077.58	-266.64	-127.12	794.72	1474.89
3.95	-2609.00	-936.05	-151.57	-40.70	762.87	1428.71
4.75	-2591.60	-897.76	-57.84	39.11	734.56	1387.66
5.65	-2659.57	-929.40	-12.30	132.89	702.71	1341.48
6.45	-2791.90	-1017.61	22.49	212.40	674.41	1300.42
7.35	-3014.64	-1196.15	55.42	305.83	642.56	1254.24
8.15	-3272.14	-1420.77	79.18	378.16	614.25	1213.19

Inviluppo pressioni terreno

<u>Inviluppo pressioni sul terreno di fondazione</u>

X [m]	σ_{tmin} [kPa]	σ_{tmax} [kPa]
0.81	145	240
2.61	139	231
4.41	128	216
6.30	119	200
8.10	114	193
9.90	114	196
11.70	119	210
13.59	128	234
15.39	139	259
17.20	145	279

Verifiche geotecniche

$Simbologia\ adottata$

IC Indice della combinazione Nc, Nq, N_g Fattori di capacità portante

Nc, Nq, N_g Fattori di capacità portante corretti per effetto forma, inclinazione del carico, affondamento, etc.

 $egin{array}{ll} qu & ext{Portanza ultima del terreno, espressa in [kPa]} \\ Q_U & ext{Portanza ultima del terreno, espressa in [kN]/m} \\ Q_Y & ext{Carico verticale al piano di posa, espressa in [kN]/m} \\ \end{array}$

FS Fattore di sicurezza a carico limite

IC	Nc	Nq	Νγ	N'c	N'q	Ν'γ	qu	\mathbf{Q}_{U}	\mathbf{Q}_{Y}	FS
1	75.31	64.20	79.54	93.22	72.37	79.54	36338	654077.84	3079.46	212.40
2	41.69	28.99	28.18	51.61	33.52	28.18	14807	266518.53	2412.99	110.45
3	75.31	64.20	79.54	80.23	62.44	64.61	23867	429608.93	3366.06	127.63
4	41.69	28.99	28.18	43.75	28.59	22.52	9900	178204.64	2664.04	66.89
5	75.31	64.20	79.54	74.73	58.24	58.52	22051	396911.65	3638.81	109.08
6	41.69	28.99	28.18	39.77	26.10	19.78	8939	160899.16	2896.38	55.55
7	75.31	64.20	79.54	72.30	56.38	55.88	21224	382037.94	3565.20	107.16
8	41.69	28.99	28.18	38.07	25.03	18.63	8518	153320.93	2833.68	54.11
9	75.31	64.20	79.54	76.23	59.38	60.17	22333	401996.23	3366.06	119.43
10	41.69	28.99	28.18	41.34	27.08	20.85	9226	166059.62	2664.04	62.33
11	75.31	64.20	79.54	80.23	62.44	64.61	23862	429511.60	3366.06	127.60
12	41.69	28.99	28.18	43.75	28.59	22.52	9898	178160.34	2664.04	66.88
13	75.31	64.20	79.54	36.35	28.91	20.87	11922	214601.14	2176.09	98.62
14	75.31	64.20	79.54	41.30	32.69	25.15	13850	249305.89	2483.37	100.39
15	75.31	64.20	79.54	41.30	32.69	25.15	13850	249305.89	2483.37	100.39
16	75.31	64.20	79.54	36.35	28.91	20.87	11922	214601.14	2176.09	98.62
17	75.31	64.20	79.54	35.22	28.05	19.93	9635	173435.39	2111.80	82.13
18	75.31	64.20	79.54	40.35	31.97	24.31	11219	201949.78	2419.07	83.48
19	75.31	64.20	79.54	40.35	31.97	24.31	11219	201949.78	2419.07	83.48
20	75.31	64.20	79.54	35.22	28.05	19.93	9635	173435.39	2111.80	82.13
21	75.31	64.20	79.54	36.35	28.91	20.87	11922	214601.14	2176.09	98.62
22	75.31	64.20	79.54	41.30	32.69	25.15	13850	249305.89	2483.37	100.39
23	75.31	64.20	79.54	41.30	32.69	25.15	13850	249305.89	2483.37	100.39
24	75.31	64.20	79.54	36.35	28.91	20.87	11922	214601.14	2176.09	98.62
25	75.31	64.20	79.54	35.22	28.05	19.93	9635	173435.39	2111.80	82.13
26	75.31	64.20	79.54	40.35	31.97	24.31	11219	201949.78	2419.07	83.48
27	75.31	64.20	79.54	40.35	31.97	24.31	11219	201949.78	2419.07	83.48
28	75.31	64.20	79.54	35.22	28.05	19.93	9635	173435.39	2111.80	82.13